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AERODYNAMIC DESIGN OF ANNULAR DUCTS
BY
A_M. KLIER B.A., M.Sc

ABSTRACT

This thesis presents mathematical and numerical methods for
designing axisymmetric annular ducts having geometries capable of
supporting Ffluid flows with prescribed performance characteristics.
Three basic numerical methods of solution are given and are used
to obtain results to the known exact solutions for a class of

axisymmetric, 1irrotational i1ncompressible flow regimes.

Examination is made iInto the type of boundary conditions appropriate

to control boundary layer behaviour and a new mixed boundary

condition 1is derived to accomplish this. The technique 1s extended

to cater for a class of swirling flows by i1nvestigating the

derivation of a boundary layer approximation and further development

allows the application of numerical 1i1terative techniques to
compressible flows with vorticity.

These methods are especially suited to generating duct geometries

with predetermined flow characteristics.



INTRODUCTION
This thesis presents mathematical and numerical methods for
designing axisymmetric annular ducts capable of supporting fluid flow
regimes with predetermined flow features. The primary approach has
been to develop techniques whereby duct geometries may be
generated having prescribed performance characteristics (an example
being the avoidance of boundary layer separation ).
Initially the equations for axisymmetric, inviscid flow are mapped
into the ($,Y) “DESIGN PLANE” (DP) 1in which the “stream” and
“velocity potential” functions replace the special coordinates as
the i1ndependent variables.
These design plane equations (“DPE”) form the basis of all subsequent
solution schemes. This set i1s reducible to a second order,
non~linear, partial differential equation (PDE) in the radial
coordinate y ( a similar equation being available for the axial
coordinate “x 7).
Exact solutions to the DPE exist i1n the simplest case of
irrotational i1ncompressible flow. These solutions are given
with some detail and are used as a test to validate the routines
subsequently used to obtain numerical solutions for other flow
configurations and boundary conditions. The PDE is approximated by
finite difference forms and three 1i1terative solution techniques are
presented to obtain numerical results for the exact solutions namely
(1) Point Ilterative Methods;
(@ Matrix Formulations;
(3 Numerical Technique based on an Integral Equation of a function

of a complex variable.



In obtaining the numerical results for comparison with the "exact"
solutions, the boundary values of the space coordinates (X,y) are
known and could be used as a B.C to determine the flow over the
complete $,Y domain. However, alternative to this usual procedure
of prescribing the known values of y ( or xX) on the boundaries to
solve the PDE in "y", the equivalent and corresponding invariant
distribution In the speed i1s applied.

Then, for some initial and arbitrary boundary distribution of *y~,
sthe 1nvariant speed distribution of *gq" ( known from the exact
solution) 1s used to calculate sucessive and varying boundary
distributions of "y" until both the boundary and field distributions
In "y" converge.

Computer progrsims were developed to obtain numerical results to all
forms of the exact solutions and the results were found to be
accurate to 10" relative error in the distributions of Xx,y,q-
However the five basic duct geometries and associated flows produced
by these solutions are not considered suitable for applications to
annular duct flow and due to the non-linearity of the equations the
technique of superposition of solutions is not available to us.
Given the current unavailability of other "exact"™ solutions it
follows that further progress iIn determining duct geometries and
corresponding flow patterns can most likiely be made via a numerical
approach.

An 1mportant consideration in the design of annular ducts is the
behaviour of the boundary layers (B.L) and in particular the
avoidance of their separation would be an advantageous design

feature. Randomly prescribed velocity distributions (PVD) do not



necessarily yield boundary layers having this characteristic and

it 1s not apparent what form an i1nvariant boundary condition

might have iIn order to “control” the B.L behaviour or any other flow
feature in this way. However some feasable distribution is required
on the duct walls 1In order to produce acceptable duct contours.

The methods derived by Stratford (Refs.11,12) for predicting the
point of separation of the two dimensional plane B.L are here
extended to the axisymmetric case by use of a transform due to
Mangier (Ref.15). This yields a new “mixed* boundary condition which
may be iImposed at the duct walls to give velocity distributions
which are on (or below) the point of separating for both the

laminar and turbulent B.L.

The i1nclusion of this condition Into the general numerical 1i1terative
scheme allows the calculation of duct shapes with this flow feature.
A further transform is derived which enables this condition to be
applied to a class of swirling flows having non-skewed B.Ls. The
computer program is extended to cater for alternative B.Cs including
(@ accelerating flows, (b) flows with sections of constant velocity
and/or radius on either or both walls. The methods developed for
incompressible, 1i1rrotational flows are then widened to include the
case of flows with with arbitrary distributions of vorticity and
speed across the duct at inlet.

The laws governing the transport of vorticity through the duct are
included in the general numerical scheme and the results compared
with the irrotational case. This vorticity 1Is generated by
prescribing a non~uniform axial velocity across the duct at inlet

based on a parabolic profile together with a swirl compenent of



velocity of the form ( a.y b/y ) both of which may independently
contribute to non-zero vorticity distribution in the flow.

These profiles may be varied at will to show the variation of duct
shape with change i1n velocity and vorticity distribution.

Finally the technique i1s extended to cater for compressible
isentropic flow of a gas with constant specific heats and the
numerical methods allow the effects of compressibility to be i1ncluded
in the solution schemes.

Again 1t i1s possible to prescribe an arbitrary distribution iIn the
parameters of state (p,”,T) at some station of the flow (stagnhation
conditions say) to give some variation of the state variables
throughout the transition region. In view of the substantial degree
of flexibility afforded by this approach and the wide choice of B.Cs
available, these methods could form the basis for a substantial
amount of numerical experimentation to determine the i1nteraction

and effect of the numerous parameters that may affect the fTlow

and hence the geometry of annular ducts.



CHAPTER 1

In steady, axisymmetric, inviscid, 1irrotational flow the condition

of continuity and the absence of vorticity are sufficient to

define the familiar streaun and potential functions. Constant

values of the stream function, Y, 1iIn steady flow coincide with

the stream lines and these together with lines of constant $

form an orthogonal coordinate system over the fTlow field.

Solutions to the equations of flow are traditionally derived 1iIn

either the (X,y) or hodograph plane, however by utilizing the

definitions of the Y, $ functions, the equations of plane and

axisymmetric flow in the (X,y) plane may be mapped to an equivalent

set in the (8,Y) domain.

Laidler and Walkden (Ref. 10), Cousins (Ref. 6) et al. have used

this approach to derive numerical solutions for inviscid,

irrotational flow fields through axisymmetric ducts subject to

a variety of boundary conditions on the duct walls.

The most obvious feature of this method i1s that the potential

and stream functions now become the independent variables

rather than the space cordinates (X,y,z or (0) ).

Laidler & Walkden obtained numerical solutions to the design

problem of generating shapes for (non-annular) ducts subject to a

fixed and prescribed velocity distribution varying as a cubic 1iIn
length on the casing. Their iInference was that i1t should be

possible to design “quite short* ducts having “almost” uniform

inlet and outlet conditions satisftying this fixed distribution on

1the casing.



In Ref- 6, Cousins has obtained solutions for distributions of y
(or X) prescribed at equal delta Y, $ intervals on annular duct
boundaries to determine the geometry for flow past a point source.
Having found the values of the radial coordinate °y" throughout

the flow field, the corresponding distributions of "x” and the

speed “gq” are derived.

The ability to deal with rotational and compressible flows iIn a
comparable domain would extend to such flows this

advantage of prescribing arbitrary boundary distributions of

X,Y,q or F(X,y,q) (an arbitrary function). It has proved possible

to widen the definition of the design plane to cater for compressible
flows with vorticity. The overall approach i1s to define an orthogonal
coordinate system based on the differential relationships between
vorticity, density and speed.

This allows us the freedom to prescribe arbitrary functions of

X,Y,q on the flow boundaries. Suitable numerical formulation of

the flow equations then provide the solution to the flow problem 1iIn

the design plane.



ize.d Design Plane Equations

Consider the flow given by the complex velocity

Q = u\— iI.v = g.e"10

q2 zZ u2 + v2
where } ,
Z = X + =X -1y ;1 = (D=5

and O is the angle that the

X-ax1is.
Defining 6* = u
X
and Q* =V
X
Then Q =¥
Zeé
=".[Cu +v H-1.(v -uvu )]
X y X Yy
= [ €¢ - 1.0* ] [1.2.6]

where € 1s the rate of expansion of the fluid and Q* the
component of vorticity perpendicular to the (X,y) plane,

Md *s” and *n’ are metrics parallel and perpendicular to the
flow lines of Q.

By using the i1dea of two comparison flows an orthogonal coordinate



set iIs defined over the flow field of Q.

(D Consider the Tirst comparison fTlow defined by the complex

[velocity Qi T .e"10 = gi.e-1e = ut - 1.vi ;;qgi =Y . [1.3.1]

n n
Since flows Q and Qi have a common direction at all points of the
x,y) plane then the metrics "s” and *n” are also parallel and
perpendicular to the flow lines of Q1 .

Suppose that T = T(X,y) 1is a real fTunction of x and y and that

the rate of change of T i1n the <"s* direction is zero.

Now X =CosO ;y =S8SIn0 ;x = -SIin0 ; y - CosO
S S n n
Y =0 and Y =qi [1.4.1]
S n n
r =Y X +Y .y
S X 8 7 s
=Y .CosO +Y .Sin0 =0
X 7
Therefore =

r -C SIin0/CosO ).Y or Y = -( Cos0/SIn0 ).Y
X 7 7 X
Therefore r =Y X +Y .y
n X n 7 n

= - SIn0O.T + CosO0.Y
X 7

= - SIn0.Y + CosO0.(- Cos0/Sin0).Y
X X

~(1/Sin0).Y = (1/Cos0).Y
X 7

which gives the rate of change of Y normal to "s

Hence Qi = Y _.e*ie = (1/Co0s0).Y .(CosO - 1.Sin0)
n Yy
=Y - 1.(Sin0/Cos0).Y
7 7
=Y +
7 X z
= U1 -

<
I
N
—\
<

=<

ur =Y VI = - Y with gi2 = ui2 + vi2

Also ui) + V1) =T -Y =0 [1.4.2a]
X

7 X7 7X
Qi* = V1) - (ui) = -Y -Y =
X 7 X X 77
= - 4.Y = 2.1.Q [1.4.2b]
*2¢ z*
this flow has zero rate of expansion €*i but non-zero

//.



orticity component Q*i .

(@ Consider now a second flow defined by the complex velocity
Q2 =" _e~I® =qgq2.e~1® =U2 - 1.V2 ;02 =% [1.4.3]

here $ = $(§<,y) iIs real and let the rate of chanzje of $

ormal to "s” be set equal to zero.

Thus iIn this flow

$ =0 and $ =02 [1.4.4]
n S
= $ = -Sin0.$ + Cos 0. =0
n X y
= $ = (sinO/CosO).$X orX $ = (Cos0/Sin0).%$
y :
Hence $ = CosO.i + Sin0.$
s X y
= (1/Cos0).-$ = (1/Sin0).%
X y

= Q2 = (1/Co0s0).$ .(cosO - 1.Sin0)

X

=% - (Sin0O/Co0os0)=% -1.%3 -2.%

X y n j z
—> w2 =% ;v2 = $
X y
62* = (U2) +(V2) =% [1.4_3a]
X 7 XX Yy
Qz* = (v2) « (u2) =% =0 [1.4.3b]
X

Yy Xy yX
20f constant $ and Y defined

flowns form an orthogonal family of curves over the domain of the
flow field of "Q” since 1If
$*(x,y) =0 and Y*(X,y) =0

are a pair of the set of orthogonal curves then

+Y* .(dy/dx), =0 and - (dy/dx) = 0

* y AVa X y *
Hence (dy/dx) = - Y*/Y* and (dy/dx) = - $*/%e
X y . X y

Hut the derivatives of Y(X,y) and $(x,y) along and normal to

"He streamwise direction are respectively zero.

/7.



"thus Y* = (C0SO.Y* + Sin0.T* =0

S X y
and = -Sin0.$* + Cos0.$* =0

n X y
Hence Y* /Y* = -Sin0/CosO and

Z y X
Thus (dy/dx1l .(dy/dx) = (- Y* Y*

y Xy

= (sin0/Co0s0).(-Cos0/51n0)

= -1
Hence the lines of constant Y and $ form an orthogonal set.
The rate of change of Y along “s” i1s known and equal to zero
but the distribution of Y (1.e the speed gi 1In the direction
of the normal, “n”) 1s unspecified. Similarly In the case of
the flow with speed g2 the distribution of $ along “n~’

( normal to “s” direction ) 1s zero but 1i1ts distribution along

s’ 1s not yet determined. Once these distributions are specified

the corresponding ones i1n €* and Q* are defined by equations [1.4.2b]

and [1.4.3a].



Th Intrinsic Flow Equations.

By considering the differential of
the flow speed *q” i1In the directions defined by the coordinate
system ($,Y), relationships between speed (g), direction (0),
vorticity (Q*) and the rate of expansion (6*) can be established.
For any function F

F +1.F = (CosO.F + SinO.F ) + 1.(-Sin0.F + CosO.F )

S n X y X y
= (CosO - 1.SIn0 ).F + 1.(CosO - 1.S1n0).F
X y
—e-10(F+1_.F) =2.e-10_F
X y Ze

Applying this differential operator to the function In(Q) we have
(In(@) + 1.(InCQ)) = 2.e-1e.(InCQ))
S n z

*
= 2.e-i0.Q-i .Q
Zeé
= 2.e"10 .g-1.e10 .Q
Zeé
= (2/q)-[e* - 1i.-Q*]/2 (from 1.2.6)
= (1/79)-[€* - [1.5.1]

Now, the alternative expansion of the left hand side of [1.5.1] gives
(|n(Q))S+ i-(llﬂ(Q))n = (|ﬂ(Q-e"i©))S + -(|n(Q-e-i©))n

= (n(@ - i-e)s+ -(In(@) - i-9)n

= [ (|lﬂ(Q))S +0 1+ 0. [ (|n(0|))n-80 1

On equating real and i1maginary parts

n

(an(@) + 0 = e*/q [1.5.2]
n
(n(@) -0 = -Q*q_ [1.5.3]
n

Application of this differential 1i1dentity to the two subsidiary
flows Qi and Q2 defined above yield the following relationships;

(n(qr)) +e = €*1/qi =0 [1.5.4] (from 1.4.2a)
S n

(n(qi)) - e = -Q*1/qi [1.5.5]
n

S



(In(g2)) +e - 6*2/q92 ; [1.5.6]

n

(In(@2)) -6 = -Q*2/q2 =0 [1.5.7] (from 1.4.3b)
n S

Now the derivatives with respect to "s” and "n” may be replaced

by those with respect to $ and Y as follows. For any function F

F = F.$ + F.Y= F.$ +0=q2.F (Since Y =0 By 1.4.1)
s N s * S [1.5.8]
F = F.$ + F .Y - O +F.Y=q1.F (Since $ =0 by 1.4.4)
n « n * T n -fn N n [1.5.9]

Replacing derivatives with respect to s and n by those with

respect $ and Y gives

g2 -(In(Q)) « + gi .O_"" = "*/q [1.6.1]
Oli-(ln(Q)),]c - g2.0 = -Q*/q [1.6.2]
g2.(In(gi)) + qi.0 = O [1.6.3]
qi-(In(qi1)) - g2.0 = /q1 [1.6.4]
g2.(In(g2)) + gi .0 = 6*2/Q2 [1.6.5]
qr-(In(g2 )): - Q2 .©t = 0 [1 .6 .6]

Eliminating "0~ between the equation pairs [1.6.1] & [1.6.3];
[L6.2] & [ 66] ; [1-6.3] & [1.6.6] gives after some rearrangement
g2 .(In(g/qi )) = 0*/q [1.6.7]

ai -(In(q/92)) /q [1.6.8]
[gi/ez.(In(a2)) 1 + [ 92/qi .(n@i)) 1 =0  [1.6.9]

Defining the ratio of the speeds of the flows as

A -9g/qi ;B =g9g/92 and A/B = q2/qi [1.6.10]
Then [1.5.8] and [1 .5.9] may be written as

N ~ (a/B)-F [1.6.11] ; F = (g/A).F [1.6.12]

n

then the set [1.6.7] to [1.6.9] may be writen as



[ InC A )] e*.B/q2 [1.7.1]

[ In( B ) t: —Q*.A/Q2 [1.7.2]
[@B7A).(na/B) ) 1 + [(A/B) .(In(g/A)) 1 =0
t T * [1.7.3]

If g, 6*, Q* are considered as known functions of $, Y and

A and B are known along one $ and Y characteristic

respectively, then equations [1.7.1] and [1.7.2] enable the
distributions of A and B to be calculated over the whole

($,Y) plane. If in turn, A and B are now considered known
throughout the domain then equation [1.7.3] allows q to be
determined together with the corresponding distributions of 6*

and Q* via equations [1.2.1] and [1.2.2].

The i1nterdependency of this set allied to a suitable iterative
numerical scheme will allow the evaluation of the A, B, q, X and y

distributions over the complete flow field in the (8,Y) plane.



/nt_.emat.ive Derivation of an Equivalent Set of Equations

With x Vv) as The Deoenden-b Variable.

Equation [1.7.3] may be expressed in an alternative form in terms
of either of the space coordinates xor y instead of the speed q.
Since z=X + 1.y ;;dz =dx +i.dy 1.

and from geometrical considerations

ds = dx.CosO + dy.SinO 2.
dn = -dx.Sin0 + dy.CosO 3.
and 3.
dx =ds.CosO -dn.Sin0O 4.
dy =ds.Sin0 tdn.CosO . 5.
=> dz = ds.CosO - dn.Sin0O + 1.ds.Sin0 + 1.dn.CosO

= ds-(CosO0 + 1.SIn0) + 1.dn.(CosO + 1.SINn0)
= (ds + 1.dn).(CosO + 1.Sin0)
= et®.(ds + 1.dn) 6.
From equations [1.4.3] and [1.6.10]
d$ = gz.ds = (g/B).ds 7.
dY = gr .dn = (g/A).dn 8.
dz = ei®.(B/q-d$ + A/q-dY)

dz = eie.(B.d$ + A.dY)/q 9.
z = B.ei0/q () z = 1.A.e10/q (i)
Giii) X = -A.Sin0/q  (iv)
t [1.7.4]
) y = A.CosO0/q (Vi)
f
Eliminating O gives
X = (B/A) .y f x = -(A/B).y
* “if Hr [1-7-5]
or y = (A/B).X s y = -(B/A).x
Hr » « Hrr

/7.



Eliminating x or alternatively y from [1.7.5]

fundamental equations

[ B/A.y 1 + [ (A/B).y 1 =0
Hr vy =

[ ®/A.x 1 + [ (WB).x 1 ro -

« «

leads to

Either of the above may be used in place of [1.7.3].

For the purpose of determining the distribution of ¢

[1.7.1] and [1.7.2] which are to be used iIn conjunction with

[1.11.1] , g may be found by eliminating O from [1.7.4].

Thus X )2/B2 + vy J)2/B2 r
X )2/B2 + (x )2/A2 ~
«

Gy )2/A2 + (y )2/B2 =
H-
Q%& X2/A2  + (X )2/A2 = 1/g2

own ( from [1.7.5] and 2 & 3 above)

dx = (B/A).y .d$ - (A/B).y .dY

dy =-(B/A).x .d$ + (A/B).x .dY
Hr *

Velocity components are given by

u =92 .X /B g2 .y /A (1)

¢ nr

V =9g2.y /B = -g2 ,x /A (i)
And Y r -v/A ;Y = u/ZA

» y

$ = u/B ; $ = Vv/B

X y
Since dY = (u/A).dy - (v/a).dx ; d$

1.

2
3.
4

(v/B) .dy

the

[1.11.1]

[1.11.2]

In equations

[1.11.3]

[1.11.4]

[1.11.5]

[1.11.6]

[1. 11.7]

+

Further algebraic and differential relationships are given

appendices and will be refered to as necessary.

(u/B) .dx

in the

Equations [1.11.1] (or [1.11.2]) together with [1.7.2] and [1.7.3]

will yield the flow solution i1n terms of the distribution of *y’

or x” with the distribution in *q~ being derived via [1.11.3].
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In this chapter the generalized design plane equations are applied
In conjunction with the standard flow equations to an i1ncompressible,
irrotational, invicid, axisymmetric flow with zero body forces.

The equations of motion for such a flow are

u.u V.u = -d/|
X y

Uu.v + V.V - w2/y = -d/(
X Yy

u.w + Vw + V.wy =0
X Yy

-w *+ y-v) =0

X y

with the vorticity vector given by

e =1 (y-W)7]-x + [ —(W)XILi“ + [ VX- Uy] -Q [2-5]
The generalized design plane equations (see Chapter 1; [1.7.1] &
[1.7.2] & [1.11.2] ) are

[ INCA )] = €*.B/g2
[ InCB )] = -Q*.A/Q2
[ B/AD.y 1 + [ (A/B).y ] = 0
where €6 = u + V and Q* =v -u
X y y X

Expressions are derived from the flow equations [2 .1-2.5] above
for the quantities 6* and Q* and substituted iInto [1.7.1] and
[1.7.2] whence the functions A and B are evaluated. Substitution
into [1.11.1] gives an equation for solution iIn "y’.
Swirl Velocity.
Since the vorticity vector is zero then the i1ndividual
components are zero and from [2.5]
w -0 = -0 . N =0 by virtue of axial symmetry.

y X ©
Hence Gyw) =0 ; (yw) =0 ; ((yw) =0
y X 0



Therefore (y.w)

Hence

Thus,

for 1rotational fTlow,

= k®

w = k®/y

The Functions A and €*

Hence

Hence

Therefore

Substituting for 6*

Therefore

arbitrary function of Y.

given by

(say) where k®

the swirl velocity

IS constant throughout the flow field.

IS constant [2.6]

iIs of the form

[2.7]

From the equation of continuity [2.4]

- + (y.v) = 0
X y
y-u +v )=-(u.y +
X y
€*=u + v =-(u.y +
X y X

vy )
Yy
v,y )/y
Yy

= - .(ny) + V.(dny) )

= -9q-[x -(Iny)
8

= -4q-(In y)
S

= ~ <1-<I/"-(In y)
«
€* = -92/9.(In y)

into equation [1.7.1] gives

[ In(A) 1]
[ In(A.y) 1]
A.y

a

Ihe functions R and Q*

or (In vy)

= €*.B/92 = - [ In(y)
=0
= g1t (1) where gi (Y)

= gi (Y)/y

+y -(;n Y)

y
= [d-CosO.(In y) + g-Sin0O.(In vy) ]
X

sy

1

IS an

It follows that the function A

y
1

(from [1.6.11])

-3.€*/q92

IS

[2.8]

From the O component of the expression for

vorticity we have @ =

but from [1.7.2]

®

Vv
X

[ In(B) 1]

[ In(B) 1]

= 92($) where g2(%)

Sr

u

y

=0
-Q».A/Q2
0

IS an arbitrary function of

"0



Since both gi (T) and g2($) are arbitrary we may set
g1 (V) = 9g2(%) =1
Hence A=1/y ;B =1 [2-9]
Substituting these expressions for A and B iInto equations
[1.11.1 to 7] gives the following set;
[y-y 3 + [@y)-y 1 =0 [2.10.1]
(X» )2 Gy )2 x )2 + (y-X )2
-y )2 + (y )2

-y )2 + (y-x )2
1/92 [2.10.2]
Further substitution into [1.11.4] and [1.11.5] gives the physical
coordinates as

dx = y.y .d$ - (I/y).y .dY

dy = -y.x .d$ + (I/y).x .dY

Therefore X = -(1/y).y ; X = y.y
and (1/y).X A o [2.10.3]
Hr N N Y
and [1.11.6] yields the velocity components
u=0g.X = 02.y.y
* H-
V = g2 .y Z -2 .y.X [2.10.4]
« |_r
with Y §:-y.v ;Y = y.u
X y
$ - wu ;. 0$ -V [2.10.5]
X y

dY = u.y.dy - v.y.dx

d$ =v.dy + u.dx [2.10.6]
There 1s no loss of generality in choosing gi (Y) =92 = 1.
For suppose that A = gi (Y)/y and B = g2 ($) then the basic

equation [1.11,1] becomes

[ (@2/0i ).y.y 1 + [ @/792).y /y 1 =0



Since g2 and gi are, respectively, functions of $ and Y alone, then
—we may write, g2 .C(l/gi ).y .y 1 + gi -[(I/g2)-y«>/y ]<z> =0

Hence

(Mgi ).[(i/gi )-y*y 3 + ((1/g2).C(1/g2).y/y 1]

gl and g2 are non Zzero.

0 [2.11]

dy* = gl (Y) .dY and d$* 02 ($) -d$
gl (V) and 92 ($)

T _
« any function F

Hence Y*

F - F .y* gl (Y).F
y y* r y*
F = F _.%e g2(Y).F
=> F = (I/gi (Y)).F . F =
y

Substituting into [2.11] gives
Ly.y 1 + L[A/y)-y 3 =0
which i1s identical In form to [2.10.1]
Similarly the equations set [2.10.41i] will transform into matching
forms. The choice of different functions gi (T) and g2(%$)
merely implies a mapping from some plane ,Y()) to another
plane (f(2) .y(2)) (say) .
Change of Dependent Variable.
The equations may be written In a

more convenient form by making the substitution

r = y2 [2.12.0]

Thus the equation set [2.10.41] becomes

\ t



r + (In r ) [2.12.1]
rr ) + /r).(r)2 =

4r . (xX)2 + 4(x)?2 = [2.12.2]
(r )2 + 4r .(x)2 =
T *
(/r) . (r )2 + 4(x )2 =4/92 (1v)
4 4
dx = [r .d$ - ({n r) .dT}/2 ( [2.12.3]
dy = - r5.X d$ + r--5x .dY (i)
X = r /2 ; X = -=-(In r )/2
[<¢ Ir «
U=09g2.r /72 = g2 X ()
V= -rr5,02 . X = r--5.92 .r /2 i
q - a2 -r (rr)
ds = d$/g ; dn = dY/(q.r-5) [2.12.6]

Once the distribution of *r” has been obtained by solving

equation [2.12.1] the distribution iIn x may be derived via [2.12.4].
Substitution for x,r (which are now known) into any of [2.12.2] will
yield the speed *q” with 1ts components in the *x” and *y” directions
given by [2.12.5]. Exact solutions of the separation of variable type
do exist for equation [2.12.1] and their general form has been given
by Cousins (Ref. 6) and reference made to the unsuitability in
applying them to flows through annular ducts.

However i1n the i1nterests of having a set of exact solutions i1n closed
form which may be used as a basis to test numerical techniques, the
specific form of the solutions to [2.12.1] are now derived and a

description of the corresponding flow patterns given.

Z3



Nexact” "MIlutions By Separation of Variable.
In discussing the exact solutions 1t is
convenient to make the fTollowing substitution
Let z = 2X ; Q = 2/q
This transform is a particular case of a more general one used 1In
deriving further numerical solutions to the basic equations and

with this mapping the governing equations become

r + (In r) =0 [2.12.1]
r2 + r2/r = r.z2 + z2 - r2 + r.z2 = r2/r + z2 = Q2 [2.12.2. a]
z =r ; z = - (UnT) [2-12.4_4&]

Separating the variables let
r($,Y) = P(Y).F($)
Substitution into [2.12.1] gives

(FP) + (In(F.P) ) =0

Hence P = -(1/B).(n(F)) = ki (ki = constant)
- P = ki
and (1/F).(In B = - ki

Equation [2.13] may be integrated directly to give
P(Y) = ki .Y2/2 + p2Y + P3
where p2 and p3 are arbitrary constants.
Equation [2.14] yields fTive i1ndependent solutions for the function

E($) and the corresponding *z” coordinate is derived via
[2.12.4_a].
CasexXl ki =0 ;

If ki - O then (In F ) =0

(In F ) = k2.$ + k3



Hence Fi = F(®) = exp(k2.$ + k3) -
k4 _exp(k2 .$)  (where k4 = exp(k3) > 0)

ki 0
U = In(F) = § = F /F and F = eo
« «
Therefore equation [2.141 becomes
= -ki .eU

= - ki .e®.U

U 2/2) r ki .(eU)
& & *

Uz = 2.(k - ki.el) (where k5 = arbitrary constant)

= [Q/F).F 12 = 2. (k5 - ki .eU) = 2.(s - ki .F)
F = a.F.(ks - ki .F)-5 where a = = 2-5
r> d$ = drF/[ a.F.(k5 - ki.F)-5]

let F = V2 r> dF = 2_.V.dV.

df r 2.V.dW/[a. V2 .(K5 -ki.V2).5] =a.dV/[V.(k5 -ki.V2).5]
Integrating with respect to $ gives

$ + ks =a.l(k5,ki) where I1(ks ki) = dv/ [v . (ks - ki .v2)=5]
Different combinations of the constants ks and ki lead to the

following evaluations of the integral 1(ks ki)

where Mi = mi/m2 and = $%$ + ke (ke = arbitrary constant)
ks ki 1(ks ,ki ) Fn = Vn2
0 m22 i/(m2.V) -2/[m2 -$132
0 -m22 1/(m2 V) 2/[m2 .$132
mi2 m22 Sech-i [V/Mi }/mi MI 2Sech2 [mi .$1 /a3
mi2 -m22 Cosech-i”™ [V/Mi ]2mi Ml 2Cosech2[mi .$1 /a3
M2 m22 Cosech™i [V/Mi3/i .mi MI 2Cosech2[i .mi .$1 /a3
mi2 mji2 Sech-i [V/Mi 3/i.mi Mi2Sech2 [i.mi .$1 /a3

Table 2.1



Applying the standard relationships between the hyperbolic

functions and theilr trigonometric counterparts and absorbing the
alternative sign iIn the constant "a” into "mi’” the complete

solution for “r” In [2.12.1] 1s obtained by combining the Pn [Y]

functions from [2.15] with the Fn[$] in the table above. Thus

since (i) Cosech2(-X) = Cosech2 (X), (@1) Cosech2 (i .X) = -Cosec2 (X)
@Gii) Sech2 (1 X) — Sec2 (X)-
Then linear substitutions for Y and $ (i ) of the form
Y* = at + a2 .Y
and = bi + b2 .$
(where ai,a2 ,bi,b2 are constants depending on the arbitrary

quantities mi ,m,2 etc.) allow the solutions for "r’

r> to be written

as listed below (the sub. and superscripts having been dropped).

Exact Solutions for nfst+ (In

$-2

2
Sech2(%$)
Cosech2 (%)
Cosec2(%)

Sec2 (%)

Table 2.2
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Xn

1 m

5 R =Y «@* 20 = (e« -Y)/2

1 M = (a- T2).i-2 Z1 = Y/$ + b
2 R = (a- T2).«=2 2 = -Y/$ + b
3 B = (a +T2).Sech2(®) zZ3 = Y.Than($) b
4 r< = (a -T2).Cosech2 (I) z4 = Y.Coth(™) + b
5 rs = (a -T2).Cosec2 (5) z = Y.Cot($) +b
6 re = (@ -T2),Sec2 (®) Z6 = -Y.Tan($) + b

Table 2.2 (contd.)

Derivation of the "X coordinate solutions"are made via equation

[2.12.4.a] .
Thus from the solution for r4 we have (droping subscripts)

r=( -Y2).Cosech2($); In r = In(a -Y2) + 2.In(Cosech($))

Fron [2.12.4a] 2z =r = 2.X z =-(nr) =2Xx
& 4
But r = -2.Y.Cosech2(®$) (In r) = -2.Coth($)
= X - -Y.Cosech2(%$) X = Coth(f)
Integrating w.r.t $ gives Integrating w.r.t Y gives

X =Y.Coth($) + G*(Y) (say) ; x = Y.Coth($) + H*(®) (say)

Comparing the two forms for *x” we have G*(Y) - H*(i1) - constant

Hence X = Y.Coth($) + b
Expressions for the other *x” solutions are derived iIn a
similar manner. The constants iIn the xi solutions can be

eliminated without loss of generality by the substitution
Xi*=X1 -Db

Solutions "rs” and *rs”’ are iIn fact identical as can be seen vy






,,aklng the substitution $ = 12

= Tan($) = Tan(x/2 -1») = Cot(i»)

and SecMi) = Sec”O0t/2 - ) = Cosect (%)

= X6 I -T.Tan(«) = -Cot($»)

and re = (a - T2).Sect($) = (a - Tt).Cosect ()
«hlch

iIs the same form as solution T s and need not be considered

separately. Similarly for "ri > and "rz’.

Surfaces of constant $ and T are found by eliminating 4 and T

from the coordinate forms iIn table 2.2. These surfaces form,

in general, pairs of families of orthogonal, confocal conics

symmetric about both the x and y axes. All flows are source/sink

flows having point or line singularities where one or more of the

velocity components becomes infinite. By considering the change

of sign of the velocity components u,v with respect to the x and
y axes along lines of constant Y and 4 , the flow patterns may

determined as shown in Figs 2.1, 2.2, 2.3, 2.4, tnhe solid and dotted

lines denoting lines of constant Y and 4 respectively.

QT-~_hogonal ~~T Lines.

n Lines of Constant Y of Constant $

0 )2 =4-(Y/2) _( X - (—Y/Z)) y2 r 4-(9«/2)-(9«/2 - X)

1y =®-.((aY2). 5/Y).x X2 + y2 = a/$2

3 X2/Y2 + y2/(a + Y2) - y2/(aSech2$) - x2/(aThan2$) =1
4 X2/Y2 - y2/(a - T2) :y2/(aCosech2$)+ x2 /(aCot-h2$)-1
A oy2/@a - Y2) - x2 /T2 :y2/(aCosec2$) + xz2/(a. Co-b2$) =1

2 9.



Range of T Range of *a~”
- < $< ®
0 =< $=< - 2 N
- @ =< =< <&
- =< $=< ®m - A 0
; kTC =< $=< (k+D-Ti : a >= 0

The speed and velocity components are calculated from [2.12.2 and 5].

Thus from g2 = 4. (r 2 t r 2/r)-i u = er /2 v =02.r-s.r’/2
y/ « T
The speed and veloci®ty components are given by
n q2 u
0 4. (e2* + T.e*)-1 > q2.(e«/2) : g2(Y.e«)-57/2
1$%$Va :-g2 . (¥ . 2),a-5 :-q2 (Y.$-2 ).a- 5
3 (sech2$.(Y2 + a.Than2%$))-i q2.Y .Sech2$ -2 (a+Y2 ). 5 .Sech$ .Than$
4 (Cosech2$.(a. Coth2s-v2 ))-1  —02YCosech2$ -2 (a-Y2 )» 5Cosech$Coth$

5 (Cosec2$.(Y2 + a.Cot2%$))-i -2 .Y.Cosec2$ -2 (a-Y2 )-5 .Cosec$.Cot$

The solutions of the form “y™» = P(T).F($)". although exhibiting

Interesting properties in themselvesi do not have flow geometries of

the type usually associated with annular ducts

Further since the non-linearity of of the equation precludes the use

of the process of super-position of solutions, 1t Is necessary to

develop numerical methods to obtain further solutions to the

flow equations in the design plane. The three methods used are

() Point lteration (i1) Matrix Formulation (ii1) Integral Equation

of a complex variable and are presented iIn the next chapters.



CHAPTER 5
In this chapter two numerical 1i1terative techniques for solving the

equations of incompressible, 1irrotational flow are described

together with their theoretical jJustification where necessary.

The two methods discussed are (1) Point iteration, (2) Matrix

Formulation. The discrete forms of the equations are given and

used to obtain numerical solutions to the fundamental equations

which are compared for accuracy with the exact ones derived 1in
Chapter 2. The nature of the boundary conditions 1i1s examined

and an acceleration procedure 1is given which will improve the

rate of convergence of the iteration.

plane represented by the strip ABCD and its counterpart A

in the ($,Y) plane. The strip ABCD 1i1s bounded by curves along



mes of constant « and T with $1 and «o0 representing the

II1It and outlet stations of the flow respectively and T1 and

TO forming the i1nner hub and outer casing boundaries. The

transform of Chapter 1 (Equations [1.11.1] et seq.) maps the strip

ABCD Into a rectangular domain A-B*"C’D” in which the lines of

constant 1 and T form an orthogonal coordinate system with the

speed q = (U2 + v2)-5 having, by definition, no component in the

Y direction.

The rectangle A’B°CD 1s sectioned by an n by m mesh at equal di

and dT intervals. Since . 10 ,Tt and Tu are arbitrary the

following transform is employed to map A’B-C-D" onto the unit square;

c X g =C/q
2 1 3 1
C /v fW=C/W ; Q
3 1 3 1
-« ~ ( -~ C )c
i 1 6 7
where c = T e =Y Y ;& =AM oA~y
5 u L 6
and c =(c/ Y ;¢ = (¢ /7(.C)
i 2 5 7

The transform is linear i1In the variables x,r,$,T the velocities,

however, being replaced by their reciprocals.

The differential coefficients of the transform are give

y
dzdy 3 (1/c5).d/dTi ; = (1/c7).d/ds$i
d2/dY2 - (1/Cs2 ) .d2/dYi2 d2/ds2 = (l/c?22).d2/ds2
Thus the set of equations [2.12.1] to [2.12.5] becomes
(dropping the sub-scripts)
[3-2]
r + (In r) =0
)2 + (g )/r =r. x )2 + X =
\ « \ *
-3
2 +r.(x )2 = (r )2/r + (X )2 = Q2 [3-3]
t T N &



dx = (rt)-di - (In(r) ).dT

AzxX () =X -
-1 =g2.X ~ q~2-g
.

Ylll _ ﬂ-ssz -X = r_ 5 -q_ 2 -r

Or<T =<1 ; 0]

< * < 1
A suitable Tinite difference representation of equations [3.2] to

[3-7] Hill yield numerical solutions for comparison with their exact

counterparts.
Rcnndarv Conditions.

Inlet

At inlet, on $ = 4i , the values of the coordinates r, X are

calculated from the exact solution at equal delta T intervals

across the duct and remain fixed throughout the i1teration.

Outlet
As for inlet but, at, » = %o .
Inner and Outer Wall Condibions.

On the duct walls, represented by Yu and Y1 in the ($,Y) p

the speed "q” i1s known from the exact solutions and may be

calculated at equal delta $ intervals along the duct walls from

inlet, & , to outlet, $o0. This speed distribution on the walls

remains invariant throughout the i1teration but, given some

initial distribution 1n the radial coordinate, r(® say, on the

duct walls, this invariant speed distribution will

distribution In °r-’

imply a
on the duct walls varying continuously as the

Iteration proceeds.
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Denoting the value of any function F(Y,<.)

the (T.-$) plane by Fi .j

at the point (T. ) in

. then we may approximate its first and

second order differentials with respect to T and $ by

Y = (F - F )/(2.dY)
i+I»] i~lij
/ = (F C3.8]
F* , (/ - 2 _F t F )/(dY2)
Uik i+1ij i-1»j
p - (F - 2.F + F )/ (d$2)
i,j+1 iiJ

Substituting the forms [3.8] into equation [3.2] gives

’ 9 M >/I«O - <. —2_)) RA
i+1,] 1.} 1-1.3

where Ri,j - In (ri,j)-

Solving for ri.0 or Ri.j yields two equations

may form the basis of an

either of which
iterative routine to calculate ri,]j

(or Ri,jJ) at a given mesh point.

Thus making ri,jJ or Ri,jJ the subject of [3 .8a]

gives
r [r +r +Di.In(r .r /r2  )H)]/2 [3.9]
1. i+l ,] 1-1.] g+t 1.3 1 "«
R = (R + R + D2 [exp(R ) "2 exp(R_ )]
-] 1. J+i 1.J-1 7 [3-10]
where

; Ds = dY/d$ ; D4 - d$/dY [3.10a]
Hence denoting ri.ji*«) as the «kr-n

Di r (dY/d$)2 ; D2 = (d$/dY)2

iterated value ri .j we have

from [3.9] as a possible i1terative routine

= 5rr(k + rikh + Dr .InC rCi) -rQc NN [3.11]
1.1 i+1_j 1-1_]

with a similar expression being available for [3.10]-

An altermatdve to [3.11] based on Newton’s method for finding a



root of r = f(r) 1is

pk = 5.[r<>  + r(k>  +Di {2 + r<n> YJ/['+ Di/r<k>]
.. i+, i-1.j i+l ij-1 ilj
[3.12]

and similarly for [3.10]. For the most part [3.11] will form the
basis of the iterative calculations.

The application of the prescribed speed distribution on the walls
Is made via one of the forms of equation [3.3]. The most convenient
representation is that involving only r and its derivatives,

thus r2 + r2/r = Q2 [3-2]

may be approximated by

r -r /(2 .dy)2 + (1/r )(r - r )2/(2 .d$)2 = Q2
i+l j i-1,j ilj i+ i > j
[3-13]

Fig 3.2



For use at the upper and lower wall boundaries we solve

successively for ri+i,jJ and ri-i.jJ and letting 1 = 1,1 for upper an

lower boundaries respectively (see Fig 3.2) we have

rck+1) = r(k) + [(2dYq X2 - Di.(r<k) -r(k )2/r(k) 1.5

i11j i-1,j 1.3 i,j+ 1,J"1 X*J [3-14a]
r(kci) = rO0 - [(2dYq )2 - DI _.(ro™) - r(k) )2/r<I0 J*5

i-1.] 1*1.1 "-1 “—g** [3-14b]

%
Boundary Conditions In Finite Pxff.grQftge Foym

Inlet. The i1nlet conditions are known from the exact solution

and remain fixed throughout the i1teration. Thus ri ,i1 iIs known

along the inlet $ characteristic,
r,l = (Known) i1- 1 to L.
Outlet As fTor inlet. ri,J = (Known) i= 1 to I.

Inner and Outer DuctWalls., The speed, q, 1Is prescribed atequal

delta $ intervals along the inner and outer wallsrepresented by
Y =Y and Y = YI .

Hence a1 ,J is known for i=I1,1 and j=1,2...,J* on AB and CD in

Fig 3 3.. These speed distributions are iInvariant throughout the

iteration but the corresponding ri.jJ are not constant on these

stream lines. Equation [3.11] 1s used to calculate sucessive
approximations for ri,j for 1=1,2__..1» jJ - 2,3..(J 1).
In calculating ri.l on the upper and lower boundaries, Yi and Yn,

the values of ri+i,jand re,Jj on the false boundaries ar

required. These are calculated via equations [3.14a] an [
which 1nvolve the application of the prescribed speed distribution

on the walls.
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Coordinate

5 we have x =r (i) and x =- (Inr ) (i) [3-5]
From [d.o0] ~ A .

A discrete forward difference representation of [3.5] () & (i1) is

(x X Yd$ = (r -
i+l i i+1.J
and x _x  )/dY = (-1/r ) .(r oo/
- i))i_i i-j ‘_i ‘_J*' I \J

Solving for xi, j+i and xi+i, jJ gives

X =X +D4.(r [3-15a]

i+ i.j i+ij

X = X _ D3.(r /r -1 [3.15b]

Since xI'1°\s kno”™m at inlet, then with 1=1, [3.15a] may be used
to calculate xi1.jJ for j = 2.3...J along the characteristic Yi .

Then for any given j = a (say) equation [3.15b] yields the values

of xi,a across the duct along the characteristic 4a for 1 = 2 to 1
In this manner, the Xx-coordinates are calculated over the whole

($,T) domain.

Method 2.
Fram [3.5(i)] ro=X
differentiating w.r.t $ we have r =X

With alternative finite difference forms for x , )?-r

[3.-5(1)] & [3.5(iii)] may be approximated as

@ -r ] )Y/(2.dY) = (x_ ~ - )/ (2-d$)
i

i+|,j I_I1J 'J+1 Xs_l_l
1/(4.dT7.d4)). N " AxX] gj-. " "
s 2 (ri+l,)g'+l ] roiCvvl
= ( - 2.x t X Y/d4 [316b]
i,j+1 1.} 1.3l

Solving [3.16a] and [3.16b] for xi,j+i and xi,j respectively gives
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X =X +D4 . (r -r ) [3.16c]
1 j+l 1.J-1 1+1._] 1-1._]

X =(x_ ¥ X1>J)/2_(|/8)'D4'(ri+|,j+| T o +ri—l,j+l
1,] 1.J+ [3.16d]

By setting 3- 2k in [3.16c] the (*odd”) values of xi,2k+1 can be
determined and hence with j = 2k 1n [3.16d] the i1ntervening
("feven”) xi1,2k are calculated.

The values of the x-coordinates calculated by methods 1 & 2 above
give x’s whose average % deviation from the exact solution is
about five times greater than that for the ,)*r’ coordinate. These
errors, although small of the order of 10*2% are cumulative and
can "build up” with i1ncreasing mesh size. An i1ndication of this
can be seen 1In the plot of a solution iIn Fig 3.3 ().

To improve the accuracy of the "x’"coordinate solution a secondary
iteration routine for “x” may be used. By forming a second order
PDE In “x” and using the values of "x” obtained from the “r
solution as the i1nitial x-distribution, the acccuracy of the

solution may be improved as shown in Fig 3.3 (11).

An lterative Routine for x*

From X =r and x - - (CInr )
we have X + X -r - (In = (r -In [3-17]
»Ip y*

let F=r - In r, then [3.17] may be approximated by the TfTinite

difference equation

(0 - 2.x + X )/ (d$2) + (X —2.%x + X 2 )/(dY2) 3
ilj+l i,] i,j-1 i+1,j i,j i-1,]

(F FF _F - F )/ (4.d$.dY)
i+1,j+1



Solving Tox XX ,jJ gives

- AL (X + X )y + A2.( X + X )+A3'F”i>J [3-18]

i.J

Here Al= 5.(C 1 + D2)-1 ; A2 = A1.D2 ; A3 = -Al.Da/4 ;
F* = - Fiti.j-i - Fi-i.j-n.

Equation [3.18] forms the basis of an i1teration routine together

with boundary conditions on «x” furnished by [3.5] above since

r 1s known over the whole flow field. Hence

~Jd
Values of "x” on the lower and upper boundaries are derived from

the numerical equivalents of [3.5(11)l and are given by

X r X - D3 .In(r n
i+l,] i-1,] 1.jJ+1 1.31
X =X + D3 .In(r /r )
i-1.j 1+i.] 1. J+i .-

for the upper and lower boundaries respectively. This correction

improved the accuracy of the calculation of the x coordinate and

reduced the errors to the same order as that of the r coordinate

At outlet the boundary condition for x is obtained from [3.5(1)3
giving X =X +D4 . (r

In the context of the present "test case this last condition
redundant since the outlet values of r and x can be calculat

fron the exact solutions available to us. However 1In cases iIn

which this data i1s not available the above procedure provides a

nieas of applying an outlet condition on Xx.
Test programs to determine the distributions of Xx,r,q over the
.7 Plane for all the exact flow solutions were written for use

un micro-computers.



r’“nvftrgence._
The 1teration was continued until the relative

difference between successive approximations for some specified

test value of r, Rr ( = ra.b say) was less than some assigned

quantity “e”. This value was taken as a fraction of the average

difference between the radial coordinates of the "middle

$-line
Fig. 3.5
Hence
e=(n.m - ri,m )/(5000.m) - 0o(10-5) with m = Int(J3/2).
and the i1teration was deemed to have converged when
1 ra.b(k +1)/ra.b(>»”™> - 1 | < e (where "k” iIs the 1teration no.

The values of x and r derived from the iteration were compared
with those of the exact solution and the maximum and average
relative errors calculated. These results were checked for

consistancy by back substitution into the finite difference forms

of the PDF and theilr variation with iIncreasing mesh size noted.

These comparisons are detailed In Tables 3.6 and 3.7 and shown

graphically in Fig 3.8 (1) and (11).



iNi"MssXsisiXsiLIxsssasix?

It was noted that 1In the course of an

Iteration, the ratio of successive differences of "r” was

approximately constant. Based upon this, the following procedure

,, S deduced to accelerate the convergence of the i1teration

routine. Suppose that, for some r

( Wk™2) - rk-n) 1 A (say)
(r("1) - (k) )

Jere r(M 1s the ktn i1terate of an "r’. Rearrangement gives

rck+2) - (1 + A i.rCk+i) + A.r(X) =0 [3.22]
Letting r<i0 = Xt and substituting into [3.22] we have (after
dividing through by A_X")

X2 -(C1+A).X+A=0

-~ X =1 or A.
> rk) z an . (™ + a2 Ak
For n =0,1 we have r(0) = ai + a2

rn(l) = ai + a2 .A

Solving for ai and a2 gives
Gz (1> - Ar(® Y(1-A) @& " e -rl>)(1-A)
Hence the general form of solution for r(*™) 1s
K) r (<D - A.k®) )B + ( 1<®> - r<i> ).A/B [3-23]
where B = 1 - A
With the best available estimate for A given by

A=(Cr@ -r@ )Crd) -rxe )

Thus the k*h iterate of r , i.e r<M) » can be considered as the

term In the sequence given by [3.23].



. 1 A1 < 1 then the limit of the sequence in [3.23]
Now providing j ™ |

J-© where
r(U =(Cr0) -Ar<®l )Y( 1 -A) =

=r - {( "2.r<i) + r<2) }

which can be recognized as Aitken’s delta squared process.

It Has found that if the limiting form of [3.23] was used to

Increase the rate of convergence, the predicted values of "r*

tended to "overshoot® the required value. In practice the full form

of [3.23], was used (at every third iteration) with "k taken as

soe suitable function of the mesh size to -give "smoother®

convergence.

Further 1t was found that, for some choices of the S-T range 1In

which a solution was sought to the "exact®™ flows, the 1i1teration

did not always converge. The application of the following
condition was found to remedy this difficulty.

If H(r) 1s some function of r such that H(r), Hr (r) [- dH/dr]

are defined and continuous 1In some range ri <-r < rz ( vVy),

and 1f 1Hr(r) J <= K <1 iInNrm <r < rz

then the 1teration r<n”™D = H(r(n) ) will converge to a root

of r =H(r) in (r1 ,r2).

Extending this principle to the system r,

J Ird R "
_ _ r(k+1) = HC (k) , (k) )
then the iteration i A P
would converge if
1 <- K <1 Ffor all 1i,j
fb H(r , T ) AT
" i1.] P.« S I [3-25]

The particular iteration used iIn this chapter is based






+r ) + Di.In(r -r /r2 ) 1/2 [3.93

13

= F~ - Di .In(r ) = H(r . r )
§13 P-J '

where F» 1s a function independent of ri,jJ . Differentiating this

expression with respect to ri.i and applying [3.25] gives
T )7Dr 1 =1-Di/r I = Di/r <1
i_j p_q N * N

- - - 3.26

— r >= D1 for all 1,j- ! ]
-]

In the course of many test runs of the programmes, 1t was found

that the i1teration i1nvariably converged when this condition was

satisfied and diverged or oscillated otherwise. A suitable choice

of dT and d$ can be made to ensure that [3.26] 1is satisfied.

The program provides numerical results for all the exact flow

solutions and Table 3.6 and 3.7 below gives details of the numerical
values obtained for the exact solution for flow F4. The graphs 1in

Fig 3.8(1) , (1) below show the Improvement iIn acccuracy of

the numerical routines with

increasing grid size.
[Epsilon - 10-5]

2 5 @ ®_ . © o
D wPor Beration Time(bees) ~ Converged
Size Pts. Numbe(rACC) (ACC) [2.08670349 True]
55 15 19 (13) 144 (114) % . 8322233%
7 35 22 (15) 306 (231) 208669332
99 63 32 (18) 685 (425) 2.08669820
11*11 99 43 (22) 1329 (750) 2.08670060
13*13 143 58 (22) 2438 (1020) 2.08670245
15*15 195 73 (26) 4011 (1557) 2.08670376
17*17 255 o1 (34) 6327 (2582) 2.08670481
19*19 323 112 (67) 9640 (6262) 2.08669848
21721 399 133 (63) 13860 (7109) '

Table 3.6



h|“-I|—“|||

Relative”™ Errors”

az)
7 @) (©)) (10) (1)
Grid Ma§ 2(% Max r% Ave. x%  Ave. r% “{8?5 r% '3\_\6?6 ro%
Size
0096 2.390 2.010
> 253 ’8322 ' 8598 .00438 726 674
o e 0116 .0149 00247 460 580
b o0a _0072 _0093 _00158 1380 520
111 -850 -0048 0063 -00109 290 _430
1313 e .0034 © 0046 00080 300 470
15715 -0 ' .0035 00060 280 _470
e '8853 _0027 -00048 260 _450
19*19 .0131 - - - .
21*21 .0107 .0016 .0021 .00039 250 215
Table 3.7
Column Key.
Grid Size,
Number of variable points calcuiated
> = jterations to convergence. (Accelerated)
Time In secs to converge.
e In Sees very (Accelerated)
g M"ﬁ}ﬁ( Relzitive °{o« ermor in >|E
9 Axg @ m < oy
r
1(1) Max ;\Z e ‘: r when backsub. into PDE
12 Ave “ r

13 Converged value of rtest p

The number of i1terations required to satisfy the convergence

criteria i1s reduced by up to 60% when the *accelerator” i1s applied

to the i1teration. Within the range of mesh size considered the

errors decrease steadily to a small fraction of a percent.



> In this section the basic equations for i1ncompressible,
irrotional flow are expressed iIn an alternative finite difference
form and the set of finite difference equations so obtained are
expressed as matrices. A method of solution based on this
formulation Is presented and numerical results for the ’exact’
solutions obtained from a computer program using this approach
are given. The degree of accuracy of the results and the rate of
convergence Oof the 1i1terative routine 1i1s similar to that of the
point i1teration method.

Form of the Finite Difference Equatibns.”

The fundamental equation [3.23 1is

r + (CInr) =0
YT «K

We may rearrange this as

r +r = <t-1Inr) - F [3-27]

ft *« * * f*

Similarly we may obtain
R + R = (R - e» 1 - _F [3.27a]
«S Y*
wereR=Inrand F=r-Inr =eR -R.
Either of [3.27] or [3.27a] may be used in the subsequent

derivation. Expressing [3.27] in finite difference form we h

@ - 2r +r )/d12 + (r - 2r +r )/d$2
in.j i.] i-i_] 1.J+i
(F_ - 2.F _ +F _
i,j+l i-j i,j-1
Putting D = D2
+ O.r - 2.(14D).r + D.r ) ro
i j-| i-1.] i.j i+1, ] P.a+l
= F - 2.F + F

i, o+l i>J i.J 1



- =2t -1z i = i
for i= 1 to TI 3 o J-1: (The values j 1»J being excluded

mchY’'se are the kno"wn fixed

inlet and outlet values),
since unesc

It follows that the complete set of equations may be written

with j = 2, ..(

1 ri.j
—2(1+D) A A 2, j
D’ -2(1+D) D
D ~2(1+D) D L J r3.J
D ~2(1+D) ri'z’!
b ~2(1+D) D ri-1, j

D ~ -2@1+D) ri,j

T
Fi,j-1
F2,j-1
F3,j-1
-2
i-2,j-  ri-2,j+ -2, 3-1 2
s s 1 s Fi-1, j-1 -1, 3
ri-i, j-i n-1. j+1 Ei i-1 F-J
ri, j-1 im , j+i EY ’
Defining the column vectors LjJ and Hj as
Fi,J 7 2 0 -
F2.j-1 F2. j F2.3-n
|:i = - Hj = _2. + - ._ g
’ Fi Lj-1 Fi ,j Fi ,j+1 0
Fi .j-1 Fi,J Fi g+l D.ri.J
and the *D” matrix by A then the set may be written as
Lj-i ALj + Lj+l - Hj J-2tJ " [3.293

Form of soution for EQuati<™M r3.291

Scheme *A*

Suppose that the vectors Lj satisfy a relation of the form

3.30
L - B.L + C L3-30]

where the Cj are column vectors and B i1s a constant matrix.



I From [3.30] «« have (for -3 = J-17)
[3-31]
h N\
Substituting from [3.31] 1nto [3.29] for Lj-i

n L +
> o N

C. _ + A_L._ h_ ”
J_1 J J+1 J
Solving this equation for Lj

L = -CA +B )I + (A+B)-1.(H* - [3.32]

Comparing™this expression fo”~Lj with the original one in [3.30]

i.e L = B.L~M” +

shows that the B matrix and Cj vectors satisfy the equations

N 1)
B =- (A + B )i S [3-33]
c =(A+B)T.(H -C ) = - B.(W* - )
J J J
Scheme
Alternatively let.
L = M.L + E ~jiere M i1s a constant] matrix.

A similar calculation to the above will lead to the corresponding

set of relations for M and E.

_ a
M =- CA + M )i O [3.34]
E = (A+M)-i.(H -E )=-MH -E > O® i
' i v i
Since the matrices M and B satisfy the same equation we may set M = B.
Either of [3.33] or [3.34] may be used as the basis for an
iterative routine to solve for the Lj vectors. Thus with Kk
denoting the i1teration number we may formulate the i1teration schem
Lk+i) - B.L() +  + @ : + = -B.( ch)E)l 2 B LA
i1l [3.351
_ ECK b ("B"»
LJQ(+1) rB-L(jk)l —E|}t+l) @ : £ 331 ) ®

B - - (A +B ) ©



H ‘A we recall that from the definitions, the vector Hj
For scheme a wc X

IS a function of the current !:<e>. Thus given some 1i1nitial vector,

CKk), we may calculate the vectors from [3.35] 1n a left

to right sweep across the grid. The Lj vectors are then derived N

,1a [3.36(a)] by sweeping back across the grid in the opposite

This i1teration cycle i1s repeated until some convergence criterion

iIs satisfied by the set of LjJ vectors. Scheme "B’ differs only 1in

so far as the direction of the sweep 1Is reversed.

The matrix B. once calculated, 1is constant throughout the iteration,

however by the nature of its definition i1t must be derived iteratively,

by solving [3.35 (©)]
using »k+D = - (A + Bk )

At each i1teration the matrix 1s inverted using Gaussian elimination.

The computing time taken to calculate the converged >B” matrix was of
the same order of magnitude as that required to solve for the Lj

vectors. The B matrix was found to be centro-symmetric.

In order to calculate the C(k*n vectors, some initial vector «Kk)

IS required.
It 1s posible to define at least two distinct C<”> vectors for

an 1teration, corresponding to the situations in which

boundary conditions across the duct at the inlet and outlet

station are known

() only at the i1nlet and outlet stations for i1-1 to

(i) at and upstream of i1nlet and at and downstream of outlet at

0,1 and j = J,J+1.






3 0+1 J
L B .L + C
1 2 1
kth iteration the initial *C” vector,

G, 1s given by
O(k) = (k) = LH«) - B.LC )

In this case since L1 1l fixed and Lz varies then C<n) changes

with each 1teration.

(ii) IT information is available upstream of j= 1 U-e at j=0)

L = B.L + C_

then from . juo "

with j = 0 we have LO - B'Ll ¥ Co

= L B.L

= CO 0 1

through out the

_ c(k) =C@ =1
given by (S) :(3 e 0

these types of i1nlet and outlet conditions and produced i1dentical

solutions of similar accuracy.

It Is posssible to combine the two schemes "A” & "B” but i1t was
found that an i1teration based jointly on "A” and B would not

satisfy equivalent convergence criteria when applied separately

and oscillated between the two solutions associated with the sch

However the numerical difference between the two solutions yielded

by A~ and "B- i1s very small and a slight relaxation of the

convergence condition when employing the two schemes joi Yy

produce convergence. However 1In the present context there 1is

obvious advantage to such an approach.



r-1 3 10 belo« "A" represents the "path® of a typical test point
dn rifl3.

+« initial value R(®>t to i1ts converged value R(c>t when
Pr from its ( J (c

using scheme "A" and similarly for "B" while "C represents the path
){ _A"i\, and -B" are used Jointly. The relative difference defining

convergence for "A" and "B" used separately was of the order of 10-7,

hence the separation between the two solutions is at most 10-6 (See

Fig 3.10).
3
N ] ]
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Fig 3.10

kThe table below gives the numerical results obtained for the solution

to flov F4 and may be compared with the results i1In tables 3

and 3.7 derived by the point i1terative method. Since the degree of
y accuracy achieved by both methods 1i1s the same only columns

~>3,5,7,8,13 are listed (below) fTor comparison.

jTaA






Results for flpw F4 py MAEhPAU

8 13
1
- Iter Time Max X% Max r% Converged RX
ggg Numb Secs Error Error
2.08671750
7 .1226 .0857
> 1248 -0935 .0681 2.08670732
o 2769 .0518 -0405 2.08670829
e 2725 .0324 .0270 2.08670520
11111 5176 .0221 .0194 2.08670471
13*13 4508 .0155 .0146 2.08670331
1?*1? 8647 -0115 .0107 2.08669981
19*19 10123 .0098 .0092 % 822;2?2%
15390 .0084 .0075 -
el (2.08670349 True)

Table 3.11

In Table 3.13, below, the comparison between the results

obtained for fixed and variable inlet Cs vectors 1is given. The

values listed are the ratios of corresponding results of the two

schemes; e.g; Col 2 = (conv. Rr for fixed Cs/conv. Rr for var. Cs}
i Ratios of
gﬂg Converged R Max X% Error Max R% Error
1.07471
7*7 1.000013078 1.02252
9*9 1.000007318 1.02015 1.12854
* 1.02009 1.13998
11*11 1.000004040 1 1e931
13*13 1.000002943 1.04301 1 - 19230
15*15 1.000002233 1.02816 -
Table 3.13

Bearing iIn mind that maximum errors are of the order of 10

a percent, the agreement between the two methods of solutio

good. The number of i1terations required for convergence 1s much

less for the matrix method but the time required for convergence

Is comparable. This apparent contradiction i1s due to the

that the matrix method involves substantially greater amo

manipulation of the variables (in the form of matrix arithmetic etc.)

-5T









ng 3.12 compares 1l.he convergence for Rr for fixed and variable

cl; maximum deviation of "y’ and ez-coordinates from the exact

solution fOr Increasing grid size.
The conclusion is that both these methods of solution yield very

accurate results for the flow fields calculated and may be safely

extended to obtain solutions to the partial differential equations

for alternative boundary conditions.
The programs for solving the flow equations for both the point and

matrix iteration methods were written for micro-computers with a

clock speed of the order of IMHz. In the interest of reducing the time

to convergence the lI((eerrrr]1eell 8f the routine for the point i1teration
n

method was rewritten in assembly code and accessed outside the normal

-Basic-. This reduced the time required for the programme to converge

by a factor of 3 (somewhat dissappointingly). However given that

N\

_ order of 2I™MHz and that
current micros have clock speeds of

Basic compilers are now availaBle F&F H§§ on them, the run times
listed above may be reduced by up to 2 to 3 orders of magnitude

giving times of approx 60 secs for a 21.21 matrix on

-stand alone- micros. On larger computer systems the time to

needed for the 1i1teration to converge would be reduced to a fracion

of a second.



Chapter 4

this chapter the solution to the e<.uation of flow i1s derived

in terns of a function of a complex variable and expressed as a

contour and field integral iIn the (1,Y) domain. A two point

Udstone expansion 1s used to approximate variations of the fTlow

,oantities across the duct as a power series iIn T. an alternative

expansion Is also available for this purpose. The coefficients of

this series are functions of the dependent variables, r, X and their

derivatives with repect to 1 evaluated at the wall boundaries and

are therefore independent of any cross-stream variations and are

functions of $ alone.

This permits the integration of the field term with respect

thereby removing the cross stream (T) dependency from the field

integral. The result may be expressed in closed form thus reducing

the field term to a line iIntegral.

The values of the dependent variable pair (X,r) at any point

contour are then given as the sum of a contour integral and line

integral of a function of the complex variable



Liticn as ail TritFgral F.Quation of a CpmPley Var?.able.

- Fig 4.1
Consider a function. H(z,z*) which i1s continuous and has
continuous partial derivatives over the region R enclosed by

contour C (See Fig 4.1). Then Green’s theorem may be written

in complex variable form as

E:H(z,z*)-dz = 2.1 [4-1]

where z™:$ + 1Y ; Z¢ =/~ “ 1-T -

Let H(z,z*) = F(z.,z») .G(z,2) [4.2]

where a 1s a given point. Substituting [4.2] into [

F(z,z») .6(z,a) .dz = 2.i .ii*1"F(z,7*) G6(z,d) }.d$ .dY
J R Qz*
Nw~rF.G} r + G221
oz* 1nz* Nz*
Lut since G(z,a) 1i1s 1independent of z* then””™ =0

40.



f 0 G(z @ dz = 2.i ii CG(z,a>*(z,z*)]-<i® <i* 14.3]

ijose. how, that z = a 1s a point on the contour C, and define a
Gev, contour C being the contour C i1ndented by a circular arc of

,alus c centre z = a this path now enclosing a region R* .

(See Fig 4.2)

t

Fig 4.2 ~

Identifying C and R in [4.3] with € and R* defined above we have

J F(z,2") .6(z,a).dz 2.1.N G(z,a)I EiA.all-d« d'F

i F.G.dz = i F.G. + i F.G.dz o G .d$.dY

c RSP PQR

1 F.G.dz - F.G.dz + 2.1.J) G4i1F.d$.dy [4.4]
PR " RSP RA



The integral around the arc ’POR” can now be expressed rn terms

of the value of the function Fls.a-) at s= a togetherwrth a

pover series In "0’ the arc radius of PQR by .
,1) Expanding F as a double Taylor seriesin z and z* about z= a

and (i1) making a suitable choice of the function G.

(1) Onthe contour PQR we have

N , Cc.eio ;dz = 1i.ceie.de ;Z -a =c.eila

7~ z=* + c.e-ie ;dz° = i—ce A8 d6 2R =c.evie [4-5]
Expanding F(z,z») as a Taylor series about z = a gives

F(z,z*) =

F(@,a*) +

[(Z_a)-(/\/\) N (Z* ) * P QNS * * _ A%k ” *
[{z-a)2 Co. Frdz. )2 (z-8) (z-at Y (OZR/bZE )t {z"-a*)2 - (b2F/0z*2 )1/21 +

where the derivatives are evaluated at z = a.

Substituting the expressions for z, z*, "z a, z

F(z,z%) = F(a,a*) + c[eie?"F/™ + e-"eT";7*]

+ c2[e21S"F: "2 t " "F>jbz* t

>  F(z,z*) = F(@a,a*) + c.Di + c2 .02 +._....._.
where Dk = Dk{ 0, "F/bz<

-Dk

k=1,2, ..=, P -0,1- k.

the Dk being functions of 6 and the values of the derivatives of

order k evaluated at z = a.
Thus on PQR we can write

[4.71
F(z,2*) = F(a,a*) + kz_lc’\ .Dk



(in) _ [4.8]
Choosing the function G(z,a) = (z-a)-i

) may write the integral on the
Then by virtue of [4.7] and [4.8] we

L.H.S of [4.4] as

P co
1 1 N - J [F(a,a*) + 2 .Dk]/(z-a).dz
l Fc.dz = | F(z,2*).dz/7(z-2) om
POK
- i Fa,a®)dz/(z™® *+ 2 ck.J {dk .dz/(z-a)] [4.9]
POR k=1

consider the integrals on the right hand side of [4.9]

ia)
On the arc PQR, z = a + c.eie ; dz - 1c.exe.d6
I F(a.a*l.dz
PR (- &
e=A
| Fa.a»).dz/(z-a) = | F@.a*).i.c.eie.desc.ei ©
n e=A
e=A
=i. |  Fea.a*).de
e-k
- i.F(a,a*).[Ar - Ap] - i.A.F(a,a%) [4-10]

where Ar - Ap - n.
@® If the derivatives of F with respect to z and

orders are bounded on the arc PQR then 1t follows th

functions Dk i1n [4.9] are also bounded

i.e [Dk] <M (say) for c < co <1 ell k. Therefore

@ p AN r M dz/(z—a)\ il'
¢ { ck.J Dk.dz/(z-a) } < N i

k™ POR =1 PQR

¢y -



co

Z @Fck.i§ i.ei®.do/ei® )
k= * PQR

= i.M.A. 2 { Y - i.M.A.c/(l ©)

k=1
Therefore
Q fak 5 ook.dzffz-a)" P = 1AM 4G C) Tor some Mi.  [4.11]
k=1 POR

substituting from [4.10] and [4.11] into [4.9] and applying

this result to the LHS of [4.4]

1 F.G.dz—- 1 F(z.z*).dz/.(z-a) =
POR PQR
Further substituting iInto [4.4] with G(z,a)

1.A_.F(a,a*) t 1. A.c MI/(1-¢)

- (z-a) 1 yields

iI.A.Fia.a.) t 1. A.c.Mx/(1-c) = - F(z, z*).dz/(z-a)

+ 1 2.1 . N/ *F-dM-dY/(z-a)
R*
Solving for F(a,a*) gives

F(a,a*) = (i/A). i F(z,z*).dz/(z-a)
C*

v a) 1 NFRz*).d$.dY/(z-a) - c.Mi/dTc) [4.14]
R*

If the radius of the arc, c, i1s allowed to tend to zero then

- - /N N\
the limit we have A - “>AJ"; A >SA*AN LA > PL A

R
and

F(a,a*) =

= _¢isny. | F(z.z*).dz/(z-a) - (2/x0 U
R*

("bF/V )d4 «dT/( z-a) [4.15]



=tion [4 15] expresses the value of a function F(s,s*)at
Thus equation

4 + z-a on a contour In terms of a contour and field
sone point, z-a,

integral over the domain enclosed by the contour.

It iIs a known function of z (=3$ t

1.Y) and provided that

the integrals may be expressed in closed form then [4.15] would

give the exact solution to the problem.

However for computational purposes the limiting form of [4.15] would

not be appropriate and will be replaced by a numerical equivalent

of [4.14] since the term "c.Mi/d-c)” will make a contribution to

the value of F(a,a*) for non zero radius c and this 1is necessarily

the case for a discrete representation of a physical system.

Now if. iIn [4.15], the i1ntegration with respect to Y (say) m the

integral Il (~/~» ) di.dY/(z-a)
R*

were to be accomplished then [4.14] (or [4.15]) would be reduced

to a contour integral and a line i1ntegral giving the value of

F(z,z.) at any point on C» i1n terms of i1ts values on C» alone.

This reduction of the fTield integral to a line integral 1is

achieved by

@ Approximatingby a polynomial in Y whose

coefficients are functions of I only,

(I1) Performing the i1ntegration with respect to Y (across the

duct) and expressing the result in closed form.

Thus Tet = 2 Fk($).(Y)k where Fi(®) are functions of
k=0
~ only. Then
|l d$.dY/(z-a) . (3). (NDN.d$.dY/(z-a)

R* R* k=0



ii Fk($). (Nk.d$.dY/(z-a)

$(out) Y-Yu

- 2 3 EK($ (Yk.dY/(z-a) }.d$
k=0
$(in) Y=Yi
$(out)
= 2 I F ($).F*().d$ [4.16]
k=0 k k
$(Cin)
where
FE($) - Wpx< .dY/(z-a) ; z= $ + iI-Y" ; a" + i-Y

Y=Y
4 (Tn. Tdfentification of VW7.,z%) M\ QF/0Z~ .1

Generally 1t F(z,z*) = A(z,z*) + 1.B(z,z%)

\VA -0 +1t-z*-s -1 .1t then i1t can be shown that

N\

. I>z*

= (1/2).(A -B") + i.(1/2).(B + h )
5 -t n

Letting A = X ; B =r ;

Jf Then F =X+ 1.r
[4.18]
= (@w2).{ [X - r"3 + i-[>y + N
J But from chapter 3, equation [3.5] we have
' 3.5
! X =r ;X =-(CInr) [3-5]
J f v P

I Substituting into [4.18] gives

bF/A* . (1/2).i.[r - In(D] = (i72).-f(r) (zay) [4.19]

With these expression for F and equations [4.14] and [4.15]

become

F@ad r X + i.r - -(i/7V). i F(z,z*).dz/(z-a) +
Lt c->- @ c*



- asm Il [(r-1n(r)) 7(s-a)]1d$.dY

R* N\

[4.15a]

g_ F(3> N X + 1-r -

F(.,.*).d./(-a) - (i/x) n C(r-Inr)~ /(z-a)].d%.dY

¢ [4.14a]
~ M -c/(1 ©)

where F(a,a*) 1s a given point on the contour and F(t.t“) 1Is a

variable point with z =T + i-Y ;a=7~ ~

™1 n

. i as a Power Series 1n
A~ (ITTT) An Expan”™MQH for f(X]— ¥F———-——- N

—
-
|

-
-]
—h
1
-

het F(r) = FGi.Y) - (r ~ In(r)
Suppose that the function fF('B Y 148 dgFjvatives to all orders
c

. d . a <=Y <=b ,
exist In the domain 1 1 1 N



Kor some given value of 4, let the value of f(r) at the point

, = (A™T) be denoted by f(a). The term, f(r) = (r - In(r) H)»,
in the double iIntegral Is no« replaced by an approximating

polynomial F. which 1s a power series iIn T whose coefficients

are functions of 4 alone. One choice of polynomial i1s the two

point Lidstone expansion of degree 2n-1 defined by

F(f,T)=

0’-.;) "1VB<.).i1t"n; >
1 k=0 N kl 1

where the coefficients A and B

are given by
k K

A@® =[d{FfD)/(Y-b ) }/dy 3
K .

k N
B@ =[d{ f(T)/(Y-a 0) >/dT 1
K Y

This expansion iIs such that derivatives up to and including th

of order k of F(Y) are equal to those of f(Y) at Y - ai

and Y - bi
2n-1

Thus

@ Fk(@i) = filial ) ; (ii) Fk(bi) = $° (@i ) for k- 0 to n.
2n-1 2n-1

where the superscripts refer to the order of the differential.

Applying Leibnitz’s formula for repeated differentiation to the

definitions oOfF the coefficients Ax (4) and Bx<4) i1t can be shown

that

A =[G@ -b Y/(n-D!]. (n-r+1) (b -a ).f@) } [4.19.4]
k 1 1 r=i r

B(t) = {(b -a )/ (n-1)!]. c. (n-r+l)y! (a -b ). f(M) } [4.19.b]
k 1 1 r=1i r

4N -



.- - A /" and B- = B /k!
Defining * ~ * r k

polynomial of degree 2n-1 can be

then the approximating

written as

% "m~ T A” (Y-b™) (Y-a*) + B’ -lY-a") (Y-b 9 3} [4.19.C]

Replacing f(r) by its approximation F.n-1 in equations [4.14a] and

[4.15a]

F(a,a*) ="

Lt c->0 Cc*

or
= —,1/xHJ F(z.z»).ds/(s-a) n FAN A~ di .dY/(z-a) > -
C* N\
- MI .c/(1-C) [4.14b]
= F .d$.dY/(z-a
let Y = J F(z,z*) .dz/(z-a) - 1, - Rl ", | (z-2)
1 c*

then the solution may be written iIn compact form as

4_.15cC

i_X_F(a’a*) = Lt { 1> t 1> } [ ]
c*->cC 1 2

where F(z,z*)=x+i.r; z-$+i-i »~ ~ N

F(@a,a) = X + 1.r ( a given point on the contour).

Evaluation of the integrals I*1 and 1*2 will give the value

F(a,a*) at any point on the contour C.

ATIVL. petermination nf the coefficiohts firk , gliL

Besides factorials upto order n and powers of (@ b ) wh*®

knomn, the coefficients A’k and B’k in [4.19a & b] depend on the

quantities fi"() which are the derivatives of f[r(*,Y)]

respect to Y evaluated on the duct walls $ - >



«,,ove this dependent on T, these functions are expressed as

derivatives with respect to 5 on the wall boundaries by repeated

. 5 (1) & (11)]- Thus from equation [3.5] we have
application of

V N

V
N\ —
denoting = rk and = XX and

differentiating T with respect to T and replacing rv and xr

when they occur with their equivalent forms involving

derivatives with respect to $ only then we have

f rri . (-ri)+ n

f zr2.(n X1) + r'1.(X2))y X2
£ =r-rt.GBri3) + r-3.(-2.ri3 -4ri .ra 2.1 xi2)+

*x

f

r-2.(ra + 3.ri.ra + 2-xi.xa) + r-i(rs)
=r-5.(-20ri3.xa)+r-<(6xi.ri3+11.xi12 + 6ri-xi 3+22xi1 .ri .ra)

r-3(-6ri2.xa -6xi2.xa -4xi .ra-6xa .ra-4.nri xa -6xi.ri.ra)+

r2¢4 + 3xa.ra + 3.ri Xxa + raxi) +r *( )

The derivatives upto order three of the function F($,T) iIn the

cross-stream direction Y. are now expressed as derivatives of
*x>and "r” in the $ direction (along the boundary) and the

stream-wise dependency is removed. With n - 4 we can no P

(4,7 as a polynomial of degree seven across the duct along the

I characteristic $ = (say) between ™ . and T A~

4(VU RTOtICTTON OF THE FT™dT) TWTEGI

The value of the function F(a,a*) = xi + 1.ri, (@ particular point)

on the contour C i1s given by equation [4.15c] 1i1.c

4.15C
1. 7u.F(@a,a*) = h* + [ |

7.



Now the field integral is of the form

I .- " 3ds$.dy
11 J I 2 933 = ’l::r® A7K'<T_bA <T_' 1 [4-17]

Since n 1s finite we may rearrange the order of the integral and

summation signs and write

£ . kamyl n K _
: .1 (T-b ) (Y-a ) (z-a)-i.dy +
2\] [ 2 { akJ . )
f-, Y=ai
Y-b~ )  (z-a)-i .dY 3.d$

where z = $ + 1.T Is a variable point on the contour and

a=1 t 1.T* 1s a point in the ($,T) plane at which F(a,a»)

iIs to be evaluated.

Nowz-a=%$+ 1.Y-%$* ~ 1.Y*

=1 {Y - [CY* + 1($ " ) 3 >
let P= Y-[CY* +i@- ®3  1(2-2a)

Then dP = dY and P = -i(z-a) (z-a)"i = -i/P = 1/1P.

when Y= Dbi P =U where  bi - [Y* + 1. - $O1 @

= * $e
Y ai P =Lwhere L ai - IY* + i.¢¢ - 31 @b (4. 17a]
hence Y- ai= P +C where ¢ Y* -—ai + i.(0 - ") i)
and Y- bi= p +D where D Y+ - bi + 1.(I - $&) (iv)
Then the i1ntegral 12* has the form
$=%$(out) onU .- n
12*r {kzn"[A Jorp.f (PAEKdP tB7. 3 igiCI_N1EA.AP T )di
k=0 "k p=L i.P “ [4.18]
in)

T/

JE






A, B

Gin Deri.ving jE.nrg 8%8”’&“ form for J from (1) and (11)
,BJL,U . A 1L0/10,
Gv) Evaluating 'IIA via equat,ion DA/fli%/(csH
P-4
A, B
P.Q For p >q > =1
P
AB (P+A) (P+BI1-dP
P.Q P
: r (P kg) (P-HBI .dP
+ B. J + - -
(P+A§ (P+B) .dP p
A, B A, B A, B -
1e J = K + B.J R -
' P.q P.g-1 P.Q-1
this reduction relation i1t can be shown that
s=g~I1 g-8-1 A,B
0.q " P.O " P.® s=1 P7®
A. B
(in Reduction fnrpuila for K_
1,]
Integrating by parts gives
A B
K (P+tA) (P+B) dP -
1]
_ _ i+l Jj-1
1+l ]
(P+A) . (P+BI _ (P+A) (P+B) dP
(i+1) (1+1)
A B A, B A, B
K H K
1. (+1d) i+1.J (i+1)

From this relation i1t follows that the explicit form

iIs given by

A B 6 ) KA_ B t36_| , J:/\ 2 R H [4.22]

K = (-1).PI .Si . + (- . e
(p+s)1.0! P+S.0 t =0 p+ }:)!—85 %YT P*rit.=-1

7S



A, B

torm™*
Substituting [4.22] into [4.21] gives
~1-s t=8-1 A,B
AB 0 2 fCon s 1 3
t=0 p+1+t)1(S-t)1 p+l+t,s-t
P.Q
q A,B
s=g-1 ® g-1-s A, B ) 423
2 { f-M B pisi.K 1+ B -WP1® L 1
s=0 (P+S)!
A, B . _ . ) )
where K has been incorporated into the 2"« summation and the
P, 0

loner limit set equal to zero. After finding expressions for the

integrals K and J N [4.23] will give the value of J
p+s,0 p, O
explicitly. Thus
p+8 p+8+1
@ KA’B EJ (B+AJ .dP = (PtAl = Hp-"s-n.0" [4.24a]
P+8,0 (pt+ts+1)
A,B r /\ + d
(b) J P+A) .dp =J { BAD (P2A).dP >
P.0 P P
r 3 A" 1 ALiPzAl }-dP
= (P+A) T Ao 1 (PAN dP = (1/P)—HP’ 0 + A"JP—l,O [4.24b]
P
A B — —
and =l E = [4-24-C]
0,0
A, B
This reduction relation [4.24b] gives Jp o
A B p u=p p-u A,B 4.2
AT K InP) + 2 A H [4.25]
P.O u=1 u U, O



st/ Ui o_}‘_ E4 24a] and C4.25] i1nto [4.23] gives the expression

explicitly in terms of the algebraic functions H defined
N\

in [4.19d]. Thus

-u A,B
P = Ap{ In(P) + 2 [A -HU o] }
P.1 ’
n-1 8=q-1 t=8 t A,B
HYB 8 2 [SI.B . 2 ((-1) H y 713 [4-26]

p+1.0 S=0 t-0 t.8 t

It may verified by direct diferentiation that this expression for
B _ .
JA' In [4.26] satisfties a,b p Q
P, - d_t J ) =
dP P .« P
Briefly define —u t q-1-8
M = A (-1) .pl.B
u u 8,t (p+1+t)I1(s-1)1

u=p A,B
T= 2 (.M .H )
1 u=l u u-1,0
ad

s=g-1 t=8 A,B A. B
T = 2 { 2 [(p+t+D).L_ _.H + (s-t)L H 1}
2 8=0 t=0 S.t p+t,s-t s.t p+t+l,s t 1

With these definitions [4.26] becomes

AB p g u=p 8=q-1 t-8 B
J = A B In(P) +2 (M. H + 2 > ~L -
P.q [ ( ) u g luu,O ) 8=0 { 1.2—0 s.t p+t+| ,S—-t

Differentiating with respect to P gives® after some rearrangement,

A B P q -1
diJ ) A B (P + T )+ T [4-27]
&P P, q 1 2
=p A,B
Now T =2 M .u.H = (PtA™ 7 /7 ((PtAY/A) = ((PM)/7A)—-1
1 u=1 u u-1,0 u=1
and examination of the coefficients of H . the expressions

for T2 will show that the only non-zero ones are those for which t-0



'IhsWith t= 0 we have

. A.B g-1 A,B 8=q-1
W' (p+l ).L -H =B -H . Z
Suming this series gives N
T -k (P+A) .[ ((P+BY/B) - 1)

2 P

substitution OF these values i1Into [4.27] gives

/.B\i P" t p"\((P.A)/A)
P P ~

+ e P L CC) /B) -1 1]

(P <A )p-(P B I

which verifies the expression for the i1ndefinite

B.A.L.U

The values of the definite integrals |

needed to complete the reduction of 1*2 to a line

given In the next section.

A, B, L ,u
4(V1) Evaluation of the Integral—lIO q
Generally
AB,L, u A.B P=0 A, B A, B
! LJ(P) 1 = JU) -JIW)
p.qg pP,q P=L Piq p**1

In particular we require the values of

C,D,L,U D.C.L.U
@ 1 and (@ |1
n,k n,k
c,D, L, U
I1ILThe Tnt/Mfral |
n,k

Pll

8

((P+B)/P)

integral

A.B.L.U

and 1

n,kK
integral

[4.28]

»A=c¢c ,B=D ,Pp=n,qg=k, then [4.28] gives



N Thft eval ~NIr
. >» r R - D ,P =U then from [4.19d]
With A =< = ® . i J
H(U) = (U+C).(U+D)
1.]
But from [4.17a]
y_"_ (Y +ae( ) ;C=Y* -+ 0.( ) >
1
1)-Y*"b + i-( N i J
O.c =b -a ; U+D=0= HY) = (O™ - a ) (0
A C,D
Thus the only non zero terms In the expression for J<«)”re
CD 7

those involving the functions HUN (i.e for™ j=0)

This implies that we must have t=s in the double summation of

C,D n k u=n [C—u HC(:G)D ]
J =C D{In(U) + 2 -
r(15?< u=1 u ®
c,D k-1 8=k-1 -8 C
n+1,0 s=0 (n+1+s)1_(O)!
n K u=n -uC,D
=C D{InU + 2 [£ -HWUW 1 } +
u=1 u u,O0
8=k-1 e k-1-e C,D
nl s!.D -H(U)
S:O (n+I+S)! n+|+S,O
C, i - . )
where HU) = (0 -a ) and U DB - Y + 1-( )) making
i,0 1 1 1

c, D
'/r;@( a function of $ only,

c,D
XiiJ Evaluation of J(L:II<
n,
c,D
For A=C, B=D,P=L then from [4.19d] H(L) r (L+C) (L+D)

7.



But fro®
[za-(Tti.(56 -«)) ;C=T» -a* t-i($ -$)

5.T -b t -@*)
1 c,D

. .. -C=°“0 ; L - =>«<1"]

N -

Thus only those H"”“with 1= 0 give a non-zero contribution to
ifJ

the value of /(b). Hence both summations are zero

In equation
n,k

[4.26] since (&) there are no terms in the single summation

ad () all Hp+1.® = 0 in the double summation.

C, D n Kk
Hence = ¢ .B -InL) [4.30]
Substituting from [4.29] and [4.30] 1i1nto [4.28] gives
C,D,L,U C,D
i = JWU
Inr,nk SL n,k
n k u=n -u Cr,>TDi s=k-1 c k=1~cleD;
=C.D.{ In(U/L) t [fi HW3) t
c.D i F4 311
where HU) = ( b - a ) I **- i
i,0 1 1
D,C.L,U
A similar evaluation for I($l)( gives
n,
D,C,L,U
k n
=c D{ In(U/L) _ CrHCMn t _
u=1u u u,0 s-0 (n+l+sj-
where d,c
, 4.32
L) = Ca - b ) L#-5]
1.0 1



a(VTIT) fimmmmary of ‘the Solution

The value of the function F($,Y) at

UF(S* ,T*) = 11 1*2

where

If = 5 £11_JQ.dz
C* (z - a
[4-31.Db]
i)z =%+ 1.Y ;a=9% + 1.Y*
(av) F(,Y) =
2n-1

k=n-
= 2

-nr=k
™ A = (@ -b ) .
k 1 r

I =0

-n r=k
B ®B) = (b -a ) .2
k Il 1 r =0

) ° =

(vi) Defining

p=u
A,B,L,u r P q
1 N2 N\ 1 iP+A) . (P+B) .dp
P>q P=L P
Then
out)
o r k=n-1 D, c
i) { 2 [A®-1(Q
in) = k n,
with
P =Y- (Y*+ i($-%%)) ; Y_alz P+C
UMD -(Y* +i(%$-%$%)) Y—blz P+D

L=C -(Y* + i($- $¢))

(k-r) i
[(n+r-D1(a -b ). f(b Y/ ((r1.(k-r)) ]
11 1

Cd*F(5,T)/dT ] : T»

the point (8*,T*) 1is given by

[4.31a]

= 5{ F2n-1 ($.Y).d$ .dY
R* (z - a)
[4.31.C]

; F(3,Y) = x(8,Y) + 1.r(%,Y)

[4.31.d]

I ) N )
{A7(®).(Y-b ).(Y-a ) + B*(D)(¥Y-a ).(Y- b )
k=0 k 1 1 k 1 1

-r(k-r)

2 [(n+r-D1 (b -a ).f(a Y/(rt.(k-r).) 1
1

11
[4.31.€e]

Mt

[4.31.F]
= a o > - b
inner 1 out er 1
[4.31.9]
[4.31.h]
C,D,L,U
B !
+ I(($)r$ﬁ2 1
[4.31.i]



D,C, L, U C,D, L, U
and where the values of the integrals 1(%$) and 1($) are

given by equations [4.31] and [4.32].

With these formulations for the integrals I*1i and 1*2 a numerical
integration around the contour C* in (i) together with the line
integral in (vi) will give the value of F($,Y) on the contour.
The precision to which the function f(r) - (r ~ In(r))™ may be
approximated across the duct depends on the value of n in the
approximating polynomial F2n-1 and in principle this can be
increased without limit although there i1s a likelyhood of over
prescription on the boundary in the limit as n-> to iInfinity.

A polynomial of degree 2n-1 will i1nvolve derivatives of T(r)
w.r.t Y upto order (n-1). The expression of these derivatives

in terms of derivatives with respect to $ become progressively
more cumbersome with increasing *n” (See 4(V1).l1). However it
would be possible to 1ncorporate a routine iIn the programme code
to automatically generate the expressions for these derivatives of
higher order 1T required.

For this reason, n is taken as four thus allowing the crossstream
variation of f(r) to be represented by a polynomial of degree
seven and requiring derivatives of order three for T(r).

IT the boundary conditions B(F($,X)) the flow were 1i1nvariant
then one application of the technique summarized above would
provide the solution. In the case of varying boundary conditions
in the type of problem being considered an iterative procedure

iIs required and the general form of the solution would be






CHAPTER

Forms For Tbs_ Tnt>Pral Kg”~atjon Solution

) ) ii 2.i.GAFrz*_d$.dY [5.01]
1 F.G.dz = - 1 F.G.dz +
POR RBCDAP
O) F(z) - F($ + 1-Y) - x( $,Y) + i.r(%,Y);
(i) G(z,a) M (z - a )i
(i) "F>rzn = (i72) -FIr¢. ) %
(iv) The contour Dy = PQRBCDAP
v - Si = PQR
iy T - - RBCDAP 1.e S + cj =Dj
(vii) RJ 1is the region enclosed by Dj.

m$2.



= - i F.dz/(z- N G.f(r).d$.dY
| Therefore J_ F.dz/(z-2) ch 2722 Rj
S

Define

- . i F.dz/(z- - IR} N G.f(r) -d$.dy
IS5 r |S F-dz/(z-a) ; IC} - :Jj 2/ (z-a) J Rj [5 .1]

) [6 -23
Then 1Sj = - ICj IRo
™o. Integral I

XX0* Ve

Consider the integral of F(z)/(z-a) along the arc Sj from

to Z= Za
Za

ISj - 1 F(2).dz/(z-3a)
Zb
Expanding F(z) in a Taylor series about, z Zj

2 (.. . .
F@ r FQ@) + (z-3).F@)/!! + (z-3) _étaa)';i_ + (z~a) -F(a)/3 1 +-

*x q Q) [5-3]
=F@ + 2 [ (z-a)-F(a) 3
q=1 ql

3S



Hence

@ q
ISj = {F@ + 2 [ (z-a).F(a)]1}-_dz [5.4]
4= b Q=1 (z-2a)

On the arc §j ,
;=g th-C COSO+ 1.Sine) = a + h.el® ; dz = 1.h.e10.d0

jenz=2zb . aa then 0 = b» . a* , hence

ae i
P @ qgqiqOo\NQ>
S R h. ei ©
ae ) N
q 1q0<(q
{F(@ + 2 h -e .F(@) }.de
b* q=1
© qig6<q) e-a*
=1 [F(@).0+ 2 1i1lle *JlLar 1
q=1 1.9-q! ®=
@  g<q) iga* Ll
=i.F@.(@*b*) + 2 { h. F( . (e e )} [5-6]
g=1 q-q!
nM, b*=0 ,a = It ;Hence ax - b* =~ 0 =N
eigg* - eigbh* = 0ig.n - e® = N
Onb* =% , a =27t ; Hence a*-b* = 2¢ ~ % =N
elgg® - Oigb™ r ei12q.7t -
- Cos 29.7c + 1.sin x»y-Jjt - cos Qg4 1.Sin g.Tc
=1- (D
ThLIS 00 q <q) N [5 7]
ISj = i.I.F@ + 2 {h F@..(-D-D} :
q=1 q-qt

IbS-Integral TCi
Let the contour Cj be partitioned by the points zi for 1 - 0 to
T- (See Fig 5.3 below) and let dzi.o and dzi,1 be i1ntervals to the

left and right of the point zi respectively.



Then the integral ICi may be written as

il - 2 J { F(zKdz }
Q= RBCéA t“ th - JCJ_ F((Z-Gll)-dz (z-23 )
(2-25 ) zi -dzi ,0
zi +dzi ,1
i=T _ i
Then ICj may be written as ICj = _20 ' hy(z).dz  [5.9]
1=
1y]
Expanding the function hj (z) about the point z = zi gives
€H) @ 2 © A
»h@ zh(z )+ h(z 1.2-Z1 ] +h (Z ).-(z-z1J += =t _(2_)-(ZTZI_]- +. .
¢ ji j i 11 J i J 1 q*
_ o © (@ _q . _
hj(z) = hj(zi) + 2 >=CaK (Z-Zzi1 = 2_ hi (& %_(g -
g=1 q =0

I where hj (@) = [dO{hj(z )}/dzQ] at z = zi

Eence substituting this expansion for hj(z) into [5.9] the In 6



IG may be written as
zi +dzi ,1
. {J [ hj(zi ) + 2 hv(gi ) ) 15.10]
Zi “dzi ,0

Integrating with respect to z, [5.10] gives

- @® <qQ) Q+1 z=zi+dzi+i
ICi ="2 hy(zi).z + 2 hi ¢¢1).(a-zil N
1C] thzh q=1 ¢ (q)+[§! ]Z=Zi—de,o
ad substituting in the limits for z gives

1=T
ICg = 2 {hy@ ).z .. +dzi ,0) +

1=0, 1yj

« (@ q+1 S~ Q-n

2 [ hi(i).(dzi, + (-1) .dzi.o)]} [5-11]
q=1 (q+1)t

The Integral IR i
From equation [4.20] we have

k=n-1 B. A. L,U A,B.L,O
i, 12 {2 [AM®I1©® + B1@® ]

The line AB In Fig 5.1 1s partitioned into m sections by the

ml points zt ; t= O,1,...m at intervals of dzt . Then 1*2 may be

approximated by the expression

t=m-1 k=n-1 D,C
{ A(S ).
k t n

,L,U
ir - 1 [ 2 ($) +B ($0).1 J
t=0 t k=0 k t k t n,K

Along AB dzt = dzt.i + dzt,o = d$t . If dzt = dz" (say) for t- 1
bo m, then d$t = d$* and hence identifying IRj with 1*2 gives
t=m-1 k=n-1I D.C.L.U

1.IRj ds. 2 2 AT - n
1T t=0 k=0 t k(t$) n-lg%:) k t

This expression gives the approximate value of the line 1In egra

to replace the field i1ntegral in [5.0], however both the

«6 .



expressions Ffor the iIntegrals IS) and ICjJ are "exact’ in the

sense that their summation iIs taken to infinity. In the
numerical context they would naturally be truncated but are given

in this form to allow the option of improving the accuracy and

determining the error of any computational solution.
Substituting the expressions for 1S3, ICJ and IR} (=
by [5.7], [5-11] and [4.31.1]

1*2) given
into [5.2] and solving for F(a) givej

IS = - IGj - IRj [5.2]
633 P (P) P
TF@ = i 2 [h .F@ -(-1) ~ 1)1 [a]
p=1 P.P
(02 <q > q+1 q+2 q_*l
[ hi(zi).(dzi,1 + (1) . dzi ,0)] > >
(g+1)1! [b] [5-12]
t=m-1 k=n-1 D.C.L.U N ]
OS2 0 WG T v e o nkt EY

The Computed Solution ] 40
P A computer program was devefoped to use

formula [5.12] to evaluate F(z) on a contour. Initially a trial

program was constructed to evaluate the regular function

F(2) =22 = ($ + 1.T)2 on the perimeter of a unit square.
For test purposes the upper values of the summations were taken

as p=2, g=2, n=4. In this example the term [c] i1n [5.12] i1s zero

since F(s) is i1ndependent of z* (i.e [5.12.c] represents «»e(z)/dz*

Thus
=2 p (P P 4 X T 4
K-F(z)) = 2 L[h.F(z))-C (D) -1)H1
p=1  p.p!
qu { h((qz)i Yy~ zi 1+ (-1 zi,o )Ai1 }
q=0 (n+1)1

87.



1 =T
-Ti o+ T2 4+ 2 [ T3 + T4 + T5 ]
1=0, 1
2 (2)_
where 4 :Hﬁ(z'j 1.4 ; 12 = h-I;szllA-(O) N0
1.1 <1) 2 2
T3 =hj(zr).(dzi.“ + dzi.o) ;T4 = hi™).(dzid4i1 - dzi,o)
(28 _ 2 3 15131
Ta = hi(zi)=(dzi ,1 + dzi .0) L« J
3!

n@x@-4 )1 .F@i )

(D@ )" )2.;F(Z )+r(Zv -4 ) 1.("/"z)

h,@@ )=2.(zi -zj )3 ,FZi )-2 zi -ZJ )-2("";72) + (@i -ZJ )-i ("2F>z2 )
where the derivatives are evaluated at z = zi .

The terms Tt and T2 are the It and 2nd order contributions to
the value of F(zjJ ) obtained by integrating around the semicircle

catre z=zj radius “h” and i1t can be seen that Tz 1s zero.

Further the term T4 = 0 for all 1 except 1 = n(a) where n(a) are

"comer points’ on the contour.

Fig 5.4



xh  roramme was wri"t-ben to manipulate complex variable arithmatic

and a typical result for evaluating the regular function F(z)=z2 on

the boundary of a unit square, partitioned by 11 points on each side

s given In table 5.5 where (C) and (E) represent the calculated

and exact values of z = X + 1.r respectively.

Pt. X

5 .00998776 -.0000136 .19222156 ml_79753
01 0] .19 .1.8

3 .03999991  -—-0000013 -2200520 —11 .659998
.04 0 ] 1,

4 -08999999 -2.3*10-7 -gi00037 —%-29999
.09 0 - -1

5 .16000000 -6.7*10-« -2200005 i-219999
.16 0 ) 1.

6 _.250000000 7-4*10-11 -;gooooo :1
.25 0 -

7 .360000001 .53*10-7 -2299996 —-SOOOOO
.36 0] -. -.

8  .490000000 1.29*10-6 --3?99984 :-800000
.49 0 —. -

9  .63999856  2.11*10-5 --8299846 :-200030
.64 0 —. ]

10 .80900862 -0011016 -.988516293 -.201101
.81 0 -99 -.2

Table 5.5

The error iIn evaluating this function is very small but can be

seen to grow as towards the “corners’. However 1increasing the

nunber of points on the contour allows this error to be localized

and reduced "indefinitely”.

The function F(z) = z2 was then replaced by the function for the

flovw solution F4 obtained i1In Chapter 2. From Table 2.2 we have for
solution four (with a =1, b =0 )

i@ =x + l.r = ( T.Coth(i) ) + i.( 1 - ).Coseché«)

Withz -$ + 1.Y

Expressions for*~"F/~"z and”™F/bz2 (either ‘exact’ or numerical)



are required for the evaluation of [5.13],
Denoting Coth and Cosech by CH and CC respectively we have
X=2.YCH(@) ;r=((1-Y2 ).CC2($) ;;F =x+1.r

X 2.CH() :r = -2.Y.CC2($) : =0 ; =-2 CC2 ($)

- -2CC2($) ;r = 4.Y.CC2($) .CH(S) ; x = -2.TCccC2(i)
o * *
7 -2 @ - Y2 )-CC)I/2($)-CH($) - X = 4.Y.CC2($) -CH($)
r =2.(1 - Y2).CC2($).[ 2.CH2($) + CC($) 1] [5.14]
r=,1/2) . - i.F ) ; Ai-, =V A ~

F=@2.(X +r )+ @/2Cr "~ ~n

I W [ B | I V L L} ]
[5-15]
Then [5.14] and [5.15] yield the following forms for F_and E

2 7
F = -2.Y.CC2{$) - i.CH($).[(1-Y2).CH2($)+!]
Z

F - 3.Y.CC2($) -CH(®)+
+ 1(1/2)CC($)2,[(1-Y2).{ 2.CH2($%)+CC2(%) } + 1]

The computed solution (with and without the crossstream correction)
for the region of the flow bounded by the characteristics
N=eh, $=.6 , Y =.5, Y=.51 are given inTable 5.6.
Inspection of this table shows that the accccuracy of the solution
increases when the effect of the cross stream variation is taken into
account and continues to improve when the number of boundary points
IS Increased as well as the order of the approximating polynomial

The average percentage error in the calculation of the

and “x” coordinates were reduced from 0.76324% and 1.93679% to

10737% and 1.2684% respectively validating the use of the contour

~O



integral method

together with the cross-stream approximation

Pt z =X 1.r z = X + ir

1.84789350 1.95751522 22 2.20231038 2.58186034 ©
1.86260935 1.92918213 2.19447270 2.62495066 D
1.88716416 1.92104143 2.17046584  2.61036063 (E)
1.87730099 2.01778493 23 2.17821561  2.48256022 O
1.89394513  1.99451100 2.16368386  2.50371707 €))
1.91326984 1.99545110 2.13523126  2.50246963 ®
1.90160022 2.08532163 24 2.14296687  2.39206462 0)
1.91973648 2.07223156 2.12753977 2.40003464 D
1.94039390 2.07384637 2.10144157  2.40066164 ®
1.92656502 2.15981072 25 2.10767028 2.30531884 )
1.94602241 2.15471150 2.09274951  2.30312449 D
1.96859139 2.15651404 2.06901602  2.30449075 )
1.95258649 2.23853883 26 207338958  2.21999765 ©)
1.97322499 2.24201230 2.05947145  2.21186703 @
1.99792132 2.24376720 2.03787975  2.21355113 ®
1.97979986 2.32108268 27 2.04028628  2.13944796 )
2.00139970 2.33448139 2.02759368  2.12571198 (€))
2.02844708 2-33594816 2.00796322  2.12747299 ')
2.00845649 2.40884311 28 2.00832603  2.06281532 ©)
2.03053182 2.43257579 1.99699811  2.04923225 (1)

2.06023683 2.43343185 1.97920178  2.04591857 ®
2.03948668 2.49432142 o9 1.99752161  1.98990908 )
2.06060991 2.53665767 1.96774998  1.96672443 €))
2.09336398 2.53662957 1.95153523  1.96857902 ®
2.08534236  2.57747062 30 1.95441169  1.91502148 ©
2.09987522 2.64175344 1.94664607 1.88671005 Elg
2.12790768 2.64599334 1.92490745  1.89517141 E

Results with no cross stream approximation.
Results with 1st order cross stream approximation
Results derived from exact solution.

Average % errors 1.93679966% -/63242026%
1.26840004% -107375194%
Table 5.6

f/



Chapter 6

Con”~Klcratlons, Svfiri and NOW/™rv

In the application of the numerical methods used to

solve the partial differential equations for irrotational,

incompressible Flow discussed so far, the boundary conditions
(B.Cs ) were of two kinds namely;

@D At inlet and outlet the distribution of the dependent
variables (X,r) with respect to $ and Y were known from the

exact solutions and remained fixed throughout the iterative

computation;
@ On the Inner and outer duct walls neither X nor r were

explictly defined. Instead, a velocity distribution, again

calculated from the exact solutions, was used to define r (or Xx)

implicitly on the duct walls. Specifically this condition had the

form r + (A/r).r =0(%.Y) @

where Q(F ,T) was some known function of the wall boundary speeds.

Now although the distributions of Q are invariant throughout the

Iteration, the corresponding distributions of r along the duct

wall implied by (a) above vary continuously, a new boundary value

of r being calculated at each i1terative step until both the field

and boundary distributions in "r’ satisfy some convergence

criteria. Another aspect of these prescribed velocity

distributions is that they are applied i1rrespective of any

boundary layer (B.L) effects, advantageous or otherwise, and take

no account of the associated B.L behaviour implied by them.



In designing annular ducts i1t would be desirable to produce

a duct geometry which woul<” In some sense, control the B.L on

the duct walls and also the character of the outlet velocity
profile. In particular, avoidance of boundary layer separation
and the possible onset of reverse flow In the presence of

adverse pressure gradients leading to significant disturbance

In the character of the primary flow would be a useful design
feature. The achievement of this aim naturally depends on the
type of boundary conditions to be applied and it is not obvious
how an invariant wall condition might be defined which would
satisfy this requirement- Earlier work of Stratford (Ref-11,12)
on the prediction of the separation of the two-dimensional

laninar and turbulent B.Ls 1s here extended to the axisymmetric
case to yield feasable wall B.Cs. For a given point this new
‘mixed” B.C depends on the wall geometry and velocity

distribution up-stream of the point at which the condition i1s to
be applied. Thus, the velocity distributions used to define this
‘mixed” wall B.C are themselves varying ( unlike those for the
exact solutions given above) and hence all flow variables u,v,w,X
and r (on the boundary) change with i1teration number until
convergence is established. Further by considering the derivation
of the B.L equations on a body of revolution, the above condition
may be extended to a class of swirling flows for the laminar B.L.
These B.Cs together with the numerical techniques described above
onable us to generate duct wall shapes implying specific

prescribed B.L behaviour. Given the freedom available i1n applying



b*trary wall velocity distributions there i1Is no necessity to
estrict this application to "Stratford’ type distributions, and

p examples of duct shapes can be generated for flows with combinations >
of accelerating, deccelerating and constant velocity distributions
aoplied piece-wise on the duct walls in conjunction (1f desired) with
patches” of constant radil.
Sections of constant radius or speed may be especially
appropriate at inlet where the application of a sudden adverse
pressure gradient can yield an abrupt change i1n the duct radius.
The flexibility of the technique is such that 1t can be used to
determine duct geometries subject to quite random and arbitrary
boundary conditions.
(in Summary of Stratford’s Results For The Two Dimensional B.L.
In his paper, Stratford examined the effect of an adverse
pressure gradient, i1ncident at x = x0, Fig. 6.1 on a Blasius

type (zero pressure gradient) boundary layer which had developed

Fig. 6.1



up-stream of the point x = xo with a view to determining the

conditions defining the separation of the B.L.

Stratford’s analysis was based on the conceptual device of dividing

the flow within the B.L for x>xo0 i1nto two parts; a sub-layer and a

super-layer. The main feature of the flows iIn these two layers

iIs that

@) In the super-layer the flow i1s "almost” inviscid and
satisfies an approximate form of Bernouilli s equation
incorporating a term to allow for the small viscous effects

present In the upper part of the B.L.

@ The flow In the sub-layer is one i1In which the i1nertia forces

are negligible and the pressure effects are "almost’ entirely
balanced by those due to viscosity.
Having established equation sets representative of these two

distinct flow regimes, Stratford derived solutions for the inner

and outer flows for both the laminar and turbulent B.Ls. A

compatability condition applied at the interface, J , of these

two flows 1mposing continuity in Y, u, uy and uyy suffices to
determine the solution fTor various pressure/velocity

distributions of the free-stream. Stratford’s conclusion was that

downstream of xo at x = xs, the point of separation of the B.L,

the following conditions hold
@D In the laminar case

Cp -(xdCp/dx)2 = ki at X = xs [6-1]
~2) In the turbulent case

Cp -(x.dCp/dx)1/2 .(10-6 .Ex) -1 ® = k2 at X = Xs [6.2]



where o 1s the pressure coefficient defined hy

P = (p-po)/[(1/72) ~ Uo2] = I1-(U/U0)2 (1) [6-33
and R* = x.U/"™x (i)
where both ki and k2 are constants and >0 ,po. Uo are the values
of the density pressure and speed iIn the free-stream (edge of
B L at the station x=xo . The constants ki and k2 depend on the
nature of the pressure gradient encountered at and downstream of
x>0. In particular 1f k (=ki, k2 ) i1s the constant for that flow
the pressure gradient of which i1s such that uy = 0 when y=0
(implying that the shear stress at the wall is zero) and the flow
iIs always on the point of separating then equations [6-1] and [6.2]
represent an implicit definition of the pressure distributions
and may be iIntegrated with respect to arc length (X) to give the
distribution of the pressure coefficient explicitly as
P =k ( In ( X/x0 ) )2/3 (Lam. B.L.) [6.4]
G = k. (106 .Roi1/15). ( ( xX/x0o Hi/5 - 1 Hi/3 (Turb. B.L.) [6.5]
where Ro = xoUo A.
Since Q@ may be expressed directly iIn terms of the speed, U, at
the edge of the B.L via equation [6.3(i)3 then [6.4] and [6.5] give
the speed distribution with respct to arc length of a flow which
Is continuously on the point of separating for the laminar and
turbulent B.Ls respectively. Stratford and Curie (Ref. 9) have
presented methods for improving the accuracy of the prediction of
the point of separation of the laminar B.L by replacing the

constant ki by a function depending on two parameters D* and G*

given by



D» = Cp/( x.dCp/Zdx ) C6.6]

G» = (Cp.d2Cp/dx2 )/( dCp/dx )2 C6.7]
The separation value of ki , D* and G* are quoted from Curie for
flons with various free-stream pressure/velocity distributions

(identified by author);

Separation values of

Author . - -
1 Stratford, 1954 82;3?%4 8 _%_5
% (H:;Z;?—m 1976 1.00211 1.0681 ~0.1454
4. Tani, 1949 1.04061 0.5198 8-411%?
5. Banks, 1967 1.05137 0.940 0.1
6. Riley/Stewartson, 0.46367.G* 0 T 1805
7. Williams, 1976(a) 0.74276 2.3113 _4-4072
8. Williams, 1976(b) 0.56412 3.9223 0-5
9. Curie, 1977 0.91373 0 -

Table 6.2

It can be shown that D* and G* satisfy the relation

dD*/dx =1 - (O* + G*) = 1 - X where X D* + G*

A plot of the separation values of ki against X shows that for
D - O the data points for results 1,2,9 above are almost

collinear. Curie has shown that for D* = 0 the separation values

of Ki satisfy a relation of the form
Ki = S(X,0) = (a0 + at .X + a2.X2).e-a4X + as .X [6-8]
where the exponential term accomodates the result for X > “>1in

result 6 above. Alternative to Curie, a least squares fTit for these

data point (D*=0) gives the values of the constants as
a =0.74514; ai = 0.36224; a2 = 0.101606747; a3 = 0.46367; a4 =2/3

Assuming further that the data points for D*/0 satisfy a relation
of the form

= S(X,D») = S(x,0).( 1 + (bo+bi -X+b2X2 )(1- e-B»).D»P2) [6.9]

NT .



A further least squares fit gives the values of the constants bi as

ko =-0.044663068; bi =-0.024227219; b2= -0.01424262023; bs = 0.2770
Equation [6.9] has a maximum relative error of 10-2% for all data

points and may be used to replace the ki i1In [6.1] to improve the

accuracy of prediction of the point of separation of the boundary
layer, thus Cp - (x.dCp/dx)2 = S(X,D*) [6.10]

A suitable finite difference form for [6.10] would enable the
corresponding wall velocity distributions to be calculated for

flons whose B.Ls are continuously on the point of separation.

Given the availability of data, a similar calculation would yield

the corresponding results for the turbulent B.L.

By virtue of their definition, B.Ls corresponding to duct
geometries calculated in this way are likely to be unstable and
easily *tripped’ iInto separation, however the resulting contours
will represent the limiting cases for flows derived from

separation parameters below the critical ones. It is useful to

examine the variation of the pressure coefficients and speed
with respect to arc length for the laminar and turbulent B.Ls i1n two

dimensional flow with a view for later comparison with the
axisymmetric case. TSee fig 6. XTJ
Thus for the laminar and turbulent B.L we have from equations [6.4]
and [6-5]

Q@ =kL . In (X/x0) )2/3

Cc =Uo.(C 1 -kL.(C In(x/x0) )2/3 )i/2 (Lam.)

QP =kr .( xX/x0)1/5 -1 )Hi1/3

C =Uo.(l -kr .( (x/x0)i/5 -1 )Hi/3 )Hi/2 (Tur.)
"Yere L = 0.223 , kr = 1.230.



Letting X= x/x0 then
dCp/dX

FOO-C In(X) )-i/3 (Lam.)
dCp/dX = F(X).(Xi/5 - 1 )-2/3 (Tur.)

«ere F(X) represents some function of X and F(I) ~ 0.

Further, the velocity distributions for both the laminar and

turbulent B.L are related to the pressure coefficient by
U=U .(1-Cp /2

hence du/dx = Uo .( 1 - Cp )-i/2 (-1) .dCp/dx.

Wen X =1 1ewhen X = xo then dCp/dx = *“ showing that both the

pressure and velocity gradients are discontinuous at X = Xo .

Tl W nm
U

FErl]

il oo
L
i v
-
T -4 i i’l_wi! in

Fig 6.3

11J11 Manglar» c In order to apply the results of the

previous section to axisymmetric fTlow, use is made of Mangier s
transform (Ref; 5) which maps the boundary layer equations

for axisymmetric flow iInto those for two dimensional



-1—1KJr

,.,.« let X y be coordinates along and perpendicular
plane fl«— N 7

to the surface OX and u,v be the corresponding velocity

ents with P and 0 denoting the pressure and speed i1n the

irstrea» for 2D plane flow (Fig. 6.3. (1)) and let s.r.w.o.P.W

te the corresponding quantities for flow over a body of

revolution (Fig. 6.3(11)).

Fig. 6.3.(1) & (1)
Then the B.L.E for plane flow are given by
u.u + V.u =U.u + Jdlu
X y *

u +V -0 7 [6'111
X

p(x%l = U.U ; u:NX)

/0.



For axisymnetric (non-swirling) flows the B.L.E on a body of

revolution, as derived by Boltze (Ref; 13) are
W.wz + g.wr = W.Wz +M-_Wrr (a)

: 1) -q Dr

0 (b) [6.123
P(z) =w.wz ;w =W (©

where I(X) 1s a function describing the axisynunetric body

contour. It can be seen that the B.L.Es are similar in form for

1G9

the continuity equation for

the two regimes differing only where the contour function

appears explicitly in [6.12(b)],

K
axisymmetric flow.

The transform which maps the set [6.12] into [6.11] 1is given by

12(2).dz @
0

y = 1(2).L-1.r
u=w
v = L. I-1(2).C g + row. 1-1 (Z).l(Z)Z )
0 = W(2)
where L is some length representative of the dimension of the

body of revolution.

Since the arc length, ®“z”, along the contour is a function of x

alone (i.e z=z(xX) and x=x(z) ), then I(xX) may be considered as a

function of z only thus

1= 1(X) = I{x(2)> = 1(2)

Fromn [6.13] 1t can be shown that and i1f F i1s an arbitrary

function then the differential operators of the transform are

/™7



-Ln-Mz); Z = 0: r = L.1-Mz); = -L* .y.1-(Cz)-1(z ( a)

Yy y
f = (L2.1-2() )-F - (L2.1-3(@).r.-1(D" ). (b)
z
© (L.1"7(2)

P =((12(2).L.-2 ).F +(y.I-i(D)-1(D)Dz -~

oL

= (K2)-1""1 ).F

10X .



For both flows
,1) "0° refers to the station at which the external flow 0(xX) or

W@ encounters a sharp pressure change;
(@) P’ refers to some general point ;

(Ii1) -s’ refers to the point(s) or region at which the B.L 1s

about TO separate.

Fig 6.4.() & (i)

f« the Plane flow, it is assumed that the B.L has commenced its
developement upstream of x=xo at x = 0- To determine the

corresponding point for the axisymmetric case we have from 16



X = L-2J 12(2) .dz -0
the iIntegrand'!s positive definite the upper

,ero hence the B.L

A T.annar B.LN

The separation of the laminar boundary

li»it must be

In the axisymmetric case commences at z = O.

layer
(L.B.L) for plane flow depends upon the parameter SiI defined by
St = (p .(x.dCp/dx)2 C6.1]

When S1 reaches some critical value Sio (say) then separation

said to have occured. By virtue of [e-1Se]”"
UGy = W)

mmplying that the pressure coeficient, Cp
Cp =1 - (Op/U0)2 =1 -(Wp/Wo)2 = Kp (say) [6-15]

Hence we may write the separation condition, [6.1],

as

SI = Kp .(X.dKp/Zdx)2 [6.1a]
Let Z = L-2. J 12(z).dz (= x)
Then dz/dz = 12(z)/L2 and d /dz = (L2/1-2).d /dz

Hence from [6.14.Db]

Kp) = (L2.1-2).(Kp) - (L2.1-3.r.1 ).(KpM)
X

2

= (L2 .1-2).(Kp).(dZ/dz) - ( L2.1-3.r.17").(Kp)
Z

Kp) - (L2.1-3.r.1 )-(Kp)
y4 2

Substituting into [6.l1a] gives
SI

Kp.( Z.(Kp) - Z.(L2.1-3.r_.1J.(Kp)~ )2
= Kp.( Z.(Kp)"- Z.( L2.1-3.r.L-2.12.1") (Kp~

= Kp.[ Z.( Z.-Kp) - (r-l1-i .2.1 ).(Kp) 3 [6.1b]
Z N\

IS



) V 1-1-(Wp(z)/Wo )2 ) is a function of z alone then
Since Kp 1

(Kp) =0

for axisymmetrio flow the separation condition may be written

6.16
St = Kp.( Z.(Kp) )2 ! 1

a5 Z
In support of this formal™derivation i1t can be argued that i1f d2

(tre thickness of the B.L) 1s very much smaller than the width of

the body characterized by the function [1(z) then
d2 < < 1(2)
r<=4d2 < < 1(2) (within the B.L)
r.1-1 = o(d2) (say)
Further at the “edge® of the B.L,

the normal velocity, w(z,r),

varies very slowly witli r hence we way '"take

w = 0(d2)
r Z

Since I(2) =o(L) then Z =L~2 .1 12(z).dz - o(l)
0
then

O(1 ) =001 -z ) =00 ).o(z ) =o0(SIn e).o(L2.1-2) - o(Sine)
Z z Z 2 Z
ad

K = A - (w@z,r)/Wo )2 ) = -2_wwl*).wr = o(d2)

Hence the term

((rl-D.Z2.A1 ).(Kp) ) = o(dz2).0)-o(sin 0).0(d2) - o(d2)
and i1s negligible compared with the 1® term iIn [6 .1b]

let 2 - In(2) ; => dz*/dz = 1/Z

Hence for any function F

<~/ r (dF/dz*) .(dZ*/dz) = Z-i.dF/dzZ*

7 [6-17]
Z.dF/dZ r dF/dz*



Hence [6.16] may be writben as
_ -[6-18]
St = Kp-C (Kp), )2

where

z* In (z ) =1In [ L-2 . I 12(z).dz ) ] [6.18a]
0

Separation occurs when SiI , defined by [6.18], attains some

critical value Sic .

Turbulent B.L.,
The separation criteria for the turbulent boundary layer on the
flat plate 1s given by
St = @ .( x.dCp/dx)i1/2 ). (10-6 .Rx )-i/1® [6-2]
A derivation, similar to that for the laminar case, transforms [6.2]
1o

St = Kp.( Z.(dKp/dZ) )i/2 .(10-6 Rz )-1/i® ; Rz - Wo.Z/u [6-19a]
With the substition of [6.17] this leads to

St = Kp-(C Kp )i1/2 ,(10-6 .Rz* )-i1/i1® where Rz* = Wo.Z/u [6-19]
Again separation is said to be occuring when St takes some

critical value Stc .

As 1n the two dimensional case, the axisymmetric forms of the
separation criteria may be viewed as defining pressure

distributions (and consequently velocity distributions)
corresponding to various choices of the separation parameters Si
and St . In particular 1T S1 (or St ) are taken as the separation
values Sic or (Stc), not necessarily constant , then we may deduce
ithe equations defining the velocity distributions corresponding to
those flows which are continuously on the point of separation for

both the laminar and turbulent B.L on a body of revolution.

JO a



diste

(A Lanipiar B.ith

Kp-C (Kp) )2 = S
From [6.18] _=
Kpl/2.dKp = SL1/2.dz*

Integrating with respect to s from z = zr to z = sp where zi is

arbitrary gives

Z=7P

[ (2/3).Kp3/2 z!::zzpl Z\:]leLi/Z.dZ* = |1 (say) [6.20]
2z Kp3/2(zp) - Kp2/2(zi) - (3/2)- 1 .

=>  Kp(zp) - ( Kp3/2(Z1) + (3/2)_|1»p)2/3 [6.21]

Since 41 is arbitrary let zi = zo ( the point at the commencement

of the pressure change) then

Ko(zp) = 1 - (wp/Wo )2 ; Kp(zi) = Kp(zo) = 1 " (woswo)2 - O.

z=zp

and

, S11/2 .dz* [6.21a]
Lp

Substituting these values

I
O, p Z=70

into [6.21] we have after rearrangement

the expression for the speed distribution ot the edge of th

W =Wo.( 1- ( (3/2).1 Y2/3 )i/2 [6.22]
®=P

which 1s of the same form as that for the plane ow ca

A specific choice of the function Si1 in [6.21a] will determine the

integral lo.p and hence the precise form of the velocity

distribution given by [6.-22]. 1In general SI might be chosen

arbitrarily to produce a variety of velocity distributions.

However In this context i1t i1s taken as the function S(X,

[6-10] and 1s, iIn the first iInstance, set equal to one of the



from the values for separation listed In Table 6.2.
constants P

S constait, then [6.21a] may be i1ntegrated directly to give
IS

Z=/P

z=zp
| = J s11/2.dzr = I R2dz> = siz2.[ 2+ ] [6.23]."
o, p z=z0 2=20

Nov from [6.18a]

p=In (z )= in( L2 §12@edz )= In Q-2 )

z=0 , Z
where we define the integral J (i) 12(2).dz
0.
Hence
272P
[& ] = In (L-2. ) - In (L-2.J ) =
2=20 ®. zp 0, ZO
= In /3 = Ln J + J n
( 0,zp O-ZO) ( ( ®.z0
z=b
= In ( 1 t (.J /J ) ) «here J

Substituting [6.24] (via [6.23]) into [6.22] gives the
relation defining the velocity distribution corresponding to the

separation parameter S1 (constant).

Thus . 2/3  1/2
1
W =Wo.U - [ (3/2).sL";in (1~ A [6.L]

The integral J remains constant throughout any iterati

once 20 has been""chosen. However depending as i1t does on

the current values of 12(z) defining the wall contours in the range

[z0,2p] will vary thus producing continuously changing

distributions on the duct boundaries.



From equation [6.19a] the separation criterion

for the turbulent B.L 1s

Kp.(Z.(dKp/d2) = St [6-19a]
z

Llth Rz =Wo.z/u ; z = L-2.1 12(z).dz ; Kp= 1 -(Wp(z)/Wo)2

Substituting Rz Into [6.19a], and rearanging gives

N5 LKp2 .dKp/dz = St2 .(10-6 Wo /D) ~ = Al (say)

z> Kp2.dKp =z Al .Z-4/5 ,dZ [6-19D]
Integrating from z = z0o to z = zp gives (assuming Al 1is constant)
2 =2p
1/3).Kp3 = 5_.A1 .Zi/5
[ (/3).Kp ]_0
=> Kp3(zp) -Kp3(zo) = 15.A0V.[ zZ1/5(zp) - Zi/5(zo) ]

= [15.A1 .Zi/5 (zo)] -[ {Z(zp )/Z(z0 )}1/5 - 1 ]

When z - z0 ; W(z) = W(zo) = Wo ; Hence Kp(zo) =1 - (Wo/Wo)2 =0
let 2 = ( 15.A1 .Zi/5 (zo ) )i/3, then the pressure coefficient may be
written as n s 5
Kp(zp) = A2.1 { Z(zp)/Z(zo) }/5 - 1 3~/ . (C6.28]
Substituting for Kp in terms of the speeds from [6.19aj gives

W(zp) Wo.{ 1- A2_.[(C Z(Zp)/Z(Zo) HI/5 " 1]1/3 >1/2 [6-29]
Now A2 = (15.A1 .Z1/5 (zo) )1/3

= [15.{St2 _.[10-6 Woj™]i/5}.Z1/5 (zo0 )]1/3 { [See 6.19b] }
= (15.St2)1/3.[ (10-6 ).(Wo .Z(Zo )/u) ]1/15

Nov If Rz(zo) = Wo.Z(zo)/jJL is of the order of 100 then the

constant Az is given by A2 = ( 15.St2)i /3.

Using Stratford’s value for St for the separation constant for

the turbulent B.L in plane flow we have

A2 = ( 15.(.392))i/3 = 1.31645744

Thus the expressions [6.25] and [6.29] define boundary velocity

o
T



1 distributions (FOr constant separation parameters Sc, St ) for B.Ls

at the point Of separation at each point of the boundary for

laninar and turbulent B.Ls respectively. Velocity distributions

, Say be generated Tor values of Sc and Sx below the critical ones.

Separation Paramoters” arriving at the results for

both the turbulent and laminar B.Ls 1t was assumed that the

separation parameter defining the flows was constant. However it

is feasible to allow for variable separation parameters as for

exanple S(X.D*) defined iIn [6.10]. Thus noting that S(X,D») 1s a

function OF arc length, 2z, we can write the pressure coefficient.K,
as z=a
K =F{ Js.Zn.dZ}

where F 1s some function and n= -1, -4/5 for laminar and

turbulent B.Ls respectively with S being some function of the

"local” value of the separation parameter.

Since K=1- (W(z)/Wo )2
then the boundary velocity distributions are of the form
z=a

W@) =Wo.[ 1 - F{ \] sS(z).zn(2).dz(z) } 3~/2 [6-30]
z=0

From the computational aspect, this more general form

velocity distributions involves no special numerical difficulties

since even i1n their simplest forms ([6.25] and [6.29]) need to be

integrated numerically.



.., OFgwirUn« _Flaw ®

I a) A" extension to the axisymetric condition to cater for a

| swirling flows is obtained by examining the derivation

of the B.L approximation for such flows which, for the sake of

completeness, IS given below (See Fig 6.5).

fii

A/

Let z be the arc length measured along the contour OP and r the

[+ coordinate normal to this contour at P with w and q the

i corresponding velocity components and m the velocity compo
y perpendicular to the plane of w and q while x,y,u,v are th

corresponding quantities in the XOY plane. Let a be a

along the x-axis and let h(a) be the length of the perpendiculcir

PA from P to the x-axis where h(a) is a known function describing

fhe contour.

/7/7.



dz2 = da2 + dh2 = da2.( 1 + (dh/da)2 )
dz

Then

da.C 1 + (dh/da)2 ]i/2
Z=a

o= J [ 1 + (dh/da)z ]i1/2-da = G(a) (say)

Iz 27 1s. In priLiple, a known function of "a" and vice-versa,

and hence h(a) may also be considered a known function of "z’.

Thus let a = H(z) where (H) = (G)- (The 1nverse of ©)

X21 Since h is a function of "z" only, then h = h(z) and the

angle 0 = 0(2)»

Tane =dh/da . h ; Sin 0 = dh/dz = h ; Cos 6 = da/dz - dH/dz = H
a

and h2 =1 - H ; H2 =1 - h2 [6-313

Q

(@ Coordina“te Relationships,

Fro" Fig. 6.6 we see that 1f (x.y) and (z.r) the coordinates

of a point In the two frames of reference then

X=a-r.Sine = a - r.h [6.32]

y=h+r.CosO ~h + r.H (i)



N\

From equations [6.32]

-rh .dz=H .dz - h .dr -r.h loz

d)(:da-hz 2i 7 2

dy = h 2 +H .dr + r.H .dz

Z2Z
Hence
dx=H -r.nh ).d ™ (-hj.dr ;dy = ("™ + r.H™ ).dz ~ (HJ.dr
7 zz
_ (i)
X = HZ - r.h Jy - h + r.H [6.33]
Y.
(iin)
Also since H - Cos O ; h - Sin O,
_ _ _ . h = Cos 0.0 - H .0 (v)
HZZ = - SiIn O.OZ = —hZ .OZ 55 7 > o
™ L SH M =h .H e)+ H .<h ) -0
z zz z zz z z z z
where 6Z Is the curvat-ure of the countour
(Gl Differential Operators.
Generally for any function F we have
F = F X + F .y
z X z y 2
F =F X + F .y
r X r \Y r
letting J =X .y - X .y [6.34]
z r r Z
Then F =J1.(y .F -y -F )
X r z z r
x .F - x .F )
z r r z
[6-33]
Jz (H - r-h ) -H S5
2 r r z z zz
hee  MxHpe =
1-r.e D

\\S.



|
q
>
]

hr - r.(-h . = (@1 -r. .h = 3J.h
) r(z6z) (reZ)ZJZ

and X
It follows that [6.34] (iv) and

(v) can be written as

F =J-I.H .F -h .F
Z Z Z Z r

F =Ji.h F +H _F

F =(J-2_.H2).F + (h 2).P™ + +
“ 1 T +*h J F + (-h -H ,J-1).F XIi
+ (J-2.H )(]I:f - z" ) z ( zz 2 ) r &1
F =(J-2.H2) .F +(H2).F - H ~ +
N * (xin) L
F +F =J-2.F +F +J-2r.e .F-J-i.e’.F" (xain)
XX y A2 + H 6
Also h-% -h.n -t »» “ , » Z zz
z ZZ Z Y4 Z VAVAVA Z V4 (XiV)
H z -H .02 - h .0 ,Jd = -r-e N
272z 4 4 Z zZ 4 zz
(©®) Veloo-1t.v relations From Fig 6.5 we have
u=w.Cos 0 - gq-sin 0 =H .w-h _q
v = w.Sin 0 + q-.Cos O = h w+ H _.qg
W=u.Cos 0O + v.SIn O = H .u+ h -v [6-35]

z N

q 3-u.Sin 0 + v.Cos O

Differentiating u and v with resjbct to z and r gives

u =H W
y4
X ° a -2h -9, ~h, -y
uZZ - HXXX zz zz zzz XX
u =H Ww
r X r
U =H Ww
rr X r rr

//7V-



=h ,w+h w +H g+ H .q (29
S =t212 W +22ﬁ w + h _w + H -+ 2H .9 +H .q )
77 ZEEZ zZ Z Z zZ Z Z z2zz 22 z z i
V. =h W + H .q
r z r zZ r
V. =h w + H _q

It follows" from [6.3.(1) & (1)l and [6.3.4 (1)3

Xiil
uF +v.F =J1 -W.F + q.F ( )
mX Yy z r

1S equations for axisymmetric flow are now expressed, using the

above relations, 1In terms of the surface coordinates of a body of

revolution and the corresponding velocity components and a B.L

approximation derived. The full axisyimnetric flow equations

in
cylindrical coordina“tes arc
u.u V.U =-p + S(u u __+u/y Axi.) (1)
X 7 X X X a4 7
u.v + V.V m2/y =-p_ + S(v
x 7 ! 2 Iy ; /y ~ niA™) [G(A?]G])(iii)
u.m +v.m + v.m/y = S(I‘lXX . , y 9
X 7 (Con) (iv)
o+ Y-v) =0
wher*e all quantities are dimensionless and S =(Reynolds no. )-i
Referred to the new coordinate system (z,r), the set [6.36] become”
W +Jqgu =-(Hp -JhP )~ N N NN
-eu +*Cth u + JH u Y/(h + rH ) (Axi) ()
Zr Z Z 2 1 2
w +Jgqv - Jdm2/y = -(h P + NN n N N\Nzz"z
-e v + (hv v "Y/(h+r.H ) -Jdv/(h+rHJ2) (Rad)(ii)
Z r Z Z Zr 2
wn +Jgo + J(hw + Hgm/y - S N+ J
" - t (h m%Jh m )/(htrH )- IJm/(htrHJ2 (Ang) (i)

z z 2 r 2

2

w +Jq + @h Z(h+rH Dw + € @H SRR - 009 = 0 £GP av)



here u u, etc are given in terms of w and q by [6.35 (v)] et seq.

rcolinilth other B.L approximations, i1t Is assumed that

the thiclmess. *"f of the B.L is small compared with the axial

and transverse dimensions of the body and thus, for equations

,,ade dimensionless with respect to some characteristic length

vveMave t <<
supposing that the Reynold’s number of the flow
to -2

IS proportional
[1-e b = o(R-1/72) while the B.L approx, 1is valid]

then S = R-i = 0o(t2).

Ifw and q are of the same order of magnitude within the B.L
and bearing®™ 1n mind that q varies from zero at the wall through

non-zero values and decays towards the edge of the B.L within a
distance "f then we may assume that q = o(t) within the B.L.
Taking quantities iIn the axial and transverse directions to be of

the order of unity then the following order of magnitude
assumptions are applied to the equation set [6.37] above

Order of mag: Terms of the order of mag. of

o) W ;wz ; wzz m  mz mz z qr h(z) ; hz ; Hz
o(t) IqQ s r ;

o(t=1) - Wr ;; mr ; grr

ot“2) ; 1 - Iy -

0o(Qz) -5 hzz ; Hzz ;

0(6zz)=0(©z2) : zz | Hzzz i

IT further the curvature of the surface €z, Is not large then
<< 1land 0z =o(t) (say) »

then to a first approximation equations [6.37] may be written as

//¢é



. -p + Jh (H )-ip + SJw ),
+
W q .

z

(n)
WW +JqW
Z r N\ N\ [6_ -A}
ijam Wh~r(Ch+rHJ-1w.m =SJImAAn aitb
Wn -
TR (iv)
w 3¢ +Ih (hirH D-iw =0
Z r
gives
i
wy, €Jgw = -P_~ /H HP ~ or )
V4 r 3 Z Z r (ii)
m2/(th+rH ) = P /H T
- " (i)
wn + Jya + Jh wnm/(h+rH ) = Serr
i v
w +Jg + Jh w/(h+rH ) - 0 av)

Further*within the B.L, r = o(t), hence from [6.34(vi)]

J=1-r.e =1 - o(t2) =0(1)
and h+rH =h + o(t).1 =h +o(t) =h
Z
Hence
ww+gqw =~P + (h /H )p + S .w
z r z z zr rr Gn
r&2h = p /H [6.37.C]
rz (iii)
wn +gnmn + h wm/h = Sm
z r z rr (iV)
w g +h wh =20
Z r Z

Rearrangement gives

wv + gqw -p + (h /H Dp + Sw (Axial) (1)

z r z rr ] -
m2/h = pr/Hz (Rao-llal) [6-38(]I_I_)_
whm) + gq¢hm) = S(hm) (Azim.) (iip)

z r rr iv)
Gtw) + (hg) =0 (Cont-) (

The set [6.38] represents a B.L approximation of the flow equations

on a body of revolution for swirling flows. If the swirl velocity

zero 1.e m = 0 then [6.38] reduce to [6.12], the equations for

zero swirl.

/177



Let W,U,Q]P represen't tlie corresponding
flow quantities iIn the free stream just ouside the B.L. The
inviscid form of the flow equations governing the flow 1In this

region is obtained by setting S=0 in [6.37],

Hence
NI = ( Innpr )
(1) Rad-
w +JQV - Jy™M2 = N [6.40]
(ii11) Ang
W+ JQM  + (hw +HQM -0

w¥% JQ t ((dh )/(htrH )W t (JH )/(htrH™)- 6JQ = 0 (iv) Cont

where 0 0O ,V and V are given by [6.35] in terms of W,Q etc.,

free streal quantities replacing the corresponding B.L quantities

ady=h + r.H

Substituting for D ,U ,V ,V
Z r z r

H@W +JOW -0 WQ) -h (JQQ + WQ 02 )

and rearranging we have

A A~ = HP +Jh P (i)
Z Z 2 r

h W +JQW -e WQ) + H (JQQ + WQ + 6™W2) - IM2 (h+rHJ-»

=-h P -JHP (i)
z Z Zr

W +JIM +JCh W+ H QMCh+rH )-i =0
W +JQ + Jh

2

WCh+rH ) + [ (JH )/(h+rH ) - 0 1-Q =~

4 4 2 2 2

By forming (@) H + h ~1x1) and () H *(11) " h™* (1) may
V4 z N

write [6.40a] as

] (i) Axi.
WV +JQW - 0 WQ - Jh M2(h+rH )i [6.40b]

2 oz z 2 (ii) Rad.
JQ +WQ + e W2 - JH M2 (h+rH

with the angular and conbinuiby equations unchangod



« Will be of the order of the B.L
At the edge of the B.h, T

thidhnees and assun.ing that the curvature, 6, 1S also Of the

sare order, then r = o(t); e™= o(b);

Hence J =1 - r.6 =1- o(t).o(t) =1 and h trt® =h ~ o(t) = h

z
Hence set [6.40b] become

_ (i)  (Axi)
& +OW -h M2/h - P

2 n J (i) (Rad
@ +W - HMVh = P~ 05 00
W +QM +(hW +H Q)M/h = o (I (Ang)
W +Q +hWh+H .Q/h =0 <1 1 N

y4 r y4 * H

If 1t 1s assumed that the axial and circumferential velocity

components W and M are functions of % BRIy § @ Is the case at the
edge of the B.L. ),

then« =W(2) ; M = M(z) and [6.40c] reduces to

W -h M2/h = - P (i AxD
Z A z
ii (Rad)
WQ-HM2/h=-P - QQ D b5 40d]
WM+ (h W+ H Q)M/h = 0 (iin)  (Ang)
M +hwh +HQ/h =0 Giv)  (Com)

A specific expresssion can be derived for Q from [6.40.d.(i11)]

Q =- hwWwH )-i ( In(thM) ) = Q(Z) showing that Q is

a function of
2 Z

z only.
Substituting for Q into the continuity equation gives

hWW + h W+ (-hW)( In(thM) ) =0
Z z z
( In(hW) ) - ( In(hM) ) =0
z 4
( In(W/M) ) r O

Hence M(z) = kW(z) implying that all streamlines are parallel

//0



Vi

- ) with that derived for
the freestream this flow being comparable

now over a rawed wing (Ref .6, P.240).

Si,,oe Q= Q(2) t6.40d] reduce to
(1) (Axi)
W -hH2/h = m P
Z (ii) (Rad)
WQ -HM2A = "P [6.40¢e]
Q@ = - hW(Hz)-i ( In(hm) ) (ifi) (TAng’)
M@ =KW@ ;k 7O (iv) ("Con?)

An arbitrary choice of the axial component®“of speed, W(z), will

define the flow field completely by virtue of [6.40e] (11) & (V).

while (1) & (i1) define the pressure gradient

Pressure Change Across Tho

From the radial B.L equation Hz.m2/h = pr [6-38(h )]

Assuming that the swirl velocity, m, iIs bounded within the B.L

and that the radius of the body of revolution is large compared to

the thickness of the B.L (*t7)
then £t << h. and m2 < M=*2 (say).

Hence integrating w.r.t "r” across the B.L (width t ) we have

r=t r=t r=t r=t

i |p..dr] =1 (Hi/h).ma.dr < (Hi/h).J M<2.dr = [(Ha/h.M-.t]J

o(t)
) [6.40T]

Hence the presssure difference across the B.L is of the order of

the B.L thickness and 1t can be assumed that the free-stream

pressure distribution is “iImpressed upon the B.L.

/10



with Ez~_an
IFP .77 1t follows C6.-40e.(1)] defines the axial velocity
component INn terms of the contour function h(z).

V/W - h.M2/h= p =0.
Thus y4 y4 2

Also since M(z) = kW(z) we have
W.Ww -h _k2W2/h =0 => W-i.W - k2.h-i.h =0
[InZ(W)—k22 -In(h)] =0

Bence W=kt .hK ;M =KW -Q = -Hs-1.(h.W)»

It follows that for this particular zero pressure gradient

distribution that i1f one of the functions H.W.M.Q are prescribed

the others are defined once k and ki are chosen.

ul



VI A A Class OfF Swirling FXqws

Consider the set of streamlines passing through a given normal at a
point of a body of revolution and suppose that the angle that the
projection of the flow direction of the streamline on the tangent

plae perpendicular to the specified normal is the same for each

strean line (i.e the streamlines In the B.L are parallel).

GL.

Fig. 6.7
Then with this assumption that the flow in the B.L is not skewed

w:-:m:t =W-:M:T;

where w +m =t ,W + M =T2 [6-42.a]

where "w?, "m” are the axial and circumferential components of

velocity within the B.L and W, M the corresponding quantities at

the edge of the B.L. From Fig 6.7 we have

Sincrm/t =M/T ; Cos ¢ = w/t = W/T ; Tan ¢ = m/w = M/W [6.42.b]

and T -T@) ;c = c@ [6-42.C]

j22"



the quantities T and ¢ being functions of s only since M and W

are assumed to be functions of z alone.

m = t.Sin c )
,, = t7z .Cos c - t-Sine-eA . m - tz -Sine + t'COSC'CA (I_I_f5-43]
Z Lt Cos c m =t .Sin c (iin)

r r = i v

m = t _.Sine (iv)

wrr r tr i .Cos ¢ Fr Fr
Writing [6.38a] iIn the form
w tgw = -P + (h /Z/h)m2 + Sw

z r Z Z [6-3861]
W(hm)z + Ol(hlra)r = S(hm) .

(hN)z + (ha) T 0
and substituting from [6.43] gives

Cos c.t.t + g-t = {-1/Cos c).p + At2 + Strr (1)

Cos c-t-tz + q_t: = B.t2 .S. trr (2)  [6.380]
(ht.Cos c) + (h.g) =0 3

where A= (Ch _.Sin2e )/( h.Cos e ) + SiIn e.e®

and B =-Cos c.C h.Sin e ) h_.Sin c )

From [6.38b], forming (1) *B*(1) - A*(2)” and (i1) (D (@ gives
Cosc.t.t + g.t = -B/C (B-A).Cos e ) . + S.t'“v (D

P = (A - B).CoSC.t2 (> [6.38¢c]
(h.t.Cos O+ () - b ®

From the definitions of A and B above i1t can be shown that

@® -A).Cos ¢ = -C In(h.SiIn ©) )Z

B=-Cos c.( In(h.Sin ¢ ) = (B - A).Cos2c
z

A=-B.tan2c = ( Sin2c/Cos ¢).( In(h.Sin ©)

Hence ( Iin [6.38c (1)] ) the coefficient of P 1s Cos c.



Then set [6.38c] becomes

(COs 0.t.t~ + g.tr = - (Cos 0.p~ + s.t__ (@H)
p = ( In(h.Sin ¢©) ) -2 (@) [6-38d]
(h.Cosc.t) + (h.o9)® =0

Defining a new i1ndependent variable Z = Z(z) such that

dz/dz = (Cos 0-1 = (W()/T(z2) )-i = T(2)/W(2)
Hence Z =J [ T(2)/W(z) ]-.dz
and define h* =h*(z) = h(z).Cos[c(z)] = h.Cos c

Then for any function F(2)

F =F .dZ/dz = (Cos c¢c )1 .F = F = (Cds c ).F

Making these substitutions i1nto [6.38d] gives

tt +qt =-P_ +S.t_

p_= CIn(h*.Tan ¢ ) ) -2 @ 16-44]

M»H + (h*.q) =0

Comparing [6-.44]"with the B.L equations for zero-swirl flows [6.12]

[where represents 2~D flow quantities]

where + g~ W =~ (5 VIS AN

> W) + d<».g<») =0 [6.12]
P*(2) = = W<»(2) ©

Since the pressure change across the B.L 1s o(t) (See [6.4 D

then we may replace the pressure term in [6.44] (1) by

free-stream value and hence

t.t q-t = - +S,t
N L rr
G . h~.q) =0
N 2
- P=W.W - h* _M2/h™ K )

[Note from 6.40e (iv) M = k.W. therefore the

constant.
k= Cos c; = d/dzZi = K.d/dz ; But h

3 Zi ;. * = Naxn/
(-/K) ,dP/dzi = W(l/Zkl ) .dw/dzxi - M2/(h» .kl ) .dh /dz ]

11H



Comparing [6.44a] with [6.12] we can make the following

identifications w» = € ; g» = § 3 =¥ , j. = h* which will map

[6-44a] into [6.12].
Thus the swirling flow with free streo”components W(z) and M(z)

at the B.L edge on a body of revolution defined by h(z) may be

replaced by an equivalent < axial’ flow with freestream speed

(T2 =W2 + M2 ) over a body whose contour 1is defined by

h*(z)= h(z)#Cos ¢ = h(z2) W(z)/T(z2).

flow then

«

z=1 T/W.dz = 1 dz/Cos c¢c = (1/Cos c). J dz - z/Cos c.

Hence the equivalent axial flow effectively i1s one with iIncreased

speed over a longer narrower body.
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It should be noted that this mapping iIs not unique but there 1s no

apparent advantage in using any of the alternatives.

Further, Tlo« quantities normal to the surface such as radial speed

.g- and the coordinate "r” are unaffected by the transform since

the contour function h(z) has been reduced by a factor of Cos c¢ and
the -z- coordinate has been magnified by a factor of (1/Cos ©)
implying a relative thickening of the B.L with respect to the

dimensions of the body compared with the non-swirl case. The above

calculation refers to the inner wall where "r" 1s positive iIn the

sense of the outward normal to the wall. To"deduce the equivalent

«all conditions for the outer wall where °r” and -g° are directed

inwvards let
=-qgF ;r = -r*

r-ws=-w ;W =w >a = -(-g* ) = 1%
r r rr r re r

With this substitution equation [6.38] becomes
w +qg*w =-p - (h/H ).p *
2 r* VA Z Z r*

-m2/h = p /H
re z'

whm) + g*(hm) = S(hm)
z re T
(hN)Z + (hQ*)r =0

*

r*

Eliminating p
r*
W + gBw = -p + (h /h)m2 Sw
z [ o2 F2 .ol

W(hm)z + q*(hm)r = S(hm)

*

twy + (hg~) =0
z re

r*r ¢

which 1s i1dentical iIn form to [6.38a].

Computer programmes were developed to incorporate the

flow parameters In these B.C’s to generate duct geometries.



The effect on duct shape was was examined by varying the values

of these parameters the results being outlined in the next section.

The speciftic form of the velocity distributions used for swirling

flons i1s
T, .Tc.Cl - ( 872).sti/2 .1in( 1 ¢ “p
ad
Tp = To.[1 - A2.( (J»0,sp/I®, so)1/5 - 1 [6-29a]
z=pb* Z=nb*
* = J hW/T)2T.dz/W —
Virere Jas_be - J  h*2(Z).dZ Z:af ) z
Z —a
—_ :b‘ Z:b*
z=b e Zp .
J hoW.dz/T = J h2w.dss/(twy = J h2 d$/T
Z=a ¢ s=a* z=a ¢

since h*(Z2) =h(z).Cos ¢ = h(z)-W(z)/T(z) :dZ = T(z)-dz/W(z)
and T2 =W2 + M2 with W and M being the axial and swirl speed

respectively. More complex functional relationships governing the

variation of velocity within the boundary layer could be used

simulate the behaviour of skewed boundary Hlayers.



q*

IoyT The WnmerioftX
In ""this numerical results are derived for a set of

irrotational, i1ncompressible flows for a variety of boundary

conditions.
The duct i1s considered to be devided iInto three distinct sections

,I, an upstream section consisting of two coaxial cylinders

(i) a transition region ,

(1) a down stream region bounded by two coaxial cylinders ;
Because of the multiplicity of boundary conditions that can be

applied. Fi1g.6.9 below represents (qualitatively) only one of a set

of duct geometries that may be created.

Fig 6.9



Boundary Conditions and Initial
Vpstroaro Rodiont in the case of the "exact* solutions derived

in Chapter 2, all upstream flow quantities were known but were
not required In the determination of the numerical solution. 1In
the present case the upstream region consists of a pair of
coaxial cylinders containing a prescribed velocity distribution,
U,v,W), consistant with an i1rrotational flow field. The velocity
components chosen are

W =Wo (Wo = constant)

V =0

M A/y (A = constant)

Also associated with the upstream region iIs a parameter
indicative of the relative size of the B.L which i1s assumed to
have developed iIn this region.
@ lal™ Stgtjon, The inlet radii of the hub and the casing are
chosen arbitrarily and, on the basis of the flow presented at
inlet being that of the upstream region, the values of “y* are
alculated at equal dY across the duct along some arbitrary $
characteristic.
Now from equations [1.7.6/7/8] and [2.9] we have

(g/B).ds ; dY = (g/A).dn and A = 1/y, B =1 for irrotational
incompresssible flow.
At inlet dn = dy ; q = Wo
Wo .y.dy (b) [6-50]

d$ = Wo.ds (@) ; dY
T ~M«grating [6.50b] gives

Y = Yhub + (1/72).[ y2 - y2hub ]-Wo






Let Wo bo an estimate of d throughout the transition region and

hence d« = W*o.ds
Ci
Integrating from inlet to outlet
$out - $in = W*o.(sout - Sin) r
’ $out = $in + W*o.(sout - Sin) [6.50d]

1Uow (sout - Sin) may be taken as an i1ndication of the axial

length of the duct, "L* (say). Thus if L is prescribed, and if 3$in

iIs arbitrary, then [6.50dl defines the « range.

characteristic, a parallel

On the i1ont
(in contrast to uniform) flow condition

iIs imposed to complete the set of B.C’s re<iuired for a numerical

solution.

Using the new "mixed” prescribed velocity distributions defined

In [6.25a] and [6.29a], an initial outlet speed i1s calculated on

the basis of the duct length "“L~” but this speed is no more than a

starting estimate for the outlet velocity from which to derive

some initial values of the oulet radii. In defining the velocity

distributions to be applied on the walls, 1t Is necessary to

define (arbitrarily) some upstream length in which a Blasius

(zero pressure gradient) B.L has developed. This lengt

defined as a fraction of the I1nner iInlet radius and i1s another

flow parameter which may be varied for comparison. Th p

form of the quantity defining the upstream B.L developement is
the integral Je,zo used iIn the definition of the integral lo.p of

equation [6.22] & [6.25] which give the wall velocity distributions.

Now if z r 0 (4 = $e) i1s the point at which the B.L is assumed

to have started i1ts developement (upstream) and z - (=*



2

the point at which the “sharp* pressure gradient Is encountered

Z=70 «:-4>( ZO) /\:-<D( ZO )
_ 12(zy.dz = | 12¢8).087q = | y2.dss
P2 (-6 4=<0 (9437 y2-ds/q [6.50€]

R)determine $0, noting that g = Wo upstream of zo we have

*=«(z0) Z=Z0 Z=720
I db= Jg.dz = We: ¥ dz = Wo.(zo - 0) = Wo.Z0 [6.50F]
49 Z=0 Z=®
Hence $zo - $0 = Wo .zo => $0 - Wo .zoM.

Since $(zo) = $zo 1i1s arbitrary, then the upstream value of $0 at

the commencement of the upstream B.L developement
0( zo)

i1Is known and

hence determines JO,zo = ? )y2-d$/q [6.509g]
»( O

For computational purposes the integrals Ja,b are approximated by

the summations J*a,b = 2 [(Y2)*.(1/q)* -d$]

where (F)* represents a mean value of (F) i1n the interval [a,b].

The finite difference form of the fundamental equation set

r +(Ilnr) -n ~ xt =-(ClInr 2\ where r = y2
V2 i r

IS given by equations [3.5], [3-9], [3.15a] and [3.15Db].

Error «nd Consi.stancv Checks.

<«
we have no exact values against which to test numerical results.
However the following checks for error and consistancy are made
(1) "r’ coordinate.
Eii) ‘X ” coordinate.

() Vorticity.

JJ2.

> \B)>

Unlike the solutions of Chapter 2,



I The 'r’ coordinate satisfies ( In r 0 C3-

LpUcln. [3.53 «17™3* i - — equivalent and solving for r...

ke have [3.103
J=WU2)(ri** 1 +ri-1.a + (d$/dY)2 (In(ri .a -ri,i-xX/r ..a))

I'e values of T ’ obtained from the iterative routine are

eospared with those calculated from [3.103 and the maximum and

average relative errors evaluated.

(it) Similarly 'x’ satisfies the equation

t M~ [6-51]

The finite difference form SP [%EH' %gccoomnégs-(after rearrangement)
xi, ] = Ki .(xi, J+i + xi,j-i1i + K2 . (xi+bl_.j + xi i.j ) [6-52]
whereK. = (1 ~ (d*/dT)a ; Ks = (di/ZdT)” ; Ka = -(d./dT)/4

and Ki,j = Fi+i.j+i + - Fi-1_j+1 Fi+i,j

with Fa.b = ra.b “ In(ra,b).

A similar comparison is made for x as f

(iii) Orthogonality Te” definition the $, T lines should be

orthogonal throughout the flow field.
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IG@) The -r” coordinate satisfies (Inr =0 C3.5]

,pU=In« C3.5] with 1ts numerical equivalent and solving for r. ..

we have [3.103
, - (I/2)(ri.i.J t ri-1,0 t @d$/dD2(n(ri. j*i.ri.j-i/r

le values of "r” obtained from the i1terative routine are

compared with those calculated from [3.10] and the maximum and
average relative errors evaluated.
i) Similarly <x” satisfies the equation

X oA Xn =y L6-51]

o _ i'T Kixoomes—» (after rearrangement)
The finite difference form of [6.51] becomes ai

Xij = Ki.(xi,j+i + Xi,j-i + K2 .(xi+i.j + X1 i.j ) K jg

where K. = (1 t (di/dT)3 ) - ; Ko - (d./ZdT)™ ; Ka = -(d./dT)/4

and Ki,j = Fi+l.j-n + ~ Fi-l_j+i Fini.j
with Fa.b = ra.b - In(ra.b).

A similar comparison is made for x as for

(1ir) Orthogonality Ten definition the T lines should be

orthogonal throughout the flow field.

/53.
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TO estimate the deviation of the (i, T) characteristics from
orthogonality the relative % error in the diagonal was determined By

Lalculating the quantity tc/(at . ba)i/2 - 1 ] for each grid cell.

(iv) Flow and Vort,io4rty Furt-her checks for the self

consistency Oof the numerical solution i1s obtained by calculating
the mass flow and circulation through and around each grid cell

defined by the coordinates of four adjacent points in the flow.

Fig 6.11
In order to allow for the curvature of the stream and potential
lines the flow surface i1s approximated by a frustum of a cone.
The mass flow through sections AD and BC i1s approximated to by
bea and Mbc where Mae = g*ad .Sad » Mbc q
g»ad =(ga qb)/72 : g«wc = (gb + qc)/2
»here Sad and Sbc are the curved surfaces of the frustums

anrd "BC. For continuity we should have Mad = Mbc.

N



The relative error, defined as (M.a/Mtc -1). was found to be of the

order of 1* throughout the grid. Similarly in calculating the

loulation, the quantities Ct and Cac are evaluated where

Cab = Ub.gq*«b ; Cdc = Uc.g*ac

For irrotational flow Cab =

= Cac and the relative error in

circulation on adjacent streamlines defined as ( Cab/Cac -1).

Table 6.12 below lists a typical set of errors for a sequence of

various grid sizes.

Average % Error 1in

Grid Size Mass Flow Circulation
2.49
;-; 0.841
7 1.171
1111 1.185
13.13 _656
15.15 548
17.17 427
9.
.354
il 354
23.23 i
25.25 -320
Table 6 .9
, ] maxiinuin % error in tbe
It was found that there was a fairly 6

mass flow and circulation of the order of 15.d an

I respectively occuring in the neighbourhood of the point at which
the Initial "Stratford’ velocity distributions are applied at the

wall.

The error in mass flow and vorticity decays

rapidly away from the

point of application of the sharp pressure/velocity gradient and

the size of this region can be

reduced by increasing the number

of grid points. A similar calculation may be done for the angular

P momentum in the case of swirling flows.

| 3~



The parameters affecting the duct geometry are as fTollows;
(1) Inlet Axial Velocity Profile.

@ Inlet Swirl Profile.

(® Upstream Blasius B.L Developement Length.
@ wall Boundary Velocity/Radii Distributions
®) Outlet Condition.

®) Laminar or Turbulent B.L.

The program developed for this section allows all the parameters

listed above to be varied. In order for the flow to be

irrotational 1t must have a uniform inlet profile together with a

sMirl speed of the form m = k/y. The B.L presenting itself at

inlet 1s assumed to have developed 1In some upstream region the

length of which is a variable i1nput parameter. The wall boundary

conditions may be taken as "Stratford® type distributions which

contain a parameter allowing the velocity distributions to be

mvound up® to their fTull critical values independently of each

other on either wall. There i1s no necessity to limit the choice

of PVDs to the "Stratford®"™ types and a simple numerical device

the form of the velocity distributions will convert them to

accelerating flows. A parallel flow condition is applied at

outlet but this could be replaced by an alternative PVD across

the duct linking the "ends” of the two wall PVD at outlet.

Fig 6.2. which shows the distribution of the Stratford

velocity/pressure distributions for plane flow Jlaminar and

turbulent B.Ls on the point of separation, i1t can be seen

the onset of pressure rise the gradients of both the velocity and

26



The parameters affecting the duct geometry are as fTollows:
@) Inlet Axial Velocity Profile.

@ Inlet Swirl Profile.

@ Upstream Blasius B.L Developement Length.

@ Wall Boundary Velocity/Radii Distributions

(®B) Outlet Condition.

® Laminar or Turbulent B.L.

The program developed for this section allows all the parameters

listed above to be varied. 1In order for the flow to be

irrotatlonal 1t must have a uniform inlet profile together with a

swirl speed of the form m = k/y. The B.L presenting itself at

inlet 1s assumed to have developed In some upstream region the

length of which i1s a variable i1nput parameter. The wall boundary

conditions may be taken as "Stratford’ type distributions which

contain a parameter allowing the velocity distributions to be

"wound up” to their Tull critical values independently of each

other on either wall. There 1s no necessity to limit the choice

of PVDs to the "Stratford” types and a simple numerical device in

the form of the velocity distributions will convert them to

accelerating flows. A parallel flow condition i1s applied at

outlet but this could be replaced by an alternative PVD across

the duct linking the "ends” of the two wall PVD at outlet. From

Fig 6.2, which shows the distribution of the Stratford

velocity/pressure distributions for plane flow laminar and

turbulent B.Ls on the point of separation, 1t can be seen that at

the onset of pressure rise the gradients of both the velocity and



pressure distributions are iInfinite. The axis3nnmetric PVDs are of
the same general form and hence the change in duct radius at the
point of appliction of the sharp pressure change causes an abrupt

change iIn the duct radius. The program structure allows the 1nsertion

of patches of constant velocity and/or radius as a B.C and these may
be used to suppress sudden changes iIn the radius at inlet. The
multiplicity of parameters which may be applied to control and
affect the flow will lead to a substantial ammount of numerical
experimantation to determine the effects qf their interaction.

The plots at the end of this chapter illustrate the effect on

duct geometry of

(@O "Winding up’ the Stratford PVDs on the duct walls to their
separation values.

@ Allowing sections of constant velopcity/radius at inlet.

(@ Increasing the upstream B.L developement length;
1. increasing the thickness of the B.L.

(4 Increasing the ratio of swirl to axial speed at inlet.
(5) Difference between laminar and turbulent B.L.
limitation on the 1ncrease in the swirl speed (consistant
with irrotation) 1i1s quite severe. From Fig xxx, showing the
variation of duct geometry with increasing swirl, 1t can be seen
"3t the change i1n the shape of the outer wall 1s steady and
sraall , For the hub, the initial rate of change of shape due to
ecreasing swirl i1s similar to that on the casing, but when the
parameter reaches some critical value, there begins a sudden

rapid collapse of the hub towards the axis thus producing an

finite swirl component.

137






© On the upper wall the.swirl velocity varies only slowly with
~Narc length having only a mild effect on duct geometry.

id) From the “swirl* plots, 1t can be seen (Fig. 6.13) that the
lincreo,5¢ in swirl with arc length is substantial even for swirl
coefficients as small as 15% of hub i1nlet axial speed.
~The results obtained thus far are for flows with PVDs accelerating
and/or deccelerating on one or other or both walls and duct shapes
consistant with these conditions are given below.

The 1mposition of parallel flow at outlet yields a "smooth*
transition to the constant radii outlet secftion.

In general, 1f the boundary velocity distributions are monitored
then a variety of criteria can be used to trigger the application
of a new type of B.C when some condition is satisfied. Possible
examples are the restriction of the pressure coefficient to a
prescribed range or limitations on the size of duct radii. For the
purpose of the current calculation the transition region is divided
into five sections for the application of B.C.

@D Inlet region with constant radius.

@ Inlet region with constant wall velocity.

A Transition region with *“Stratford* or other variable velocity

distribution.
@ Outlet region with constant velocity.

®) Outlet region with constant radius.
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tsnsimJ2i-Bis_Sojaitiim ; i ; i}
Q ->0] Having calculated the (Xx,r) distribution

n the transition region it was attempted to extend the solution cl
donn stream (& upstream) of the outlet station. This was done by
rewriting the PDE in (1) forward and (2) backward difference

fom and then "stepping off’ at outlet/inlet while assuming the

flov to be contained betwen two coaxial cylinders.

Thus the finite difference equation [6.60] yields the forward

difference equation

r =(r2 /r ).-ExP2.r_ -r r )/ (dY/d$)2
1

-] L j-2 i.j-1 1. J-i

This process proved highly unstable and did not converge.
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nhap-ber 7

M

In this chapter the flo« equations and their design
plane counterparts are used to derive numerical solutions for the

case of an inviscid axisymmetric flow with vorticity. Upstreanm,

the axial and swirl components of velocity profiles are chosen to

be of the form q =a.y2 +b.y tc “r5
In the general case for which both q and w are non sero. the

- T >iree non zero components. The laws
vorticity vector Wl“ have {nree non P

i = 2l ici h h th ransition
governing the behaviour of the VOrticity through the transitio

region are incorporated into the general numerical scheme.

Application of “mixed* B.Cs on the walls and a parallel outlet flow

condition suffice to define the solution completely. Calculation

of the angular and axial momentum are used as a further numerical
check on the consistency of the computed solutions.

I1) Flow Equations and I5Iesn?f-|r'| Pl Ecjuivaloats

The equations for inviscid, axisymmetric, swirling

uu + Vvu

N J \
uv  + w -w2/y=-1/"~_P
)+ V) =0 (Cont)
(Vort)
2= (l/y)(yW)y Wy H J
The design plane equations are
(a) (b)
C 1In(A) ) =€*.B/q2 » 67 = UX+ v
<&
- - V -
( In(B) ) =- Qe.A/q2 - Qe X uy
- w
X =(B/A).y
* y

;
eSS



1 = (17y).(y« [7.8]
X = (A/B).y (17y) -y )y
¢cination of the "xX* coordinate from [7.7] and [7.8] by
differentiating with respect to $ and T gives
[7-9]
LAB).y 1 + C ~

From the continuity equation, [7.3] (see [2.1.2]),

[7-10]
€ =u +V - (-92/B).(C In(y)
substituting into [7.5] ( eliminating B.gq ) gives
CIn(d) ) =" ( >,
r> (Ln(Ay) ) =6
= A.y = gi(Y) [say] where gi (Y) Ll‘ks( an SFB”:,!rrary function of Y.
[7-11]
z> A =gl (Y)/y
Substituting this form for the function A In [
(In(B) ) = -Qe.A/g2 = - Qe .gi ()/(<I12.y)
N N =1 h T 7.11
Since gi(Y) 1is arbitrary JIet gt (Y) and hence from [ 1
[7-13]
A =1y
[7.14]
and (¢ Hrgr) » = - Qe [6d.y)

In the case of"irrotational

flow, Q = 0 and hence B = gz(i) «here

izm =

Is arbitrary and set equal to unity making B = 1 everywhere.

o« T7 14] gives only the variation
However i1n the case of non zero >

Of B «1th respect to T across the duct whilst the function A has

the same form as for the i1rrotational case. However, rf B Xxs

u ~»_istic then i1ntegrating [7.14] with
prescribed along one T charac *

respect to ¥ will enable the distribution of B to be determine

throughout the (.,T) Plane. This could only be done in c-sed fo™

for a restricted class of functions of Oe, q,

V N\ VAN
4o value of B along tirne
allows a numerical integration to determine the

5 characteristics across the duct.



S,,.UtuUn. .o. A _ro. CV.133 In.o CV.S3 «Wes usW«

[Byy V " ~ ® [7.14a.2]

[ln(B)VI = -Qe/(qg=>.y)

N ”? i u

G p? + (yM)2/B2 = (y-y™D2 »
-yVV e« =2.r>/2.(F

Letting r = y2 n \ b « y

Then [7 ,14a.1,2,3] may be written as

[ B.r ] + CB->.(In(r)) 3 = ®
y M
[ In(B) 1] = -Qe/7(g2-rw2)
[7-17]
(r )2/4 + (r )2/(4.r.B2) - I/

) Chanter 3 and denoting the transformed
Using the transform of Chapter

variables by then equations [yigllgl?] become
. a [7.15a]
[B.r» ].. w» [ B-1 _.an(r*)3 3NN
[ In(B) 1] = -[c527/(4 .C73)]
q*2 - (r* )2 + (r* )2/(B2.r%*)
W>* *x oil* - - (52/(4 .c72).Qe

Defining a dimensionless vorticity as

[ B.r* ] + [ B-1 .(In(r*)) 1

r7.150]

[ In(B) 1] = - Qe*.qgq*2/r*i/2 = -Qe*.q*2/y

q*2 - r*2 + r*2~/(B2.r%*)
Il the disiitbutiofoi Qe» were Known throughout the flow fie

[7-1bb,16b_.17b] are sufficient to determine the corresponamg

aistributions of r». g» an3 B. The for. of the aepenaency of.
nf 1ts derivation

1t = flow n n lin
the transition region of iy flow and an outline

\Y iIs given below (Subscripts dropped),
for this solution scheme 1is ¢

/<17

+ Ey/\ 2/B2 = /g~  [7-14a. 3]
y



VArtinity Trnnsport, Throwfih dwct-
For incompressible floH the total energy of a fluid element along
gi ven Sresni !(iﬂgi Y,, Is given by H(Y) where
HMD = (u2 + v2 + w2 )/2 + v/™

_ . - =W Qe =V -U
and with Q. = (1/y).(y-«) Qy y

[7-19]
u= (i/Zy).~r ;; ™=

it can be shown (Ref.

v.Qe w.Qy = HX
w.Qx u.Qe = H
y —
u.Qy V.ox = H = 0
e
4 o In the "x” direct-ion,
here that Ox ) ) H with respect to x.]
i1lIst H denotes the der 1vative

SuhstiJdting 0. and Qy fro. C7.191 into C7.223 .ives”

uc-w ) - v(l/y).(y-w) =0 => u.(y.m)" V. (-
But”™.qg.x ;,v.Jy where ds2 -dx™ t dy2
s

Hence q.(y w) x 7~ a-¢y-w) -y = 0 => ® & =~ ~

X S y S

i i +ant along a given streamline and we

Thus the quantity (y-w) 1s constan
may write y.w - C(Y) or 7 N7y

YNt on a streamline (at inlet
Is known at some P

- T W
say) then the swirl speed, w,

Therefore 1t C(Y)
iIs determined along the whole
i

- vV - ) XS gXso
streamline provided that the distribution o
known along this streamline.

Substituting for w (Af:rom [\583]33 into [7.19] gives

O (i/y)-cy= (i/y)—c_r_T

a = (-Vy).Cr =

/\ Ll %.



. » an we can obtain expressions
HIth these expressions for 8» an & P

for Qe from [7.20] or [7.21]. Thus from [7.21]

"\
wQr -u.Qe =H =0®
C/y).u.C - u.Qe = N £ .
= Qe/y = (I/y2) C.C - H = (I/y2).(C2H)n/2 - - ««.M24]

Now this expression for Qe is just that which needs

aetermined on the ri.ht hand side of [7.16b] and this will be

possible since we have the freedom to prescribe the inlet

o 1—|_p flow thus specifying the functions
(or upstream) conditions o

H(Y) and C(Y) at all points of the flow fTield.

DimfFinsion Iftss form of egtiations 71 and_|

X = (B/A).y A =

-y X =B.y.y = (/72).B.(yn™®» = (1/2).B.r»

From the transform of Cl”~pter 3 we have for any function F

F o= (/¢ )-F,, Fo=(@/c).F

= (/c ).(c X ) = (1/2).B.(1/c )=
77 2 1%*

= (Xl)«.O = B(Cl.C7)/(2.05-C2)-(ri).r

But (c .c )/(2.c .¢c ) =1

1 ) ® pT7 71 and [7.8] are
Hence the dimensionless forms o
(xl) = B. (rl\)r .
X) - (-U-B).an
1/\*

oY only once defined,
Thus H and C being functions of >

equations
velocity
[7-23] and [7.-24] determine the distribut on - . Y
vV, Tlow for a given distribution of y-
and vorticity throughout the Tl



rar upstream of the i1nlet station the flow Is «sumed to be

cylindrical and all quantities are independent of x.

Hence v = 0 ; g = n;
p =0 ;p=wVy ;T =0 T =vy.u =v.9
X Y K y
Defining the total energy H = d/2).(™™ - N P/p
Then (72).( g™+ N

= [(172).(@@2+ «2)™ +

= [(2/2). (@t (WYY [7.25]

{[(1/72). (2 +w2) + w2/y 3}/ (<i-y)

) ) 1ins-trean 1In terms of y then [7.25]
Since both q and w are prescribed upstre

determines H along a given streamline throughout the flow.

Also since C = C(T) and T = y-d upstream

y
[(W/2).C2 1 = [(1/2).C2 ] .y - (i/<iy) - \
y
Define G(T) = (@Q/2).Cc2(Y) [7.26]
G = Q/qy)-L[(172)1
Then [7.24] may be wri-ften as [7.27]
Aly

lere the quantities C and H are Known from the upstream conditions

as functions of T or y”along each stream line. The

N Vv
parameters are



G = [ww + sy 3/
N\
Yy
H = [ww +w2/y + q.9 3/(0-y) [7.283
HF 7 n
E = [w + w/y 3-(W/Q)
/ -VE (dd : H=[E +q9g Iy
I « =0 = =0 = =0 =H = (g™)/y
In terms of the variable r -
+ w2/2 3/q
G = [wt 2.r.w ].-w/q =aH = [ M".g.-gN + 2.«.«N
r N\
. ) =G /r - H
Substituting into [7.273 @@ r r
Further substitution into [7.163 gives
N [7-16b.a3
[InB) ] = - [ <&VYF " H

N\ /\ 3 I
Using the transform or Ch\élpotteeF g to map onto a unit square gives

[In ® 3 = - [(01152))-6 /r1 -

Defining G* = fc -Cg )-5 QHS H* =(1/c2, ) -H*
y* 1 3 T N
then [7.16¢c3 may be written as
[7-16b_b3
[ In(B) ] = - CG»/r»

) - ] [7.16b3,
Droping thl "m and subscripts from equations [7.15Db

[7-17b], [7-18b] and [7.-19b] yields the set

tB.r ]ili’ + [B-1 .CIn r ) 1] = ®
[ InC B ) ] = (H -G /r ).q2
IM t "T
Rr® + r2/7(B2 .r )
g .
X = B.r

X =1/B8).C Inr )

Boundary Conditions

TH. v...=. _.< «.

..« ,,,-1 v.10C.V ,,o0,U. _.hi.« 1th .h.-h »



= a.y2 +b.y + C where a,b,c are constant.
determined by three pairs of radii and velocities
These constant-s are

chosen at will and are defined by the relations

a=[q1(r2' !-2+q,(r3_r)1+q(3> 1 %
cr-r).qg@-r)-
1 2 3 2 1

N+ oT*r ir-r )+qrr (r~r ) J/e
= 15 a3 o / 3 a 3 a.2 a 2

enr - r )(r - r )(r - r )
1 3 3 2 2 1
The maximium/miniimam values of the flow occur at

rr=-b/(2.a) ; gn = (4.a.c - b2)/(4.a)

If g =¢q -then
1 3

a=(ryrp(ajay/”
b=-(r-r )(r+r )(q""

c-(r r)A[ fCr Il'r ) - gr r ]Jle with r. = ( >[2
T R 3 213

1- 1 ~oilacses to a straight line
If g q = q then the parabola coll P

1 2 3 inlet flow. Any randomly selected profile
corresponding to uniform in



could be chosen but the "natural’ choice would be to take q1= q3 and

to choose r1 and r3 to correspond to the inner and outer walls. The
value of q to be chosen will then correspond to the maximum/minimum
speed gn of the i1nlet profile which will occur at the mid-point.
OUnlet Swirl Velocity Profile.

The distribution of the swirl velocity at inlet (and upstream) 1is
chosen as w ==e.y + f/y (where e, T are constant).
If e = 0 then the swirl velocity correspond; to that consistant with
irrotational flow although the flow will only be irrotational i1f the
inlet axial velocity 1s constant across the duct. If e /0 and f =0
then the i1nlet swirl corresponds to solid body rotation with angular
velocity ’e”. An arbirary relation between "e” and "f” was chosen 1In
order to limit the multiplicity of independent parameters that can
now be varied to define the upstream flow conditions.

In this case e = n.f where n /7 0 {n = .25.(arbitrary)}.

The Inlet swirl velocity is of the form

w=Ff.(ny + 1/ly) ; w =n - vy 2 ; Min/lMax = = [n"i/2,2.ni/2]

ad a plot of some examples of possible inlet swirl profiles is shown

in Fig 7.2 in which w* = w/f is plotted against vy.



It can be seen from =< that for the range of values of

tadii "not close’” to the axis, the ’solid body” part of the swirl

velocity function dominates the value of the swirl velocity near
., — 2 Because the calculation i1s made dimensionless on division by

the reference length (y = 1nner duct radius), the singularity of the

swirl velocity profile at y = 0 1s removed and therefore the inlet

speed will not become i.nﬁrw _ee, HSWSVSF It,(nay be allowed to increase
i o i ) T *” T+ sliou-Xd b© notwCd,
without limit by iIncreasing the value

that the swirl profiles given iIn Fig7.2 cannot be compared

,uantitavely with each other since each profile has been scaled to

_ . i N1 t>rofiles are indicative
its own inlet speed on the inner wall. The protil

x | P ny val he ;
only of shape but can B>e> ggglgg Hp to any value by the factor T

Case 1. n >= 0

) } ) IT it = 1 by definition
Since the radius of the 1nner wall at iInlet
and 1f we define w» = w/f = n.y + I/F

@ if n > 1,w* has a minimum for y<
® i f n= 1,w* has a minimum at y - 1 n

(c, it n< 1.W can have a minimum above the 1nner wall.

) - Masinfi without limit.
Case y. n < 0. If n<O then w* 1s monotonic decreasi

the flow at which
Thus there will be a stream line at some poi

] ) ,.bi1le being non zero on the i1nner and
the swirl speed will be zero

_ stia sign giving a contrarotating
outer casing but of opposite g

t he represented by a function of the
Since the swirl velocity must

te
tiet and within the transition
, outl N

there exists a C(Y)

form w = C(Y)/y both at inlet

region, 1t follows that for some vy

/7Y -
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in'et It follows that there i1s a surface
C =0 for some y at rnlet.

If revolution throughout the flow on which the swirl speed 1s zero

with swirl velocities of different sign on opposite sides of thrs
1stre6m surface.

n)inlet Distribution of y with-X~"

. inlet velocit rofile together with a choice of
The prescription O'F liniet y P g

he d

imer i Hus a ivati i istribution
imer intet ralfius al IS% Fp§ d§rivation of the inlet y distributio

at equal delta Y.

From [1.11.6(i)] we have u =

With A = 1/y and q = u (since at inlet

4=092.y.y => dY = q.y-dy-
N Ny - (@ay3 + .2 + c).dy [7.32]
But g r ay2 +b.y + c = <Y -



Integrating w.r.t T along the $

inlet characteristic from 1inner

wall to some point y we have

y - Y. = [ay«/4 + byV3 + oyV2 where Y* and y» are known.

Rearranging

ayv4a t by3/3 t cy2/2 =Y

- T - [ay*V4 + by«/3 t cy”™/"™J [7.33]

This expression is a quartic In the unknown 1nlet y for a chosen

value of Y. Choosing values of Y at equal 1i1ntervals between YI

and Yu (Fig. 7.3) we use [7.33] to calculate the corresponding Yy ’s.

Equation [7.33] has 1n general four distinct roots and an 1i1terative

algorithm was used to determine the appropriate one. The method

chosen was that of "bisection’” where it was assumed that the

required root lies Dbetween y=0 and y=ym where ym i1s that value of y

corresponding to the maximum value of Y there being no guarantee

that other i1terative routines would converge to the requir

An approximation for the inlet y’s could be obtained from [7.32] but

the values of °y” would become 1i1ncreasingly more 1inaccurate

Increasing grid size.

(41 Wan Rounda>-y flr.nditions

The wall boundary conditions are similar to those applied in the

} } a 1 41rw < Velocity prescription on
previous section for irrotational T i

the hub and casing of a "Stratford” diffusion type together with

regions of constant velocity and/or radii at inlet and outlet

sections on either of the walls 1If required. Again, accelerating

velocity distributions can be used instead.

15) Outlet Conditions.

A parallel flow condition 1s 1mposed at outlet. How

f7 7



the previous chapter, this 1s not mandatory and a variety of

velocity based outlet conditions might be considered depending on
particular circumstances, an example being a velocity distribution

mjoining- the hub and casing along the outlet $ characteristic or

possibly some "mixed- condition of a similar type to the wall B.Cs

NnfIniti™nh of The -C- Functional

At inlet the swirl velocity w 1s given by w =-e.y + f/V

/\— —
and throughout the flow W= C(Y)/y

Hence denoting an inlet value of y by y*

. = C(YD/y» = e.y» + t/VF = C(Y) = e.y« + T
Thus the values of C(T) calculated from [7.34] for a given stream
line are constant along that stream throughout the flow.

Finite Difference KMSs-

[7-15C]
[B.r ] + [B-1 .CInr ) 1] - ®
[7.16c]
[In (B )] = (H -G /r ).q2
vF N ir
[7.-17c]
Rzr2 + r2/7@2 .r)
r ¢

£n "™ T " Ndirection
Define dt~Z as the kth finite difference

- r

i,j+1

9 F +r
- - N — - -

d=or =r =2.1 ~o - dfer i+l »j 1.3 1-10

i,j+1 i.j 1,31
dir‘B I B - B

i+l ,] i>]

replaced by a forward
and similarly for C and R,

B however bei g

difference.



letR = In(r) ; C = B"l then from [7.15C]

BfF.rf + Bf.rf + C«.R« + C«.R* =0

dyTn” <iy)2 d$ d$ (d$)2
-B.d¥.2r = d™"B.d*r + (dY/d$)2 .( d*C.d«R + C.d*2R ) [7.15¢"]
Similarly for [7.16c¢] and [7.17c]
[7.-16cCc7]
(1/B) . (d¥«/dY) = ( GN/r).q2
- [7-17c”]
R = (¥-r/dY)2 + (d™r/d$)2/(B2 .r)

Now since C = B"1I then d«C = " B"2.d«B

Substituting finite difference forms for these expressions for B,

dr, C, d*C. R, doR, d«2R, d,.r and d~r and rearranging yields

ro o, (r +or Y/2 + td».d)?r+Di .(d«2R -d*B.d*R/B)/B]/(2.B)

Hence the explicit fTinite difference forms of [7.15.C] to [7.19c] are
r =(r tr /2 t t (

- )t
i.j i+1,] x-1.J
+Di.[ In(r .r /2 5 - (B -B )(r i X
/2B )

i.J

=,<b " ° -b "./.BBT.!-"_ kb. -b..,.,>KB«>1V;,, b,,>
i) i+i,j  i-i.j [7.17d]
X = X +B  .D4.( r " n [7.18.d]

i_j i,J
[7.19d]

C - X - (1/8B ).-D3 .in( r. _ . N
i+1_j ij 1.0 o

) i v - difference forms give solutions
Suitable programs using these fm

) - incompressible flows with
to the design problem for rotati

swirl the results of which are discussed below.

|-7<?



for Conslstancd.

(@ Global Error Check.

AS In the case of i1rrotational flow 1t was possible to obtain an

estimate of the eglobal” error iIn the solution by integrating,

numerically, the fundamental equations over the whole flow field

. X .= (-1/B).[In(nN]
Similarly manner we have from "/ *

in finite difference form

x - X /i =

r y/dy ; i=L0L..1; 3/
i [

. X )T . (~1/B D[In(r™ ,~/rAN)]/d#

Surin”™ fo/i1:] over the whole flow field for both [7.35] and [7.36]

_ =] J=J3-1
"2(11di). (Xicout -Xxi,»myt 2 TV MAAY) Pt
i=1
X -i-?y"f-l/di) 2 (1/B )-[In(r /r )]
(I/dT)_.I{ (X - X _ lower i
j= upper, j lower, J miet
Summations

in the x variable can be performed over j

) QC= N PY since the left hand side does not
repectively for [7-35] and IE?.SG]
] ) ] AiY- -the values obtained for each side
involve the BI ,j . Comparisons fo

of the equations gives an estimate of the consistency fTor the

distribution for both "x” and ’r” over the flow Tfield.

Let
z ' )
r (1/d$). 2 (X X
( ) i=1 i.J il

=1 j=J-1

2 = @/dy). z Z B, .(r
=l j=i 1.J
1=J

s5r (dy). 2 (x. - X )
j=1 1.j 1,])
isi -1 j=J

ZAr _(1/d$). Z z (@/B_ )
i=1 =i i>]

120



then the quantities (Z1/722) and (Z3/Z4) nay be taken as error
estimates for x and r.
AS In the case for non swirling flow, a mass flow calculation 1in

the axial direction is used to estimate flow errors iIn the
Idistributions of x, r and g 1n the flow field. A similar calculation
inthe azimuthal plane i1s used as an estimate for the swirl speed.
The flow through a $ line joining two lines of constant Y iIn the
(G, plane i1s approximately that around the surface of the

frustum of a cone 1In the <x,y) plane (See Fig 7.4).

Thf

acone as 1ts base will have a

normal to this surface (i.e the mass flow through the surface is

-Ilven by surface area times normal speed. Angular momentum of thrs

"X



S .k

Lhin ring is given by mass times speed in the azimuthal direction. )

lence the volume of this element 1s given by

V* =S k.g*

t in a oonstan; / proportionality throughout the flow and

are some quantities representing the speeds, ( and w.

Ilriss aid over the base of the element. Hence the momentum of
the fluid is given by A*-J = k.S o ol
of .«oc,,=1v. ol«._._". b.
of the the ratios
@ Aijrifio ™ - lrow-d
or (b) Ai.j+i//ﬁ?\i.,!1 for 4-0touv-1

».here In (a) successive values are compared for all

i.1 and 1n (b)

all momenta are compared with the -exact” inlet value. A.. whxch

the axial and swirl
iIs calculated from the algebraic expression

velocities.

r.aic,nation of Abb~flar and

ori-incF V with thickness dy =

Consider the thin ring i1nner ra

< BMH disk is dm where
The mass flow through the surface o

2 r.y.dy.q = 2."n:.y.( ° J-K V + c-



If the swirl speed is

w then the angular momentum is given by

dA = 2.jc.y.q.w.dy
yb

7> Aa,b - 2.TC. i w.q.y.dy
ya

In the present case the inlet axial and swirl speeds are of the form

q=a + b.y + cy2 ; w==e.y + f/y-

i (a+b.y + cy2 ).(e.y + f/y ).y.dy

y=yb
[ ai .y + az .y2 + as .yS + a4 .y< + as .yS ]

where ai =a.f; az =b.f/2: as

=(a.e + f.c)/3; a4 = a.b/4; as = e.ol/5:

If ys and yb are taken as successive, inlet radii in the discrete

form of the p.d.e then the expression gives the momentum of the

annular ring and this value can be compared with the values of the

A.M. calculated from the converged solution downstream of inlet.

The total angular momentum can be calculated by taking ya - ymner

and yb = youter radii respectively. Similarly the exact mass flow

for the whole annulus at inlet is given by

M = 2.7T.[b -y2 + b .y3 + b .y4] ;b = a/2
1

; b =Db/3 , b - c/4
a.b

2 3 y=ya 1
Thus Ma.b and Aa,b can be used to evaluate the accuracy of the

linear and angular momenta at any station of the

Hence the flow around the

surface at some station, j, between the

two stream surfaces at i and i+1

iIs constant for all J].
i +1
[7.37]
Thus ds = Si .W*j = