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ABSTRACTT.

Cycloheximide, a potent eukaryotic protein synthesis inhibitor 
(Sisler and Siegel, 1967)» was used in a biochemical and genetical 
investigation of the beisidiomycete ftingus, Coprinus cine reus .

An optimised polyuridylic acid dependant cell-free 
polyphenylalanine synthesising system was developed for Coprinus ciñere»«, 
in order to identify the cellular component conferring cycloheximide- 
resistance in two cycloheximide-resistant mutant strains, CY 8.2 and CY9.23 
In both of these strains, resistance to cycloheximide was found to be 
associated with the cytoplasmic ribosome fraction. It was not possible 
to Identify the particular cytoplasmic ribosomal subunit which conferred 
cycloheximide-resistance.

Analysis of cytoplasmic ribosomal proteins by two-dimensionaa 
gel electrophoresis did not reveaú. any difference between the «n»^n 
subunit proteins of CY 8 and CY 8.2. There were a considerable number 
of differences between the proteins extracted from the large subunit of 
CY 8 and CY 8.2, and CY 9 and CY9»23* There wan no conclusive evidence 
to identify a cytoplasmic ribosomaJ. protein associated with cycloheximide 
resistance although several candidates were proposed. An analysis 
using carboxymethyl-cellulose chromotography did not Identify any 
cytoplasmic ribosomal proteins conferring cycloheximide resistance.

CY 8.2 was one of 17^ cycloheximide-resistant mutant strains 
produced by the ultraviolet mutagenesis of cycloheximide-sensitive 
strains, according to a method modified from North (1982). Cycloheximide- 
resistance in each mutant strain was considered to be conferred a 
single gene, which in those strains examined, was recessive in 
heterozygous cycloheximide-resistant dikaryons and diploids . The 
cycloheximide-resistance mutation in all strains examined belonged to 
the cy-2 complementation group (North, 1982) and hence were allelic with 
the resistance gene carried by CY 9.23. A classification of the 
cycloheximide-resistant mutants was proposed on the basis of their growth 
responses to cycloheximide.
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SECTION 1.1. PROLOGUE.

This investigation was conceived as a consequence of a study 

undertaken North (reported 19?8). North had produced and 

carried out a genetic analysis on cyclobeximide-resistant 

mutants in Coprinus clnereus. The genetic analysis had revealed 

that mutations in three genes conferred resistance to 

cycloheximide. Additionally a fourth mutation was identified, 

which did not itself confer cycloheximide resistance hut idiich 

affected the expression of one specific gene conferring 

cycloheximide-resistance in dikaryons but not in the diploids.



SECTION 1.2. COPRINUS CINEREUS.

a) Identification.

The subject of this Investigation was the species Coprlnus 

clnereusCSchaeff ex. Pr. 1821) S.F Gray 1821, (North, 1982). 

Coprlnus clnereus Is the correct specific name for the dung

dwelling species which Buller incorrectly Identified as 

^prlnus lagopus, (Orton, 195?). Both species have similar 

appearance but the habitat of Coprlnus lagopus is woodland soils 

(Orton, 1957). Consequently in many early publications Coprlnus 

lagopus has been referred to,when in fact the species used was 

Coprlnus clnereus (eg. Casselton, I965).

t) Life History.

The salient featiires of the Coprlnus clnereus life-cycle 

are shown in Figure 1 .1 . For the majority of its life, Coprlnus 

clnereus exists as a mass of white vegetative mycelium which can 

be distinguished as two cell-types* monokaxoytic cells which possess

a single haploid nucleus and dikaryotic cells which contain two 
haploid nuclei.

Dikaryons are produced when two monokaryons which possess 

compatible mating-type factors meet, fuse and transfer nuclei. The 

mating system in Coprinus cinereus is controlled by two unlinked 

loci, mating-type factors A and B, idiich control synchronous 

division and nuclear migration respectively. Dikaryons possess 

unlike alleles at the A and B mating^ype loci (eg. a6 B6 and A5 B5 

Figure 1.1).



.̂ 1

If one or both alleles at the matlng-type loci are Identical 

the heterokaryons which are produced have variable nuclear 

contents and are unstable and Infertile.

Figure 1,1. The life-cycle of Coprinus clnereus.

,7 .
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Based on a scheme ftom Fincham and Day (1971).



In advantageous environments, the monokaiyons auid dlkaxyons 

thrive, each capable of asexual reproduction by producing oldlospores 

and chlanydospores respectively (Figure l.l).

The final phase which completes the life-cycle occurs when the 

Individual haploid nuclei of the dlkaxyon fuse to produce a single 

diploid nucleus. The diploid cells are localised to the gills on the 

underside of the distinctive frultbody which Is characteristic of 

many baisldlomycetes and of the Agarlcacae In paortlcular:. Coprlnus 

clnereus Is a typical hymencmycete, possessing gills enclosed within 

a hymenlcal sxirface. The diploid cells undergo melosls resulting In 

the production of four haploid bausldlospores borne In tetrads on the 

basldlum. When mature, the grey scaly cap dissolves by a process 

of autodlgestlon to releaise a black spore containing fluid.

Germinated bausldlospores originate monokaucyotlc colonies which begin 

the life-cycle anew.

c) The choice of Conrlnus clnereus» nuclear Interaictlon.

North's analysis (198Z) of the genetic basis of cyclohexlmlde- 

reslstance, was Investigated In Coprlnus clnereus for several reasons. 

The species was conveniently cultured In the laboratory and was 

amenable to genetic analysis. It was an organism In which loci 

conferring cyclohexlmide-resistance had not prevloxisly been identified 

and therefore provided the opportunity for characterising the genetic 

map of Coprlnus clnereus.

However, the primary reason for choosing Coprlnus clnereus 

was that It was possible to investigate the effect of nuclear Inter-
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action on gene expression, in this particular instance, on the 

expression of genes conferring cycloheximide-resistance. The 

advantage which Coprlnus cinerei^ afforded over other eukaryotic 

species was that gene complementation and dominance could he 

compared in the stable dikcoyons and diploidi^whereas in other species 

notably in Aspergillus nidulans (Pontecorvo I952, I963, and 

Aplrion 1966) gene expression was compared between heterokaryon 

and diploid. In the dikaryotic cell of Coprinus cinereus, the 

nuclear content of the twc different haploid nuclei is stable 

(Section 1,2 b ; Figurel.l), but in the heterokaryon the content 

of the different haploid nuclei is variable , often unknown, and 

irregularly distributed in the mycelium. In Ccprinus cinereus 

a difference between the phenotypes of dikaryons and diploids in 

dominance or complementation tests may be interpreted in terns of the 

effect of nuclear interaction on gene expression, in the knowledge of 

the exact nuclear content in the dikaryon (eg. Casselton and Lewis, 1967 j 

Lewis and Vakerla, 1977)« However, the Interpretation of the 

phenotypic differences between heterokaryons and diploids in terms of 

nuclear Interaction is uncertain because of the variability of the 

nuclear ratios in the heterokaryons. In the heterokaryon it is 

probable that the prevalence of one nucleus determines which allele 

is expressed (Pbntecorvo, I963), rather than the interaction between 

transcription products in the nuclei or of the interaction of transcrixÆion 

and translation products in the cytoplasm., >diich determines the 

phenotype.

It was not until Casselton (I965) was able to synthesise stable 

diploidsythat Coprinus cinereus became of value in studying the possible 

effects of nuclear interaction on gene esqoession. Prior to 1965,



naturally occurring diploids were localised in the ■baisldia of the 
fruit body and were a short-lived jrfiase of the Coprinus cinereus

life-cycle (Section 1.2 b) Figure l.l) and as such were unsuitable

for the study of gene interactions.

The first application made of the stable diploids was to 

compare allelic complementation of auxotrophic mutants and their 

suppressor genes in diploids, dikaxyons and heterokeoyons by 

Casselton and Lewis (196?). The partisd. expression of auxotrophic 

requirements in heterokaryons but not in dikaryons or diploids, was 

interpreted by the authors to be the result of a preponderance of 

auxotrojAiic alleles in the heterokaryon.The result therefore demonstrated: 

the preference of dikaryons to heterokaryons in the study of nuclear 

interaction and gene expression.

Differences between the phenotype of dikaxyons and diploids 

have been observed in complementation tests (eg.Day and Roberts, 1969) 

ajid dominance tests (eg.Senathirajah euid l^wis, 1975 I I^wis and 

Vakeria,1977) and have been interpreted in terms of the effect of 

nucleaur interaction on gene expression.

Of importance to this investigation was the obsermtlon made 

by North (1978) in vrtiich the dominance modifier, modcy , of a specific 

allele conferring resistance to cyclohexlmide, cy-2 , resulted in a 

partial expression of cycloheximlde-resistance in dikaryons but not in 

diploids. One of the objectives of this investigation was to 

Identify the molecular basis of cyclohexlmide resistance in Coprinus 

cinereus and to interpret the difference in the expression of 

modcy^ in terms of the nucleax Interaction.



SECTION 1 .3 . CYCLOHEXIMIDE.

a) The choice of cyclohexlmlde-resistant mutants.

The analysis of mutants , particularly mutants exhibiting reslstauice 

to cyclohexlmlde, has been employed as a powerful approach In the study 

of ¡eukaryotic physiology , to Identify gene loci , their products and 

their function.

Cyclohexlmlde-resistant mutants were chosen by North (1978) and 

were the subject of this Investigation because of the possibility of 

discovering the presence of genes associated with the irfienotype, 

Identifying the gene product and Its function. Cyclohexlmlde has been 

one of the most thoroughly Investigated Inhibitors of eiikaryotes 

(Siegel, 1977)* An Investigation of the response of Coprlnus clnereus 

strains to cyclohexlmlde would permit a comparison of the genetlcal 

and biochemical mechanism between It and other species.

b) Structure and blologlceJ. activity.

Cyclohexlmlde belongs to the glutarlmlde group of inhibitors , 

so-called because each possesses a -(2-hydroxymethyl) moiety, 

idilch In cyclohexlmlde Is attched to a cyclic ketone.

Figure 1.2. The structure of cyclohexlmlde.

8



Originally isolated from filtrates of Streptomyces griseus 

(Vhiffen gt__al, 19^)t the chemical structure of cycloheximide,

/5- ( 2-(3,5, dimethyl - 2 - oxocyclohexyl) - 2 - hydroxyethyl )- 

glutarimide, was determined hy Kornfeld et al^(19^9). Of the 

several stereoisomeric configurations possible for the structure 

represented in Figure 1.2, L- cycloheximide is the steroisomeric 

form, which has been examined (Siegel andSisler 1967)*

L> cycloheximide is usually known as cycloheximide but has been 

known by the synonyms of actidione and naramycln A. Henceforth 

in this investigation, L> cycloheximide is referred tc as cyclo

heximide.

When first investigated, cycloheximide was found to be toxic 

to a wide spectrum of eukaryotic orgajiisms examined, but 

ineffective against bacteria (Whlffen, 19W). Within the diversity 

of the eukaryotic species examined and within different strains of 

the same species a differential toxicity of cycloheximide was observed 

(Whiffen, 19W).

Of all glutarlmides and of all eukaryotic inhibitors, 

cycloheximide is the most toxic. The structural components essential 

for toxicity were the ketone-carbonyi» the hydroxyl and the imlde 

nitrogen groups (Sisler and Siegel, 196?).

The reason why cycloheximide is one of the most thoroughly 

investigated antibiotics does not derive from any medical or 

agricixltuzal application to control eukaryotic pathogens, but rather 

because of the nature of the metabolic process inhibited by the 

intracellular site of action of the drug.



c) Mechanism of action i Inhibitor of protein synthesis.

Cyclohexlmlde Is regarded as one of the most potent 

Inhibitors of eukaryotic protein synthesis (reviewed by Sisler and 

Siegel, 1967» Pestka,1977)» It was first demonstrated to be

an Inhibitor of protein synthesis In Saccharomyces calsbergensls 

cells (Kerridge,1958)» Subsequently Inhibition of protein synthesis 

has been found In cells and cell-extracts from a range^of eukaryotic 

species (Siegel and Sisler, 196?). The drug Inhibited protein 

synthesis catalysed by eukaryotic cytoplasmic ribosomes but did not 

Inhibit prokaryotic (eg. Whlffen,19^» Ennis and Luben,196^)» 

mltochondrlel. (eg. Loeb and Jkibby, I968) or chloroplastlc (eg.Ellis,

1969) protein synthesis.

There have been contradictory reports concerning which specific 

reaction or reactions of polypeptide synthesis Inhibited by cyclohexlmlde.

There Is general agreement that amino acid activation, which 

does not Involve the cytoplasmic ribosome. Is not Inhibited by 

cyclohexlmlde. (Siegel and Sisler, 1963t Ennis and Luben, 196^)«

There Is evidence that Initiation (reviewed by Siegel, 1977) 

and termination (Godchaux et al, I9671 Rajalakshml et 1971) are 

Inhibited by cyclohexlmlde. The majority of evidence, however, suggests 

that the elongation of the nauscent polypeptide Is reduced or prevented 

by cyclohexlmlde and that the specific step of the elongation phase 

Inhibited Is the translocation of the cytoplasmic ribosomes on the 

mRNA (reviewed by Siegel, 1977l Vasquez, 1979)»
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The specificity of cycloheximide for cytoplasmic protein 

synthesis catalysed by the cytoplasmic ribosome, confirmed the evidence 

that the cytoplasmic ribosome was the Intracellular site of cycloheximide 
action.

With the exception of studies by Trakatellis et al, (I965) and 

Fellcetti ̂  flj., (1966) who concluded that a soluble factor in the 

cytoplasmic supernatant fraction of mammalian cells was inactivated by 

cycloheximide, all other studies, predominantly of fungal species, have 

implicated the cytoplasmic ribosome (reviewed by Siegel, 1977i Vasquez, 1979) 

In particular, one mechanism by >rtiich a cell may be made more resistant 

to cycloheximide has been shown to be a property of the cytoplasmic 

ribosome (reviewed by Siegel, 1977i Vasquez, 1979).

Despite the overwhelming evidence that cycloheximide' s mode 

of action is the inhibition of cytoplasmic protein synthesis, there is 

evidence idiich suggests that other metabolic processes are inhibited.

A point of contention is idiether the inhibition by cycloheximide of 

RNA synthesis (Horgen and Griffen, 1971» Tlmberlake and Griffen, 1974) 

and DNA synthesis (Kerridge, 1958| Bennet et al^ 1964) occurs directly 

or as an indirect result of the primary inhibition of cytoplaamic 

protein synthesis.

Inhibition in vivo of RNA and DNA synthesis may be explained 

as a secondary effect of the drug, except for the report by Cooney ató 

Bradley (I96I) that the inhibition of DNA synthesis proceeds the inhibition 

of protein synthesis and the observation by Tlmberlake et al (1972) that 

the DNA-dependant RNA polymerase 1 is specifically inhibited in vitro.That 

the specific primary mode of action of cycloheximide on cytoplasmic 

protein synthesis has therefore not been proven.

1 1



SECTION 1.4. CÏTOPIASMIC RIBOSOMES.

a) Location.

Eukaiyotes may possess three types of ribosome, characterised 

by the site at which they synthesis polypeptides. Coprinus cinereus 

possesses cytoplasmic ribosomes located either free or bound to the 

endoplasmic reticulum and mitochondrial ribosomes. Eîukaryotes which 

have chloroplasts also contain chloroplastic ribosomes.

b) Physical properties.

The jAiysical properties of Coprinvis cinereus cytoplasmic 

ribosomes are unknown, apart from the studies of Lovett and Haselby, 

(1971) and Lava-Sanchez et (1972). It is therefore assumed that 

Coprinus cinereus cytoplasmic ribosomes are similar to those examined 

in other fungal species. However, the most studied species are 

Sacch«n?myces cerevisiaeand Neurospora eras sa >diich are Ascomycetes 

wheras Coprinus cinereus is a BaBldlomycete and it may be that the 

ribosomes from the two fajnilies do not have identical physical 

properties.
Fungal cytoplasmic ribosomes are composed of two subunits , 

the large and small cytoplasmic subunits , örtlich together contain 

four molecules of RNA and between 7O-8O proteins. A summary of 

their general physical properties is presented in Table 1.1 (abridged 

from Russell and Wilkerson , 1980). Table 1.1 reveals variation in 

physical properties resulting from differences between the species 

but also includes variation brought about by different methods of 

experimentation.

1 2
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1

Mitochondrial and chloroplastlc ribosomes, are smaller and 

possess fewer ajid smaller components than cytoplasmic ribosomes 

and resemble those of prokaryotic cytoplasmic ribosomes 

(Russell and Wilkerson, I980). The cytoplasmic ribosomes of plants 

and animals possess rlbosomal subunits and constituents which are 

on average larger than those found In fungi (Russell and Wllkerson, I980).

S

The mucleotlde content of the 28S and 18S rRNAs have been 

determined for Goprlnus species (Pollard, 196^) and the high 

proportion of guanidine and cytosine are similar, to those of 

other fungal species (Lava-Sanchez et a ^  1972). The terminal 

nucleotide sequences of 28S and 18S rRNAs have been chara^cterlsed 

In several, fungi (Russell and Wllkerson, 1980) and the 5S and 

5 .8S rRNAs of several fungi have been completely sequenced 

(Russell and Wllkerson, I980).

a

0 B

1  I

Each of the rlbosomal proteins Is presumed to be present In 

one copy per ribosome, with one exception In Saccharomyces cerevlslae 

(Zlnker and Warner, 197^) and no protein Is common to both 

cytoplasmic rlbosomal subunits. No complete amino acid sequence 

of any cytoplasmic ribosomal protein Is known, but terminal £unlno acid 

sequences of several proteins from Schlzosaccharomyces pombe, 

Saccharomyces cerevisiae and rat liver have been recently determined 

by Otaka et al, (1983)»
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c) Cytoplasmic rlbosoinftl genffs,

The genomes of all fungal species examined contain multiple 

copies of cytoplasmic rlbosomal RNA clstrons. The rlbosomal RNA genes 

are arranged In repeat units idilch consist of 18S - 5.8S - 28S rRNA 

molecules separated hy non-coding spacer DNA. The 5S rRHA may be 

closely associated with the repeat unit, but Is a distinctive gene 

(Russell and Wllkerson, i960). The number and location of rRNA genes 

Is not known In Coprlnus clnereus, except that they are not on 

linkage group 1 1 , (Wu et al, I963).

The Identity of rlbosomal protein genes Is difficult to 
ascertain and consequently the number of copies and locations are

not known. Evidence from antibiotic resistant mutants, particularly

from cyclohexlmlde-resistant mutants has been used to Identify

specific cytoplasmic rlbosomal protein genes from the large subunit

(Coddlngton and Flurl, 1977» Begueret et al, 1977i St^Ckleln and

Plepersberg,1980). However the Identity of the majority of cytoplasmic

rlbosomal protein genes axe not known, and none axe known In Coprlnus
clnereus.

The genes which regulate the synthesis of rRNA and rlbosomal 

protein, the assembly of the cytoplasmic rlbosomal particles and the 

activity of the cytoplasmic ribosomes are also not known.

d) Cytoplasmic rlbosomal synthesis.

The cytoplasmic rlbosomal RNA and protein genes are transcribed 

In the nucleus . The rRNA precursor molecule which contains



18S, 5S and 28S rRNA Is processed In the nucleolus. The mRNA 

molecules encoding the rlbosomal proteins are translated on 

cytoplasmic ribosomes In the cytoplasm. The nascent rlbosomal 

proteins associate In the nucleolus with the rRNA molecules. The 

rlbonucleoproteln complexes develop Into the large and small 

cytoplasmic rlbosomal subunits >dilch function In tl^ cytoplasm.

The proteins synthesised on the nascent cytoplasmic ribosomes may 

then partake In the transcriptional and translational processes 

necessary to synthesise more cytoplasmic ribosomes (Reviewed by 

Russell and Wllkerson, 1980).

One of the uses to tdilch cyclohexlmide has been employed has 

been In the study of cytoplasmic ribosome synthesis . As a result 

of the Inhibition of ribosome synthesis in the presence of cyclohexlmide 

Warner, (197^) considered that ribosome biogenesis was dependant 

on a continuous supply of nascent rlbosomal and non-rlbosomal 

proteins.

e) Structure and Function.

The structure of a eukaryotic cytoplasmic ribosome 

Is envisaged as consisting of a relatively compact core In idilch the 

rRNA molecules are located. The rlbos^nal proteins constitute the 

majority of the surface of the organelle, some aune located in the 

central core, others are less strongly bound (Wool, 1980).

The distribution of ribosomal components In the orgauielle Is 

not well understood In eukaryotic species. The overall function of 

cytoplasmic ribosomes Is to synthesise polyi>eptldes, tut few of the

16



Individual reactions have been attributed to specific constituents 

of the cytoplasmic ribosome or to particular domains« The property 

of conferring cycloheximide-resistance has been assigned to specific 

ribosomal proteins (Coddlngton and Pluri,1977 » B^gueret ̂  ai 1977i 

Stocklein and Piepersberg, 1980). There is evidence that the identified 

ribosmal proteins associated with the response to cycloheximlde 

constitute the region of the organelle known as the peirtldyl- 

transferase centre, the site at which tRNA molecules are bound and 

idiere peptide bond formation takes place (Bielka, 1978).

17



SECTION 1.5 OBJECTIVES.

M

The primary objective of this investigation was to discover 

the molecular basis of cycloheximlde-reslstance in Coprinus 

cinereus. However, the first objectives were to produce cyclo- 

heximide resistant mutants « to identify genes conferring 

cycloheximide resistance not found by North (1978) and to 

supplement strains made available by North for biochemical 

analysis.

The biochemical analysis of cycloheximlde-resistance in other 

eukaryotic species has revealed that one way in which the mutant 

phenotype was brought abcut involved the modification of cytoplasmic 

ribosomes. The main emphasis of this investigation was to determine 

whether cytoplasmic ribosomes could confer cycloheximlde-resistance 

in Coprinus cinereus.

The only previous analysis of the structxire and function of 

Coprinus cinereus cytoplasmic ribosomes was an analysis of 

physical properties, (Lovett and Hasell^, 197^). In order to discover 

the presence of cycloheximide-resistant cytoplasmic ribosomes in the 

cycloheximide-resistant mutant strains, it was first necessary to 

develop a cell-free polypeptide synthesising system in which to 

measure the activity of their cytoplasmic ribosomes.

A biochemical analysis of cytoplasmic ribosomal proteins 

from cycloheximide-resistant and cycloheximide-i?enritive strains 

was ^ir.dertaken in order to identify the specific component which 

conferred' cycloh^cimide resistance.





SECTION 2.1. MATEBIAL5.

All chemicals were Analar grade.

The chemicals required for the culture of Coprlnus 

were obtained from either Dlfco or BDH. In addition cyclohexlmlde 

was supplied from Koch-Llght, and Sigma supplied DNA and 

p-amlnobenzolc acid.

The buffer constituents were purchased from BDH and Sigma.

The essential chemicals for the cell-free protein synthesising 

system were supplied by Boehrlnger, with exceptions of 

spermidine (Aldrich) and polyurldyllc acid (Calblochem). 

Radlolabelled chemlcskls were obtained from the Radiochemical Centre, 

Amersham.

Chemicals required for the analysis of rlbosomal proteins 

were obtained from Merck, except; acrylamide (Serva), glutaraldehyde 

(Fluka and Buchs) and pyronlne yellow (G. Gurr and Sons).

20



SECTION 2.2. STRAINS.

Table 2.1. Strains of Coprlnus clnereus used In this Investigation.

Strain. Mating-type. 

A B

Genotype. Origin

CY3 5 5
CY6 5 5
CY8 6 5
CY9 6 6
CY9.23 6 6
CY9.23.98 6 6
CY9.23.i37 5 5
CY9.23.i38 5 6
CYIO 6 6
CYll 5 6
CYI3 5 6
CY14 6 5
CY18 6 6
HI 5 5
H2 6 5
H5 5 6
H9 6 6
SR5if 6 6
TC4 5 5
h m r66a 6 6

me^ chol^ s
S i

nic1. paba
Â

s
S i

- ^ nic*"̂**li paba^ 8
S i

nic 2paba s
S i

nic paba^ cy-2^
me^ cy-2^

me
2nic paba

4 2nic paba
ae^ chol^

aQ 5 uad me chol 
me^ chol ost

cy-2 modcy

&C£
&

s
S I

s

s

8
S I

SH5k X TCA (North, 1982)

WMR66a x TC4 (North, 1982)

019 (North,1982)

^CY9 .2 3 x CY3 (North, 1982)

WMR66a X TC4 (North, 1982j 
L unpublished)

,SR5'+ X TC^ (North, 1982)

2R338 X CY3 (North,unpub)

Wild strains
(Day and Anderson,1961)

>Multiple crosses
s

S i

8 _All strains were made avsdlable by North. Abbreviations! c^ = sensitive to 

3*6 ̂  cyclohexiaidet cy^= resistant to 3*6 pM cycloheximidei modcy^ = 

dominance modifier of cy-2^ in dikaryons; ad = adenine requiring; chol = 

choline requiring; paba - para-aminobenzoic acid requiring; me = methionine 

requiring; nic ** nicotinic acid requiring» ost = ostrich mori^logy.
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SBÇTION^^. CULTURE OF COPRIWUS CIMEREUS.

a) Culture medium.

The composition of Minimal Medium and Complete Medium was as 

described by I^wls and North (197^)* Auxotrophic supplements were 

added to the Minimal Medium at concentrations described by Cowan 

and Lewis (I96I), Casselton and Lewis (196?) and Day 2Uid Roberts 

(1969). The concentrations of cyclohexlmlde employed ranged from 

0 to 712 ̂ M.

All medium was sterilised for 15 minutes at a pressure of 
*”21.06 kg.cm . A stock solution of D-glucose was sterilised

— 2separately at 0.7 leg.cm for 10 minutes and added to the medium

when cool. Stock solutions, of heat labile chemicals, which Included; 

choline chloride, cyclohexlmlde, furfuraldéhyde, methionine and 

nicotinic acid were sterilised by filtration through a 0.22 jJiR 

MiUipore filter.

b) Cultvge conditions.

Cultures on solid medium were grown In 9 cm diameter petri- 

dishes from 2 mm^ plugs of inoculum taken from within 5 mm of the 

margin of vlgourously growing cxiltures. Unless stated to the 

contrary, a-H cultures were incubated at 37 C.

C\ilt\ires In liquid medium were begun as seedlng-cultures. 

Seedlng-cultures containing 50 «1 of medium «ere Inoculated «1th
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0
approxlina.'tely 10 oldl.o8poxGs and wsro Incubated for 2 days, ng 

which time the 250 ml conical flasks were continually agitated in a 

Gallenkamp orbital shaker • Uncontaminated seeding-cultures were 

used as inocula lor 11 of medium in 21 conical flasks. After 3 days 

incubation and continuous agitation the yield from 11 cultures m r« 

approximately 30g wet weight of mycelium.

c) Stock maintenance.

Strains in day-to-day use grown at 37°C and subcultured every 

4 or 5 days. Strains which were used less frequently were kept at 

and subcultured monthly. Storage at was however unsuitable 

for dlkaryotic strains and they were therefore kept at 37°C or room 

temperature. Long-term reserves of each strain were kept as either 

mycelium under paraffin oilyidiich were subcultured yearly , or aa 

freeze-dried oidiosporesi whose viability remained h l ^  for the 

duration of this Investigation.
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SECTION 2.4. ULTRAVIOIÆr MUTAGENESIS AND RlîM.Tirrrioii 

OF CYCLOHEXIMIDE-RESIgrANr MUTANTS.

The ne'thod used to Induce and select for cyclohexlmlde*- 

resistant mutants was based on that of North (1982). The 

®o*^^^cations to North's procedure were that oldlospores of the 

cylcoheximlde-sensltive strains CY3, CY6, CY8, CY9, CYIO and CYll 

were irradiated for 7.5 minutes beneath a Phillips ultraviolet 

light source which emitted light at 254 nm at a dose of 

8.54 erg .cm .sec . Survival vaoried fjjom 905È to 99.9^ depending 

on the strain. The irradiated oidlospores were incubated in the 

dark for 24 hours on Complete Medium before they were covered with 

a 5nni layer of cycloheximlde-agar C^/y) Bewtoagar and 53 

cyclohexlmide. Independant colonies,which emerged on the surface 

of the overlayered plates auPter 14 to 28 days, were tested on 

cycloheximide. Each isolate was purified from an oidial suspension 

and was subcultured in the absence of cycloheximide. The ultra

violet induced mutation frequency was calculated from the number of 

isolates which were shown to be resistant to 3*6yuM cycloheximide.

a) Nomenclature,

Each of the isolates removed from the selection plates was 

identified according to the notation employed by North (1982) thus, 

CY3 .I6, identified this strain as being the sixteenth isolated from 

the cycloheximide-sensitive strain CY3*



SECTION 2.5. GENERIC ANALYSIS OF 

CYCIOHEXIMIDE-RESISTANr MUTANTS.

a) Growth test.

Confirmation that the strains, isolated from

mutagenised oidiospores, were cycloheximide-resistant, was derived 

from an anadysis of their growth response on solid Complete Medium 

containing cycloheximide.

Those strains which grew on 3.6 ̂ M  in the initial tests,were 

subjected to a detailed analysis of their growth response on 

cycloheximide concentrations up to 712 ̂ M. Growth was measiured as 

the average colony diameter, taken at cross-sections at right angles 

to eaich other (Casselton, 1965) • Colony dieuneters were measured 

after 3 days and every 24 hours thereafter, to a iv̂ riiiniin of 10 days. 

Colony diameters less thaui 5 oizii were scored sus zero. Irregularly 

shaped colonies were not recorded and the treatment was repeated.

The growth of each strain at each cycloheximide concentration was 

expressed as a percentage relative to uninhibited control treatment, 

0 jM  cycloheximide. Vhile the growth of the control treatment was 

within the confines of the petri-dish, the growth at other cyclo

heximide concentrations could be directly related to the control. 

Treatments at idilch growth was not recorded until after the time at 

idiich the control had outgrown the petri-dish,were indirectly related 

to the control by intermediate treatments of calcxilated relative 

growth (see Appendix A i for specimen calculation).
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A linear regression analysis was performed over the range of 

cycloheximide concentrations (log.10) at which growth inhibition was 

recorded. The minimal and 50^ inhibitory cycloheximide concentrations 

and the linear regression coefficients were calculated. The calculated 

50^ growth inhibitory cycloheximide concentrations and linear 

regression coefficients from different strains were compared using 

a Student's t-test (Bailey, 1959).

Determination of the number of genes conferring cycloheximide 

resistance in a strain.

The number of genes conferring cycloheximide 
resistance was inferred from the segregation ratio of cycloheximide- 
resistant and cycloheximide-sensitive basidiospores arising from 

the mating of cycloheximide-resistant mutant strains with compatible

cycloheximide-sensitive test strains. The dikaryons were synthesised

from monokaryotlc strains which were heteroallelic at both A and B

mating-type loci and vrtilch had complementary auxotrophic requirements.

In many instances,repeated attempts were necessary to achieve a

successful mating. The dikaryons were identified by their component

monokaryotic strains,eg. CY8.2 x CY13*

Fertile dikaryons produced ^:uit-bodies on moistened sterile 

horse-dung after 2 to 3 weeks (Lewis, 1961) or on Minimal Medium in 

a slightly longer time. Basidiospores were germinated on Complete Medium 

containing 0.01^ furfuraldéhyde (Emerson, 195^)* After 24 hours incub

ation, those basidiospores which had germinated were transferred to 

unmodified Complete Medium.
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The phenotypes of the colonies arising from the hasldlospores 

were determined from the presence or absence of growth on 3.6 uM 
cyclohexlmide.

c) Domlneuice test^

Dlkaryons, heterozygous for cycloheximide resistance,produced 

in order to determine the number of genes conferring cycloheximide 

resistance, were tested on 1 .8 ^  cycloheximide| those dikaryons 

which grew were considered to be resistant to cycloheximide and 

were described as possessing dominant mutations (North, 1982). 

Detailed analysis of the growth response over a range of cyclo

heximide concentrations, similar to those described in Section 2.5 a , 

were undertaken to resolve fully dominant and partially dominant 

mutations. Irregular and unstable dikaryons were not recorded.

The dominance of cycloheximide-resistance mutations was also 

determined in diploids, in a similar manner to the method described 

for dikaryons, except that the discriminatory cycloheximide 

concentration used to indicate a recessive mutation was 3*6 |iM 

(North, 1982).

Diploids were selected from the oidiospores of common A 

heterokaryons (Casselton, 19^5) and their existence was confirmed 

using a dikaryon test (North, 1982). Diploids were identified by 

their component monokaryotlc strains, eg. Cy8.2/CY18.
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d) Complementation test.

The number of different genes which conferred cyclohexlmlde- 

reslstance was determined hy a complementation test (North, 1982).

Only those cyclohexlmlde-resistant mutant strains possessing single, 

recessive cyclohexlmlde-resistance mutations could be tested. The 

necessary cyclohexlmlde-resistant recombinant strains were derived 

from the progeny of the heterozygous cyclohexlmlde-resistant dlkaryons 

analysed In Section 2.5 b Jhe nomenclature of the recombinant strains 

was such that the cyclohexlmlde-resistant mutant from idilch they 

were derived, and their order of isolation were identified, 

eg*CY 3«16.2 was derived from CY 3*16.

The dlkaryons produced from the mating of cycloheximide- 

reslstant mutants with cyclohexlmlde-resistant recombinant strains 

derived from other strains ̂ were tested for their ability to grow on

1 .8 cycloheximlde. Growth on 1 . 8 ^  cyclohexlmide was considered 

to demonstrate that no complementation had occured, l.e. that 

cyclohexlmlde resistance In the two strains was the result of 

mutations In the same gene.
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SECTION 2.6. BUFgEHS.

Constituent

Trls-HCl, pH 7.5- 
Magnesium acetate. 
Potassium chloride, 
2-mercapt oet hanol, 
Sucrose.

Extraction Buffer Dissociation Buffer 
Pinal concentration (mM),

50 50
10 1
25 100
5 5

250 0

The Extraction and Dissociation Buffers used In the preparation 

of gpprlnus clnereus cell-free extracts were autoclaved at 0.7 kg.cm'^, 

2-mercaptoethanol was added after sterilisation. The pH. of both

buffers was measured and adjusted at Kr°C and the buffers were stored 
at ^°C for up to 2 weeks.

Constituent CMC Start Buffer
FinsJ. Concentration

Urea. 6 M
Phosphoric acid» 20 uM
2-mercaptoeth2uiol, 7mM

The CMC Start Buffer was adjusted to pH 6.5 with methylamine 
(Coppin - Raynal, I98O)
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SECTION 2.6. BUfTERS,

Constituent

Trls-HCl, pH 7 .5. 
Magnesium acetate. 
Potassium chloride, 
2-mercapt oet hanol. 
Sucrose.

Extraction Buffer Llssoclation Buffer 
Pinal concentration (mM),

50 50
10 1
25 100
5 5

250 0

The Extraction and Dissociation Buffers used in the preparation 

of Ooj^nus clnereus cell-free extracts Here autoclaved at 0.7 kg-cm'^ 

2-mercaptoethanol was added after sterilisation. The pH. of both

b u ffe rs was measured and ad ju ste d  a t and the b u ffers Here stored  

a t fo r  up to  2 weeks.

Constituent CMC Start Buffer
Final Concentration

Urea, 6 M
Phosphoric acid. 20 uM
2-fflercaptoethanol, 7mM

The CMC Start Buffer was adjusted to pH 6.5 with methylamine 
(Coppin - Raynal, I98O)
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SECTION 2 .7 . PREPARATION OF COPRINUS CINEREUS CELL-EXTRACTS.

The method used to prepare Coprlnus clnereua cell-extracts was 

adapted from the preparation developed for Podospora anserlna. 
(Begueret eb al, 197?).

Mycelium was collected from 3 day-old, 1 litre liquid medium 

cultures (Section 2.3 b ) by filtration through muslin and was rinsed 

in distilled water and then Extraction Buffer, (Section 2.6).

All subsequent steps in the prepeoution and biochemical analysis 

were carried out at ^®C, unless stated to the contrary.

lOg wet weight of freshly grown mycelium were ground by hand 

in a pre-chiUed mortar, with an equal weight of acid-washed sand.

10 ml of Extraction Buffer were sulded during 3 minutes of vigourous 
homogenisation.

The fungal paste was subjected to the differential centrifugation 

steps outlined in Figure 2.1. At all stages of the preparation, the 

extinction coefficients of suitably diluted cell-extracts were 

measured at 260 and 280 nm in silica cuvettes using a PeiScin-Elmer 

552 Ultraviolet Spectrophotometer.

S-30 refers to the postHnitochondrial supernatant produced after 

centrifugation at 30,000 x gav. and S-100 and RP-lOO refer to the 

cytoplasmic ribosome-free supernatant and resuspended cytoplasmic 

ribosome-rich pellet respectively, produced at 100,000 x gav.
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Figure 2.1. Preparation of S-30t S-100 and RP-lOO fractions.

All centrifugation stops, except the clarification 

of the resuspended P-100 fraction, w-sre carried out using a 

MSB 8 X 35 ml rotor in a MSB 65 ultracentrifuge.

The supernatant fractions were carefully removed 

from the pelleted material using a pasteur pipette. Resuspension 

of the P-100 pellet wais made in the minimum volume of Bxtractlon 

Buffer.

The fractions identified l̂ y bold type; S-30.S-100 

and RP-100 were used in the biochemical investigation.

Cell fraction. Typical yield (A2^Qunit) 
from

lOg wet weight mycelium.

Typical
absorbance ratio 

•̂̂260*^280 '̂
S-30 300 1.75 1 1

RP-100 75 1.8 : 1

S-100 150 1.95 * 1



Figure 2.1. Preparation of Coprlnus clnereus cell-extracts»
,ion

1-100

typical 
:bance ratio

*^280^ *

Freshly grown mycelium

Ground for 3 min .using a pestle and 
mortar with acid-washed sand and 

Extraction Buffer

-> frozen

-> frozen

5 X 103 X gav.for 5 niln.

Pellet^ RP-100. — >  frozen
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S “30, S-lOO emd RP-lOO fr®ctions were dropped from a pasteur 

pipette Into microcentrifuge tubes containing liquid nitrogen and 

were kept at -70°C (Roberts and Paterson, 1973),

The S -30 fraction was treated according to the method of Marcu 

and Dudock (197^)1 prior to its use in the cell-free polypeptide 

synthesising system (Appendix Bi ) . The S -30 wais passed through a 

Sephadex G25 (Coarse), 20 x 1.0 cm. column. The column W£is eluted with 

Extraction Buffer at a flow rate of 3 ml.min"^. Those O .5 ml fractions

irtilch had an absorbance ratio (^250*^200) of 1 .6il or greater and had a 

concentration of 3*0 unit were pooled together and frozen.

Untreated S-100 and Iff-100 fractions were used in the polypeptide 

synthesising system (Section 2.9).
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SECTION 2.8« PREPARATION OF CYTOPLASMIC RIBOSOHAL SUBUNITS AND

ANALYSIS OF CELL~ECTRACTS.

Sucrose density gradients were used for the small-scale 

preparation of large and small cytoplasmic rihosomal subunit 

fractions and to auialysé the purity of the cell-extracts prepared, 

(Section 2 .7). The methodology was determined ^  experimentation 

(Chapter 4, Section ^.5 ) and is summarised in Figure 2.2.

Linear 25 ml sucrose density gradients were prepared from 10^ 

and 30̂  (Vv) stock sucrose solutions, using a Pharmacia gradient 

maker. For the preparation of cytoplaismlc iribosomal subunits, the 

sucrose density gradient was prepared in Dissociation Buffer (Section

2 .6), and for the analysis of cell-extracts the gradients were prepared 

in Extraction Buffer minus sucrose (Section 2.6).

The samples loauied onto the top of the gradients (10% sucrose) 

were in a maximum volume of 500 ^ 1 . and at a maximum concentration of 

^0 A 260 unit. Centrifugation waa achieved in a MSE 3 x 25 swing-out 

rotor for 6.5 hours at 90,000 x gav.in a MSE 65 ultracentrifuge.

The distribution of oeilular matericLi after centrifugation was 

analysed by inserting a glass micropipette into the centrifuge tube 

and removing the contents, densest first, at the rate of 2 ml.min“^. 

Before 0.8 ml fractions were collected|the absorption at 25^ nm 

was monitored by a LKB Uvicord Ultraviolet Absoptiometer.

Several fractions were used to determine the profile of the 

sucrose density gradient, by analysis in a 0-50%  sucrose refractometer



S AND 2»2. Prepaxatlon of cytoplasmic rlbosomal subunits and 

analysis of cell-extracts^

Either Preparation of or Analysis of individual
cytoplasmic ribosomal cell-extracts,
subunits.

RP-lOO
Either

S30, SlOO or RP-lOO

from 10^  

lient 

^its, the 

>r (Section 

were prepared

sucrose) 

mtration of 

swing-out 

:if uge •

Ration was

Lfuge tube 
-1

of the

îfractometer

Pellet resuspended in 
Dissociation Buffer.

