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AERODYNAMIC DESIGN OF ANNULAR DUCTS
BY

A.M. KLIER B.A., M.Sc.,

ABSTRACT

This thesis presents mathematical and numerical methods for 
designing axisymmetric annular ducts having geometries capable of 
supporting fluid flows with prescribed performance characteristics. 
Three basic numerical methods of solution are given and are used 
to obtain results to the known exact solutions for a class of 
axisymmetric, irrotational incompressible flow regimes.
Examination is made into the type of boundary conditions appropriate 
to control boundary layer behaviour and a new mixed boundary 
condition is derived to accomplish this. The technique is extended 
to cater for a class of swirling flows by investigating the 
derivation of a boundary layer approximation and further development 
allows the application of numerical iterative techniques to 
compressible flows with vorticity.
These methods are especially suited to generating duct geometries 
with predetermined flow characteristics.
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INTRODUCTION
This thesis presents mathematical and numerical methods for 
designing axisymmetric annular ducts capable of supporting fluid flow 
regimes with predetermined flow features. The primary approach has 
been to develop techniques whereby duct geometries may be 
generated having prescribed performance characteristics (an example 
being the avoidance of boundary layer separation ).
Initially the equations for axisymmetric, inviscid flow are mapped 
into the ($,Y) ‘DESIGN PLANE’ (DP) in which the ‘stream’ and 
‘velocity potential’ functions replace the special coordinates as 
the independent variables.
These design plane equations (‘DPE’) form the basis of all subsequent 
solution schemes. This set is reducible to a second order, 
non~linear, partial differential equation (PDE) in the radial 
coordinate y ( a similar equation being available for the axial 
coordinate ‘x ’).
Exact solutions to the DPE exist in the simplest case of 
irrotational incompressible flow. These solutions are given 
with some detail and are used as a test to validate the routines 
subsequently used to obtain numerical solutions for other flow 
configurations and boundary conditions. The PDE is approximated by 
finite difference forms and three iterative solution techniques are 
presented to obtain numerical results for the exact solutions namely
(1) Point Iterative Methods;
(2) Matrix Formulations;
(3) Numerical Technique based on an Integral Equation of a function 
of a complex variable.



In obtaining the numerical results for comparison with the 'exact' 
solutions, the boundary values of the space coordinates (x,y) are 
known and could be used as a B.C to determine the flow over the 
complete $,Y domain. However, alternative to this usual procedure 
of prescribing the known values of y ( or x) on the boundaries to 
solve the PDE in 'y', the equivalent and corresponding invariant 
distribution in the speed is applied.
Then, for some initial and arbitrary boundary distribution of *y’,
•the invariant speed distribution of 'q' ( known from the exact
solution) is used to calculate sucessive and varying boundary 
distributions of 'y' until both the boundary and field distributions 
in 'y' converge.
Computer progrsims were developed to obtain numerical results to all 
forms of the exact solutions and the results were found to be 
accurate to 10"^ relative error in the distributions of x,y,q.
However the five basic duct geometries and associated flows produced 
by these solutions are not considered suitable for applications to 
annular duct flow and due to the non-linearity of the equations the 
technique of superposition of solutions is not available to us.
Given the current unavailability of other 'exact' solutions it 
follows that further progress in determining duct geometries and 
corresponding flow patterns can most likiely be made via a numerical 
approach.
An important consideration in the design of annular ducts is the 
behaviour of the boundary layers (B.L) and in particular the 
avoidance of their separation would be an advantageous design 
feature. Randomly prescribed velocity distributions (PVD) do not



necessarily yield boundary layers having this characteristic and 
it is not apparent what form an invariant boundary condition 
might have in order to ‘control’ the B.L behaviour or any other flow 
feature in this way. However some feasable distribution is required 
on the duct walls in order to produce acceptable duct contours.
The methods derived by Stratford (Refs.11,12) for predicting the 
point of separation of the two dimensional plane B.L are here 
extended to the axisymmetric case by use of a transform due to 
Mangier (Ref.15). This yields a new ‘mixed* boundary condition which 
may be imposed at the duct walls to give velocity distributions 
which are on (or below) the point of separating for both the 
laminar and turbulent B.L.
The inclusion of this condition into the general numerical iterative 
scheme allows the calculation of duct shapes with this flow feature. 
A further transform is derived which enables this condition to be 
applied to a class of swirling flows having non-skewed B.Ls. The 
computer program is extended to cater for alternative B.Cs including 
(a) accelerating flows, (b) flows with sections of constant velocity 
and/or radius on either or both walls. The methods developed for 
incompressible, irrotational flows are then widened to include the 
case of flows with with arbitrary distributions of vorticity and 
speed across the duct at inlet.
The laws governing the transport of vorticity through the duct are 
included in the general numerical scheme and the results compared 
with the irrotational case. This vorticity is generated by 
prescribing a non~uniform axial velocity across the duct at inlet 
based on a parabolic profile together with a swirl compenent of
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velocity of the form ( a. y b/y ) both of which may independently 
contribute to non-zero vorticity distribution in the flow.
These profiles may be varied at will to show the variation of duct 
shape with change in velocity and vorticity distribution.
Finally the technique is extended to cater for compressible 
isentropic flow of a gas with constant specific heats and the 
numerical methods allow the effects of compressibility to be included 
in the solution schemes.
Again it is possible to prescribe an arbitrary distribution in the 
parameters of state (p,^,T) at some station of the flow (stagnation 
conditions say) to give some variation of the state variables 
throughout the transition region. In view of the substantial degree 
of flexibility afforded by this approach and the wide choice of B.Cs 
available, these methods could form the basis for a substantial 
amount of numerical experimentation to determine the interaction 
and effect of the numerous parameters that may affect the flow 
and hence the geometry of annular ducts.
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CHAPTER 1

In steady, axisymmetric, inviscid, irrotational flow the condition 
of continuity and the absence of vorticity are sufficient to 
define the familiar streaun and potential functions. Constant 
values of the stream function, Y, in steady flow coincide with 
the stream lines and these together with lines of constant $ 
form an orthogonal coordinate system over the flow field.
Solutions to the equations of flow are traditionally derived in 
either the (x,y) or hodograph plane, however by utilizing the 
definitions of the Y, $ functions, the equations of plane and 
axisymmetric flow in the (x,y) plane may be mapped to an equivalent 
set in the ($,Y) domain.
Laidler and Walkden (Ref. 10), Cousins (Ref. 6) et al. have used 
this approach to derive numerical solutions for inviscid, 
irrotational flow fields through axisymmetric ducts subject to 
a variety of boundary conditions on the duct walls.
The most obvious feature of this method is that the potential 
and stream functions now become the independent variables 
rather than the space cordinates (x,y,z or (0) ).
Laidler & Walkden obtained numerical solutions to the design 
problem of generating shapes for (non-annular) ducts subject to a 
fixed and prescribed velocity distribution varying as a cubic in 

length on the casing. Their inference was that it should be 
possible to design ‘quite short* ducts having ‘almost’ uniform 
inlet and outlet conditions satisfying this fixed distribution on 
ihe casing.



In Ref- 6, Cousins has obtained solutions for distributions of y 
(or x) prescribed at equal delta Y, $ intervals on annular duct 
boundaries to determine the geometry for flow past a point source. 
Having found the values of the radial coordinate 'y' throughout 
the flow field, the corresponding distributions of 'x’ and the 
speed ‘q’ are derived.
The ability to deal with rotational and compressible flows in a 
comparable domain would extend to such flows this
advantage of prescribing arbitrary boundary distributions of 
x,y,q or F(x,y,q) (an arbitrary function). It has proved possible 
to widen the definition of the design plane to cater for compressible 
flows with vorticity. The overall approach is to define an orthogonal 
coordinate system based on the differential relationships between 
vorticity, density and speed.
This allows us the freedom to prescribe arbitrary functions of 
x,y,q on the flow boundaries. Suitable numerical formulation of 
the flow equations then provide the solution to the flow problem in 
the design plane.
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ize.d Design Plane Equations

Consider the flow given by the complex velocity
Q = u - i.v = q.e'i©\
q2 z: u2 + v2

where
Z = X +

and 0 is the angle that the
X-axis.
Defining 6* = u

X
and Q* = V

X
Then Q = }̂.

= X - i.y ; i = (-!)• 5

z ♦
= ^ . [ ( u  + V  ) - i . ( v  - U  )]

X y X y
= [ €♦ - i.Q* ] [1.2.6]

where €* is the rate of expansion of the fluid and Q* the 
component of vorticity perpendicular to the (x,y) plane,
n̂d *s’ and *n’ are metrics parallel and perpendicular to the
flow lines of Q.
By using the idea of two comparison flows an orthogonal coordinate



set is defined over the flow field of Q.
(1) Consider the first comparison flow defined by the complex
[velocity Qi = T .e"i© = qi.e-ie = ui - i . vi ; qi = Y . [1.3.1]

n n
Since flows Q and Qi have a common direction at all points of the 
(x,y) plane then the metrics 's’ and *n’ are also parallel and 
perpendicular to the flow lines of Qi .
Suppose that T = T(x,y) is a real function of x and y and that 
the rate of change of T in the 's* direction is zero.
Now X = Cos0 ; y = Sin0 ; x = -Sin0 ; y - Cos0

s s n n
Y = 0  and Y =qi [1.4.1]
s n ^

r = Y .X + Y .y
S X 8 7 s

= Y .Cos0 + Y .Sin0 = 0
X 7

r = -( Sin0/Cos0 ).Y or Y = -( Cos0/Sin0 ).Y
X 7 7 X
r = Y .X + Y .y 
n X n 7 n

= - Sin0.T + Cos0.Y
X 7

= - Sin0.Y + Cos0.(- Cos0/Sin0).Y
X X

= -(l/Sin0).Y = (l/Cos0).YX 7
which gives the rate of change of Y normal to 's’.
Hence Qi = Y .e*ie = (l/Cos0).Y .(Cos0 - i.Sin0)

n y
= Y - i.(Sin0/Cos0).Y

7 7
= Y + i.Y = 2.Í.Y

7 X z
= U1 - i . VI

Therefore
Therefore

ui = Y ; VI = - Y with qi 2 = ui 2 + vi 2
[1.4.2a]Also = (ui) + (VI ) = T - Y = 0

X 7 X 7  7X
Qi* = (VI ) - (ui ) = - Y - Y =

X 7 X X  77
= - 4.Y = 2.i.Q [1.4.2b]* 2 ♦ z*

this flow has zero rate of expansion €*i but non-zero

//.



orticity component Q*i .
(2) Consider now a second flow defined by the complex velocity

Q2 = ^ .e~i® = q 2 .e~i® = U 2 - i.V2 ; q2 = $ [1.4.3]
s s

here $ = $(x,y) is real and let the rate of change of $ 
ormal to 's’ be set equal to zero.
Thus in this flow

$ = 0 and $ = q2
n s

=> $ = -Sin0.$ + Cos 0.$ = 0
n X y

=> $ = (sin0/Cos0).$ or $ = (Cos0/Sin0).$y X X  :
Hence $ = Cos0.i + Sin0.$

s X y
= (1/Cos0).$ = (1/Sin0).$

X y
=> Q2 = (1/Cos0).$ .(cos0 - i.Sin0)

X
= $ - ( S i n 0 / C o s 0 ) = $ - i.$ - 2.$

X y n j  z

->

[1.4.4]

U2 = $ ; v2 = $
X y

6 2* = (U2 ) + ( V 2 )  = $
X 7 X X

Qz* = (V2 ) “ (U2) = $
X y X y

’> of constant $ and Y defined

yy

yx
= 0

[1.4.3a]
[1.4.3b]

flows form an orthogonal family of curves over the domain of the
flow field of 'Q’ since if

$*(x,y) = 0 and Y*(x,y) = 0
are a pair of the set of orthogonal curves then

+ Y* .(dy/dx), = 0 and . (dy/dx) = 0* y \̂J/' X y *
Hence (dy/dx) = - Y*/Y* and (dy/dx) = - $*/$♦

X y ♦ X y

Hut the derivatives of Y(x,y) and $(x,y) along and normal to
^He streamwise direction are respectively zero.

/Z.



' thus Y*
s

= COS0.Y* + Sin0.T* 
X y

= 0
and n = -Sin0.$* + Cos0.$* 

X y
= 0

Hence Y* /Y* = -Sin0/Cos0 andz y X
Thus (dy/dx1 .(dy/dx) = (- Y* Y*

y X y
= (sin0/Cos0).(-Cos0/Sin0)
= -1 .

Hence the lines of constant Y and $ form an orthogonal set.
The rate of change of Y along ‘s ’ is known and equal to zero 
but the distribution of Y (i.e the speed qi in the direction 
of the normal, ‘n ’ ) is unspecified. Similarly in the case of 
the flow with speed q2 the distribution of $ along ‘n ’
( normal to ‘s’ direction ) is zero but its distribution along 
's’ is not yet determined. Once these distributions are specified 
the corresponding ones in €* and Q* are defined by equations [1.4.2b] 
and [1.4.3a].

i2.



Th^ Intrinsic Flow Equations.
By considering the differential of 

the flow speed *q’ in the directions defined by the coordinate 
system ($,Y), relationships between speed (q), direction (0), 
vorticity (Q*) and the rate of expansion (6*) can be established. 
For any function F
F + i.F = (Cos0.F + Sin0.F ) + i.(-Sin0.F + Cos0.F )s n X y X y

= ( Cos0 - i.Sin0 ).F + i.(Cos0 - i.Sin0).F
X y

= e - i © ( F + i . F )  =2.e-i©.FX y z ♦
Applying this differential operator to the function ln(Q) we have
(ln(Q)) + i.(ln(Q))

s n
= 2 .e-ie.(ln(Q))

z ♦
= 2.e-i©.Q-i .Q

z ♦
= 2 . e"i © . q-1 . ei © . Q

z ♦
= (2/q).[e* - i.Q*]/2 (from 1.2.6)
= (l/q).[€* - [1.5.1]

Now, the alternative expansion of the left hand side of [1.5.1] gives
(ln(Q)) + i.(ln(Q)) = (ln(q.e"i©)) + i .(ln(q.e-i©))

s n s n
= (ln(q) - i.e) + i.(ln(q) - i.9)

s n
= [ (ln(q)) + 0  ] + i.[ (ln(q)) - 0 ]

s n n s
On equating real and imaginary parts

(ln(q)) + 0 = e*/q [1.5.2]
n

(ln(q)) - 0 = -Q*/q_ [1.5.3]
n

Application of this differential identity to the two subsidiary
flows Qi and Q2 defined above yield the following relationships;

(In(qi)) + e = €*1 /qi = 0  [1.5.4] (from 1.4.2a)
s n

(In(qi)) - e = -Q*i/qi [1.5.5]
n s



(In(q2)) + e  - 6*2/q2 . [1.5.6]
s n

(ln(q2)) - 6 = -Q*2 /q2 = 0  [1.5.7] (from 1.4.3b)
n s

Now the derivatives with respect to 's’ and 'n’ may be replaced 
by those with respect to $ and Y as follows. For any function F
F = F.$ + F . Y =  F . $  + 0 = q 2 . Fs ^ s  * (Since Y = 0 By 1.4.1) 

s [1.5.8]
F = F.$ + F .Y - 0 + F . Y = q i . F  (Since $ = 0  by 1.4.4)
n « n * f n  - f n  ^  n [1.5.9]

Replacing derivatives with respect to s and n by those with 
respect $ and Y gives
q2 .(ln(q)) + qi . 0 = ^*/q [1 .6 .1 ]«- if"
qi.(ln(q)) - q2 . 0  = -Q*/q [1 .6 .2 ]

'f ^
q2 .(ln(qi)) + qi . 0 = 0 [1.6.3]
qi.(ln(qi)) - q2 . 0  = /qi [1.6.4]
q2 .(ln(q2 )) + qi . 0 = 6 *2 /q2 [1.6.5]

« t
qi.(ln(q2 )) - q2 . © = 0 [1 .6 .6 ]t
Eliminating '0 ’ between the equation pairs [1 .6 .1 ] & [1.6.3];
[1 .6.2] & [1 .6 .6 ] ; [1 .6 .3 ] & [1 .6 .6 ] gives after some rearrangement

q2 . ( ln(q/qi ) ) = 0*/q [1.6.7]
qi . (ln(q/q2 ) ) = /q

, r[qi/q2 . ( ln(q2 ) ) ] + [ q2 /qi . (ln(qi ) ) ] =
[1 .6 .8]

0 [1.6.9]
Defining the ratio of the speeds of the flows as 

A - q/qi ; B = q/q2 and A/B = q2/qi [1 .6 .1 0 ]
Then [1.5.8] and [1 .5 .9 ] may be written as 
^ ~ (q/B).F [1.6.11] ; F = (q/A).F [1 .6 .1 2 ]

n

then the set [1.6.7] to [1.6.9] may be writen as

/S'.



[ ln( A ) ] e * .B/q2 [1.7.1]

[ ln( B ) = -Q*.A/q2
t[(B/A). (ln(q/B) ) ] + [(A/B) . (ln(q/A) ) ] = 0

't T  *

[1.7.2]

[1.7.3]
If q, 6*, Q* are considered as known functions of $, Y and
A and B are known along one $ and Y characteristic
respectively, then equations [1.7.1] and [1.7.2] enable the
distributions of A and B to be calculated over the whole
($,Y) plane. If in turn, A and B are now considered known
throughout the domain then equation [1.7.3] allows q to be
determined together with the corresponding distributions of 6*•»

and Q* via equations [1.2.1] and [1.2.2].
The interdependency of this set allied to a suitable iterative 
numerical scheme will allow the evaluation of the A, B, q, x and y 
distributions over the complete flow field in the ($,Y) plane.



/nt.ernat.ive Derivation of an Equivalent Set of Equations 
With X v) as The Deoenden-b Variable.
Equation [1.7.3] may be expressed in an alternative form in terms 
of either of the space coordinates x or y instead of the speed q.
Since z = X + i.y ; dz = dx + i.dy 1.
and from geometrical considerations

ds = dx.CosO + dy.Sin0 2.
dn = -dx.SinO + dy.Cos0 3.

and 3.
dx = ds.Cos0 - dn.Sin0 4.
dy = ds.Sin0 t dn.Cos0 5.•»

dz = ds.Cos0 - dn.Sin0 + i.ds.Sin0 + i.dn.Cos0 
= ds-(Cos0 + i.Sin0) + i.dn.(Cos0 + i.Sin0)
= (ds + i.dn).(Cos0 + i.Sin0)
= ei ® . (ds + i. dn) 6.

From equations [1.4.3] and [1.6.10]
d$ = qz.ds = (q/B).ds 7.
dY = qi . dn = (q/A). dn 8.
dz = ei®.(B/q.d$ + A/q.dY)
dz = eie.(B.d$ + A.dY)/q 9.

= >

z = B . ei 0 /q

Eliminating 0 gives

or
X = (B/A).y * 'if
y = (A/B).X Hr »

(i) z = i. A. ei 0/q (ii)
(iii) TX =

t
-A.Sin0/q (iv)

(V) y  =
f

A.Cos0/q (Vi)

f X = -(A/B).y 
Hr

s y«
= -(B/A).x

Hr

[1.7.4]

[1.7.5]

/ 7 .



Eliminating x or alternatively y from [1.7.5] leads to the 
fundamental equations

[ (B/A).y ] + [ (A/B).y ] = 0Hr y  -r .
[ (B/A).x ] + [ (A/B).x ] r 0^  Hr « «

Either of the above may be used in place of [1.7.3].

[ 1 . 11 . 1 ]

[ 1 . 11 . 2 ]

For the purpose of determining the distribution of q in equations
[1.7.1] and [1.7.2] which are to be used in conjunction with
[1.11.1] , q may be found by eliminating 0 from [1.7.4].
Thus (X )2/B2 + (y )2/B2 r 1.

(X )2/B2 + (X )2/A2 ^ 2.
(y )2/A2 +

«
(y )2/B2 = 3.

r
(y )2/A2 +

Hr
(X )2/A2 = l/q2 4.

MT
own ( from [1 .7.5] and 2 &. 3 above)

[1.11.3]

dx = (B/A).y .d$ - (A/B).y .dY [1.11.4]
dy =-(B/A).x .d$ + (A/B).x .dY [1.11.5]

Hr *
Velocity components are given by

u = q2 . X /B = q2 . y /A (i)
♦ nr

V =: q2 . y /B = -q2 , x /A (ii)

And Y r -v/A ; Y = u/A
» y
$ = u/B ; $ = v/B
X y

Since dY = (u/A).dy - (v/a).dx ; d$ = (v/B).dy + (u/B).dx
Further algebraic and differential relationships are given in the 
appendices and will be refered to as necessary.
Equations [1.11.1] (or [1.11.2]) together with [1.7.2] and [1.7.3]
will yield the flow solution in terms of the distribution of *y’

[ 1 . 11 . 6 ]

[1. ll.'̂ 7]

or x’ with the distributi on in *q’ being derived via [1.11.3].



gHAPTgR Z 090190.2112

In this chapter the generalized design plane equations are applied 
in conjunction with the standard flow equations to an incompressible, 
irrotational, invicid, axisymmetric flow with zero body forces.
The equations of motion for such a flow are

u. u
X

V. u
y = -d/|

U . V
X

+ V. V
y

- w2 /y = -d/(
u . w

X
+ V . w

y
+ V .w/y = 0

(y.u) + (y.v) = 0X y
with the vorticity vector given by

[2.5]Q* = [ (y.w) ].X + [ -(w) ].î  + [ V - u ] .Q
7 X X y

The generalized design plane equations (see Chapter 1; [1.7.1] &
[1.7.2] & [1.11.2] ) are

[ ln( A ) ] 
[ ln( B ) ]

= €*.B/q2
= -Q*.A/q2

= 0[ (B/A).y ] + [ (A/B).y ]
€♦ = u + V and Q* = v - u 

X y y X
Expressions are derived from the flow equations [2 .1 -2 .5] above
where

for the quantities 6 * and Q* and substituted into [1.7.1] and
[1.7.2] whence the functions A and B are evaluated. Substitution 
into [1 .1 1 .1 ] gives an equation for solution in 'y’.
Swirl Velocity.

Since the vorticity vector is zero then the individual 
components are zero and from [2.5]
(y.w) - 0 ■ - 0  . ^ = 0 by virtue of axial symmetry.

y X ©
Hence (y.w) = 0 ; (y.w) = 0 ; (y.w) = 0

y X 0



}

Therefore (y.w) is constant throughout the flow field.
Hence = k® (say) where k® is constant [2.6]
Thus, for irotational flow, the swirl velocity is of the form

w = k®/y [2.7]
The Functions A and €*

From the equation of continuity [2.4]
(y.u) + (y.v) = 0

X y
Hence y.(u + v  ) = - ( u . y  + v.y )

X y X y
Hence €*=:u + v = - ( u . y  + v.y )/y

X y X y
= - (u.(In y) + V.(In y) )

« y
= - [q.Cos0.(ln y) + q.Sin0.(ln y) ]

X y
= - q.[x .(In y) + y .(In y) ]

8 X s y
= - q.(In y)

s
= ~ <l-<l/^-(ln y) (from [1.6.11])

«
Therefore €* = -q2/g,(ln y) or (In y) = -3.€*/q2
Substituting for 6* into equation [1.7.1] gives

Therefore
[ ln(A) ] = €*.B/q2 = - [ ln(y) ]
[ In(A.y) ] = 0

A.y = gi (T) where gi (Y) is an
arbitrary function of Y. It follows that the function A is 
given by a = gi (Y)/y [2.8]
Ihe_functions R and Q*

From the 0 component of the expression for
vorticity we have 
but from [1.7.2]

->

(2* = V - u = 0  X y
[ ln(B) ] = -Q».A/q2 
[ ln(B) ] = 0

sr
® = g2($) where g2($) is an arbitrary function of

^0



Since both gi (T) and g2($) are arbitrary we may set
-gi (Y) = g2($) = 1

Hence A = 1/y ; B = 1 [2.9]
Substituting these expressions for A and B into equations 
[1.11.1 to 7] gives the following set;

= 0[ (1/y)-y ] [2.10.1][ y-y 3 +
(X )2 (y )2 = (x )2 + (y.X )2

»
(y.y )2 + (y )2 = (y.y )2 + (y.x )2

l/q2 [2.10.2]

Further substitution into [1.11.4] and [1.11.5] gives the physical 
coordinates as

dx = y.y .d$ - (l/y).y .dY 
dy = -y.x .d$ + (l/y).x .dY 
X = -(l/y).y ; x = y.yTherefore

and ( 1 / y ) . X ; y = -y-x,
Hr ^ ^ Y

and [1.11.6] yields the velocity components
u = q2 . X = q2 . y . y

*  Hr
V = q2 . y z: -q2 .y.x

« Hr
Y i:-y.v ; Y = y.u
X y

$ - u ; $ - V
X y

dY = u . y . dy - v . y . dx

[2.10.3]

with
[2.10.4]

[2.10.5]

d$ = v.dy + u.dx [2.10.6]
There is no loss of generality in choosing gi (Y) = g2 ($) = 1. 
For suppose that A = gi (Y)/y and B = g2 ($) then the basic 
equation [1.11,1] becomes

[ (g2 /gi ). y . y ] + [ (gi /g2 ) . y /y ] = 0

2/
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Since g2 and gi are, respectively, functions of $ and Y alone, then
-we may write, 
Hence

g2 . C(l/gi ) .y .y ] + gi . [(l/g2 ) .y /y ]«> «>

(1/gi ).[(i/gi )-y*y 3 + (l/g2 ).C(l/g2 ).y/y ] = 0

= 0

[ 2 . 1 1 ]

Hence

gl and g2 are non zero.
dY* = gl (Y) .dY and d$*
Y* = gl (Y) and
f•r any function F 
F - F .Y* gl (Y).Fy y* r y*
F = F .$♦ g2(Y).F

F = (1/gi (Y)).F ; F =
y

g2 ($) . d$ 
g2 ($)

= >

Substituting into [2.11] gives
[y.y ] + [(1/y)-y 3 = 0

which is identical in form to [2.10.1]
Similarly the equations set [2.10.4i] will transform into matching 
forms. The choice of different functions gi (T) and g2($) 
merely implies a mapping from some plane ,Y( ̂ ) ) to another
plane (f( 2) ,y( 2) ) (say) .
Change of Dependent Variable.

The equations may be written in a 
more convenient form by making the substitution

r = y2 [2.12.0]

Thus the equation set [2.10.4i] becomes



r + (In r )
(r )2 + (l/r).(r )2 =

4r.(x)2 + 4(x)2 =
(r )2 + 4r. (x )2 =

T  *(l/r).(r )2 + 4(x )2 = 4/q2 (iv)
4> 4

dx = [r .d$ - (In r) .dT]/2 (

[ 2 . 1 2 . 1]

[ 2 . 1 2 . 2 ]

[2.12.3]

dy = - r- 5 . X . d$ + r~ • 5 x . dY (i i)
X = r /2 ; X = -(In r )/2

« ir  «
U = q2 . r /2 = q2 . X (i)
V = - r- 5 , q2 . X = r~ • 5 . q2 . r /2 ( i i )\fr «
ds = d$/q ; dn = dY/(q.r-5) [2.12.6]

Once the distribution of *r’ has been obtained by solving 
equation [2.12.1] the distribution in x may be derived via [2.12.4]. 
Substitution for x,r (which are now known) into any of [2.12.2] will 
yield the speed *q’ with its components in the *x’ and *y’ directions 
given by [2.12.5]. Exact solutions of the separation of variable type 
do exist for equation [2.12.1] and their general form has been given 
by Cousins (Ref. 6) and reference made to the unsuitability in 
applying them to flows through annular ducts.
However in the interests of having a set of exact solutions in closed 
form which may be used as a basis to test numerical techniques, the 
specific form of the solutions to [2.12.1] are now derived and a 
description of the corresponding flow patterns given.

Z3



^Exact’ ^^lutions By Separation of Variable.
In discussing the exact solutions it is 

convenient to make the following substitution 
Let z = 2x ; Q = 2/q
This transform is a particular case of a more general one used in 
deriving further numerical solutions to the basic equations and 
with this mapping the governing equations become

r + (In r) = 0  [2.12.1]
r2 + r2/r = r . z2 + z2 ::: r2 + r.z2 = r2/r + z2 = Q2 [2.12.2. a]

- (In r ) [2.12.4.a]z = r ; z =
Separating the variables let

r($,Y) = P(Y).F($)
Substitution into [2.12.1] gives

(F.P) + ( In(F.P) ) = 0
Hence P = -(1/F).(ln(F)) = ki (ki = constant)
-> P = ki
and (1/F).(In F) = - ki
Equation [2.13] may be integrated directly to give

P(Y) = ki .Y2/2 + p2Y + P3
where p2 and p3 are arbitrary constants.
Equation [2.14] yields five independent solutions for the function 
E($) and the corresponding *z’ coordinate is derived via 
[2.12.4.a].
CaseXXl ki = 0 ;
If ki - 0 then (In F ) = 0

(In F ) = k2 .$ + k3



n
< )

Hence Fi = F($) = exp(k2.$ + k3) -
= k4 .exp(k2 .$) (where k4 = exp(k3) > 0)

ki 0 
Ü = ln(F) => U = F /F

« «

Therefore equation [2.141 becomes
= -ki . eU 
= - ki . e^ . Ü

and F = eo

=>

(U 2 /2) r -ki . (eU )«> «> *
U 2 = 2.(k5 - ki.eU) (where k5 = arbitrary constant)
[ (1 /F). F 12 = 2. (k5 - ki . eU ) = 2 . (ks - ki . F )
F = a.F.(ks - ki .F)- 5 where a = ± 2- 5

r> d$ = dF/[ a.F.(k5 - ki.F)-5]
Let F = V2 r> dF = 2.V.dV.
df r 2.V.dV/[a. V2 . (k5 -ki.V2).5] =a.dV/[V.(k5 -ki.V 2 ). 5]
Integrating with respect to $ gives
$ + ks =a.I(k5 ,ki) where I (ks , ki ) = I dV/ [ v . (ks - ki . v2 ) • 5 ]
Different combinations of the constants ks and ki lead to the 
following evaluations of the integral l(ks , ki ) 
where Mi = mi/m2 and = $ + ke (ke = arbitrary constant)

ks ki I(ks ,ki ) Fn = Vn2
0 m2 2 i/(m2.V) -2/[m2 -$132

0 -m2 2 l/(m2 .V ) 2/[m2 . $132

mi 2 m2 2 Sech-i [V/Mi ]/mi Ml 2Sech2 [mi .$1 /a3
mi 2 -m2 2 Cosech-i^ [V/Mi ]2mi Ml 2 Cosech2[mi .$1 /a3
~mi 2 m2 2 Cosech'i [V/Mi3/i.mi Ml 2 Cosech2[i.mi .$1 /a3
-mi 2 -mi 2 Sech-i [V/Mi 3/i.mi

Table 2.1
Mi2Sech2 [i.mi .$1 /a3



Applying the standard relationships between the hyperbolic 
functions and their trigonometric counterparts and absorbing the 
alternative sign in the constant 'a’ into 'mi’ the complete 
solution for ‘r’ in [2.12.1] is obtained by combining the Pn [Y] 
functions from [2.15] with the Fn[$] in the table above. Thus 
since (i) Cosech2(-X) = Cosech2 (X), (ii) Cosech2 (i .X) = -Cosec2 (X) 

(i i i) Sech2 (i. X) — Sec2 (X ).
Then linear substitutions for Y and $ (̂ i ) of the form

Y* = ai + a2 . Y

and = bi + b2 .$
(where ai,a2 ,bi,b2 are constants depending on the arbitrary 
quantities mi ,m2 etc.) allow the solutions for 'r’ to be written 
as listed below (the sub. and superscripts having been dropped).

Exact Solutions for nfsf +__(In = g

$- 2
2

Sech2($) 
Cosech2($) 
Cosec2($) 
Sec2 ($)

Table 2.2

x6



V t

Xn
1 m
5 r® = Y • ®*
1 M  = ( a -  T2).i-2
2 r2 = ( a - T2).«-2
3 r3 = ( a + T2).Sech2(®)
4 r< = ( a - T2 ) .Cosech2 (Í)
5 rs = ( a - T2 ) .Cosec2 (5)
6 re = ( a - T2 ) ,Sec2 (®)

Table 2.2 (contd.)
Derivation of the 'x' coordinate solutions'are made via equation 
[2.12.4.a].
Thus from the solution for r4 we have (droping subscripts) 
r = (a - Y2 ) .Cosech2($); In r = ln(a -Y2) + 2.ln(Cosech($))
From [2.12.4a]

ZO = (e« - Y)/2
Z1 = Y/$ + b
Z2 = -Y/$ + b
Z3 = Y.Than($) b
Z4 = Y.Coth(^) + b
Z5 = Y.Cot($) + b
Z6 = -Y.Tan($) + b

z = r = 2.x
4* 4

z = - (In r) = 2.x

But r = -2.Y.Cosech2($)
=> X - -Y.Cosech2($)
Integrating w.r.t $ gives

(In r) = -2.Coth($)
X = Coth(f)
Integrating w.r.t Y gives

X = Y.Coth($) + G*(Y) (say) ; x = Y.Coth($) + H*($) (say) 
Comparing the two forms for *x’ we have G*(Y) - H*(i) - constant 
Hence x = Y.Coth($) + b
Expressions for the other *x’ solutions are derived in a 
similar manner. The constants in the xi solutions can be 
eliminated without loss of generality by the substitution

Xi * = Xi - b
Solutions 'rs’ and *rs’ are in fact identical as can be seen y





„aklng the substitution $ = ic/2 -
=> Tan($) = Tan(x/2 -Í») = Cot(í»)
and SecMi) = Sec^ Ot/2 - ) = Cosect ($*)
-> x6 : -T.Tan(«) = -Cot($»)
and re = ( a - T2).Sect($) = (a - Tt). Cosect ($*)
«hlch is the same form as solution T s ’and need not be considered 
separately. Similarly for 'ri ’ and 'rz’.
Surfaces of constant $ and T are found by eliminating 4 and T 
from the coordinate forms in table 2.2. These surfaces form, 
in general, pairs of families of orthogonal, confocal conics 
symmetric about both the x and y axes. All flows are source/sink 
flows having point or line singularities where one or more of the 
velocity components becomes infinite. By considering the change 
of sign of the velocity components u,v with respect to the x and 
y axes along lines of constant Y and 4 , the flow patterns may 
determined as shown in Figs 2.1, 2.2, 2.3, 2.4, t h e  solid and dotted 
lines denoting lines of constant Y and 4 respectively.

QT-^.hogonal ^~T Lines.

n Lines of Constant Y
0 y2 =4.(Y/2) . ( X - (-Y/2))
1 y =(±).((a-Y2). 5/Y).x

of Constant $ 
y2 r 4.(e«/2).(e«/2 - x) 
x2 + y2 = a/$2

3 X2/Y2 + y2/(a + Y2 )
4 X2/Y2 - y2/(a - T2) 
 ̂ y2/(a - Y2 ) - x2 /T2

: y2/(aSech2$) - x2/(aThan2$) = l 
:y2/(aCosech2$)+ x2 /(aCot-h2$)-1 
:y2/(aCosec2$) + x2 /(a. Co-b2$) = l

2 9 .
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Range of * a ̂Range o f  T

- oo < $ < oo
0 =< $ =< • 21 ^

- oo =< $ =< <“ :
- oo =< $ =< oo • 3̂ 0

k.TC =< $ =< (k+D-Ti : a >= 0

: t

j

The speed and velocity components are calculated from [2.12.2 and 5].
Thus from q2 = 4.(r 2 t r 2/r)-i : u = • r /2 : v = q2.r-s.r^/2

y/ « T
The speed and veloci'ty components are given by

n q2

0 4. (e2* + T.e*)-i
1 $Va

u
: q2.(e«/2)
: -q2 . ( Y . 2 ) , a- 5

; q 2 ( Y . e « ) - 5 / 2  

: -q2 (Y.$-2 ) .a- 5

3 (sech2$.(Y2 + a.Than2$))-i

4 (Cosech2$. (a. Coth2$-Y2 ) )-1

5 (Cosec2$.(Y2 + a.Cot2$))-i

q2.Y .Sech2 $ 
-q2YCosech2$ 
-q2 .Y.Cosec2$

-q2 ( a+Y2 ). 5 . Sech$ . Than$ 
-q2 (a-Y2 )• 5 Cosech$Coth$ 
-q2 (a-Y2 )- 5 .Cosec$.Cot$

The solutions of the form ’y^ = P(T).F($)'. although exhibiting 
interesting properties in themselvesi do not have flow geometries of 
the type usually associated with annular ducts .
Further since the non-linearity of of the equation precludes the use 
of the process of super-position of solutions, it is necessary to 
develop numerical methods to obtain further solutions to the 
flow equations in the design plane. The three methods used are
(i) Point Iteration (ii) Matrix Formulation (iii) Integral Equation 
of a complex variable and are presented in the next chapters.



CHAPTER 5

In this chapter two numerical iterative techniques for solving the 
equations of incompressible, irrotational flow are described 
together with their theoretical justification where necessary.
The two methods discussed are (1) Point iteration, (2) Matrix 
Formulation. The discrete forms of the equations are given and 
used to obtain numerical solutions to the fundamental equations 
which are compared for accuracy with the exact ones derived in 
Chapter 2. The nature of the boundary conditions is examined 
and an acceleration procedure is given which will improve the 
rate of convergence of the iteration.

plane represented by the strip ABCD and its counterpart A 
in the ($,Y) plane. The strip ABCD is bounded by curves along



-lífi-

 ̂i

■ es of constant « and T with $i and «o representing the 
llllt and outlet stations of the flow respectively and Tl and 
TO forming the inner hub and outer casing boundaries. The 
transform of Chapter 1 (Equations [1.11.1] et seq.) maps the strip 
ABCD into a rectangular domain A-B'C’D ’ in which the lines of 
constant i and T form an orthogonal coordinate system with the 
speed q = (u2 + v2)-5 having, by definition, no component in the

Y direction.
The rectangle A ’B ’C D  is sectioned by an n by m mesh at equal di 
and dT intervals. Since . io ,Tt and Tu are arbitrary the 
following transform is employed to map A ’B-C-D' onto the unit square;

C . X f q  = c /q
2 1 3 1
c /v f w  = c /w ; Q
3 1 3 1
; « - ($ - c )/c

1 6 7
c = Y -Y ; c = ^
5 u L 6
)2 ;

f

c = ( c /(2.C )
2 5 7

where c = T  ; c  - Y "Y ; c  ^ . ’ ^ 7

and c =(c /
The transform is linear in the variables x,r,$,T the velocities, 
however, being replaced by their reciprocals.
The differential coefficients of the transform are give y 

d/dY 3 (l/c5 ).d/dTi ; = (l/c7 ).d/d$i
d2 /dY2 - ( 1 /C 52 ) .d 2 / d Y i2 ; d2 /d $2  = ( l / c ?2  ) .d 2 / d $2

Thus the set of equations [2.12.1] to [2.12.5] becomes 
(dropping the sub-scripts)

r + (In r) = 0
(r )2 + (j. )2/r = r. (x )2 + (x =
V  « V  *

)2 + r.(x )2 = (r )2 /r + (x )2 = q2
t f ^ «>

[3.2]

[3.3]



dx = (r ).di - (ln(r) ).dT
t

 ̂ = X (d) : X - -

u-l = q-2 .X - q~ 2 . r
Sr

Y" 1 — ~q.” 2 .x = r- 5 . q- 2 . r

0 r< T =< 1 ; 0 -< * -< 1

A suitable finite difference representation of equations [3.2] to
[3.7] Hill yield numerical solutions for comparison with their exact

••counterparts.
Rcnndarv Conditions.
Inlet
At inlet, on $ = 4i , the values of the coordinates r, x are 
calculated from the exact solution at equal delta T intervals 
across the duct and remain fixed throughout the iteration.

Outlet
As for inlet but, at, ^ = $o .
Inner and Outer Wall Condibions.
On the duct walls, represented by Yu and Yl in the ($,Y) p 
the speed 'q’ is known from the exact solutions and may be 
calculated at equal delta $ intervals along the duct walls from 
inlet, $1 , to outlet, $o. This speed distribution on the walls 
remains invariant throughout the iteration but, given some 
initial distribution in the radial coordinate, r( ®) say, on the 
duct walls, this invariant speed distribution will imply a 
distribution in 'r’ on the duct walls varying continuously as the 
Iteration proceeds.
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Denoting the value of any function F(Y,<.) at the point (T. ) in

the (T.$) plane by Fi . j . then we may approximate its first and
second order differentials with respect to T and $ by 

Y = ( F - F )/(2.dY)
i+l»j i~lij

/  = ( F C3.8]
F * , ( /  - 2 .F t F )/(dY2 )
UfM* i+lij i-l»j
p - ( F - 2 .F + F )/(d$2 )

i,j+l iiJ
Substituting th e forms [3.8] in to  eq u a tio n  [3.2] gives
,, , >/l« 0  . < . - 2 .» . R ^

i+l,j i.j 1 -1 . J
where Ri, j - In (ri , j ) •
Solving for ri. 0 or Ri. j yields two equations either of which 
may form the basis of an iterative routine to calculate ri, j 

(or Ri,j) at a given mesh point.
Thus making ri, j or Ri, j the subject of [3 .8a] gives
r [r + r  +Di.ln(r .r /r2 )]/2 [3.9]
i.j i +1 , j i-i. j i. j+i 1 . J 1  ̂« J
R = (R + R + D2 [exp(R ) " 2 .exp(R_
i.j i.j+i i.j-i ’ [3 .1 0 ]

)]

where
Di r (dY/d$)2 ; D2 = (d$/dY)2 ; Ds = dY/d$ ; D4 - d$/dY [3.10a]
H e n c e  denoting ri.ji*«) as the k^-n iterated value ri . j w e  have
from [3.9] as a possible iterative routine

= 5 r r(k) + rik) + Di . ln( rCi) .r(X>  ̂  ̂ [3.11]
i.i i+l.j i-i.j
with a similar expression being available for [3.10]-

dve to [3.11] based on Newton’s method for finding aAn alternat:



root of r = f(r) is
p(k> = .5.[r<^> + r(k> +Di . { 2 + .r<^> }]/[!+ Di/r<k>]
. .  i + l , j  i - l . j  i , j + l  i . j - l  i | j

[3.12]
and similarly for [3.10]. For the most part [3.11] will form the 
basis of the iterative calculations.
The application of the prescribed speed distribution on the walls 
is made via one of the forms of equation [3.3]. The most convenient 
representation is that involving only r and its derivatives, 
thus r2 + r2/r = q2 [3.2]
may be approximated by
(r - r )2 /(2 .dY)2 + (1 /r )(r - r )2 /(2 .d$) 2 = q2

i+l,j i - l , j  i | j  i | j + l  i » j
[3.13]

/T'

Fig 3.2



For use at the upper and lower wall boundaries we solve 
successively for ri+i,j and ri-i.j and letting i = 1 , 1  for upper an 
lower boundaries respectively (see Fig 3.2) we have 
r(k + i) = r(k) + [(2dYq )2 - Di.(r<k) - r(k) )2 /r(k) ]. 5
i + 1 I j i - 1 , j 1 . J i , j +1 i , j " 1 X * J [3.14a]

r(k*i) = rOO - [(2dYq )2 - Dl . (rO^) - r(k) )2/r<lO ]• 5
i-l.j i*i.i '-i ‘-j** [3.14b]

%
Boundary Conditions In Finite Pxff.grQftge Foym
Inlet. The inlet conditions are known from the exact solution 
and remain fixed throughout the iteration. Thus ri , i is known
along the inlet $ characteristic,

ri , 1 = (Known) i- 1 to I.
Outlet As for inlet. ri, J = (Known) i= 1 to I.
Inner and Outer Duct Walls., The speed, q, is prescribed at equal
delta $ intervals along the inner and outer walls represented by

Y = Yi and Y = Yi .
Hence qi , j is known for i = l,I and j = l,2...,J* on AB and CD in 
Fig 3 .3.. These speed distributions are invariant throughout the 
iteration but the corresponding ri. j are not constant on these 
stream lines. Equation [3.11] is used to calculate sucessive
approximations for ri , j for i = l,2 ...I» j - 2,3..(J 1).
In calculating ri. l on the upper and lower boundaries, Yi and Yn, 
the values of ri+i,jand re,j on the false boundaries ar 
required. These are calculated via equations [3.14a] an [ 
which involve the application of the prescribed speed distribution

on the walls.
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Coordinate

[3.5]„ 51 we have x = r (i) and x = - ( In r ) (ii)
From [d.oj ^ ^  *

A discrete forward difference representation of [3.5] (i) &• (ii) is

(X - X )/d$ = (r ~i,j+l i.j i+l.J
and (X - X )/dY = (-1/r ).(r

' ¡»i.i i.j ‘-i ‘-J*'
Solving for xi, j+i and xi+i, j gives

r )/d$ 
i I J

[3.15a]
[3.15b]

X = X. +D4.(r
i,j+l i.j i+i.j

X = X - D3.(r /r - 1)
Since xl!l’\ s  kno^m at inlet, then with i=l, [3.15a] may be used
to calculate xi. j for j = 2.3...J along the characteristic Yi .
Then for any given j = a (say) equation [3.15b] yields the values
of xi,a across the duct along the characteristic 4a for i = 2 to I
In this manner, the x-coordinates are calculated over the whole

($,T) domain.

Method 2.

From [3.5(i)]
differentiating w.r.t $ we have
With alternative finite difference forms for x , xHr
[3.5(i)] & [3 .5 (iii)] may be approximated as 
(r - r )/(2.dY) = (x ~ . )/(2 -d$)
i+l,j i-l,j i.j+1 x,j-l

(l/(4.dT.d4)).(r ^ ' ^ * 1  j-. ' "i+l,j+l roiCVvl= (X - 2.x t X )/d4 [316b]
i,j+l i.j i.jl

r = X«
r = X

Solving [3.16a] and [3.16b] for xi,j + i and xi, j respectively gives
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X = x  +D4.(r - r  )i j +1 i.j-1 i +1.j i-1 .j
[3.16c]

X =(x i , j i . J +1
+ X )/2-(l/8).D4.(r +r -r +r

1 > J i+l,j+l i-l,j+l
[3.16d]

By setting 3- 2k in [3.16c] the (*odd’) values of xi,2k+i can be 
determined and hence with j = 2k in [3.16d] the intervening 
('even’) xi,2k are calculated.
The values of the x-coordinates calculated by methods 1 & 2 above
give x’s whose average % deviation from the exact solution is
about five times greater than that for the *r’ coordinate. These

•»
errors, although small of the order of 10*2% are cumulative and 
can 'build up’ with increasing mesh size. An indication of this 
can be seen in the plot of a solution in Fig 3.3 (i).
To improve the accuracy of the 'x ’"coordinate solution a secondary 
iteration routine for 'x’ may be used. By forming a second order 
PDE in ‘x’ and using the values of 'x’ obtained from the 'r 
solution as the initial x-distribution, the acccuracy of the 
solution may be improved as shown in Fig 3.3 (ii).
An Iterative Routine for 'x*
From 
we have

x = r and x - - ( In r )
X + X - r - (In r) = (r -In r)

»ip y*
[3.17]

Let F = r - In r, then [3.17] may be approximated by the finite 
difference equation
(X - 2.x + X )/(d$2) + (X -2.x +
i|j+l i,j i,j-l i+l,j i,j

X )/(dY2) 3
i - 1 , j

(F + F  - F  - F  )/(4.d$.dY)
i+l,j+l



Solving î o x  Xx , j gives
- A1 ( X + X ) + A2.( X + X ) + A3.F» [3.18]

i > J
i . J
„here Al= .5.( 1 + D2 )-l ; A2 = AI.D2 ; A3 = -A1.Da /4 ;

F* = -  F i t i . j - i  -  F i - i . j - n .

Equation [3.18] forms the basis of an iteration routine together 
with boundary conditions on «x’ furnished by [3.5] above since 
'r' is known over the whole flow field. Hence

 ̂I J
Values of 'x’ on the lower and upper boundaries are derived from
the numerical equivalents of [3.5(ii)l and are given by
X r X - D3 . ln(r ^
i+l,j i-l,j i.j+1 l.jl
X = X + D3 . ln(r /r )
i-l.j i+i.j i.j+i i.j'i
for the upper and lower boundaries respectively. This correction 
improved the accuracy of the calculation of the x coordinate and 
reduced the errors to the same order as that of the r coordinate 
At outlet the boundary condition for x is obtained from [3.5(i)3 
giving X = x  + D 4 . ( r  .
In the context of the present 'test case this last condition 
redundant since the outlet values of r and x can be calculât 
from the exact solutions available to us. However in cases in 
which this data is not available the above procedure provides a 
nieans of applying an outlet condition on x.
Test programs to determine the distributions of x,r,q over the 
(*.T) Plane for all the exact flow solutions were written for use 
un micro-computers.



r̂ nvftrgence._
The iteration was continued until the relative 

difference between successive approximations for some specified 
test value of r, Rr ( = ra.b say) was less than some assigned 
quantity ‘e ’ . This value was taken as a fraction of the average 
difference between the radial coordinates of the 'middle $-line

Fig. 3.5
Hence

e = ( n . m  - ri,m )/(5000.m) - o(10-5) with m = Int(J/2).
and the iteration was deemed to have converged when

1 ra.b(k + i)/ra.b(»^> - 1 I < e (where 'k’ is the iteration no.
The values of x and r derived from the iteration were compared 
with those of the exact solution and the maximum and average 
relative errors calculated. These results were checked for 
consistancy by back substitution into the finite difference forms 
of the PDF and their variation with increasing mesh size noted.
These comparisons are detailed in Tables 3.6 and 3.7 and shown 
graphically in Fig 3.8 (i) and (ii).



- j) .I I --'* ^

¡^¡^MssXsisiXsiLlxsssàsix^
It was noted that in the course of an

iteration, the ratio of successive differences of 'r’ was 
approximately constant. Based upon this, the following procedure 
„as deduced to accelerate the convergence of the iteration 
routine. Suppose that, for some r ,

( Wk^^2) - r(k-n) 1
( r( ̂  +1 ) - r( k ) )

A (say)

1 „here r(M is the ktn iterate of an 'r’. Rearrangement gives
r(k + 2) - ( 1 + A i.rCk + i) + A.r(X) = 0 [3.22]

Letting r<iO = Xt and substituting into [3.22] we have (after

dividing through by A.X^)
X 2 - ( 1 + A ) . X + A = 0

->
->
For n =0,1 we have

X = 1 or A.
r(k) z: ai .(1)»̂  + a2 .Ak 
r( 0 ) = ai + a2
r( 1 ) = ai + a2 . A

a2
Solving for ai and a2 gives 
ai = ( r( 1 > - A.r( ®) )/( 1 ~ A )
Hence the general form of solution for r(^) is
r( k) r ( r< 1) - A . r< ®) ) /B + ( r< ® > - r< i > ) .Â  /B

where B = 1 - A .
With the best available estimate for A given by 

A = ( r(2) - r(i) )/( r(i) - r< ®) )
Thus the k^h iterate of r , i.e r<^) » can

term in the sequence given by [3.23].

r ( r< ®) - r( 1 > )/( 1 - A )

[3.23]

be considered as the



I A 1 < 1 then the limit of the sequence in [3.23]Now providing j ^ |
j.(L) where

r(U = ( rO) - A.r<®l )/( 1 - A ) =
= r<2) - {( " 2.r<i) + r<2) }

which can be recognized as Aitken’s delta squared process.
It Has found that if the limiting form of [3.23] was used to 
increase the rate of convergence, the predicted values of 'r‘ 
tended to 'overshoot' the required value. In practice the full form 
of [3.23], was used (at every third iteration) with 'k' taken as 
some suitable function of the mesh size to -give 'smoother' 

convergence.
Further it was found that, for some choices of the S-T range in 
which a solution was sought to the 'exact' flows, the iteration 
did not always converge. The application of the following 
condition was found to remedy this difficulty.

[j If H(r) is some function of r such that H(r), Hr (r) [- dH/dr] 
are defined and continuous in some range ri <- r < rz ( y),
and if 1 Hr(r) J < = K < 1 in ri < r < rz ,
then the iteration r<n^D = H(r(n) ) will converge to a root

of r = H( r) in (ri , r2 ) .
Extending this principle to the system r p a ^

1 , J I r J F • 'A

r( k +1 ) = H ( r( k) , r( k) )
i , j  ̂» 'j P« ̂then the iteration

would converge if
f b  H(r , r ) / ^
' i, j P.«

The particular iteration used in this chapter is based

I <- K < 1 for all i,j 
i,j * [3.25]





+ r ) + Di.ln(r .r /r2 ) ]/2 [3.93
 ̂ * iti.j i-i-j *"’

i > J

= F *  - Di .ln(r ) = H(r , r )
=> i . i . j  i . ji I J
where F» is a function independent of ri , j . Differentiating this 
e x p r e s s i o n  w i t h  respect to ri. i and applying [ 3 . 2 5 ]  gives 

,r )7i)r 1 = 1 -Di/r I = Di/r < 1
' i.j P. q  ̂* J ^

[ 3 . 2 6 ]
=> r >= Di for all i,j- 

i . j

In the course of many test runs of the programmes, it was found 
that the iteration invariably converged when this condition was 
satisfied and diverged or oscillated otherwise. A suitable choice 
of dT and d$ can be made to ensure that [3.26] is satisfied.

The program provides numerical results for all the exact flow 
solutions and Table 3.6 and 3.7 below gives details of the numerical 
values obtained for the exact solution for flow F4. The graphs in 
Fig 3.8(i) , (ii) below show the improvement in acccuracy of
the numerical routines with increasing grid size.
[Epsilon - 10-5]

(13)
Converged 
Val.of Rr 
[2.08670349 True]
2.08863442 
2.08668037 
2.08669332 
2.08669820 
2.08670060 
2.08670245 
2.08670376 
2.08670481 
2.08669848

Table 3.6

(1) (2) (3) (4) (5) (6)
Grid Num. of Iteration Time(bees)
Size Pts. Number

(ACC) (ACC)

5*5 15 19 (13) 144 (114)
7*7 35 22 (15) 306 (231)
9*9 63 32 (18) 685 (425)
11*11 99 43 (22) 1329 (750)
13*13 143 58 (22) 2438 (1020)
15*15 195 73 (26) 4011 (1557)
17*17 255 91 (34) 6327 (2582)
19*19 323 112 (67) 9640 (6262)
21*21 399 133 (63) 13860 (7109)



Relative^ Errors^

Grid
Size
5*5
7*7
9*9
11*11
13*13
15*15
17*17
19*19
21*21

(7)
Max x%

,2830
.1220
.0680
.0430
.0290
.0219
.0167
.0131
.0107

(8 ) (9)
Max r% Ave. x%

,0499
.0215
.0116
.0072
.0048
.0034
.0025
.0019
.0016

.0700

.0279

.0149

.0093
,0063
.0046
.0035
.0027
.0021

Table 3.7

(10)Ave. r%

0096 
.00438 
.00247 
.00158 
.00109 
.00080 
.00060 
.00048 
.00039

Column Key.
Grid Size, , 4. oNumber of variable points calculated 

’• •• iterations to convergence.

(11) Max r% 
10-5
2.390
.726
.460
.380
.290
.300
.280
.260
.250

(1 2 ) 
Ave r% 10-6

2.010
.674
.580
.520
.430
.470
.470
.450
.215

Time in secs to converge.
(Accelerated)

(Accelerated)
7 Max Relative % error in X-

. 8 M •• «« M r
: 9 Ave M •• 1« X
1 10 «« «1 M r
i 11 Max «• «• «t r
!j 12 Ave M •• • I r
j 13 Converged value of rt es t p

when backsub. into PDE

The number of iterations required to satisfy the convergence 
criteria is reduced by up to 60% when the * accelerator ’ is applied 
to the iteration. Within the range of mesh size considered the 
errors decrease steadily to a small fraction of a percent.



>- In this section the basic equations for incompressible,
irrotional flow are expressed in an alternative finite difference 
form and the set of finite difference equations so obtained are 
expressed as matrices. A method of solution based on this 
formulation is presented and numerical results for the ’exact’ 
solutions obtained from a computer program using this approach 
are given. The degree of accuracy of the results and the rate of 
convergence of the iterative routine is similar to that of the

point iteration method.
Form of the Finite Difference Equatibns.^

The fundamental equation [3.23 is
r + ( In r ) = 0
Ÿf ««

We may rearrange this as
[3.27]

[3.27a]

r + r = < t- - In r ) - F
f t  *«  * *  f *

Similarly we may obtain
R  + R  = ( R  - e» 1 = -F

««> Y*
where R = In r and F = r - l n r  = eR - R .
Either of [3.27] or [3.27a] may be used in the subsequent 
derivation. Expressing [3.27] in finite difference form we h
(r - 2r + r )/dT2 + (r - 2r + r )/d$2
in.j i.j i-i.j i.J+i

Putting D = D2

(F - 2.F + Fi,j+l i.j i,j-l

+ (D.r
i . j-l

- 2.(1+D).r + D.r )i-l,j i.j i+l,j
+ r

i , j +1

= F - 2.F + F
i , j +1 i > J i . J 1



p.t . *< ^

T • i =2 to J-1: (The values j = 1»J being excluded for i= 1 to i > J
■eĥ se are the kno'wn fixed inlet and outlet values), since unesc

It follows that the complete set of equations may be written

with j = 2, . . (

-2(1+D) ^ ^D -2(1+D) D
D -2(1+D) D

D -2(1+D)
D

ri - 2, j - 
ri-i, j-i 
ri, j -1

ri - 2, j +1 
ri -1. j +1
lTI , j+i

1 ri, j
L J r2, j 

r3, j
• • • •

ri - 2, j
-2(1+D) D ri -1, j

D -2(1+D) ri , j
L- — -

. T f”
Fi, j -1 
F2,j-1 
F3 , j -1
Fi - 2, j -1 
Fi -1, j -1 
Fi , j -1

-2 Fi - 2, j 
Fi -1, j 
Fi , j

Defining the column vectors Lj and Hj as

Lj = ; Hj =
Fi, j .7 ,j +7 D . r0,j/Ji
F2 , j -1 F2. j F2. j -n 0

-2 + • •
Fi , j -1 • Fi , j Fi , j + 1 0

Fi . j -1 Fi , j Fi , j +1 D . ri , j —

and the *D’ matrix by A then the set may be written as
j - 2 to J "1 [3.293Lj-i A . L j + L j +1 - H j

Form of soution for EQuati< T̂i r3.291 
i Scheme * A *

li Suppose that the vectors Lj satisfy a relation of the form
[3.30]

where the Cj are column vectors and B is a constant matrix.

L - B.L + C 
j j +1 j



[3.31]
I From [3.30] «« have (for '3 = J-1’) 

h ^

Substituting from [3.31] into [3.29] for Lj-i
n L + C + A.L h ”:> •  ̂ j_i j j + 1 J

Solving this equation for Lj ;
L = -( A + B )-l + (A+B)-l.(H^ - [3.32]

Comparing'this expression fo^Lj with the original one in [3.30]

i.e L := B . L ^ ^  +
shows that the B matrix and Cj vectors satisfy the equations

 ̂ ( 51)B = - ( A + B )-i [3.33]
c = ( A + B )-i .( H - C ) = - B.(H^ - ) (b)
j J J

Scheme
Alternatively let.

L = M.L + E ^jiere M is a constant] matrix.

A similar calculation to the above will lead to the corresponding

set of relations for M and E.
(a)M = - ( A + M )-i [3.34]

E = ( A + M ) - i . ( H  - Ej j j
) = - M.(H - E ) (b)

j j +1 , i
Since the matrices M and B satisfy the same equation we may set M = B. 
Either of [3.33] or [3.34] may be used as the basis for an 
iterative routine to solve for the Lj vectors. Thus with k 
denoting the iteration number we may formulate the iteration schem 
L(k + i) - B.L(k) + + (a) : + = -B. (  ̂ ^

j +1
L(k + 1 ) rB.L(k) -Eilt + I) (a) : £(̂ -̂ 1)
j j -1 j ^

B - - ( A + B )"i

cot) ) (b) (*A’
j-1 [3.351
E( k) ) (b) ('B',»
j +1 (c)



u ‘A’ we recall that from the definitions, the vector Hj For scheme a wc x
is a function of the current !:<•<>. Thus given some initial vector,
C(k), we may calculate the vectors from [3.35] in a left
to right sweep across the grid. The Lj vectors are then derived ^
,la [3.36(a)] by sweeping back across the grid in the opposite 
This iteration cycle is repeated until some convergence criterion 
is satisfied by the set of Lj vectors. Scheme 'B’ differs only in 
so far as the direction of the sweep is reversed.
The matrix B. once calculated, is constant throughout the iteration, 
however by the nature of its definition it must be derived iteratively,

by solving [3.35 (c)]
using » k  + D  = - ( A + B(k) )-l
At each iteration the matrix is inverted using Gaussian elimination.

The computing time taken to calculate the converged >B’ matrix was of 
the same order of magnitude as that required to solve for the Lj 
vectors. The B matrix was found to be centro-symmetric.
In order to calculate the C(k*n vectors, some initial vector «k)

is required.
It is posible to define at least two distinct C<^> vectors for 
an iteration, corresponding to the situations in which 
boundary conditions across the duct at the inlet and outlet

station are known T . • — i J -(i) only at the inlet and outlet stations for i-1 to
(ii) at and upstream of inlet and at and downstream of outlet at

0,1 and j = J,J+1.

^ o .





.0̂\ }

j) L = B.L + C n
3 0+1 j

L B . L + C o1 2 1
kth iteration the initial *C’ vector,

Thus

Cs , is given by
C( k) = C( k) = LH«) - B . L( )

In this case since Li il fixed and Lz varies then C<n) changes 
with each iteration.
(ii) If information is available upstream of j= 1 U - e  at j=0) 

then from

with j = 0 we have

=>

given by

L = B.L + C
3 j +1 ' j
L = B.L + C
0 1 0

C = L B.L
0 0 1
through out the
C(k) = C(®> = L
S 3 e 0

these types of inlet and outlet conditions and produced identical

solutions of similar accuracy.
It is posssible to combine the two schemes 'A’ & 'B’ but it was 
found that an iteration based jointly on 'A’ and B would not 
satisfy equivalent convergence criteria when applied separately 
and oscillated between the two solutions associated with the sch 
However the numerical difference between the two solutions yielded 
by -A- and 'B- is very small and a slight relaxation of the 
convergence condition when employing the two schemes joi y 
produce convergence. However in the present context there is 
obvious advantage to such an approach.

S y L .



r-i 3 10 belo« 'A' represents the 'path' of a typical test point 
Jn r i ß * ^

+ « initial value R(®>t to its converged value R(c >t when Pr from its
using scheme 'A' and similarly for 'B' while 'C represents the path
V -A’ and -B' are used Jointly. The relative difference definingŵhen A ^

convergence for 'A' and 'B' used separately was of the order of 10-7 , 
hence the separation between the two solutions is at most 10-6 (See

Fig 3.10).

3:41m

l . \ ' I.;' 1 ^  t/  ̂ 1 .. - j •

^ i  i )i- /i\ i :/V:̂

1 Vy ! : V/:;

¿V A"  ̂y

H
;; -.M ■
vr

Fig 3.10

[t The table below gives the numerical results obtained for the solution 
to flow F4 and may be compared with the results in tables 3 
and 3.7 derived by the point iterative method. Since the degree of 

y accuracy achieved by both methods is the same only columns 
^>3,5,7,8,13 are l i s t e d  (below) for comparison.

j T J ^





Results for flpw F4 py M^thP^U
8

1

Grid
Size
5*5
7*7
9*9
11*11
13*13
15*15
17*17
19*19
21*21

Iter.
Numb

Time
Secs
976
1349
2769
2725
5176
4508
8647
10123
15390

Max x% 
Error
. 1226 
.0935 
.0518 
.0324 
.0221 
.0155 
.0115 
.0098 
.0084

Max r% 
Error
.0857
.0681
.0405
.0270
.0194
.0146
.0107
.0092
.0075

13
Converged Rx

2.08671750 
2.08670732 
2.08670829 
2.08670520 
2.08670471 
2.08670331 
2.08669981 
2.08670662 
2.08671137 
(2.08670349 True)

Table 3.11
In Table 3.13, below, the comparison between the results 
obtained for fixed and variable inlet Cs vectors is given. The 
values listed are the ratios of corresponding results of the two 
schemes; e.g; Col 2 = (conv. Rr for fixed Cs/conv. Rr for var. Cs}

Grid
Size
7*7
9*9
11*11
13*13
15*15

Converged R

1.000013078 
1.000007318 
1.000004040 
1.000002943 
1.000002233

Ratios of 
Max X% Error
1.02252
1.02015
1.02009
1.04301
1.02816

Max R% Error
1.07471
1.12854
1.13998
1.16931
1.19230

Table 3.13
Bearing in mind that maximum errors are of the order of 10
a percent, the agreement between the two methods of solutio
good. The number of iterations required for convergence is much
less for the matrix method but the time required for convergence
is comparable. This apparent contradiction is due to the
that the matrix method involves substantially greater amo
manipulation of the variables (in the form of matrix arithmetic etc.)

- 5 T







ng 3.12 compares 1.he convergence for Rr for fixed and variable 
c!; maximum deviation of 'y’ and • z-coordinates from the exact 

solution for increasing grid size.
The conclusion is that both these methods of solution yield very 
accurate results for the flow fields calculated and may be safely 
extended to obtain solutions to the partial differential equations 

for alternative boundary conditions.
The programs for solving the flow equations for both the point and 
matrix iteration methods were written for micro-computers with a 
clock speed of the order of IMHz. In the interest of reducing the time

'kernel’ of the routine for the point iteration to convergence the kernel oi
method was rewritten in assembly code and accessed outside the normal 
-Basic-. This reduced the time required for the programme to converge
by a factor of 3 (somewhat dissappointingly). However given that

 ̂ order of 20"̂  MHz and thatcurrent micros have clock speeds of
. -1 „-ui -For use on them, the run times Basic compilers are now available for use

listed above may be reduced by up to 2 to 3 orders of magnitude 
giving times of approx 60 secs for a 21.21 matrix on 
-stand alone- micros. On larger computer systems the time to 
needed for the iteration to converge would be reduced to a fracion

of a second.



Chapter 4_

this chapter the solution to the e<.uation of flow is derived 
in terns of a function of a complex variable and expressed as a 
contour and field integral in the (i,Y) domain. A two point 
Udstone expansion is used to approximate variations of the flow 
,oantities across the duct as a power series in T. an alternative 
expansion is also available for this purpose. The coefficients of 
this series are functions of the dependent variables, r, x and their 
derivatives with repect to i evaluated at the wall boundaries and 
are therefore independent of any cross-stream variations and are

functions of $ alone.
This permits the integration of the field term with respect 
thereby removing the cross stream (T) dependency from the field 
integral. The result may be expressed in closed form thus reducing

the field term to a line integral.
The values of the dependent variable pair (x,r) at any point 
contour are then given as the sum of a contour integral and line 
integral of a function of the complex variable
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' Fig 4.1
Consider a function. H(z,z*) which is continuous and has 
continuous partial derivatives over the region R enclosed by 
contour C (See Fig 4.1). Then Green’s theorem may be written

in complex variable form as

iH(z,z*).dz = 2. i. iiC R Qz*

[4.1]

[4.2]
where z^:$ + i.Y ; z* = ^ “ i-T - 
Let H(z,z*) = F(z,z») .G(z,a)
where a is a given point. Substituting [4.2] into [

F(z,z>») .G(z,a) .dz = 2. i .ii*I^F( z , z* ) . G( z , a) } . d$ . dY
<J R Qz*

No w ^F.G} r + G ? ^
Oz* l̂ z* ^z*

Lut since G(z,a) is i n d e p e n d e n t  of z* t h e n ^ ^  = 0

4 0 .



f o  G(z a) dz = 2 .i ii CG(z,a>^(z,z*)]-<i® <î  14.3]

i j o s e .  now, that z = a is a point on the contour C, and define a 
(„ev, contour C  being the contour C indented by a circular arc of 
„aius c centre z = a this path now enclosing a region R* .

(See F ig  4 . 2 )

-s

t

6?

Fig 4.2 ^

Identifying C and R in [4.3] with €♦ and R* defined above we have

J F(z,z^) .G(z,a).dz
C*

i F.G.dz = i F.G.C* RSP

1 F.G.dz . - iPQR RSP

2 .i.n G(z,a)J^EiA.all-d« d'f

+ i F.G.dz 
PQR

G . d$ . dY
R*

F.G.dz + 2.i.JJ G4iF.d$.dY [4.4] 
R^

L h



The integral around the arc ’POR’ can now be expressed rn terms
of the value of the function Fls.a-) at s = a together wrth a
power series in 'o’ the arc radius of PQR by
,i) Expanding F as a double Taylor series in z and z* about z = a
and (ii) making a suitable choice of the function G.
(i) On the contour PQR we have
 ̂ , c.eio ; dz = i.ceie.de ; z - a = c.eia

-is • z* - a* = c.e"ie [4.5]z* z a* + c.e-ie ; dz^ = -i-ce  ̂e . d6 , z ^
Expanding F(z,z») as a Taylor series about z = a gives

F(z,z*) =
F(a,a*) +
[(z-a).(^^) + (z* " ^* ♦T7N2F/iS^z*) + (z*-a*)2 . (b2F/Oz*2 )]/2l +
[ { z - a )2 (ü 2 F / d z 2  )+2 (z-a) (z*-a* ) (02F/OZÜZ ) \

'1

where the derivatives are evaluated at z = a. 
Substituting the expressions for z, z*, ' z a, z
F(z,z*) = F(a,a*) + c[eie?^F/^ + e-^eT^;^*]

+ c2[e2iS^F:^2 t ^ F > ¡ b z *  t

-> F(z,z*) = F(a,a*) + c.Di + c2 .Ü2 + ...... .Dk
where Dk = Dk { 0, ^F/bz< k=l,2, . . • , P -0,1- • -k.
the Dk being functions of 6 and the values of the derivatives of

order k evaluated at z = a.
Thus on PQR we can write
F(z, 2* ) = F(a, a* ) + 2 c^ . Dkk = l

[4.7]



[4.8]
may write the integral on the

(ii)
Choosing the function G(z,a) = (z-a)-i
Then by virtue of [4.7] and [4.8] we 
L.H.S of [4.4] as

P CO

- J [F(a,a*) + 2 .Dk]/(z-a).dz
FOBÍ F.G.dz = Í F(z,z*).dz/(z-a)

PQK
-a) + 2 ck.J {Dk .dz/(z-a)]

k = l= i F(a,a*)dz/(Z
PQR

consider the integrals on the right hand side of [4.9]

[4.9]

ia)
On the arc PQR, z = a + c.eie ; dz - ic.exe.d6

Í F(a.a*l.dz 
PQR (z - a)

e=A
Í F(a.a»).dz/(z-a) = Í F(a.a*).i.c.eie.de/c.ei
n e=A

e

e=A
= i. Í F(a. a*).de

e-k

- i.F(a,a*).[Ar - Ap ] - i.A.F(a,a*) [4.10]

where Ar - Ap -  h .

(b) If the derivatives of F with respect to z and 
orders are bounded on the arc PQR then it follows th
functions Dk in [4.9] are also bounded 

i i.e |Dk| < M (say) for c < co < 1  ell k. Therefore
00 p r \ 1V . \  ̂ M.dz/(z-a) ]¿ { ck . J Dk.dz/(z-a) } < ^k̂ l POR k=l PQR

¿y.



CO

{/f ck . i i .Z {/'7 cit . J 1. ei ® . d0/ei ® }
k=l * PQR

= i.M.A. 2 { } - i.M.A.c/(l c) .
k=l

Therefore
CO r ,//  ̂ \ - i A c M i / ( l " C )  for some Mi. [4.11]2 { ck J Dk.dz/(z-a) } - i.A.c.m/vx
k=i PQR
substituting from [4.10] and [4.11] into [4.9] and applying 

this result to the LHS of [4.4]

i F.G.dz-- i F(z.z*).dz/.(z-a) = i.A.F(a,a*) t i.A.c .Ml/(1-c)
PQR PQR
Further substituting into [4.4] with G(z,a) - (z-a) i yields 

i.A.Fia.a.) t i. A.c.Mx/(1-c) = - F(z, z* ).dz/(z-a)

+ ii 2.i.^/^*-d^-dY/(z-a)
R*

Solving for F(a,a*) gives

i F(z,z*).dz/(z-a)F(a,a*) = (i/A).
C*

+ (2/A) ii ^F^z*).d$.dY/(z-a) - c.Mi/d'c) [4.14]
R*

If the radius of the arc, c, is allowed to tend to zero then
the limit we have A - “> A J ^ ; A  > A * ^ , A  > p̂L - - A^ - ^

R
and
F(a,a*) =

= -(i/n). i F(z.z*).dz/(z-a) - (2/xO U  ( " b F / V  )d4 • dT/( z-a) [4.15]
R*



=tion [4 15] expresses the value of a function F(s,s*)at
Thus e q u a t io n

4 + z-a on a contour in terms of a contour and field some point, z-a,
integral over the domain enclosed by the contour.
If is a known function of z (= $ t i.Y) and provided that
the integrals may be expressed in closed form then [4.15] would 
give the exact solution to the problem.
However for computational purposes the limiting form of [4.15] would
not be appropriate and will be replaced by a numerical equivalent
of [4.14] since the term 'c.Mi/d-c)’ will make a contribution to
the value of F(a,a*) for non zero radius c ‘and this is necessarily
the case for a discrete representation of a physical system.
Now if. in [4.15], the integration with respect to Y (say) m  the
integral ÍÍ ('^/^» ) . di. dY/( z-a)

R*
were to be accomplished then [4.14] (or [4.15]) would be reduced 
to a contour integral and a line integral giving the value of 
F(z,z.) at any point on C» in terms of its values on C» alone.
This reduction of the field integral to a line integral is
achieved by
(i) A p p r o x i m a t i n g b y  a polynomial in Y whose
coefficients are functions of Í only,

; (li) Performing the integration with respect to Y (across the
duct) and expressing the result in closed form.
Thus let = 2 Fk($).(Y)k where F»i($) are functions of
 ̂only. Then

k = 0ÍÍ
R*

d$.dY/(z-a) 2  F k ($) • (Y)^.d$.dY/(z-a) 
R* k = 0



' i

ii Fk($). (Y)k.d$.dY/(z-a)

$(ou"t) Y-Yu
= 2 J Fk($
k = 0

$(in) Y=Yi

(Y)k.dY/(z-a) }.d$

$(out)
i F ($).F*(^).d$= 2k = 0 k k
$( in)

[4.16]

where

F*($) = 
k

(Y)»« .dY/(z-a) ; z= $ + i-Y" ; a" + i-Y

Y=Yi
4 (Tn. Tdftntification of V{7.,z*) r̂\(\ QF/O ẑ * .Jd.

Generally if F(z,z*) = A(z,z*) + i.B(z,z*)
V, - o  + i t - z * - s - i . t  then it can be shown that

^  = (1/2).(A - B') + i.(l/2).(B + h )
. l>z* 5 -t ^
i -  T  •Letting A = x ; B = r ;  s = $ ; t - i  ,1 Then F = x + i.rf

= (1/2).{ [X - r^3 + i-[>y + ^
j But from chapter 3, equation [3.5] we have
*

! X = r ; X. = - ( In r )
j f V> <p
I Substituting into [4.18] gives

bF/^* . (l/2).i.[r - ln(r)] = (i/2).f(r) (=ay) [4.19]
With these expression for F and equations [4.14] and [4.15]

become

[4.18]

[3.5]

F(a,a^) r X + i.r -
Lt c-> 0

-(i/7i). i F(z,z*).dz/(z-a) +
. <Pi C *



- (i/7t) lí [ ( r - l n ( r ) )  /(s-a)]d$.dY
R* ^ [4.15a]

X + i-r -Qj- F(3> ^
F(.,.*).d./(-a) - (i/x) n  C(r-lnr)^

c*
/(z-a)].d^.dY

[4.14a]
- Ml -c/(l c)

where F(a,a*) is a given point on the contour and F(t.t‘ ) is a 

variable point with z = Í + i-Y ; a = ^ ^ '
. ■Frr̂'i n Í r -infrl as a Power Series in 

Á (TTT) An Expan^^iQH for f (X ]--- i--------  ̂ ^
het f(r) = f(i.Y) - (r ~ ln(r)

 ̂ -Fir) p»nd its derivatives to all ordersSuppose that the function f(r) and its aeri
, . _ V  h  . C <- ^ ^exist in the domain a <= Y <= b , c 

1 1 1 ^

r

Í 7 .



Kor some given value of 4, let the value of f(r) at the point
, = (i^lT) be denoted by f(a). The term, f(r) = (r - ln(r) )^, 

in the double integral Is no« replaced by an approximating 
polynomial F. which is a power series in T whose coefficients 
are functions of 4 alone. One choice of polynomial is the two 
point Lidstone expansion of degree 2n-l defined by

F( f ,T)=

. O ’-.;) " i V B < . ) . i t ^ ;  >
1 k = 0  ̂ kl 1

where the coefficients A and B are given byk K

A ($) = [ d { f(Y)/(Y-b ) }/dY 3
k •

k o ^
B (4) = [ d { f(T)/(Y-a ) >/dT 1 
k Y

This expansion is such that derivatives up to and including th
of order k of F(Y) are equal to those of f(Y) at Y - ai and Y - bi

2 n -1
Thus
(i) Fk(ai) = filial ) ; (ii) Fk(bi) = f»̂ (bi ) for k- 0 to n.

2n-l 2n-l
where the superscripts refer to the order of the differential. 
Applying Leibnitz’s formula for repeated differentiation to the 
d e f in i t io n s  of the coefficients Ax (4) and Bx<4) it can be shown

I

that
A(§) = [(a -b )/(n-l)!]. (n-r+1) ! (b -a ). f (â  ) } [4.19.a]
k 1 1 r=i r

B( t )  = {(b - a  ) / ( n - l ) ! ] .  C.  (n-r+1) !  ( a -b ) .  f  (b̂  ) } [4.19.b]
k 1 1 r=i r

4^-



.. - A /k' and B- = B /k! then the approximating
Defining *  ̂ ' r k
polynomial of degree 2n-l can be written as

% ”■' Í A ’ (Y-b") (Y-a*) + B ’-lY-a") (Y-b ') } [4.19.C]

Replacing f(r) by its approximation F.n-i in equations [4.14a] and

[4.15a]

F (a ,a * )  = ^  ""

Lt c->0 C* ^

'

or
= -,i/xHJ F ( z . z » ) . d s / ( s - a )  ^ F ^ ^ _ ^  .d i .d Y / ( z - a )  > -

c* ^
[4.14b]

Let !♦ :: J F(z,z*) .dz/(z-a) 
1 C*

- Ml .c/(1-c)

.. 1. - ÍÍ F .d$.dY/(z-a) 
2 R* 2n-l

then the solution may be written in compact form as
i.x.F(a,a*) = Lt { I* t I* }

c*-> c 1 2
[4.15c]

where F ( z , z * ) = x + i . r ;  z - $ + i - i  » ^ ^ ^
F(a,a*) = X + i.r ( a given point on the contour).
Evaluation of the integrals I*i and 1*2 will give the value
F(a,a*) at any point on the contour C.

4ÍIV1. Determination nf the C o e f f i c i O h t s  fii’k , gliL 
Besides factorials upto order n and powers of (â  b ) wh' 
known, the coefficients A ’k and B ’k in [4.19a & b] depend on the 
quantities fî (t) which are the derivatives of f[r(^,Y)]
respect to Y evaluated on the duct walls $ - > |

á Z



V  ^ " V
^  = XK and

«„ove this dependent on T, these functions are expressed as
derivatives with respect to 5 on the wall boundaries by repeated

■F r*̂ 5 (i) & (ii)]- Thus from equation [3.5] we have application of ^

denoting = rk and

differentiating f with respect to T and replacing rv and xr 
when they occur with their equivalent forms involving 
derivatives with respect to $ only then we have 
f r r- 1 . (-ri ) + ri
f z r" 2 . (ri . XI ) + r" 1 . ("X2 ) + X2
£ = r-'t .(3.ri3 ) + r-3 . (-2.ri3 - 4ri . ra -2. ri . xi 2 ) +
** r-2.(ra + 3.ri.ra + 2-xi.xa) + r-i(rs)
f =r-5.(-20ri3.xi)+r-<(6xi.ri3+ll.xi2 + 6ri-xi 3+22xi . ri . ra )

r-3(-6ri2.xa -6xi2.xa -4xi . ra-6xa . ra-4. ri . xa -6xi.ri.ra) +
r" 2 (x4 + 3xa . ra + 3. ri . xa + ra . xi ) + r * ( )

The derivatives upto order three of the function f($,T) in the 
cross-stream direction Y. are now expressed as derivatives of 
'x’ and 'r’ in the $ direction (along the boundary) and the 
stream-wise dependency is removed. With n - 4 we can no P 
f(4,T) as a polynomial of degree seven across the duct along the
i characteristic $ = (say) between ^ ~  and T ^
4(VU RTOtlCTTON OF THE F T’̂ bT) TWTEGl

The value of the function F(a,a*) = xi + i.ri, (a particular point) 
on the contour C is given by equation [4.15c] i.c

i.7u.F(a,a*) = Ii* + [4.15c]

7^.



N i

}d$.dY
1 [4.17]

Now the field integral is of the form

,, j i  , „ , - . , - r ' A ; . < T - b "  <T-.
k = ® K A

Since n is finite we may rearrange the order of the integral and 

summation signs and write

f k=n-l12.  = J [ 2 {  a ;  J
f-,

n k(T-b ) (Y-a ) (z-a)-i.dY + 
k 1 1
Y=ai

n (Y-b^ ) (z-a)-i .dY 3 .d$

where z = $ + i.T is a variable point on the contour and 
a = if. t i.T* is a point in the ($,T) plane at which F(a,a»)

is to be evaluated.
Now z - a = $ +  i . Y - $ *  ~ i.Y*

= i.{ Y - [( Y* + i($ " ) 3 >
Let P = Y - [( Y* + i($ - 
Then dP = dY and P = -i(z-a) 
when Y = bi P = Ü where Ü

Y ai P = L where L
hence Y - ai = P + C where C
and Y - bi = p + D where D
Then the integral I2* has the form 

$=$(out)

*) 3 -  - i. ( 2 - a )
(z-a)"i = -i/P = 1/iP.

bi - [Y* + i . ($ _ $♦)] (i)

ai - [Y* + i.($ _ $♦)] (ii)
Y* - ai + i. (Í - ^*) ( iii)

Y* - bi + i. (Í - $♦) (iv)

[4.17a]

P^U P=U
l2*r k=n-l J n k n

{ 2 [Ak = 0 k
in)

rP.m (P^CKdP t B ’. J i£iCJ_l£^.dP ] )di
P=L i.P “ [4.18]

T/

J É





A, B
• t.he explicit form for J from (i) and (ii)(ill) Deriving tne expire

A,B|L,U  ̂ ryilQ/in. T via equat,ion L4.iy©J*(iv) Evaluating Ip. q A, B
P . Q For p > q > = 1

A, B
P. Q

P
(P+A) (P+Bl-dP 

P
1 r pp + B. J(P+A) (P+B) .dP (P+k) (P-HBl .dP 

P

1 . e
A, B A, B A, B
J = K + B.J
p,q P,q-1 P.Q-1

; q 1,2,

this reduction relation it can be shown that

,P.

p. q
q A, B q-1 A, B

. B .J + B .K +
P.0 P.®

A. B
(in Reduction fnrpuila for Ki , j
Integrating by parts gives

s=q~l q-8-1 A,B
2 { B .K }

s=l P ’®
[4.21]

A, B
K (P+A) (P+B) dP -
i . j

i +1 j
(P+A) .(P+Bl 

(i+1) (i+1)

K
A, B

H
A, B

i+1 j-1
(P+A) (P+B) dP

A, B
K

i.j (i+1) i+l.J (i+1)
From this relation it follows that the explicit form
is given by
A, B 6 A. B t = 6-l  ̂ r̂l H ’ [4.22]

K = (-I).PI .si .K + 2 --(-1) .p..s^
(p+s)!.0! P + S . 0 t =0 7p+i+t)!(s-tYT P*iit.=-i

7S



A, B
torn*

Substituting [4.22] into [4.21] gives

A, B
P. Q

4- — c 1 A , Bq-l-s t-8-1D . { 2 f ( - n  .p ! . s j---t=0 (p+l+t)1(S-t)1 p+l+t,s-t
] }

s = q-l ® q-l-s A, B
2 { f-M B pisi.K

s=0 (P+S)!

q A , B
i + B . vT

P 1 ®
[4.23]

A, B
where K has been

p, 0
incorporated into the 2"« summation and the

lower limit set equal to zero. After finding expressions for the
i

and Jintegrals K  ̂ [4.23] will give the value of J
p + s , 0 p, 0

explicitly. Thus 
A, B

(a) K = J (P+A)
P +8,0

r p+8 p+8+1
= J (P+A] .dP = (PtAl = Hp-^s-n.0^ [4.24a]

(b) J
A, B
P. 0

p r(P+A) .dP = J { 
P

( p + s + 1 )

(P+Â ) (P±A).dP > 
P

r p~ir J { (P+A) + A.iP±Al }-dP

and

= (P+A)
P

A, B

+ A. i (P+Â l dP = (1/P)-H + A.J [4.24b]P, 0 P - 1,0

= I JE =ln(P) [4.24.C]
0, 0 A, B

This reduction relation [4.24b] gives Jp. ®

. A

A, B p u = p
 ̂ - k .ln(P) + 2P.0 u= 1

p - u A , B
A .Hu U, 0

[4.25]

7 9



■ . of f4 24a] and C4.25] into [4.23] gives the expressionSubstitui/J-Ui* '-'j- L
explicitly in terms of the algebraic functions H defined

II ^in [4.19d]. Thus

I J(P) = Â .b" { ln(P) + 2 [ A
P. 1

- u A , B
.H ] }

u u, 0

A, B n-l 8=q-l t=8 t A,B
, H .B [ 2  [ s!.B . 2 ((-1) H ) ] }

p + 1.0 S=0 t-0 t.8 t
[4.26]

It may verified by direct diferentiation that this expression for 
A, BJ in [4.26] satisfies a , b p Q
p , ,  ' d_t J ) =

dP p.« 'P
Briefly define -u

M = A 
u u

t q -1-8
(-1) .pl.B

8 , t (p+l+t)I(s-t)1

u=p A ,B
T = 2 (u.M .H )
1 u=l u u-1,0
and

s=q-l t=8 A,B
T = 2 { 2 [(p+t+l).L .H + (s-t)L H2 8=0 t=0 S.t p+t,s-t s.t p+t+l,s t 1

A. B
] }

With these definitions [4.26] becomes
A.B p q u=p 8 = q-l t-8
J = A. B [ ln(P) + 2 ( M . H  ) + 2  { 2 LP,q u = l u u , 0  8 = 0

A, B
.H }t=0 s.t p+t+l,s-t

Differentiating with respect to P gives^ after some rearrangement,
A, B

dIJ ) dP P, q
p q -1
A .B . ( P + T ) + T 1 2

[4.27]

u=p A,B
Now T = 2  M .u.H

1 u= 1 u
= (P+A)^ / /  ((P+A)/A) = ( (PM)/AJ--- 1

u- 1,0 u=1

and examination of the coefficients of H . the expressions
for T2 will show that the only non-zero ones are those for which t-0

-7 S'



Thus with t= 0 we have
8, A.B q-1 A,B 8=q-l

"y" ( p+1 ).L .H = B .H . Z ((P+B)/P)

- 1 )
Summing this series gives ^

T - K (P+A) .[ ((P+B)/B)
2 P

substitution of these values into [4.27] gives

/ . B \ i  P "  t p'\((P.A)/A) - P "  ]
dP P*<1 ^

+ (P+Â ) . P . [ ( ( )  /B) - 1 ]
p ^

-  ( P -e A  ) - ( P B I
which verifies the expression for the indefinite integral

B.A.L.U A.B.L.U
The values of the definite integrals I and In , k n , K
needed to complete the reduction of 1*2 to a line integral

A, B

given in the next section.

4(VI) Evaluation of the Integral-I
A, B, L , u

Generally 
A, B,L, u I
p. q

p. q
A. B P = 0 A, B A, B

[ J(P) ] = J(U) - J(L)
p,q P = L Piq P**!

[4.28]

In particular we require the values of 
C,D,L,U D.C.L.U

(1) I
n , k

and (2) In , k

IlLThe Tnt.̂ ffral I
c, D, L, U
n , k

» A = c , B = D  , p = n , q = k ,  then [4.28] gives
A, B, L , U
n , k

A, B A, B
= J(U) - J(L)n, k n , k



; i

I A, B
 ̂Thft eva1 ~n̂ ir

» r R - D , P = U then from [4.19d]With A = <̂ ■ ® „ i j
H(U) = (U+C).(U+D)
i . j

But from [4.17a]
y _  ̂_ ( Y* + i • ( )) ; C = Y* - + i . ( ) >

1
I)-Y*"b + i-(  ̂ i j

0 . c = b - a ; U + D = 0 => H^bj = (b̂  - â  )• (0)
 ̂ C , D

Thus the only non zero terms in the expression for J<«)^re
C D  ’

those involving the functions H(U^ (i.e for^ j=0)
This implies that we must have t=s in the double summation of

C, D n k u = n - u C , D
J(U) = C .D { ln(U) + 2 [ C .H(U) ]
n, k U = 1 u ®

C,D k-1 8=k-l -8 C

n +1,0 s = 0 (n+l+s)!.(0)!

n k u=n - u C , D
= C .D { ln(U) + 2 [ £ -H(U) ] } +U = 1 u u , 0

8=k-l e
2s = 0

k-1-e C,D
nl s!.D -H(U)
(n+l+s)! n + i + s ,0

C, D i
where H(U) = (b - a ) and U 

i , 0 1 1
c, D

'̂(U) a function of $ only, n, k

b - Y* + i-(^ )) making
1

c, D
XiiJ Evaluation of J (L]

, n , kll C , D
For A = C , B = D , P = L  then from [4.19d] H(L)’ i . j

r (L+C) (L+D)

77.



But fro®
[. = a - ( T t i.(5 - «*)) ; C = T» -â  t-i($ -$» )
5 . T - b t -®*)

1 C , D
, , , . c = ‘0 ; I. - =>«<!'] = ■ ^  ' •

Thus only those H'"’“with i= 0 give a non-zero contribution to
i f J

the value of /(b). Hence both summations are zero in equation 
n, k

[4.26] since (a) there are no terms in the single summation 
and (b) all Hp + i.® = 0 in the double summation.

C, D n k
Hence = C .B -ln(L)
Substituting from [4.29] and [4.30] into [4.28] gives

[4.30]

C, D,L,U
i mn, k

C, D
= J(U)n, k n, k

r>Ti s=k-l c k ~ l ~ c C , Dn k  u = n - u C , D  Hf’n'i 1
= C.D.{ ln ( U / L )  t  [f i H W 3 )  t

c.D i F4 311
where H(U) = ( b  -  a  ) l **- j

i , 0 1 1
D,C.L,U

A similar evaluation for I($) gives
n , k

D, C,L,U

k n
= c D.{ ln(U/L)

I where d ,c
H(L) = ( a i . 0 ]

c r H C M n  tu=i u u,0 s-0 (n+l+sj-

- b ) [4.32]

7 ^



a(VTT) fiiimmary of “the Solution
The value of the function F($,Y) at the point (§*,T*) is given by 

i.7U.F($* ,T*) = 1*1 1*2 [4.31a]
where

r rr;* = J £li_JQ.dz = Jj F2n-1 ($. Y ). d$. dY
' C* (z - a) R* (z - a)[4.31.b] [4.31.C]
If

(iii) z = $ + i.Y ; a = $* + i.Y* ; F($,Y) = x($,Y) + i.r($,Y)
(iv) F($,Y) = [4.31.d]

2n- 1
k = n-l ^   ̂ ^= 2 {A’($).(Y-b ).(Y-a ) + B ’(<))(Y-a ).(Y- b )
k=0 k 1 1 k 1 1

- n r = k  -r(k-r)
(v) A’(^) = (a -b ) . 2  [(n+r-l)!(b -a ).f(a )/((r!.(k-r).) ]

k l l r = 0  1 1  1 [4.31.e]
-n r =k (k-r) . , ̂ tB’(5) = (b -a ) . 2  [(n+r-l)!(a -b ).f(b )/((r!.(k-r).) ]

k l i r = 0  1 1  1 [4.31.f]

f(X) ’ = Cd*f(5,T)/dT ] : T» = a ; T» - binner 1 out er 1
[4.31.g]

(vi) Defining
p = u

A, B , L ,u r P qI  ̂ 2 \ i iP+A).(P+B) . dp
p> q P = L P
Then

out )
r k = n - 1 D, c

i.ij* J { 2 [A ($).!(«)
i n ) k = 0 k n, k

with 
P = Y- (Y*+ i($-$*)) ; Y-a =1 P+C
U  ̂D -(Y* +i($-$*)) ; Y-b =1 P+D
L = C -(Y* + i($- $♦))

[4.31.h]

C, D, L, U
+ B ($)!($) ]k n, k

[4.31.i]

7 f



O

D, C, L, U C, D, L, U
and where the values of the integrals I($) and I($) are 
given by equations [4.31] and [4.32].
With these formulations for the integrals I*i and 1*2 a numerical 
integration around the contour C* in (i) together with the line 
integral in (vi) will give the value of F($,Y) on the contour.
The precision to which the function f(r) - (r ~ ln(r))^ may be 
approximated across the duct depends on the value of n in the 
approximating polynomial F2n-i and in principle this can be 
increased without limit although there is a likelyhood of over 
prescription on the boundary in the limit as n-> to infinity.
A polynomial of degree 2n-l will involve derivatives of f(r) 
w.r.t Y upto order (n-1). The expression of these derivatives 
in terms of derivatives with respect to $ become progressively 
more cumbersome with increasing *n’ (See 4(VI).l). However it 
would be possible to incorporate a routine in the programme code 
to automatically generate the expressions for these derivatives of 
higher order if required.
For this reason, n is taken as four thus allowing the crossstream 
variation of f(r) to be represented by a polynomial of degree 
seven and requiring derivatives of order three for f(r).
If the boundary conditions B ( F ( $ , X ) )  the flow were invariant 
then one application of the technique summarized above would 
provide the solution. In the case of varying boundary conditions 
in the type of problem being considered an iterative procedure 
is required and the general form of the solution would be





CHAPTER ̂

Forms For Tbs_Tnt>-Pra1 Kg^atjon Solution

ii 2.i.G^F^z*.d$.dY [5.i F.G.dz = - i F.G.dz +
PQR RBCDAP

(i) F(z) - F($ + i-Y) - x( $,Y) + i.r($,Y);
(ii) G(z,a) II ( z - a )-i
(iii) ^F>^z^ = (i/2) - f {r(^, Y) }
(iv) The contour Dj = PQRBCDAP
(V) •• " Sj = PQR
. . . . .  .. - RBCDAP i.e Sj + Cj = Dj(vi)
(vii) Rj is the region enclosed by Dj.

0 ]

■$2.



I Therefore 

Define

J F.dz/(z-a)
Sj

= - i F.dz/(z-a) 
Cj

ISj. r i F-dz/(z-a) ; ICj -
Sj

i F.dz/(z-a) ; IRj
Cj

Then ISj = - ICj IRo

TVip. Integral I^^

n G.f(r). d$.dY
Rj

n G.f(r) .d$.dY
Rj [5 .1]

[5 .23

X. X o * V •

Consider the integral of F(z)/(z-a) along the arc Sj from

to Z= Za Za
ISj - i F(z).dz/(z-a)

Zb
Expanding F(z) in a Taylor series about, z zj

2 ( 2)
/ - N F i a ' i / 2 '  + ( z ~ a )  - F( a )/ 3  ! +•F(Z) r F(a) + (z-a).F(a)/!! + (z-a) - F( a)/2 .

[5.3]<X> q ( Q )
= F(a) + 2 [ (z-a).F(a) 3

q = 1 q 1

3 S



Hence

ISj =
za

Zb

00 q (<1)
{F(a) + 2 [ (z-a).F(a)]}._dz [5.4]

Q = 1 ( z - a )

On the arc Sj ,
+ h.( COS0+ i.Sine) = a + h.ei© ; dz = i.h.ei©.d0 ;z = a

„hen z = Zb . aa then 0  = b» . a* , hence
a ♦

\l ISj
p 00 q i q O \ Q >

, = J {F(a) + 2
b*
a ♦

b*

q = 1

{F(a) + 2q = l

h. ei ©

q i q o< q ) h -e .F(a) }.de

«0 q i q 6 < q )  e-a*
= i [ F(a).0 + 2 iL̂ e___ *JlLai 1

q = l i.q.q! ® =
«> q<q) iqa*

= i.F(a). (a*-b* ) + 2 { h. F(^. (e
q=l q.q!

On AB, b* = 0 , a* = It ; Hence a* - b* = it 
eiqa* - eiqb* = 0i q. n - e® = ^

On CD b* = 7c , a* =27t ; Hence a*-b* = 2tc
eiqa* - 0iqb* r ei2q.7t -

i q to *
e )} [5.6]

- 0 = n ;

- % =n ;

- Cos 2q.7c + i.sin 2q.-Jt - cos q.-n: i.Sin q.Tc

= 1 - (-l)Q
Thus 0 0 q < q) ^

ISj = i.3T.F(a) + 2 { h .F(aJ.. ((-l)-l)}
q=l q.q!

[5.7]

IbS-Integral TCi
Let the contour Cj be partitioned by the points zi for i - 0 to 
T- (See Fig 5.3 below) and let dzi. o and dzi, i be intervals to the 
left and right of the point zi respectively.



Then the integral ICi may be written as

J  t r i* ? !  H t: =  JiCi = 0 =RBCDA (z -Zj )
F ( 2 l .dz 

Cj (z-a)
J { F(zKdz } 

(z-zj )
zi -dzi , o

zi +dzi , 1
i hj(z).dz [5.9] 

Expanding the function hj (z) about the point z = zi gives

i =T
Then ICj may be written as ICj = 2i =0

i y j

(1) (2) 2 (Q) ^
„ h(z) z h(z ) + h(z 1 . (2-Zi ] +h (z ) . (z -zlJ  +• •+ (2 ) . (Z-Zij. +. .

•' j i j i 1 ! j i j i q!
00 (q) q *

hj(z) = hj(zi) + 2 >>i (T-.i K  (Z-Zi 1 = 2 hi (Zi ) . (g ¿.-i-lq = 0 ri 'q = 1 q
I where hj (zi ) = [dQ{hj(z )}/dzQ] at z = zi 
Eence substituting this expansion for hj(z) into [5.9] the in 6



ICj may be written as
zi +dzi , 1

. { J [ hj(zi ) + 2 hV(gi ) ) 15.10]
Zi “dzi , o

Integrating with respect to z, [5.10] gives
. 00 <q) Q + i z=zi+dzi+i

ICi = "2 {[hj(zi).z + 2 hi (Si ) . (a-zi-1 ] ^ICJ q = l (q+D! Z = Zi-dZx,o

and substituting in the limits for z gives
i =TICj = 2 { hj ( Zi ) . ( dzi . 1 +dzi , O ) +
i=0, i yj

« (q) q + 1 <1 - ^ 2  q-n
2 [ hi (zi ) . ( dzi , 1 + (-1) .dzi.o)]}

q=i (q+1)!
[5.11]

The Integral IR.iFrom equation [4.20] we have

i. 1*2
k = n-l B. A. L,U A, B. L, 0

{ 2 [ A'($).I ($) + B I ($) ]k=0 k n.k k n.k

The line AB in Fig 5.1 is partitioned into m sections by the 
m+1 points zt ; t= 0,l,...m at intervals of dzt . Then 1*2 may be
approximated by the expression

t=m-l k = n-l D,C,L,U 1il*2 - 1 [ 2 { A'($ ).I ($ ) + B ($t).I J
t = 0 t k = 0 k t  n . k t  k t  n,K

Along AB dzt = dzt.i + dzt, o = d$t . If dzt = dz' (say) for t- 1 
bo m, then d$t = d$* and hence identifying IRj with 1*2 gives

t=m-l k=n-ll.IRj r d$. 2 2
D .C. L. U

{ A'($ ).I ($ ) ^t = 0 k = 0 k t  n . k t  k t  .
This expression gives the approximate value of the line in egra 

to replace the field integral in [5.0], however both the

« 6 .



expressions for the integrals ISj and ICj are 'exact’ in the 
sense that their summation is taken to infinity. In the 
numerical context they would naturally be truncated but are given 
in this form to allow the option of improving the accuracy and 
determining the error of any computational solution.
Substituting the expressions for ISj, ICj and IRj (= 1*2) given 
by [5.7], [5.11] and [4.31.i] into [5.2] and solving for F(a) givej

[5.2]
[a]

ISj = - ICj - IRj
0» P ( P ) P

7T.F(a) = i. 2 [ h .F(a) . ((-1) ~ 1 ) ]
p = 1 P . P

o> < q > q + 1
[ h,i (zi ) . ( d z i , 1 + 

(q+1)!

q + 2 q -»• 1
( -1 ) . dZi , 0 ) ] ) >[b] [5.12]

t = m-l k = n-l D.C.L.U ^
+ d$. 2 2 [A*($ ).I (« ) + L it = l k = 0 k t n,k t k t n,k t £c]

The Computed Solution , _ j 4.̂A computer program was developed to use
formula [5.12] to evaluate F(z) on a contour. Initially a trial
program was constructed to evaluate the regular function
F(z) = z2 = ( $ + i.T)2 on the perimeter of a unit square.
For test purposes the upper values of the summations were taken
as p=2, q=2, n=4. In this example the term [c] in [5.12] is zero
since F(s) is independent of z* (i.e [5.12.c] represents'«»•(z)/dz*
Thus
K.F(zj) =: p=2 p ( P) P 4 X T 4.2 [ h.F(zj).( (-1) - 1 ) 1

p = 1 p.p !

q = 2 (q)  ̂  ̂ 1 12  { h ( z i  ) ^ ( Z i , 1 + (-1) • Z i , O ) i J
q = 0 (n+1)!

87.



:: Ti + T2 +

where u wV- ( - P ' iTi = h. F (zj 1.1 ^ )
1.1!

i =T2 [ T3 + T4 + T5 ]
i =0, i

2 ( 2 )

; T2 = h.FCziA. (0)  ̂0 2.2!
< 1 ) 2 2 

T3 = hj(zi).(dzi.‘ + dzi.o) ; T4 = hi^).(dzi4i - dzi, o )
(2) 2 3 15131T4 = hi(zi) • (dzi , 1 + dzi . o ) L • J
3!

hj (zi ) = (zi -Zj )-i .F(zi )
hj( 1) (Zi )=-(Zi "2j )"2.F(Zi )+(Zi -Zj ) 1 . (^/^z)
h,(2)(zi )=2.(zi -Zj )-3 ,F(Zi )-2 (Zi -Zj )-2('^;^z) + (zi -Zj )-i (^2F>z2 ) 
where the derivatives are evaluated at z = zi .
The terms Ti and T2 are the l̂ t and 2nd order contributions to 
the value of F(zj ) obtained by integrating around the semicircle 
centre z=zj radius ‘h’ and it can be seen that Tz is zero.
Further the term T4 = 0 for all i except i = n(a) where n(a) are 
'corner points’ on the contour.

Fig 5.4



Xh roramme was wri't-ben to manipulate complex variable arithmatic 
and a typical result for evaluating the regular function F(z)=z2 on 
the boundary of a unit square, partitioned by 11 points on each side 
I S  given in table 5.5 where (C) and (E) represent the calculated 
and exact values of z = x + i.r respectively.

Pt. X

2 .00998776
.01

3 .03999991
.04

4 .08999999
.09

5 .16000000
.16

6 .250000000
.25

7 . 360000001 
.36

8 . 490000000 
.49

9 .63999856
.64

10 .80900862
.81

-.0000136
0-.0000013
0-2.3*10-7
0
-6.7*10-«
0
7.4*10-11
0.53*10-7
0
1.29*10-6
0
2.11*10-5
0
.0011016
0

-.19222156
-.19
-.3600520
-.36
-.5100037
-.51
-.6400005 
-.64
-.7500000
-.75
-.8399996
-.84
-.9099984
-.91
-.9599846 
-.96

■1.79753
- 1.8
-1.59998
- 1,6
-1.39999
-1.4
-1.19999
- 1.2
-1
-1
-.800000 
-.8
-.600000 
-.6
-.400030 
-.4

-.988516293 -.201101
-.99 -.2

Table 5.5
The error in evaluating this function is very small but can be 
seen to grow as towards the ‘corners’. However increasing the 
number of points on the contour allows this error to be localized 
and reduced 'indefinitely’ .
The function F(z) = z2 was then replaced by the function for the 
flow solution F4 obtained in Chapter 2. From Table 2.2 we have for 
solution four (with a = 1, b = 0 )
i(a) = X + l.r = ( T.Coth(i) ) + i.( 1 - ).Coseché«)
With z - $ + i.Y .
Expressions for*^F/ ^z  a n d ^ F /b z 2  (e ith e r  ‘ e x a c t ’ or num erical)

Í 9



are required for the evaluation of [5.13],
Denoting Coth and Cosech by CH and CC respectively we have 
X = 2.Y.CH(i) ; r = ( 1 - Y2 ).CC2($) ; F = x + i.r ;
X 2.CH(i) ; r = -2.Y.CC2($) ; = 0 ; =-2 - CC2 ($)

- -2CC2($) ; r = 4.Y.CC2 ($) .CH(S) ; x = -2.TCC2(i)
Jr® ' ' y* *
7  - -2 (1 - Y2 ).CC2($).CH($) ; X = 4.Y.CC2($).CH($)
r = 2.(1 - Y2).CC2($).[ 2.CH2($) + CC($) ] [5.14]

F̂  = ,l/2).( - i.F ) ; ^ i - ,  = V  ^ ^

F = (1/2).( X + r ) + (l/2)( r " ^   ̂,

■ W  " ■ V '  ' ’[5.15]
Then [5.14] and [5.15] yield the following forms for F and F2 Z Z
F = -2.Y.CC2{$) - i.CH($).[(1-Y2).CH2($)+!]
z

F - 3.Y.CC2($).CH($)+
+ i(l/2)CC($)2,[(l-Y2).{ 2.CH2($)+CC2($) } + 1]

The computed solution (with and without the crossstream correction) 
for the region of the flow bounded by the characteristics 
=̂•5, $=.6 , Y =.5, Y=.51 are given inTable 5.6.
Inspection of this table shows that the accccuracy of the solution 
increases when the effect of the cross stream variation is taken into 
account and continues to improve when the number of boundary points 
is increased as well as the order of the approximating polynomial 

The average percentage error in the calculation of the 
and ‘x’ coordinates were reduced from 0.76324% and 1.93679% to 

10737% and 1.2684% respectively validating the use of the contour

^ 0



integral method

Pt z = X

together with the cross-stream approximation
z = X + i.r1 . r

1.84789350
1.86260935
1.88716416

1.95751522
1.92918213
1.92104143

22 2.20231038
2.19447270
2.17046584

2.58186034
2.62495066
2.61036063

(0)
(1)(E)

1.87730099
1.89394513
1.91326984

2.01778493
1.99451100
1.99545110

23 2.17821561
2.16368386
2.13523126

2.48256022
2.50371707
2.50246963

(0)
(1)(E)

1.90160022
1.91973648
1.94039390

2.08532163
2.07223156
2.07384637

24 2.14296687
2.12753977
2.10144157

2.39206462
2.40003464
2.40066164

(0)
(1)(E)

1.92656502
1.94602241
1.96859139

2.15981072 
2.15471150 
2.15651404

25 2.10767028 
2.09274951 
2.06901602

2.30531884
2.30312449
2.30449075

(0)
(1)
(E)

1.95258649
1.97322499
1.99792132

2.23853883
2.24201230
2.24376720

26 2.07338958
2.05947145
2.03787975

2.21999765
2.21186703
2.21355113

(0)
(1)(E)

1.97979986
2.00139970
2.02844708

2.32108268
2.33448139
2-33594816

27 2.04028628
2.02759368
2.00796322

2.13944796
2.12571198
2.12747299

(0)
(1)(E)

2.00845649
2.03053182
2.06023683

2.40884311
2.43257579
2.43343185

28 2.00832603
1.99699811
1.97920178

2.06281532
2.04923225
2.04591857

(0)
(1)(E)

2.03948668
2.06060991
2.09336398

2.49432142
2.53665767
2.53662957

29 1.99752161
1.96774998
1.95153523

1.98990908
1.96672443
1.96857902

(0)
(1)(E)

2.08534236
2.09987522
2.12790768

2.57747062
2.64175344
2.64599334

30 1.95441169 
1.94664607 
1.92490745

1.91502148
1.88671005
1.89517141

(0)
(1)(E)

Results with no cross stream approximation. 
Results with 1st order cross stream approximation 
Results derived from exact solution.

Average % errors 1.93679966% 
1.26840004%

.763242026% 

.107375194%
Table 5.6
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Chapter 6
C o n ^ KIcratlons, Svfiri a n d  now ^^rv

m -
In the application of the numerical methods used to 

solve the partial differential equations for irrotational, 
i n c o m p ressible flow discussed so far, the boundary conditions 
( B.Cs ) were of two kinds namely;
(1) At inlet and outlet the distribution of the dependent 
variables (x,r) with respect to $ and Y were known from the 
exact solutions and remained fixed throughout the iterative
computation;
(2) On the inner and outer duct walls neither x nor r were 
explictly defined. Instead, a velocity distribution, again 
calculated from the exact solutions, was used to define r (or x) 
implicitly on the duct walls. Specifically this condition had the
form (a)r + (l/r).r = Q($,Y)
where Q(f ,T) was some known function of the wall boundary speeds. 
Now although the distributions of Q are invariant throughout the 
iteration, the corresponding distributions of r along the duct 
wall implied by (a) above vary continuously, a new boundary value 
of r being calculated at each iterative step until both the field 
and boundary distributions in 'r’ satisfy some convergence 
criteria. Another aspect of these prescribed velocity 
distributions is that they are applied irrespective of any 
boundary layer (B.L) effects, advantageous or otherwise, and take 
no account of the associated B.L behaviour implied by them.

n



In designing annular ducts it would be desirable to produce 
a duct geometry which woul<^ in some sense, control the B.L on 
the duct walls and also the character of the outlet velocity 
profile. In particular, avoidance of boundary layer separation 
and the possible onset of reverse flow in the presence of 
adverse pressure gradients leading to significant disturbance 
in the character of the primary flow would be a useful design 
feature. The achievement of this aim naturally depends on the 
type of boundary conditions to be applied and it is not obvious 
how an invariant wall condition might be defined which would 
satisfy this requirement- Earlier work of Stratford (Ref-11,12) 
on the prediction of the separation of the two-dimensional 
laminar and turbulent B.Ls is here extended to the axisymmetric 
case to yield feasable wall B.Cs. For a given point this new 
‘mixed’ B.C depends on the wall geometry and velocity 
distribution up-stream of the point at which the condition is to 
be applied. Thus, the velocity distributions used to define this 
‘mixed’ wall B.C are themselves varying ( unlike those for the 
exact solutions given above) and hence all flow variables u,v,w,x 
and r (on the boundary) change with iteration number until 
convergence is established. Further by considering the derivation 
of the B.L equations on a body of revolution, the above condition 
may be extended to a class of swirling flows for the laminar B.L. 
These B.Cs together with the numerical techniques described above 
onable us to generate duct wall shapes implying specific 
prescribed B.L behaviour. Given the freedom available in applying



b'trary wall velocity distributions there is no necessity to 
estrict this application to 'Stratford’ type distributions, and 

p examples of duct shapes can be generated for flows with combinations > 
of accelerating, deccelerating and constant velocity distributions 
applied piece-wise on the duct walls in conjunction (if desired) with 

’patches’ of constant radii.
Sections of constant radius or speed may be especially 
appropriate at inlet where the application of a sudden adverse 
pressure gradient can yield an abrupt change in the duct radius.
The flexibility of the technique is such that it can be used to 
determine duct geometries subject to quite random and arbitrary 
boundary conditions.
(in Summary of Stratford’s Results For The Two Dimensional B.L.
In his paper, Stratford examined the effect of an adverse 
pressure gradient, incident at x = xo , Fig. 6.1 on a Blasius 
type (zero pressure gradient) boundary layer which had developed

Fig. 6.1



up-stream of the point x = xo with a view to determining the 
conditions defining the separation of the B.L.
Stratford’s analysis was based on the conceptual device of dividing 
the flow within the B.L for x>xo into two parts; a sub-layer and a 
super-layer. The main feature of the flows in these two layers

is that
(1) In the super-layer the flow is 'almost’ inviscid and 
satisfies an approximate form of Bernouilli s equation 
incorporating a term to allow for the small viscous effects 
present in the upper part of the B.L.
(2) The flow in the sub-layer is one in which the inertia forces 
are negligible and the pressure effects are 'almost’ entirely
balanced by those due to viscosity.
Having established equation sets representative of these two 
distinct flow regimes, Stratford derived solutions for the inner 
and outer flows for both the laminar and turbulent B.Ls. A 
compatability condition applied at the interface, J , of these 
two flows imposing continuity in Y, u, uy and uyy suffices to 
determine the solution for various pressure/velocity 
distributions of the free-stream. Stratford’s conclusion was that 
downstream of xo at x = xs, the point of separation of the B.L, 
the following conditions hold
(1) In the laminar case

Cp . (xdCp/dx)2 = ki at X = xs [6.1]
2̂) In the turbulent case

Cp . (x.dCp/dx)i/2 . (10-6 .Ex ) - i ®  = k 2 at X = Xs [6.2]



c )

where Cp is the pressure coefficient defined hy
Cp = (p-po)/[(l/2) ^  Uo2] = l-(U/Uo)2 (i) [6.33

and R* = x.U/^x (ii)
where both ki and k2 are constants and ̂ >o ,po. Uo are the values 
of the density pressure and speed in the free-stream (edge of 
B L) at the station x=xo . The constants ki and k2 depend on the 
nature of the pressure gradient encountered at and downstream of 
x=xo. In particular if k (=ki, k2 ) is the constant for that flow 
the pressure gradient of which is such that uy = 0 when y=0 
(implying that the shear stress at the wall is zero) and the flow 
is always on the point of separating then equations [6-1] and [6.2] 
represent an implicit definition of the pressure distributions 
and may be integrated with respect to arc length (x) to give the 
distribution of the pressure coefficient explicitly as 
Cp = k.( In ( x/xo ) )2/3 (Lam. B.L.) [6.4]

^ Cp = k. (10-6 .Roi/15 ). ( ( x/xo )i/5 - 1 )i/3 (Turb. B.L.) [6.5] 
where Ro = xo Uo /p.
Since Cp may be expressed directly in terms of the speed, U, at 
the edge of the B.L via equation [6.3(i)3 then [6.4] and [6.5] give 
the speed distribution with respct to arc length of a flow which 
Is continuously on the point of separating for the laminar and 
turbulent B.Ls respectively. Stratford and Curie (Ref. 9) have 
presented methods for improving the accuracy of the prediction of 
the point of separation of the laminar B.L by replacing the 
constant ki by a function depending on two parameters D* and G* 
given by



D» = Cp/( x.dCp/dx ) C6.6]
G» = ( Cp.d2Cp/dx2 )/( dCp/dx )2 C6.7]

The separation value of ki , D* and G* are quoted from Curie for 
flows with various free-stream pressure/velocity distributions

(identified by author); 
Author

1. Stratford, 1954
2. Curie, 1976
3. Howarth,
4. Tani, 1949
5. Banks, 19676. Riley/Stewartson,
7. Williams, 1976(a)
8. Williams, 1976(b)
9. Curie, 1977

ki
Separation values of

D*
0.074514 
0.59077 
1.00211 
1.04061 
1.05137 
0.46367.G* 
0.74276 
0.56412 
0.91373

0
0
1.0681
0.5198
0.940
0
'2.3113
3.9223
0

G*
0
-0.5
-0.1454
0.4376
0.1331--> 00
-2.1899
-4.4072
0.5

Table 6.2
It can be shown that D* and G* satisfy the relation 

dD*/dx = 1 - (D* + G*) = 1 - X where X D* + G*

n

A plot of the separation values of ki against X shows that for 
D* - 0 the data points for results 1,2,9 above are almost 
collinear. Curie has shown that for D* = 0 the separation values
of Ki satisfy a relation of the form

Ki = S(X,0) = (ao + ai .X + a2.X2).e-a4X + as .X [6.8]
where the exponential term accomodates the result for X > “> in 
result 6 above. Alternative to Curie, a least squares fit for these 
data point (D*=0) gives the values of the constants as 
ao =0.74514; ai = 0.36224; a2 = 0.101606747; a3 = 0.46367; a4 =2/3 
Assuming further that the data points for D*/0 satisfy a relation 
of the form

= S(X,D») = S(x,0).( 1 + (bo+bi -X+b2X2 )(1- e-B»).D»P2) [6.9]

^7.



n

A further least squares fit gives the values of the constants bi as 
bo =-0.044663068; bi =-0.024227219; b2 = -0.01424262023; bs = 0.2770 
Equation [6.9] has a maximum relative error of 10-2% for all data 
points and may be used to replace the ki in [6.1] to improve the 
accuracy of prediction of the point of separation of the boundary 
layer, thus Cp . (x.dCp/dx)2 = S(X,D*) [6.10]
A suitable finite difference form for [6.10] would enable the 
corresponding wall velocity distributions to be calculated for 
flows whose B.Ls are continuously on the point of separation.
Given the availability of data, a similar calculation would yield 
the corresponding results for the turbulent B.L.
By virtue of their definition, B.Ls corresponding to duct 
geometries calculated in this way are likely to be unstable and 
easily *tripped’ into separation, however the resulting contours 
will represent the limiting cases for flows derived from 
separation parameters below the critical ones. It is useful to 
examine the variation of the pressure coefficients and speed 
with respect to arc length for the laminar and turbulent B.Ls in two 
dimensional flow with a view for later comparison with the 
axisymmetric case. fSee fig 6. X TJ
Thus for the laminar and turbulent B.L we have from equations [6.4] 
and [6.5]

Cp = kL . ( In (x/xo ) )2/3
c =Uo.( 1 -kL.( ln(x/xo) )2/3 )i/2 (Lam.)
Cp = kr . ( (x/xo)i/5 -1 )i/3
C =Uo.(l -kr . ( (x/xo)i/5 -1 )i/3 )i/2 (Tur.)

'̂ here kL = 0.223 , kr = 1.230.

1
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Letting X= x/xo then
dCp/dX = F(X).( ln(X) )-i/3 (Lam.)
dCp/dX = F(X).(Xi/5 - 1 )-2/3 (Tur.)

«here F(X) represents some function of X and F(l) ^ 0.
Further, the velocity distributions for both the laminar and 
turbulent B.L are related to the pressure coefficient by

U = ÜO . ( 1 - Cp /2
hence dU/dx = Uo . ( 1 - Cp )-i/2 (-1 ) . dCp/dx.
When X =1 i.e when x = xo then dCp/dx = “ showing that both the 
pressure and velocity gradients are discontinuous at x = xo .
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Fig 6.3
ilJll Manglar» c. In order to apply the results of the
previous section to axisymmetric flow, use is made of Mangier s 
transform (Ref; 5) which maps the boundary layer equations

for axisymmetric flow into those for two dimensional



.■— .■ K-J r.

TV,.,« let X y be coordinates along and perpendicular 
plane fl««- ^ ’
to the surface OX and u,v be the corresponding velocity

ents with P and 0 denoting the pressure and speed in the 
irstrea» for 2D plane flow (Fig. 6.3. (i)) and let s.r.w.o.P.W 
te the corresponding quantities for flow over a body of 

revolution (Fig. 6.3(ii)).

Fig. 6.3.(i) & (ii)
Then the B.L.E for plane flow are given by

u .u + V . u = U.U + JJL.u 
X y * yy
u + V - 0
X y

p(x) = U.U ; u:^U(x)

[6 . 1 1 1

/CO.



For axisymnetric (non-swirling) flows the B.L.E on a body of

revolution, as derived by Boltze (Ref; 13) are
W.WZ + q.wr = W.Wz +M-.Wrr (a)

, l(x).q )r = 0 (b) [6.123
P(z) = W.Wz ; w = W(z) (c)

where l(x) is a function describing the axisynunetric body 
contour. It can be seen that the B.L.Es are similar in form for 
the two regimes differing only where the contour function l(x) 
appears explicitly in [6.12(b)], the continuity equation for

Kaxisymmetric flow.
The transform which maps the set [6.12] into [6.11] is given by

12(z).dz (a)
0

y = l(z).L-i.r 
u = w
V = L.l-I(z).( q + r.w. 1-1 ( Z ) . 1(Z) )Z
0(x) = W(z)

where L is some length representative of the dimension of the 
body of revolution.
Since the arc length, 'z’, along the contour is a function of x 
alone (i.e z=z(x) and x=x(z) ), then l(x) may be considered as a

function of z only thus
1= l(x) = l{x(z)> = l(z)

From [6.13] it can be shown that and if F is an arbitrary 
function then the differential operators of the transform are

/ ^ /



- L n - M z ) ;  Z = 0: r = L . l - M z ) ;  = -L* . y . 1 - ( z) • 1 (z ( a )
y y

f = ( L2.1-2(z ) )-F - ( L2.1-3(z).r.l(z)^ ).F^ (b)z
p : ( L.l"^(2)
f’ = ( 12(z).L-2 ).F +( y.l-i(z).l(z)z ).F^
F = ( Kz)-!"'! ).F

l O X .



For both flows
,i) 'o’ refers to the station at which the external flow 0(x) or
W(z) encounters a sharp pressure change;
(ii) ‘p’ refers to some general point ;
(lii) -s’ refers to the point(s) or region at which the B.L is 

about to separate.

Fig 6.4.(i) & (ii)
f «  the Plane flow, it is assumed that the B.L has commenced its 
developement upstream of x = xo at x = 0- To determine the 
corresponding point for the axisymmetric case we have from 16

l o z



X = L-2 J 12 (z) .dz -0
the integrand"!s positive definite the upper li»it must be 

,ero hence the B.L in the axisymmetric case commences at z = 0.

(/>] T.aminar B.L^
The separation of the laminar boundary layer 

(L.B.L) for plane flow depends upon the parameter Sl defined by 
Sl = Cp . (x.dCp/dx)2 C6.1]

When Sl reaches some critical value Slo (say) then separation is 
said to have occured. By virtue of [e-lSe]'

U(x) = W(z)
implying that the pressure coeficient, Cp

Cp = 1 - (0p/Uo)2 = 1 -(Wp/Wo)2 = Kp (say) [6.15]
Hence we may write the separation condition, [6.1], as

Sl = Kp . (x.dKp/dx)2 [6.1a]

Let Z = L-2. J 12(z).dz (= x)
Then dZ/dz = 12(z)/L2 and d /dZ = (L2/l-2).d /dz

Hence from [6.14.b]
(Kp) = (L2.1-2).(Kp) - (L2.1-3.r.l ).(Kp̂ )

X 2

= ( L2 .1 -2 ).(Kp).(dZ/dz) - ( L2.1-3.r.l^).(Kp)
z

(Kp) - (L2.1-3.r.l ) - (Kp )
z 2

Substituting into [6.1a] gives
Sl = Kp.( Z.(Kp) - Z.(L2.1-3.r.lJ.(Kp)^ )2

= Kp.( Z.(Kp)"- Z.( L2.1-3.r.L-2.12.1^) (Kp)^
= Kp.[ Z.( Z.Kp) - (r.l-i .2.1 ).(Kp) 3̂  [6.1b]

z ^



V i - 1 -(Wp(z)/Wo )2 ) is a function of z alone thenSince Kp i '
(Kp) = 0

for axisymmetrio flow the separation condition may be writtenHence

as Sl = Kp.( Z.(Kp) )2
z

[6.16]

In support of this formal^ derivation it can be argued that if d2 

(the thickness of the B.L) is very much smaller than the width of 
the body characterized by the function l(z) then

d2 < < l(z)
r < = d2 < < 1(Z) (within the B.L) 
r. 1-1 = o(d2 ) (say)

Further at the 'edge' of the B.L, the normal velocity, w(z,r), 
varies very slowly witli r hence we way "take 

w = o(d2)
r z

Since l(z) =o(L) then Z =L~2 . i 1 2 (z).dz - o(l)o
then

and
0(1 ) = 0 ( 1 .z ) = 0(1 ).o(z ) = o(Sin e ) . o ( L 2 . 1 - 2 )  - o ( S i n e )

Z z Z 2 Z

(Kp) = (1 - ( w(z,r)/Wo )2 ) = -2 .(w/wJ*‘ ).w^ = o(d2)

Hence the term
( (r.l-i).Z.(l ).(Kp) ) = o(d2 ) .0 (1 )-o(sin 0 ).o(d2 ) - o(d2 )
and is negligible compared with the 1®^ term in [6 .1b]
Let Z* - ln(Z) ; => dZ*/dZ = 1/Z ;
Hence for any function F
<iF/dZ r (dF/dZ*) . (dZ*/dZ) = Z-i.dF/dZ*
7 [6.17]Z.dF/dZ r dF/dZ*

¡ 0 ^
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Hence [6.16] may be writben as
Sl = Kp.( (Kp) )2z ♦

where
z* = In ( z ) = In [ L-2 . I 12(z). dz ) ]

-[6.18]

[6.18a]
0

Separation occurs when Sl , defined by [6.18], attains some
critical value Slc .

Turbulent B.L.,
The separation criteria for the turbulent boundary layer on the 
flat plate is given by
St = Cp . ( x.dCp/dx)i/2 ). ( 10-6 .Rx )-i/i® [6.2]
A derivation, similar to that for the laminar case, transforms [6.2]
to

[6.19a]St = Kp.( Z.(dKp/dZ) )i/2 . (10-6 . Rz )-1/i ® ; Rz - Wo.Z/u 
With the substition of [6.17] this leads to
St = Kp.( Kp )i/2 , (10-6 .Rz* )-i/i® where Rz* = Wo.Z/u [6.19]
Again separation is said to be occuring when St takes some 
critical value Stc .
As in the two dimensional case, the axisymmetric forms of the 
separation criteria may be viewed as defining pressure 
distributions (and consequently velocity distributions) 
corresponding to various choices of the separation parameters Sl 
and St . In particular if Sl (or St ) are taken as the separation 
values Slc or (St c ), not necessarily constant , then we may deduce 
ihe equations defining the velocity distributions corresponding to 
those flows which are continuously on the point of separation for 
both the laminar and turbulent B.L on a body of revolution.

J O á



dlst£
(A) Lanipiar B.it̂

K p . (  (Kp) )2 = S l
z ♦

K p l / 2 . d K p  = S L l / 2 . d Z *
From [6.18]

Integrating with respect to s from z = zr to z = sp where zi is 

arbitrary gives
z = zp

[ (2/3).Kp3/2 ]2 = Z 1

Z = Z P
J SLi/2.dZ* = I (say)
Z = z 1 1 1 P

[ 6 . 20 ]

z> Kp3/2(zp) - Kp2/2(zi) - (3/2). I
1. p

[6 . 21]= > Kp(zp) - ( Kp3/2(Z1) + (3/2).I )2/31 » p

Since ZI is arbitrary let zi = zo ( the point at the commencement 
of the pressure change) then
Kp(zp) = 1 - ( W p / W o  )2 ; K p ( z i )  = K p ( z o )  = 1 " ( W o / W o ) 2  - 0.

z = z p

and I = I Sl I /2 .dZ* [6.21a]
z = z o1, p O, p

f- Substituting these values into [6.21] we have after rearrangement 
the expression for the speed distribution ot the edge of th

II Wp =Wo.( 1- ( (3/2).I )2/3 )i/2 [6.22]
® • Pwhich is of the same form as that for the plane ow ca 

A specific choice of the function Sl in [6.21a] will determine the 
integral lo.p and hence the precise form of the velocity 
distribution given by [6.22]. In general Sl might be chosen 
arbitrarily to produce a variety of velocity distributions.
However in this context it is taken as the function S(X,
[6.10] and is, in the first instance, set equal to one of the

m



constants
If Sl is

from the values for separation listed in Table 6.2. 
constait, then [6.21a] may be integrated directly to give

Z = ZP z = z p

I = J Sl 1/2. 
o, p z = zo

Now from [6.18a]

dZ* = I su
z = z o

/2dZ* = Sl 1/2.[ Z *  ] [6.23],^z = z o >

z* = In ( z ) = ln( L-2. i 1 2 (z).dz ) = In (1-2.J )
0, zz = 0

where we define
Hence

the integral J i 12(z).dz
o. 0

lU
n

2 ” 2 P[ Z» ] = In ( L-2.J ) - In ( L-2.J ) =
z = zo ®. zp 0, ZO

= In (J /J ) = Ln( (J + J ^
0,zp 0.ZO ®.zo z = b

= In ( 1 t ( J /J ) ) «here J

Substituting [6.24] (via [6.23]) into [6.22] gives the
relation defining the velocity distribution corresponding to the
separation parameter Sl (constant) .
Thus

1 / 2
2/3 1/2

Wp = Wo.U - [ (3/2).sL";in ( 1 ^  ̂ [6.L]

The integral J remains constant throughout any iterati 
once 20 has been''chosen. However depending as it does on
the current values of 12(z) defining the wall contours in the range 
[zo,2p] will vary thus producing continuously changing 
distributions on the duct boundaries.



From equation [6.19a] the separation criterion
/

for the turbulent B.L is
Kp.(Z.(dKp/dZ) = St [6.19a]

z
„1th Rz =Wo.z/u ; z = L-2.I 12(z).dz ; Kp= 1 -(Wp(z)/Wo)2
Substituting Rz into [6.19a], and rearanging gives

Z^/5 ,Kp2 .dKp/dz = St 2 . (10-6 .Wo /jjl) ^ = Ai (say) 
z> Kp2.dKp zz Ai . Z-4/5 ,dZ [6.19b]
Integrating from z = zo to z = zp gives (assuming Ai is constant)

2 = 2 p
[ (1/3).Kp3 = 5.Ai .Zi/5 ]2 = 20

= > Kp3(zp) -Kp3(zo) = 15.Al.[ Zl/5(zp) - Zi/5(zo) ]
= [15.A1 .Zi/5 (zo )] . [ {Z(zp )/Z(zo )}1/5 - 1 ]

When z - zo ; W(z) = W(zo) = Wo ; Hence Kp(zo) = 1 - (Wo/Wo)2 = 0

Let A2 = ( 15.A1 .Zi/5 (zo ) )i/3, then the pressure coefficient may be
written as  ̂ ,,Kp(zp) = A 2 . [  { Z(zp)/Z(zo) }i/5 - 1 3^/^ . C6.28]
Substituting for Kp in terms of the speeds from [6.19aj gives

W(zp) Wo.{ 1- A2.[( Z(Zp)/Z(Zo) )l/5 " l]l/3 >1/2 [6.29]
Now A2 = (15.Ai . Zi/5 (zo ) )1/3

= [1 5 . {St 2 . [10-6 . Woj^]i/5 } . Z1 /5 (zo ) ]1/3 { [See 6.19b] }
= (15.St 2)1/3.[ (10-6 ) . (Wo . Z(Zo )/u ) ]1/15

Now if Rz(zo) = Wo.Z(zo)/jJL is of the order of 10^ then the 
constant Az is given by A2 = ( 15.St 2)i /3.
Using Stratford’s value for St for the separation constant for 
the turbulent B.L in plane flow we have

A2 = ( 15.(.392))i/3 = 1.31645744 
Thus the expressions [6.25] and [6.29] define boundary velocity

i o j



1 d i s t r i b u t i o n s  (for constant separation parameters Sc, St ) for B.Ls 
at the point of separation at each point of the boundary for 
laninar and turbulent B.Ls respectively. Velocity distributions 

, say be generated for values of Sc and Sx below the critical ones.

Separation Paramoters^ arriving at the results for

both the turbulent and laminar B.Ls it was assumed that the 
separation parameter defining the flows was constant. However it 
is feasible to allow for variable separation parameters as for 
example S(X.D*) defined in [6.10]. Thus noting that S(X,D») is a 
function of arc length, z, we can write the pressure coefficient.K,

as z = a
K = F {  J s . Z n . d Z }  

where F is some function and n= -1, -4/5 for laminar and 
turbulent B.Ls respectively with S being some function of the 
'local’ value of the separation parameter.

Since K = 1 - ( W(z)/Wo )2
then the boundary velocity distributions are of the form

z = a
W(z) = Wo.[ 1 - F{ J S ( z ) .Z n (z).dZ(z) } 3^/2

z = 0
[6.30]

From the computational aspect, this more general form 
velocity distributions involves no special numerical difficulties 
since even in their simplest forms ([6.25] and [6.29]) need to be 

integrated numerically.

(iO



,,, Of g w i r U n « ..F.law ^
I a) A" extension to the axisymetric condition to cater for a 
I swirling flows is obtained by examining the derivation

o£ the B.L approximation for such flows which, for the sake of 
completeness, is given below (See Fig 6.5). 

f j i
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Let z be th e  a r c  l e n g t h  m e a su re d  a l o n g  t h e  c o n t o u r  OP and  r  t h e  

[• coordinate n o rm a l t o  t h i s  c o n t o u r  a t  P  w i t h  w a n d  q th e  

|j corre spond ing v e l o c i t y  c o m p o n e n ts  an d  m t h e  v e l o c i t y  compo  

y perpen d icu lar t o  t h e  p la n e  o f  w and  q w h i l e  x , y , u , v  a re  t h  

corre spond in g  q u a n t i t i e s  i n  t h e  XOY p la n e .  L e t  a  b e  a 

along the  x - a x i s  an d  l e t  h ( a )  be  t h e  l e n g t h  o f  t h e  p e r p e n d ic u lc ir  

PA from P to  th e  x - a x i s  w h e re  h ( a )  i s  a  know n f u n c t i o n  d e s c r i b i n g

fhe contour.

/ / / .



dz2 = da2 + dh2 = da2. ( 1 + (dh/da)2 )
Then

dz = da.C 1 + (dh/da)2 ]i/2 
z = a

Z  = J [ 1 + (dh/da)z ]i/2-da = G(a) (say) 
l z  -2’ is. in priLiple, a known function of 'a' and vice-versa, 
and hence h(a) may also be considered a known function of 'z’ .
Thus let a = H(z) where (H) = (G)- (The inverse of G)
X2Ì Since h is a function of 'z' only, then h = h(z) and the

angle 0 = 0(z)»

Tan e = dh/da . h ; Sin 0 = dh/dz = h ; Cos 6 = da/dz - dH/dz = H
a

[6.313and h2 = 1 -  H2 ; H2 = 1 -  h2_ 9.

(3) Coordina'te Relationships,
Fro™ Fig. 6.6 we see that if (x.y) and (z.r) the coordinates
of a point in the two frames of reference then 

X = a - r.Sine = a - r.h 
y = h + r.CosO ~ h + r.H (ii)

[6.32]



^  From equations [6.32] 

dx = da - h
z

- r h .dz = H .dz - h .dr -r.h ."dz
z 22i

¿2 + H .dr + r.H .dzz zdy = h
Hence
dx= (H - r.h ).d^ ^ (-hj.dr ; dy = (h^ + r.H^^ ).dz ^ (HJ.dr

Z z z

X = H - r.h 'j y - h + r.H
y. Z

(ii) [6.33]
(iii)

Also since H - Cos 0 ; h - Sin 0,
H = - Sin 0.0 = -h .0
zz z z z

; h  = C o s  0 . 0  -  H .0
z z Z z 2

(iv)

and h .h + H .H = h .(H .e ) + H .<-h .e ) - 0
z z z z z z z z z z

where 6 is the curvat-ure of the countour 
z

(51 Differential Operators.
Generally for any function F we have 

F = F .X + F .y
Z X Z y  2

F = F .X + F .y 
r X r y r

Letting J = X . y - x . y
z r

Then F = J-1 . (
X

J Z
2 r r z

r :z
y .F - y .F )
r z z r

X .F - X .F )
z r r z

[6.33]
( H - r.h ) . H

z z z

.h h .H =
t.’L X I*-

[6.34]

z z

1 - r . e
(vi)

\\S.



- r.h =
' h^ - r h”  = h^ - r.(-h .6 ) = (1 -r.e ).h = J.h, z z z z z

and X =
It follows that [6.34] (iv) and (v) can be written as

F = J-l.H .F - h .F
z z z z r
F = J-i .h .F + H .F

F =(J-2.H2).F + (h 2).F^^ + +
“  ,1, 1 T +'h J ) F + (-h -H ,J-i).F (xi)+ (J-2.H ).(H - 'J" z' z zz z r
F =(J-2.H2).F +(H2).F . H ^ +

 ̂ * (xii)
F + F  =J-2.F + F  + J-2r.e .F -J-i.e^.F^
XX yy A 2 + H 6Also h . h  - h . n  - t » » “ , »  z z z

z  zz z zz Z  Z Z Z  Z z
z -H .02 - h .0 ; J = -r-e ^

Z Z Z  z z z zz z z z
H

(xiii)

(xiv)

(6) Veloo-it.v relations From Fig 6.5 we have 
u = w.Cos 0 - q.sin 0 = H .w - h .q

z ^

V  = w.Sin 0 + q.Cos 0 = h .w + H .q
z ^

W = u.Cos 0 + v.Sin 0 = H .u + h -v
z ^

q 3-u.Sin 0 + v.Cos 0

[6.35]

Differentiating u and v with res|bct to z and r gives
u = H . Wz X X
u = Hz z XXX
u = H . wr X r
U = H . wr r X r

z z

z z z z Z Z Z

q -2h .q -h .q
z z XXX X

r r

//V-



z z z

V = h ,w + h .w + H .q + H .q
\  zz 2 2
' = h .w +2.h .w + h .w + H

z z z  z z z  z z zzz z z z

V = h .W + H .q
r z r z r
V = h . w + H . q
It follows" from [6.3.(i) & (ii)l and [6.3.4 (i)3

(ix)
.q + 2H .q + H .q (x)

z Z z z z z

(xiii)u F + v.F = J'l -W.F + q.F■ X y z r
iS  equations for axisymmetric flow are now expressed, using the 
above relations, in terms of the surface coordinates of a body of 
revolution and the corresponding velocity components and a B.L 
approximation derived. The full axisyimnetric flow equations in 
cylindrical coordina'tes arc

(Axi.) (i)u. u v.u =-p + S(u
X 7 X

U. V + V. V m2/y =-p + S(v
X 7 7 2

u. m + V. m + v.m/y = S(n
X 7

(yu) + (y.v) = 0

X X
u + u /y) 

77 7
7 7 7 [6.36]

+ m + m /y ~ ni/ŷ  ) (Ang) (i i i)
X X  7 7  7 (Con) (iv)

wher*e all quantities are dimensionless and S = (Reynolds no. )-i 
Referred to the new coordinate system (z,r), the set [6.36] become^

WU + Jqu = -(H p -Jh P ) ^ ^ ^ ^ 2^  "
- e u  +"'(h u + JH u )/(h + rH ) (Axi) (i)

z r z z 2 1 2

wv + Jqv - Jm2/y = -(h P +  ̂ ^ ^ ^ ^^^zz^z

- e V  + (h V  V  ")/(h+r.H ) -Jv/(h+rHJ2) (Rad)(ii)
z r z z z r 2

wm + Jqro + J(h w + H q)m/y - S(J  ̂ + J
" ' t (h m % J h  m )/(htrH )- Jm/(htrHJ2 (Ang)(iii)

z  z  2 r  2

/ /7U ^/rVi+yH  ̂ - 0 )q = 0 (Con)(iv)w + Jq + (Jh /(h+rH ))w + ( (dH )/(h rH^ )  ̂ _ [-0.37]
2 r  z  2  2



here u u, etc are given in terms of w and q by [6.35 (v)] et seq. 
rcolinilth other B.L approximations, it is assumed that 
the thiclmess. 'f of the B.L is small compared with the axial 
and transverse dimensions of the body and thus, for equations 
„ade dimensionless with respect to some characteristic length 

V t < < 1*we have
supposing that the Reynold’s number of the flow is proportional 
to t-2 [i-e b = o(R-i/2) while the B.L approx, is valid]
then S = R-i = o(t2). ,
If w and q are of the same order of magnitude within the B.L 
and bearing' in mind that q varies from zero at the wall through 
non-zero values and decays towards the edge of the B.L within a 
distance 'f then we may assume that q = o(t) within the B.L. 
Taking quantities in the axial and transverse directions to be of 
the order of unity then the following order of magnitude 
assumptions are applied to the equation set [6.37] above 
Order of mag: Terms of ‘the order of mag. of

o

m mz mz z qr h(z) ; hz ; Hzo(l) : w ; wz ; wzz 
o(t) : q ; r ; 
o ( t~ 1 ) : Wr ; mr ; qr r ;
O ( t “ 2 ) ; J. • JJJj. y •

o ( Q z )  : hzz ; Hzz ; 
o(6zz ) = o (©z2 ) : z z Ì Hz z z i
If further the curvature of the surface

< < 1 and 0z = o(t) (say) »
then to a first approximation equations [6.37] may be written as

ez, is not large then

/ / é



= -p + Jh (H )-ip + SJw

 ̂  ̂ [6. ■ 
+ Jqm W h ^ ( h + r H J - i w . m  = S J m ^ ^

+ jq ' + Jh (h+rH )-i .w = 0

ww + JqW
z r

ww + JqW
z r

wm + jqm
z r

w + Jq
z r

ww r r

r r

t JqW = -P  ̂ /H )P ^
z r 3 z z r

m2/(h+rH ) = P /H 
z r z

wm + Jqra + Jh wm/(h+rH ) = SJm
zw + Jq + Jh w/(h+rH ) - 0

Further'within the B.L, r = o(t), hence from [6.34(vi)] 
J = 1 -  r.e = 1 -  o ( t 2 )  = 0 ( 1 )

and 
Hence

(i) . o
(ii)
.A] o
(ill)
(iv) 0

gives
(i)
(ii) 7.B]
(iii)
(iv)

h + r H  = h + o(t).l = h + o(t) = h 
z

w w + q w  = ~ P  + (h /H )p + S .wz r z z z r r r

ra2/h = p /H
r z

wm + qm + h wm/h = Sm 
z r z r r

w +q + h w/h = 0
z r z
Rearrangement gives
ww + qw 

z r
-p + (h /H )p + Sw

z
m2/h = p /H

r z
w(hm) + q(hm) = S(hm)

z r
(hw) + (hq) = 0

r r

r r

(Axial) 
(Radial) 
(Azim.)
(Cont-)

(ii)
[ 6 . 3 7 . C ]

(iii)
(iv)

(i)
(ii) [6.38]
(iii)
(iv)

The set [6.38] represents a B.L approximation of the flow equations 
on a body of revolution for swirling flows. If the swirl velocity 

zero i.e m = 0 then [6.38] reduce to [6.12], the equations for
zero swirl.

/ / 7
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Let W,U,Q|P represen"t tlie corresponding
flow quantities in the free stream just ouside the B.L. The 
inviscid form of the flow equations governing the flow in this 
region is obtained by setting S=0 in [6.37], Hence 
^  , jQÔ  = -( Jh^P^ )
wv + JQV - Jy^M2 = ^
WM + JQM + (h W + H Q)M - 0 
w %  JQ t ((dh )/(htrH ))W t ((JH )/(htrH^)- 6 J Q  = 0 (iv) Cont

(ii) Rad- 
[6.40]
(iii) Ang.

where 0 .0 ,V and V are given by [6.35] in terms of W,Q etc., 
free streaL quantities replacing the corresponding B.L quantities

and y= h + r. H .
Substituting for D ,U ,V ,V and rearranging we have

z r z r
H (WW + JQW - 0 WQ) -h (JQQ + WQ 0^W2 )
" " '  ̂  ̂  ̂ = -H P + Jh P (i)z z 2 r
h (WW + JQW - e  WQ) + H (JQQ + WQ + 6^W2 ) - JM2 (h+rHJ-»
' " ' ' ' " ' = -h P -JH P (ii)

z z Z r
[6.40a]
/  * * * \

WM + JQM + J(h W + H Q)M(h+rH )-i = 0 
W + JQ + Jh W(h+rH ) + [ (JH )/(h+rH ) - 0 ]-Q = ^

2 r Z Z 2 2 2

By forming (a) H + h ^i±i) and (b) H *(ii) " h^*(i) may
z z ^

write [6.40a] as
WW + JQW - 0 WQ - Jh M2(h+rH )"i

2 r Z Z 2
JQQ + WQ + e W2 - JH M2 (h+rH
with the angular and conbinuiby equations unchangod

(i) Axi. 
[6.40b]

(ii) Rad.



« «•* will be of the order of the B.L

(ii) (Rad) [6.40c]
(iii) (Ang)

At the edge of th e B .h , T

thichnees and assun.ing that the curvature, 6, is also of the 
same order, then r = o(t); e^= o(t);
Hence J = 1 - r.6 =1- o(t).o(t) = 1 and h trH^ =h  ̂o(t) = h

z
Hence set [6.40b] become

_ ( i )  ( A x i )
\(\H + QW - h M2 /h - P
2  ̂ J

QQ + WQ -  H MVh = -P_̂

WM +QM + ( h W  + H Q)M/h = 0  

W + Q + h W/h + H .Q/h = 0  <.1 1 ^
z r z * H
If it is assumed that the axial and circumferential velocity

, .  ̂ t _» rin 1V { as is the case at thecomponents W and M are functions of z only i
edge of the B.L. ),
then« =W(z) ; M = M(z) and [6.40c] reduces to 
WW - h M2/h = - P

Z Z Z

W Q - H M 2 / h = - P  - QQ
z z r I

WM + (h  W + H Q )M /h  = 0
z z z

VI + h w/h + H Q/h = 0
z z z

A specific expresssion can be derived for Q from [6.40.d .(iii) ]
Q = - hW(H ) - i  ( In ( h M )  ) = Q(z) s h o w in g  t h a t  Q i s  a  f u n c t i o n  o f

2 Z

z only.

Substituting f o r  Q i n t o  t h e  c o n t i n u i t y  e q u a t io n  g i v e s  

hW + h W + ( - h W ) (  In ( h M )  ) = 0
Z z z

( In(hW) ) -  ( In ( h M )  ) = 0
z Z

( ln(W/M) ) r  0

Hence M(z)  = kW(z )  i m p ly in g  t h a t  a l l  s t r e a m l i n e s  a r e  p a r a l l e l

(i) (Axi)
(ii) (Rad)

[6.40d]
(iii) (Ang)
(iv) (Con)

//9
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the freestream this flow b eing comparable 
now over a rawed wing (Ref .6, P.240). 

Si„oe Q= Q(z) t6.40d] reduce to

WW - h H2/h = ■ P
Z ^ *

WQ - H M2A = "P
z *

Q(z) = - hW(Hz)-i ( In(hM) )
2

M(z) = kW(z) ; k 7̂ 0

with that derived for

(i) (Axi)

(ii) (Rad)
[6.40e]

(iii) ('Ang’)

(iv) ('Con’)

An arbitrary choice of the axial component“of speed, W(z), will 
define the flow field completely by virtue of [6.40e] (iii) & (iv).

t while (i) & (ii) define the pressure gradient

Pressure Change Across Tho
From the radial B.L equation Hz.m2/h = pr [6.38(h )]
Assuming that the swirl velocity, m, is bounded within the B.L 
and that the radius of the body of revolution is large compared to

the thickness of the B.L ( *t’)
then t << h. and m 2 < M * 2 (say).

Hence integrating w.r.t 'r’ across the B.L (width t ) we have
r =t r = t r = t

r = t

i |p..dr| = I  (Hi/h).ma.dr < (Hi/h).J M‘2.dr = [ (Ha/h.M-. t] J  o(t) 
’’■® [6.40f]

Hence the presssure difference across the B.L is of the order of 
the B.L thickness and it can be assumed that the free-stream 
pressure distribution is 'impressed upon the B.L.

/ l O



___ With Ez ^ _ a ^
If P . 7 7  it follows C6.-40e.(i)] defines the axial velocity 
component in terms of the contour function h(z).

= 0 .V/W - h . M 2 / h =  P Thus z z 2
Also since M(z) = kW(z) we have

W.W - h .k2W2/h = 0 => W-i.W - k2.h-i.h = 0
Z 2

[ln(W)-k2 . ln(h)] = 0
Bence W = ki .hK ; M = k.W : Q = -Hs-i.(h.W)^
It follows that for this particular zero pressure gradient 
distribution that if one of the functions H.W.M.Q are prescribed 
the others are defined once k and ki are chosen.

U l



ĴVI A A Class Of Swirling FXqws
Consider the set of streamlines passing through a given normal at a 
point of a body of revolution and suppose that the angle that the 
projection of the flow direction of the streamline on the tangent 
plane perpendicular to the specified normal is the same for each 
stream line (i.e the streamlines in the B.L are parallel).

GL.

Fig. 6.7
Then with this assumption that the flow in the B.L is not skewed 

w : m : t  = W : M : T ;
where w2 + m2 = t2 , W2 + M2 =T2 [6.42.a]
where 'w’, 'm’ are the axial and circumferential components of
velocity within the B.L and W, M the corresponding quantities at 
the edge of the B.L. From Fig 6.7 we have 
Sin c r m/t =M/T ; Cos c = w/t = W/T ; Tan c = m/w = M/W 
and T - T(z) ; c = c(z)

[6.42.b]
[6.42.C]

¡22^
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the quantities T and c being functions of s only since M and W 
are assumed to be functions of z alone.

m
m
m

= t.Sin c
= t .Sine + t.Cosc.c 

z ^
= t .Sin c

m
r r

= t .Sine 
r r

(i)
(ii) [6.43]
(iii)
(iv)

[6.38a]

r r

r r

( 1 )

(2) [6.38b]
(3)

„ = t .Cos c - t.Sine.e .
z ^z *

„ r t .Cos c 
r r
W r t .Cos C 

rr r r
Writing [6.38a] in the form 
vw t qw = -P + (h /h)m2 + Sw

z r  z z
w(hm) + q(hra) = S(hm)

z r rr
(hw) + (hq) = 0

z r
and su b stitu tin g  from [6.43] gives
Cos c.t.t + q.t = {-1/Cos c).p + At2 + St

z r
Cos c.t.t + q.t = B.t2 .S. t 

z r
(ht.Cos c) + (h.q) = 0
where A = ( h .Sin2e )/( h.Cos e ) + Sin e.e^
and B = - Cos c.( h.Sin e )^/( h.Sin c )
From [6.38b], forming (i) *B*(1) - A*(2)’ and (ii) (D  (2) gives
Cos c.t.t + q.t = -B/( (B-A).Cos e ) . +  S.t^^ (1)

(2) [6.38c]P = (A - B).Cosc.t2
 ̂ r, (3)(h.t.Cos c) + (h.q) - 0

z r

From the definitions of A and B above it can be shown that 
(B - A).Cos c = -( ln(h.Sin c) )

z
B = - Cos c.( ln(h.Sin c) ) = (B - A).Cos2cz
A = - B.tan2c = ( Sin2c/Cos c).( ln(h.Sin c)
Hence ( in [6.38c (1)] ) the coefficient of P^ is Cos c.



vD'

o

Then set [ 6 . 3 8 c ]  b e c o m e s

(COS O . t . t ^  + q.t^ = - ( Cos O . p ^  + S.t 

p = ( ln(h.Sin c) ) -t2
r r

(1)
(2) [6.38d]

(h.Cosc.t) + (h.q)^ = 0
Defining a new independent variable Z = Z(z) such that 
dZ/dz = ( Cos 0-1 = ( W(s)/T(z) )-i = T(z)/W(z)
Hence Z = J [ T(z)/W(z) ].dz
and define h* =h*(z) = h(z).Cos[c(z)] = h.Cos c 
Then for any function F(z)
F = F .dZ/dz = ( Cos c )"i .F => F = ( Cds c ).F 
Making these substitutions into [6.38d] gives 
t.t + q.t = - P + S.tz r z rr
p = ( ln(h*.Tan c ) ) -t2 (2)
Z 2
(h».t) + (h*.q) = 0
Comparing [6.44]'with the B.L equations for zero-swirl flows [6.12]
[where represents 2~D flow quantities]
where + q^ - w^ = ~ ‘•'M- •  ̂̂  ̂
d<».w«») + d<».q<») = 0 [6.12]

" (c)P*(z) = = W<»(z)
Since the pressure change across the B.L is o(t) (See [6.4 ])
then we may replace the pressure term in [6.44] (1) by 
free-stream value and hence

[6.44]

t.t q.t = - P  +S, t
r r ̂ L

(h*.t) h^.q) = 0
 ̂ (2)- P = W.W - h* .M2/h^ ^

[Note from 6.40e (iv) M = k.W. therefore the constant.
k= Cos c; => d/dZi = K.d/dz ; But h* = ^a»/(-1/K) ,dP/dzi = W(l/kl ) .dW/dzi - M2 /(h» .kl ) . dh /dz ]

I l H



Comparing [6.44a] with [6.12] we can make the following
- 4- - - n - = Pz = h* which will mapidentifications w<» = t , q«» - q , - t'z , j.

[6.44a] into [6.12].
Thus the swirling flow with free streo^components W(z) and M(z) 
at the B.L edge on a body of revolution defined by h(z) may be 
replaced by an equivalent • axial’ flow with freestream speed 

( T2 = W2 + M2 ) over a body whose contour is defined by 
h*(z)= h(z)#Cos c = h(z).W(z)/T(z).

flow then «
z = i T/W.dz = i dz/Cos c = (1/Cos c). J dz - z/Cos c.
Hence the equivalent axial flow effectively is one with increased

speed over a longer narrower body.

/2



It should be noted that this mapping is not unique but there is no 
apparent advantage in using any of the alternatives.
Further, flo« quantities normal to the surface such as radial speed 
.q. and the coordinate 'r’ are unaffected by the transform since 
the contour function h(z) has been reduced by a factor of Cos c and 
the -z- coordinate has been magnified by a factor of (1/Cos c) 
implying a relative thickening of the B.L with respect to the 
dimensions of the body compared with the non-swirl case. The above 
calculation refers to the inner wall where 'r' is positive in the 
sense of the outward normal to the wall. To'deduce the equivalent 
«all conditions for the outer wall where ’r ’ and -q’ are directed

inwards let 
q = - q* ; r = - r* 
r > W = - W  ; w  = w ; q = -(-q* ) = 1*r ♦ r *r r rr r

With this substitution equation [6.38] becomes 
ww + q*.w = -p - (h /H ).p *

2  r *  Z Z Z  r *
-m2/h = p /H 

r ♦ z '
w(hm) + q*(hm) = S(hm)

z r ♦ T *r*
(hw) + (hq*) = 0

z r ♦

Eliminating p
r *

q*w = -p + (h /h)m2 Sw 
2 r» - *

WM + q»v
z r z z

w(hm) + q*(hm) = S(hm)
z r * r *r ♦

(hw) + (hq* ) = 0
z r ♦

which is identical in form to [6.38a].
Computer programmes were developed to incorporate the 
flow parameters in these B.C’s to generate duct geometries.



The effect on duct shape was was examined by varying the values 
of these parameters the results being outlined in the next section. 
The specific form of the velocity distributions used for swirling

flows is
T, . T c . C l  - ( (3/2 ).Sti/2 .1n( 1 t ‘P

and
Tp = To.[l - A2.( (J»o , s p /J®, s o )1/5 - 1 [6.29a]

Vihere Ja♦. b♦ -

z = b * z = b*n
J h*2(Z).dZ

z = a *
= J (hW/T)2T.dz/W

z = a ♦
—

z = b ♦ z = b ♦p
z = b*
P

J h2W.dz/T
z = a ♦

= J h2W.d$/(TW) =
s =a *

J h2
z =a ♦

h2 . d$/T

since h*(Z) =h(z).Cos c = h(z).W(z)/T(z) : dZ = T(z).dz/W(z) 
and T2 = W2 + M2 with W and M being the axial and swirl speed 
respectively. More complex functional relationships governing the 
variation of velocity within the boundary layer could be used 
simulate the behaviour of skewed boundary layers.
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Iĝ yT The WnmerioftX
In "this numerical results are derived for a set of 

irrotational, incompressible flows for a variety of boundary

conditions.
The duct is considered to be devided into three distinct sections 
,i, an upstream section consisting of two coaxial cylinders ;

(ii) a transition region ,
(iii) a down stream region bounded by two coaxial cylinders ;
Because of the multiplicity of boundary conditions that can be 
applied. Fig.6.9 below represents (qualitatively) only one of a set 
of duct geometries that may be created.

Fig 6.9



Boundary Conditions and Initial
Vpstroaro Rodiont in the case of the 'exact* solutions derived 

in Chapter 2, all upstream flow quantities were known but were 
not required in the determination of the numerical solution. In 
the present case the upstream region consists of a pair of 
coaxial cylinders containing a prescribed velocity distribution,
(U,V,W), consistant with an irrotational flow field. The velocity 
components chosen are

W = Wo (Wo = constant)
V = 0
M = A/y (A = constant)

Also associated with the upstream region is a parameter
indicative of the relative size of the B.L which is assumed to 
have developed in this region.
(2) lal^  Stgtjon, The inlet radii of the hub and the casing are 
chosen arbitrarily and, on the basis of the flow presented at 
inlet being that of the upstream region, the values of 'y* are 
alculated at equal dY across the duct along some arbitrary $
characteristic.
Now from equations [1.7.6/7/8] and [2.9] we have

(q/B).ds ; dY = (q/A).dn and A = 1/y, B =1 for irrotational
incompresssible flow.
At inlet dn = dy ; q = Wo

d$ = Wo.ds (a) ; dY = Wo .y.dy (b) [6.50]
f ^^^«grating [6.50b] gives

Y = Yhub + (1/2).[ y2 - y2hub ].Wo





i .

Ci

Let Wo bo an estimate of <l throughout the transition region and
hence d« = W*o.ds
Integrating from inlet to outlet

$out - $in = W*o.(sout - Sin) r
„ $out = $in + W*o.(sout - Sin) [6.50d]
iUow (sout - Sin) may be taken as an indication of the axial
length of the duct, 'L* (say). Thus if L is prescribed, and if $in 
is arbitrary, then [6.50dl defines the « range. On the iont 
characteristic, a parallel (in contrast to uniform) flow condition 
is imposed to complete the set of B.C’s re<iuired for a numerical

solution.
Using the new 'mixed’ prescribed velocity distributions defined 
in [6.25a] and [6.29a], an initial outlet speed is calculated on 
the basis of the duct length 'L’ but this speed is no more than a 
starting estimate for the outlet velocity from which to derive 
some initial values of the oulet radii. In defining the velocity 
distributions to be applied on the walls, it is necessary to 
define (arbitrarily) some upstream length in which a Blasius 
(zero pressure gradient) B.L has developed. This lengt 
defined as a fraction of the inner inlet radius and is another 
flow parameter which may be varied for comparison. Th p 
form of the quantity defining the upstream B.L developement is 
the integral Je,zo used in the definition of the integral Io .p of 
equation [6.22] & [6.25] which give the wall velocity distributions. 
Now if z r 0 ( 4 = $e) is the point at which the B.L is assumed 
to have started its developement (upstream) and z - ( *

¡ 3!



.'-T̂ > V 5-)-'»

the point at which the 'sharp* pressure gradient is encountered

i )

z = z o «= 4>( z o ) ^=<D( zo )

JO.zo = J 12(z).dz = i 12($).d$/q = i y2.d$/q
z = 0 4>= <&0 [6.50e]

To determine $0, noting that q = Wo upstream of zo we have

0

*=«(zo) z = zo z = zo

i d$ = J q.dz = Wo . i
4>0

q.dz = W o . J dz = Wo.(zo - 0) = W o .Zo [6.50f]
z=o z=®

Hence $zo - $0 = Wo . zo => $0 - Wo . zô .
Since $(zo) = $zo is arbitrary, then the upstream value of $0 at
the commencement of the upstream B.L developement is known and

0( zo)

hence determines J0 ,zo = J y2.d$/q [6.50g]
» (  0 )

For computational purposes the integrals Ja,b are approximated by 
the summations J*a,b = 2 [(y2 )* . (1/q)* • d$]
where (F)* represents a mean value of (F) in the interval [a,b]. 
The finite difference form of the fundamental equation set

X = - ( In r ) where r = y2 
t ^r + ( I n  r ) - ^ ~vV'f ris given by equations [3.5], [3.9], [3.15a] and [3.15b].

Error «nd Consi.stancv Checks. Unlike the solutions of Chapter 2,
«

we have no exact values against which to test numerical results. 
However the following checks for error and consistancy are made

(i) 'r’ coordinate.
(ii) ‘x ’ coordinate.(iii) Orthoganal Test on §, Y lines.
(iv) Mass flow.
(v) Vorticity.

JJ2.
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I The ' r ’ c o o r d in a t e  s a t i s f i e s  ( I n  r  0  C3-

L p U c ln .  [3 .5 3  «1^3* i -  — e q u i v a l e n t  a n d  s o l v i n g  f o r  r . . .

lue have [3.103
j = (l/2)(ri*‘.l +ri-i.a + (d$/dY)2 (ln( ri . a - ri, i - x/r .. a ))

I 'e  values o f  T ’ o b t a in e d  f r o m  t h e  i t e r a t i v e  r o u t i n e  a r e  

eospared w ith  t h o s e  c a l c u l a t e d  f r o m  [3 .1 0 3  a n d  t h e  maximum a n d

average r e l a t i v e  e r r o r s  e v a lu a t e d .

( i i )  S im i l a r l y  ' x ’ s a t i s f i e s  t h e  e q u a t io n

t  ̂ 'I [6.51]
-̂p rfi 511 b e c o m e s - ( a f t e r  r e a r r a n g e m e n t )  

The f in i t e  d i f f e r e n c e  fo r m  o f  [ 6 . b lJ  oecom e^

x i ,  j  = Ki . (xi , j + i + xi,j-i + K 2 .(xi+l.j + xi i.j ) [6.52]
whereK. = (1 ^ (d*/dT)a ; Ks = (di/dT)^ ; Ka = -(d./dT)/4

and Ki,j = Fi+i.j + i + - Fi-i.j+i Fi+i,j

with Fa.b = r a . b  “ l n ( r a , b ) .

A s im ila r  c o m p a r is o n  i s  m ade f o r  x  a s  f

( i i i )  O r t h o g o n a l i t y  Te^  d e f i n i t i o n  t h e  $ ,  T  l i n e s  s h o u ld  be

orthogonal t h r o u g h o u t  t h e  f l o w  f i e l d .

/53.



l(i) The -r’ coordinate satisfies ( In r = 0  C3.5]
,pU=in« C3.5] with its numerical equivalent and solving for r. . .

we have [3.103
, . - (l/2)(ri.i.J t ri-1,0 t (d$/dT)2(ln(ri.j*i.ri.j-i/r
le values of 'r’ obtained from the iterative routine are 
compared with those calculated from [3.10] and the maximum and

average relative errors evaluated.
,il) Similarly <x’ satisfies the equation

y _ 'i [6.51]X ^  ̂ ^ ln(r)
i ' T  Kixoomes-» ( a f t e r  r e a r r a n g e m e n t )

The f i n i t e  d i f f e r e n c e  fo rm  o f  [ 6 .5 1 ]  b e co m e s ^ a i

xi,j = Ki.(xi,j+i + xi,j-i + K2 .(xi+i.j + XI i.j ) K j.g
where K. = (1 t (di/dT)3 ) -  ; K. - (d./dT)^ ; Ka = -(d./dT)/4

and Ki,j = Fi + l.j-n + - Fi-l.j+i Fi^i.j

with Fa.b = ra.b - In(ra.b).
A s im i la r  c o m p a r is o n  i s  m ade f o r  x  a s  f o r

(iii) Orthogonality Te^  definition the T lines should be

orthogonal throughout the flow field.
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TO estim ate the deviation of the ( i , T )  characteristics from 
orthogonality the relative % error in the diagonal was determined By  
Lalculating the quantity tc/(at . ba)i/2 - 1 ] for each grid cell. ^

(iv) F lo w and V ort,io4rty Furt-her checks for the self
consistency of the numerical solution is obtained by calculating 
the mass flow and circulation through and around each grid cell 
defined by the coordinates of four adjacent points in the flow.

Fig 6.11
In order to allow for the curvature of the stream and potential
lines the flow surface is approximated by a frustum of a cone.
The mass flow through sections AD and BC is approximated to by
baa and Mbc where Mae = q*ad .Sad » Mbc q

q»ad =(qa qb)/2 : q‘«>c = ( qb + qc)/2

»here Sad and Sbc are the curved surfaces of the frustums
and 'BC. For continuity we should have Mad = Mbc.



The r e la t iv e  e r r o r ,  d e f i n e d  as (M.a/Mtc -1). w a s  fo u n d  t o  be  o f  t h e  

order o f 1 *  t h r o u g h o u t  t h e  g r i d .  S i m i l a r l y  i n  c a l c u l a t i n g  t h e  

l o u l a t i o n ,  th e  q u a n t i t i e s  C t  a n d  C ac  a r e  e v a lu a t e d  w h e re  

Cab = U b . q * « b  ; Cdc = U c . q * a c  

For i r r o t a t i o n a l  f l o w  Cab = Cac  a n d  t h e  r e l a t i v e  e r r o r  i n  

circulation on  a d j a c e n t  s t r e a m l i n e s  d e f i n e d  a s  ( C a b /C a c  - 1 ) .

Table 6.12 below lists a typical set of errors for a sequence of

various g r i d  s i z e s .

Grid Size
7.7
9.9
11.11
13.13
15.15
17.17
19.1921.21
23.23
25.25

Average % Error in 
Mass Flow Circulation

2.49 
0.841 
1.171 
1.185 
.656 
.548 
.427 
.354 
.338 
.320

Table 6 ._9
, maxiinuin % e r r o r  i n  t b e

I t  was fo u n d  t h a t  t h e r e  w a s  a  f a i r l y  6

mass f lo w  and  c i r c u l a t i o n  o f  t h e  o r d e r  o f  15.d an

I respectively o c c u r in g  i n  t h e  n e ig h b o u r h o o d  o f  t h e  p o i n t  a t  w h ic h

the initial "Stratford’ velocity distributions are applied at the

wall.

The e r r o r  i n  m a ss  f lo w  a n d  v o r t i c i t y  d e c a y s  r a p i d l y  aw ay fro m  t h e  

point o f  a p p l i c a t i o n  o f  t h e  s h a r p  p r e s s u r e / v e l o c i t y  g r a d i e n t  an d  

the s iz e  o f  t h i s  r e g io n  c a n  b e  r e d u c e d  b y  i n c r e a s i n g  th e  num ber 

of g r id  p o in t s .  A s i m i l a r  c a l c u l a t i o n  may b e  don e  f o r  th e  a n g u la r  

P momentum in  th e  c a s e  o f  s w i r l i n g  f l o w s .
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The parameters affecting the duct geometry are as follows;
(1) I n le t  A x i a l  V e l o c i t y  P r o f i l e .

(2) Inlet Swirl Profile.
(3) Upstream Blasius B.L Developement Length.
(4) Wall Boundary Velocity/Radii Distributions
(5) Outlet Condition.
(6) Laminar or Turbulent B.L.
The program developed for this section allows all the parameters 
listed above to be varied. In order for the flow to be 
irrotational it must have a uniform inlet profile together with a 
sMirl speed of the form m = k/y. The B.L presenting itself at 
inlet is assumed to have developed in some upstream region the 
length of which is a variable input parameter. The wall boundary 
conditions may be taken as 'Stratford' type distributions which 
contain a parameter allowing the velocity distributions to be 
■wound up' to their full critical values independently of each 
other on either wall. There is no necessity to limit the choice 
of PVDs to the 'Stratford' types and a simple numerical device 
the form of the velocity distributions will convert them to 
accelerating flows. A parallel flow condition is applied at 
outlet but this could be replaced by an alternative PVD across 
the duct linking the "ends’ of the two wall PVD at outlet.

 ̂ Fig 6.2. which shows the distribution of the Stratford 
j velocity/pressure distributions for plane flow laminar and 

turbulent B.Ls on the point of separation, it can be seen 
the onset of pressure rise the gradients of both the velocity and

o
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The parameters affecting the duct geometry are as follows:
(1) Inlet Axial Velocity Profile.
(2) Inlet Swirl Profile.
(3) Upstream Blasius B.L Developement Length.
(4) Wall Boundary Velocity/Radii Distributions
(5) Outlet Condition.
(6) Laminar or Turbulent B.L.
The program developed for this section allows all the parameters 
listed above to be varied. In order for the flow to be 
irrotatlonal it must have a uniform inlet profile together with a 
swirl speed of the form m = k/y. The B.L presenting itself at 
inlet is assumed to have developed in some upstream region the 
length of which is a variable input parameter. The wall boundary 
conditions may be taken as 'Stratford’ type distributions which 
contain a parameter allowing the velocity distributions to be 
'wound up’ to their full critical values independently of each 
other on either wall. There is no necessity to limit the choice 
of PVDs to the 'Stratford’ types and a simple numerical device in 
the form of the velocity distributions will convert them to 
accelerating flows. A parallel flow condition is applied at 

I outlet but this could be replaced by an alternative PVD across 
the duct linking the 'ends’ of the two wall PVD at outlet. From 
Fig 6.2, which shows the distribution of the Stratford 
velocity/pressure distributions for plane flow laminar and 
turbulent B.Ls on the point of separation, it can be seen that at 
the onset of pressure rise the gradients of both the velocity and

o
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pressure distributions are infinite. The axis3nnmetric PVDs are of 
the same general form and hence the change in duct radius at the 
point of appliction of the sharp pressure change causes an abrupt 
change in the duct radius. The program structure allows the insertion

of patches of constant velocity and/or radius as a B.C and these may 
be used to suppress sudden changes in the radius at inlet. The 
multiplicity of parameters which may be applied to control and 
affect the flow will lead to a substantial ammount of numerical 
experimantation to determine the effects qf their interaction.
The plots at the end of this chapter illustrate the effect on 
duct geometry of
(1) 'Winding up’ the Stratford PVDs on the duct walls to their

separation values.
(2) Allowing sections of constant velopcity/radius at inlet.
(3) Increasing the upstream B.L developement length; 

i.e increasing the thickness of the B.L.
(4) Increasing the ratio of swirl to axial speed at inlet.

(5) Difference between laminar and turbulent B.L. 
limitation on the increase in the swirl speed (consistant

with irrotation) is quite severe. From Fig xxx, showing the 
variation of duct geometry with increasing swirl, it can be seen 
3̂t the change in the shape of the outer wall is steady and 
sroall , For the hub, the initial rate of change of shape due to 
•creasing swirl is similar to that on the casing, but when the 

parameter reaches some critical value, there begins a sudden 
rapid collapse of the hub towards the axis thus producing an 

^finite swirl component.
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(c) On the upper wall the.swirl velocity varies only slowly with 
^arc length having only a mild effect on duct geometry.

id) From the 'swirl* plots, it can be seen (Fig. 6.13) that the 
I increo,5e in swirl with arc length is substantial even for swirl 
coefficients as small as 15% of hub inlet axial speed.
 ̂The results obtained thus far are for flows with PVDs accelerating 
and/or deccelerating on one or other or both walls and duct shapes 
consistant with these conditions are given below.
The imposition of parallel flow at outlet yields a 'smooth* 
transition to the constant radii outlet secftion.
In general, if the boundary velocity distributions are monitored 
then a variety of criteria can be used to trigger the application 
of a new type of B.C when some condition is satisfied. Possible 
examples are the restriction of the pressure coefficient to a 
prescribed range or limitations on the size of duct radii. For the 
purpose of the current calculation the transition region is divided 
into five sections for the application of B.C.
(1) Inlet region with constant radius.
(2) Inlet region with constant wall velocity.
(3) Transition region with ‘Stratford* or other variable velocity 

distribution.
(4) Outlet region with constant velocity.
(5) Outlet region with constant radius.
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Q tsn sim J2i-B is_Sojaitiim Having calculated the (x,r) distribution 
in the transition region it was attempted to extend the solution 
down stream (& upstream) of the outlet station. This was done by 
rewriting the PDE in (1) forward and (2) backward difference 
form and then 'stepping off’ at outlet/inlet while assuming the 
flow to be contained betwen two coaxial cylinders.

Thus the finite difference equation [6.60] yields the forward
difference equation
r = ( r2 /r ).ExP(2.r -r ri. j i. j-2 i. j-i --1. J-i

)/(dY/d$)2

This process proved highly unstable and did not converge.

Cl
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nhap-ber 7

(T)
In this chapter the flo« equations and their design 

plane counterparts are used to derive numerical solutions for the 
case of an inviscid axisymmetric flow with vorticity. Upstream, 
the axial and swirl components of velocity profiles are chosen to

be of the form q = a.y2 + b.y t c ‘'̂ 5'
In the general case for which both q and w are non sero. the

-Ti +>iree non zero components. The lawsvorticity vector will have tnree non
, , . ^4! +viga vorticity through the transitiongoverning the behaviour of the

region are incorporated into the general numerical scheme. 
Application of ‘mixed* B.Cs on the walls and a parallel outlet flow 
condition suffice to define the solution completely. Calculation 
of the angular and axial momentum are used as a further numerical 
check on the consistency of the computed solutions.

j ri • .t PI Ecjuivaloats
I I )  F low  Equations and Desiffii 
The equations for inviscid, axisymmetric, swirling

uu + vu
 ̂ J \

uv + w  - w 2 / y = - l / ^ . P

(yu) + (yv) = 0
2= (l/y)(yw) + (-W)V H Jy X

(Cont) 
(Vort)

The design plane equations are
(a)

( ln(A) ) = €*.B/q2«>
( ln(B) ) = - Qe.A/q2

X = (B/A).y* y

(b)

- G* = U + V’ X y
; Qe = V - uX y
; S2y - w

!i>S



Qí = (l/y).(y«) [7.8]

[7.9]

[7.10]

-X = (A/B).y ■ y
¿ination of the 'x* coordinate from [7.7] and [7.8] by
differentiating with respect to $ and T gives

[ (A/B).y ] + C ^
From the continuity equation, [7.3] (see [2.1.2]),

€* = u + V - (-q2/B).( ln(y) 
substituting into [7.5] ( eliminating B.q ) gives

( ln(A) ) = ' ( >,
r> ( Ln(A.y) ) = ®

* , 4« an arbitirary function of Y.=> A.y = gi(Y) [say] where gi (Y) is an arDii^r
[7-11]

z> A = gi (Y)/y
Substituting this form for the function A in [
( ln(B) ) = - Qe.A/q2 = - Qe .gi (Y)/(<l2 .y )

^  1 ^  = 1 and hence from [7.11]Since gi(Y) is arbitrary let gi (Y)
[7.13]

A = 1/y [7.14]
and ( ln(B) ) = - Qe / ( q ^ . y )ana v -Lnvc;  ̂ , v ̂
In the case of"i r r o t a t i o n a l  flow, Q = 0 and hence B = gz(i) «here
i z m  is arbitrary and set equal to unity making B = 1 everywhere.

o« T7 14] gives only the variation However in the case of non zero >
Of B «ith respect to T across the duct whilst the function A has
the same form as for the irrotational case. However, rf B xs

u ^».istic then integrating [7.14] withprescribed along one T charac *
respect to f will enable the distribution of B to be determine 
throughout the (.,T) Plane. This could only be done in c - s e d  f o ™
for a restricted class of functions of Oe, q, V  ^  ^

4-v̂o value of B along tine 
allows a numerical integration to determine the
5 characteristics across the duct.



S„.UtuUn. .o. A .ro. CV.133 in.o CV.S3 «Wes usW«

[7.14a.2][ B-y y V "  ̂ ®
[ln(B)V = -Qe/(q=>.y)
 ̂ I” i u  + (y )2/B2 = 1/q^ [7.14a. 3](y )2/P? + (y^)2/B2 = (y.y^)2 ^ (y^)

- y V V • (F) = 2.r>/2.(F)
Letting r = y2 ^  \  <b « y
Then [7 ,1 4a. 1,2,3] may be written as 
[ B.r ] + C B->.(ln(r)) 3 = ®

y  Mr
[ ln(B) ] = - Q e / ( q 2 - r W 2 )

[7.17]
(r )2/4 + (r )2/(4.r.B2) - !/<!

Chanter 3 and denoting the transformed Using the transform of Chapter
rviRl617] becomevariables by then equations [7.15,16.
, a [7.15a]

[ B.r» ]._ ■» [ B-i . a n ( r * ) 3  3^^ -

[ ln(B) ] = -[c 5 2 /(4 .C7 3 )]

q * 2  - (r* )2 + (r* )2/(B2.r*)W* ** Oil* -  -  ( C5 2/( 4 . C7 2 ). Qe
Defining a dimensionless vorticity as r7.15b]

+ [ B-i .(ln(r*)) ] = 0

r-i

[ B.r* ]

[ ln(B) ] = - Q e * . q * 2 / r * i / 2  = - Q e * . q * 2 / y

q * 2  - r*2 + r*2^/(B2.r*) . . ̂
II the disiibutiofoi Qe» were Known throughout the flow fie 
[7.1bb,16b.l7b] are sufficient to determine the corresponamg
aistributions of r». q» an3 B. The for. of the aepenaency o f .

n f  its derivation• -F +hf» flow and an outlinethe transition region of the
V is given below (Subscripts dropped),for this solution scheme is g

/ < i 7



V^rtinitv Trnnsport, Throwfih dwct-
For incompressible floH the total energy of a fluid element along

4- line Y, is given by H(Y) wheregj_v6n siresni xinei >
H(T) = ( u2 + v2 + w 2 )/2 + v/^
and with Q. = (l / y ) . ( y - « ) ; Qy - -W Qe = V - UX y

u = (i/y).^ ; '' =
[7.19]

it can be shown (Ref.

v.Qe w.Qy = H
X

w.Qx u. Qe = H
y

u.Qy V. Ox = He

 ̂ q.(y.w) -y = 0 => ® ■’ ‘ ^ ^y s

= 0

4- o i n the 'x’ direct-ion,
[Where that Ox H with respect to x.]whilst H denotes the der ivative
SuhstiJting O. and Qy fro. C7.191 into C7.223 .ives^ 
u(-w ) - v(l/y).(y.w) = 0 => u.(y.w)^ v. (y.
B u t ^ . q . x  ; v . J y  where ds2 -dx^ t dy2

s
Hence q.(y . w ) .x

X s
+ant along a given streamline and we Thus the quantity (y-w) is c o n s  tan
„ - C(Y)/ymay write y.w - C(Y) or

T̂ ŷ int on a streamline (at inlet Therefore if C(Y) is known at some P
. T w is determined along the wholesay) then the swirl speed, w, i • V f — ) xs q Xsostreamline provided that the distribution o

known along t h i s  s t r e a m l in e .

,4= rv 931) into [7.19] gives Substituting for w (from [7.2 J)
0« : (i/y).c = (i/y)-c Ty 'f' y r

Qi = (-l/y).C^ =  ̂'' %■



i : \

. O» and Qy we can obtain expressionsHlth these expressions for 0» and
for Qe from [7.20] or [7.21]. Thus from [7.21] 

w.Qi - u.Qe = H = ®
(C/y).u.C - u.Qe = ^ /a .
=> Qe/y = (l/y2 ) C.C - H = (l/y2).(C2)^/2 - - ««.^^24]
Now this expression for Qe is just that which needs
aetermined on the ri.ht hand side of [7.16b] and this will be
possible since we have the freedom to prescribe the inlet

-p flow thus specifying the functions(or upstream) conditions of
H(Y) and C(Y) at all points of the flow field.
Dimfinsionlftss form of egtiations 71 and__I

X = (B/A).y A =

' \

-_y X = B.y.y = (l/2).B.(yn^ = (1 /2 ).B.r^
From the transform of Cl^pter 3 we have for any function F

„  _ /i FF = (1/c )-F
7 * *

F = (1/c ).F

=> (1/c ).(c .X ) = (1 /2 ).B.(1/c )•
7 2 1**

=> (X ) = B(c .c )/(2.c .C ).(r )1 «.♦ 1 7 5 2 i 'r
But (c .c )/(2.c .c ) = 1

1 ®  ̂ .p T7 71 and [7.8] areHence the dimensionless forms o
(X ) = B.(r )1  ̂T *
(X) - (-U-B).an
1 ̂ *

■p Y only once defined, equations 
Thus H and C being functions of > velocity
[7.23] and [7.24] determine the distribut on • „f y

.V, flow for a given distribution of y- and vorticity throughout the fl



7

o

rar upstream of the inlet station the flow is «sumed to be 
cylindrical and all quantities are independent of x.

Hence v = 0 ; q = n;
p = 0 ; p = w V y  ; T = 0 : T = y.u = y.qV K yX y

Defining the total energy H = d/2).(^^ - ^ P/p
Then (l/2).( q^ + ^

= [(1/2).(q2 + «2)^ +

= [(1/2 ).(q2 + (wVy)^]-y^

= {[(1/2). (q2 + w2) + w2/y 3^}/(<i-y)

iins-tream in terms of y then [7.25] Since both q and w are prescribed upstre
determines H along a given streamline throughout the flow.
Also since C = C(T) and T = y-d upstream

y

[(1/2).C2 ] = [(1/2).C2 ] .y - (i/<iy) • \
y T

Define G(T) = (1 /2 ).C2 (Y)

[7.25]

G = (1 /qy)- [ ( 1 / 2 ) 1
[7.26]

[7.27]Then [7.24] may be wri-ften as
A/y
lere the quantities C and H are Known from the upstream conditions 

as functions of T or y^along each stream line. The

^  V
parameters are

n o



r

a

[7.283
G = [w.w + /y 3*(y/^)
^  yH = [w.w + w2/y + q.q 3/(q-y)
Iff 7 ^
E = [w + w/y 3 - (w/q)
/  - V E (d) : H = [E + q ]/y

Then  ̂  ̂ ^   ̂ ^
If « = 0 => = 0 => = 0 => H = (q^)/y

In terms of the variable r -
G = [ w t 2.r.w ].w/q •■ H = [ ^.q.q^ + 2.«.«^

r ^

= G /r - H
r  r

Further substitution into [7.163 gives
 ̂ [7.16b.a3

[ ln(B) ] = - [ <5^/f ' H
 ̂ f .^vloter 3 to map onto a unit square givesUsing the transform of Chapter o

[ In (B) 3

+ w2/2 3/q

Substituting in to  [7 .2 7  3 Q®

= - [(c ,c2)).G /r -
1 3  1 3

[7.16b.b3 
[7.16b3,

/ 9 \ r and H* =(l/c2 ).H*Defining G* = (c . c2 ).G and n ^y* 1 3 T ^
then [7.16c3 may be written as
[ ln(B) ] = - C G»/r^ -
Droping thl '*■ and subscripts from equations [7.15b
[7.17b], [7.18b] and [7.19b] yields the set
t B.r ] + [ B-i . ( In r ) ] = ®

ifr « «
[ ln( B ) ] = ( H - G /r ).q2

IM t  'Tq2 r 1*2 + r2 / ( B2 . r )
*jir ♦

X = B.r
X = (-1/B).( In r )

Boundary Conditions .,
TH. v...=. .< « .

I..« „,.1 V.10C . V  „ o , U .  .hi.« ih .h.-h »

/7 /
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= a.y2 + b.y + C where a,b,c are constant.
determined by three pairs of radii and velocities

These constant-s are

at will and are defined by the relations
) + q ( r - r ) + q ( > ^ ' ^ )' , 3 1 3 1 2

chosen

a = [q (r  '  !■
1 2

(r - r ) . q (r - r ) -
1 2 3 2 1

 ̂ + oT*r i r - r  ) + q r r  ( r ~ r  ) ]/e 
= /  3 a 3 a.2 a 21 2  3 2

)(r - r )e ^(r -  r ) ( r  -  r1 3 3 2 2 1
The maximium/miniimam values of the flow occur at 
r. = - b/(2.a) ; qm = (4.a.c - b2)/(4.a)

If q = q -then
1 3

a = ( r - r ) ( q " q ) / ^1 3  1 2
b = - ( r - r  ) ( r + r  ) ( q " ^

'  ̂ / r  ) -  q r r ] / e  with r .  = ( >/2
2 1 3c - ( r - r ) . [ q r ( r1 3  1 2  1 2  3

-L- 1 ^ o ila c s e s  to  a s tr a ig h t lin e  
If q q = q then the parabola c o l l  P

1 2  3
corresponding to  uniform in

inlet flow. Any randomly selected profile

n 2 ^



r

could be chosen but the 'natural’ choice would be to take q = q and
1 3

to choose r and r to correspond to the inner and outer walls. The 
1 3

value of q to be chosen will then correspond to the maximum/minimum 
speed qm of the inlet profile which will occur at the mid-point. 
OUnlet Swirl Velocity Profile.
The distribution of the swirl velocity at inlet (and upstream) is 
chosen as w = e.y + f/y (where e, f are constant).

•i
If e = 0 then the swirl velocity corresponds to that consistant with 
irrotational flow although the flow will only be irrotational if the 
inlet axial velocity is constant across the duct. If e / 0 and f = 0 
then the inlet swirl corresponds to solid body rotation with angular 
velocity ’e’. An arbirary relation between 'e’ and 'f’ was chosen in 
order to limit the multiplicity of independent parameters that can 
now be varied to define the upstream flow conditions.
In this case e = n.f where n / 0 {n = . 25.( arbitrary )}.
The inlet swirl velocity is of the form
w* = f . (n.y + 1 / y)  ; w* = n -  y  2 ; Min/Max = ± [ n " i / 2 , 2 . n i / 2 ]

and a plot o f some examples o f p o s s ib le  in le t  sw irl p r o fi le s  i s  shown

in Fig 7 .2  in  which w* = w /f  i s  p lo tte d  again st y.



It can be seen from •< that for the range of values of
tadii 'not close’ to the axis, the ’solid body’ part of the swirl 
velocity function dominates the value of the swirl velocity near 
„ - 2 Because the calculation is made dimensionless on division by 
the reference length (y = inner duct radius), the singularity of the 
swirl velocity profile at y = 0 is removed and therefore the inlet

• -finii-e however it may be allowed to increase speed will not become infinite, however i ^
T *-f ’ T+ sliou-Xd b© notwCd,without limit by increasing the value

that the swirl profiles given in Fig7.2 cannot be compared
,uantitavely with each other since each profile has been scaled to

^11 t>rofiles are indicativeits own inlet speed on the inner wall. The protil
* h» scaled UP to any value by the factor f.only of shape but can be scaiea up

Case 1. n >= 0
IT TTilf̂ t = 1 by definitionSince the radius of the inner wall at inlet

and if we define w» = w/f = n.y + l/F
(a) if n > 1, w* has a minimum for y<
(b) if n = 1, w* has a minimum at y - 1 ^
(c, if n < 1. W* can have a minimum above the inner wall.

• í̂ asinfí without limit.Case y. n < 0. If n<0 then w* is monotonic decreasi
the flow at which

Thus there will be a stream line at some poi
„bile being non zero on the inner and

the swirl speed will be zero
•tía sign giving a contrarotatingouter casing but of opposite g

t he represented by a function of the
Since the swirl velocity must . + •

tiet and within the transition
form w = C(Y)/y both at inlet , outl ^

there exists a C(Y)region, it follows that for some y

/ 7 Y -
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inlet It follows that there is a surface C = 0 for some y at rnlet.
I f  r e v o l u t i o n  throughout the flow on which the swirl speed is zero

with swirl v e l o c i t i e s  of different sign on opposite sides o f  thrs

1 stream surface.

n )In le t  D is t r i b u t i o n  o f  y w i t h - X ^
■F i n l e t  velocity profile together with a choice of The prescription of inlet

ri- ^llow the derivation of the inlet y distribution inner inlet radius allow tte aerx
at equal delta Y .

From [ 1 . 1 1 . 6 ( i ) ]  we have u =

With A = 1 / y  an d  q  = u ( s i n c e  a t  i n l e t

<1 = q2 . y . y  => dY = q . y - d y -
^  N riY - (a y3 + . y2 + c ). dy

But q r ay2 + b . y  + c => <iY -
[7.32]



I n t e g r a t i n g  w.r.t T along the $ inlet characteristic from inner 

wall to some point y we have
y - Y. = [ay«/4 + b y V 3  + o y V 2  where Y* and y» are known.

Rearranging
ayV4 t by3/3 t cy2/2 = Y - T* - [ a y * V 4  + b y « / 3  t c y ^ / ^ J  [7.33]

This expression is a quartic in the unknown inlet y for a chosen 

value of Y. Choosing values of Y at equal intervals between Yl 

and Yu (Fig. 7.3) we use [7.33] to calculate the corresponding y ’s. 

Equation [7.33] has in general four distinct roots and an iterative 

algorithm was used to determine the appropriate one. The method 

chosen was that of 'bisection’ where it was assumed that the 
required root lies between y=0 and y=ym where ym is that value of y 

corresponding to the maximum value of Y there being no guarantee 

that other iterative routines would converge to the requir 
An approximation for the inlet y ’s could be obtained from [7.32] but 

the values of ’y ’ would become increasingly more inaccurate

increasing grid size.
(41 Wan Rounda>-y f!r.nditions_̂
The wall boundary conditions are similar to those applied in the

. . 1 4:1 rvw • Velocity prescription onprevious section for irrotational f i
the hub and casing of a 'Stratford’ diffusion type together with 
regions of constant velocity and/or radii at inlet and outlet 
sections on either of the walls if required. Again, accelerating 
velocity distributions can be used instead.
15) Outlet Conditions.
A parallel flow condition is imposed at outlet. How

f 7 7



the previous chapter, this is not mandatory and a variety of 
velocity based outlet conditions might be considered depending on 
particular circumstances, an example being a velocity distribution 
■joining- the hub and casing along the outlet $ characteristic or 
possibly some 'mixed- condition of a similar type to the wall B.Cs 

n^flniti^n of The -C- Functional
At inlet the swirl velocity w is given by w = e.y + f/V

. . V -̂1 —  W = C(Y)/yand throughout the flow
Hence denoting an inlet value of y by y*
„ = C(Y)/y» = e.y» + t/V* => C(Y) = e.y« + f
Thus the values of C(T) calculated from [7.34] for a given stream 
line are constant along that stream throughout the flow.

Finite Difference F<?rmS-s-
[7.15c] 

[7.16c] 

[7.17c]

_ £ n  ̂Y\ 't'ViG '  ̂ directionDefine dt^Z as the kth finite difference

[ B.r ] + [ B-i . ( In r ) ] - ®

[ In ( B ) ] = ( H - G /r ) . q2
vf ^ ir

q2 z r2 + r2 / (B2 . r)
'jr ♦

_ 9 T- + r; df2r = ^

- r
i , j + l

d*2r = r -2.r ^ .
i , j + l  i . j  l , j “ l

dl̂ B i: B - B
i +1 , j i > j

i +1 » j 1 . J i - 1 I j

and similarly for C and R, B however bei g 
difference.

replaced by a forward
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[7.15c’]

(l/B).(d¥«/dY) = ( G^/r).q2
q2 = (d¥-r/dY)2 + (d^r/d$)2/(B2 .r)

Let R = ln(r) ; C = B'l then from [7.15c]
Bf.rf + Bf.rf + C«.R« + C«.R* = 0

d Y T ^  (<iY)2 d$ d$ (d$)2 
-B.d¥.2r = d^B.d^r + (dY/d$)2 . ( d*C.d«R + C.d*2R )
Similarly for [7.16c] and [7.17c]

[7.16c’]
- [7.17c’]

Now since C = B"i then d«C = " B'2.d«B
Substituting finite difference forms for these expressions for B, 
d^, C, d*C. R, doR, d«2R, d,.r and d ^ r  and rearranging yields 
r , (r + r )/2 + td».d)?r+Di .(d«2R -d*B.d*R/B)/B]/(2.B)

Hence the explicit finite difference forms of [7.15.C] to [7.19c] are
r =(r t r ) / 2 t t ( - r^_^ ) t
i,j i+l,j x-l.J

/ 2  ̂ - (B -B )(r+Di.[ ln(r .r /r2 ) (B ^ ^  i.j x.j

/(2.B )
i , j

=,<b " ‘ -b './.BBT.!-'. k b . -b. . , . , > K B « > 1 V ; „  b,„>
i.j i+i,j i-i.j [7.17d]
X = X + B .D4.( r "  ̂ [7.18.d]

i.j i,J
c - X - (1/B ).D3 .1n( r ^. i.j+ii+l.j i.j I.J

[7.19d]

4=-v.-!+̂  difference forms give solutions Suitable programs using these f m
.. incompressible flows withto the design problem for rotati

swirl the results of which are discussed below.

|-7<?



r

for ConslstancsL.

(1) Global Error Check.
AS in the case of irrotational flow it was possible to obtain an 
estimate of the • global’ error in the solution by integrating, 
numerically, the fundamental equations over the whole flow field

Similarly manner we have from 
in finite difference form

X . = (-1/B).[ln(r)]
'V *

r )/dY ; i = l..I; j /  
i , j  [ 7 . 3 5 ](X - X )/di = j

„  . X )/dT . (-1/B ,)[ln(r^ ,^/r^^)]/d#
Su^in^ fo/i:] over the whole flow field for both [7.35] and [7.36]

•=I j=J-l
^ ^  . 'i -   ̂ V M / d Y ) .  22 ( l / d i ) .  ( X i . o u t  - X i , » n )  -  '  i n l e t
i = 1

X -i-^y'f-l/di) 2 (1/B ).[ln(r /r )]
( l / d T ) . I {  ( X  - X  ) l o w e r  i . j

j = l u p p e r ,  j  l o w e r ,  J m i e t

Summations in the x variable can be performed over j
OC-, ^ P7 since the left hand side does notrepectively for [7-35] and [7.36]

-PriY- -the valu es  obtained f o r  each side 
involve the Bi , j  . Comparisons fo
of the equations gives an estimate of the consistency for the 
distribution for both 'x’ and ’r’ over the flow field.

Let
i =I

-  X )Zi r (l/d$). 2 ( Xi =1 i . J i t 1
i =I j=J-l [B . (rZ2 = (1/dY). Z Z
i =1 j = i i . J
j = J

-  X )Zs r (1/dY). 2 ( X
j = 1 I. j 1 , j
i =i -1 j = J (1/B )•Z4r -(l/d$). Z Z
i = 1 j = i i > j

1 ^ 0



then the quantities (Z1 /Z2 ) and (ZJ/Z4) nay be taken as error 

estimates for x and r.
AS in the case for non swirling flow, a mass flow calculation in 
the axial direction is used to estimate flow errors in the 
I distributions of x, r and q in the flow field. A similar calculation 
inthe azimuthal plane is used as an estimate for the swirl speed.

I The flow through a $ line joining two lines of constant Y in the 
(i,T) plane is approximately that around the surface of the 
frustum of a cone in the <x,y) plane (See Fig 7.4).

T h f

a cone as its base will have a
normal to this surface (i.e the mass flow through the surface is 
.iven by surface area times normal speed. Angular momentum of thrs

/̂ (



V S .J:

Lhin ring is given by mass times speed in the azimuthal direction. )

lence the volume of this element is given by
V* =S .k.q*

t  in  a  o o n s t a n ;  ^  p r o p o r t i o n a l i t y  t h r o u g h o u t  t h e  f lo w  and  

a r e  some q u a n t i t i e s  r e p r e s e n t i n g  t h e  s p e e d s ,  q an d  w. 

l l r i s s  a id  o v e r  t h e  b a s e  o f  t h e  e le m e n t .  H en ce  t h e  momentum o f  

the f l u i d  i s  g i v e n  b y  A = k.S .q* . .* • J

of . « o c „ = i v .  ol«..".. b.

of the the ratios
. /A- -friy i — 1 to vJ ~ 1(a) Ai.j+i/Ai.o ^

/A • 1 i — 0 to iJ ~ 1or (b) Ai.j+i/Ai,! for 3

„here in (a) successive values are compared for all i.i and in (b)

all momenta are compared with the -exact’ inlet value. A.. whxch
• the axial and swirl

is calculated from the algebraic expression

velocities.
r.aic,nation of Abb^flar and

• ori-incf V with thickness dy •Consider the thin ring inner ra

-e -i-Vi-i disk is dm where
The mass flow through the surface o

, j. K V + c -
2 .7r.y.dy.q = 2.'n:.y.( ^



I f  the  s w i r l  sp e e d  i s  w th e n  t h e  a n g u l a r  momentum i s  g i v e n  b y  

dA = 2 . j c . y . q . w . d y

z> Aa, b - 2

yb

.TC. i  w . q . y . d y
ya

In  the  p r e s e n t  c a s e  t h e  i n l e t  a x i a l  an d  s w i r l  s p e e d s  a r e  o f  t h e  fo rm

q = a  + b.y + c.y2 ; w = e.y + f/y-

i  ( a  + b . y  + c .y 2  ) . ( e . y  + f / y  ) . y . d y

y = yb
= [ a i  . y  + az . y2 + as  . yS + a4 . y< + as . yS ]

where a i = a . f ;  az = b . f / 2 :  a s  = ( a . e  + f . c ) / 3 ;  a4 = a . b / 4 ;  as  = e . o / 5 :  

I f  ys and yb a r e  t a k e n  a s  s u c c e s s i v e ,  i n l e t  r a d i i  i n  th e  d i s c r e t e  

form o f  th e  p . d . e  th e n  t h e  e x p r e s s i o n  g i v e s  th e  momentum o f  th e  

an n u la r  r i n g  an d  t h i s  v a lu e  c a n  b e  co m p ared  w i t h  t h e  v a lu e s  o f  t h e  

A.M. c a l c u l a t e d  f ro m  th e  c o n v e r g e d  s o l u t i o n  d o w n stre a m  o f  i n l e t .

The t o t a l  a n g u la r  momentum c a n  b e  c a l c u l a t e d  b y  t a k i n g  ya -  y m n e r  

and yb = y o u t e r  r a d i i  r e s p e c t i v e l y .  S i m i l a r l y  t h e  e x a c t  m a ss  f l o w

for  th e  w h o le  a n n u lu s  a t  i n l e t  i s  g i v e n  b y

M = 2.7T.[b -y2 + b .y3 + b .y4] ; b = a /2  ; b = b/3 , b -  c/4
a.b 1 2 3 y = ya 1

Thus Ma.b an d  A a , b c a n  b e  u s e d  t o  e v a lu a t e  t h e  a c c u r a c y  o f  th e  

l in e a r  an d  a n g u la r  m om enta a t  a n y  s t a t i o n  o f  th e

Hence th e  f l o w  a ro u n d  th e  s u r f a c e  a t  som e s t a t i o n ,  j ,  b e tw een  th e  

two s t re a m  s u r f a c e s  a t  i  an d  i+ 1  i s  c o n s t a n t  f o r  a l l  j .
i + 1

Thus d s  = S i .W*j = Ai  f o r  a l l  j -
[7.37]

i + 1 , j

3nd A.M  = I w. dV = w». V» w h ere  
i , j i . j 1 » J



I.!«**nhoosin-.i
i , j

( b-i + w
i  , _i i  I. -i

>/ 2  t h e n  C 7 . 3 7 3  p r o v i d e s  an e s t i m a t e

ni  t h e  a c c v i r a c v  o
,-f t h e  s w i r l i n g  - f l o w .  S5ince t h e  s w i r l  v e l o c i t y  i s

prescribed algebraically at inlet the quantities A. may be
» . . v c t l v .  Ir. p a r t i c u l a r ,  th .c  t o t a l  a n y u l a r  mo,r,entu,a a t

let. mev ^^'f-• pcared  wi t.h that ,  a t o u t  l e t . '•the f  1 o ’v̂3

.a 1103 n s  ti o u Id  i cl >ea 1 1  y b e  p¿ar-ai 1 e  1 a l t h o u g h i n  a. ni.'.tTie

1 c i.' i e t i n.' i t  h i s  < o n l y  b e  t h e c :a se  i f  a si.i f f i c  i en

i let  sect, ioi'i 0?;; 1. s  t 1 0 m a 3. fi t  a i n 3 p a r a l l e l „ f 1 ovi r  e*.ji

d c:ul a t i on o f  A4.. At. i n l e t  w = e . y t - 7

The mass f l o w  a r o u n d  an cannu 

dm ==

l u s  o-f i n n e r  r a . d i u s  y w id t f i  dy  i

. 3T. y . d y . 'w 2. rr.. y . ( e . y i- f / y

m = 2. TT. ( e . y ^ / 3 +  f - y ) + Kx

= —2. TT. < e. i ̂ ■> - V1 '< •-= -.¿.TT.Ka:
Let m =0 when v = y %  t h e n  V - . \

Hence m/(2.7c) = e.y®/3 + f.y " ^2
mass flow between successive Then the Ai representing the inlet mass

annuli are given by 3

A - ( m - m )/{2.-k ) - (e.y /3 ^'^¿+1 i ^i i+i i
^ the angular momentum calculatedthese Ai are to be compared with the ang

for each cell throughout the flow.
Numerical Solution and Results^

v,ri tr^ltdity of the programme code.In order to test the consistancy a
the numerical solutions derived from the programme catering for 
vorticlty and swirl [with vorticity set equal to zero throug 
flow] were compared with those produced by earlier prog 
Which vorticity was absent. Agreement between the two programmes was 
almost exact the basis for comparison being a plot [15x15 g

/ / V -



, flow with zero vorticy and the current p rogramme 11x11 grid].
Similar comparisons made for the turbulent B.L give the same level of 
agreement. The initial values throughout the flow field for the 
various parameters were
(1 ) -r’ ; linear interpolation throughout the $,T domain;

(2) -B’ • the value of the 'B’ function was set equal to 1
fhrougholt the flow corresponding to an initial irrotational state. 

(3, -q- ; initial values of q along a streamline set equal to its

inlet value ; i.e qi.o = i J > 1- throughout the duct.
,4) •£!•; Initial values of the function Qe/r>4 are calculated from

[7.27] using the interpolated values of r and the prescrib
, 4-i^i+Tr Hi «s-tribu-bion across thevalues of G and H giving the vorticity distriDu

* . a ' streamlines,inlet $ characteristic which varies between

Comparisons can then made between duct shapes by
(i) Increasing the vorticity parameter by altering the inlet
parabolic speed profile for zero swirl»
(ii) Keeping the vorticy parameter constant and 'winding up* the 

swirl ;
(iii) Examining the effect of an inlet flow in which the swirl
velocity rotates in opposite senses on the duct walls; i.e there

.V, than the wall boundaries, for which the 
is a stream surface, other tha

swirl velocity is zero;
inlet flow profile in the axial direction;(iv) Effect of a concave xnlet n o w  y

(v) Examples of accelerating flows; j walls at inlet
(Vi) Patches of constant radii and/or speed

or o u tle t;



Le programme in fact produces three converged distributions for 
laoh solution; i.e the >r-, 'q’ and 'B’ distributions over the flow
field. The order in which these quantities are calculated within 
the numerical routines can sometimes be significant when considering 
the number of iterations required for convergence.
Various combinations were tried including using the most recently 
Laculated values in the iteration. However it was found that this 
lometimes produced instability and that the/ steadiest’ convergence

I was obtained by

(i) calculating the *B’ distribution for all i,j,
" the ri , j and <ii , j * simultanaeously ( <li j j not

[appearing explicitly in the expressions for ri , j except on the 
boundaries and therefore its influence on the value of r only 
being applied via the function).
I The parameters which define the wall geometry for these ducts are 
(1) Laminar or Turbulent B.L ; (2) Swirl 'strength’
(3) Vorticity ; (4) Upper Wall PVD.; (5) Lower Wall PVD.
By varying the parameters controlling swirl, vorticity 
combinations of fixed and variable upper and lower walls their 
jon the duct shape may be judged and an indication of the type of 
I numerical experimentation and investigation that might be undertaken 
j is given below by a selection of computer runs and r 
Case (A) Boundary conditions
(i) Upper Wall: ‘Stratford’ typeof the critical separation value.
(ii) Lower Wall: Fixed radius equal to inlet radius.
(iii) Outlet : Parallel flow.

/ / é .



^  in — i n « »  ’” ' “ “ “ “ “  “ “*
vortioity is shown in Fig 7.6.
Effects: Increased vortlcity causes
(1 ) Upper wall; lowered by increasing the vorticity.

(2) Lower walli fixed.
(3) Upper Vel.; Little change for increasing vorticity.
,4, Lower Vel.; The velocity profile is raised however but remains

monotonic decreasing to outlet.
T avial length of the duet is shortened.(5) Duct Length; The axiai leng^“

■p • 1 • TViiavi» ampears to be little change(6) Cross-Stream vel profile, Ther PP
in this profile.
These comments apply to a velocity distriution calculated on the

basis of an S-.4 'Stratford’ distribution. It seems that by

increasing the vorticity of the inlet flow (having the effect of
+0 *wind up* the Stratfordlowering the outer wall ) we can co

number to its full value on the outer wall. [See Fig 7.6]

Case (B) Boundary Conditions.
T7 TT o_ Outlet Parallel flow;

(1) Upper Wall Fixed; (2) Lower Wall o . , -

(4) Increasing non-uniform parabolic pr
Effects'. Increase in vorticity causes

(1) Upper Wall* Fixed N/A,
(2) Lower wall: position of wall raised,
(3) Upper Vel Dist; Slow diffusion on fixed wall.

.c • 1 ̂  rMJi^red very slightly.(4) Lower Vel Dist; Velocity profile
[See Fig. 7.7]

+ uall radii sections imposed *Note* For these runs constant Qf negative radii,
automatically because of the occu



rase(C) Boundary Conditions.
' „ ,1 s . 5- (2) Lower Wall Fixed; (3) Inlet non-uniform(1) Upper Wall b + -o.

(4) Outlet parallel flow.
Effects: Increasing vorticity causes
(1) Upper wall; Little change;

(2) Lower wall; Fixed N/A,
(3) Upper Vel. List.; Little or no change;
(4) Lower Vel. List.; Smooth slow decelleration

TT 1 -p-ilix- Keeps shape with little change.(5) Cross-stream Vel p r o f i l e .  Keeps snap
(6) Duct Length; Shortened. JLSee Lg -1
Case (D) Boundary Conditions.

n  Q s- (31 Inlet non-uniform(1) Upper wall Fixed; (2) Lower wall S t.5. (3)

flow. (4) outlet parallel flow.
Effects: Increasing vorticity causes
(1) Upper wall: Fixed N/A

(2) Lower wall Lowered.
(3) Upper vel Dist.
(4) Lower Vel. Dist; Unchanged.

(5) Duct Length ; Shortened.
the above examples is that for

A conclusion that can be drawn fro
.„ xro-rtlcity caused by

the ranges considered the increase
r.itv profile shortens the duct 

accentuating the inlet parabolic veloci y
i-fc for deccelerating ones.

for accelerating flows and leng
vorticity narrows the due

For deccelerating flows increas
widens

For a c c e l e r a t i n g  f l o w s  - 1 ^+
w ..t shape of increasing the inlet 

Fie. 7 a shows the effect on duct sh p

vorticity distribution.
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The results obtained for flow with vorticity may be compared with

.  the shapes of those ducts in Chapter 6. 
f  Since the PVD control the values of the wall radii only indirectly a
i recurring numerical problem is the occurance of negative values of 
„ the «all radii on the lower wall. In this event the B.Cs were
s
' relaxed and replaced by e ith e r

(i) a constant wall radius condition or
(ii) a constant wall speed condition or
,iu, a -Winding down' of the parameter controling the PVD. This 
alteration will generally speaking be accompanied by a reduction 
in the ammount of diffusion occuring at this point but may be 
■wound up- to an optimum value by the numerical routine if 
conditions allow. Of the three possibilities ( m )  ^e
most -natural’ variation to apply given that

•4. whilst application of (ii) will relaxessentially velocity based whi
, -D T in i i a l l  control is the control over the behaviour of the B.L, i

l o s t .
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Chapter 8

In this chapter the effect of compressibility is allowed for in 
the design scheme to investigate its influence on the flow 
behaviour and any consequential change in the duct geometry.
The mathematical treatment allows the prescription of arbitrary 
stagnation conditions for isentropic flow of a gas. Numerical 
results are obtained and compared with the incompressible case. 
The equations of motion for an axisymmetric compressible flow 
with a non zero vorticity vector are
u.u + v.u = (“l/p)-P 

z y I X
u.v + v.v - w 2 / y  = ( " l / p ) - P

u.w + v.w + v.w/y = 0 
* y

(p.y.u) + (p. y.v) = 0
Q* = [ (l/y).(y.w) ].£ + [
As in the incompressible case the set of design plane equations is

[ 8 . 1 ]

[8 . 2]

[8.3]
[8.4]
[8.5]

.(a)
[ ln(A) ] = 6* .B/q2»
[ ln(B) ] r -Qo ,A/q2
X =: [ B/A]y
X = [-A/B].y y ^
[ (A/B).y ] + [ (B/A).y ]y-
[ y2 /A2 ] + [ y2 /B2 ] = l/q2

y *

(b
e* - \i + V

X y
Qo = V - uX y
Ox = -w

X
Q y  - (l/y).(y-w)

= 0

[ 8 . 12 ]where q2 r u2 + v2 and Q2 = q2 + w2 - u2 + v2 + w2 

Svalijat.ion of *A FuoctJ^  continuity equation [8.43,

can derive an expression for e* to be substituted into [8.6(a,3 

hence evaluate the function A.
¡‘i r



U_>--

i !

y.

r

V. ( py) + (p. y).(u + v ) = 0
i y 1 X y

= - [ u.
y

(p.y) + v.(p.y) ]/(p>.y)
( In(p.y) ) -h V. ( ln((^.y) ) ]
Cos0.( ln( ^.y) ) + q.SinG.( ln(|Dy
( In(p.y) ) .X + ( Injp.y) ) .yX s V y s

e* = - q. [ In(^y) ]
But by definition of $ we have for any F, ( F ) = (q/B).( F )8 *

Hence e* = - q. [ ln( p,y) • q/B = - [ In^.y) ]^.q2/B 
Substituting into [8.6(a)] gives
[ ln(A) ] = - [ In(p.y) ]^ . (q2/B) . (B/q2 ) = - [ In(^y)]^

= > [ ln(A.y.^) 0 -> A.y. = gi (T) => A gi(Y)/(^.y)
Since gi (Y) is arbitrary let gi (Y) = 1 => A = l/C^-V) •
From equation [1.11.7]
T = - v/A ; Y = u/A => Y = -p. y . v ; Y^ = p. y - u 
Substituting for A into [8.7(a)], [8.10], [8.11] gives 
[ ln(B) ] = - Qo /(/).y.q2)

t  I

tP-B.y.y ] + [(l/i^lB) . (1/y)-y 3 = ^\ t  ̂ \ * ^

tp-y.y )2 + (y )2/B2 3 = l/q2
\ f  *

From [8.3] we may deduce that (y-w) - 0  ̂ (B/q) ^
Hence (y.„) is a function of T only "and (as in the incompressible
case) we can write y.w = C(T) => w = C(Y)/y [8.13]
In a manner similar to the former, expressions for the x 
components of vorticity may be derived in terms of the arbi 

function C(Y).



f

. t

Thus
0. = (i/y).(y.w) = (i/y)-(C(Y)) = (i/y).cc  ̂ =

 ̂ r C8.14]
-- \

andI = -[(i/y).ca)] = -d/y)tc(Y)]^= -d/y).CC^.T^ + =
V *

= -d/y).Y
[8.15]

In order to proved further with the solution eet. it is necessary 
to obtain an expression for the 9 component of vorticity in 
[8.7(a).1]. This is done by considering equation [8.2]

= >
u.v + v.v - w2/y - (l/p)-P ^

* y 1
- n U -W W " w2/y =U.U + v . v  + w. w + u . v  U. U • 3

y y y  ̂ ^
+ W . W  + w 2 / y

(l/2)[ u2 + v2 + w2 ] + u.( V %   ̂ ' \ y ^
= -d/^).P^ - (C/y).(C/y)^ t C2/y3

. . ir/v) (-C/y2 + C /y ) + C2/y3= -(1/^).P + (C/y).v /y y

= - ( 1 / 1 » - p +C.C^/y2 ->

(1/2). [ Q2 ] + U.Qa =

u.Qo = - [ (1/2). (Q2)^ + C.C^/y2

By considering the equations of isentropic flow of a «as. expressions 

■ . y  be derived for the 9 component of vorticity in terms of 

radial coordinate y and quantities defined m  the upstre 

(where the flow is known) -

¡97

[8.16(a)]



Prpc;sure- Densi t.v. Temperature and Speed Relations.^.
Consider a particle of the fluid, with the speed, pressure, density 
and temperature at the point Xi denoted by Qi , pi , and Ti . If
Ki is a quantity depending on the value of the entropy, S,
at Xi , then

Let the total energy (enthalpy) of the gas at Xi be denoted

[8.16.1]

by Hi , then
H = cp . T + 

i i i
p/ ̂  = R. T
R = cp - cv ’ y  "

[8.16.2]
[8.16.3]
[8.16.4,5]

Also 
where
and the speed of sound is given by

= dp/d« [8.16.6]
Suppose that a fluid element, isolated from the surrounding medium,
is brought adiabatically to rest.
Then Qi = 0 , and by definition the stagnation values P p  ■ T 
at the point Xi (denoted by the subscripts 'x,o’)
satisfy p -Oi , o (i , o 1
and

H = cp.T
i , O i ̂ O

Since, by definition the enthalpy is unchanged by this process then
H = H \ Q - ^i i , o 1 » o

Hence from [8.16.2] and [8.16.7]
Hi , o

and

cp . T + ^ = cp . Ti i
y

i . O

3 . /) - T  = p • pi ( i i , o V i ,

/ 9 i ’

[8.16.8a]

[8.16.9]

[8.16.10]



V J

From [8.16.3]

= p  / R .
1 , o

/ti.p
i , O \ i , o

[8.16.11]

substituting from [8.16.11] into [8.16.9] gives

G p . p  / R - 0 - cp . p /R.
i , o

substituting from [8.16.10] gives

■? i , o

1 , O \ 1 \ 1 , o
cp.p .p./(R.p * p  ) = cp.p /(R.p )i ,o^i i i.o \i.o

which gives (after some rearrangement)

'■1 '“ 1,0 [ 1 /P ).Q2 ]1/(>^~1) [8.16.12]
V i , o i ,2\j

From [8.16.6] c22 ) 
i U p ;  i

r

Hence the stagnation speed of sound is c2 =y'. p /p
i . o  J  i , o \ i ,

Then [8.16.12] becomes
[ 1 -  J ^ . ( j / ^ - l ) . Q 2 / c 2 ]i /(y-1)o [ 8 . 1 6 . 1 3 ]

(p /p ) = [ 1 -  ( / - I )  . Q 2 / C 2 ]//</- [ 8 . 1 6 . 1 4 ]
i i.o / i i .o

(T /T ) [ 1 -  (*/-!) . Q 2 / c 2/ i i ,
(p /£> )Y (T\ i P  i , o i

] [ 8 . 1 6 . 1 5 ]
i i.o
(p /p ) = i i , o

o
/T ) = (c i.o V

Also H = H = c p . T  = c p . p  /(R
i i . o  i . o  i . o  \ i , o

,Q ) = Cp . c2 / (R)0 -
\ i , ^

= ( c p / ( c p - c v )  y  '  . c 2  (y/(y-l) . c 2  r  ^

From [8.16.2] and [8.16.8a]

H r cp .T + Ĵ .Q2
i i , o  i i

(cp /R). (p /£>' ) + ^. Q2



- )
= (Cp/(Cp-Cv ) ) . (p ) + ^.Q2

H, = (|'/(y'-i)).(p / ^  ) +

If the flow is isentropic then the quantities Ki are the same at all 
points along a given stream line and equations [8.16.13/14/15] now 
define the relationship of p, T , Q along the ith streamline
rather than a point.
(^/(y^D).(p/^) + (1/2).Q2 = ci.o2/(y-l) [8.17a]
Since the stagnation speed of sound may vary between streamlines we

may write
[8.17b]ci.o2/(y-l) = H(Y) = ( ^ ( ^ 1 ) )  • (P/^) (1/2).Q2

The evaluation of the expression on the RHS of [8.16a] is obtained 
by differentiating [8.17b] with respect to y, thus
H (y/iy-D) + (1/2).(Q2)

Now ip/0) - (k. k.(jr-i) f, = k(y-i) •p' -̂2 .p / ( k 1 )

[(V-l)/)!l . (1/^(l/P) -P (since p

- > U -  ( y/(^-l)). ((^-1)/^) • (1/^)-Py (1/2). (Q2)

H = (1/0).p + (1/2)•(Q2)y S y y
Substituting for Hy into [8.16a] gives
u.Q* H + C.C /y2

Now H

-> u.Qo

H .Y + H .$V  y « y
H y.u + 0 2ind C " y.u

■* y t

y . u . H + p. y • C.C /y2

Qo
(^.y) 2.y2

(C2 ) H [8.18]



This expression combining density and vorticity is that required 
in equation [8.7(a).!]. Since H and C are functions of Y only 
they may be prescribed upstream of the transition region in the 
cylindrical flow regime.
The density speed/pressure/temperature relations are given by 
equations [8.16.13/14/15] although the absolute density and pressure 
throughout the flow will not be uniquely determined until some 
base pressure is specified.
This completes the solution sets (1) and (2) listed below 
Set (1)
[p.B.y.y ] + [(l/p.B).(ln y) ] = 0

[p.y.y ]2 + [y /B]2 l/q2

[ ln(B) ]. r - ( Qo/p.y) . (l/q2 )
f  \

(Qo/6.y) = [C2/2] /(y2 ) - H
" if r[ In B ] = ( Hi - Cl /y2 ) /q2

t
Set (21

= [ 1 - {(y-l)/2}. (Q/co )2 ]i/(/-i)

y-w = c(Y) *

C^/(y-l)]. (p/^) + (1/2).Q2 = co2/(y'-l) = H(Y)

where Q2 - q2 + w2 = u2 + v2 w2 ; c2
Letting Cl = [C2 /2] ; Hi = H and eliminating
and [8.7(a).!] then
^«/(^.y) = Ci/y2 - Hi =>
[ ln(B) ] = [ Hi - Ci/y2 ]/q2

[8.18]
[8.18a]

Qo from [8.18]

[8.18a]

2 0  i



Using the transform of Chapter 3 to map onto the unit square gives 
y2 = r = Cl . ri ; x = c2 . xi ; q = c3 . qi ;
Q = c 3 /Q i ; w  = C3/W1 ; V  = C3/V1 ; u = c3/ui ;

Yl = (Y - C4)/C5 ; $1 = ($ - C 6)/C7

Cl = (C5/C7)2 ; c2 = (C5/C7 )/2 ; C3 = 2 . (C7 2/c5 ) .
Applying this transform to [8.10.1], [8.11.1] and [8.18a] we have

[piB.r ] + [ (l/|fl.B).(ln r) ]^ ^  \ * * = 0

?2.[ (r )2 + (l/r).(r /p.B)2 ] = q2
^  * r

[ 8 . 20 ]

[ 8 . 2 1 ]

[ In  B ] = [ H i -  <Ji /r ] .q2 [8.22]
T

where the subscripts have been ommitted and all variables and 
constants are quantities in the transformed plane. The value of the 
density, p, and all other quantities required for is determination 
are calculated from the transformed equivalent of equation set (2). 
Suitable specificcjtron of conditions on the physical boundaries 
together with some choice of the stagnation quantities of the flow 
will enable us to use the numerical equivalents of [8.20/21/22] to 
calculate the required duct geometry and flow patterns.
The range of Y and $ may be normalized in the transformed design 
Plane by choosing C 4 , ce as the minima and C5 , c7 as the ranges 
of $ and Y.
Thus 0 - < Y = < l  ; 0 = < $ = < 1 -



Rnimdarv Conditions

From Crocco’s equation V u  - t V + V Q [ 8 . 22 . 1 ]

Far upstream, in the region of cylidrical, axisymmetric flow

= 0 =: 0 V  = 0 [8 . 22 . 2 ]

From equations [8.7/8/9] the prescription of the axial and 
circumferential swirl velocity profiles will necessarily define the 
vorticity vector in the (y,0) plane

Q = ( 0 ) .X ( (l/y).(y.w)^ ) .y + ( - u^) . §

Further, taking the 'dot’ product of Crooco’s equation with V gives

V . V H T V.I7 S + V. ( V Q  ) = X V . V  S [ Vector Identity]
A

Hence v . V h + T v.Vs = 0

Thus if H is defined such that V.^^H = 0,
i.e the total energy of a particle flowing along a streamline is 
constant, it necessarily follows that V.^S = 0
i c the rate of change of entropy inthe direction of the flow is 
zero and constant along a streamline giving isentropic flow. 
Similarly isentropic flow implies that the total energy H of a 
particle is constant along a stream line.
The conditions on the physical boundaries in compressible flow may 
be chosen from the same range available in the incompressible case.



Thus
(1) Inlet: An invariant distribution of the radial coordinate 

r (=y2) based on a non-uniform inlet speed profile having a 

parabolic variation across the duct together with a swirl speed 

distribution of the form w = a.y + b/y.

(2) Outlet: Parallel flow condition across the duct r = 0 .
«I-

(3) Upper Wall: Prescribed velocity distributions based on ‘m i x e d ’

B.C or altrernative acccelerating flows.

(4) Inner Wall: As for (3). Condition (3) and (4) may be applied 

piecewise in conjunction with constant velocity and/or radius 

distributions if desired.
In the case of compressible flow some choice of the stagnation 

quantities co , po , o must be made in order to specify the density 

uniquely in [8.19]. If the flow were potential then the stagnation 

speed of sound would be constant throughout the medium, however in 

general its valuey co^may vary for every stream line. Arbitrary 

stagnation conditions may be prescribed by expressing the stagnation 

quantities on each stream line as a function of the corresponding 

values at some station (inlet say). Having established this set of 

stagnation conditions we can express the variables of state p , p, T 

and c in terms of the local speed of the medium. For an isentropic 

flow of a gas with constant specific heats we have 

-P /^  + ( 1 / 2 ) . Q2 = k

C2 =
P = K. ̂

P/ = R,T T = k*.c2



= >

= >

qt.agnatinn Conditions
The stagnation conditions on the i^h stream 

line being denoted by the subscripts 'i,o we have

I) I i . o ' i . o i

[J^(|/-l)].p/^ + (1/2)Q2 = [//(y^Dl-P

c2/(Ĵ -l) + (1/2).Q2 - c2  ̂ [8.23a]

Critical Values Suppose that at some station 'j’ on the streamline 
'i’ the speed of the gas becomes equal to the local speed of sound, 
then from [8.23a]
Q = c
i . j 1 • j i > J

= >C*2 /(Y~l) + (1 /2 ).C*2 =: c2 /(|/-1)
i . j i i . j i , o /
c* = (2/\*+ l)^.c - c* ; (since the critical sound speed isi.j / i,o i constant for a given streamline.)
For ^ r 1.4, c*i = 0.9128.ci,o
It follows that for the flow to remain subsonic on a given streamline 
Q < c* = ( 2/V+ 1 )i/2.c = 0.9128.Ci.j i J i . o i . o
The other critical values of the variables of state may be obtained 
from [8.23] to [8.26]. In order to ensure subsonic flow we may 
choose a constant k4 ,say, such that Q =< k < ^i.j 1 . ® ^

density Speed Relation

Eliminating *p’ [8.23a] and [8.25] we have

.K.^K-1 = [ c2 /(y-1) - (1/2).Q2 ^] =>

Z o ^



(i,J I " i . o  # i.J
Choosing some particular density ̂ a,b (say) we have

fa,.Refering all densities to this arbitrary density^a,b we have
= nc2_^-(y-i)/2.Q2 .

If nis chosen as the stagnation density on stream line a then

Q - 0 and 
a, b ?a..^Pa.o
Q /p  ̂ C(c /c )2 - {(y'-l)/(2-c2 )}.Q2 ]i/(^-i) [8.29b]
'1 ,0 1 3 ,o i.o a.o

If, in addition, the stagnation speed of sound is the same for each 
stream line then O  ~ P  ^ ~ ^ (say) -> (c ^a,o O I . o a . o

0 = O .[ 1 - {(k-l)/2}.Q2 /c2 ]i/(/-i) [8.29c]
* i I J ' o • i , j ®

If [8.29c] applies then we have adiabatic isentropic flow and the 
density/speed relationship is identical for each stream lin 
throughout the flow. If, on the other hand, stagnation conditions 
vary across the flow then the more general relationship [8.29a] 
holds. In [8.29a], let i=l. i-e the reference density is that
at the inner inlet point of the transition region then 

= (l/^)[i/( j'-i) ] . [c2 - i(y^-l)/2}.Q2^ ̂  1)]

But C2 z: c2 - [ ( / - 1 ) / 2 ] . Q 2  => ^  ^  /|̂  K ) 1 /< 1 >
1,1 1.0 f 1.1 '

Refering all densities to ^and setting ^̂
p => c2 /yYi = 1 ; K = c2 =>

ft / O  = [ ( c  /c )a -
vi.j i.o 1.1



Thus [8.29] is the numerical form of the speed-density [8.19a]
= [ P

t.i
- P .Q2 ]i/(V-i)

o  i , j

where P = (c /c )2 and P = (y^-l)/(2.c2 )i i . o l . l  o ' 1.1
where the Pi may in general be different for each streamline.
The choice of the Pi is arbitrary but some rationale is necessary in 
order to produce a feasible flow regime in the transition region. The 
choice of Pi across the duct will implicit ly define the density 
variation in the transition region and also the inlet conditions 
(e.g Mach number) across the duct. These in turn will define the 
upstream values of density, pressure and temperature. Similarly a 
choice of distribution of p or T in some region of the flow will 
imply the distribution for Pi .
Choice of Pi .

Suppose that on the ith streamline we wish to impose
a density variation of the order of Di across the duct at inlet. Then
A  - p  + D  = 1 + D  (since p  = 1 )[i.j(l,l i i Vl,!

= [ P - P .Q2 ]i/(J/-i)i O i , j
If the desired density variation is now chosen then the Pi are
defined since Q is prescribed at inlet. Thus let Di be

i 1 J
set equal to some % variation of the inlet density

p n ( 1 + D )()T̂ -i) + Po .Q [8.29d]
i i i I J

The value of Po depends upon the value of the inlet Mach number on 
the hub.
Thus let M = Q /c ; Hence P = (y-1 ). M2/(2.Q2 ) is known « # 1 1*11.1 1,1
since Qi, 1 is prescribed at inlet.

Z o 7



Since all Pi and Po are now defined the density-speed relation for 
each of the streamlines is specified

r. .
= [ P - P .Q2 ]1 /( ) .

J i o i , j

In summary (i) The inner inlet Mach number,Mj on the hub is chosen
which defines Po =(/-I).M2/(2.Q2 ) since all1 1.1
Qi , 1 are prescribed.

(ii) Some % variation (Di ) of density are chosen which
defines the Pi ’s since Q are prescribed at inlet stationi . 1
Since the Pi are now defined, the corresponding value of the Mach 
numbers at inlet may be calculated from the relation
Pi = ( c /c )2

i . O 1 , 1

Since c2 + A.Q2 = c2
i  » J i , j  i , o

for j = l  c2 + A.Q2 3 c2
i  , 1 i , 1 i , O

where A = ( y - l ) / 2

= > p = c2 /c2 + A.Q2 /c2i i . 1 1,1 i , 1 1,1
But the inlet Mach numbers are defined by
W - Q /c ; M = Q /c and eliminating c’s ̂ i.l i,l 1 1,1 1,1

P (M Q /Q )2 . [ (1/M )2 + A ]
 ̂ 1 i . 1 1 , 1 i

which expresses Pi in terms of quantities at inlet. Solving for the
inlet Mach numbers Mi gives

= M .[P .(Q /Q )2 - A.M2 ]-l/2
 ̂ 1 i 1 , 1 i , 1 1

Alternative methods of defining the density-speed relation can be 
based on choosing different distributions of other flow variables at 
some station of the flow.



This particular choice suffices only to establish a feasible 
relationship between the quantities Q and Q at the inlet station.
However the the technique does indicate a method by which
other appropriate properties of the flow such as temperature,
pressure or functions of them might be prescribed. Equation [8.29]
shows that the density varies in a sense opposite to that of speed
for a given streamline (i.e in the j direction). However this

»•is not necessarily the case along any other vector particularly the 
Y characteristic since the density is a function of the inlet Mach 
number for any given line and it would be possible to choose inlet 
conditions to change the 'sense’ of the density speed relation.
Thus let
A =(c /c )2 > 0 ; B =(/-!)(2c2 ) > 0 ; N = ; A - B.Q2 >0i . o 1, 1 f 1.1 ’

where B is constant but A is a function of the stagnation speed of 
sound on the streamlines and hence a function of the Mach numbers.
Thus ^ r [ A - B.Q2]N

d ̂  ( p  ) . dA + ( ^  ) . dQ
N.[ A - B.Q2]n-i.dA + N.[ A - B.Q2]N-i("2.B.Q).dQ 

= N.[ A - B.Q2 ]N-i.( dA - 2.B.Q.dQ )
df = N.[ A - B.Q2 ]N-i.( dA/dQ - 2.B.Q ) 
dQ

[8.30]

Now if (i) A = constant (-)(2.B.N.Q).[ A - B.Q2 ]N-i < 0 ;
dQ

and (ii) A ^ constant d P = 2.N.Q.[ dA/d(Q2 ) - B] . [ A - B.Q2]N-i
dQ

Thus if the choice of inlet Mach number is such that dA/d(Q2)- B > 0 
for some region of the inlet then ̂  will vary in the same sense as Q.



Finite Difference Forms
The complete set of equations giving the solution for compressible 
flow comprises
C (^.B).r

V f
] + [ {l/(p.B)>. (In r) ] = 0 [8.20]
^  c « «

• [ ( r )2 + (l/r).( r /{û .B})2 ] = q2 [8.21]
 ̂ r » \

[ In B ] = [ H - C /r ].q2 [8.22]
^ = t P

1 1
- Po.Q2 3 /'’*̂

k.

[8.23]
where ~ 1/(^1) Î <1̂ = u2 + v2 ; Q2 = u2 + v2 + w2 and H, G, Pi 
and Po are known functions of Y.
Comparison with the incompressible case shows that the array [B] 
has, effectively, been replaced by the matrix [^.B] (see below).
Thus from equations [7.15c], [7.16c], [7.17c]
[ B.r ] + [(l/r).(ln r) ] = 0  [7.15c]

Ÿ  ^  «
( r )2 + (l/r) . (r /B)2 = q2

Ÿ «
[ In B 1 = [ H - C /r ] . q2

f  1 1
Thus in the numerical iteration, the density is calculated at each 
point of the grid from [8.2^ and used to calculate the new B matrix 
The structure of the finite difference equations for compressible 
flow is substantially the same as for the incompressible case, the 
modifications being given in the appendix.
The ‘x ’ coordinate is obtained from the equivalent finite 
difference form of [8.8a] and [8.9a]. i.e

[8.9a] ̂ = [B/A].y [8.8a] X, = [-A/B].y

J U O



With the transform of Chapter 3 these become
+ B« = X + B - ̂ r

i,j+l iij i|j \ i I J i 1 j

f1. J

. ( r  -  r  ) . d $ / d Y
i +1 i . j

[8.29]

i  +1 , j  i  » J
)}.ln(r /r )].dY/d$ [8.30]

i  , j  + 1 i  . j

Equations [8.29] and [8.30] are used to evaluate the x coordinate 
at each grid point.

Summary of Results.

R(AL,AI)
0.916996039
0.898233270
0.833708864
0.633074333

OUTLET VALUES ((HUB AL, CASING AP,)
R(AP,AI)
2.47786903
2.44923131
2.36262394
2.08096679

Q(AL,AI) 
.584282606 
.5861876253 
.592780901 
.614223702

Q(AP,AI)
.542575350 
.543979439 
.548270577 
.563302140

The above results are for compressible flow with zero swirl 
and uniform inlet flow. The preliminary result seems to be that 
the whole duct shape is depressed downwards for increasing Mach 
number . The exit speeds across the duct are approximately uniform.

Numerica l  r e s u l t s  a n d  o b s e r v a t i o n s . The program thus far developed
for the numerical solutions has the following variable set of 
input parameters which define the flow
(1) Upper wall Distributions of functions of (r,q) of the
following types (a) constant radii patches, (b) constant velocity 
patches, (c) decellerating flows , (d) accellerating flows.
(2) Lower Wall As for (1) above.
(3) Inl̂ t. Avial Profile Parabolic axial velocity profile with 
variable maximum and inlet wall speeds contributing to a non zero 
vorticity vector.

z i f



(4) Tr.J_et Swirl Swirl velocity profile of the form a/y + b.y.
(5) Ont.let Speed Distribution Parallel flow condition.
(■ fi 1 F.oundary Sayer Choice ol boundary layeib vs) laminai ,(b) turbulent.
(7) Variab 1 e Den.sitv Distribution of Mach numbers across the flow
at inlet implying density variation throughout the flow.
In addition there are other subsidiary parameters such as ratio of

.nlet di.ict radii and duet 'lengt.ii’ which ¡nay he varied.
The multiplicity of combinations of variable paraiuetei.s moke-s it. 
impossible to investigate the widest dränge of possiblities but some 
general couciusions are given below.
( 1'f Fig 8.1 Sl. 3.1 . a . - For a fixed lower boundary and a laminar
boundary layer on the point of separation on thei upp>er Wdll, an 
increase in Mach number at. inlet causes the upper wall to move 
inwards. The wall speed distribution is proportionally little 
changed by a change in the contour.
(2) Fig 8.2 & 8.2. a . : For a fixed Mach number at inlet and fixed 
lower wall an increase in the swirl parameter raises the outer wall. 
Except for geometrical displacement the sr>eed distribution is little

clnnged.
Alternative flow constraints and preräcriyt ions may be applicable 
depending upon cir<aumstance and suitabl.,- numerical formulations 
will all.ow their inclusion in the design scheme to produce duct 
contours .satisfy'ing these requirement.s.

JI/À.
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The formulation of the design problem in this thesis allows the 
incorporation of the following flow parameters in the numerical 
techniques to influence the flow pattern and lienee the geometry ol
t. h <" a 11 n u ] a r d u c  t .

(11 Inlet. Vorticity Distributions and Velocity Profiles.
(2) Swirl Coinponent parameter.
(.31 Density/pressure/ Mach Number distributic.)ns at Inlet.
(4) Inner and outer wall prescribed velocity distributions and/or 

radius.
(5) Effect of Laminar or Turbulent Boundary Layers and Separation 

Criteria.
The investigation in detail of the effect tliat variation in 
the.se parameteins might have on the flow geometry, either 
individually or in concert, would be made by a substantial amount 
of numerical experimentation and optimum configurations deduced.
The separation criteria applied in calculating the wall velocity 
distributions are applicable to situation.s whore the wail 
curvature is not large. This i.s u.suaily a roas-jnablt- ciosumption 
in the axial direction but in the case of swirling flows, if the 
inner wall collapses towards the axis^ the swirl velocity iricreciso:̂  
substantially implying a large pressure gradient across the boundary 
layer to support the inward acceleration. This contravenes the 
usual E.L assumption (for flows where there are no large changes iri 
curvature) that the presssure gradient of the free stream is 
'impres.sed’ upon the B.L. In the case of the outer wall



I this is not such a serious drawback since (in the examples 
t considered) the curvature of the wall in the 0 direction is of the 

same order of magnitude as the * small’ axial curvature.
Current boundary layer theory does not provide us with detailed 
knowledge of the behaviour of skewed boundary layers that would be 
expected in the case in swirling flows, however there is no reason, 
in principle, why alternative boundary conditions based on further 
analysis of boundary layer behaviour together with general fluid flow 
considerations could not be incorporated into the general numerical 
design approach presented in this thesis arid extend our ability to 
generate duct shapes supporting fluid regimes with arbitrary but 
consistant flow properties.
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Appendices

z = X + i. y ; z

For any function, F,

1 ; s = i~ ; z* = X - i . y ; z* - 1; z*
y X y

F = F . z + F . zX Z X

z y

; XX = ( z + z*)/2 2
y = ( z - z*)/(2i) ; y

X z

. z*♦ X = F*7

. z* 
* 7

= i [ F
Z

1/2 ; X = z ♦ 1/2

-i/2 ; y =z ♦ i/2

- y
Z

= [ FX
-

- y = C F +

z ♦

z ♦

z  * X z  * y z  *

F = [ F + F ]/4 = T7
zz* XX yy y

2 [F/4]

( 2 ) 2 2 2 
I f Q  = u -  i.v ; € = U + V ; Q = v -  u ; Q = q.e~i® ; q - u  + vX y X y

Then Q = ^ [ ( u  + v ) - i . ( v  - u ) ]/2 - [ € - i.Q ]/2
X y X y

(3)
For any function F

F = F . x  + F . y  = COS0.F + Sin0.F : x - Cos0 :y s X y sX s
X = Sin0F = F .x + F .y =-Sin0.F + Cos0.F

n x n y n  « y ”
ds = dx.Cos0 +dy.Sin0 : dn = -dx.Sin0 + dy.Cos0

y = Sin0 
s

y = Cos0 n



APP 2.
(4)F + i.F 

s n
[ Cos0.F + Sin0.F ] + i.[ -i.Sin0.F + Cos0.F ]

X y X y

[ Cos0 - i.Sin0 ].F + i.[ Cos0 - i.Sin0 ],F
 ̂ y

e - i e . [ F  + F  ] = 2 e - i e . F
X y z *

(5)
(In Q) + i.(InQ)

s n
= 2.e-i e .(InQ)

z ♦
= 2.e-i e .(1/Q)-Q

z ♦
= 2 . e - i e / ( q . e ~ i © ) . Q

= [ € - i.Q ]/q
z ♦

[from (4)]

[from (2)] 
[from (2)]

( 6 )
( InQ ) + i.( InQ ) = [ In (q.e-i©) ] + i.[ In (q.e"i®) ]

s n s n

= [ Inq - 10 ] + i.[ Inq - 10 ]
s n

= [ (Inq) + 0  ] + 1.[ (Inq) - 0 ]
s n n s

= [ 0 - l . Q ] / q  [from (5)]
(7)

F = F .$ + F .Y ; F = F .$ + F .Y
s $ s  Y s  n $ n  Y n

But from definitions of $ and Y ; $ = 0  and
n
$ = q and
s 2

Hence F = q . F  ; F  = q . F
s 2 $ n 1 Y

(8 )

Y = 0

d$ = $ . ds + $ . dn = q . ds + 0 = q
s n 2

dY r Y . ds + Y . dn = 0 + q . dn - q
n

f (9)
From (3) ds = dx.Cos0 + dy.Sin0 ; dn = -dx.Sin0 + dy.Cos0

dx = ds.Cos© - dn.Sin© ; dy = ds.Sin0 + dn.Cos0
dz = dx + i.dy = (ds.Cos© - dn.Sin0 ) + 1 (ds.Sin0 + dn.Cos0)

= ds.(Cos0 + l.Sin0) +i.dn.(Cos0 + l.Sin0) = ei©.(ds + i.dn)
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