Cell-extract present in 
Extraction B\iffer.

Collection of fractions 
corresponding to monosomes 
or large and small ribosomaJ. 
subunits.

Frozen in liquid nitrogen 
and stored at -70°C.

* For the preparation of cytoplasmic ribosomal subunits, the linear 

sucrose density gradient was prepared in Dissociation Buffer (Section

2.6) for the analysis of cell-extracts, Extraction Buffer (Section

2.6) va« used instead of Dissociation Buffer«
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Figure 2.3» Preparation of cytoplasmic rlbosomal subunits. 

ABSORBANCE
28

12

Typical absorption profiles of material from the RP-lOO after 

centrifugation (for 6.5 h at 90,000 x gav.) through a 10 - 30j6 sucrose

density gradient In Dissociation Buffer ( ■ ----■ ). The shaded

absorbance fractions labelled L and S were presumed to contain the 

large and small cytoplasmic rlbosomal subunits, respectively.



-2 8

.24
7/o
S

. 20

R
0

. 16 i
,12

(Bellingham ajid Stanley Ltd). An estimate of the sedimentation 

coefficients of peaks of absorption were calculated according to the 

method of M® Evren (196?, Appendix B ii).

To minimise cross-contamination between the large and «man 

cytoplasmic ribsomal subunits , the fractions which were pooled 

together were chosen from the extremes of the absorption peaks 

(Figure 2 .3)» The RP-lOO fraction typically yielded approximately hO% 

large cytoplasmic ribosomal subunits and 30^ small cytoplasmic ribosomal 

subunits in the pooled fractions, based on the areas of the fractions 

in the absorption profile. The pooled fractions of the large and 

small ribosomal subunits were frozen separately in liquid nitrogen 

and stored at - 70° C .
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SECTION 2.9. CELL-FREE POLYPHENYLALANINE SYNTHESIS.

The culmination of the experiments undertaken to develop a 

Coprlnus clnereus cell-free j)olyphenylalanlne synthesising system 

(Chapter are summarised In Table 2.2.

Table 2.2. The Coprlnus clnereus cell-free polyphenylalanine 

synthesising systemi optimised for each Individual 

component.

Constituent. Optimised final 
concentration 

(mMfunless stated)

Adenosine - 3 “ triphosphate 
Guajioslne - 3 - triphosphate 
Creatine phosphoklnase 
Creatine phosphate 
Tris - HCl, pH. 7 .3 .*
Magnesium acetate 
Potassium chloride 
Ammonium acetate 
Spermidine 
Dithiothreitol 
t RNA
Polyuridyllc aw:id
L - (U-C^^) phenylalanine(313)iCi.m mole 
RP-lOO cytoplasmic ribosome-rich fraction
SlOO cytoplasmic ribosome-free supernatant 
fraction

-1 )

-1

1.0

0.23
6.0 jig .ml'

12.0
13.0
^.5

20.0 
^0.0

1 .0
4.0
6.0 pg.mir̂

300.0 jig.mir^
".?4>i>K0.123)iCl)
2.0 A260 ’mit.
2.0 A260 unit.

* The pH.of Tris - HCl was measured at 20®C.



and toluene ) and counted for 10 or 20 minutes in a Beckman LS7500 

liquid scintillation counter (counting error = < 5%, counting 
efficiency = 895̂ ).

8-) Response of cell-extracts to cycloheximide.

The response of cell-extracts from vsirious strains to 

cycloheximide was analysed over a range of cycloheximide concentrations 

to a maximum of 5*3 oM. The quantity of polyphenylalanine synthesised 

at each cycloheximide concentration was expressed as a x>ercentage 

relative to the control treatment, iriiich contained no cycloheximide.

A linear regression analysis was performed over the range of 

cycloheximide concentrations (log. 10) at which polyphenylalanine 

synthesis was inhibited. Parameters \ised to describe the ^  vitro 

inhibition were the calculated minimum^50^i and in some instances 

total} inhibitory cycloheximide concentrations, eind the linear regression 

coefficient. The responses of two strains were compared by a 

Student’s t-test of the 505̂  inhibitory cycloheximide concentration 

and lineax regression coefficients (Bailey, 1959) •
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SECTION 2.10. PREPARATION OF CYTOPIASMIC RIBOSOMAL PROTEINS.

Cytoplasmic rlbosomal proteins were extracted from either 

monosomed or sutunlt preparations suspended In Extraction ?\iffer, 

by the method of Hardy et alm(l969).

Cytoplasmic ribosomes were suspended In Extraction Buffer.

The magnesium Ion concentration of the buffer was Increased to 100 mM 

and 2 volumes of glacial acetic acid were added. After 1 hour at 0®C# 

precipitated RNA was removed by 30 minutes centrifugation at 10,000

g.av. The decanted supernatant wais mixed with 5 volumes of acetone 

and left for 2 hours at -20°C to precipitate rlbosomal protein.

Rlbosomal protein was pelleted by centrifugation for 30 minutes at

10,000 g.av. The pellet was thoroughly dried In a vacuum for 15 minutes 

to remove excess acetone.

The rlbosomal protein was resuspended In the minimum volume of 

CMC - Start Buffer (Section 2.6) and clarified by 5 minutes 

centrifugation at 5»000 x g.av. The rlbosomal protein concentration 

was estimated from the known concentration before extraction and 

estimated extraction efficiency of approximately 25^ (A.BoUen, 

personal communication).
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SECTION 2.11. TWO-DIMENSIONAL POLYACRYLAMIDE GEL ELECTROPHORESIS.

The analysis of Coprlnus cinereus cytoplasmic ribosomal 
prot^ra W M  achieved by applying a method of analysis which had been 
1975)^'**^ Escherichia C2 li ribosomal proteins (Cabezón and De Wilde,

First dimension analysis.
Based on the method of Knopf gt %1,(1975). The compo

sition of the first dimension gel is described in Table 2.3*

Contents Stacking gel Sej)aratlng gel 
______ Eluaiconcentration fM).Acrylamide 0 .5 6 0 .5 6

Bisacrylamide 0 .0 4 3 0 .0 4 3
Bistris 0 .0 3 8 0 .0 38Urea 6.0 6.0
Glacial acetic acid pH 4 . 5 pH 5 . 5

The solutions were degassed and polymerised by the addition of 1.3 mM
TüifUtU followed by 2.15 idM, freshly made. ammonium peroxodlsulphate.

rv W  . - T  w m  y aisc-gej.
tube was filled to within 2 cm of the top with Separating gel. Once 
polymerised, the gel wsis overlayered with 1 cm of Stacking gel.

A maximum of 8 gels were placed in a Bio-rad 150A 
gel electroi^oresis cell. The upper chamber contained 10 mM bistris, 
adjusted to pH 3*71 the lower chamber contained 10 mM bistris at jH ?.0.

Approximately 25-50 /ig of Coprinus cinereus cytoplasmic 
ribosomal protein in 50 ̂ 1 of CMC-St art Buffer (prepared as desribed 
in Section 2.10) were carefully applied to the top of the Stacking 
gel. To facilitate the loading of the saunple, the sample contained 
tracking dye(0.1% w/v pyronine yellow in 10% w/v glycerol).

Electrophoresis toward the cathode commenced for ,-l15 minutes at 0.5 mA.gel“^and continued for l6 hours at 1.0 mA.gel”
Second dimension anailysis.

Based on the method of Howard and Traut, (1973). The 
composition of the second dimension slab gel is described in Table 2.4.
Table 2.4.
Contents Final concentration (m ).
Acrylamide 2 . 5
Bisacrylamide 0 . 3 2
Potassium hydroxide 0.048
Urea 6 .0
Glacial ausetlc acid pH 5-5
The solution was degassed and polymerised by the addition of 4.0 mM 
TEMED followed by 13 mM,flsshly prepared, ammonium peroxodlsulphate.

A disc-gel,which had been subjected to the electro
phoresis conditions described for the first dimension analysis,was 
embedded into a slab gel (dlmensionsi 11.5 x 13>5 x 0.2 cm). Two 
slab gels were placed adjacently in the apparatus described by 
Howard and Traut, (1973)* The buffer in the upper and lower chambers 
was 1 8 7 oM glycine, adjusted to pH 4.0 with glacial acetic acid. 
Tracking dye (pyronine yellow in glycerol) was layered across the 
top of the gel.
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ElectrojAioresis was carried out towards the cathode, 

initially for 15 minutes at 30 mA.gel but increased to 60 mA* 

gel for the time necessary for the tracking dye to migrate to 

within 1 cm of the base of the gel (approximately 7 hours). The 

gels were carefully removed and coded by a series of holes for 

identification.

Observation of proteins.

In the preliminary experiments the ribosomal proteins 

were revealed by staining with Coomassie Brilliant Blue(R-250), as 

described by Howai^i and Traut, (1973)• However, a silver staining 

technique wais found to be more suitable for staining the small 

quantities of ribosomal proteins idiich were present (Oakley gfc aii 

1980).The resolution of the stained ribosomal proteins from the 

general staining of the x>olya^3:y^^l(le gel was dependant on the 

subjective decision to stop development. The gels were photographed 

using Kodak Panntomic-X black and idiite film and were kept for 

several weeks in 5^ acetic acid.

Nomenclature of proteins.

The stained proteins on the electroi^erograms were 

identified according to the system devised by Kaltschmidt aind 

Vittmann (1970).Each protein was assigned a prefix, either S or L, 

to signify their respective derivation from the small or large 

cytoplasmic ribosomal subunit, and was numbered according to its 

position. The numbering began at the origin of the electroiAierogram 

and continued in horizontal planes down to the bottom of the slab gel.



SECTION 2.12. ANALYSIS OF CYTOPLASMIC MBOSOMAL PROTEINS BY
CARBOXYMETHYL-CELLULOSE CHROHATOGRAHiY.

The analysis of cytoplasmic rlbosomal pxotelns 'ty 

carhoxymethyl-k^ellulose (CNC) chromotogxaphy was beused on the method 

used for Podospora ajiserlna by Coppin-Raynal, 1980 .

Cytoplasmic ribosomal proteins were radiolabelled with either 

C^^ or by modifying the source of glucose in the liquid Complete 

Medium (Section 2.3 a )• The cyclohexlmide-sensitive strains CY8 

and CY9 were grown in the presence of 400 jiC i D -(U-C^^) glucose 

(255 n>Ci. mole“^). CY8.2 and CY9.23, the cycloheximide-resistant 

mutants derived from CY8 and CY9 respectively, were grown in 

400 ̂ Ci, of D-(3-r 3) glucose (5.6 Ci.mmole“^!.

Each strain was cultured according to the method described in 

Section 2.3b. The mycelium from CY8 was mixed with the mycelium 

from CY8.2. Similarly, CY9 and CY9.23 myceli\im were mixed together. 

Cytoplasmic ribosomes, ribosomal subunits and ribosomal proteins 

vexe prepared following the procedures described in Sections 2.7»

2.8 and 2 .10.

A 20 X 0.8 cm column containing carboxymethyl-cellulose 

(Whatman CM52) was equilibrated with CMC Start Buffer (Section 2.6), 

overnight at 4°C. The cytoplasmic ribosomal mixture of cycloheximide- 

resistant and cycloheximide-sensitive strains was dissolved in the 

CMC Start Buffer and was applied to the top of the column. The 

ribosomal protein samples contained approximately 2 x 10-5 dpm, (which 

was less than the activity suggested by Coppln-Raynal, i960).
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The cytoplasmic rlbosomal proteins were eluted from the column 

by a linearly increasing concentration (0 - 0.3^) of LiCl in the 

CMC Start Buffer. Three 0.9 ml fractions were collected esu3h hour 

for the duration of the LiCl gradient, idiich was approximately 

6 days. 500 ̂ 1  of most fractions were mixed with 5 ml of scintillation

cocktail (Aq^ualuma from lAimac, Basel) aî d analysed in a LKB 

Scintillation counter. The and C^^ radioactivity in each 
fraction was recorded.

In order to monitor the LiCl gradient, the conductivity of 

every tenth fraction was measured using a conductivity meter (Van der 

Heyden, Ltd). Conductivity (0-15 mho.) was equated to LlCl 

concentration using an experimentally determined calibration curve.
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INTRODUCTION.

SECTION 3»1 GENETICS OF COPRINUS CINEREUS,

The genetic analysis of Coprlnus cinereus has revealed 8 

linkage groups (Reviewed hy Lewis and North, 1974-). Genes idilch 

have been Identified and located on the linkage groups Incliide those 

idilch confer resistance to amino acid sinalogues; ethlonlne (Lewis 

1963) f canavanlne (Senathirajah and Lewis 1975 ) f p-fluorophenyl - 

alanine (Barker and Lewis, 197**’l Senathira jah and Lewis, 1975) 

and 5~^uorolndole (Veal and Casselton, 1982). In addition genes 

associated with resistance to the protein synthesis Inhibitor, 

cycloheximide have also been studied, (North, 19781 1982).

a) Cycloheximide resistance.

Day and Anderson (19^1) were the first to Identify a strain 

possessing cycloheximide-resistance In Coprlnus cinereus. No details 

of the mutant were given other than that it was the result of 

ultraviolet mutagenesis In the wild strain H9.

The only other investigation of cycloheximide resistance in 

Coprlnus cinereus was made by North (1978, 1982). Cycloheximide 

resistance, defined as the ability to grow on medium containing

3.6 |iM cycloheximide, was found to be conferred directly by three 

genes and indirectly by one other.

XOne gene, designated by the mutant allele cy-1 , was present 

In the strain TC4 and was believed to be common to many of the wild
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cydohexlmlde-resistant strains. Cy- f  sas described as dominant

In  both the dJkaryon and the d ip lo id  and Has lo cate d  on the lin kag e  

group VII.

The identity of another gene was discovered when the mutant 

allele cy-2*^ was produced "by ultraviolet mutagenesis. Gy- 2^ 

was recessive in the dikaryon and diploid and was located on 
linkage group II (Figure 3 .I).

A third gene modcy f irtiich was implicated in expression of 

cycloheximide-resistance^ did not directly confer cycloheximlde— 

resistance but did interact indirectly and specifically with cy—2*̂ . 

In heterozygous dikaryons, modcy enabled the partial expression of 

cy-ibut the heterozygous diploid was cycloheximlde-sensitive.

Modcy was Identified as a dominance modifier of cy-iand was 

located on linkage group II, distal to c y - i  (Figure 3 .I).

Details concerning another gene possessing a mutant allele 
rtermed cy-3 were incomplete. It was described, by North (I982) as 

as a weak mutant which was not linked to either cy-l^,cy-2^ or modcy^ 

It was also considered to be recessive (North, unpublished).
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b) Nuclear interaction and gene exprssslon.«

I) Exprasslon of cyclohaxlalde raslstanca»

North (1982) oheerved that the recessive cyclohexlmide-

reslstant cy-2^ in the strain CY9.23 * was partially expressed in

dlkaryons , but not in diploids, heterozygous for cycloheximide

resistance (Table 3.1). The difference in phenotypes between the

cell-types wets discovered to be the result of a mutation modcjjr ,

which did not Itself confer cycloheximide resistance but which

modified the expression of the cy-2^ mutation in the dlkaryon but

not in the diploid. The effect of the dominance modifier gene

modcy^ was restricted to the dikaryon, in which the interaction of
r ^genetic information occurred between nuclei when the cy-2 and modcy 

alleles were In the cis or trans config\iration, but not tdien their 

respective cycloheximide-sensitive and modcy" alleles were present 

In a diploid nucleus (Table 3*1).

II) Expression of other genes.

In dominance tests performed by Senathirajah and Lewis 

(1975)1 it was observed that that the canavanine resistance allele 

canf was dominant in the dlkaryon but was recessive in the diploid. 

In the same investigation, the dominance modifiers mod-10 and mod-11 

were dominant in the dlkaryon but recessive in the diploid in the 

presence of their specific genes conferring resistance to 

p-fluorophenylalanine, pfp-10 and pfp-11 respectively.

Complementation of several adenine requiring alleles at 

the ad-5 locus produced a quantitative measure of adenylosuccinase 

In the diploid but not in the dikaryon (Day and Roberta, I969).
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SECTION 3 .2 . GENETICS OF THE CYCLOHEXIMII® RESPONSE.

The first analyses of the effect of cyclohexlmade were made 

by Whiffen(l9^, 1950) on a wide range of species. It was 

concluded that there was considerable variation in the response 

of eukaryotic species to cycloheximlde 1 for example the growth of 

the basidiomycete Ustllago trltlcl wais Inhibited by 0.45 ^  

cycloheximlde whereas the related Ustllago zeae was able to grow 

up to 36 ̂ (Whiffen,1950).

Except In those Instances where Interspecific matings were 

possible (eg. between Saccharomyces fragllls and Saccharomyces 

pastorlanuSf Siegel and Slsler, 1963)t 't̂he amount of Information 

which could be gleaned concerning the genetic basis for the 

differential cycloheximide response was limited. Whiffen (1950) 

had however, observed that within a species there was considerable 

natural variation in the response to cycloheximidej eg. in 

Sclerotlnla fructlcola the growth of one strain was inhibited by 

1 8 ^  cycloheximide, whereas a more resistEUit strain was able to 

grow in up to 7^iM. However, it was not until Mlddlekauf e t ^  (1957) 

that the first evidence was presented which demonstrated a genetic 

basis for the vairlatlon in the cycloheximlde response* it was 

believed that the more tolerant, cyclohexlmide-resistant strains 

in SaccN^ i^myces cerevlsiae possessed a single dominant gene. 

Subsequently, as many as eight genes were found to be associated 

with cycloheximlde resistance in Saccharomyces cerevlsiae (Wilkie 

and Lee, I965). The genetic basis for cycloheximide-resistance in 

eukaryotes is described in Table 3*2.
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Table 3.2. Genetic analysis of the cyclohexlmlde response in eukaryotes.
ih ..r
lorl

» 1— n e U if  
of MieitMeU 
Inri

Min. Cfelilmtoik» 
mmt, fnr UkiU 
I iMIMIIm i ( ^ )

B— ti— ■ tw t UAnM. giMk

AXUNnarrt 
AepnfstUiie nitbiliine 
Vnrr 4 lb>fnr(ri***’>) Ilf. , tsiA 90 OTatkaalnuii ttt

ffeeieefnni emenf

pmn
ftfnnimmnum

2
MJ*

(mik-tTk. i . j )
7.2

. O.Jf«
(.iik -trrn  7.2

On knlanrak MMarnkuiwi) 
i w w t w  n i  
n v w n in  |t 
(hn* nrvilinrynn)

M . (l■»■1) tif. 2 *E»_1 IMM kMlnnnk I

(.Inn Mmm k T .rrv .tikr)
l E U iMoe

( . i H - t m  7.2)
kwInMt
(het«n*«n»n)

f

(I'»??)

lairlne
to?!U£21-i£Srjl5B
C m rx  .t 5I (t n*) HMr^

» t  1 « ^  k nmmm •M fiitT liw  « f o la -  
I n .  a»v I * act 2 ru«l •  mlinar «MW

3 » « « m l  In e l m n r a iT l i i «  n M la la n r *  t a  a s i «  
*hen eM «1 nnm erwfKW
•wtaM n m rw -Um im n« In hn«*n.kitrvAMi. 
Tb» |«w»ef Inn m1 thn  y tinn win Inm rs 'lim in g

Cn̂ln.Hnynnli l'»T7) r.H.f

Spccben>nteee ceie^telee 

•IIM# nn4 Im  (1*3̂5) •pnninneoueUf
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ĵ IPKWTCPl. 
Cwlnwe r l f  p

Uf.

522US5E1«P«2N5y_BUZ2Si!y«
(alM. kn « lk«lu».>./7«)

IM K*?!) o, * c r . „

•|o«ie
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The response of a particular Individual strain (or species) 

to cyclohexlmlde Is generally expressed as "being either 

cyclohexlmide-sensitive or cycloheximlde-resistant. In the collections 

of strains (or species) there is usually a considerable range in 

the cyclohexlmlde concentrations which are Inhibitory to growth.

For conveniencetthe strains are often classified according to 

their growth response at an arbitarily chosen cycloheximide 

concentration, idiich varies depending on the species (Table 3*2).

In Coprinus cinereus for example, the discriminatory cycloheximlde 

concentration employed l?y North (1982) wats 3*6 ̂ M.

a) Dominance.

Genes >dilch confer cyclohexlmlde-resistance have been 

descri"bed as recessive, dominant or giving rise to an intermediate 

form of expression, partial or semi-dominant. (Table 3*2). In some

instances, eg. Tetrahymena thermophilia (Bleyman and Bruns, 1977)» 

because of the difficulties inherent in mating, the dominance tests 

have yielded ambiguous results. In general there is no consistency 

within or between species (Table 3*2).

The variability of the results may reflect the nature of the 

mutagenlsed cell-type, the cell-type in which the dominance test 

was performed or the range of cycloheximide concentrations used .

In many species diploid cells were ntutagenised so that in order 

to be expressed, the cycloheximide resistant genes must, of necessity, 

be dominant. The effect of nuclear Interaction on the expression 

of cycloheximide - resistant genes is demonstrated in

la Um
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Coprlnus clnereus (North ̂ 1982)} cy~2^ was partially expressed In a 

dikaxyon possessing the dominance modifier mod cy^, but not In the 

diploid* In the many species Including Podospora anserlna (Crouzet 

Qt al, 1978) and Physarum polycephalum (Haugll ^  al , 1972) the 

dominance test was performed In heterokaryons, In idilch conflicting 

results were obtained. Depending on the proportion of cyclohexlmlde 

resistant and cyclohexlmlde-sensitive aHeles^the cyclohexlmlde- 

resistant mutations could be described as recessive or semi- 

dominant. In Neurospora craissa, cy-IR was described as dominant 

by Hsu (1963) and recessive by Turner (1976), as a conseciuence of 
hlg^ or low proportion of cyclohexlmlde-resistant alleles In the 

heterokaLcyon.

A classification of partial dominance depends on the range of 

cyclohexlmlde concentration used. It Is possible that on Inter

mediate response may be misconstrued ais either recessive or 

dominant.

b)Modifier genes.

The presence of genes irtilch do not confer cyclohexlmide reslstauice 

per se, but which affect the q\iauitltatlve or quailltatlve expression 

of cyclohexlmlde-resistance genes are known as modifier genes.

Genes which modify the quantitative response are known in 

Saccharomyces ceievlslae (¥ilkie and Lee, 1965)t Neurospora crassa 

(Hsu, 19631 Rothschild et al, 1975) and Fhysarum polycephalum 

( Haugli and Dove, 1972). The positive Interaction between the
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modifier genes and specific cycloheximide-resistant genes is 

observed in the ability of such strains to grow at far hi^ier 

concentrations of cycloheximide than is possible for strains lacking 

the modifier genes.

Another type of modifier gene hsis been described ty North

(1978, 1982) in which the dominance of the cycloheximide-resistance 
raJJLele cy-2 was modified by modcy in the heterozygous cycloheximide- 

resistant dlkaryon but not in the comparable diploid (Section 3*1 b l)

c) Suppressor genes.

The production of cycloheximide-resistant mutants is generally 

considered to be the gain of the ability to grow at previously 

inhibitory concentrations of cycloheximide 1 the majority of the 

examples presented in Table 3*2 are of this type. However, genes 

affecting the response to cycloheximide have also been detected by 

selecting for revertants which are considered to have lost a 

previously acquired ability to grow on cycloheximide.

Thus suppressor genes scr-1 and scr-2, »rtiich suppressed 

specifically the activity of the cycloheximide-resisteint gene 

cyh-1 were described hy Ibrahim and Coddington (19?6) in 

Schizosaccharomyces pombe. In ̂ chizosaccharomyces pombe, two 

resistant alleles of ^^h^l have anti—suppressor activity (Thuriaux et al, 

1975)* Similarly, mutations in the AS-3 gene lead to cycloheximide 

resistance in Podospora anserina (Coppin-Raynal, 1977) •
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d) Number and location of genes.

Our present knowledge of the genetics of the response to 

cyclohexlmlde varies between species. In species idilch have been 

relatively thorou^ily Investigated, such as Saccharomyces cerevlslae 

or Schlzosaccharomyces pombe (Table 3*2) there Is evidence that a 

multlgenlc system Is Involved. In other species such as 

Tetrahymena thermophlla or Aspergillus nldulans (Table 3 «2) only 

a single gene has been Identified. It Is possible that different 

species possess different number of genes Involved In the 

cyclohexlmlde response, but more probable that not all genes which 

confer cycloheximlde-resistance have been Identified In the 

relatively few analyses. With reference to Coprlnus clnereus, the 

genetic analysis performed by North (1978# 1982) studied relatively 

few mutants and observed four genes associated with the response 

to cyclohexlmlde.

The location of the genes Involved In the cyclohexlmlde 

resx>onse Is largely unknown. From such data which Is aval3.able In 

Coprlnus clnereus (North 1982). Saccharomyces cerevlslae (Wilkie and 

Lee, 1965) and Neurospora crassa, (Hs u ,1963) the cyclohexlmlde- 

resistant genes and other genes affecting their action are dispersed 

throughout their respective genomes .
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SECTION 3 »3. PUBIOTROIHIC EFFECT OF CYCLOHEXIMIDE RESISTANT GENES.

There axe several Instances known of the plelotroj^c nature 

of genes conferring cyclohexlmide-resistance.

a) Cross-resistance with other protein synthesis inhibitors.

IbrahiJii and Coddington (1976) demonstrated that three cyclo- 

heximide genes, cyh-2, cyh-3 and cyh-^ in Schizosaccharomyces pombe 

also conferred resistance to trichodermin and anisomycin 

Both trichodermin. and anisomycin are eukaryotic protein synthesis 

inhibitors but have dissimilar modes of action and unrelated 

structures to cycloheximide (Pestka, 197?)» The explanation for 

cross-resisteuice proposed by Ibrahim and Coddington was that a single 

gene mutation rendered the cells less permeable to all three anti

biotics .

b) Cycloheximide-resistance and temperature-sensitivity»

Another manifestation of the pleiotrophic nature of 

cycloheximlde-resistant genes is their sensitivity at restrictive 

temperatures.

Several mutants selected for resistance to cycloheximlde have 

been discovered to be cold-sensitive (Crouzet and B^gueret, 1976; 

Ibrahim and Coddington, 1976), but in one instance a mutant selected 

for cold-sensitivity was foiuid to be resistant to cycloheximide 

(Waldron and Roberts, 197^)*
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In Schlzosaccharomyces pombe, Ibrahim and Coddlngton (19?6) 

observed that the Inability to grow at was associated with 

two cyclohexlmide-resistant genes cyh-2 and cyh-3 « Two suppressor

genes of cyclohexlmide-resistance, scr-1 and scr-2, identified by 

the same authors (1978) in the same organism, were also found to 

be cold-sensitive.

Cold-sensitivity in Podospora anserina was found to be a 

property of the combined action of two cycloheximide-resistance 

genes CyR-1 and CyR-2 (Crouzet and Bègueret, 1978). Strains 

possessing only one mutation grew normally at both the permissive (26°C) 

and restrictive (13^C) temperattires. Cold-sensitivity was

suppressed by spontaneous reversions in either of the two 

cycloheximide-resistant genes or by any of three suppressor genes 

which acted upon CyR-1 and CyR-2«

Cold-sensitive mutants in Aspergillua nidulans were associated 

with cycloheximide-resistance arpA and in one instance with 

ultra-sensitivity to cycloheximide, arpB (Waldron and Roberts, 197^)*

The response to cyclohexlmide and the inability to grow at 20 C were 

the results of single mutations which were found to possess abnormal 

cytoplasmic ribosomal sedimentation profiles at the non-permissive 

temperature.
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SECTION 3.4. OBJECTIVES.

North (1978# 1982) descrl'bed the production and genetic 

aiialysis of cycloheximide-resistant mutants in Coprinus cinereus.

The objectives of the experiments described in this Chapter 

were to produce cycloheximide-resist amt strains, in a more varied 

genetic background than North had used.

With a larger number of cycloheximide-resistant strains available 

for aiialyslsylt \tas probable that new genes conferring cycloheximide- 

resistance could be identified. There would also be an increased 

probability of identifying those strains possessing cycloheximide- 

resistant cytoplasmic ribosomes (Chapter 5)rand hence modified 

cytoplaismic ribosomal proteins (Chapter 6)^ if more mutants were 

available.
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RESULTS.

SECTION 3 .5 . PRODUCTION OF CYCLOHEXIMIDE-RESISTANT MUTANTS,

a) Spontaneoiis mutation frequency.

No spontaneoiis cycloheximide-resistant mutants were obtained 

from any of the cycloheximide-sensitive strains examined; CY 3i 

CY 6, CY 8, CY 9, CY 10 and CY 11. Only a relatively small 

number of oidiospores were set aside for the determination 

of the spontaneous mutation flrequency >diich was estimated to be 

less than 2 x 10“^.

In other species values for the spontaneous mutation 

frequency ranged from 5 x 10“^ in Chinese hamster ovary cells 

(Pdche et al, 1979) to 9*3 x 10“9 in Fhysarum polycephalum 

(Haugli et al, 1972),

As a consequence of the inability to select spontaneously 

arising cycloheximide-resistant mutants a. method of induced 

mutagenesis was employed.

h) Ultraviolet-radiation induced mutation frequency.

Irradiation of the oidiospores with ultraviolet light had 

been used by North (1982) to induce cycloheximide-resistant 

mutants in Coprinus clnereus. The mutagen had been commonly 

used for the same purpose in numerous other species (eg. 

Neuhauser et al, 1970 in Neurospora crassa; Wilkie and Lee,

1965 in Saccharomycescerovisiae and Haugli and Dove, 1972, in 

PhysA'**'̂ "* polycer*^ 1 nm) and a study by Ibrahim and Coddington
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Ta^le 3.3. Induction of cyclohexlmlde-resistant mutants ty 

ultraviolet radiation.

Strain Number of 
experiments

% k i n  
by uv.

X

Number of 
cyclohexlmlde - 
resistant mutants

Ultraviolet radiation 
Induced

mutation frequency(xlO“̂ ) 
-  (i se)

CY 3 6 99.9 14 1.3 ( 0.2)
CY 6 1 98.2 11 6.6

CY 8 2 96.7 25 4.0 ( 0.8)
CY 9 6 83.3 121 5.5 ( 1-2)
CY 10 1 93.‘̂ 2 5.7
CY 11 1 99.1 1 1.7

Total l?if

Cyclohexlmlde-reslstant mutajits were produced as described In 

(Chapter 2, Section 2.4).Mutation frequencies were calculated 

from the number of viable oldlospores after 7.5 minutes 
Irradiation.



The production of cyclohexlmide-resistant mutants in this 

investigation was lOOx more frequent than observed by North 

(1982). The higher mutation frequencies (Table 3 .3) were attributed 

to the larger dose of ultraviolet radiation and slightly longer 

exposure (modified from North's technique 1 Chapter 2, Section 2.4). 

Neither analysis determined the conditions for ma.yimiiin mutation 
frequency.

The cyclohexlmlde-resistant mutation frequency induced by 

ultraviolet radiation in other species varied from 1 x 10 

(Neurospora crassa. Neuhauser ̂  1970) to 1.2 x 10"^, with caffeine

(Physarum polycephalum, Haugli and Dove, 1972). Ultraviolet 

radiation induced reversion to cyclohexlmide-sensitivity in 

Schizosaocharomyces pombe occurred at a frequency of 3 x lO“^

(Ibrahim and Coddington, 1978).

Cycloheximide-resistant mutant strains isolated and 

confirmed, were subjected to a physiological and genetlcal 

analysis in order to determine the nature of the mutation.
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SECTION 3 .6. NUMBER OF GENES CONFERRING CYCLQHEXIMIDE-RESISTANCE 
IN EACH STRAIN.

In each of the crosses, between cyclohexlmlde-resistant 

mutant strains and compatible cyclohexlmlde-sensitive test strains, 

which resulted In fertile dlkaryons the ratio of cyclohexlmlie - 

resistant 2 cyclohexlmlde-sensltlve basidiospore progeny was unity 

analysis p>0.9, from the segregation values presented.In Table

In accordance with Nendellan theory of segregation, 

a segregation ratio of lil was Interpreted as being the consequence 

of a cyclohexlmlde resistance mutation at a single locus , or 

possibly , at two closely linked loci.

The response of the basldlospores to cyclohexlmlde was 

determined at only one concentration. Consequently, It was not 

possible to Infer from the aiialysls whether any of the cyclohexlmlde- 

resistant mutants tested (Table 3 .^) , possessed genes which modified 

the level of cyclohexlmlde resistance : such as described by Wilkie 

and Lee (I965) In Saccharomyces cerevlslae. Nor was It possible to 

Identify the presence of genes which modified the dominance of the 

cyclohexlmlde genes , such as mode/ (North, 1982) from the results

in Table 3.4.



Table 3«^» Segregation of resistance mutations In basldlosTX)re 
progeny

llstant

Lns, Cross
Segregation

Resistant Sensitive

le was

CY 3.1 X CY 9 46 47
CY 3.3 x CY 9 42 40
CY 3.5 X CY 9 40 43
CY 3.7 X CY 9 ¿♦4 46
CY 3.8 X CY 9 47 44
CY 3*16 X CY 9 53 55

CY 6.1 X CY 18 46 48
CY 6.2 X CY 18 45 42
CY 6.3 X CY 18 43 46
CY 6.5 X CY 18 48 44
CY 6.6 X CY 18 47 48
CY 6.9 X CY 18 50 48
CY 6.11 X CY 18 52 53

CY 8.2 X CY 13 60 57
CY 8 A  X CY 13 48 44
CY 8.6 X CY 13 53 52
CY 8.7 X CY 13 51 46
CY 8.8 X CY 13 47
CY 8.9 X CY 13 48 49
CY 8.10 X CY 13 46
CY 8.12 X CY 13 42 40
CY 8.13 X CY 13 42 44
CY 8.18 X CY 13 43 46
CY 8.20 X CY 13 47 45
CY 8.23 X CY 13 48 47
CY 8.24 X CY 13 45 47
CY 8.40 X CY 13 50 52
The analysis was performed as described In Chapter 2» Section 2*3 b  ̂
Cyclohexlmlde-reslstance was Identified as the growth of the haploid 
beusldlospore colonies on ^»6 jjM cyclohexlmlde.
C Y  3 X CY 9 ,  CY 6 X CY 18, and CY 8 X CY 13 produced only 
cyclohexlmlde-sensltlve progeny.
The table excludes crosses which failed to dlkaryotlse, particularly 
the CY 9 mutants with CY 3>and dlkayons which did not fruit.________
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GROWTH RESPONSE OF STRAINS TO CYCLOHEXIMIDE.

SECTION 3*7- GENERAL QBSERVATI(»IS.

a) Lag period.

For all strains grown on medium laoklng cyclohexlmlde 
there was no measureable growth within the first 2^ hours 
Incubation at 37°C» For strains grown at relatively high
concentrations of cyclohexlmlde, althoxigh the particular 
concentration depended upon the strain In question, there was 
generally no growth after U8 hours or more Incubation (results 
not presented).

The period of Incubation In which no growth occurred Is a 
general phenomenon applying In the presence or absence of cyclohexlmlde. 
In the presence of cyclohexlmlde, the lag phase has been attributed 
to the period necessary to develop resistance to the antibiotic 
(Wllkle and Lee, I965) :Cor Saccharomyces cerevlslae). The higher 
the cyclohexlmlde concentration employed, the more prolonged the lag 
phsLse was observed to be.

b) Constant growth rate.

Once the lag period had been completed, growth continued at a 
constant growth rate until the petrl-dlsh was completely filled.
For monokaryotlc strains the average Increase In colony diameter was
approximately 0.7 cm. day ^ In the absence of cyclohexlmlde and
0.5 cm,day”^at zhe 50JÈ growth Inhibitory cyclohexlmlde concentration.

The dlkaryon and diploid strains also grew at constant rates.
The growth rate of the dlkaryons In the absence of cyclohexlmlde 
was approximately 1.0cm.day ̂ almost 2 x greater than at the 
505Î Inhibitory cyclohexlmlde concentration. Diploids were the 
least vigorous cell types with a growth rate of O.^m.day m  
the absence of cyclohexlmlde and slightly less In the presence of 
cyclohexlmlde.
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c) Morpholo<y.

Observations of Coprlnus clnereus strains at sub-lethal 
concentrations of cycloheximide did not appear to produce 
noticeable morphological changes to either the hyphae or the 
colony growth in any of the cycloheximide-resistant mutants.
(also North, 1982). It is only infrequently that morphological 
changes have been observed, e.g. Dee and Poulter (19?0) with 
Kiysarum polycephalum.

d) Irreversible effect on growth.

Inoculum which failed to grow when exposed to relatively 
high cycloheximide concentrations, the precise concentrations 
depending upon the strains examined, did not grow when transferred 
to medium lacking cycloheximide (ie, fungicidal )jtfilkie and Lee 
(1965) observed a similar j^enomenon with Sacch^2[̂ ]Iiî cs 
cerevlslae cells but Kerridge (1958) with Saccharamvces 
carlsbergensis , Cooney and Bradley (I962) with Tetrahvmena 
thermophilia and Dee (1966) with Physarum polycephalm" .observed 
resumption of growth after transfer to cycloheximide-free 
medium (le.fungistatic).

e) Typical response to cycloheximide.

The typical response to cycloheximide observed in this 
investigation was biphasic. At relatively low cycloheximide 
concentrations there was no noticeable inhibition of growth.
At higher cycloheximide concentrations growth was Inversly 
proiwrtional to the log 10 cycloheximide concentration and, 
ultimately growth was totally inhibited. Inhibition of growth 
had a linear correlation coefficient of between -0.9 and -1.0 
in all strains, when plotted as a semi-log scale against log 10 
cycloheximide concentration. Two psirameters used to define this 
phase were the 50^ inhibitory cycloheximide concentration and 
linear regression coefficient, calciilated fjx)m a linear regression 
analyses.
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c) Morphology,

Observations of C^oprlnus clnereus strains atsub-lethal 
concentrations of cyclohexinide did not appear to produce 
noticeable morphological changes to either the hyphae or the 
colony growth in any of the cyclohexlmide-resistant mutants.
(also North, 1982). It is only infrequently that morphological 
changes have been observed, e.g. Dee and Poulter (1970) with 
Physarum polycepha.liiin.

d) Irreversible effect on growth.

Inoculum which failed to grow when exposed to relatively 
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carlsbergensis , Cooney and Bradley (I962) with Tetrahvmena 
thermophilia and Dee (1966) with Physarum polycepha^ ,ob6erved 
resumption of growth after transfer to cycloheximlde-free 
medium (le.fungistatic).

e) Typical response to cycloheximlde.

The typical response to cycloheximide observed in this 
investigation was biphasic. At relatively low cycloheximide 
concentrations there was no noticeable inhibition of growth.
At higher cycloheximide concentrations growth was Inversly 
proportional to the log 10 cycloheximide concentration and, 
ultimately growth was totaOly inhibited. Inhibition of growth 
had a linear correlation coefficient of between -0.9 and -1.0 
in all strains, when plotted as a semi-log scale against log 10 
cycloheximide concentration. Two pauameters used to define this 
phase were the 50^ inhibitory cycloheximide concentration and 
linear regression coefficient, calculated flrom a linear regression 
analyses.
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The cycloheximide concentrations at which these distinctive 
phases occurred depended on the strain (Sections 3.9, 3.10 and
3 .1 1).

Definition of cycloheximlde-reslst^tnce.

The definition employed in this investigation was that 
used \jf North (1982). A cycloheximide-resistant monokaryotic 
or diploid strain is one which is able to grow on J ,6  pM 
cycloheximide after 3 days incubation at 37°C. Under the same 
environmental conditions ,a cycloheximide-resistant dikaryon is 
one which grows on
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SECnoM 3.8. thr CHOWTH RESPOHSE of MOHOICAlwqnC STRAIHS TO
CYCLOHEXIMIDE.

a) Cvcloheximide-resistant mutant strains derived from CY_^.

Of the 9 cycloheximlde-resistant mutant strains derived from 

the cycloheximlde-sensitive strain CY 3, GY 3*16 was the most 
resistant. CY 3.16 was approximately 2 x more resistant than 
any other mutant strain and 270 x more resistant than CY 3*
(Figure 3*2) •

CY 3.16 was significantly different from any other mutant 

strain hased on the calculated 50̂  growth inhibitory 

cyclohexlmide concentration (Table 3*5l p<0.00l). A proposed 
classification of the strains based on the 50% inhibitory 

cyclohexlmide concentrations produced three groups 1 CY 3 »161 

GY 3.17, CY 3.7 and GY 3.2; auid all other strains (Table 3.5l 

Figure 3.2). With the exception of Group 1 (Table 3 .5) there 

was no significant difference within the group (p>0.5) and a 

significant difference between the groups of(p^O.Ol). It was 

considered that the strains in Group 1 might be subdivided into 

Groups la and lb (Table 3 .5) but that the differences were not 

sufficiently large to warrant classification into distinct groups,

o o

I

0)s
B.n

In addition to the 50% inhibitory cyclohexlmide concentration, 

three other parameters of the growth response were recorded 

(Table 3*5)* Classifications of the cyclohexlmide-resistant 

mutants based on the minimum and total inhibitory cycloheximide

CO
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Figure 3 .2 . The effect of cyclohexlmlde on the growth of strains 

derived from CY 3«

Average colony diameters from two experiments were measured 

for each strain over a range of cyclohexlmlde concentrations, 

and the growth was expressed as a ^  of the uninhibited growth on 

Ĉ jM. cyclohexlmlde (Chapter 2, Section 2.5)« Original data Is 

given In Tables Al and A 6 In Appendix A.

'Growth responses presented as regression lines 

over the cyclohexlmlde concentrations which were Inhibitory. In 

order to clarify the presentation, where appropriate cne strain 

has been used to typify more than one response. Thusi

Symbol

The region bounded by CY J,6 and CY 3*3 
Includes the responses of CY 3»5» CY 3*9 
and CY 3 .8.
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concentrations were similar to the one proposed baised on the 

50̂  Inhibitory cyclohexlmlde concentration.

In contrast, an entirely different classification was 

possible If the linear regression coefficients were used.

Such a classification grouped together CY 3*16 and CY 3*9 when 

CY 3*16 was k X more resistant than CY 3*9 and yet had CY 3.5 

and CY 3,6 In different groups when they had the same 30% 

Inhibitory cyclohexlmlde concentration. Thus, the preferred 

clsisslflcatlon was beised on the 30% Inhibitory cyclohexlmlde 

concentration rather than on any other parameter of the 

cyclohexlmlde dose-response.

Cyclohexlmlde-reslstajit mutant strains derived from CY 6.

CY 6.1 and CY 6.2 were the most resistant of the seven 

strains examined and both were capable of growing at the highest 

cyclohexlmlde concentration employed ( 7 1 2 ^ ) .  CY 6.1 and 

CY 6.2 were approximately 200 x more reslstauit to cyclohexlmlde 

than the cycloheximlde-sensitive CY 6, from which they were 

derived and approximately 10 x more resistant than any of the 

other strains derived from CY 6 (Figure 3 .3).

Based on a statistical analysis of the calculated 30% growth 

inhibition cycloheximide concentration the seven cycloheximide- 

reslstant mutant strains were classified two groups 1 CY 6.1 and 

«  6.2 and a U  other strains (Table 3.6). The same grouping 

was also achieved If any of the other three parameters of the



concentrations were slmllax to the one proposed based on the 

50Ji inhibitory cycloheximide concentration.

In contrast f an entirely different classification was 

possible if the linear regression coefficients were used.

Such a claussification grouped together CY 3*16 and CY 3*9 when 

CY 3»16 was 4 X more resistant than CY 3*9 and yet had CY 3*5 

ajid CY 3*6 in different groups when they had the seuae 50^ 

inhibitory cycloheximide concentration. Thus, the preferred 

classification was based on the 50% inhibitory cycloheximide 

concentration rather than on any other parameter of the 

cycloheximide dose-response.

b) Cycloheximide-resistant mutant strains derived from CY 6 .

CY 6.1 and CY 6.2 were the most resistant of the seven 

strains examined and both were capable of growing at the highest 

cycloheximide concentration employed (?12^). CY 6.1 and 

CY 6.2 were approximately 200 x more resistant to cycloheximide 

than the cycloheximide-sensitive CY 6, from which they were 

derived and approximately 10 x more resistant than any of the 

other strains derived from CY 6 (Figure 3.3).

Based on a statistical analysis of the calculated 50j6 growth 

inhibition cycloheximide concentration the seven cycloheximide- 

resistant mutant strains were classified two groups; CY 6.1 and 

CY 6.2 and all other strains (Table 3 .6). The same grouping 

was also achieved if any of the other three parameters of the
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Figure 3 .3 . The effect of cycloheximlde on the growth of strains 

derived from CY 6.

The measurement and presentation of the growth responses of 

CY 6 strains to cyclohexlmlde, are as described for Figure 3*2.

In order to clarify the presentation, where appropriate,

one strain haus been used to typify more than one

Thus;

Strain Symbol

CY 6 0

CY 6.1 □ Represents CY 6.2
CY 6.5 A Represents CY 6.3, CY 

and CY 6.11

The 50% growth Inhibitory value has been Indicated (•).

The extrapolated response of CY 6.1 has been Indicated (-------).

Original data Is given In Tables A3 and A6 of Appendix A.
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response to cycloheximide were also used as a basis of classification 

(Table 3*6). The linear regression coefficients of CY 6.1 ajid 

CY 6.2 were not significantly different from that of CY 6, but were 

significantly lower than all other strains (Table 3*6).

c) Cycloheximide-resistant strains derived from GY 8.

CY 8.2 was the most resistant mutant derived from CY 8, 

being approximately 370 x more resistant than CY 8 and almost 

10 X more resistant than any other mutant strain (Figure 3*^)*

Based on the ^0% growth Inhibitory cycloheximide 

concentration the sixteen strains exajnined could be grouped 

into two major catagories; CY 8.2 and all other strains (Table 

3.7). Only 2 .2  jMf a 2 fold difference separated the 50% 

inhibitory cycloheximide concentrations of the majority of 

strains y from Group 1 (Table 3 •7)« Possible subdivisions of 

Group Ij Group la CY 8.12 to CY 8.^ inclusive (Table 3.7) and 

Giioup lb, CY 8.22 and GY 6 (Table 3.7) are proposed by the 

statistical evidence for their existence is not as convincing

as the differences between Groups 1 and 2 (Table 3*7) •
/

d) ^yn^nhflŶ n̂̂ lie-resistant strains derived from CY 9«

The parameters of the response to cycloheximide of 3 1  

cycloheximide-resistant mutant strains produced in this 

investigation from CY 9 (Chapter 2, Section 2.4) are given in 

Table 3*8. There was a five fold difference between the most 

resistant strain CY 9-77 and the least resistant strain, CY 9*29
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Figure 3«^» The effect of cyclohexlmlde on the growth 

of strains derived from CY 8.

The meeisurement and presentation of the growth responses 

of CY 8 strains to cyclohexlmlde, are as described for Figure 
3.2.

In order to clarify the presentation, where appropriate,

one strain has been used to typify more than one resjxDnse. 
Thus:

Strain

CY 8

Symbol

D  T The region bounded by CY 8.12 and CY 8.4 
Includes the responses of all other 

■  strains not referred to specifically.

The 50% growth Inhibitory value has been Indicated ( •  ),

The extrapolated response of CY 8.2 has been Indicated (-— -) 

Original data Is given In Tables and A6 in Appendix A.
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Figure 3.5. The effect of cyclohexlalde on the growth of 

strains derived from CY 9«

The measurement and presentation of the growth responses 

of CY 9 strains to cycloheximide are as described for Figure 3.2.

In order to clarify the presentation, where appropriate, 

one strain has been used to typify more than one response•

Thus;

Strain Symbol

The region bounded by CY 9 »87 and CY 9.77 
includes the responses of all other 
strains not referred to specifically.

The 50^ growth inhibitory value has been indicated ( #  ) • The 

extrapolated responses of CY 9*23, CY 9.23.98 and CY 9.23.138 

have been indicated Original data is given in

Tables A5 and A6 of Appendix A.





Calculated 50% growth 
Group Strain inhibitory cyclo-

heximide concentration.

Observed total 
growth inhibitory 
cyclohexlmide 
concentration.

Linear
regression
coefficient.

CY9 0.08 3.6 -31
CY9.29 1 .^ 8.9 -57
CY9.89 1.4 8.9 -62
CY9.8? 2.1 8.9 -74
CY9.10 2.6 18 -63
CY9.35 3.0 18 —63
CY9-30 3.4 8.9 -61
CY9.31 3.7 8.9 -131
CY9.W 4.0 36 -54
CY9.66 4.1 27 -53
CY9.75 4.1 18 -59
CY9.71 4.2 36 -52
CY9.103 4.2 27 -57
CY9.88 4.3 27 -65
CY9.151 4.5 36 -53
CY9.85 4.8 36 -59
CY9.117 4.8 27 -59
CY9.116 4.9 53 -50
CY9.70 4.9 27 -58
CY9.37 5.0 27 -55
CY9.61 5.1 36 -54
CY9.150 5.2 36 -55
CY9.73 5.3 36 -53
CY9.118 5.4 36 -55
CY9.129 5.5 27 -50
CY9.69 5.5 27 -69
CY9.86 5.6 27 -70
CY9.16 5.7 36 -64
CY9.127 5.9 27 -72
CY9.6if 6.3 36 -67
CY9.77 7.0 53 -67

* GY9.23.I37 47 200® -80
♦CY9.23.i38 54 1000^ -40
* CY9.23.98 96 900® -51
♦CY9.23 100 5100® -29

Original data is given in Tables Â l',A5 and a 6, Appendix A 
The parameters of the responses to cyclohexlmlde were determined as 
described for Table 3* 5« Linear correlation coefficients ranged 
from -0.86 to -0.99E. The values for total inhibition, for strains 
provided by North*, were extrapolated.
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but because the 5Q^ Inhlbitoiy cycloheximide concentrations were 

continuous, there was insufficient dissimilarity to propose 

more than one major group of strains. It was possible that the 

group could be subdivided but there was no clearly defined 

discriminatory values which could be used to define statistically 

significant groups. (Table 3«8)* Examples of several of the 

responses to cycloheximide are presented in Figure 3 .5 .

In addition to the cycloheximide-resistant mutants derived 

from Cy 9 in this investigation, the growth response to 

cycloheximide of four strains, made available by North, were 

also examined (Figure 3 .5, Table 3 .8). All of North's strains, 

exhibited a level of resistance which was at least I7.5 x 

greater than the resistance observed in strains produced by 

this investigation. The 50^ inhibitory cycloheximide 

concentrations of CY 9*23 and the recombinant strain derived 

from it, CY 9«23«96, were significantly different from CY 9.23.137 

and CY 9»23»138 (p<0.00l),yet all four strains possessed the 

same cycloheximide-resistajice mutation cy-2^.

e) Other strains

The responses to cycloheximide of the cycloheximide-sensitive 

CY strains and two of their ancestors SR 5^ auid WMR 66a  were not 

significantly different from each other in terms of their 50% 

inhibitory cycloheximide concentrations (p>0.5? Figure J . 6,

Table 3.9). All of these strains were totally inhibited by less 

than 1.0 |iM cycloheximide except CY 9» which grew up to 3.6 pM.
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Figure 3.6. The effect of cyclohexlmlde on the growth of 

vaxlous strains.

The measurement emd presentation of the grovrth responses 

of vaxlous strains to cyclohexlmlde, are as described In 

Figure 3*2.

In order to clarify the presentation, where appropriate, one 

strains has been used to typify more thaji one resjxsnse.

Thus;

Strain Symbol

CY 18 0

CY 14 A

CY 8 A

CY 9 □

CY 6 6

CY 3 ■

H2 2

The region bounded by CY 14 and CY 8 
Includes the responses of CY I3, SR 54 
and WMR 66a .

Represents HI H5 H9 and TC4

The 50% growth inhibitory value has been indicated ( •).

The responses of OY 3, CY 6, CY 8 and OY 9 have been presented 
In Figures 3.2. 3.3, 3.ij and 3.5.
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strain
Cycloheximide 

5OJ6 Inhibition 
(calculated)

concentration ()iM) 
total inhibition 

(observed)

Linear
regression
coefficient.

CY 18 0.003 0.03 -55
GY 0.01 0.09 -59
CY 13 0.01 0.18 -55
CY 3 0.03 0.09 -101
SR ^ 0 .0 k 0.18 -51

WMR 66a 0.08 0.89 -52

CY 9 0.08 3.6 -31
CY 8 0.09 0.89 -58
CY 6 0.21 0.89 -36

H5 2.2 17.8 -59
HI 2.2 8.9 -70
H2 2.3 17.8 -52

H9 2 .k 17.8 -51
TG 3.3 8.9 -6k

Data for CY 3i CY 6, GY 8 and GY 9 is reprinted from Tables 3 *51 

3*6t 3».7 snd 3»8»

Original data is given in Appendix A, Tables A3 and A6.
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When initially used CY 9 had been classified e l s  cycloheximide- 

sensitive because it did not grow on 3*6 jiM cycloheximide, but 

In this analysis it was possible to detect sli^t growth at the 

concentration which was used to discriminate cycloheximide- 

sensitivity from cyclohexlmide-resistance.

Tables 3 «51

Five other cyclohexlmide-resistant strains were also 

examined (Figure 3 . 6 ) Hi, H2, H5, H9 and TC4 were significantly 

more resistant than the cycloheximide-sensitive strains already 

mentioned (p <  0.001; Table 3• 6) •
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SECTION 3.9» GROWTH RESPONSE OF DIKARYONS TO GYCLOHEXIMIDE 

: DOMINANCE TEST.

The growth responses of those cyclohexiniide-resistant 

mutant strains which produced stable dikaryons are presented 

in Figure 3 .7 .

None of the responses to cycloheximide exhibited by 

dikaryons which were heterozygous for cycloheximide resistance 

were significantly different to those of the homozygous cyclo

heximide sensitive dikaryons, CY8 x CY13 and CY9 x CY3 ( p>0.1, 

based on the 50?ó growth inhibitory cycloheximide concentrations, 

Table 3.10). With the exception of CY9.23 x CY3, none of the 

dikaryons grew on 1.8 |jM cycloheximide (Figure 3.7, Table 3.10).

According to North (1982), dikaryons which failed to 

growon 1.8 uM cycloheximide were described as cycloheximide- 

sensitive. Therefore, all of the dikaryons examined, except 

CY9.23 X CY3, were considered to be cycloheximide-sensitive and 

to possess cycloheximide-resistance alleles which were recessive 

to the cycloheximide sensitive alleles. The characterisation of 

CY9.23 X CY3 could not be defined clearly because although it 

grew on 1.8 uM cycloheximide , it was indistinguishable from the 

other cycloheximide-sensitive dikaryons.
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Table 3.10. Summary of the gjoKth response of dlkaiyons to cyclohexlmlde.

Strains
Classification 
of monokaryons 

in vivo.

Cyclohexlmidd concentration 
(uM) for,

50% total
inhibition

(c8J.culated) (observed)

Linear
regression
coefficient.

y 1
ce 1 1
0- 1

i.l, !
ons,

f

JO).

to

CY 3 X  CY 9 S X  S 0.013 0.089 -65
CY 3.2 X  CY 9 R X  S 0.013 0.089 -78 ■
CY 3.7 X  CY 9 R X  S 0.014 0.18 -57
CY 3*3 X  CY 9 R X  S 0.039 0.089 -138
CY 3*8 X  CY 9 R X  S 0.044 0.27 -49
CY 3.5 X  CY 9 R X  S 0.052 0.89 -50
CY 3.16x CY 9 R X  S 0.057 0.89 -56

CY 9.23X CY 3 R X  S 0.120 1.8 -32

CY 8 X CY 13 S X  S 0.009 0.036 -57
CY 8.13X CY 13 R X  S 0.009 0.027 -79
CY 8.l8x CY 13 R X  S 0.009 0.036 -68
CY S.lOx CY 13 R X  S 0.011 0.036 -81
CY 8.23X CY 13 R X  S 0.012 0.089 -61
CY 8.12X CY 13 R X  S 0.013 0.036 -89

CY 8.2 X CY 13 R X  S 0.014 0.089 -61
CY 8.7 X  CY 13 R X  S 0.020 0.089 -70

CY 8.4 X  CY 13 R X  S 0.022 0.089 -86
CY 8.6 X  CY 13 R X  S 0.023 0.089 -56

CY 8.23x CY 13 R X  S 0.027 0.36 -49

CY 8.20x CY 13 R X  S 0.051 0.18 -57
CY 8.9 X CY 13 R X  S 0.054 0.36 -40

R = cycloheximlde-resistant and S = cycloheximide-sensltlve 
Several cyclohexlmlde-reslstant monokaryons either failed to 
dlkayotlse or the dikaryons produced were unstable. Original data in 

Appendix A, Tables AS and A9. Linear correlation coefficients ranged 
from —0,87 to -0»9S»
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Figure 3 .7 . The effect of cycloheximlde on the groifth of 
dlkaiyona.

The measurement and presentation of the growth responses 
of dikaryotlc strains to cycloheximlde, are so described in 
Figure 3 .2 .

In order to clarify the presentation, where appropriate, 
one strain has been used to typify more than one response. 
Thus:

Strain
CY 3 X CY 9

CY 3.3 X CY 9 

CY 8.6 X CY 13

CY 8.9 X CY 13 

CY 3.16 X  CY 9

CY 9.23 X  CY 3

Represents CY 3*2 x CY 9i CY 3*7 x 
CY 9, CY 8 X CY 13, CY 8.13 x CY 13, 
CY 8.18 X CY 13, CY 8.10 x CY 13,
CY 8.23 X CY 13, CY 8.12 x CY 13 and 
CY 8.2 X  CY 13

Represents CY 8.^ x CY 13, CY 8.7 x 
CY 13 and CY 8.23 x CY 13

Represents CY 3*8 x CY 9, CY 3*5 x 
CY 9, CY 8.20 X CY 13 and CY 8.2^ x 
CY 13

The 5OJ6 growth inhibitory value has been indicated (•). 

Original data is given in Tables A 8 and A9, Appendix A .
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SECTION 3«iO« THE GROWTH RESPOl^E OF DIPLOIDS TO GYCLOHEXIMIDE.

Of "the four diploid strains examined, the heterozygous 

cyclohexlmlde-resistant strain CY 9.23/CY was the most 

resistant, (Figure 3 .8} Table 3.11 ).CY 9.23/CY Ik was 

approximately 7 x more resistant than the comparable 

homozygous cyclohexlmlde-sensitive strain CY 9/CY 14, however 

the two strains were not significantly different (p>0.5), 

based on their 50% growth Inhibitory cyclohexlmlde concentrations 

Table 3 .II). Similarly, CY 8.2/CY 18 was more resistant than 

CY 8/CY 18, but the difference was not significant (p^O.5). 

Interestingly, the response to cyclohexlmlde exhibited by 

CY 8.2/CY 18 was Identical to the response of CY 9/CY 14.

The only significant difference between the four strains 

based on the linear regression coefficients, was that the value 

for CY 8/CY 18 was higher than for any other strains (p<0.005).

No diploid strain was able to grow on more than 1 ^  

cyclohexlmlde, thus all were considered to be cyclohexlmlde- 

sensitive. Therefore, the cyclohexlmlde-resistance mutations 

possessed by CY 8.2 and CY 9*23 were recessive In the diploid. 

The dominance modifier gene modcy'*' present In CY 9*23 did not 

affect the dominance of the cyclohexlmlde-resistance gene In 

the diploid, agreeing with North's observation (1982).
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Table 3 »11

Strain

CY 8/CY 

CY 8.2/C^ 

CY 9/CY 

CY 9 .2 3/C

Original 

coefflcii 

R = cycle

Figure 3j

The 50% 

Origlr



Table 3.11. Summary of the growth response of dlplolde to cyclohexlmlde.

Strain

GY 8/CY 18 

GY 8.2/GY 18 

GY 9/CY Ik 

GY 9.23/GY 14

Classification of
monokaryotlc
constituents.

CyclohexiMde ̂ concentration
50% total

inhibition
_  (calculated) fobservedy__

Linear
Regression
coefficient.

s /s 0.005 0.018 -93

r/s 0.014 0.18 -47

s /s 0.015 0.18 -41

r/s 0.10 0.89 -52

Original data is given in Appendix A, Table A9* The linear correlation 

coefficients ranged from -0.98 to -0.99*

R = cycloheximide-resistant and S - cyclohexlmlde-eensltive.

Figure 3.8. The effect of cycloheximide on the growth of diploid strains,

The measurement and presentation of the growth responses of diploids

to cycloheximide, are as described in Figure 3•2« The diploid strains

examined were t Strain
CY8/CY18 
CY8.2/CY18 
CY9/CY14 
CY9.23/CY14

The 50% growth inhibitory value has been indicated (•)

Original data is given in Table AlO, Appendix A.
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SBGTI0N .3«!!« CCMPLEMEOTATION TEST.

All cycloheximlde-resistant strains were amenal)le to a 

complementation test because each had been shown to possess a 

single, recessive cycloheximide-resistance mutation (Sections 

3.6 and 3*9)•

Ideally, every cycloheximide-resistant mutant strain should 

have been tested with every other cycloheximide-resistant strain i 

However it was not possible to examine every possible 

combination and in order to rationalise the tank, strains 

were selected to represent the cycloheximide-resistant mutants. 

The selection was based on the prepared claussification of the 

cycloheximide-resistant mutants according to their growth 

responses (Section 3*8) their ability to produce fertile 

dikaryons from which cycloheximide-resistant recombinant strains 

could be produced (Section 3.9)* The strains chosen are 

named in Table J » 1 2  i •

Not all crosses produced stable dikaryons which could be 

tested on 1.8 ̂  cycloheximide, but all of those which did were 

deemed to be cycloheximide-resistant (Tables 3*12 i. and 

3.12 ii ). Expression of cycloheximide-resistance in the 

complementation tests was interpreted as demonstrating non

complementation, ie.that all cycloheximide-resistant mutations 

examined were allelic and by Inference that all strains 

represented belonged to the same complementation group.

In North's analysis (1982) 12 out of 13 mutants belonged 

to one complementation group, designated • The complementation





0
1

tests using CY 9.23.98 and CY 9.23.137, which were known to 

possess cy~2^ mutations, and representatives of mutants 

produced in this investigation all yielded cycloheximide- 

resistant dikaryons. By inference, the single complementation 

group to which all of the cycloheximide-resistance mutant 

strains from CY 3, CY 6 and CY 8 belonged weus cy-2 which 

had been shown to map on linkage group II (Figure 3.1)*

I j!
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DISCUSSION.

SECTION 3,12. Induction of mutants at the cy-2 locus.

All of the cyclohoxlnldo zeslstant mutant strains oxamlned In 

the complementation test were considered to be the result of a 

mutation In the same complementation group, Identified by North (1982) 

as cy-2 (Section 3* 10)* Unlike North's study (1982), no other genes 

either conferring cyclohexlmlde resistance (le. cy-1 or cy-3 ) or 

Indirectly modifying the response In the dominance test ( le. modey'*') 

were Identified.

One of the main objectives In Inducing cyclohexlmlde-resistant 

mutants by ultraviolet radiation was to discover genes, other than 

those Identified by North (1982), >dilch ad’fected the resx>onse of 

Coprlnus clnereus strains to cyclohexlmlde. In North's study (1982) 

mutations In the cy-2 locus accounted for the majority of cyclohexlmlde- 

reslstsuit mutants, only one mutant was found to possess a cy-3 allele 

and one other to possess modey^ allele. Employing a similar method 

of mutagenesis with ultraviolet radlatlon,thls Investigation had 

produced cy-2^ mutations (Section 3»8X Th® mutation frequency of 

cy-2 was relatively high compared with values for cy-3 and modey 

(North, 1982). It was possible that no cy-3^ or modey^ mutants were 

produced In this Investigation because Insufficient numbers of 

oldlospores were Irradiated. The cy-1^ mutation was Identified In 

wild strains and was not Induced by ultraviolet radiation (North, I982).
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This investigation failed to discover any new genes associated 

with the response to cycloheximide possibly because Coprinus cinereus 

did not possess any other loci. Thus Coprinus cinereus is known to 

have more genes conferring cycloheximide resistajice than Aspergillus 

nidulans (Warr and Roper, 1965) but fewer than are known in 

Saccharomyces cerevlsiae (Wilkie and Lee, I965).

However, it was possible that mutations in genes,other than 

those identified by North (1982),may have been produced given different 

methods of mutagenesis and selection to those employed (Section 3*5 b )• 

The method used in this investigation wan similar to North's (1982) and 

thvs it may be that the cycloheximide-resistant mutations induced by 

ultraviolet radiation are restricted to the cy-2 ,cy-3 t loci.

If this was the reason, then a different experimental approach may 

have been gainfully employed.

Although, ultraviolet radiation has been most frequently employed 

to produce cycloheximide-resistant strains (Table 3*2) it is not the 

only one. Alternative treatments such as MNNG (Crouzet et al, 1978) 

or nitrous acid (Ibrahim and Coddington, 1978) have been used to 

produce cycloheximide resistant strains, and may have resulted in 

mutations in new genes had they been employed with Coprinus cinereus.

Alternatively, it may have been possible to identify new genes 

conferring cycloheximide-resistance by employing the strategy of 

Wilkie and Lee (1965) in which cycloheximide-resistant strains were 

exposed to ultraviolet radiation and strains were selected on 

increasing concentrations of cycloheximide. In this way, Wilkie and
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Leo (1965) identified a multigenic system for Saccharomyces cerevisiae»

A third possibility, was the selection of revertants to 

cycloheximide-sensitivlty induced by ultraviolet radiation in 

cycloheximlde-resistaüit strains, Ibrahim and Coddington (1978) used 

the method in discovering two loci in Schlzosaccharomyces pombe.
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SECTION 3.13. TjE EFFECT OF CYCLOHEXIMIDE ON THE GROWTH OF 

COPRINUS GINEREUS.

a) Meetsurement of growth.

The measurement of* colony diameter on solid medium has been 

frequently used to measure the growth of filamentous fungi, and of 

Coprinus cinereus in particular (Casselton, I965). The simplicity and 

convenience of the measurement made the technique attractive for use in 

defining the growth inhibitory effect of cycloheximide. According to 

Pirt (1973) a measure of the spread of a fungal colony on agar 

represents the actual relation between the biomass and growth limiting 

substrate.

North (1982) observed the effect of cycloheximide on the 

growth of Coprinus cinereus as either the presence or absence of growth; 

the result was that a value for the minimum cycloheximide concentration 

permitting growth was determined for each strain examined. In this 

investigation, the growth at each cycloheximide concentration tested was 

measured in relation to the growth of the uninhibited control 

treatment; from which it vas possible to define the cycloheximide dose- 

growth response for each strain.

b) Characterisation of the cycloheximide dose-growth response.

The effect of cycloheximide on the growth response exhibited by 

all strains (Sections 3*8 to 3*10) could be differentiated into two 

distinct phases. At relatively low cycloheximide concentrations there 

was no measurable Inhibition of growth. The concentration range ô ’er 

which the phase occurred varied between strains and was defined by 

calculation of the minimum growth inhibitory cycloheximide concentration
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The second phase occurred over the range of cyclohexlmide concentrations 

which produced a logarithmic inhibition of growth, and ultimately 

prevented all growth. This phase was defined by three parameters; 

the 50^ and total growth inhibitory cycloheximide concentrations and 

the linear regression coefficient.

c) Classification»

The banic classification of monokaryotic strains as either 

resistant to sensitive to cycloheximide, was based on their ability 

to grow on 3 * 6 ^  cycloheximide (North, 1982). The detailed analysis 

of the response to cycloheximide made it possible to subdivide 

between the two general categories.

Any of the four parameters of the cycloheximide dose-growth 

response could have been used as the basis for classifying the strains. 

The calculated values of the minimum and total, growth inhibitory 

cycloheximide concentrations were preferable to the observed values 

because observed values were imprecise depending on the range and 

interval of cycloheximide concentrations used and in the case of the 

total growth inhibitory cycloheximide concentration,it was not observed 

for strains. A classification based on the total growth in 

inhibitory cycloheximide concentration was not favoured because for 

some strains, notably CY6.1, CY6.2, CY8.2 and CY9»23i it was 

necessary to use extrapolated values (Section 3*8)•

Strains grouped according to their minimum or total growth 

inhibitory cycloheximide concentration produced a similar classification 

of strains to the one obtained using the 50^ growth inhibitory 

cycloheximide concentrations (Section 3*8 to 3*10). However strains
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clsLS slfle d  according to t h e ir  lineau: reg ression c o e ffic ie n ts  produced 

groupings which were u n lik e  those produced when the 50%  growth 

in h ib ito ry  cyclohexim ide concentration was used*, fo r example two 

s tr a in s  CY6 and CY6.1 had id e n tic a l lin e a r  regression c o e ffic ie n ts  

but t h e ir  responses were those of a  cyclo h e x im id e -se n sitive  s tra in  

and a h ig h ly  re s is ta n t s t r a in  re sp e c tiv e ly .

Baised on the 30% growth inhibitory cycloheximide concentrations, 

monokaryotic strains can be identified ais either cycloheximide- 

sensitive or cycloheximide-resistant. The discriminatory 30% 

growth inhibitory cycloheximide concentration was chosen so that 

the same classification of strains was achieved as when North(1982) 

used a total inhibitory cycloheximide concentration of 3*8 |iM.

Furtherm ore, i t  was p o ssib le  to subdivide the cyclohexim ide 

re sistsm t s tr a in s  in to  two groups. There were those s tr a in s  which 

grew at the h ighest cyclohexim ide concentration tested and which had 

50%  growth in h ib ito ry  cyclohexim ide concentrations higher thaui 

3"^. These h ig h ly  r e s is ta n t  s tra in s  were CY6.1, CY6.2, and CY9*23 

and i t s  recom binant s t r a in s . The second group included a l l  other 

s tr a in s  id iich  were ab le  to  grow on 3*6 pM cyclohexim ide and which 

had 50%  growth in h ib ito r y  cyclohexim ide concentrations between 1.4 

and 8.1 S u b d iv is io n s w ith in  each o f the general cate g o rie s were

d if f ic u lt  to d e fin e  (S ectio n  3*8).

A direct comparison of the response of strains derived from 

different CY cycloheximide-sensitive strains was not possible 

because of differences in the sensitivity of the parental strains 

(Section 3.8 e ). In absolute terms, CY3.16 which had a 50% growth 

inhibitory cycloheximide concentration of 8.1 pN was less resistant
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than CY6.1 which exhibited a 50^ growth inhibitory cycloheximide 

concentration of 4l jjM. However, in relation to the cycloheximide- 

sensitlve strains from which they were derived, because CY3 was more 

sensitive to cycloheximide than CY6, CY3.I6 was Infact more 

resistant tham CY6.1 (CY3 .I6 was 2?0 x more resistant than CY3, 

whereas CY6.1 was 195 x more resistant than CY6). The expression of 

cycloheximide resistance was determined by the nature of the 

mutation and the genome in which it was expressed. The CY 

cycloheximide-sensitlve strains provided North (Section 2.2,

Chapter 2) had different origins and were not isogenic. The

Identity of the genes which affected the expression of the 

cyclohexiriide-reei stance nutationfi were not kriown.

d) Interpretation,

The mechanism "by irtiich cycloheximide inhibited the growth of 

Coprlnus cine reus >ras not known and the genetic analysis detailed in 

this Chapter does not provide any information regao^ding the identity 

of the mechanism. Several jx}ssible reasons could explain the biphasic 

growth response of cycloheximide.

In the range of cycloheximide concentration at which growth 

inhibition was observed, variation between the strains may have been 

the result of no inhibition. It was possible that the drug did not 

enter the cell or that concentration of the antibiotic was insufficient 

to produce inhibition. In cycloheximide-reslstant mutant strains 

a change in the permeability of the cell-memb3?ajie or in the mechanism 

of detoxification or affinity of the Intracellular site may have 

resulted in the high minimum inhibitory cycloheximide concentration. 

Alternatively, cycloheximide may have produced an inhibitory response
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but the effect was masked by a mechanism which overcame the loss in 

function (eg. utilising a reserve capacity), but only until a threshold, 

the minimum growth inhibitory cycloheximide concentration,wais attained.

Once the specific threshold concentration had been reached, cyclo

heximide was observed to inhibit growth, an inhibition which was 

logarithmic. There were two types of inhibitory response characterised 

by the linear regression coefficients. In cycloheximide-resistant 

mutant strains in which the linear regression coefficients were similar 

to those of their cycloheximide-sensitive parents, (eg CY6.1 and CY9*23 

with CY6 and CY9 respectively. Section 9 a and d) the mechanism of 

action of cycloheximide was probably the saime, only a change in the 

mutant strain which resulted in a higher threshold concentration 

distinguished the resistant and sensitive strains. In contrast, in those 

cycloheximide-resistant mutant strains which exhibited linear regression 

coefficients which were unlike their parental strains(eg CY6.3 and CY9*77 

Section 3*8 a and d ) there were two effects. The cheuige which 

produced the change in the linear regression coefficient may have 

also produced the effect on the threshold concentration.

The practical value of the classification of cycloheximide- 

resistant mutant strains was that representatives of each of the 

groups of strains (the composition of which is given in Section 3»H) 

and not all strains need be subjected to a biochemical analysis.

(Chapter 5)«

'107



SECTION NUCLEAR INTERACTION AND EXPRESSION OF CYCLOHEXIMIDE

RESISTANCE.
Table

All but one of the d^karyons and diploids heterozygous at the•
cycloheximide resistance cy-2 locus were cycloheximide-sensitive 

indicating that the mutations at the cy-2^ were recessive. The 

exception was CY9.23 in which the modcy'*' mutation produced a partial 

dominance of the cy-2^ mutation which agreed with the observation 

made by North. No homozygous cycloheximide-resistant dikaryons and 

few genotypes of any diploid were examined.

Calci

|r !

The responses of monokaryons and dlkaiyons and diploids derived 

from them are summarised in Table 3.13. The response of the dikaryons 

tended to,or equalled the lowest values exhibited by their composite 

monokaryons, including in CÏ9.23 x CÏ3 in which partial resistance 

was expressed. The diploids produced comparable responses to the 

dikaryons and also tended to the réponse of the most sensitive 
monokaryotic constituent.

The results suggest that the product of the cjn^f allele in the 

presence of the wild-type allele is not expressed, thus producing the 

cycloheximide-sensitive phenotype. Alternatively, the products of both 

alleles may exist, but that the product of the cycloheximide-sensitive 

allele completely prevents the functioning of the allele. When

B Sâ Si is present, the partial resistance to cycloheximide may be

expressed ly a modification of the product of the cy-2^ allele or of
another, unknown allele. The hihe disorimlnation between interaction between
the nuclei and Interaction within the cytoplasm w l U  be discussed in

Chapter 7, in the light of the biochemical evidence present«! in 
Chapter 5.

CY9.2j 
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Table 3 »13« Comga^son^^of^^the^groKtt^responses of monokaTyons, 

dikaryons and diploids to cyclohex^mlde.

Calculated 50^ growth inhibitoiy cycloheximlde concentration (|iM).

Strains.

Monokaryons Dlkaryon Diploid
CY8 CY13 CY18 CY8.X CY13 CY8/CY18
0.1 0.01 0.003 0.009 0.005

CY8.2 CY13 CY18 CY8.2 X CY13 CY8.2/CY18
37 0.01 0.003 0.014 0.014

CY9 CY3 CYl^ CY9 X CY3 CY9/CY14
0.08 0.03 0.01 0.013 0.015

CY9.23 CY3 CY14 CY9.23 X CY3 CY9.23/CY14
100 0.03 0.01 0.12 0.10

Data taken from Tables 3*7» 3*8, 3*9» 3J-0an8. 3 , 1 1
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SECTION 3 «15. SUMMARY.

Cyclohexindde-resistaJit mutants were Induced as a result of 

ultraviolet radiation but no genes, other than those identified by 

North (1982) were identified; all recessive mutations examined

The growth analysis confirmed North’s evidence that cycloheximide 

resistance was partially expressed in CY9.23 x CY3. The detailed 

analysis of the responses of cycloheximide-resistant mutants to 

cycloheximide provided a method of selection of strains for 

biochemical analysis and would be used in Chapter 7 as a means of 

comparing in vivo effects with those observed in vitro»
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INTRODUCTION.

SECTION 4.1, CYTOPLASMIC PROTEIN SYNTHESIS,

Two types of protein synthesising system are found in 

Coprinus cinereus. Protein synthesis,which occurs in the 

cytoplasm and is carried out by cytoplasmic ribosomes, 

is the main concern of this Investigation but in addition 

there is mitochondrial protein synthesis which takes place 

within the mitochondrion on mitochondrial ribosomes.

Our understanding of eukaryotic protein synthesis has 

been based upon the evidence of a limited number of species, 

including many fUnipJ. species,but excluding Coprinus cinereus. 

However, there are certain steps in the process which are 

ill-defined in eukaryotes and in order to produce an 

overall view of protein synthesis it has been necessary to 

refer to the more thoroughly Investigated process in 

prokaryotes. Throiighout this investigation, evidence from 

prokaryotes has been used sparingly because of the 

differences which are known in eukaryotic and prokaryotic 

protein synthesis ( Cox and Godwin, 1975) •

The scheme for cytoplasmic protein synthesis (represented 

in Figure 4.1 and summarised in Sections 4.1, a to d) is based 

upon a cytoplasmic ribosome model which possess two tRNA 

binding sites at the peptidyl-transferase centre( Watson ,

1964 ) . The two tRNA binding sites are known as the

amlnoacyl-tRNA binding site (A-site) and the peptidyl-tRNA 

binding site (P-site).
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FIG.4.1 Figure ^ «1» Generalised scheme for cyboplaewtlc protein 
synthesis.

GDP

•GTP

The salient features of eiikaryotlc protein synthesis; 

Initiation, elongation and termination, represented In this 

scheme are "based upon the review of Siegel (197?) •

MaJiy of the individual reactions are illdefined and for 

simplicity only the known substrates aJid final products axe 

illustrated. The points of entry of the substrates into, 

and departure of the products from, the protein synthetic 

cycle are speculative.

GTP

The symbols used are as follows:

Small ribosomal subunit

J
P A

Laxge ribosomal subunit, 
showing peptidyl-transfease 
centre, P = P-site and 
A = A-site.

^  mBNA

methionyl residue 

auninoacyl residue

tRNA

soluble factor (s)

(various shadings)
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a) Amino acid activation.

Prior to the Involvement of the cytoplasmic ribosomes | 

the amino acids which are to be incorporated into polypeptides 

are esterlfled to specific tRNAs . For each different 

amino acid there is a specific aminoacyl - tRNA synthetase 

which catalyses the reaction. The process requires energy 

released from the pyrophosphate cleavage of ATP and the 

presence of magnesium ions. Aminoacyl-tRNA formation is 

reviewed by Ofengand (1977).

b) Initiation.

The first phase of protein synthesis catalysed by 

the cytoplasmic ribosome is initiation. The initiation 

process consists of a series of reactions during which the large 

and small ribosomal subunits Interact with messenger RNA 

and with methlonyl-tRNA to produce an 80s initiation complex. 

Initiation commences when the Initlator-tRNA becomes bound 

to the initiation (AUG) mRNA codon at the ribosomal 

peptldyl-tRNA binding site (P-site).

The specific reactions involved in initiation have been 

reviewed Toy Siegel, (1977) and by Revel, (1977). The reactions 

require the hydrolysis of GTP, and possibly ATP as well.

Siegel, (1977) refers to three soluble fungal initiation 

factors, but as many as e i ^ t  mammalian initiation factors 

have been identified, Anderson et ^  (1977)» although their 

function and Importance has not been proven.
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c) Elongation«

The addition of successive amino acids to form a 

polypeptide chain occurs In a step«^se manner over as mauiy 

cycles as are necessaury to translate the nucleotide sequence 

of the mBNA. Each cycle, In which a single amino acid is 

added, can be divided Into three steps; the binding of 

aminoacyl-tRNA, peptide bond formation and finally, 

translocation.

(i) Binding of amlnoacyl-tRNA«

In the first step of the elongation cycle, the appropriate 

amlnoacyl-tRNA specified by the exposed codon at the rlbosomaJ. 

aminoacyl-tRHA binding site (A-site), becomes associated with 

the ribosomal complex. Initially the P-site is occupied by 

the initiator methionyl-tRNA, but as the elongation process 

progresses, the P-site contains a peptldyl-tRNA. The process 

requires a soluble elongation factor EFĵ , aiKl is dex>endant upon 

GTP hydrolysis. The reaction mechanism wets reviewed by Siegel 

(1977) and Miller and Weissbach, (1977).

(ii) Peptide bond formation.

Elongation of the peptide chain occiirs when the carboxyl 

ester linkage of methionyl-tRNA or of peptidyl-tRNA is broken. 

The released amlnoacid or nascent peptide reacts with the 

terminal NH2 group of the eunlnoacid of the aminoacyl-tRNA, 

and a peptide bond is formed. Consequently, the A-site is then 

occupied with the nsiscent peptldyl-tRNA, and the P-slte possesses

a deebcylated tRNA.
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The transpeptidatlon process Is unique among the steps 

in protein synthesis, requiring aa It does neither energy nor 

soluble factors. However, the process does require the 

rlbosomed peptidyl-transferase site to be in close proximity 

to the reacting species for the reaction to be catalysed.

The mechanism haus been reviewed by Harris and Festl:a., (197?) •

(ill) Translocation.

The final x^iase of elongation is the most complex. In 

the process, the ribosome must move relative to the mRNA, 

towards the 3* end by precisely three nucleotides. During the 

movement, termed translocation, the deacylated tRNA at the 

P-site after peptide bond formation is released. The peptidyl- 

tRNA, previously at the A-site becomes relocated to the 

recently vacated P-site. The resulting unoccupied A-slte 

exposes the next mRNA codon in readiness for the rlbosomal 

complex to accept the next aminoacyl-tRNA.

Details of the translocation mechanism are unclear,

Brot (1977) f but It is known that GTP hydrolysis at a 

ribosome-dependant site is necessary and that a soluble 

elongation factor E %  must be present.

d) Termination,

riptide chain termination requires the recognition of 

either of the three termination codons 1 UAA, UGA or UAG, at 

the A-eite and the hydrolysis of the bond between the peptide
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SECTION k ,2 . TRANSLATION OF FOLYUKLDYLIC ACID.

The poly (U) dependant-polyphenylalsuiine synthesising system 

was first used hy Nirenterg and Matthaei (I96I) with a S-30 

fraction from Escherichia coli,. During the development of the assay 

as it has been applied to eiokaryotic species, the basic constituents 

of the reaction mixture remain the same; a suitable ionic environment 

ATP and a means of regeneration, as amino acid substrate and 

polyuridylic acid. Methods of cell fraction have improved and the 

reaction mixtures usually contain cell-fractions containing ribosomes 

and the soluble cofactors necessary for the enzymic synthesis of 

polypeptides.

The assay is particularly sensitive to the synthesis of small 

quantities of polypeptide because the amino acid substrate is 

radioactively labelled, at a high specific activity. Radioactivity 

associated with the polyphenylalajiine product is differentiated 

from radioactivity in unreacted amino acid, or intermediate compounds 

because it is insoluble in trichloroacetic acid (TCA) at 90 C,

(Van der Decken, 196?). Polyphenylalanine molecules with more than 

one peptide bond are precipitated by TCA (Bretthauer and Golichowski,

1968).

The translation of an artificial polyribonucleotide,polyuridylic

acid differs from the translation of natural mRNA (Section ^.l) 

because the synthetic mRNA possess neither initiation or termination 

codons; polyuridylic acid as the name implies, is composed entirely of

uridine nucleosides.

In the absence of an initiation codon it is presumed that an abnormal 

form of initiation occurs. Palvey and Staehelin (1970) found that a
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relatively high magnesium ion concentration was necessary» although 

the reactions involved in the formation of an abnormal initiation 

complex are not known. It is not known if initiation occurs at the 

end of the template or along its length.

Whatever the nature of the initiation complex^ poly phenylalanine 

is synthesised, presumably by a normal process of elongation. The 

cytoplasmic ribosomes would be expected to continue translating along 

the polyuridylic acid molecule until a constituent of the cell-free 

system became limiting, or until the cytoplasmic ribosome ran off the 

end of the template. In the absence of a termination codon, it is not 

known if the polypeptide chad.n is releaused from the cytoplasmic 

ribosome and is therefore available for another cycle of polyphenylalanine 

synthesis or if the nascent peptide remains attached to the ribosome 

rendering it unavailable.

Nevertheless, the purpose of the polyuridylic acid dependant 

polyphenylalanine synthesisng system in this investigation is as an assay 

to screen for cycloheximide-resistant cytoplasmic ribosomes, a function 

to which the system has been of proven value (Chapter 5)-
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SECTION 4. 3. OBJECTIVES.

At the outset of this investigation no method existed 

either to prepare Coprlnus cinereus cell-extracts, or to 

analyse their capacity to synthesise polypeptides 3^ vitro. 

The ohjectives of the votk described in this Chapter were 

to develop both techniques and thus achieve a satisfactory 

level of ^  vitro polypeptide synthesis. Once achieved, it 

would then be possible to investigate if any of the 

cycloheximide-resistant mutant strains (Chapter 3) possessed 

cyclohexlmide-resistant cytoplasmic ribosomes (Chapter 5) •
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RESULTS.

SECTION OPTIMISATION OF THE INDIVIDUAL CONSTITUENrS OF THE
COPRINUS CINEREUS POLYPHENYLALANINE SYNTHESISING 
SYSTEM.

At the outset of this investigation, in the absence of a 

cell-free polypeptide synthesising system existing for 

Coprlnus cinereus or any other basidiomycete species, a 

compromise system of several fungal species wais used. The 

compzromlse,or preoptimised system,(Table was predominantly

based on the system used tiy Crouzet- et ^  (1978) ^ox Podospora 

aJiserina but took into account the common features euid 

averaged differences of systems used by Kuntzel (1969) for 

Neurospora crassa , Sissons (197^) for Saccharomyces cerevlsiae 

and Berry ^  al (1978) for Schlzosaccharomyces pombe . It was 

believed that there would be a greater probability of obtaining 

polypeptide synthesis with Coprinus cinereus cell-extracts if 

a compromise system were used, rather than a system based on 

one particular species.

Initially the activity of the preoptimised polyphenylalanine 

synthesising system (Table ^.l) was approximately 25 pmole 

polyphenylalanine synthesised. assay. ̂  hr ^ (Appendix B i ) •

The remaining results presented in this Chapter relate to 

experiments aimed at improving upon the relatively low activity 

of the assay system, and in doing so, to economise on the 

resources used in the assay. Beginning with the composition of 

the preoptimised reaction mixture (Table ^.l)» each of the
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Table 4.1. The DreoTytlmlsed in vitro polyphenylalgj^ 

synthesising system.

r. 4.4 4.,««+ Final concentration,
Constituent unless stated otherwise)

Adenosine - 5 “ triphosphate .

Guatnosine - 5 “ triphosphate.

Creatine phosphokinase.

Creatine phosphate.

Tris - HCl, 1«  7.5.

Magnesium acetate.

Potassium chloride*

Ammonium acetate.

Spermidine.

Dithiothreitol. 

tRNAP^®

Polyuridylic acid,

L - (U - C^^) phenylalanine.

RP-lOO cytoplasmic rlbosome-rlch fraction. 3*0 3̂60 nnlt.

S-100 cytoplasmic ribosome-free 1*0 2̂60
supernatant fraction.

f Made to 100 y l with double distilled water.

Additionally the reaction mixtures contained l.OmM 2-mercaptoethanol, 

and 50mH sucrose derived from the cell-extracts • The preparation 

of the reaction mixture and determination of radioactivity 

insoluble in TCA at 90®C was as described in Chapter 2, Section 2.9.



constituents was Individually exanlned In order to deteinlne 

Its optlnun oonoentratlon for polyphenylalanlne synthesis.

n each of the constituents had been Independently optimised 

n the presence of the preoptimised eoncentratlon of all other 

constituents, the effeet of the oonstltuents was re-examined 

In the presence of the optimised concentration of all other 

oonstltuents. The effects of the Individual constituents In 

an otherwise optimised system (Chapter 2, Section 2.9, Table 

z .z ) are presented In the following sections, H .i t o  4 .12.

>n 2 .9.

124



SECTION i^.5. COPRINUS CINEREUS CELL̂ aTRACTS,

The development of the polyi^enylalanine synthesising system 

W2U5 baised on cell-extracts, derived from CY 8, and fractionated 

into the RP-lOO and S-100 fractions (Chapter 2, Section 2.7)»

a) Cytoplasmic ribosome fracticn, RP-100.

The RP-100 fraction derived from Coprinus cinereus was 

considered to contain the cytoplasmic ribosomes. The assumption 

was based on the similarity of the centrifugation conditions 

used to prepare the RP-100 fraction and those used to prepare 

fractions known to contain cytoplasmic ribosomes from other 

eukaryotic species (eg. Crouzet ^  1978)«

An analysis of the RP-100 fraction in sucrose density 

gradients added to the belief that it contained cytoplasmic 

ribosomes. The position of the sedimenting material derived 

from the RP-100 fraction was detected as a single peak of 

absorption at 254 nm(Figure 4.2). According to the tables 

published by McEwen (I967) and knowing the parameters of the 

sucrose density gradient, it weus possible to calculate the average 

sedimentation coefficient of the absorbance peak. (Appendix B ii ) 

which was found to be 74.4 S. The value was similar to that given 

in Chapter 1, Section I .5 for eukeoryotic cytoplasmic monosomes. 

There was no evidence in the sucrose density gradient of 

cytoplasmic ribosomal subunits, cytoplasmic polysomes or 

mitochondrial ribosomes. It was concluded that the RP-100 

f^ractlon was predominantly composed of cytoplasmic ribosomes.



Figure 4*2» Analysis of RP-lOO and S-100 fractions In 

sucrose density gradients.

The ahsorhances (25^nm) of a typical RP-lOO fraction 

(solid line) and of a typical S-100 fraction (dashed line) 

were measured In Identical linear sucrose gradients as 

described by the method In Chapter 2, Section 2.8.
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Figure ^.3 » The effect of RP-lOO fraction of 

polyphenylalanine synthesis.

The effect of the RP-lOO fraction, the cytoplasmic 

ribosome fraction, on polyphenylalanine synthesis (Section 

2.9, Table 2.2) at three concentrations of S-100 : 0 A260 

unit. (•) , 1.0 A26O unit, (a ) and 2.0 A26O unit. (^) . In 

an otherwise optimised reaction mixture (Chapter 2, Section 

2.9f Table 2.2). Duplicate 40 j i l samples were taken from 

replicate experiments after 1 hour according to the method 

given In Chapter 2, Section 2.9« Background radioactivity, 

110 cpm, was deducted from the average values (IOI6 cpm =

1 p mole. phe).
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The effect of the RP-lOO concentration on jtolyphenylalanlne 

synthesis was measured at three concentrations of S-100; no S-lOOf 

in the presence of the preoptimised S-100 concentration (1.0 

^260'̂”^^ J Table 4.2), and in the presence of the optimised 

S-100 concentration (2.0 A260 unit; Chapter 2, Section 2.9,
Table 2.2).

Polyphenylalanine synthesis was totally dependant on the 

presence of the RP-100 fraction. In the absence of the RP-lOO 

fraction, neither of the three concentrations of S-100 fraction 

used, produced polyphenylalanine synthesis (Figure 4.3). It 

was therefore concluded that the RP-100 fraction was the sole 

source of cytoplasmic ribosomes.

In the presence of the RP-100 fraction, polyphenylalanine 

synthesis was stimulated to maximum incorporation at 2.0 A250 

unit . The maximum incorporation achieved depended on the 

S-100 concentration and was 1.8 x greater at the optimised S-100 

concentration (2.0 A26O unit) than at the preoptimised 

concentration (1.0 A250 unit ; Figure 4.3).

At RP-100 concentrations above 2.0 A260 unit 

polyi^nylalanine synthesis was inhibited. The degree of 

inhibition varied depending on the S-100 concentration, reaching 

90% inhibition in the presence of 1.0 A26O unit S-100 and

6358 inhibition in the presence of 2.0 A260 unit S-100

(Figure 4.3).
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The RP-lOO concentrations which produced 100J6 activity 

(- 10^) were I-3 A260 unit and the avera^ value, 2.0

^260^*^^^ employed as the ojitlmum concentration of RP-lOO 
to be used in all subsequent optimised reaction mixtures,

(Chapter 2, Section 2.9, Table 2.2).

The response observed at the three S-100 concentrations 

provided evidence of relationship between RP-lOO and S-100

concentrations which will be discussed further in Section
4.5 c .

While the RP-lOO was suboptimal, polyphenylalanine synthesis 

was stimulated, indicating that the RP-lOO concentration was 

the limiting component of the cell-free system.

The decline in polyphenylalanine synthesis above the optimal 

RP-lOO concentration may have been the result of several factors.

It was possible that the RP-lOO fraction contained a non-zrlbosomal 

constituent, possibly a nuclease or a protease which degraded the 

cytoplasmic ribosomes or other of the constituents. The 

proportion of inhibitor relative to RP-lOO would be constant as 

the RP-lOO concentration was increased. In order for the inhibition 

of polyphenylalanine synthesis to occur, up to the optimal concen

tration, the Inhibitor concentration is either too low to be 

effective or any inhibition is made good by the system but at a 

particular: inhibitor concentration the loss in activity is not recovered.

Alternatively, the loss of polyphenylalanine activity may be 

Incurred as a result of Increased competition for the polyurdylic

130



acid template by inefficient cytoplasmic ribosomes which may block 

or rsduce the rate of translation which is manifest in a reduced 

q.uantity of polyjiienylalanine. Inefficient cytoplasmic ribosomes 

may possess fragments of mRNA or peptidyl-tRNA or they may have 

been damaged by the rigours of cell-breakage.

Cytoplasmic ribosome-free supernatant fraction, S-100.

An analysis of S-100 fractions in sucrose density gradients 

(an example cf which is shown in ilgure 4.2i Section 4.5 a ), did 

not reveal a detectable quantity of 254 nm. absorption in the 

region in which cytoplasmic riboscmal material was expected to 

sediment. The S-100 fraction wsis assumed to be devoid of cyto

plasmic ribosomes and was termed the cytoplasmic ribosome-free 

supernatant. The S-IOC fraction was assumed to contain the 

endogenous factors necessary for polyphenylalanine synthesis but 

their identity and concentration were not known.

The effect of the S-100 concentration cn polyphenylalanine 

synthesis was measured at three RF-100 concentrations; no RP-lOO, 

in the presence of the preoptimised RP-lOO concentration (3*0 

A^^unit I Table 4.1) and in the presence of the optimised RP-lOO 

concentration(2.0 A^^^unit;Section 4.5a).

When no S-IOC was present in the optimised reaction mixture 

(Chapter 2 , Section 2.9« Table 2.2) there was no polyphenylalanine 

synthesis, despite the presence of the RP-lOO freurtion (Figure 4.4) 

The result demonstrated that polyphenylalanine synthesis was totally 

dependant on the presence of the S-lOO fjcaction. The identity of

131



the essential cytoplasmic constituent of the S-100 fraction 

was not known.

The effect of S-100 on the in vitro system was similar at 

hoth RP-lOO concentrations (Figure , Polyphei^lalanine synthesis

was stimulated at relatively low S-100 concentrations,irtiich was 

inferred to mean that S-100 was rate limiting. Maximum poly

phenylanine synthesis was greatest and achelved at a lower S-100 

concentration when 2.0 A2^Qunit RP-lOO was used, rather than 

when 3«0A2¿Qunlt was present ( Figure ) .At S-100 concentrations 

above the optimum for maximxim polyphenylalanine synthesis, S-100 

was inhibitory. At 5*0 Ag^unit S-100^the maximum concentration 

examined, polyphenylalanine synthesis was less than 20^ of the 

maximum activity obeerved (Figure 4.4).

The inhibitory effect of the S-100 fraction above the optimum 

concentration may have been a consequence of inhibitors, which 

acted in a similar way to those assumed in the RP-IOC fraction 

(Section 4. 5 a ). Unlike the preparation of equivalent frsustions 

in many other species (eg. Berry et al,19?8)or of the G-30 fraction 

(Ai^ndix B 1 ) it was not necessary to subject the S-100 fraction to 

for example, Sephadex chromatography, precipitation by ammonium 

sulphate or at pH5f or dialysis, in order to produce a satisfactory 

level of polyx^nylalanlne synthesis. It was however, possible that 

the removal of low molecular wei^t compounds from the S-100 fraction 

may have minimised the presence of inhibitors and endogenous assay 

constituents and produced greater levels of activity than those 

observed (Figure 4.4) and resulted in a more defined in vitro system.
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Figure 4.4» The effect of the S-100 fraction on 

polyphenylaZanlne synthesis.

The effect of the S-100 fraction, the cytoplasmic- 

ribosome free supernatant, on polyphenylalanine synthesis 

was examined at three EP-lOO concentrations : 0 A250 unit 

(•) , 2.0 Ag^punlt (□) and 3-0 A2^Qunlt (■) : In an 

otherwise optimised reaction mixture (Chapter 2, Section 2.9, 

Table 2.2). Duplicate ^0 ̂  samples were taken from 

replicate experiments aiter 1 hour, according to the 

method given In Chapter 2, Section 2.9« Background 

radioactivity, I03 cpm, was deducted from the average values. 

(1016 cpm = 1 p mole. phe).
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The presence of endogenous assay constituents in the S-100 

fraction may have contributed toward the inhibition of polyphenyl

alanine synthesis. One possibility is that each preparation of the 

S-100 fraction may have had different concentrations of the endog

enous assay constituents such that the exogenous concentration 

rendered the total concentration from the optimum to an inhibitory 

value. The presence of endogenous unlabelled L-( U-C ) phenyl

alanine would increase as the S-100 concentration increased,thus 

reducing the specific activity of the radioactive amino acid and 

resulting in an observed decline in C^^-polyphenylalanine synthesis.

c) Relationship between the RP-lOO and S-100 fractions.

The evidence presented In Sections and. b,revealed a 

relationship between the concentration of RP-lOO and the concen

tration of S-100 on polyphenylalanine synthesis. At any given 

constant S-100 concentration, there was an optlmiua RP-lOO 

concentration which produced maoclmum activity. The optimum RP-lOO 

concentration varied depending on the S-100 concentration.

When the concentrations of RP-lOO and S-100 were expressed 

as a ratio and related to the % polyphenylalanine synthesis activity 

(Figure 4 .5) the result demonstrated that the optimum concentration 

ratio of RP-lOO:S-100 for maximum activity was 1:1, but that ratios 

ranging fix)m O .5 : 1 to 2.0 : 1 produced activity which was almost 

£is high.

When the concentration of RP-lOO fraction was in excess of 

the S-100 concentration (le, a low ratio) polyphenylalanine synthesis 

was relatively low but could be stimulated by the addition of S-100 

(^^Iguze ^#5)* Conversley, when the RP-lOO : S-100 concentration
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Figure 4 .5. The relationship betweer RP-lOO and S-100 concentration 

and polyphenylalanine synthesis.

The results of several experiments are represented by the 

Figure 4 .5 . In each experiment, the effect of polyphenylalanine 

synthesis of various RP-lOO concentrations, ranging from 0 to 4.2 

Ag^Qunit , were examined at a constant S-IOC concentration in an 

otherwise optimised reaction mixture ( as described in Figure 4.3) 

in the series of experiments, different constant S-100 concentrations 

were employed, ranging from 0 to 3.3 A^gQunit •

The quantity of polyphenylalamine synthesised (jmiole phe,
"1 —1assay ,hr ) in each experiment was expressed as a percentage of 

the maximum activity observed (100^). The concentration ratio 

(A26ounit) of RP-100:S-100 in eenh experiment was calculated and 

related to the % activity observed for each treatment. Data used is 

given in Appendix B, Table B 5 .
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Tal)le 4.2, The variability exhibited by preparations of CY8

cell-extracts.

Source of RP-lOO and 
S-100 fractions

Polyphenylalanine
(pmole phe aussay. 

n=4

synthesised
hr"^^

(tse)

CY8.A 22.6 (2-3)
CY8.B 24.8 0 - 1 * )

CY8.C 17.5 (2.9)
CY8.D 25.3 (3.1)

CY8a , CY8B, CY8C and CY8D identify four preparations of 

RP-lOO and S-100 fractions derived from CY8 according to 

the method described in Chapter 2, Section 2.?. The 

capacity of each preparation to synthesise polyphenylanine 

was measured in a pre-optimised reaction mixture 

(Table ^.1) according to the method given in Chapter 2, 

Section 2.9*

 ̂f



ratio was high there was relatively low polyphenylalanine synthesis 

which could be stimulated by the addition of RP-lOO (figure 4.5)

To produce an optimised cell-free polyp^nylalanine 

synthesising system for auiy given S-100 concentration it was 

possible to predict the RP-lOO concentration. Similarly, given 

a RP-lOO concentration the S-100 concentration for optimum ^  vitro 

activity cculd be determined.

From of the combinations of RP-lOO and S-100 concentrations 

examined which had a ratio of 1:1, the greatest activity was observed 

when both fractions were at 2.0 Ag^unlt (Appendix B,Table B5). In 

the optimised reaction mixture, the concentrations of the RP-lOO 

and S-100 fractions chosen were both 2.0Ag^Q unit.

d) Effect of preparation.

In addition to the effects of EP-lOO and S-100 concentrations 

on polyphenylalanine synthesis (Sections if.5 a and b ), there 

were notloable effects caused by the particular preparations of 
cell-extract employed.

The varUblllty between four preparations of RP-lOO and S-100 

fractions derived from CY8 is revealed in Table k .Z . All were 

prepared according to the sane method (Chapter 2, Section 2. 7) 

and yet the preparation Identified as CY8D consistantly produced 

the largest quantity of polyphenylalanine. Whether the RP-lOO or 

S-100 fractions, or both, were responsible for the variable 

activities of the different preparations was not examined.
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A possible reason for the variability of the cell-extracts were 

that the vigour of manual cell-breakage had differed during their 

preparation and that although the yield in terms of A260 units 

were similar (Chapter 2, Section 2 . 7) the measurement did not 

take into account the activity of the RP-lOO and S-100 fractions. 

Although not examined in this investigation, it is probable that 

minimal force applied to releeise the cytoplasmic contents produced 

more active cell-extracts (Sissons, 197^; Berry et al. 1978). The fact 

that the RP-lOO fraction was composed entirely of monosomes, rather 

than polysomes (Figure ^.2) suggests that there was damage to the 

polysomes which may have adversley affected the integrity of the 

monosomes. Damaged monosomes may account for the slightly lower 

value of the sedimentation coefficient estimated for Coprlnus 

cinereus (7^*^l Section 4.5s) relative to those of other fungal 

species (Chapter 1, Section 1.4,Table l.l).

e) Effect of storage.

One of the possible sources of variation between the cell- 

extracts which was examined was their stability when frozen. E!ach 

preparation (Table 4.2.) had been stored for different times (CY8D 

had been kept the least time). The method of storage of the RP-lOO 

and S-100 ftactions prior to their addition to the ¿n vitpo 

reaction mixture had a considerable bearing on the amount of 

polyphenylaJ.anine synthesised- (Table 4.3)»

Freshly prepared RP-lOO and S-100 fractions were the most 

active but it was Impracticable to prepare fresh cell-extracts 

immediately prior to carrying out the assay. Cell-extracts frozen 

in liquid nitrogen and kept at -70®C produced a reasonable amount of
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Table 4.3. The effect of storage of cell-extracts on their 

capacity to synthesise polyphenylalanine«

Treatment of freshly prepaj:ed 
RP-lOO prior to addition to 

reaction mixture.

Polyphenylalanine synthesised
—  1 —1( pmole phe. assay” , hr". )

(n=if) ( se )

On Ice for 10 min 42.6 (2.3)
At 20°C for 10 min 28.3 (1.8)

S-100 on Ice for 10 mins and 
RP-lOO at 20°C for 10 mins 34.6 (3.1)
RP-lOO on Ice and S-100 at 20°C 
for 10 min. 33.4 (2.6)
Frozen at -190^C for 10 min 41.7 (3.5)
Frozen at -190^C, stored 
for 6 months at -70°C 28.9 (2.1)
Frozen for 10 mins at -190°C, 
thawed auid refrozen for 10 n« 38.1 (3-3)
Frozen, thawed and refrozen 
for 6 months 18.3 (1.8)

Thawed samples were kept on Ice. Cell-extracts were derived from 

CY8D (Table k ,Z) and were analysed In an optimised reaction 

mixture according to the method described In Chapter 2^

Section 2.9, Table 2.2.
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polyphei^lalanlne (Table ^.3) and was used In the routine preparation 

of cell-extracts (Chapter 2, Section 2.?). In fact cell-extracts 

remained active, albeit a low level, for the duration of the 

investigation if kept frozen. However,once thawed and refrozen, 

activity was advereley affected. In order to reduce losses in 

activity due to storage, the cell-extracts were stored in small 

volumes to avoid the need for thawing and refreezlng and its 

deleterious effect on activity.

Both the RP-lOO ar.d S-100 fractions produced reduced activity 

if left at room temperature, suggesting heat labile components 

existed in both fractions (Table 4.3)»

rrom
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Figure 4.6. The effect of polyurldyllc acid on

polyirfienylalanlne synthesis.

The effect of polyurldyllc acid in polyphenylalanine 

synthesis wais examined In an otherwise optimised reaction 

mixture (Chapter 2, Section 2.9» Tables 2.2). Duplicate 

40 jil samples were analysed from replicate experiments 

after 1 hour according to the method described In Chapter 

2 , Section 2.9* A correction was made for the background 

activity, 113*5 cpm (1016 c pm= 1 p mole, phenylalanine).

Figure ^.7« The effect of transfer RNAP^^^ on 

polyphenylalauilne synthesis.

The effect of phenylalanine specific tRNA was examined 

In an otherwise optimised reaction mixture (Chapter 2, 

Section 2.9» Table 2.2) as described In Figure 4.6.



Figure 4.6. The effect of polyurldyllc ax;ld on 

polyi^enylalanlne synthesis.

The effect of polyurldyllc acid In polyphenylalanine 

synthesis was examined In an otherwise optimised, reaction 

mixture (Chapter 2, Section 2.9t Tables 2.2). Duplicate 

40 jil samples were amalysed from replicate experiments 

after 1 hour according to the method described In Chapter 

2, Section 2.9* A correction W£is made for the background 

activity, 113*5 cpm (1016 c pm= 1 p mole, phenylalanine).

Figure 4.7 . The effect of transfer RNAP^^^ on 

polyphenylalanine synthesis.

The effect of phenylalanine specific tRNA was examined 

In an otherwise optimised reaction mixture (Chapter 2, 

Section 2 .9» Table 2.2) as described'In Figure 4'.6.







Figure 4.8. The effect of adenosine - 5 ~ triphosphate on 
polyphenylalamlne synthesis.

The effect of adenosine - 5 ** triphosphate (ATP) on poly- 
phenylalanlne synthesis vas examined In an otherwise optimised 
reaction mixture (Chapter 2, Section 2*9» Table 2.2) • Duplicate 
40 ̂  samples were taken from replicate experiments after 1 hour, 
according to the method given In Chapter 2, Section 2.9»

Figure 4.9. The effect of guanoslne - 5 - triphosphate on 
polyphenylaJ.anlne synthesis.

The effect of guanoslne - 5 ~ trljAiosphate (GTP) on 
polyphenylalanine synthesis was examined In an otherwise optimised 
reaction mixture (Chapter 2, Section 2.9, Table 2.2) as described 
for Figure 4.8.

I <

«
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Figure 4.10. The effect of creatine phosjdiate on jx)lyphenylalanlne 
synthesis.

The effect of creatine idiosphate on polyphenylalanine 
synthesis was examined in an otherwise optimised reaction mixture 
(Chapter 2, Section 2.9» Table 2.2) as described In Figure 4.8.

Figure 4.11. The effect of creatine i^osphoklnase on polyphenylalanine 
synthesis. --------------------------

The effect of creatine phosphoklnase on polyphenylalanine 
synthesis was examined in an otherwise optimised reaction mixture 
(Chapter 2, Section 2 .9, Table 2.2) as described for Figure 4.8.

In each of Figures 4.8, 4.9 and 4.11 results were corrected for a 
^ckground activity of between 100 and 150 cpm 
(1016 cpm = Ip mole.phe).

I 4
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The effect of mgigneslum acetate and spermidine on 

polyphenylaletnlne synthesis

Figure 4,12. The effect of magnesium acetate on polyphenylalamlne 

synthesis was examined at two concentrations of exogenously 

supplied spermidine, OmM ( □ )  and ImM (■), in aJi otherwise 

optimised reaction mixture (Chapter 2, Section 2.9, Table 2.2) 

Duplicate samples were analysed from replicate experiments 

after 1 hoiir, according to the method described in Chapter 2,

Section 2.9« The concentration of magnesium acetate contributed 

to the final concentration by the cell-extracts wais 2mM 

(I0l6 cpm = 1 p mole*phe).

Figure 4 .1 3 « The effect of exogenously supplied sper̂ ^̂ ^̂ ^̂ f̂t 

on polyphenylalanir^ synthesis was examined at two concentrations 

of magnesium acetate, 2mm ( O )  and ( • )  in an otherwise

optimised reaction mixture (Chapter 2, Section 2.9, Table 2.2) 

according to the method described in Figure 4.12.



FIG .4.12
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The effect of ammonlxua acetate and potasslxim chloride on 

polyphenylalanine synthesis.

Figure ^.14. The effect of variable ammonium acetate 

concentrations on poly^Aienylalanlne synthesis was examined at 

two concentrations of potassium chloride, 5niM ( □ )  and 20 mK 

( ■  ) In an otherwise optimised reaction mixture (Chapter 2, 

Section 2.9# Table 2*2)• Duplicate jil samples were analysed 

from replicate experiments after 1 hour, according to the 

method described In Chapter 2, Section 2.9. A correction 

for background activity of 12?. 1 cpm was made (1016 cpra =
1 p mole, phe ).

Figure 4.15. The effect of potassl\im chloride on polyphenylalanine 

synthesis was determined at two concentrations of ammonium 

acetate, OiuM ( A  ) and 40 mM ( A  ), in an otherwise optimised 

reaction mixture (Chapter 2, Section 2.9, Table 2.2) as 

described for Figure 4.14. The cell-extract contributed 5mM 

of the final potassium chloride concentration.



FIG.4.14

Lanino
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Figure 4,l6 The effect of Tris-HGl on polyphenylalanine 

polyphenylalanine synthesis.

The effect of Trls-HCl on polyphenylalanine synthesis was 

examined In an otherwise optimised reaction mixture (Chapter 

2, Section 2.9, Table 2.2). Duplicate 40 ja samples were 

analysed from replicate experiments after 1 hour, according 

to the method described In Chapter 2, Section 2.9» Values 

were corrected for background activity of 140 cpm (1016 cpm =

1 p mole. phe).

Figure 4.17. The effect of dlthlotheltol on 

polyphenylalajilne synthesis.

The effect of dlthlotheltol was examined In an otherwise 

optimised reaction mixture (Chapter 2, Section 2.9» Table 2.2) 

as described In Figure 4.1?.



FIG .4.16
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SECTION 4,11. L-(U-C^^) PHENYLALANINE.

The incorporation of into material which was insoluble 

in TGA at 90°C, was dependant on the presence of radioactive 

substrates In the absence of L - phenylalanine, no radio

activity was detected (Figure J^.l8a).

In the preoptimised cell-free system (Table 4.1, Section 4.4)

maximum polyphenylalanine systhesis was achieved at the highest

L - phenylalanine concentration examined, 0.24 With

increasing radioactive . substrate concentrations there was an

approxim3.tely linear increase in product synthesised. (Figure 4.18a),

but simultaneously, there was a linear decline in the efficiency of

the assay system (Figure 4.18b). The L - phenylalanine

concentration used in the preoptimised reaction mixture (0.98|iM)

was chosen as a compromise between a reasonable level of poly-
—1 —1phenylalanine synthesis ( 26.4 pmole phe. assay. hr. ), at an

efficiency of substrate utilisation of 2*7% (Figure 4.18b ) and 

moderated in consideration of the expense of the radiochemical.

When all other constituents in the reaction mixture had been 

optimised (Table 2.2, Chapter 2, Section 2*9)» the effect of 

L - (u-C^^phenylalanine was revaluated. Lower concentrations of 

the amino acid were reqx:iired to produce the same levels of poly- 

phenylalanine synthesis that had been observed in the preoptimised 

reaction mixture (Figure 4.18a). The optimised reaction mixture 

synthesised polyphenylalanine approximately 4 x more efficiently 

than the preoptimised system had achieved (Figure 4.18b).
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It was therefore possible to reduce the concentration of L-(U-G^^) 

phenylalanine In the optimised reaction mixture to 0.2^ jiM and still 

maintain a satisfactory level of polyphenylalanine synthesis, which 

had been produced "by 0,^8 jM in the preoptimised assay, thereby 

making the cissay more economic.

The cell-extracts, particulaa-ly the S-100 fraction probably
12contained endogenous L-(C ) ^lenylalanlne. The specific activity 

/ l^enylalanlne used to determine the pmole polypheny

lalanine synthesised and the efficiency of tKuislation (Figure ^.18b) 

was probably less than the quoted value (513 mCl. mmole"^) but 

because the endogenous concentration was not known, the extent of 

isotopic dilution was not known. The efficiency of translation must 

therefore be considered to be estimated values.
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it.ifto. The effect of L - ( U - C ^ S - phenylalanine on

polyphenylalanine synthesis.

The effect L phenylalanine on polyphenylalanine

synthesis vas examined in a pireoptimiscd ( a - a ) and an optimised 

( □ - □ )  incubation mixture. (Tables 4.1 and Table 2.2, Chapter 2 

Section 2.9). Duplicate 40 |il samples were analysed after one 

hour, from replicate experiments accoixilng to the method 

described in Chapter 2, Section 2.9» Values were corrected for 

background activity (I0l6 cpm = Ip mole phe).

Figure 4.18b. The efficiency of the in vitro assay.

The efficiency of the polyphenylalanine synthesis at each 

concentration of L - Cu-C^^)- phenylalanine was calculated from;

TMiiole polyphenylalanine product x 100% 
pmole phenylalanine substrate

The efficiencies were obtained for the preoptimised (A) and 

optimised (■) Incubation mixtures frcm the results presented in 

Figure 4.18a.

i t
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SECTION k A 2  TEWIEmrUHE AND REACTION TIME.

There was no detectable polyphenylalanine s ^ h e s l s  at any 

incubation temperatures employed during the first 5 minutes 

incubation , Thereafter variable amounts of polyphenylalanine 

were synthesised at variable rates depending on the temperature.

The initial period of inactivity has been obser\’ed for many other 

species, and has been attributed to the time required for the 

aminoacylation ’of tRNA and the formation of the initiation 

complex ,eg. Ceuinon et al. (1976).

The maximum quantity of polyphenylalanine synthesised in one 

hour was achieved at 3^^ and 3^ C (legend to H.gure ^»19)» At 37 C, 

the mav^imim activity aiter one hour was less than 50̂  of that 

observed at 30° or 3if°C. At ̂ C,the temperature at which the reaction 

mixture was prepared, polyphenylalauilne synthesis was negligible.

The maximum rate of polyphenylalanine synthesis at all 

temperatures between 27° and 37°C, was achieved between 5 and 20 

minutes after the commencement of Incubation. The highest rates of 

synthesis were obtained at 30° and 3^ C, (Figure ^.18). At 37^0, 

synthesis stopped after 40 minutes, idieras at 30 0, polyphenylalanine 

synthesis continuedat one hour.

The optimum temperature and time chosen for the incubation 

of the reaction mixture was 30°C and 1 hour, because it produced 

the largest total quantity of polyphenylalanine,at the maximum rate

of synthesis.
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Figure



.4.19
Figure 4.19. The effect of temperature on the kinetics of 

polyphenylalanine synthesis.

Polyphenylalanine synthesis was determir^d from duplicate ^Ojil 

samples taken from 500 ^1 of optimised reaction mixture (Chapter2, 

Section 2.9f Table 2.2) according to the method described in 

Chapter 2, Section 2.9» The five incubation temperatures used were^

60

Temperature
(°C)

Symbol Maximum ewtlvity
(p mole phe.lOOjil assay« hr. )

4 • 1.8

27 A il3«l

30 ▲

3^ □ 36.9

37 ■ 19.6

(1 iHtiole phe = 1016 cpm)
I 1
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DISCUSSION.

SECTION ^.13. THE PREOPnMISED AND OPTIMISED REACTION MIXTURES.

In the preliminary experiments, no activity was achieved.

The inability to obtain polyphenylaJ.an ine synthesis proved to be a 

major obstacle in the development of a Coprinus cinereus cell-free 

polypeptide synthesising system. Because no specific methods 

existed to prepare or assay Coprinus cinereus cell-extracts it was 

possible that techniques adapted from other species (Chapter ^.4) 

resulted in the preparation of inactive cell-extracts or produced 

unsuitable reaction mixture.

The reason for inactivity was found to be the result of using 

stored frozen mycelium as the source of the cell-extracts; cell- 

extracts prepaored from freshly grown mycelium were active in the 

preoptimised reaction mixture (Appendix B i ; Section 4.4).

When the individual, optimisation of the constituents in the 

preoptimised reaction mixture was undertaken, it was realised that 

most constituents had specific concentration ranges for maximal 

polyphenylalanine synthesis and that the assay system was particularly 

sensitive to several constituents, including; ATP (Figure 4.8),

GTP (Figure 4.11), magnesium acetate and spermidine (Figures 4.12 and 

4.13). It was fortuitous that most of the constituents in the 

preoptimised reaction mixture were within the optimal concentration 

range and that none were totally inhibitory (Table 4.4). Had the 

preopbimised system been based solely on the Podospora anserlna 

system (Cro<.»zet et al. 1978), there would have been no spermidine
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in the assay and consequently no activity (Figure 4.13, Section 4.8).

By employing a preoptimised system which was based on the average of 

several fungal species at the outset of the investigation (Section 4.4), 

the probability of obtaining polyphenylalanine synthesis with 

Coprinus cinereus cell-extracts w e is  greater than if a system based 
on one species had been used.

00

A comparison of the quantity of polyphenylalanine synthesised

at the outset using preoptimised reaction mixture, with the quantity

produced in the optimised reaction mixture demonstrated the improvement

that was possible by individually optimising each assay constituent

(Table 4.4). The typical activity in the preoptimised system

(26.4 pmole phe. hr”^) were synthesised in an assay system which contained

3.0 A260 unitRP-100 fraction and 0.98 ;iML- (U C^^) phenylalanine

(Table 4.4). When the optimised system had been developed the average 
%quantity of polyphenlalaJiine synthesised had been increased 1.5 x,to 

40 pmole .phe aussay»hr.^ and the concentration of RP-lOO fraction and 

radiolabelled substrate had been reduced (Table 4.4).
I I

I I

S'

The composition of the optimised reaction mixture did not 

substantially differ from the composition of the preoptimised reaction 

mixture (Table 4.4). Both reaction mixtures contained the same 

constituents but differed in the final concentrations of the constituents. 

For most constituents, the individually optimised concentrations 

resulting in maximum Incorpororation was generally lower than in the 

preoptimised reaction mixture.

The objective of the experiments detailed in this Chapter was to 

obtain a CopTl cinereus cel3.-free r-ystem able to synthesise o
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satisfactory amount of polyphenylalanine. The average synthesis 

of approximately 40 p mole polyphenylalanine, a s s a y h r 7 ^

(Table 4.4) was considered to be a satisfactory result. The stage 

in the development of the cell-free system was reached where 

jxDlyphenylalanine was synthesised with a reasonable efficiency and 

economy of resources. It was not i>osslble to examine the effect of all 

variables which may have affected vitro polyjAienylalanlne 

synthesis. It was therefore possible that further ajmlysis would 

have produced a reaction mixture capable of greater activity at 

highest efficeincy. For example; the pH of the reaction mixture was 

not optimised and pH does affect ^  vitro polyphenylalanine synthesis 

in other systems (Berry et al. 1978 ):the production of more active 

cell-extracts by ensuring that less damage was incurred during cell- 

breaJceige (Berry et 1978) and by maintaining their integrity by 

determining the most suitable extraction buffer and limiting protease 

and RNA ase action, instead of using minimal preparation of the cell- 

extracts, to produce 'washed' ribosomes (Sissons, 197^)*aJ^d to 

remove low molecular weight molecules (endogenous assay constituents 

and inhibitors) from the S-100 fraction (eg.dialysis, Crouzet et al 

1978; ammonium suljiiate precipitation|Caxter et al, 1980).

I I

Another approach would have been to investigate the possible

benefits of using alternative constituents to those used in the cell-

free system, for example; an alternative buffer to Trls-41C1,

possibly Hepes, because of the known inhibitory effect of Tris as a result

of deacylation of phe-tRNA (Heredia and Halvorson, 1966) and its poor

buffer capacity at pH 7.5« The reaction mixture may have been

simplified had L-(U-C^^) phe-tRNA been used, obviating the requirements
phe jof ATP, creatine phosphate, creatine phosphoklnase and tRNA , ana
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possibly resulting in Incxeaused polyphenylalanine synthetic activity.

One other alternative , which Weber et al« (1977) found gave improved 

activity, was the replacement of chloride ions by acetate ions.

The potential of Coprinus cinereus cell-free system was 

considered to be greater than the efficiency of translation observed 

in the optimised reaction mixture (Table ^.5)* Without recourse to the 

suggested improvements which had been described, a more efficient 

in vitro system could have been produced by using less than 0.24 jiM 

L- (U-C^^) phenylalanine (Figure 4.18a) but the yield of polyphenyl

alanine synthesis (Figure 4.18b) was considered to be Insufficient 

for the purpose of the ^  vitro system (Figure 4.3)*

The Coprinus cinereus cell-free polyphenylalanine synthesising 

system could not be considered as a definitive system because all 

possible means of improving the in.vitro system were not made and 

because the precise composition of the RP-lOO and S-100 fractions was 

not known. Additionally because few of the Interactions between 

constituents were examined (eg. between magnesium acetate and spermidine 

Section 4.8,and ammonium acetate and potassium chloride, Section 4.9)> 

it was possible that the individually optimised constituents may not 

be the most efficient and that suboptimal concentrations of some 

constituents may have been preferable. However, the complexity of the 

assay was not studied in sufficient detail for such Interactions to

be determined.

The product of poly (U) directed polypeptide synthesis «as not 

deteralned. It «as assusied that the radioactivity «hlch «as absorbed 

onto the GP/a  filter discs and precipitated by
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90°C TCA was polyphenylalanine. The C^^-containing product was not 

characterised! the polypeptide may have been dl- or tri- phenyl

alanine as reported by Bretthauer and Ctolichowskl (1968), or it may 

have been a polypeptide with a large chaiin length as described 6y 

Sissons (197^). Benvienste et ^,(1976) and Atkins fit ai, (1978) 

found that potassium ion and spermidine concentrations affect the 

size of the polypeptide produced in a cell-free system primed with 

mRNA: the effect of these constituents in a poyl(u) dependant 

cell-free system is not known. An important factor in determining 

the size of the i>olypeptide was the size of the polyuridyllc acid 

molecule (Marcus et etl.1963). A small poly(u) template can only 

translate small polypeptides , regardless of the efficiency of the 

cytoplasmic ribosomes. The size of the poly(U) employed in this 

investigation was not known.
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SECTION ^.1^. EFFICIENCY OF POLYTHENnALANINE SYNTHESIS IN COPKENUS 

CINEREUS AND OTHER SIECIES.

The efficiency of the optimised Coprinus cinereus cell-free 

polypeptide synthesising system compaxed favoiirably with in vitro 

systems from other fungal species (Table 4.6). Efficiency has been 

calculated in different ways by different authors and in order to 

comx>are the results of the optimised Coprinus cinereus system with 

those of other species each of the expressions of efficiency have 

been determinded (Table 4.5).

Based on the simplest determination of efficiency, the 

utilisation of substrate to synthesise product, Coprinus cinereus 

was one of the most efficient poly (u)-dependant polyphenylalanine 

synthesising systems cataJ.ysed by a RP-lOO (or equivalent fraction , 

Table 4.5). Depending on how the cytoplasmic ribosome concentration 

was evaliiated the Coprinus cinereus cell-free system was as good as 

any of the other sytems for which efficiency was calculated (Table4.5» 

when the incubation time was taken into account).

I I

1 I

Possibly the most meaningful expression of efficiency is 

|Hnole phenylalanine incorporated, pmole cytoplasmic ribosome .

Taking into account the assumptions which were 
necessary in order to calculate the molality of the cytoplasmic 

ribosome concentration (Appendix B v ), it was estimated that 

approximately 7 molecules of phenylalanine were incorporated by each 

ribosome present in the cell-free reaction mixture (Table 4.5). 

However, the estimated value is calculated on the basis of several 

assumptions (Appendix B v ), the most important of which is that all
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cytoplasmic ribosomes were active.

The determination of efficiency assumes that all cytoplasmic 

ribosomes wich contribute towards the absorbance at 25^ nm were 

functional and able to translate the poly (u) template. The absence 

of polysomes in the RP-lOO fraction (Figure t^,2) demonstrates that no 

cytoplasmic ribosomes which were actively involved in polypeptide 

synthesis were added to the assay. The presence of only monosomes 

(Figure 4 .2) does not differentiate between active and inactive 

ribosomes. The proportion of ribosomes participating in 

polyphenylalanine synthesis was not known, but it is probable that 

initiation on the poly(u) template was not possible by all ribosomes. 

Damage during the vigours of cell-breakage may have rendered many 
ribosomes inactive.

It is therefore probable that the efficiency of each active 

cytoplasmic ribosome is greater than the quoted estimeted value 

(Table k . 5 ) .
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SECTION ^.15. SUMMARY.

The individual optimisation of most constituents of the 

Coprinus cinpreus cell-free polyjhenylalanine synthesising system 

produced a system, whose efficiency comx>ared favourably with 

similar systems in other species and idiose quantity of polyphenylanine 

synthesised was considered to be satisfactory. The cell-free system 

was deemed suitable to examine the effect of cycloheximide ^  vitro 

and to screen for cycloheximide-resistant cytoplasmic ribosomes.

I I
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Il^fTRODUCTION.

SECTION 5*1. THE INTRACELLULAR SITE OF CYCLOHEXIMIDE ACTION.

The differential response to cycloheximide may be the result of 

several factors. Georgopoulos (197?) lists several biochemical 

changes which may confer the mutational resistance to fungicides 

including; decreased membrane permeability to the drug, detoxification 

of the drug and modification of the cellular component, reducing the 

sensitivity of the target site at which the drug interacts. The 

mechanism of resistance to cycloheximide has been demonstrated to occur 

by reduced uptake (Wescott, and Sisler, 196^) but the emphasis of the 

analyses undertaken have attempted to identify the intracellular target.

The concern of this investigation was the identification of the 

intracellular site of cycloheximide action. Early evidence (Siegel and 

Sisler, 196̂ 1'; Ennis and Luben, 196^) suggested that cycloheximide 

affected a component within the cell. However, the relatively crude 

cell-extract could not be used to identify a specific cellular component 

which could be implicated in the inhibition of protein synthesis except to 

discoiint the mitochondrial ribosomes (Ennis and Luben, 196^)»

Subsequently, it became possible to fjactionate the cell-extract 

into a cytoplasmic ribosome-rich fraction and a cytoplasmic ribosome- 

free supernatant fj:action (equivalent to RP-lOO and S-100 fractions used 

in this investigation; Chapter 2, Section 2.7)»

In one of the earliest investigations it was concluded hy Traketellis 

et al^(l965‘) and Fellcettl et a l .(1966‘) that the cytoplasmic ribosome- 

free supernatant of mammalian cells was associated with cycloheximide 

binding. The conclusion was beused on the observation that supernatant 

Tl^actions, ftem a cycloheximide-sensitive strain, treated with cyclo-
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heximide did not synthesise polypeptide when reconstituted with 

untreated cytoplasmic rihoscmes. The reciprocal experiment in which 

cycloheximide-sensitive cytoplasmic ribosomes were preincubated with 

cycloheximide did produce polypeptide when reconstituted with untreated 

supernatant. Felicetti et al»(l966) speculated that the component of 

the supernatant fraction to which cycloheximide bound was an 

elongation factor.

A similar methodology to that used by Trakatellis et al,(l965) was 

used by Battaner and Vasquez (1971) in Saccharomyces cerevisiae cells 

However, . when it was possible to examii» the cell-extracts from 

species and strains which exhibited markedly different responses to 

cycloheximide, (ie. cycloheximide-resitant and cycloheximide—sensitive 

species and mutant strains) a different methodology was .employed.

The overwhelming evidence produced (Table 5«l) implicated the cyto

plasmic ribosomes as the intracellular site of cycloheximide action.

The first evidence that cycloheximide interacted with the 

cytoplasmic ribosome was made by Siegel and Sisler (1965)» Cell- 

extracts prepared from a cycloteximide-resistant species,

Sacch«T^)myces fjragi^'^^ and a cyclohexlmide-sensitlve species, 

Sacch«T"omyces rfM*torla^^^^s, were fraictionated into two fractions, one 

containing cytoplasmic ribosomes, the other containing soluble 

supernatant fractions • The responses to cycloheximide of heterologous 

combinations of cytoplasmic ribosomes and supernatant fraction fXom 

each species proved that resistance to cycloheximide was a jaroperty 

of cytoplamnic ribosomes.
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Subsequently, cell-extracts were prepared from strains «-rhich 

were cyclohexlmide-sensitlve and cycloheximidej-reslstant and employing a 

similar protocol to that of Siegel and Sisler (I965). Cycloheximide- 

resistant cytoplasmic ribosomes have been identified from the 

response of the organelle to cycloheximide j in the majority of 

instances, using polyurdylic acid-dependant polypeptide synthesing 

systems (Table 5«l)»

The component of the cytoplasmic ribosome which conferred 

cycloheximide-resistance had been localised to the particular 

cytoplasmic subunit by analysing the response to combinations of the 

large and small cytoplasmic ribosomal subunit derived from cyclo

heximide-resistant and cycloheximide-sensitive species (Rao and 

GroHman, 196?) and strains (Table 5*1) • With one exception, the 

large cytoplasmic ribosomal subunit was identified as conferring 

the response to cycloheximide (Table 5*1) The exception was 

discovered by Sutton et al,(l978) who foxind that cycloheximide- 

resistance in mutants of Tetrahymena thermophlla was conferred by 

both the large and cytoplasmic ribosomal subunits.

The localisation of the component of the cytoplasmic ribosome 

which confers cycloheximide resistance has not been determined in a 

cell-free polypeptlde-syntheslng system. In prokaryotes it has been 

possible to fractionate the ribosomal subunits into their ribosomal 

protein and RNA constituents and by producing reconstituted ribosomes 

flom different sources, to identify the components conferring anti

biotic resistance (reviewed by Cannon and Cundliffe, 1973) * ^ 

similar analysis in eukaryotic si>ecies has not been possible because 

not cytoplasmic ribosomal components have been purified (Wool, 1979).

t I
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SECTION 5.2 OBJECTIVES.

Chapter 3 described the production emd genetic analysis 

of Coprinus cinereus strains resistant to cycloheximide 

in vivo.

Chapter 4, detailed the development of a Coprinus cinereus 

cell-free system capable of synthesising polypeptides and 

provided a means of investigating the cellular basis for the 

in vivo cycloheximide resistance.

The objectives of the experiments described within this 

chapter were:

to analyse and classify Coprinus cinereus strains according 

to their in vitro responses to cycloheximide, 

to identify the component of the cell-extracts idilch conferred 

resistance to cycloheximide,

to identify those strains which possessed cycloheximide- 

resistant cytoplasmic ribosomes,

to compare the in vitro responses of monokaryons, dikaryons 

and diploids to cycloheximide.

I l l
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RESULTS.

SECTION 5 .3 . EypECT OF CYCLOHEIXIMIDE ON CEaj,~E!XTRACTS

FROM MONOKARYONS IN VITRO.

a) Analysis of CY 8 and GY 8.2.

The Investigation into the effect of cycloheximide on 

cell-free j)olyphenylalanine synthesis began with an eumlysis 

of the effects of the drug on cell-extracts derived from 

CY 8 and CY 6.2. In the analysis of the effect of 

cycloheximide on the growth of these strains (Chapter 3, 

Section 3*9 c ), CY 8 was described as being sensitive to 

cycloheximide and the mutant strain derived from CY 8, CY 8.2 

was classified as being highly resistant to cycloheximide.

The cell-extracts prei>ared from these two strains were 

the cytoplasmic ribosomal-rlch fraction RP-lOO and the 

cytoplasmic ribosome-free sux>ematant fraction S-100 

(Chaixter 2, Section 2.?). In the development of the cell- 

free polyphenylaJanine synthesising system (Chapter ^), 

both the RP-lOO and S-100 fractions from GY 8 had been shown 

to be essential for polyphenylalanine synthesis (Sections 

^.6 a and b ). All other constituents of the cell-free 

assay system had been optimised (Chapter 2f Section 2.9# 

Table 2.2) and were kept constant in these analyses. 

Therefore any differences in the effect of cycloheximide on 

the cell-extracts of CY 8 and CY 8.2, could be attributed 

to the only source of variation between the treatments, 

the RP-lOO and S-100 fractions.

* t
i.«i
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(l)Homologous cell-extracts.

Two types of cell-extracts were aJiaJ-ysed. In the 

first experiments the RP-lOO and S-100 fractions were 

derived from the same strain. Thus the two treatments 

were RP-lOO and S-100 from GY 8, and RP-lOO and S-100 

from CY 8.2. The effect of cyclohexlmide on these 

homologous treatments are presented in Figure 5*1•

The cycloheximide dose-responses of CY 8 and CY 8.2 

consisted of two discrete phases which were similar to 

the hiphasic growth responses of these strains discussed 

in Chapter 3, Section J A J t ) . . At low cycloheximide 

concentrations there was no noticeable inhibition of 

polyphenylalanine synthesis. The second i^iase occurred 

over approximately two orders of magnitude of cycloheximide 

concentrations when there was an exponential decline in 

activity and total inhibition was observed. Similar 

resp>onses were observed in other analyses | presented in 

Figures 5*2 to

Although the shapes of the cycloheximide response 

curves of CY 8 and CY 8.2 were similar (Figure 5*l)f the 

displacement of the response of CY 8.2 towards the hl^er 

cycloheximide concentrations Illustrated that the RP-lOO 

and S-100 fractions from CY 8.2 were more resistant to 

cycloheximide than those of CY 8.

The growth responses of all strains to cycloheximide 

(Chapter 3, Sections 3.9, 3-10 and 3.H) produced biphasic
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Figure 5.1. Effect of cvclohexlmlde on polyphenyUlanlne

synthesis ty cell-extracts from CY 8 and CY 8«2

The composition of the optimised reaction mixture and 

method of measurement of polyphenylalanine synthesised from 

replicate ^  pi samples of duplicate experiments were as 

described in Chapter 2, Section 2.9*

Source
RP-lOO S-100

100% activity
Symbol (p mole phe incorporâted.assay”  ̂hr “J)

CY 8 CY 8 □ 36.0

CY 8.2 CY 8.2 A ^ .3

CY 8 CY 8.2 ■ 46.6

CY 8.2 CY 8 ▲ 43.6

The average quantity of radioactivity insoluble in 90°C 

TCA was measured at eaoh cycloheximide concentration examined 

and was expressed aus a % relative to the maximum activity of 

the uninhibited control, cycloheximide. The original data 

was used in a linear regression analysis (Appendix Cl). The 

50% inhibitory value hais been indicated (•) and the extrapolated

responses involving CY 8.2 RP-lOO fractions are Indicated (......)

Regression coefficients ranged from -O.96 to -O.98.

d  •
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Table 5 «2. Response of CY 8 and GY 8.2 cell-extracts to cyclohexlmlde.

Strain
Source of Source of 
RP-lOO S-100

Cycloheximide concentration (jiM) for Linear 
50%  inhibition and totaJ. inhibition regression 

(calculated) (observed) coefficient

CY 8 CY 8 5.1 360 -32

CY 8 CY 8.2 4.6 360 -33
CY 8.2 CY 8.2 490 17000® -32

CY 8.2 CY 8.0 530 12000® -37

i i'

The cycloheximide concentrations producing 5OJ6 inhibition and 

the linear regression coefficients were calculated from the original 

data (Appendix Cl). All linear corelation coefficients in the 

Inhibitory phase ranged from -O .96 to -0.98. \ o t a l  inhibition was 

not observed at the cycloheximide concentrations examined,

(5300 |iM);the values presented were extrapolated from the linear 
regression analysis.



I to cyclohexlmlde.

for Linear 
jion regression 

coefficient

responses similar to the response of the cell-extracts 

to cycloheximide (Figure 5 .I). The parameters of the 

growth response which were used to describe the

cycloheximide dose-responses vivo (Chapter 3) were
*

applied to the ^  vitro responses t the cycloheximide 

concentration at which total inhibition was observed, 

the calculated cycloheximide concentration from an 

analysis of linear regression which produced 50J6 

inhibition, the linear regression coefficient and the 

linear correlation coefficient. The parameters describing 

the responses of CY 8 and CY 8.2 homologous extracts are 

given in Table 5.2.

Lbition and 

the original 

in the 

Lbition was

le linear

In terms of the calculated 50^ inhibitory cycloheximide 

concentration, the RP-lOO and S-100 extracts from CY 8.2 

were 128 x more resistant, and highly significantly 

different from those of CY 8 (p<0.00l). The total 

inhibitory cycloheximide concentration of CY 8.2 was 

estimated to be 50 x higher than that of CY 8. There was 

no significeint difference between the linear regression 

coefficients of the two strains (p^O.l). The linear 

correlation coefficients over the inhibitory jAiases of 

the cycloheximide-dose response curves, -O.98 and -0.99 

for CY 8 and CY 8.2 respectively, demonstrated the Inverse 

relationship between cycloheximide concentration and 

polyphenylalanine synthesis.
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(ii) Heterologous cell-extracts.

The results of the homologous combination of cell- 

extracts established that the cell-extract of CY 8.2 was 

cycloheximide-reslstant and that the cell-extract of CY 8 

was cycloheximide-sensitive. In order to determine which 

of the CY 8.2 fractions, either RP-lOO, S-100 or possibly 

both, conferred ^  vitro resistance to cycloheximide, 

heterologous combinations of CY 8.2 and CY 8 fractions 

were analysed. Neither RP-lOO or S-100 could be analysed 

independently of the other because both fractions were 

essential in order to synthesise polyphenylalanine 

(Chapter 4, Section 4. 5 a and b ). The cycloheximide 

dose-responses of two treatments were examined; the 

combination of RP-lOO from CY 8.2 and S-100 from CY 8 and 

the reciprocal hybrid of RP-lOO from CY 8 and S-100 from 

CY 8.2.

The treatment which contained RP-lOO from CY 8.2 and 

S-100 f ^ m  CY 8 was more resistant to cycloheximide than 

the treatment containing RP-lOO from CY 8 aind S-100 from 

CY 8.2 (Figure 5«l)* The cycloheximide concentration 

necessary to produce 50^ inhibition was 125 x higher when 

RP-lOO was derived from CY 8.2 than when it was derived 

from CY 8 ( p < 0.001; Table 5*2) but the treatments had 

similar linear regression coefficients (p^ 0.1). The 

response to cycloheximide of CY 8.2 RP-lOO fraction 

with CY 8 S-100 fraction was similar to that of the CY 8.2 

homologous cell-extract, (Figure 5*1) • Both treatments 

containing CY 8 RP-lOO fractions were indistinguishable
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A^^ysls of various other strain«.

It was not practicable to investigate a l l  

cycloheximide-resistauit mutants produced during the 

course of this investigation (Chapter 3, Section 3.5 b ).

It was considered that a more rewarding investigation would 

be achieved if a limited number of selected strains were 

thoroughly analysed, rather than a relatively superficial 

analysis of all strziins.

On the basis of the growth response of the cycloheximide- 

resistaiit mutants to cycloheximide (Chapter 3, Section 3 .8) 

and genetic analysis (Chapter 3, Sections 3.10 and 3.12), 

the mutants were rationalised into 11 groups from vdiich 

one or more representative strains from each group were chosen 

for ^  vitro analysis (listed in Table 3.12Í, Section 3.11, 

Chapter,3).

CY 18 played an important role in all subsequent 

analyses because by using a CY 18 S-100 fraction as a 

standard component of the ^  vitro aissaŷ  it became possible 

to screen directly for cycloheximide-resistant cytoplasmic 

ribosomes in other strains. The S-100 fraction from CY 18 

was chosen because it did not confer cycloheximide resistance in 

vitro (Table 5*3 ) and because of the high polyi¿ienylal£Uiine 

synthesising capacity it conferred with RP-lOO fractions 

from any source. For exzunple CY 8 or CY 8.2 RP-lOO 

fractions in combination with the CY 18 S-lOO fraction, 

produced a hl^ier activity than the CY 8 or CY 8.2 homologous 

cell-extracts (legend to Figures 5 .I and 5.2). Additionally, 

by employing the CY 18 S-100 fraction, the resix>nse to
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Figure 5.2. The effect of cyclohexlmlde on polyphenylalanine 

synthesis hy RP-lOO from vaxlous monokaryotlc 

strains.

The composition of the optimised reaction mixture and 

method of megusurement of polyphenylalanine synthesis, from 

replicate kO j i l samples of duplicate experiments, were as 

described in Chapter 2 Section 2.9* The responses are 

presented as described in Figure 5.1.

In all analyses, the S-100 fraction was derived from 

CY 18. The source of the RP-lOO fractions were as listed.

Source of 
RP-lOO

100% activity
Symbol (p mole phe incorporated,assay“̂  ^  1^)

CY 8 □ 47.8
CY 8.2 ■ 48.5
CY 9.23 A 18.6
CY 9.23.98 A 20.2
CY 9 0 15.4

The CY 9 response also represents;
CY 3 37.2
CY 13 30.8
CY 14 36.4
CY 18 40.1

Original data and the results of the linear regression 

analysis are presented in Appendices C2 and C3 1 ,(•) 

indicates the 50^ inhibition of each treatment.
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Table 5»3« Response of RP-lOO fractions from monokayotlc 

strains, In the presence of S-100 from CY 18, 

to cyclohexlmlde.

Source of 
RP-lOO

Classification 
in vivo

Cycloheximide concentration 
(uM )caJ.culated for 50% 

inhibition of
polyphenylalanine synthesis

Linear
regression
coefficient

CY 8 S k .Z -25
CY 8.2 R 550. -32
CY 9 S 0 ,k 3 -29
CY 9.23 R 6k -^1
CY 9.23.98 R 58 -77
CY 3 S 0.35 -25
CY 13 S 0.22 -23
CY Ik S 0.^2 -26
CY 18 S O.k? -26

R denotes cycloheximide-resistance and S denotes cycloheximide- 

sensitivity ^  The calculations are based on the data
given in Appendices C2 and G3.
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cyclohexlmlde of a RP-lOO fraction from any source was not 

noticeably changed in relation to the response of homologous 

cell-extracts (Figures Figures 5*2) •

Linear
^regression
Icoefficient

le-

The responses to cycloheximlde of RP-lOO fractions 

from various monokaryotic sources were examined in the 

presence of S-100 from CY 18 (Figure 5*2).

The presence of a cycloheximide-resistant RP-lOO 

fraction for CY 8.2 has already been reported (Section 

5.3a). On the basis of the evidence for of the response 

to cycloheximide of a RP-lOO fraction from CY 9*23f I't 

too possessed a cycloheximide-resistant RP-lOO fraction.

The RP-lOO fraction from CY 9.23 was 150 x more resistant 

than the cycloheximide-sensitive strain CY 9 from which 

it was derived (Table 5.3)* However the level of 

cycloheximide resistance exhibited by the CY 8.2 KF-100 

fraction was 10 x greater than that of CY 9.23* The RP-lOO 

fraction from CY 9.23.98, the recombinant strain of CY 9*23 

and CY 3» produced a response to cycloheximide which was 

similar to that of CY 9.23, had a significantly higher 

linear regression coefficient than CY 9*23 ( p ^ 0.001,

Table 5.3). All three strains, CY 8.2, CY 9*23 and CY 9.23.98 

(Chapter 3, Section 3.8 c and d) were resistant to cycloheximide 

in vivo..
All other strains analysed were cycloheximide-sensitive 

is vivo (Chapter 3, Section 3*8). The response of CY 8 
RP-lOO fraction to cycloheximide (Figure 5*2), previously 

reported to be cyclohexlmlde-sensltlve (Section 5*3 a ), was 

10 x more resistant than the RP-lOO fractions from CY 3, CY 9, 

CY 13, CY lif or CY 18 (p<0.001j Table 5.3).
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There was no significant difference between the responses 

of RP-lOO fractions from CY 3, CY 9, CY 13, CY or CY 18 

in terms of their 50J6 Inhibitory cyclohexlmide concentrations 

(p^O.5) or their linear regression coefficients (p>0.5)*

A classification of the monokaryotic strains was 

proposed|based ujwn the response to cycloheximide of their 

RP-lOO fractions. Four groups were recognised, each 

significantly different from each other (p<0.00l) and yet 

significantly similar within each groxxp (p>0.5). The 

groups were* CY 8.2 the most resistant} CY 9*23 snd CY 9»23»98, 

CY 8jand CY 3, CY 9, CY 13, CY 14 and CY 18.

The description of cycloheximide-sensitive and 

cycloheximide-resistant RP-lOO fractions was assigned to 

agree with the ^  vivo classification of the strains from 

which the RP-lOO fractions were derived (Chapter 3, Section

3 . 8  ). Using a discriminatory cycloheximide concentration

of 5 jM , the RP-lOO fractions of CY 3, CY 8, CY 9, CY 13 

CY 14 CY 18 were classified as cycloheximlde-sensitive 

and those of CY8.2, CY9-23 and CY9.23.98 were identified as

cycloheximide—resistant.
The response to cycloheximide of RP-lOO fractions from 

other strains did not progress beyond a preliminary analysis 

because of insufficient polyphenylalanine synthesis in the 

controls, (resixlts not presented).
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SECTION 5.^. LOCALISATION OF THE INTRACELUJIAR SITE OF 
CYCLOHEXIMIDE RESISTANCE.

The evidence from the analysis of the response to 

cycloheximide of cell-extracts from monokaryotic strains 

revealed that the RP-lOO fraction of the cycloheximide- 

resistant mutants CY 8.2, CY 9*23 suid CY 9»23*98 

conferred cycloheximide-resistance ^  vitro (Section 5*3)•

The RP-lOO fraction was considered to he the sole 

source of cytoplasmic ribosomes (Chapter Section 

Evidence from other species had identified the equivalent 

cytoplasmic ribosomal containing fractions as the site of 

cycloheximide resistance (Section 5*2) and in several 

Instances had specifically identified the large cytoplasmic 

ribosomal subunit as conferring cycloheximide-resistance 

(Section 5*2).

In order to identify the particular cytoplasmic 

ribosomal subunit which conferred cycloheximide-resistance, 

the cytoplasmic ribosomes in the RP-lOO fractions from 

CY 8.2, CY 9.23 and CY 9.23*98 were dissociated. (Chapter 

2, Section 2.8). The dissociation conditions were 

experimentally determined to produce the most satisfactory 

resolution of large and small cytoplasmic ribosomal subunits

(Appendix B iii)•

Despite numerous attempts at reconstitution of the 

large and «»mil cytoplasmic ribosomal subunit fractions, 

in all possible combinatlcnsof sources and at variable
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concentrations, no polyphenylalanine synthesis was achieved. 

Several reasons for Inactivity were possible. The most 

plaiislble explanation was that the cytoplasmic rlbosomal 

subunit fractions had been rendered Inactive during their 

prex>aratlon. The separate storage of frozen large and 

small cytoplasmic rlbosomal subunit fractions In 

Dissociation Buffer (Chapter 2, Section 2.8) were similar 

to the conditions described by Baler3elnand Infarrte (197^) 

which rendered Strongylocentrotus purpuratus cytoplasmic 

rlbosomal subunits Incapable of reassociation and polypeptide 

synthesis. Alternatively It was possible that the cytoplasmic 

rlbosomal subunits were active but that they had specific 

requirements for polyphenylalanine synthesis (eg. Increased 

magnesium Ion concentration, Berry 19?6) or that the large 

and igmall cytoplasmic ribosomes were mixed In unsuitable 

proportions.

In the absence of any polyi^ienylalanlne sytithesls the 

Identification of the particular cytoplasmic rlbosomal 

subunit which conferred cyclohexlmlde-resistance could not 

be made.
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SECTION 5 .5 . THE EFFECT OF RP-lOO CONCENTRATION ON THE
CYCLOHEXIMIDE DOSE-RESPONSE.

The comparison of the effect of cycloheximide on the 

RP-lOO fraction derived from different monokstryotic strains 

(Section 5 .3) was made at one specific RP-lOO concentration,

2.0 A260 unit • The concentration was used because in 

Chapter k . Section 4.5 a , it produced the maximum 

polyphenylalanine synthesis observed for CY 8.

The experiments described in this section investigated 

the relationship between RP-lOO concentration and response 

to cycloheximide, using RP-lOO derived from the

cycloheximide-resistant re conMnant stiraln GY 9*23.98. In 

Section 5.3 b it waa demonstrated that 58 jiM cycloheximide 

was necessary to produce a 50̂  inhibition of the activity 

of the CY 9.23.98 RP-lOO fraction and.it was concluded 

that the RP-lOO fraction was cycloheximide-res 1st ant.

The response to cycloheximide at each of the five 

CY 9.23.98 RP-lOO concentrations examined (Table 5.4) were 

significantly different from each other in terms of their 

50Ji inhibitory cycloheximide concentration ( p >0.00l) and 

linear regression coefficients (p'^O.Ol). The trend which 

the results showed was that with increasing RP-lOO 

concentration the 50Ji inhibitory cycloheximide concentration 

decreased. Apparantly, depending on the concentration of 

RP-lOO used, the degree of resistance of the fraction 

could be changedi CY 9*23*98 ribosomes were 1.? x more 

resistant at the highest RP-lOO concentration than at the 

lowest RP-lOO concentration examined.

197



íí I
i -

e r



Figure 5»3« The effect of RP-lOO concentration on the 

response to cyclohexlmlde

The composition of the optimised reaction mixture and 

method of measurement of polyphenylalanine synthesis from 

replicate ^  jx l. samples of duplicate experiments, were 

as described In Chapter 2 Section 2.9* The RP-lOO 

fraction waus derived from CY 9»23 «98 and the S-100 fraction 

was prepared from CY 18.

The responses of various concentrations of RP-lOO 

to cyclohexlmlde (Appendix C3 11 ) were analysed by linear 

regression aJialysls. The values obtained for the ^0%

Inhibitory concentration at each of the five RP-lOO 

concentrations were related to each of the RP-lOO concentrations 

to obtain the specific 50% Inhibitory cycloheximlde 

concentration (jiM.A260^'^^^ ^).The llnesir correlation 

coefficient of the effect of specific 50%  inhibitory
I

cycloheximide concentration on the RP-lOO concentrations 

was -0.99«
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The effect of RP-lOO concentration on the response to 

cyclohexlmide was more cleaorly demonstrated when the 50% 

inhibitory cycloheximide concentration for each RP-lOO 

concentration was expressed relative to the RP-lOO 

concentrations iised. The resulting'specific 50% 

inhibitory cycloheximide concentrations' (Table 5*^) 

related to each of the RP-lOO concentrations used,

(Figure 5 .3)* There was am exponential decrease in the 

'specific 50% inhibitory cycloheximide concentration' 

with increasing RP-lOO concentration (linear corelation 

coefficient = -0.99 and linear regression coefficient of

-115.3).

For CY 9.23.98, the choice of RP-lOO concentration

determined the expression of cycloheximide resistance

in vitro. Using 5 ^  cycloheximide as the 50% inhibitory

concentration to differentiate between cycloheximide

resistance and sensitivity in vitro (Section 5.3 )»

CY 9.23.98 would be characterised as cycloheximide»

resistant at all of the RP-lOO concentrations examined.

However, had the discriminatory 50% inhibitory cycloheximide

concentration chosen been 50 jM , CY 9.23.98 would have

been classified as cycloheximide-resistant at less than 2.0

A /•« unit. BP-100 but sensitive at higher RP-lOO 260
concentrations.

If the results observed for the CY 9.23.98 RP-lOO 

fraction were applicable to other strains, then it would 

be necessary to define more accurately cycloheximide- 

sensitive and -resistant responses in vitro. It would 

be necessary to state the RP-lOO concentration used.
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SECTION 5.6. THE EFFECT OF CYCLOHEXIMIDE ON
RP-lOO FRACTIONS DERIVED FROM DIKARYONS AND 
DIPLOIDS

The effect of cyclohexlmlde on the growth response of 
dlkaryons and diploids hats already been presented (Chapter 
3, Sections 3*5 auid 3* 10)» The effect of cyclohexlmide 
on the responses of RP-lOO from various monokaryotic 
strains in polyphenylalanine synthesis revealed that 
CY 8.2 and CY 9*23 possessed cycloheximide-resistant 
RP-lOO fractions.

a) Dikauryons

The effect of cycloheximide on i»lyphenylaJ.auilne 
synthesis "by dikaryons is presented in Figure 5.4. The 
responses of the homozygous cycloheximlde-sensitive strains 
CY 8 X  CY 13 euid CY 9 X CY 3 were not significantly 
different from each other (p>0.5).

Both dikaryons heterozygous for cyclohexlmide- 

resistance, CY 8.2 x CY 13 and CY 9-23 x CY 3, were more 

resistant to cycloheximide than were their respective 

homozygous cyclohexlmide-sensltlve dikaryons, CY 8 x CY 13 

and CY 9 X CY 3. (Figure 5.4, Table 5 .5 ). The level of 

resistance exhibited by CY 9.23 x CY 3 cytoplasmic 

ribosomes was significantly higher than that of CY 8.2 

X  CY 1 3  (p< 0.001).

The homozygous cycloheximide-resistant dikatryons 

CY 8.2 X CY 9 .2 3 .1 3 8 , and other dlkaayotlc strains, did 

not produce sufficient pdyphenylaOanine synthesis for 

their response to cycloheximide to be analysed.



Table 5»5« Response of RP-lOO fractions from dlkaryotlc 

strains to cyclohexlmlde.

RP-lOO fraction.

Calculated cycloheximide 
concentration (jiM) for 

50%  inhibition..

Linear regression 
coefficient.

CY 8 X CY 13 1.1 -29

CY 8.2 X CY 13 6.3 -23

CY 9 X CY 3 0.9 -31

CY 9.23 X CY 3 9.6 -2^

Original data and statistical analysis given in Appendix C4.
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co. Figure 5«^« Effect of cyclohexlmlde on polyphenyla^lanl ne 
synthesis “by RP-lOO fractions from dlkaryotlc 
strains.

The composition of the optimised reaction mixture and 

the method of measurement of polyphenylalauilne synthesis, 

from replicate 40 ^1 samples of duplicate experiments, were 

as described In Chapter 2. Section 2.9* The responses were 

represented as described In Figure 5*1 •

In all treatments, the S-100 fraction was derived from 

CY 18.

Source of RP-lOO, Symbol.
100% activity

(p mole phe Incorporated.assay . hr

CY 8 X  CY 13 □ 16.1

CY 8.2 X  CY 13 ■ 20.9

CY 9 X CY 3 A 14.9

CY 9.23 X  CY 3 A 16.7

Original data and linear regression analyses are presented 

In Appendix C4. The 50^ Inhibition value of each treatment Is 

Indicated (•). The extrapolated response of GY 9*23 Is 

Indicated (— -— )•
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b) Diploids,

With the exception of RP-lOO fractions from CY 9/ CYl^ 

and CY 9.23/CY 14, no other diploid strain 

produced any polyphenylalanine synthesis in the ^  vitro 

system. Even the quantity of polyi^enylalanine synthesised 

achieved with CY 9/CY 14 and CY 9.23/CY 14 was inadequate to permit 

a thorough' analysis of their responses to cycloheximide 

(Table 5*6).

It was not possible to determine accurately the 50% 

inhibitory cycloheximide concentration for either strain, 

merely to suggest that the value was between 0 and 0.18 jiM 

(Table 5*6). Consequently, it was not possible to 

differentiate between the two strains on the of

their ^  vitro response to cycloheximide based on the 

results presented in Table 5.6. However, with the 50% 

inhibitory cycloheximide concentration less than 5 jM , 

both strains were regarded as sensitive to cycloheximide.
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Table 5*6. Response of RP-lOO fractions from diploid strains 

to cyclohexlmlde•

ked

to permit

Cycloheximide
concentration.

(|lM)

Polyphenylalanine synthesis (% of uninhibited control)
Source of RP-lOO

CY9/CY14 CY9.23/CY14

0 100 ( 1.0 ) 100

0.18 40 3 1

3 . 6 24 1 1

The composition of the optimised reaction mixture and the 

measurement of polyphenylaianlne synthesis (p mole phe 

incorporated assayT \r' are described in Chapter 2, Section

2 .9 . The S-100 fractions were derived from CY 18.

208



DISCUSSION.

SECTION 5 .7. A SCREENING PROCEDURE TO IDENTIFY CYCLOHEXIMIDE- 

BESI ST ANT CYTOPLASMIC KEBOSOMES.

One of the objectives of the experiments described in this 

chapter, was to identify cycloheximide-resisteint mutant strains 

(Chapter 3i Section 3*8) which possessed cycloheximide-resistant 

cytoplasmic ribosomes. The cell-free polyphenylalanine synthesising 

system vrtiich haul been developed in Chapter 4 had been designed so that 

the response to cycloheximide of cytoplasmic ribosome.« could be analysed.

From the evidence of the responses of heterologous combinations 

of RP-lOO and S-100 fractions to cycloheximide, it was calculated that 

the RP-lOO fractions of CY8.2, CY9.23 and CY9.23.98 conferred 

cycloheximide resistance, (Section 5.31>). The experimental evidence 

of the sucrose density gradient and dependancy of the in vitro 

polyphenylalanine synthesising system indicated that the RP-lOO fraction was 

rich in cytoplasmic ribosomes (Section ¿Í-.5 a). However, because the 

RP-lOO fraction was prepared with the minimum of centrifugation steps, 

it was possible that a non-ribosomal cellulair constituent wais 

associated with the cytoplasmic ribosome or that a soluble factor from 

the S-100 fraction contaminated the ribosomal pellet auid that these,and 

not the cytoplasmic ribosomes^conferred cycloheximide resistance.

However equivalent fractions to the RP-lOO fraction in other sj>ecies, 

prepared by similar techniques to those used in Coprinus cinereus, have 

been found to confer resistance and in those species the intracellular 

site of cycloheximide action has been stated as the cytoplasmic 

ribosome (Table 5 .I, Section $ . 1 ) ,  Further evidence that cytoplasmic 

ribosomes conferred cyclohexlmlde resistance in CY8.2, CY9.23
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CY9*23*98 wais not obtained because the cytoplasmic ribosomal subunits 

were not active in vitro (Section 5*^)*

The responses to cycloheximide when CY8 and CY8.2 RP-lOO fractions 

were examined with either CY8, CY8.2 or CY18 S-100 fractions were not 

identical (Section 5*3 a and b). The differences resulting from the 

source of the S-100 fraction were not laxge, but were consistently 

observed. It was possible that the S-100 fraction conferred a degree 

of resisteuice to cycloheximide} albeit small relative to that of the 

RP-lOO fraction and not to the extent that Trakatellis et ^*(1965) 

and Felicetti al ,(1966) observed in majnmalian cell-extracts. The 

effect of the S-100 fractions did not prevent the identification of 

cycloheximide-resistant RP-lOO fractions. Neither the effect of the 

S-100 fractions in cycloheximide resistance, nor the possibility that 

cytoplasmic ribosomes in the S-100 fraction were responsible for 

cycloheximide resistance, were investigated.

From an original cell-free system, in which RP-lOO and S-100 

fractions derived from the test strains were analysed in heterologous 

combination with cell-extracts derived from another strain, the system 

was standardised with a cycloheximide-sensitive CY18 S-100 fraction, so 

that the cell-free system could be directly identifiy those RP-lOO 

fractions which conferred cycloheximide-resistance.

For practical reasons, cytoplasmic ribosomes from only three 

cycloheximide-resistant mutant strains, CY8.2, CY9*23 and CY9*23«98 

were examined. Instead of analysising the cytoplasmic ribosomes from 

all other cycloheximide-resistant mutant strains or all strains 

chosen to represent the different groups of ^  responses to

cycloheximide (Chapter 3, Section 3«8), detailed analyses of the
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responses to cycloheximide of CY8.2, CY9*23i CY9*23*98 and cyclo- 

heximide-sensitive test strains, were undertaken. All cycloheximide- 

resistant mutant strains analysed were shown to be allelic at the 

cy-2 locus (Chapter 3, Section 3*ll) and because the product of the 

cy-2^ alleles of CY8.2 and CY9.23 were cycloheximide-resistant 

cytoplaismlc ribosomes it was assumed that other strains would possess 

cycloheximide-resistant cytoplasmic ribosomes.

It was not necessary to undertake a thorough auialysis in order 

to determine if a strain possessed cycloheximide-resistant cytoplasmic 

ribosomes. The basis of a simplified screening technique was that the 

presence or absence of detectable quantities of polyphenylalanine at one 

specific cycloheximide concentration could distinguish between the 

responses of cycloheximide-resistant and cycloheximide-sensitive 

cytoplasmic ribosomes. Based on the evidence in Section 5*3t ^ 

discriminatory cycloheximide concentration of 200 could be used 

to distinguish between the phenotypes of cytoplasmic ribosomes from 

strains w M c h  were resistant or sensitive to the drug ̂

(Chapter 3, Section 5.8). It was therefore possible that cytoplasmic 

ribosomes from strains which were less resistant than CY8.2, CY9.23 

and CY9.23.90 in vivo also be lees resistant in vitro, in which

case it would be necessary to re—evaluate the proposed discriminatory 

cycloheximide concentration.
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SECTION 5.8. CHARACTEBISATION OF THE EFFECT OF CYCLOHEXIMIDE ON 

POLYPHENYLAIANINE SYNTHESIS.

The effect of cycloheximide on cytoplasmic ribosome-dependant 

polyphenylalanine synthesis could be differentiated into two distinct 

phases. In the first phase at relatively low cycloheximide concentrations 

no measurable inhibitory effect was observed. In the second phase 

increasing cycloheximide concentration resulted in a logarithmic 

inhibition of polyphenylalanine synthesis.

The biphaslc response to cycloheximide in vitro, was similau: to 

that observed for the effect of cycloheximide on the growth of the 

same strains (Chapter J , Section 3*13l3)jand like the ^  vivo response, 

the in vitro response could be characterised by four parameters.

On the basis of the response of their RP-lOO fractions to 

synthesise polyphenylalanine in the presence of cycloheximide, strains 

could be classified according to their minimum, 5 0%  and total inhibitory 

concentrations into two groups; strains possessing cycloheximide- 

resistant cytoplasmic ribosomes, CY8.2, CY9*23 and CY9«23»98 i and all 

cycloheximide-sensitive strains examined >diich were shown to have 

cyclohexlmlde-sensitlve cytoplasmic ribosomes, including CY8 (Section 5»3). 

The linear correlation coefficients of cycloheximide-resistant and 

cycloheximide-sensitive RP-lOO fractions, with the exception of CY9»23»98 

were not sufficiently dissimilar to be used as a basis for classification.

a) Interpretation of the cycloheximide dose-in vitro response.

The biphasic cycloheximide dose-growth responses were interpreted 

without knowing the basis for the effect of cycloheximide on growth

212



(Chapter 3i Section 3*13 d). A similzu: bijrfiaslc response of 

cyclohexlmide on polyphenylailanine synthesis may be interpreted in the 

knowledge that the cytoplasmic ribosomes axe the probable site of 

cycloheximide action. A discussion of the contribution of the cytoplasmic 

ribosomes in the growth resi>onse will be discussed in Chapter ?•

It was not known whether cycloheximide reacted with cytoplasmic 

ribosomes >rtiich were translating poly (u) or with non-functional 
organelles, whether the Interaction was reversible or irreversible, and 

whether as a result of the interaction the translation of poly (u) was 
totally inhibited or took place at a reduced rate.

Over the cycloheximide concentration range at which no inhibition 

of polyjáienylalanine synthesis was detected, it was possible that the 

proportion of cytoplasmic ribosowef; aifected by cycloheximide was 

insignificant relative to the to’.al number of unaffected functional 

organelles, and therefore, that the amount of inhibition was small, and 

possibly less tham the sensitivity of the assay. If the • 

amount of inhibition were small ajid the reaction mixture contained 

unaffected cytoplasmic ribosomes it was possible that the net loss in 

polyphenylalanine synthesis could be made good and thus there was no 

apparant inhibition.

In cycloheximide-resistant strains, the non-inhibitoxy range of 

cycloheximide concentrations was greater than those exhibited by cyclo- 

heximide-sensitive strains (Section 5*3 ^)* The difference may be 

explained by the mutational change in the cycloheximide-resistant strains 

which resulted in an alteration in the site or sites on the cytoplasmic 

ribosome which reacted with cycloheximide. If the modified reactive
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site had less affinity for the Inhibitory molecule, if the 

inhibitory complex were less stable or if the inhibitory effect 

resulting from the interaction were less pronounced, the cytoplasmic 

ribosomes from CY8.2, CY9.23 and CY9.23.98 would be less 

responsive to cycloheximide at relatively low cycloheximlde 

concentrations than those from the cycloheximlde-sensitive strains* 

Variation between the cycloheximide-resistant strains may be the 

result of difference in the different cy-2^ alleles which produced 

different types of reactive sites.

The Identity of the cytoplasmic ribosomal reactive site^or 

sites,for cycloheximide interaction and the nature of the structural 

modifications brought about by mutations at the cy-2 locus, will 

be discussed in Chapter ?.

The second phase of the in vitro response to cycloheximide 

was the measurable logarithmic inhibition of polyphenylalanine 

synthesis, which ultimately resulted in total inhibition. The 

cycloheximide concentration at which inhibition commenced may have 

been the point at which the proportion of inhibited cytoplasmic 

ribosomes was too great for unaffected organelles to make good the 

losses in polyi^ienylalanine synthesis.

The inhibitory response of CY9.23.98 cytoplasmic ribosomes 

was unlike those from CY8.2 and CY9.23; CY9.23.98 possessed a 

similar first phase but exhibited an inhibitory phase which was 

achieved in approximately half the cycloheximlde concentration 

(Section 5 .3b). The response for CY9.23.98 was based on fewer 

observations from those of CY 8.2 and CY9.23 and may be inaccurate. 

However, the result of the recombinant strain from CY9.23t which 

therefore possessed the same mutation as CY9.23 hut lacked the
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modcy allele, may be a consequence of the mutation at the modcy 

locus, but CY8.2 >riilch did not possess modcy^ responded like CY9.23 

in the inhibitory phase. The difference between CY9*23 and CY9*23.98 

may reflect a difference In the consequence of the formation of the 

Inhibitory complex rather than a difference in the formation of the 

complex.
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SECTION 5 .9. THE EFFECT OF CYCLOHEXIMIDE ON MONOKARYONS, DIKARYONS 

AND DIPLOIDS.
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In order to examine the moleculeir relationship that occurred 

between cycloheximide cytoplasmic ribosomes and to comi>are the results 

obtained in Coprlnus cinereus, with those of ether species, the 50% 

inhibitory cycloheximide concentration and cytoplasmic ribosome 

concentration of each strain examined,were expressed as a  molal 

ratio, (Table 5*7)• The values for the molal ratio were based on the 

assumption necessary to equate cytoplasmic ribosomal concentration

^̂ 260  ̂ with (pnole. ml ^). (Appendix B.v); the values were

therefore estimates.

a) Monokaryons.

Between ^ and 8 molecules of cycloheximide were necessary to 

produce 50% inhibition of polyphenylalanine synthesis in cycloheximide— 

sensitive strains, excluding CY8 (Table 5 .7); the variation was 

insignificant. In contrast, in order to inhibit cytoplasmic ribosomes 

from CY8 to the same extent, it was necessary to have approximately 

10 X the number of molecules of cycloheximide and in the cycloheximide- 

resistant strains GY9.23 and GY8.2 considerably greater numbers of 

cycloheximide molecules were required (Table 5 .7).

The interpretation of the relationship between cycloheximide and 

cytoplasmic ribosomes, expressed In terms of pnole cyclohoxlmldei pmole 

cytoplasmic ribosomes, was speculative In the absence of knowledge 

concerning the number cf cycloheximide binding sites.

Assuming that there was only one reactive site on the cytoplasmic 

ribosomes to which oyolohexlmlde binds, the variation in the ratios 

obtained for the different strains Indicated the relative probability
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)NS Table 5 «7. The effect of cyclohexlmlde on the in vitix) response of 

monokaoyons, dlkaryons and diploids.

)n the

]|xnole cyclohexlmlde: pinole cytoplasmic ribosome for 50% Inhibition of 

polyi^enylalanlne synthesis.

Monokaryons Dlkaryons Diploids

CY8 CY13 CY18 CY8 X CY13 CY8 X CY18
75:1 k t l 8:1 20*1 -

CY8.2 CY13 CY18 CY8.2 X  CY13 CY8 X CY18
10000 :1 ^ :1 8:1 110*1 -

CY9 CY3 CYl^ CY9 X CY3 CY9 X CY14
8:1 6:1 8:1 16:1 <3*1

CY9.23 CY3 CY14 CY9.23 X CY3 CY9.23 X CY14
1100*1 6;1 8:1 170*1 <  3<1

Values calculated from Tables 5*3> 5.5 and 5*6.

- - no data and values for diploids are estimates.

1 pM cycloheximlde = 100 pmole. assay"^; each assay contained

2 unit. RP-lOO = 5.6 pinole cytoplasmic ribosome ..assay
(Appendix B v d ).
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of formation of a complex and the effect of the complex on inhibiting 

polyphenylalauiine synthesis. It was improbable that a mutation at the 

cy-2 locus could result in a change from k to 1100 reactive sites in 

the case of CY9 and CY9,23 and a more dramatic change from 75 to 10,000 

site for CY8 and CY8,2. Rather,the formation and stability of the 

Inhibition complex between cycloheximide and cytoplasmic ribosome 

was approximately 135 x less probable in CY8.2 and CY9*23 than in their 

respective parental strains. The mutations at the locus were

considered to be the result of an alteration of the cytoplasmic 

ribosome which affected its affinity for cycloheximide. The consistency 

of the difference between CY8.2 and CY8, and between CY9.23 and CY9 

suggests that the modification to the reactive site was similar in 

both mutants, despite the difference in the wild-type state of the 

reactive site. The possible identify of the structural site and the 

nature of the modification which brought about cycloheximide resistance

will be discussed in Chapter ?•

In other species, the ratio of cycloheximide to cytoplasmic 

ribosomes Is greater than unity. In order to produce a 50% inhibition 

in the inital rate of polyphenylalanine synthesis 4.8 molecules of 

cyolohexlmide are necessary for each molecule of cytoplasmic ribosomes 

from a cyoloheximlde-sensitlve strain of Schlsosaccharomyces gombe 

(Berry et 1978). In Saccharomyces cerevislae the ratios for 

50)6 inhibition «ere 1.4:1 and 50 <1 for cyclohexlmlde-sensltlve and 

cyclohexlmide-reslstant cytoplasmic ribosomes respectively (Cooper et

al, 1967).
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b) Dlkaxyons,

The response of* the homozygous cycloheximide-sensitive dikaxyon 

CY9 X CY3 was more resistant than those of the monokaxyotic strains 

from which they were derived, (Table 5.?). T reeponee c?. }'dbi+€i by 

the otl cr hovrioy.yrcan cyclohexiPir’e-Eenritive lUkaiTvor exairdned CYC x CY13, 

was similar to that of CY9 x CY5 Hit perhaps because of the relatively 

hiph reriFtance of CYC, the respoiiFe of CY6 x CY15 was lepr resisteuil

than of its parental rnonokaryons (Table '̂ •7). ^he probable difference

between the dikaryons and monokaryons resulted from the proportion of 

functional cytoplasmic ribosomes in the RP-lOO fractions. The concentrations 

of KP-lOO fractions measured in absorbance units, did not distinguish 

between functional emd nonfunctional cytoplasmic ribosomes.

If cycloheximide reacted with only those cytoplasmic ribosomes 

taking part in polyphenylalanine synthesis, the proportion of functional 

cytoplasmic ribosomes in the RP-lOO fractions, determined the number of 

molecules of cycloheximide which were necessary to inhibit polypheny- 

ladanine synthesis by 50%^with fewer functional cytopleusmic ribosomes 

fewer molecul<is of cycloheximide would be required. Thus the monokaryons 

may have fewer functional cytoplasmic ribosomes thaji the dikaryons.

The responses of CY8.2 x CY13 and CY9«23 x CY3 exhibited a degree 

of resistance to cycloheximide >diich was between 5 and 10 x greater 

than their respective cycloheximide-sensitive dikaryons CY8 x CY13 and 

CY9 X CY3 (Table 5.?). The responses of the dikaryons, which were hetero

zygous for the cy-2^ allele, were of aui intermediate order of magnitude 

between their constituent monokaryotic strains (Table 5*7)* Their level 

of resistance was not compared to homozygous cycloheximide-resistant 

dikaryons, but their degree of resistance was less than that of the 

cycloheximide-resistant monokaryons, CY8.2 and CY9*23 and so they were
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considered to represent an expression of peortial dominauice.

The partial expression of cycloheximide resistance exhibited by 

the CY8.2 x CY13 and CY9»23 x CY3 coxild be interpreted by assuming that 

the cytoplasmic ribosomes prepared and assayed were either, identical 

and exhibited an intermediate level of resistance, or consisted of a 

mixed population of cycloheximide-resistant and cycloheximide-sensitive 

types.

The possibility of mixed population of two distinct types of 

cytoplasmic ribosome has been suggested to explain the intermediate 

degree of cycloheximide-resistance exhibited ^  vitro; by a 

Saccharomyces cerevisiae diploid, heterozygous for acr 8 (Cooper et al,1967) 

and by a heterokaryon of Podosx)ora anserina, heterozygous for cyRl 

(Crouzet et ¿1, 1978). The expression of various mixtures of 

cytoplasmic ribosomes derived from the cycloheximide-resistant and 

cycloheximide-sensitive parental strains in C^prinus cinereus were not 

examined in the cell-free polyphenylalanine synthesising reaction mixture

and thus it was not known if mixtures of the two types of cytoplasmic 

ribosomes resulted in an intermediate response to cycloheximide.

The hypothesis proposed Xay Lederberg et ^1 (196^) to explain the 

recessivity of streptomycin resistance in WR^herlchia s s ü l. was adapted 

to explain the results obtained for partial dominance of cycloheximide 

resistance in Saccharomyces cerevigiae and in Podospora anserina 

(Cooper et al, 1967; Crouzet et al, 1978). According to Lederberg et al 

(1904’) the translation of mRNA by resistant ribosomes would be blocked 

by the presence of sensitive ribosomes engaged on the mRNA..

The greater the proportion of cyclohexlmide-sensltlve cytoplasmic 

ribosomes in the total population the more effective is the blockage
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and the more the level of expression tends to the response of the 

cyclohexlmide-sensltlve monokaryons. This may explain the results of 

CY8.2 X CY13 and CY9.23 x CY3 (Table 5»7)* Furthermore, the effect of 

the sensitive cytoplasmic ribosomes would be greater when the two types 

of ribosomes compete for available poly (u) template (demonstrated by 
Crouzet et ai, 1978). In the Coprinus cinereus cell-free reaction 

mixture (Table ^.5), poly (u)was optimal for polyphenylalanine synthesis 

but the length of the molecules wets not known . If the chain length of 

the poly (U) were long, there would be fewer initiation sites accessible 

and the competition for initiation between the cycloheximide-sensitive 

and-resistant strains woxild be greater than if the chain length were 

small and more sites were available. Crouzet et al (1978) envisaged 

that sensitive ribosomes would be dominant idien poly (U) was limiting 

but semi-c'ominat.+ when poly (u) was saturating the in vitga. system.

The semi-dominant response of Coprinus cinereus heterozygous resistant 

dikaryons cuggeeted that poly(U) was saturated. The effects of the 

responses to cycloheximide at different concentrations of poly(U) were 

not determined.

The nature of the interaction between the cycloheximide resistant 

cy-2^ allele and the cycloheximide sensitive cy-2°allele in CY8.2 x CY13 

and CY9.23 x CY3, and additionally in CY9*23 x CY3f the interaction 

between the dominance modifier modcy'*' and the wild-type allele which 

would be necessary to transcribe, translate and synthesise an intermediate 

form of cytoplasmic ribosome, or a mixed population of the original, 

parental forms, will be discussed in Chapter 7«

c) Diploids.
Only two diploid strains were analysed, because of practical 

difficulties and because of their poor synthetic capacity in their

response to cycloheximide was defined imprecisely (Section 5.5b). It was 

possible that the poor growth of the diploid strains was a result of the
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poor capacity of their cytoplasmic ribosomes to synthesise polypeptide.

With the 50^ inhibition of polyphenylalanine synthesis 

occurrinf, at a maximum of 3 molecules of cycloheximide for each ribosome 

in the reaction mixture, the diploids were more sensitive to cyclo

heximide than either the monokaryotic strains from which they were 

derived, or their comparable dikaryotlc strains ,CY9 x CY3 and CY9»23 

X CY3 (Table 5-7) •

The response of CY9.23/CY1^ was indistinguishable from that of 

the homozygous cycloheximide-sensitive strain CY9/CY14. The 

cycloheximide-resistajice mutation at the cy-2 locus did not confer 

cycloheximide resistance to the cytoplasmic ribosomes in the diploid.

The recessive response of the diploid was in contrast to the partial 

dominance of the dikaryon. The modcy'*' allele had no observable effect 

of the cytoplasmic ribosomes of the diploid.

It was possible that only functional cycloheximide-sensitive 

cytoplasmic ribosomes were synthesised, in irtiich case they should 

respond like the cytoplasmic ribosomes of the cycloheximide-sensitive 

parent, CYl^.The result that diploidie ribosomes were more 

sensitive to cycloheximide than those of CYl^ (Table 5*7) ^  ^

consequence of the smaller proportion of functional cy^-oplasmic 

ribosomes in the preparation from the diploid than in the monokaryonsj 

if fewer functional cytoplasmic ribosomes were present in the reaction 

mixture, fewer molecules of cycloheximide would be needed for 

inhibition in the diploid than in the monokaryon. Evidence that fewer 

function cytoplasmic ribosomes were present was demonstrated by the low 

yield of polypeptide synthesis by the diploids compared with the 

monokaryons (Figure 5»^» Section 5«6bt Figure 5 *31̂ » Sect ion 5* ).
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SECTION 5 »10» SUMMARY.

It was possible to classify strains according to the effect 

of cycloheximide on the response of their cytoplasmic ribosomes to 

synthesise polyphenylalanine. All three cycloheximide-resistant 

mutajit strains examined CY8.2, CY9.23 and CY9,23.98. possessed 

cycloheximide-resistant cytoplasmic ribosomes. The identity of the 

particulax cytoplasmic ribosomal subunit which conferred cyclo

heximide resistance ^  vitro, could not be determined.

The cy-2 mutation which conferred cycloheximide resistance in 

CY8.2 and CY9*23 resulted in i>axtial resistance in dikaryons which 

were heterozygous for cycloheximide resistance . Cy9-23 x CY3 possessed

modcy^, CY8.2 x CY13 did not. Cytoplasmic ribosomes from 

diploid strains examined were sensitive to cycloheximide.
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INTRODUCTION.

SECTION 6.1. CYTOPLASMIC RIBOSOMAL PROTEINS ASSOCIATED WITH 

CYCLOHEXIMIDE RESISTANCE.

It was concluded In Chapter 5 that the nutation at the

cy~2 locus ,which conferred cycloheximide resistance in CY8.2

and CY9.23,resulted in the possession of cycloheximide-resistant

cytoplasmic ribosomes. In order to produce cycloheximide-resistant

cytoplasmic ribosomes,the translation product of the cy-2 allele was

either a structural component of the or^jarelle, or it was an enzyme 
which modified one or more of the ribosomal components.

Additionally, the product of the modifier gene,mod cy~*̂, which affected

the dominance of cy-2^ in CY9«23 (North, 1982), may or may not

resxilt in a mutation in the same cytoplasmic component as cy-2*̂

The experiments described in this Chapter were based on the

hypothesis that the cy-2?^and modcy^ mutatloB affected cytoplasmic

ribosomal proteins.

In other species (Table 6.1),the identity of the cytoplasmic 

ribosomal component which conferred cycloheximide resistance has 

centered on the role of the cytoplasmic ribosomal protein. By 

comparison of the cytoplasmic ribosomal proteins from cyclohexlmide- 

sensitive strain with those of the cycloheximide-resistant strains, 

analysed by two-dimensional polyacrylamide gel electrophoresis, it 

has been possible to identify differences in electrophoretic 

mobility in specific proteins. The proteins identified (Table 6.1) 

are considered to be cytoplasmic ribosomal components which confer

cyclohexlmide-reslstance.
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It Is not knovm if the three proteins associated in 

cycloheximide-resistance t

Schizosaccharomyces pomhe (Coddington and Flxiri, 1977) 

Podospora ajiserina (B^gueret et al, 1977)

Saccharomyces cerevlsiae (Stbcklein and Piepersherg, 1980) 

are the same proteins. There has been no direct comparison between 

the species, and each investigation has iised different conditions 

for electrophoresis and different nomenclatiires. However, on the 

basis of the moleciilar weights (Table 6.1), the proteins are 

apparently different.

In all three species, the proteins were located in the large 

cytoplasmic ribosomal subunit which agrees with the evidence from 

the in vitro data (Coddington and Pluri,1977» Begueret et al. 1977l 

Stocklein and Plepersberg, 1980) that cycloheximide resistance was 

conferred by the large cytoplasmic ribosomal subunit.

s

An alternative approach to studying cyclohexlmide-reslstant 

mutant strains was used by Crouzet and B^geuret (1980). Their 

analysis of. re vertant strains to cycloheximide-sensitivity resulted in 

the identification of a different form of the same protein L21 which 

Begueret et al (1977) had found conferred cycloheximide resistance

(Table 6.1).

e

5

Many cycloheximide-resistant strains in several species have 

been demonstra,ted to possess cycloheximide-resistant cytoplasmic 

ribosomes (Table 5.1, Chapter 5). However, only three cycloheximide 

resistant cytoplasmic ribosomal proteins are known (Table 6.1). 

Thus, either cytoplasmic ribosomal proteins rarely confer cyclo-

I ♦
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hexlmlde resistance or the changes In the cyclohexlmlde-resistant 

cytoplasmic rihosomal proteins are so small so as to he undetectable. 

In the majority of analyses, a variety of 2D -PAGE conditions have 

been employed. In this investigation an analysis of cytoplasmic 

ribosomal proteins by carboxymethyl-cellulose chromatography (CMC- 

chromatography) was used because it was possible that this method 

would resolve differences which 2D-PACE could not (Harvey and 

Martinelli, 1983)»
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SECTION 6.2. OBJECTTIVES.

Coprlnus clnereus cytoplasmic rll»somal pzx>teins were 

analysed for four reasons:

To comi>are two-dimensional polyacrylamide gel electrophoresis and 

carhoxymethyl-cell\ilose chromatography as methods of analysis.

To characterise Coprinus cinereus cytoplasmic ribosomal proteins.

To determine which, if any, of the cytoplasmic rihosomal proteins 

could be implicated in the expression of cycloheximlde resistance,

To compare the cytoplasmic ribosomal proteins of monokaryons, 

dikaryons and diploids.
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RESULTS,

SECTION 6.3. CHARACTERISATION OF COPRINUS CINEREUS SMALL CYTOPLASMIC 

RIBOSOMAL SUBUNIT PROTEINS.

The chaoracterisatlon of small cytoplaismic ribosomal subunit proteins 

by two-dimensionaJ. polyacrylamide gel electrophoresis was based 

upon the analysis of CY8 (Plate A) and CY8.2 (Plate B). Because of 

technical difficulties and low yields of proteins, Plates A and B were 

the best examples of small cytoplasmic ribosomal subunit protein 

resolution obtained.

The majority of the proteins were well stained by Coomassie 

Brilliant Blue and were reauiily differentiated from the general back

ground staining and aure distinguishable on the photographic 

reproductions of the electropherograms (Plates A and B). It was possible 

to identify 24 well-stained proteins in the electropherograms of CY8.2 

(Plate B), whereas the inferior resolution of CY8 proteins(PlateA) 

did not permit as many proteins to be Identified. The proposed 

nomenclature of the Coprinus cinereus small cytoplasmic ribosomal 

subunit proteins was based on that of Kaltschmidt and Wittmann(l970) 

and is superimposed above the position of the proteins in Plate B •

To distinguish the proteins from the small cytoplasmic ribosomal 

subunit from those of the larger organelle, the former group of proteins 

are prefixed by S >dien used in the text (eg. SI to S24)

In addition the the 24 readily observed proteins, there were 

several which were weakly stained or poorly resolved from neighbouring 

proteins. Some were visible on the original polyacrylamide slab gels 

ljut were difficult to record on photographic negatives and reproduce,

(Plates A and B). The existence of such proteins was less confidently 
identified,in contrast to the well stained proteins S1-S24 inclusive and 
in recognition of their speculative existence, these proteins are 
referred to by a subscript , together with the number
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of their nearest neighbour. Six proteins were identified; S2a, S5a, 

S?a, S13a, S13b and S21a. Their positions are shown in Plate B.

The a n a ly s is  o f sm a ll cyto p lasm ic ribosom al subunit p ro tein s  

from r e p lic a te  p rep aratio n s o f CY8 and CY8.2,  of other monokaryotic 

s t r a in s , and o f d ik a ry o tic  and d ip lo id ic  s t r a in s , d id  not have 

s u f f ic ie n t  re so lu tio n  to  be o f valu e in  the c h a ra c te risa tio n , and 

have not been presented.

Plates A and B. Two dimensional electix)phoretic a n a l y s i s ^

Coprinus cin e reu s sm a ll cyto plasm ic ribosom al 

subunit p ro te in s.

Proteins from the smaJ.1 cytoplasmic ribosomal subunit of the 

cycloheximide-sensitive strain, CY8 (Plate a ) and the cycloheximide- 

resistant strain CY8.2 (Plate B) were prepared and analysed by 

2D-PAGE according to the methods described in Chapter 2,  Sections 2 , 7 f

2.8, 2.10 and 2.11.

M igratio n o f the p ro te in s was towards the cathode, from le f t  to  

r ig h t in  the f i r s t  dim ension and from top to  bottom in  the second 

dim ension. The p ro te in s were a p p lie d  a t the o r ig in , represented b y ^  

The p ro te in s were revealed  by s ta in in g  w ith Coomassie B r il l ia n t  B lue  

(Chapter 2, S e ctio n  2 . 1 1 ) .  Photographic m a g n ificatio n  was 1 . 5 x .  Super

imposed above the electropherogram  o f C Y 8.2 .  (P la te  B ) is  the proposed 

nomenclature fo r the Coprinus c in e re u ^  sm all cytoplasm ic ribosom al

subunit p ro te in s.
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SECTION 6.4. COMPARISON BETWEEN CY8 AND CY8.2 SMALL CYTOPLASMIC 

RIBOSOMAL SUBUNIT PROTEINS.

There was no observable difference between the small cytoplasmic 

ribosomal subixnit proteins derived from the cycloheximide-sensitive 

strain CY8 (Plate A) and those of the cycloheximide-resistant strain 

CY8.2 (Plate B). It was concluded that there was no protein from the 

small cytoplasmic ribosomal subunit which was associated with cyclo

heximide -resistance. However, Plates A and B were the only examples 

of electropherograms wnich exhibited sufficient resolution for such a 

comparison to be made.

Homologous proteins from CY8 and CY8^2 were identified on the 

basis of their relative staining and their migration in the second 

dimension. However, the migration in the first dimension produced an 

inferior resolution of CY8 proteins to that of CY8.2 proteins and led to 

the Impression of dissimilarity between the electropherograms, (Plates A 

and B). All CY8 proteins consistently migrated 70% of the distance moved 

\jy equivalent CY8.2 proteins in the first dimension. Replicate analyses 

of CY8 and CY8.2 ribosomal subunit proteins (Not presented) although

less resolved than Plates A and B migrated identical distances in the 

first dimension.

If the reduced migration of the CY8 proteins in the first dimension 

in Plate A was taken into account when comparing Plates A and B, then there 

were no discernable differences between the two strains. Homologous 

proteins appeared to be present in both Plates A and B but the 

inferior resolution of CY8 proteins in the first dimension made the
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detection of closely migrating proteins in CY8 more difficult. 

Homologous CY6 and CY8.2 proteins migrated identical distances in 

the second dimension and, if a correction factor of x 1.4 were 

applied to the CY8 proteins, they were also identical in the first 

dimension. There were no apparent differences in the relative 

intensity of staining of the proteins from the two species.

A possible reason for the inhibition of migration of CY8 proteins 

in the first dimension was that an air-bubble, unnoticed during the 

electrophoresis, was trapped in the rod gel.
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SECTION 6.5« CHARACTERISATION OF COPRINUS CINEFiEUS LARGE 

CYTOPLASMIC RIBOSOMAL SUBUNIT PROTEINS.

No one electropherogram,from monokajryotic (Plates C to F) 

or dikaryotic strains (Plates G to J), exhibited a l l the proteins 

which were observed. In order to illustrate the proteins from the 

large cytoplasmic ribosomail subunit a composite electro pherogram 

has been drawn (Figure 6.1).

The large numbers of proteins and greater variability between 

electropherograms (Plates C to J inclusive) made the chaxactersition 

of the large cytoplasmic ribosomal subunit more difficult than 

that of the small subunit (Section 6.4).

1  ■"’'. ‘ I  ;=i Hft'f,

‘' i i

:V
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The 36 proteins which were observed in the majority of 

electropherograms, identified as LI to L36,were typically well 

stained and well resolved. In addition there were eighteen other 

proteins which were well resolved from neighbouring proteins but 

whose presence was less confidently assumed, because they were not

observed in all analyses and because they were weakly stained.

These proteins have been identified by a letter, from Li to Lz .

There was also a group of eight proteins whose presence was inferred 

from the size, shape and intensity of staining of proteins which 

partially obscured them and these proteins were identified with 

reference to the protein with which they were associated, namely 

Lla, L5a, L8a, Lila, L28a. L30a. L30b and L32a. In the text all 

proteins from the large ribosomal subunit were prefixed by L.

Of the potential 64 proteins identified, the maximum number

observed in aiy one electxopherogram was 50 (Platel) and the minimum 
was 41 (Plate j).



1 1̂  W V
FIG .6.1

bsition
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®  I
m
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The Illustration is based on the electropherograms of monokaryotic 
and dikaryotic strains present in Plate C - J inclusive• Intensly 
and consistenely observed proteins are bounded by solid lines and 
are numbered from 1 to 36* The position of less reproducable 
proteins are bounded by broken lines and are identified by a 
subscript, eg. 3^a, or have been identified by a letter from 
i to z inclusive.
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SECTION 6.6. COMPARISON OF LARGE CYTOPLASMIC RIBOSOMAL SUBUNIT 

PROTEINS FROM MONQKARYOTIC STRAINS.

The compaxlson of large cytoplaismlc rlbosomal subunit proteins 

from monokaryons wais restricted to an analysis of four 

adequately resolved electropherograns from each of four strains,

CY8, CY8.2, CY9 and CY9.23 (Plates C to F Inclusive).

Two phenomena were observed In these electropherograms 

(Plates C to F), which were not observed In the replicates of these 

strains (not presented). It was believed that the double-imaging 

of proteins in the vicintly of L3 in Plates C and E, and the 

distinctive bands in the region above LI in Plates D and F, were 

artifacts of the experimental technique idiich occured only in these 

electropherograms. The cause of the double-Imaging was not known, 

but a similar banding pattern to that of Plates D and F, was observed 

by Kaltschmidt and Wlttmam(1970), they believed, that overloading , 

of the protein sample resulted in the production of insoluble 

aggregates which over the period of the electrophoresis migrated in 

the tracks of intially soluble proteins.
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Plates C and D. Electropherogiams of proteins from the large

cytoplausmlc rlbosomal subunit of CY8 and CY8.2.

The preparation and analysis by 2D-PAGE of proteins from the 

large cytoplasmic rlbosomal subunit of CY8 (Plate C) and CY8.2
I

(Plate D) was sLCCording to the methods described in Chapter 2 , 

Sections 2.7, 2.8, 2.10 and 2.11. The proteins were stained with 

ammoniacal silver nitrate. Chapter 2, Section 2.11.

Migration of the proteins was towards the cathode, from the 

origin on the left to the right in the first dimension and from top 

to bottom in the second dimension. Photographic magnification was 

1.8 X. Superimposed above Plate D is the proposed nomenclature of 

large cytoplasmic ribosomal subunit proteins (Section 6.5)t and 

included on Plate C are the additional proteins not observed in 

Plate D.

Plates E and F. Electropherograms of proteins from the large

cytoplasmic ribosomaJ. subunit of CY9 and CY9.23.

The preparation analysis by 2D-FACS! of proteins from the 

large cytoplasmic ribosomal subunit of CY9 (Plate E) and CY9*23 

(Plate F) and presentation of the electropherograms is as stated 

for Plates C and D. The photographic magnification 1.8x. The 

presence of proteins,found to be unique to either electropherogram 

are identified.

239











a) Comparison between CY8 and CY8.2» Tal

There were a considerable number of differences between the 

electropherograms of the cyclohexlmide-sensitive strain CY8 (Plate C) 

and the cycloheximide-resistant mutant strain CY8.2 (Plate D) which 

was known to possess cycloheximide-resistant cytoplasmic ribosomes 

(Chapter 5f Section 5*3 a ).

Discounting the differences resulting from the possibility 

of the artifacts (Section 6.6), the majority of the differences 

between the strains related to the presence of weakly stained 

proteins identified in only one strain. (Siunmarised in Table 6.2). 

However there were three proteins, L2, L12 and Lo which were 

relatively well-stained and present only in the electropherogram 

of CY8.2 proteins (Plate D). Differences in the relative intensity 

of staining between homologous proteins of C Y 8 a n d  CY8.2 were not 

easily observed but L13 appeared to be more intensly stained in 

CY8 than it was in CY8.2. Differences in the relative positions of 

homologous proteins were not found.

Comparison between CY9 and CY9.23.

I 1'

' n

The electropherograms presented for CY9 (Plate E) and 

CY9.23 (Plate P) show double-imaging and banding at the top of the 

gels respectively. If these jrfienomena are considered to be artifacts 

and are discounted, then the strains show only four differences, all 

of which concern weakly stained proteins. L14, L n a n d  Li axe 

only observed in CY9.23, and Lm is exclusive to CY9 (Table 6.2).

There were no obvious differences in the relative position or 
intensity of any of the other proteins.



Table 6.2» Sximmary of the dlffeiences between the 

monokaiyotlc strains.
sen the 

(Plate C) 

D) which 

Lbosomcs

Protein CY 8 
(Plate C)

CY 8.2 
(Plate D)

CY 9.0 
(Plate E)

CY 9.23 
(Plate P)

y +
X - + - -

2 - + + +
t - + - -

s + - - -

r - + - -
q - f - -
8a - + - -

12 - + +
14 + + - +
0 - + + +
n - + - +
m + + + -

22 + - - -

28a - + + +
30a + - + +
30b - + +
i + +

+ denotes presence and - denotes absence of stained protein.
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c) Compaxison "between CY8 auid CY9 with CY8.2 and CY9»23.

The only protein difference between the cycloheximide- 

sensitive and cycloheximide-resistant strains was the presence 

of the weakly stained protein, Ln , in the mutant strain but not 

in the parental strain. Ln wan therefore considered to be a 

candidate for a rlbosomad protein associated with cycloheximide 

resistance.

There were however a considerable number of dissimilarities 

between each pair of strains, ie. between CY8 and CY9;and CY8.2 

and CY9.23 (Table 6.2).
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SECTION 6.7. COMPARISON OF LARGE CYTOPLASMIC RIBOSOMAL SUBUNIT 

PROTEINS raOM DIKARYONS.

The resolution achieved for the analysis of proteins from the 

large cytoplasmic ribosomal subunit of the dikaryons CY8.2 x CY13 

CY9 X CY3 aJid CY9.23 x CY3 (Plates G to J) was superior to any 

other analysis undertaken. However, technical problems prevented 

equally good resolution of replicate auialyses.

a) Comparison between CY8 x CY13 CY8.2 x CYI3.

The electropherograms of the homozygous cycloheximide- 

sensitive strain CY8 x CY13 (Plate G) and the heterozygous 

cycloheximide-resistant strain CY8.2 x CYI3 (Plate H) differed in 

several respects (summarised in Table 6.3)*

CY8.2 X CYI3 possessed four proteins which were not found in 

CY8 X CY13; Lq, L22, L30a and L30b. All were weakly stained proteins 

and with the exception of Lq,were diffic\ilt to observe because of 

neighbouring proteins. CY8 x CY13 possessed a well-stained, clearly 

resolved protein Lv which was not found in CY8.2 x CY13*

A less obvious difference between the dikaryotic strains was 

the relative intensity of staining of L2.A11 of the proteins in 

CY8.2 X  CYI3 were more heavily stained than in CY8 x CYI3» except 

L2. In CY8 X  CY13, L2 was a more diffuse spot and more heavily

stained than in CY8.2 x CY13*
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Plates G atnd H. Electroi^ierograms of proteins from the large

cytoplasmic rlbosomal subunit of the dikaryons 

CY8 X  CY13 and CY8.2 x CYI3 .

The electroi^zogxams for CY8 x CYI3 (Plate G) and CY8.2 x CYI3 

(Plate H) were produced according to the method for 2D-PAGE analysis 

(Chapter 2, Section 2.11) from cytoplasmic rlbosonal proteins 

prepeured according to Chapter 2, Sections 2.7» 2*8 and 2.10. The 

migration of proteins In hoth dimensions was as described for Plate C, 

Section 6.6. The photograiAilc magnification was 2.3x. The 

proposed nomenclature for.the large rlhosomal subunit proteins 

(Section 6.5) Is superimposed above Plate H. Proteins not found 

on Plate H are Identified on Plate G.

Plates. I and J. glectro^erograms of proteins flom the large

cytoplasmic rlbosomal subunit of the dikaryons 

CY9 X CY3 and CY9.23 x CY3.

The electrojAierograms of CY9 x CY3 (Plate l) and CY9«23 x 

CY3 (Plate J) were prepared ajid produced as described for Plates G 

and H. Photographic magnification was 1.6x. Those proteins not 

previously Identified on Plate H, and differences between Plates 

I and J, are Included on Plate I.
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b) Comparison between CY9 x CY3 and CY9.23 x CY3.

■

I

.'¡is

 ̂ < <■

•«i *

The electropherogram of CY9.23 x CY3 (Plate j) revealed only 

41 proteins, whereas the largest number observed in one analysis,

50, were found in CY9 x CY3 (Plate J). The majority of the 

difference between the two strains, was the presence of nine additional, 

mostly weakly stained proteins in CY9 x CY3. These are Identified 

in Table 6 .3 * Included amongst these proteins was the intensly 

stained L2. In addition L9, LIO and L28 were relatively more 

intensly stained in CY9 x CY3. There was no discernable difference

in the relative positions of homologous proteins between the two 
strains.

A comparison between the two homozygous cycloheximide- 

sensitive dlkaiyons, CY8 x CYI3 and CY9 x CY3 and the two hetero

zygous cycloheximide-resistant dikaryons CY8.2 x CYI3 and CY9.23 x 

CY3 revealed that there uas no common protein shared ly both 

strains of a pair, which differed between the pairs, except for 

the reUtive Intensity of staining of L2 . L2 was more intensly 

stained in homozygous cyclohexlmlde-sensltive dikaryons than In 

the heterozygous cyolohexlmlde-ieslstant dlkaiyons. There 

^ r e  more differences within each pair, than between pairs.

No^. No results are presented for the large or small cytoplasmic 

rlbosomal subunit proteins derived from diploid strains, or for the 

analysis of total cytoplasmic ribosomal protein from monokaryons, 

dlkaryons and diploids, as a result of technical difficulties, the 

resolution achieved was unsuitable for meaningful observations.

Table 6|

Proteii

u

5a

11a
13

22

28a
30a
30b

+ sigi



[x CY13

jlasmlc 

for the

W» • ̂  • k̂lAllUllfkl J  WX VIJC \x^x A wvrv^^AA WA«W j w v a w

Protein CY 8 X CY 13 
(Plate G)

Strain
CY 8.2 X CY 13 CY 9 X CY 3 

(PUte H) (Plate l)
CY 9.23 X CY 3 

(Plate j)

z mm +

2 + + + -

w - - + -

V + - - -
u - - + +

q - + + mm

4 + + + —

5a + + - -

P + + - —

11a + + - —

13 - - + +
0 - - + -

22 - + + +

1 - - + +

k + + + -

J + + + -

28a - - + -

30a - + + +

30b + + +

+ signifies presence and - denotes absence of stained protein.

rons,
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SECTION 6.8. ANALYSIS OF CYTOPLASMIC KEBOSOMAL PROTEINS FROM THE

LARGE SUBUNIT BY CAHBOXYMETHLY-CELLULOSE CHROMATOGRAPHY»

In theory, the cytoplasmic ribosomal proteins of cycloheximide-

sensitive strains grown in medium containing C , could he co-

extracted and co-chromatographed with those of their comparable
3

cycloheximide-resistant mutauits, grown in medium containing H .

The cytoplasmic ribosomal proteins in the. elution profile could 

then be directly compared in an attempt to identify cytoplasmic 

ribosomal protein or proteins conferring cycloheximide resistance.

In practice, both of the cycloheximide-sensitive strains CY8 

and CY9 grown with D-(c^^) glucose became contaminated and were 

discarded. With no more available, the analysis continued 

in a curtailed form as a comparison of CY8.2 and CY9.23 cytoplasmic 

ribosomal proteins. However, because both strains were grown in 

D -(h^) glucose the cytoplasmic ribosomal proteins were prepared 

and analysed separately . The amount of cytoplasmic ribosomal 

protein prepared, permitted only one chromatogram for each strain 

and even then was lOOx less than the load recommended by Coppin-

Raynal (1980).

The analysis of large cytoplasmic ribosomal subunit proteins 

from CY8.2 and CY9.23 produced protein elution profiles in which 

radioactivity was usually confined to single fractions 

(Figures 6.2 and 6.3). contrary to all other published results 

(eg. Coppln-Haynal. 1980, Teurugi et al,(1976),for rat liver). 
Consequently any interpretation of the results «as speculative in

the absence of further data.
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Because the proteins of CY8.2 and CY9»23 were labelled with 

they could not be directly compared by co-chromatography. Additionally, 

because the linear LiCl concentration gradient was not applied at the 

same time to both treatments,the results could not be directly compared.

The elution profile of CY8.2 proteins (Figure 6.2) could be divided 

into two regions. The first half of the elution profile (0-0.15 M LiCl, 

fractions 0 to 180) contained nearly ?0% of the which was recovered 

whereas, for CY9.23 (Figure 6.3)the distribution of radioactivity was 

more uniform. In both treatments the total recovery was approximately 

30%. In both treatemnts, 50 fractions possessed measurable amounts of 

radioactivity, with the maocimum activity in any one fraction being 5122 

dpm for CY8.2 and 2^5 CY9*23*

Figures 6.2 and 6.3» Chromatograms of large cytoplasmic ribosomal

subunit proteins from CY8.2 and CY9»23.

Ribosomal proteins from the lairge cytoplasmic ribosomal subunit 

of CY8.2 and CY9.23 were labelled with prepared and subjected to 

separate analyses by carboxymethyl-cellulose chromatography, according 

to the method described in Chapter 2, Section 2.12.

6 X 10^ dpm of CY8.2 protein was immediately subjected to a linear 

LiCl concentration gradient (0-0.3M) In CMC buffer (Chapter 2. Section 2.6). 

Figure 6.2. 3 x 10̂ * dpm of CY9.23 protein were equilibrated for 8

hours in CMC buffer (CM LICL) before a linear U C l  concentration 

gradient (0-0.3M) was applied at fraction 40 (^),Figure 6.3-

The distribution of radioactivity in the elution profiles of 

CY8.2 (Figures 6.2) and CY9.23 (Figure 6.3) «ere determined using a UCB 

scintllUtlon counter (solid vertical lines). Badloactivity (H dpm) 

off the scale of the figures is indicated. Figures 6.2 and 6.3 also

include the LiCl concentration (□“ •O).
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DISCUSSION.

SECTION 6.9. INTERPRETATION OF ELECTROPHERXRAMS AND CHROMATOGRAMS.

The characterisation of Coprinus cinereus cytoplasmic ribosomal 

proteins and the identification of cytoplasmic ribosomal proteins 

conferring cycloheximide resisteince was baused on a limited number of 

adequately resolved electropherograms and chromatograms. Consequently, 

considerably more importance was accorded to those results which were 

adequately resolved than would have been given had replicate analyses 

and analyses of other strains been of sufficient resolution. Furthermore, 

because the ajialysis was based on a limited number of results, it was 

not known whether the variation between electropherograms (Plates A to J) 

and chromatograms (Figures 6.1 and 6.2) were the consequence of 

experimental error or inherent differences between the strains•

The aJialysis of cytoplasmic ribosomal proteins was based on two 

eissumptions. Firstly, that each stained spot detected on the 

electropherograms, and each peak of radioactivity on the chromatograms, 

consisted of a homogeneous cytoplasmic ribosomal protein; moreover, that 

the proteins were derived from the cytoplasmic ribosomal subunit they 

were purported to be from. Secondly, that each of the proteins 

produced only one stained spot or peak of radioactivity.

a) Contaminants.

There was no conclusive evidence that the proteins analysed by 

either two-dimensional polyacrylamide gel electrophoresis or carboxy 

methyl-cellulose chromatography were from cytoplasmic ribosomes. Neither 

Coomassie Brilliant Blue, nor the ammoniacal silver nitrate stain were 

specific for cytoplasmic ribosomal proteins (Oakley et al, 1980).
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14Slmllaxly, the C - radiolabel wsis not specifically incorporated into 

cytoplasmic ribosomal proteins.

It was possible that the samples analysed contained proteins 

vdiich were not derived from, auid had different physical properties to, 

cytoplasmic ribosomes and were therefore revealed as distinct 

entities. The RP-lOO may have contained mitochondrial ribosomes which, 

if Coprinus cinereus were like other species, eg. Ne\irospora crassa, 

Kuntzel (I969), have different proteins to those of the cytoplasmic 

ribosomes. There were insufficient mitochondrial ribosomes to be 

detected in the analysis on sucrose density gradients (Chapter 4, 

Section 4 .5a) and to allow polyphenylalanine synthesis in the presence 

of cycloheximide (mitochondrial ribosomal resistance to cycloheximide, 

eg. Ennis and Luben, 1964). Additionally, there may also have been 

contamination by non-cytoplasmic ribosomal proteins which remained 

associated during the preparation of the organelle, including during 

the dissociation into subunits in high potassium ion concentration 

(eg translational factors).

A second type of contamination, the presence of proteins from 

the large cytoplasmic ribosomal subunit in the preparation of proteins 

from the small cytoplasmic ribosomal subunit, and vice versa. Hill be

discussed in Section 6.10a. 

b) Artifacts.

It uas assumed that each stained spot or peak of radioactivity 

contained one protein. However, it was possible that the spots and 

peaks detected were an association of different proteins which
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CO-migrated or co-eleuted either because of aggregation or because they 

possessed similar physical properties. The laxge diffuse stained 

region oh most electropherograms represented as L30, L30a and L30b 

or the eluted fractions with very high radioactivity, (eg. Fractions 

5 and 120 of Figure 6.2) may represent heterogeneous proteins.

Further fractionation of the stained proteins or eluted fractions was 

not undertaken, nor were conditions used to minimise aggregation and 

improve resolution.

It was possible that one or more of the cytoplasmic ribosomal 

proteins may have produced more than one distinct stained spot in 

the electropherogram. One or more derivatives of a protein, each 

exhibiting different physical, properties may have been produced during 

the preparation or analysis, perhaps by partie.i degradation>aggregation, 

chauiges in redox state or incomplete unfolding by urea. The derivative 

or satellite, proteins might not necessarily have migrated or eluted 

in the proximity of the unaffected proteins. In the absence of 

replicate analyses, it was not possible to identify any satellite 

proteins except two types which were described in Plates C and E, and

Plates D arid F, Section 6.6.

c) Detection.

The presence of artifacts and contaminants was suspected 

from the considerable variability that was observed, particularly in 

the analysis of proteins from the large cytoplasmic ribosomal subunit. 

Variability between preparations from the same strain should indicate 

the presence of experimental variation but because replicate analyses 

produced poor resolution, their identity could not be proven. A 

comparison of the results from different strains therefore Included
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variation resulting from inherent differences between the strains ajid 

experimental, technique; the difficulty lay in differentiating 

between the two sources of vauriation.

The artifacts auid conteuninants were presumed to be present in 

small ajnounts relative to the native proteins. Intensity of staining 

and amount of radioactivity did not necessarily indicate quantity of 

homogenous protein because of the possible differences in the 

specific reactivity and activity, respectively, of the proteins and 

because of co-migration and co-elution of different proteins. The 

qualitative nature of the stains was observed by the range of colours 

with idiich the proteins were stained; the majority stained with 

Coomassie Brilliant Blue were blue, but some individual spots were 

violet (not shown on Plates A and B) and proteins stained by ammonical 

silver nitrate were brown, grey and silver (not shown on Plates C to j).

Although weakly-stained proteins probably indicated low 

quantity and therefore possible contaidnation, such proteins might 

have been relatively unreactive. Thus equal importance was given to 

both weakly-stained and the well-stained proteins in the comparison 

of proteins from different strains.
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SECTION 6.10. CHARACTERISATION OF COPRINUS CINEREUS CYTOPLASMIC 

RIBOSOMAL PROTEINS.

The nxamber of Coprlnus clnereus cytoplaismic rihosoinal proteins 

identified by 2D-PAGE analysis was estimated to be between 24 - 30 

for the small subunit and between 3 6 - 6 4  for the laxge subunit. The 

estimates were based on the total number of proteins observed. In 

the case of the proteins from the small subunit, both strains 

examined exhibited all 30 proteins (Section 6.3)* By contrast, the 

maximum number of proteins observed for the large cytoplasmic 

ribosomal subunit was 64, but the maiximum number observed on any one 

electropherogram was 50 (Section 6.5)*

The chromatograms of proteins from the large cytoplasmic ribosomal 

subunit were interpreted with caution (Section 6.8) but 50 peaks of 

radioactivity was slightly greater than the n\imber of stained proteins 

observed in the same strains (Plates D and F, Section 6.6).

The chaoacterisation of proteins from the large and small cytoplasmic 

ribosomal subunit was made in the light of doubts concerning the 

authenticity of the stained proteins, in particular with the possibility 

of there being cross-contamination between the subunit particles

(Section 6.9)* 

a) Cross-contaminâtion.

In other eukaryotic species there is evidence that only one 

protein is common to both cytoplasmic ribosomal particles (Russell 

and Wllkerson, 1980). The electropherograms of proteins from the
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large cytoplasmic ribosomal subunit (Plates C to J) were superimposed 

above the results of the analysis of proteins from the smaJ-l 

cytoplasmic subunit (Plates A and B) in order to determine if the 

position of any proteins were identical., auid thereby to demonstrate 

if cross-contamination of proteins from the two subunits had 

occurred. However, the analysis of proteins from the two subunits 

were not undertaken under identical, conditions and in the absence of 

an internal marker or well-resolved electropherogram from monosomes, 

the proteins from the large and smaJ.1 subunits could not be directly 

compared. Indirect evidence suggested; that the well-stained 

consistently observed proteins in both subunits were unique, but that 

the weakly-stained, infrequently observed proteins of the large subunit 

may be evidence of contaminating proteins from the small subunit. 

Contamination of the large subunit proteins by proteins from the small 

subunit was more probable that the reciprocal contamination because 

in the preparation of the large subunits, it was necessary to aspirate 

them through the layer of small subunits which remained In the sucrose 

density gradient after the bulk of small subunits had been removed

(Chapter 2, Section 2.8).

b) Losses.

In the characterisation of the large and small cytoplasmic 

ribosomal subunit protelns.lt was assumed that all proteins were 

present and detected. It was possible that proteins were lost during 

the dissociation of the cytoplasmic ribosomes which may account for 

the inability to prepare functional subunits (Section ¡ A ,  Chapter 5). 

It was not possible to compare the proteins from monosomes with those 

of the subunits to determine if losses did occur, but in other species 

there are instances of such differences (Sherton and Wool. 1 9 ^ ) -
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It was i»ssible that not all proteins were prepared with equal 

efficiency and that some were not present in the samples for 

analysis, although the method of preparation was one which produced 

the best efficiency of extraction in mammalian cells (Sherton and 

Wool, 197^) and in Schizosacchaxomyces pombe (Coddington and Fluri, 

1977). The variation in efficiency of extraction may be the cause 

of the variable intensités of staining with both Coomassie Brilliant 

Blue and ammonical silver nitrate. However, proteins reacted 

differently to both stains, producing a variation in colours (Section

6.9 c), axïà it was therefore possible that some proteins did not 

react with the stains and were thus not characterised.

Only those, cytoplasmic ribosomal proteins which had a net basic 

charge at pH 8 .7, migrated toward the cathode in the first dimension 

and were therefore resolved by electrophoresis. The number of acidic 

proteins was not determined.

The proposed characterisation and nomenclature of Coprinus  ̂

cinereus cytoplasmic ribosomal proteins, despite the reservations 

expressed (Section 6.9), served a practical role in the comparison 

of different strains and of comparison with different species.

c) Comparison with other species.

The numher of proteins Identified from the small cytoplasmic 

rlhosomal subunit of Coprlnus cinereus .which possessed a net positive 

charge at pE 8.5 (Section 6.3).was similar to the numbers reported In 

other fungal species.In particular, and eukaryotic species In general 

(Table 6.4). However, the estimated number of proteins observed from the 

large cytoplasmic ribosomal subunit of Coprlnus ciñere^ (Section 6.5), 

was considerably h l ^ e r  than the numbers observed In other species.
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(Table 6.4). Coprinus clnereus wa^ considered to be a typical fungal 

species and thus, approximately 10 - 20 of the proteins described in 

Figure 6.1 (Section 6.5) were not native proteins from the large subunit; 

the difficulty uas in determining >rtiich were native proteins and which 

were not.

M^Conkey et al (1979 ) demonstrated that the variation in 

electropherograms of cytoplasmic ribosomal proteins from different 

species, and strains, presented by various authors was a consequence 

of the methods of preparation and analysis. In the absence of a 

standardised analysis of eukaa:yotic cytoplasmic ribosomal proteins,it 

was possible to detect 67 or 71 proteins in Saccharomyces cerevisiae 

(Table 6.4) but it was not possible to use a system of nomenclature for 

Coprinus cinereus cytoplasmic ribosomal proteins. One consequence 

was that the electropherograms produced for Coprinus cinereus could not 

be compared directly with the results from other eukaryotic species 

because different methods of analysis. The only direct comparison 

which could be made was with the proteins of Escherichia coll from 

which the method of analysis had been taken (Chapter 2, Section 2.11). 

There were no similarities between the two species either in number 

or relative positions irtilch was to be expected between the dissimilar 

ribosomes of a eukaryotic and prokaryotic species (Russell and 

Wilkerson, I98O; Table 6.4). However, the fact that cytoplasmic ribosomal 

proteins could be resolved from a method which was used for a 

prokaryotic species demonstrated that the proteins were not too dissimilar, 

but it was possible that the resolution of Coprinus cinereus cytoplasmic 

ribosomal proteins could be improved.

T a b le  6 . 4 .

Organism/l

Podospora
(B^gueret

Sacchaxomi 
Zinker ar
Ishiguro (1

SchizosacI
Coddingt(

Rat live] 
Shcrton

Chlamydor 
Hanson el

Eschericl
Kaltschml

Basic p] 

proteins 

brackets



)ical fian.gal 

ascribed in 

large subunit; 

Lns and which

Table 6.^» Numbers of proteins from eukaryotic cytoplasmic ribosomes.

molature for 

sequence 

ÌUS could not 

species 

>mparison 

)li from 

stion 2 .1 1 ). 

in number 

dissimilar 

ajid

Lasmic ribosomaJ. 

a

too dissimilar y 

IS cytoplasmic

Organism/Reference Total for 
monosomes

Large subunit 
Basic (Acidic)

Small
Basic

subunit
(Acidic)

PodosTwra anserina. 
(B^gueret et ^  t(197?)* 79 39 (+2) 25 (+3)
Saccharomyces cerevisiae. 
Zinker ajid Warner,(19?6). 67 33 (+4) 24 (+6)
Ishiguro(l9?6). 68-71 40-41 28-30

Schizosacchaxomyces T»mbe. 
Coddington and Fluri ,(1977). 93 31 (+7)

including j6 unaccounted
19

Rat liver,
Shcrton. and Wool (1974) 69-71 39 (+2) 28 (+2)

Chlamydomonas reinrfiardii 
Hanson et al .(1974).

cytoplasm 65 39 26
chloroplast 48 26 22

Escherichia coli
Kaü-tSchmidt and Wittmann 55 27 (+7) 17 (+4)

Basic proteins which migrated to the cathode at pH 8.5. Numbers of

proteins which were acidic at pH8.5 a-̂ e presented, where known, in

brackets.

taken on relatively few species (including Coppin-Raynal, 1980 for 

Podospora anserina. Kuntzel,1969 for Neurospora crassa). The chromatograms 

produced for Coprinus cinereus (Figures 6.1 and 6.2) were unlike any 

other published results. The detection of 50 peaks of radioactivity in 

the analysis of proteins from the large cytoplasmic ribosomal subunit for 

CY8.2 and CY9.23 was slightly higher than the ^  and 45 proteins ident 

ified by electrophoresis (Plates D and P ) .  but the correspondence 

between the two methods was not known and was not examined for practical

reasons.
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SECTION 6.11. CYCLOHEXIMIDE RESISTANT CYTOPLASMIC RIBOSOMAL PROTEINS.

At the outset, the Intention of the investigation was to place 

equal emphasis on the analysis of cytoplasmic ri'tosomal proteins from 

the large and small subunits, in an attempt to determine irtiich 

subunit of CY8.2 and CY9*23 conferred cycloheximide resistance.

Evidence from the cell-free polypeptide synthesising system did not 

establish which subunit conferred cycloheximide resistance (Section 

5 .4, Chapter 5). In practice, the emphasis of the investigation 

concentrated on the proteins from the large cytoplasmic rlbosomal 

subunit, because the yield of protein from the small subunit was 

1 in comparison to that of the large and consequently fewer 

analyses were possible, almost all of which resulted in poor 

resolutions.

a) Analysis of proteins from the small subunit.

It TOS concluded from the limited evidence available, that there 

Here no detectable differences between the proteins of the small 

cytoplasmic rlbosomal subunit of Cï8 and CÏ8.2, except for the 

difference in the migration of all proteins In the second dimension, 

a difference which was assumed to be an experimental artifact 

(Section 6.2). No analysis of the small cytoplasmic rlbosomal subunit 

by oaxboxymethyl-oellulose chromatography was undertaken because the 

yield of radioactive proteins was Insufficient. Failure to detect a 

difference did not prove that a protein or proteins from the s m a U  

cytoplasmic rlbosomal subunit of CY8.2 and CÏ9-23 -as responsible for 

cycloheximide resistance. The general consensus of opinion Is that 

cycloheximide resistance is exclusively conferred by the large cyt 

plasmlc rlbosomal subunit (Table 5.1, Section 5.1. Chapter 5)-
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has l)een only one exception, reported by Sutton et al,(l978) in 

Tetrahymena ^hermorphilia, in which the small subunit also conferred 

cycloheximide resistance but no eiltered protein has been associated 
with the response.

b) Analysis of proteins from the large subunit.

Many cycloheximide-resistant mutants, in a large vsiriety of 

species, are known to possess cycloheximide-resistamt large cytoplasmic 

ribosomal subunits (Table 5.1, Section 5 .I, Chapter 5), but there are 

few reports vrtiich have correlated the resistant phenotype with an 

altered protein in the large subunit. (Table 6.1, Section 6.I). In 

the few instances in which alterations in a protein have been discovered» 

the difference between the mutant and wild-type protein has required 

very careful observation and deliberation and necessitated a 

consistency of replicate analyses.

In contrast to the electrophoretic analysis of proteins from the 

small cytoplasmic ribosomal subunit (Section 6.4), the proteins from 

the large subunit revealed considerable variation between strains 

(Section 6.6). The difficulty in the absence of replicate analyses 

of suitable resolution, wan in differentiating between variation 

resulting from experimental, technique (Section 6.9) variation 

resulting from inherent differences either due to cycloheximide- 

resistance or other phenotypic differences.

In Coprinus clnereus it wan not certain that the large cytoplasmic 

ribosomaJ. subunit conferred cycloheximide-resistance in CY8.2 

and CY9.23. The comparison of proteins from the large subunit of the 

two mutant strains with their cycloheximide-sensitive parental strains 

did not clarify the situation.
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In an attempt to identify a protein or proteins triiich may 

confer cycloheximide resisteuice, the results of all strains, mono- 

kau:yotic and dikaryotic, were taken into account in determining common 

differences in the elect rojAierograms. 

i) Monokajyons.

If the product of the cy-2 was a structural cytoplasmic ribosomal
Xprotein, and if, as a result of the cy-2 mutation, there was a 

detectable charge and/or size difference between the wild-type and 

mutant protein then there would be two differences in the electrophoretic 

pattern of proteins from CY8.2 and CY8, auid CY9»23 and CY9; the 

cycloheximide-sensitive strains should possess the wild-type protein 

and the mutant strains should not, and the mutant strains should 

possess the mutant form which the parental strain did not.

In the analysis it was not possible to identify the two forms 

of the same protein, thus the differences between cycloheximide- 

sensitive and cyclohexlmide-reslstant strains were compared with the 

premise that the two forms of the protein or proteins were present, 

amidst differences which were the result of experJjiental variation.

Present in CY8. absent from CY8.2.
Ly, Ls, L22, L30a and L30b.
Present in CY8.2 absent from CY8j.
Lx, L2, Lt, Lr, I/i, L8a, L12a, Ix>, Ln and L28a 
Present in CY9p absent from CY9«2^.
Ln
Present in CY9.23. absent from CY9_. 
j1^ and Li
ijaken from Section 6.6a and b).

I I
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There was no common factor between the two pairs of strains.

The only protein to featxire as differences between both pairs was

Ln, but its presence conferred cycloheximide-resistance in CY8.2, while

its absence conferred cycloheximide-resistance in CY9*23*

It was possible that the cy-2 gene product were a modifier of 

the cytoplasmic ribosome proteins. It is possible that more than one 

mutant protein may be produced, (ie. by phosphorylation or 

méthylation, Russell and Wilkerson, 1980). This may explain the 

number of differences observed, but does not explain the differences

between the pairs.

Although CY8.2 and CÏ9.23 possessed mutations In the same c y ^  

complementation group, cyclohexlmlde-resistanoe may have been 

conferred by different alleles In each strain and consequently,It was 

possible that two different forms of the mutant may have been present.

The presence of any of 10 proteins found In CÏ8.2 but not Cï8.may
1- anv of the 3 proteins found in CY9*23have been homogenous with any oi xn ,3 p

not CY9«

It was also possible that the difference between proteins from 

0Ï9.23 and 0Ï9, and CÏ8.2 and Cï8 were not the same because of^the 

effect of the mo^y* allele in CY9.23 but not 0Y8.2. The allele

interacts with çy^^^ In the dUcaryons in vivo (Chapter 3. Section 3-9) 

and in ^  (Chapter 5. Section 5.6a). and may affect either the 

same or different protein or proteins as * comparison between
«  P V Q  137 two recombinant strains of CY9.23CY9 and CY9.23.98 or CY9*23

which lacked the modcy'̂ allele (Chapter 2, Section 2.2),
posslbl. because of the poor resolution of their proteins. The effect

r 4. pYO 21 on the protein content wasof the aU e l e  of cy-2^ present in CY9.Z3 on tn p
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therefore not examined in the absence of the modcy^ allele.

It was possible that the CY8 auid CY9 strains were inherently 

different, because although both strains originated from the same 

parents, they vrere not Isogenic (Section 2.2, Chapter 2). Variability 

in the cytoplasmic ribosomal proteins of Saccharomyces cerevisiae is 

known (Adoutte-Panvier et 1980) auid in Coprinus cinereus 

variability in the cytoplasmic proteins hats been demonstrated 

(Smythe arid Anderson, 1971 )• However, there was no consistency in the 

shared differences of CY8 and CY9, and CY8.2 and CY9»23jexcept Ln 

(Section 6.6a), which suggested that the most probable reason for the 

differences between CY8.2 and CY8 and CY9*2‘3 and CY9 was that 

variation introduced during the preparation of the cytopldsmic ribosomes 

cytoplasmic ribosomal protein and the analysis of the proteins (Section

6.9).

The phenomenon was not clarified by an analysis of the 

cytoplasmic ribosomal proteins by carbojornicthyl-cellulose 

chromatography. The proposed experiment which would have compared CY8 

with CY8.2, and CY9 with CY9.23 cytoplasmic ribosomal proteins could 

not be undertaken and the results which were obtained for CY8.2 and 

CY9.23 ribosomal proteins from the large subunit (Figures 6.1 and 6.2) 

were not comparable for practical reasons. The direct comparison of 

proteins from cycloheximide-sensitive and cycloheximide-resistant strains 

may have revealed differences that an indirect comparison by 2D-PAGE 

may not (eg Harvey and Martinelli, 1983) but did not in this investigation.

It is however, possible that differences in the cytoplasmic 

ribosomal proteins from the large subunit were the result of ultra-
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violet radiation induced or spontaneous mutations in the genes other 

than those associated with cyclohexlmide-resistance,which produced 

mutant j*ienotypes which were not sought or detected; for example, 

cold-sensitivity or rihosomal ambiguity mutants (Section 3*3»

Chapter 3). 
ii) Dikaryons.

The comparison of the electropherograms of proteins from 

dikaryotic strains did not clarify the interpretation of the protein 

differences from the monokaryotic strains. The presence of no one 

protein could be correlated with the partial expression of 

cycloheximlde-resistance in the dikaryons examined.

Present in CY8 x CY13. absent in CY8.2 x CY13,. 
Lv
ffesent in CY8.2 x CY13. absent in CY8 x CY13^ 
Lq, L22, L30a and L30b
Present in CY9 x CY3. absent in CY9.23 x CY 3_a 
Lz, L2, Lw, Lq, lA, Lo. Ik, Lj and L28a 
Present nvQ.2^ x CY3. absent in CY9 x CY.
none
Taken from Section 6.?.

The only protein difference cominon to both pairs of dikaryons 

(CY8 X CY13 and CY8.2 x CY13. and CY9 x CY3 and CY9.23 x CY3) «as I4 .

but Its presence or absence could not be correlated with the response 

to cyclohexinlde. Hosever, 1^ -as present In the aonokaryotlc strains
a M x a s a  possible candidate for further study; In hovever ehlch had

been considered a candidate based on the result of the nonokarytoic 

strains did not differ in the dikaryotic strains. Differences 1 

proteins sere observed In i»nokaryotic and dikaryotic strains, but only
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in one pair, and could not "be correlated with cycloheximide resistance, 

namely L22, L>0a and L30b, L2, Lo and L28a.

The interpretation of the proteins from the dikaryons was 

limited by the absence of data for GY3 and CYI3 . A hypothesis proposed 

to explain the expression of a degree of resistance to cycloheximide 

in CY8.2 X  CYI3 and CY9.23 x CY3 in vitro was that two populations 

of cytoplasmic ribosome were present (Section 5-9, Chapter 5)* The 

presence of wild-type and mutant proteins in the heterozygous cyclo

heximide-resistant dikaryons could not be determined from the results.

It was possible that there was no total loss of the wild-type protein 

but a loss of quantity, however, detection of differences in relative 

intensity of staining was not obvious in the electropherograms produced,

270



SECTION 6.12. SUMMARY.

It was probable that the inconsistencies between the strains 

examined were the result of experimental differences in the 

preparation and analysis of the cytoplaismic ribosomal prote ins, rather 

than inherent differences between the strains. In the absence of 

proof that the differences were not the result of experimental 

technique, any conclusions regarding the results must be considered 

speculative.

The analysis of Coprinus ciñere us cytoplasmic ribosomal proteins 

by two-dimensional ixjlyacrylamide gel electrophoresis resolved between 

2 ^ - 3 0  proteins from the small ribosomal subunit aJid between 36 - 64- 

proteins from the large subunit. The variability in the estimated was 

the result of technical difficulties which restricted the analysis to 

a limited number of strains and two few replicate¿ of sufficient 

resolution.

There was no proof that the mutations in either the cy-2 or the 

modcy loci produced alterations in one or more cytoplasmic ribosomal 

proteins which could be associated with the response to cycloheximide; 

there were however several proteins from the large cytoplasmic ribosomes 

which were tentatively proposed as candidates. There were differences 

in the cytoplasmic ribosomal proteins from the large subunit of 

dikaryotic strains but they were not consistent with differences in 

comparable monokaryotic strains.

The analysis by carboxymethyl-cellulose chromatography was not of 

sufficient consistency to either characterise Coprini^ cine^M£ cytoplasmic 

ribosomal proteins or to Identify proteins associated with an altered 

response to cycloheximide,
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SECTION 7*1. conclusiONS FRCM1 THE GENETIC ANALYSIS OF CYCLOHEXIMIDE- 

RESISTANT MUTAI/TS.

As a result of the genetic analysis of cycloheximide-resisteuit 

mutaJits (Chapter 3) It was concluded that, CY8.2 and CY9.23 possessed a 

single recessive mutation which conferred cycloheximide resistance.

North (1982) had identified the allele of CY9*23 as cy-2^. The 

mutations of CY8.2 and of all other cycloheximide-resistant mutant 

strains examined, were shown to be alleles at the cy-2 locus. In
+ paddition CY9»23 possessed modcy vrtiich modified the dominance of cy-2 

in the dikaryon, rendering it partially dominant, but had no effect in 

the diploid (North, 1982). None of the cycloheximide-resistant strains 

produced in this investigation were shown to possess a dominance 

modifier mutation.

The effect of cycloheximide on the growth response of cycloheximide 

resistant strains was used as a means of classification, based on the 

30% growth inhibitory cycloheximide concentration, and of selection for 

biochemical analysis.
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SE}CTION 7.2. CONCLUSIONS FROM THE BIOCHEMICAL ANALYSIS OF 

CYCLOHEXmEDE-RESISTANT MUTANTS.

CY8.2 and CY9*23 were shown to possess cycloheximide-resistant 

cytoplasmic ribosomes, but the speoiflc cytoplasmic ribosomal subunit 

which conferred cycloheximide resistance could not be identified. The 

same relative degree of resistance was exhibited by Ci8.2 and CY9»23 

In vitro, in comparison with their cycloheximide-sensitive strains CY8 

and CY9. The cycloheximide-resistant recombinant strain CY9 *23.98 which 

did not possess modcy was as resistaJit ^  vitro as CY9*23» which did 

possess modcy^. The dikaryons heterozygous for cycloheximide resistance, 

CY9.23 X CY3 and CY8.2 x CY13 exhibited similar responses to 

cycloheximide in vitro, which were described as partial resistance. 

Available data showed that the diploid CY9*23/CY1^ was sensitive to 

cycloheximide (Chapter 5)•

Analysis of cytoplasmic ribosomal proteins from CY8, CY8.2, CY9 

and CY9.23^by two-dimensional polyacrylamide gel electrophoresis and 

carboxymethyl-cellulose chromatography» did not conclusively identify 

altered proteins which could be associated with mutations at the c j ^  

and modcy loci, but did identify several possible candidates.
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SECTION 7 .3. OBJECTIVES.

A reappraisal of the genetic analysis of cycloheximide- 

resistance, both In this study (Chapter 3) and by North (1982), in the 

light of the biochemical investigation of cycloheximide-resistant mutant 

strains in vitro (Chapter 5) and an analysis of their cytoplasmic 

rlbosomal proteins (Chapter 6).
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SECTION 7 .̂ . COMPARISON OF THE EFFEXITS OF CYCLOHEXIMIDE IN VIVO 

and IN VITRO.

The detailed analysis of the effect of cyclohexlmlde on the growth 

(Chapter 3) and polyphenylalanine synthesis (Chapter 3 )t  on monokauryotic 

ajid diploid strains, made it possible to classify strains according 

to their response to cycloheximide, and to consider the relationship 

between the inhibitory effect of cycloheximide in vivo and in vitro.

The similar biphasic responses to cycloheximide in vivo and in vitro 

were described by the same parameters. The values for the 30% 

inhibitory cycloheximide concentration and linear regression coefficeint 

for those strains examined in vivo and in vitro are presented in Table ?.l.

■ if-

:0m

I 'm

In the majority of monokaryotic strains and in all dikaryons 

examined, polyphenylalanine synthesis was more resistant to 

cycloheximide than was growth (Table ?.l). All of the cycloheximide- 

sensitive monokaryotic strains possessed cytoplasmic ribosomes which were 

able to synthesis polyphenylalanine at cycloheximide concentrations 

vrtiich were totally inhibitory to growth; in fact the cytoplasmic ribosomes 

were at least 6 x more resistant than the whole cells (Table ?.l). The 

relatively high sensitivity of CY18 cells, in comparison to the other 

strains, was not observed in vitro, possibly reflecting the effect of 

the abnormal ostrich morphology of CY18 cells on cycloheximide. It 

should also be noted that the response of CY8 cells and cytoplasmic 

ribosomes were approximately 10 x more resistant than any other of the 

cycloheximide-sensitive strains, idiich led to reservations concerning the 
classification of the strain.





The cycloheximide-resistant strain CY8.2 was, like the cycloheximide- 

sensitive strains examined, more resistant to cycloheximide vitro 

than ^  vivo; CY9-23 and CY9.23»98 were the only strains examined in 

which cytoplasmic ribosomes were more sensitive to cycloheximide 

than was their growth (Table 7»l)*

The greater degi’ee of resistance, 100 x or more of the dikaryotic 

strains in vitro compared with 3^ vivo, wels more pronounced than for 

most of the monokaryotic strains (Table 7*l)*

A comparison of strains based on the linear regression coefficients 

revealed higher values In vivo than in vitro for all monokaryotic 

and dikaryotic strains, except for CY9-23 and CY9«23*98 (Table 7*l)*

Thus CY9 . 2 3  and CY9.23.98 were exceptional based on both parameters 

used to describe the cycloheximide dose-responses.

The relationship between the cycloheximide-sensitive strains and 

their cycloheximide-resistant mutant strains (ie. bet ween CY8 and CY8.2 

and CY9 and CY9.23) was more pronounced in vivo than it was in vitTO. 

GY8.2 was almost 3 x more resistant to cycloheximide than CY8 in vij^  

compared with in vitro, and similarly for CY9.23. the mutant strain was 

9 X  more resistant than CY9 in vivo compared with In vitro (Table 7-1).

Conversley, for the dikaryotic strains, CY8.2 x CY13 was 6 x 

more resistant than CY8 x CY13 ^n vitro but as sensitive ^n v^yg 

(Table 7.1). In the comparison of CY9»23 x CY3 and CY9 x CY3f the 

degree of resistance was the same in vivo and in vitTO.
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The compaxison of the effect of cyclohexlmide on grovrth and 

polyphenylalanine synthesis was restricted to a small number of strains 

because of the lack of data from the ^  vitro studies of many strains.

For practical reasons, responses to cycloheximide of cytoplasmic 

ribosomes from all cycloheximide resistant mutant strains (or 

representatives of the strains classified according to their ^  vivo 

responses), homozygous cycloheximide resistant dikaryons and diploids 

derived from CY8.2 and CY9.23 were not examined.

Inhibition of growth by cycloheximide did not differentiate 

between the primary mode of action of the drug, vrtiich was presumed 

tc be the inhibition of the elongation pheise of translation mediated 

by the cytoplasmic ribosome, and the secondary inhibitory effects.

Other possible mechanisms of cycloheximide action, included the effect 

on DNA and RNA synthesis andón initiation and termination of translation, 

and possible mechauiisms of resistance to cycloheximide including the 

effect of the plasma membrane and detoxification of the drug,

(Section 1.3f Chapter l).

The polyuridylic acid template for cell-free polypeptide 

synthesis has been used in many species to identify cycloheximide 

resistant cytoplasmic ribosomes (Table 5*11 Section 5*1. Chapter 5) 

and it was employed for that purpose in this investigation. Th po y 

uridylic acid dependant polyphenylalanine synthesisirig system fulfilled 

its function as a suitable assay for identifying cytoplasmic ribosomes 

in CY8.2 , CY9.23 and CY9»23*98. However, polyuridylic acid was not 

an ideal template on which to study the mechanism of action of cyclo 

hexlmide and its inhibitory action on cytoplasmic ribosomes because it 

possessed no initiation and no termination codons. The role of
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cycloheximide as an inhibitor of initiation and termination is 

controversial (eg Siegel, 1977) • A cell-free system dependant on 

poly (u) was only suitable for analysing the specific effect of 

cycloheximide on cytoplaismic ribosomes which have undergone abnormal 

initiation and are in the elongation jiiase of polyphenylalanine 

synthesis. The effect of cycloheximide ^  vitro therefore represents 

only one possible 8isx>ect of the effect of the drug, tdiereas the 

in vivo effect was a meaisure of all aspects of the inhibitory response.

The responses ^  vitro may have been different to those observed 

(Table ?.l) had the cytoplasmic concentration used not been 2.0  

^260 cytoplaismic ribosomes from CY9*23*98, the lower their

concentration, the more cycloheximide was required to produce 50̂  

inhibition (Section 5*5i Chapter 5)* Thus for GY9*23*98, and possibly 

for the other strains examined, it was possible that the cytoplasmic 

ribosome concentration may have been varied so that the 50^ inhibitory 

value in v i ^  may have equalled the value in The physiological

concentration of functional cytoplasmic ribosomes was not known, nor 

was proportion of active cytoplasmic ribosomes in the RP-lOO fractions

from the different strains.

Despite the reserrotlons expressed concerning the use of the 

poly (U) assay to measure the effect of cyolohexlmlde In the

value of the detailed analyses of the effect of oyoloheximlde on 

growth and on polyphenylalanine synthesis was used to Indicate the 

importance of the role of cytoplasmic ribosomes in the expression of 

the response to oyolohexlmide. In the majority of strains the 

absolute values obtained for the response of the cytoplasmio ribosomes 

were greater than those of the growth responses,possibly indicating
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that other metabolic processes or components were more sensitive to 

cyclohexlmlde than the elongation phase of translation mediated by 

the cytoplasmic ribosomes. However, the relative differences between 

the strains ^  vivo was found in the response of the cytoplasmic 

ribosomes to cyclohexlmlde (Table 7*1) indicating the role of the 

cytoplasmic ribosomes. The fact that cyclohexlmide-resistance 

was conferred by the cytoplasmic ribosomes in CY8.2, CY9*23 and 

CY9*23*98 (Section 5*3% -5) demonstrated that the organelle

was the Intracellular site of cycloheximide action.
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SECTION 7»5. THE INTRACELLULAR SITE OF CYCLOHEXIMIDE ACTION.

The investigation demonstrated that CY8,2 and CY9*23 possessed 

cytoplasmic ribosomes >diich conferred cycloheximide-resistance 

(Section 5»3^ » Chapter 5)* Although several cytopl2ismic ribosomal 

proteins were proposed as candidates for conferring cycloheximide 

resistance (Section 6.11, Chapter 6), the analysis did not identify 

the cytoplasmic ribosomal protein or proteins involved in binding 

cycloheximide nor the structureil change produced as a result of the 

mutation of the cy-2 locus.

The inability to prove the identity of one or more cytoplasmic 

ribosomal proteins which conferred cycloheximide resistance in 

Coprinus cinereus,wais similau: to the results obtained in several other 

species, because although many cycloheximide-resistant cytoplasmic 

ribosomes are knorni (Table 5-1. Section 5 - U  Chapter i ) . i n  only four 

have the modified cytoplasmic ribosomal proteins been discovered, 

(Ooddington and Flurl, 1977i Bfegueret et al, 1977 and Croutet and 

B^gueret, 1980i Stocklein and Plepersberg, 1980).

The probable reason i*y so few cytoplasmic ribosomal proteins 

conferring cyolohexlmlde resistance have been Identified Is that the 

structural difference between wild-type and mutant protein Is small 

and at the limits of sensitivity of the analytical methods.

Wiilst conferring resistance to cycloheximide, the mutation of 

the c ^  locus must also allow sufficient normal function for the cell 

to be vUble. The extent of the difference between wild-type and 

mutant proteins depends on Its Importance In cytoplasmic protein 

synthesis. Each of the cytoplas.dc ribosomal proteins is presumed to
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have a specific role in the normal functioning of the organelle, 

although what that role is, is not known in eukaryotic species* The 

wild-type cytoplasmic rihosomal proteins may be considered to be of two 

general types, those essential, and those not essential for function.

Any modification in an essential cytoplasmic ribosomal protein, for 

example, those proteins involved in binding mRNA or tRNA, would at 

least be deleterious to polypeptide synthesis, but would probably be 

lethal. The observation that there was only a negligible difference in 

polyirfierqrlalanine synthesis between CY8.2 and CY8 and between CY9.23 

and CY9 (Section 5*3b, Chapter 5)# suggested that the cy-2^ mutation 

affected a cytoplasmic ribosomal. protein which was not essential. 

C7toplasmic ribosomal proteins idiich were not considered vital for 

function, if they existed,might be considered to have no specific role 

but which were necessary to maintain a stable functional configuration 

could tolerate mutations without being disadvantagous to polypeptide 

synthesis.

Differences in charge but not size between the mutant and wild- 

type proteins were assumed to be the result of amino acid substitutions 

in Podospora anserina,(Crouzet and Bégueret*1980) and in Saccharo^ces 

cerevisiae. (StScklein and Piepersberg, 1961), which in the latter was 

demonstrated by acid secnxenclng to be the result of a substitution

of glutamine for either glutamic acid or lysine. The difference 

observed in Schizosaccharonorcos pombe by Coddington and Fluri (1977) 

was in size, representing the addition of approximately 20 additional

amino acids.

The particular conditions of two-dimensional polyacrylamide gel 

electrophoresis used by Crouzet and B ^ e r c t  (i960), Stocklein and 

Piepersbcig (1961) and Coddington and Pluri (1977) capable of
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detecting small differences but required consistency of replicate 

analysis and good resolution in order to detect the relatively small 

differences between the mutant protein relative to the wild-type 

protein • It is probable that with consistency of analysis and improved 

resolution using two-dimensional polyacrylamide gel electrophoresis 

that the cytoplasmic ribosomal protein or proteins associated with 

cyclohexlmide resistance would be found in Coprinus cinereus and in 

other species.

Caorboxymethyl-cellulose chromatography has the advantage over 

two-dimensional polyacryleunide gel electrophoresis because mutaint and 

wild-type strains may be directly comi)ared auid has revealed differences 

vrtiich 2D-PAGE did not detect but in phenotypes other than cycloheximide 

resistance (eg. Harvey and Martinelli, 1983).

It is not known whether the cytoplasmic ribosomal proteins vrtilch 

are known to confer cyclohexlmide-resistance in Podospora anserina 

Saccharomyces cerevisiae and SchizoSaccharomyces pombe are identical 

and are part of an equivalent cycloheximide binding site on the 

cytoplasmic ribosome because of the different analytical methods used 

and inability to relate between species (Section 6.10c,Chapter 6). Had 

it been possible to relate them to the cytoplasmic proteins of 

Coprinus cinereus it would have been possible to concentrate the 

analysis on particular proteins and to improve the resolution so that 

proteins with similar physical properties to them were well separated in 

order to make the observation easier.

The site of cycloheximlde binding, possibly to an Individual 

cytoplasmic ribosomal component or to a reactive domain, should have a 

predictable structure to accommodate the size and configuration of the
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cyclohBximlde molecule and possess groups >dilch aze attractive to the 

ketone-carhoxyl, the hydroxyl and the imide-nitrogen groups >diich 

give cycloheximide its high toxicity. Siegel and Sisler (1966) 

postulated that the reactive site on the cytoplasmic ribosome possessed 

a three-point attachment for cycloheximide and the observation that the 

effect of cycloheximide ^  vivo was irreversible (Section 3*7d ,

Chapter 3)i indicated that the drug was firmly bound to the organelle. 

However, no theoretical, model exists for the site of cycloheximide 

binding and no studies have been undertaken to identify the site.
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SECTION 7 »6. NUCLEO-CYTOPLASMIC INTERACTION AND THE EXPRR*^SION OF 

CYCLOHEXIMIDE RESTSTANP.R

As a result of a nutation at the cy-2 locus, an alteiratlon of 

the cytoplasnic rlbosone resulted in cycloheximide resistance • Two 

alternatives are possible for the product of the cy-2 locus; either it 

was a structural conponent of the organelle or it was a nodifying 

protein which indirectly affected one or more of the structural 

components.

The cytoplasmic ribosomal component which conferred cycloheximide 

resistance in Coprlnus cinereus was believed to be a protein rather 

than a ribonucleic acid. Although no cytoplasmic ribosomal protein 

was proven to be associated with cycloheximide resistance in CY8.2 

and CY9*23» several, candidates were proposed (Section 6.11, Chapter 6). 

Additionally the cytoplasmic ribosomal proteins are known to confer 

cycloheximide-resistance (Coddington and Fluri, 1977; B^gueret et ^,1977; 

Stocklein and Plepersberg, 1980) and aJ.so because no rRNA gene was known 

in the vicinity of the cy-2 and modcy loci (Wu et al, 1983)*

The synthesis of components of cycloheximide-resistant 
cytoplasmic ribosomes occurred at two intracellular sites; the nucleus

and the cytoplasm. The tianrcription of the cy-2^ allele and the assembly

of the cycloheximide-resistant component into the cytoplasmic ribosome

took place in the nucleus, Tlie translation of m?”A into cytoplasmic

ribosomal protein occurred in the cytoplasm. In order for functional

cytoplasmic ribosomes to be synthesised, material is exchanged in both

directions between the nucleus and cytoplasm across the double nuclear

membrane.
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The rerponeee to cycloheximide of different cell-types ^  vivo

and ^  XÍÍE2 (Chapters 3 snd 5 ) * may he explcdned hy a hypothesis 

proposed to take into account the role of cytoplcusinic rihosooies and 

the effect of nucleo-cytoplasmic interaction on cytoplasmic ribosome 

synthesis and ilinction. North (1982) had discussed in vivo responses 

in terms of a nucleo-cytoplasmic interaction but had no evidence for 

the role of cytoplasmic ribosomes.

a) Dlkaryons.

i) Heterozygous for the cy-2 locus.

In vivo, dlkaiyons heterozygous for the cy-2 locus, ( c j ^  )(cy22 ) 

«ere sensitive to cyolohexlmlde (Section 3-9. Chapter 3)- The hypotheses 

proposed to explain why the cycloheximlde-reslstant qr^^allele was 

recessive to the wild-type cyclohexlinlde-sensltlve ^  allele, are 

based on the phenotype of the cytoplasnlc ribosomes.

It was possible that the dikaryons possessed both cycloheximide- 

sensltlve and cyclohexlmlde-resistant cytoplasmic ribosomes either in 

equal proportions or with cycloheximlde-sensltive predominating ,to 

account for the cyclohexlmlde-sensltlve phenotype. Alternatively. It 

was possible that the dikaryons possessed only functional cycloheximide

sensitive cytoplasmic ribosomes.

287



In order to explain the possibility that cycloheximide-sensitive 

cytoplasmic ribosomes were preferentially or exclusively synthesised
g

it was necessary for the product of the cy-2 allele to directly 

or indirectly inhibit the synthesis of the cycloheximide-resistant 

cytoplasmic ribosonal component. The Inhlbitive Interaction may 

have occurred either in the nucleus preventing the transcription of the 

cy-2^ mutation or the assembly of the cycloheximide-resistant component 

into the cytoplasmic ribosome, or in the cytoplasm where cycloheximide- 

resistant cytoplasmic ribosomal proteins were translated and where the 

cytoplasmic ribosome was functional.

In vitro. CÏ8.2 x CY13 (ey-2^modoy~ x ey-2^,modcy ) exhibited 

a response to cycloheximide which was described as partial dominance 

(Section 5.6, Chapter 5). The result of CÏ8.2 x CÏ13 could not have

resulted if only cycloheximide-sensitive cytoplasmic ribosomes were 

present but responses of other dikaryons with similar genotype were not 

examined and may have results dissimilar to those for CÏ8.2 x 0113- 

There were two possible ways in which partial resistance to cycloheximide 

may have arisen In CY8.2 x CY13. depending upon the product of the 

locus. If the product of the c ^  locus was a single polypeptide which was 

either a structural component of the cytoplasmic ribosome, or modified one 

or more oompoents of the ribosome, the alternative phenotypes of the 

organelle would be cyeloheximide-aensitive and oycloheximide-resistanti 

CY8.2 X CY13 may have possessed equal or unequal numbers of yp®

Alternatively, cytoplasmic ribosomes may have exhibited a rang 

responses to cycloheximide. If the component of the cytoplasmic ribosome 

which conferred cyolohexlmlde-reslstance were oligomeric, as 

(1982) suggested based on the evidence of Interallellc complementation.

The proportion of cyclohexlmlde-reslstant and cycloheximide-sensitive

subunits would determine the i*.enotype of the component and thus the

organelle.
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With an equal proportion of cycloheximide-sensitive and cycloheximide 

resistant protein subunits the cytoplasmic ribosome would

probably have an intermediate response to cycloheximide. The response 

of CY8.2 X CYI3 ^  vitro was similar to the response of the cycloheximide 

sensitive CY13 which suggests that in the dikaryon the proportion of 

cycloheximide-sensitive subunits synthesised was greater than the 

quantity of cycloheximide-resistant subunits. Similarly if the product 

of the cy-2 gene was a monomeric component of the cytoplasmic ribosome 

the proixjrtion of cycloheximide-sensitive and cycloheximide-resistant 

cytoplasmic ribosomes would determine the phenotype of the total 

organelle population ^  vitro and ^  vivo »

The interpretation on the possible effect of the products of the 

cy-2® allele on the cy-2^ allele may be the result of unequal synthesis 

as a result of Inhibition at any one of the stages in cycloheximide- 

resistant cytoplasmic ribosomal synthesis in the nucleus or in cytoplasm. 

However, the simplest interpretation is that biosynthesis was not 

affected, rather that there were an equal proportion of cycloheximide 

resistant and cycloheximide-sensitive cytoplasmic ribosomes present and 

that the effect of the cycloheximide-sensitive organelle in translocation 

which determined the response to cycloheximide.

Assumptions concerning the proportion of the different types of 

cytoplasmic ribosome are made without knowing what effect cycloheximide- 

sensitive organelles have on polypeptide synthesis at inhibitive 

concentrations of the drug. It is possible that one cycloheximide- 

sensitive cytoplasmic ribosome on a mRHA or poly(u) template prevents 

that template being translated by cycloheximide-resistant ribosomes.
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A cyrloheximide-Bensitive .phenot^'pe would therefore be produced wlien 

sufficient cycloheximide-Bensltive cytoplasnic ribosomeB block translation on 

most mRNA or poly (U) templates so that cycloheximide-resistant cytoplasaic 

ribosomes were unable to synthesise sufficient polypeptide to sustain 

growth -If the proportion of cycloheximide-resistant cytoplasmic 

ribosomes is greater than that of the cycloheximide-sensitive 

cytoplasmic ribosomes, the probability of the translation inhibition 

would be reduced.

Cytoplasmic ribosomes from CY8.2 x CYI3 were partially resistamt 

in vitro but the growth of the dikaryon was sensitive. One possibility 

was that poly (u) was not limiting in vitro, and a detectable quantity 
of polyphenylalanine was synthesised by cycloheximide-resistant 

cytoplasmic ribosomes vrtiose activity was not inhibited by cycloheximide 

sensitive organelles. In vivo, mRNA may have been limited and there was 

insufficient protein synthesised to sustain growth. Alternatively, the 

difference in the response to cycloheximide in vivo and in̂  vitro may 

have depended on the quality of the polypeptide synthesised. A poly

peptide inhibited before it has been completed in^viro is of no benefit 

to the cell and therefore resulted in no growth. However, in v i t ^  

all polypeptide. Irrespective of size, was measured hy TCA precipitation.

i i )  Heterozygous for cy-2 and modcy loci.

The cytoplasmic ribosomes from CY9»23 ^ CY3 (cy-2  ̂modcy x cy 2 , 

modcy ) exhibited partial resistance to cycloheximide iii 

(Section 5 .6, Chapter 5). Unlike the response of CY8.2 x CY13 which 

W21S homozygous for modcy , CY9»23 x CY3 also exhibited partial reslstan 

to cycloheximide ^  vivo (Section 3»9t Chapter 3)* Dikaryons, in idiich 

and modcy*" alleles were organised in different nuclei, were also
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A cyoloheximide-seneitive .phenot>*pe would therefore he produced when 

sufficient cycloheximide-eensitive cytoplasmic ribosomes block translation on 

most mRNA or poly (u) templates so that cycloheximide-resistant cytoplasmic 
ribosomes were unable to synthesise sufficient polyi>eptide to sustain 

growth *If the proportion of cycloheximide-resistant cytoplasmic 

ribosomes is greater than that of the cycloheximide-sensitive 

cytoplasmic ribosomes, the probability of the translation inhibition 

would be reduced.

Cytoplasmic ribosomes from CY8.2 x CY13 were partially resistant 

^  vitro but the growth of the dikaryon was sensitive. One possibility 

was that poly (U) was not limiting ^  vitro. and a detectable q^uantity 

of polyphenylaJsJiine was synthesised by cycloheximide-resistant 

cytoplasmic ribosomes vrtiose activity was not inhibited by cycloheximide 

sensitive organelles. In vivo, mRNA may have been limited and there was 

Insufficient protein synthesised to sustain growth. Alternatively, the 

difference in the response to cycloheximide in  v ^  and in v i ^  may 

have depended on the quality of the polypeptide synthesised. A poly 

peptide inhibited before it has been completed in.viw is of no benefit 

to the cell and therefore resulted in no growth. However, in 

all polypeptide, irrespective of size, was measured hy TCA precipitation.

ii) Heterozygous for cy-2 aJid modey loci.

The cytoplasmic ribosomes from CY9»23 ^ CY3 (cy-2  ̂modey x • 

modey") exhibited partial resistance to cycloheximide ^  vitro 

(Section 5.6, Chapter 5). Unlike the response of CY8.2 x CY13 which 

was homozygous for modey , CY9«23 x CY3 also exhibited partial resistan 

to cycloheximide ^  vivo (Section 3*9» Chapter 3)* Dikaryons, in Uhl 

and modey“*“ alleles were organised in different nuclei, were also
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partially resistant in vivo (CY9.23.38 x CY9.23.137; cy-2^ modcy~ 

cy-2^, modcy^, North, 1982).

There were two possibilities for the effect of the modcy allele! 

either it stimulated the production of cycloheximide-resistant cytoplasmic 

ribosomes or it inhibited the production of cycloheximide-sensitive 

cytoplasmic ribosomes. The net result, which was believed to account 

for the partial expression of cycloheximide-resistance of the cell and 

in vitiQ, was that there was an increased proportion of cycloheximide 

resistant cytoplasmic ribosomes.

The effect on cy-2^ in either the c ^  or trans configuration 

demonstrated that the effect of modcy'*' was not restricted to the 

nucleus, but it was not known whether the product of the modcjr allele 

affected the biosynthesis of the cytoplasmic ribosomes in the nucleus 

or in the cytoplasm or if its effect was an the functional organelle.

A physical change to the cytoplasmic ribosome as a result of the 

modcy'*' allele was not detected. It was possible that the m o ^  

allele affected the same component or components of the cytoplasmic 

ribosomes as the cy-2^ aillele, either directly or indirectly 

Alternatively, it may have affected the metabolic processes which 

enabled a greater proportion of cycloheximide-resistant cytoplasmic 

ribosomes to translate . perhaps the permeability of the nuclear 

membrane was affected resulting in increased efficiency of biosynthesis 

of cycloheximide-resistant organelles. In the haploid cells of CY9.23 

there was no increase in resistance to cycloheximide. in comparison 

with CY9.23.98 (cy-2^,modcy") (Table ?.l. Section ?.4) which demons 

that the effect of the aodcy^ was only applicable to the circumstances
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partially resistant in vivo (CY9*23.38 x CY9.23.137; cy-2^ modcy~ 

cy-2^t modcy , North, 1982).

+
There were two possibilities for the effect of the modcy allele: 

either it stimulated the production of cycloheximide-resistant cytoplasmic 

ribosomes or it inhibited the production of cycloheximide-sensitive 

cytoplasmic ribosomes. The net result, which waus believed to account 

for the partial expression of cycloheximide-resistance of the cell and 

in vitro, was that there was an increased proportion of cycloheximide 

resistant cytoplasmic ribosomes.

The effect on cy-2^ in either the or trans configuration 

demonstrated that the effect of modcy“*̂ was not restricted to the 

nucleus, but it was not known whether the product of the modcy allele 

affected the biosynthesis of the cytoplasmic ribosomes in the nucleus 

or in the cytoplasm or if its effect was an the functional organelle.

A physical change to the cytoplasmic ribosome as a result of the
+

modcy allele was not detected. It was possible that the modcy 

allele affected the saune component or components of the cytoplasmic 

ribosomes as the cy-2^ aJ-lele, either directly or indirectly. 

Alternatively, it may have affected the metabolic processes which 

enabled a greater proportion of cycloheximide-resistant cytoplasmic 

ribosomes to translate , peiiiaps the permeability of the nuclear 

membrane was affected resulting in increased efficiency of biosynthesis 

of cycloheximide-resistauit organelles. In the haploid cells of CY9.23 

there was no increase in resistance to cycloheximide, in comparison 

with CY9.23.98 (cy-2^modcy’) (Table 7.1. Section ?.4) which demonstrated 

that the effect of the modcy^ was only applicable to the circumstances
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found in the dikazyons, ie. the competition between the cycloheximide- 

resistant and cycloheximide-sensitive cytopleismic ribosomes*

b) Diploids«

i) Heterozygous for the cy-2 locus.

In vivotdiploids heterozygous for cy-2 were sensitive to 

cycloheximide (eg CY8.2/CY18|cy-2^ modcy /cy-2^ modcy ), (Section 

Chapter 3 * CY9/CY9«23«20, North 1982). No data was obtained

for the response to cycloheximide of cytoplasmic ribosomes from

CY8.2/CY18.

The dominance of the cy-2^ allele in the diploid strain may be 

the consequence of some pox>ulation of cytoplasmic ribosomes discussed 

for CY8.2 X  CY13 (Section 7*6 a(i)); namely equal or greater numbers of 

cycloheximide-sensitive ribosomes relative to cycloheximide-resistant 

organelles or cytoplasmic ribosomes with a range of responses to 

cycloheximide • In the diploid, in contrast to the dlkaryon, it is 

more probable that any Interaction between cy-2 and c y -2 alleles 

occurred within the confines of the nuclear membrane, at the level of 

transcription of the mutant allele or the assembly of cycloheximide 

resistant cytoplasmic ribosomes. In vivo« CYC,? /  CY10 was more 

sensitive to cycloheximide than CY8.2 x CY13 which may be a consequence 

of interaction with the nucleus rather than between nuclei.

li) Heterozygous for cy-2 and modcy alleles.

In vivo and in vitro CÏ9.23/CÏ14 (oy-2*’ inodeyVcy-2° nodcy ) was
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sensitive to cycloheximide (Section 3*10, Chapter 3i Section 5*9i

Chapter 5). However, the dikaryotic strain CY9«23 x CY3 irtiich possessed *
the same alleles as CY9.23/CY1^ but divided into two haploid nuclei 

rather than one diploid nucleus, exhibited a low level of resistance to 

cycloheximide in vivo and in vitro. It was concluded, in vivo (North, 

1982; Chapter 3) and in vitro (Chapter 5)i that the difference in the 

expression of cycloheximide resistance was the result of the packaging 

of the genetic information and its effect on the cytoplasmic ribosomes 

possessed by each cell-type.

The inability of the diploid to exhibit cycloheximide resistance 

was because either, the cy-a'' and cy-2^ alleles or the modcy'' and modcy'

alleles, were together in the same nucleus. The second possibility 

could be discounted because a diploid homozygous for modcy , CY9*23*52/ 

CY9.23.IO2 (cy-2^ modcy^y cy-2^ modcy^ ; North, 1982) was sensitive to

cycloheximide.

The hypothesis proposed 'o explain the response of is

that the product of the o ^ ®  inhibits the synthesis of oyoloheximlde- 

resistant cytoplasmic ribosomes. In the dlkaryon, the product of the 

modcy* allele may affect the Inhibitory action of the cy-2® allele or 

protect or stimulate the synthesis of oyoloheximlde-reslstant cytoplasmic 

ribosome because the Hlld-type and mutant alleles of the 03̂  locus are 

separated Into two nuclei. The same response whether m o ^  is In the 

same or a different nucleus to the allele may be explained If the

effect of modoy* on the synthesis or function of cyoloheximide-reslstant 

cytoplasmic ribosomes occurs in the cytoplasm whereas the effect of 

cy-2® on cy-2’̂ occurs in the nucleus. Thus, In the diploid o ^

¡ m o t s  t l T ^  product before the product of the mo d e /  aUele exerts

its influence.
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r +The recessiveness of cy-2 and the effect of modcy in the 

dikaryon but not the diploid, has been discussed in terms of the 

interaction between nuclei on the biosynthesis and function of cyto

plasmic ribosomes. The speculation has been based on results of only 

a few strains and future investigations would be necessary to sub

stantiate the in vitro results in this investigation and to test the 

hypothesis proposed, particularly by the aiialysis of dikaryons and diploids 

with various combinations of alleles associated with cycloheximide 

resistance and by determininj: what type of cytoplasmic ribosomes are 

present in each strain.
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SECTION 7.7. FUTURE DEVELOPMENT OF THE INVESTIGATION.

The aim of this investigation was to identify cytoplasmic 

ribosomal genes in Coprinus cinereus. The approach employed weis to 

study strains idiich possessed cycloheximide-resistant cytoplasmic 

ribosomes. The investigation could have developed into a more 

thorough investigation of the cy-2 and aodcy alleles and the 

effect of nuclear interaction on their expression. Additionally, the 

mechanisms which other genes, cy-1, cy-3 and possibly undiscovered 

genes, conferred cycloheximide-resisteuice were possibilities for 

further analysis.

Alternatively, it may have been possible to identify cytoplasmic 

ribosomal mutants by studying their types of mutants*, iresistance 

to other antibiotics (eg, trichodermin, F^ied and Warner, 1981), 

temperature-sensitivity and abnormal cytoplasmic ribosomal assembly 

(Waldron and Roberts, 197^) and translational ambiguity mutants 

(Coppin-Raynal, 1977). The methodology would have been similar to 

that used in this investigation; mutatagenesis, selection, genetic 

etnalysis and biochemical characterisation. Employing recombinant DNA 

technology similar to that used "by Fried et al (1981) in Saccharomyc^ 

cerevisiae it may have been possible to identify directly cytoplasmic 

ribosomal genes.

Specific improvements which could be made to the experimental 

techniques employed in this investigation were;

Chapter 3»
To use alternative mutagens to ultraviolet radiation and different 

selection conditions to produce cycloheximide-reslstant mutants, or to 

induce cycloheximlde-sensltive revertants, in an attempt to identify 

mutations other than those found In the cy-2 complementation group.
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To produce cycloheximide-resistauit mutants with the pleiotrophic 

characters known in other eukaryotes (Section 3-3i Chapter 3 ) to be 

associated with the cytoplasmic ribosomes, thereby increasing the 

probability of identifying mutant cytoplasmic ribosomes.

Chapter

To complete the optimisation of all assay constituents (eg. 

the effect of î i), investigation the use of alternative constituents 

in order to maximise polypeptide synthesis and minimise costs (eg using 

Hepes buffer, replacing chloride ions by acetate ions) minimising the 

presence of inhibitors (eg using ribonucléase and protease inhibitors 

and removal of endogenous constituents irtiich may be inhibitory, eg.

L-C"*" phenylalanine).

To develop a mRNA dej)endant polypeptide synthesisng system 

in order to study the mode of action of cycloheximide, rather 

than using a system translating an artificaJ. poly (U) template.

To determine the proportion of functional cytoplasmic ribosomes 

in the RP-lOO fraction from different strains and different preparations 

in an attempt to improve efficiency of translation.

To determine the size of the polyphenylalanine product synthesised 

and the size of the poly (u) template.

Chapter 5.

To analyse more cycloheximide-resistant mutant strains, particularly 

those strains identified as representing the groups of growth responses 

(Chapter 3, Section 3.13c) and strains possessing mutations at the 

cy-1 and cy-3 loci.

296



To obtain functional cytoplasmic ribosomal subunits so that 

hybrid reassociation experiments aire possible in order to determine 

which cytoplasmic ribosome confers cycloheximide-resistance.

To analyse dikaryotic and, particularly, diploidic strains, 

and. to examine the response of various proportions of cycloheximide- 

sensitlve and cycloheximlde-resistant cytoplasmic ribosomes in order 

to test the hypothesis that mixed populations of cytoplasmic ribosomes 

may exist in heterozygous cycloheximlde-resistant strains to account for 

the observed Intermediate responses to cycloheximide (Section 5*6).

To analyse the response of varying the RP-lOO concentration 

in strains to determine if the results obtained with CY9.23-98 

(Section 5 .5) are found in other strains.

Chapter 6.

To produce consistent results for replicate analysis by 2D-PAGE 

and CMC-chromatography, thereby identifying and minimising 

contamination and the presence of artifacts and allowing the study of 

Inherent differences between the strains.

To Improve the resolution of the electropherograms and ohromat- 

ograins adapting the techniques to suit the specific requirements of 

Coprlnus clnereus, so that each stained spot and peak of radioactivity 

is a homogenous protein, distinguished from Its neighbours, possibly 

to analyse separately specific groups of proteins In condition ehloh 

maximise their resolution making It easier to resolve differences In 

»lld-type and mutant forms. In order to discover if cytoplasmic 

ribosomal ptoteln{s) confer cyclohexlmlde-resistance.
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To identify and correlate the cytoplasmic proteins of the 

electroj^erograms with the results of the CMC analysis, so that both 

techniques may be used together to analyse Coprinus cinereus»

To study cytoplasmic ribosomes from other strains, particularly 

from CY9.23.98 (cy-2^, modcy~) so that the effect of modcy found in 

CY9.23 may be determined and in other strains which possess mutations 

in the cy-2 complementation group to determine if there are allelic 

differences in the mutant proteins.

To analyse cytoplasmic ribosomal proteins from homozygous 

cycloheximide-resistant dikaryons and from diploids produced from 

CY8.2 and CY9.23 in order to understand the nature of nuclear interaction

on gene expression.
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SECTION A EFFECT OF CYCLOHEXIMIDE IN VIVO.

i) Determination of the growth response to cyclohexlmlde by 
Indirect comparison: Specimen calculation.

A specimen calculation of the type applied to treatments 

exhibiting slow growth. Is taken from the growth of the 

monokaryon CY6.2 (Table A 1 ). After 3 and 4 days Incubation, 

the respective growth at 36 and 1^2 ^  cyclohexlmlde 

averaged 60^ and 20^ respectively, relative to the OpM 

cyclohexlmlde control. At k days Incubation,growth at 285 jiM 

was measurable but liable to a relatively high experimental 

error and at 42? |iM there was no observed growth. After 5 

days, the colony on the control treatment filled the petrl- 

dlsh and growth on other treatments could not be directly 

related to It. If the growth on 36 jiM was assumed to be 6Q$(y 

as It had been at 3 and 4 days Incubation,the relative growth 

calculated at 1^2 and 285 jM cyclohexlmlde were similar to 

those observed at 3 or 4 days. When growth was observed at 

^27 jM cyclohexlmlde at 6 or 10 days. It was calculated to 

be 9^ relative to the control,If It was related to the growth 

at 1^2 ^  cyclohexlmlde which was assumed to be 22j6. The 

results demonstrate that the growth relationships between the 

different treatments was constant over the period of Incubation. 

Notes to tables A1 to AlO.
I^ss than 5 mm colony diameter after 6 days was recorded as zero

growth. A Indicates growth measured at 10 days.* Indicates the

minimum cyclohexlmlde concentration used In determining the linear

regression analysis over the inhibitory range of cycloheximlde 
concentrations.
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Tatle A2. Effect of cyclohexlmide on the growth of strains derived from CY6.

Cycloheximide
concentration(jiM) (log ICJiM)

Growth as % of 0 ^  cyclohexlmide treatment.
Strains

CY6.1 CY6.2 CY6.3 CY6.5 CY6.6 CY6.9 CY6.110 100 100 100 100 100 100 1000.36 -0.45 100 100 100 95* 93* 93* 95*0.89 -0.05 94 100 91* 90 91 88 951.8 0.26 100 93* 73 88 81 88 852.7 0.43 100 93 5^ 68 63 76 733.6 0.55 90* 96 53 44 39 56 598.9 0.94 81 85 17 15 14 14 1418 1.26 69 74 7^ 7^ 7^ 7‘ 7^27 1.43 64 65 0 0 0 0 036 1.56 55 6053 1.72 40 3971 1.85 29 341 no 2.04 24 291 140 2.15 22 221 210 2.32 23 181 290 2.46 18 141 360 2.56 16 141 3̂0 2.63 12 9^
1 570 2.76 8^ 6^1 710 2.85 7‘ 6^

Linear regression 
coefficient
Linear correlation 
coefficient
Calculated 50% 
W)wth inhibitory 
cyclohexlmide 
^ncent ration 
(fH)

-39.7 -39.1 -63.5 -58.6 -56.3 -61.0 -61.0

- 0.98 - 0.99 - 0.99 - 0.95 - 0.98 - 0.92 - 0.95

40.9 39.3 3.7 3.5 3.0 3.6 3 .^
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Table A?. Effect of cycloheximlde on various other strains.

Cycloheximide
concentration

(|M ) (log 10 ]M)

Growth as a 

Hi H2

56 of 0|iM. cycloheximide treatment. 
Strain.

H5  H9 TG4 SR54 WMR66a

0 100 100 100 100 100 100 100

0.002 -2.74 96* 100

0.004 ~ 2 M 98 100

0.009 -2.05 90 88*

0.018 -1.74 82 82

0.027 -1.57 74 85

0.036 -1.44 72 83

0.089 -1.05 16 40

0.18 -0.74 100 100 100 100 100 0 27

0.36 -0.44 91* 67* 90* 86* 92* 12

0.89 -0.05 89 78 88 70 90 0

1.8 0.26 69 53 45 59 84

2.7 0.43 47 51 47 53 73

3.6 0.56 32 42 37 50 49

8.9 0.95 0 20 7 15 0

18. 1.26 0 0 0

Linear regression -69.5 -52.4 -59.2 -51.3 -63.5 -51.0 -51.5
coefficient

Linear correlation - 0.95 “ 0.99 
coefficient

Calculated 50Ji growth 2.2 2.3
Inhibitory 
cyclohexiBide 
concentxation(^ )

0.97 - 0*98 - 0.87 

2.2 2.4 3.3

- 0.90 - 0.97

0.04 0.0
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SEC3TI0N B« IN VITRO POLYFHENYLALANINE SYNTHESIS.

l) A postmltochondrlal supernatant polyphenylalanine synthesising 

system.

In the early experiments with the polyphenylalanine synthesising 

system,descrlbed in Chapter Table 4.2,no synthesis was achieved.

In order to determine the cause of inactivity, a less complex ^  vitro 

assay was used (Table B.l) and the post-mitochondrial supernatant 

S-30 used, required fewer preparative steps than the RP-lOO and S-100 

fractions (Chapter 2, Section 2.?).

Originally Coprinus cinereus nycelium was frozen and kept at 

-70°C before the cell-extract was prepared and in vitro such cell- 

extracts produced no polypeptide. The cell-extracts prepared from 

freshly grown mycelium produced polyphenylalanine synthesis and were 

subsequently adopted for the preparation of functional cell-extracts 

(Chapter 2. Section 2.?)*

The assay was shown to be dependant on the S-30 fraction, but 

the activity of the system was low. However,when the S-30 fraction 

was passed through a Sephadex column (Chapter2, Section2.?) it was 

6 X more active that the untreated S -30 fraction (Table B.2)j 

Improved activity of the G-30 was considered to result from the 

removal of low moelcular weight Inhibtiors from the S-30. The cell- 

free system was dependant on polyuridylic acid, indicating that the 

6ndog6nou8 concentration of nBMA was low.
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Table B.l The Composition of the S-30 polypeptide synthesising system.

Constituent. Final concentration 
(nM, unless stated).

Adenosine - 5 ~ triphosphate .
Guanosine - 5 - triphosphate.
Creatine phosphokinase.
Creatine phosphate.
Tris-HCl, pH?.5 .
Magnesium acetate*
Potassium chloride.
Spermidine .
Dithiothreitol.
Polyuridylic acid.
L-( U-C^^)-phenylalanine (513 m Ci.mmole"^). 
G-30,postmitochondrial supematauit fraction.

Made to 100 jil with double distilled water.

k.O ug.ml”^

-1

2.0 unit.

The G-30 fraction was prepared from the postmitochondrial supernatant 

fraction,S-30,l^ passage through Sephauiex (Chapter 2, Section 2.?).

The reaction mixture was based on Saccharomyces cerevisiae

(Sissons, 19?ii.) and wheat germ (Marcu and Dudock, 19?i|| Roberts and 
Paterson, 1973).

Table B.2. The

on

Cell-extract.

G -30

S -30

No extract

The compositioi 

The S-30 concei 

polyphenylalanj 

Chapter 2, Sec1

The highJ 

the TCA precipi 

substrate utili

the efficiency 

presented by Sj  
cinereus systei

The rela'i 

upon had the 

not developed 

cycloheximide -1 

extract, G-30, 

therefore went

synthesising s}



system.

it ion 
âted).

on polyphenylalanine synthesis.

Cell-extract. Composition of reaction 
mixture.

Polyphenylalanine 
synthesised 
(jHaolephe. assay, h r . )

G-30 complete 18.1
complete minus poly(u) 5.9

S-30 complete 3.4
complete minus poly(u) 1.1

No extract complete 0.^

Ii:

>60 unit.

The composition of complete medium is described in Table B.l 

The S -30 concentration was 2.0 unit. The quantity of 

polyphenylalanine synthesised was determined as described in

Chapter 2» Section 2.9» _____ ______ ■■
The highest activity observed. 18.1 p.mole phe Incorporated into

the TCA precipitate .assay hr , (Table B2) had an efficiency of

substrate utilisation of 1.9!« (Efficiency =

the efficiency was similar to the efficiency calculated from data 

presented by Sissons (197^). the system on which the Coprinus 

cinereus system was based (Table b.l, Chapter b).

The relatively low efficiency achieved may have been improved 

upon had the assay been developed. The post-mitochondrial system was 

not developed because one of the objectives was to screen for 

cyclohexlmide-reslstant cytoplasmic ribosomes and the crude c e U -  

extxact, G-30, was unsuitable. The emphasis of the investigati 

therefore went on developing a RP-lOO/S-lOO in vitro polypheny 

synthesising system (Section b.b, Chapter b).
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i^) Estimation of the aediaentatlon coefficients of Coprlnus clnersus 

cytoplasmic rlbosomal sul)unlts.

Sedimentation coefficients were estimated from the position of the 

260 nm absorption peaks In sucrose density gradients according to the 

calculation and tables of McEwen (196?). In order to employ McEwen's 

method it was assumed that the ribosomal particles were Inert, non

diffusing spherical particles and that the linear sucrose density gradient 

was stable. It was also assumed that Coprlnus clnereus cytoplasmic 

ribosomes, like other eukaryotes (McCarty et 1 9 6 8) had a bouyant 

density of 1.4 g.cm” .̂

Specimen calculation

From data presented In Figure B1 (Section Bill) carried out as 

described in Chapter 2 , Section 2 .8 .

Centrifxigation conditions:

t - time(sec) from start of acceleration to start of deceleration 

= 6 .5h = 2 . 3 4  X 10^ sec

U) = angular velocity (rad.sec“!) = 2 . 9 5  x 10^ rpm

= 3 « 0 1 X 10^ rad.sec7 ^

= 9 .5 ^ X 10^ rad.secT
Thus Gj2t = 2.23 X 10^1 rad . sec7^

Sucrose density gradient.

InitlaUy, the sucrose density grsdlent was made as a linear 

sucrose, however after centrifUgatloni

(ml) the sucrose concentration at the top of the gradient = IJf 

(«) the sucrose concentration at the bottom of the gradient " 2 7 .5*

(tx) the sucrose concentration at the absorbance peak (P«d, a . Figure Bl)

-2

= 2 ^

Tabl^

i !
Repi



)prlnus clnereus

^sition of the 
ling to the 

>y McEwen'e 
iit, non- 

¡density gradient 
^oplasmic 

a bouyajit

The radial distances In the MSB 3 ^ 25 rotor were}

(r^) radial distance to the top of the gradient = 7.3 cm.

(rg) radial distance to the bottom of the gradient = 12.9 cm.

Thus, the sucrose concentration (zo) extrapolated at zero radius (ro) 

e q u a U e d  ^

The calculation of the Integrals of the sucrose concentrations (z^) 

and (z^) was achieved by reference to Table B3 and specified by the 

centrifugation temperature and particle density. The column 

chosen Is the one closest to the calculated value of (zO), namely

- 5 .0 .

led out as

Thus,

zx = 24^
= 1 3 ^

Integral
4.143

2.417

(The value of (zĵ ) used was Intermediate between 14^ and 12%),

Table B.3 Values of time Integral for sucrose gradient centrifugation.
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S20.W = Integral (z^) - Integral (z^)

Thus

= hAk2(i - Z M 6 8  

2.233 X  1 0 ^ ^
= 0.773 X 10‘^^sec

= 77.3 X lO'^^sec

S20 w = 77«3 S (Svedberg units).

Under dissociating conditions, Figure the sedimentation coefficients 

at majcimum absorbance at peaJc B (21/i) and C (18.5%)» were 5^.5S and 

36.95 respectively.
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1 li) Fractionation of Coprinus cinereus cytoplasmic ribosomes.

The conditions which produced a suitable resolution of 

Coprinus cinereus cytoplasmic rlbosomaJ. subunits were 

experimentally determined by varying the cation concentration 

of the sucrose density gradient and the conditions of 

centrifugation.

Centrifugation in Extraction Buffer produced a single 

absorbance peak (Peak A In Figures B1 and B5)f calculated by 

the method described in Section B(ii)to have an approximate 

sedimentation coefficient of 77-5 S (Table B.^ ) . It was 

assumed that this peak revealed the presence of cytoplasmic 

monosomes: no polysomes or cytoplasic ribosomal subunits were

present.

Two absorbance peaks resolved when the potassium chloride 

concentration was raised to lOOmM or more, and when the 

magnesium acetate concentration was reduced to l.OmM or less, 

were assumed to be produced by cytoplasmic ribosomal subunits. 

The large and small cytoplasmic ribosomal subunits, identified 

as peak B and C respectively in Figures B2, B3, B6 and B7, 

had estimated sedimentation coefficients of 53«I “ 57*8 S and

35.1 - 40.6 S respectively. The best resolution of cytoplasmic 

ribosomal subunits was achieved in 1.0 mM magnesium acetate and 

100 mH potassium chloride (Figure B4) and this buffer was termed
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the Dissociation Buffer (Chapter 2, Section 2.6). In 

Dissociation Buffer there was no evidence of cytoplasmic 

monosomes. The best resolution using Dissociation Buffer 

was achieved in a fast, short centrifugation rather than an 

equivalent overnight centrifugation (Figures B4 and B 6 j 

rpm^ X hr = constant, Baierleinand Infante, 19?6). The 

overnight centrifugation resulted in peak broadening.

Variation In the estimated sedimentation coefficients at 

different conditions (Table B4) may he explained hy the effects 

of diffusion of the particles and instahllity and loss of 

rihosomal material (Balerlein and Infante, 1976).
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v) Expression of cytoplasmic ribosomatl concentration. 

a) unit.

Throughout this investigation, the concentration of cell-extracts 

has been expressed in terns of the unit; 1.0 unit was defined

as the quantity of material which, when dissolved in 1ml, had an 

absorbance of 1.0 at 260nm, in a 1cm path length.

Alternatively, the concentration of the RP-lOO fraction may be 

expressed in terms of the protein content, (mg protein, ml ) and 

cytoplasmic ribosomal content, (either mg cytoplasmic ribosome.ml 

or p mole cytoplasmic ribosome.ml ^). However, in expressing the 

RP-lOO concentration in terms other than A ^ ^  unit , several 

assumptions were necessary, which introduced a degree of uncertainty 

into the calculations. (Section B.v. (b-d).).

b) mg cytoplasmic ribosomal protein, .ml.

The protein concentration of the RP-lOO and S-100 fractions were 

determined by the method of Lowry e ^  (195D and employing bovine 

serum albumin (BSA) as a standard protein. The protein concentration 

was then equated with the known absorbance at 260 nm. It should be 

noted that the estimate of protein content by the method of 

Lowry et al (1951) is subject to Interference from constituents in 

the Extraction Buffer and that different proteins used as standards 

react differently in the assay (Peterson, 1979)*

3 2 1



Table B.6. The relationship between unit and mg BSA protein, ml -1

Coorinus cinereus 
cell-extract

A2^unit equivalent to 
Img BSA protein, ml”^.

♦Optimised in vitro 
concentration.

*260 ir0pl assay

G-30 6.7 2.0 30
S-100 6.7 2.0 30
RP-lOO 18.2 2.0 11

The ontimised in vitro concentrations are 
Section 2.9i Table 2.2.

given in Chapter 2,

c) mg cytoplasmic ribosome, ml. ̂

-1

The concentration of cytoplasmic RNA was not determined. It 

was assumed that Coprinus cinereus cytoplasmic ribosomes contained an 

equal proportion of protein and RNA (as stated for eukaryotes in 

Table 1 .1, Chapter 1 ). Given that in mammalian cytoplasmic monosomes 

RNA absorbs at 260 nm to the same extent as ribosomal protein 

(Nleu«enhuysen et al, 1978: Wool, 1979) and assuming that all protein 

was cytoplasmic ribosomal protein then;
“1^0,2 = 1 og ribosomal protein.ml t 1 mg rRNA.ml .

Therefore
.-1

9.1 A  ̂ unit = 1 Dig cytoplasmic ribosome .ml.
260

In each 100 ¡>1 assay, 2.0
cytoplasBlc rlhosomes of «hich 11 ;ag is cytoplasmic rihosomal protein.

Alternatively, estimates for the ahsorhance at 260 nm of 1 mg 
cytoplasmic ritesomeB.m!'^ include, 13 ̂ 260 Saccharomy^
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cerevisiae (Sissons, 197^) i H  Schlzosaccharomyces.

pombe (Berry et al, 1978) and 9-3 A 2 6 o^nit for Saccharomyces fragUls.» 

(Rao and Grollman, 1967)

d) Molality of cytoplaismic ribosomes.

In order to determine the p.mole cytoplasmic ribosomes present 

in the in vitro assay, it was necessary to assume a molecular weight 

for Coprlnus clnereus cytoplasmic ribosomes because no value has been 

measured for this particular species. Assuming that cytoplasmic 

ribosomes of Coprinus cinereus are similar to other fungal species, then; 

the molecular weight of Coprlnus cinereus cytoplasmic ribosomes is 

approximately 3-9 x 10^ dalton (Table 1.1. Chapter l). Each 100 |.l 

assay contains 22 j>g cytoplasmic ribosomes (Section B (v.b).

Therefore each assay  was estim ated to co n tain  5-6 p.mole cytoplasm ic

ribosomes.

U t e m a t lv e  molecular w eights which have been used In clu d e ,

3.i, X 10^ daltons for Saccharomyces cerevisiae. (Sissons. 1 9 A )  and 

S c h i s o Saccharomyces pombe. (Berry et al, 1978).
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Table Cl> Effect of cyclohexlmlde on polypheiylalanlne synthesis
produced by RP-lOO and S-100 fractions from CY8 and CY8.2.

Cycloheximide Polyphenylalanine synthesised 
concentration CY 8 RP-lOO
(|iM) (log lOjiM) CY 8 S-100 CY8.2 S-100 CY i

{% of uninhibited control) 
CY 8.2 RP-lOO

B.2 S-100 CY 8 S-100

0 100 100 100 100

0.36 -0M 90* 87 - -

0.89 -0.05 79 81 - —

1.8 0.26 6k 68 - -

3.6 0.56 58 59 100 100

8.9 0.95 39 30 93# 98*

18 1.26 21 18 - —

36 1.56 18 15 90 99

89 1-95 5 8 83 81

180 2.25 3 k 71 77

360 2.56 

890 2.95 
1800 3*26 

3600 3*56 
5300 3*72

0 0 62

39
27
20

13

73
kz
20
1^
10

Linear correlation 
coefficient

-0.98 -0.97 -0.97 -0.96

Linear regression 
coefficient

-32.4 -33 A -32.3 -36.7

Calculated 50%
inhibitory
cycloheximide
concentration
(jH)

5 .1 k,6 k9 0 530

- = not determined
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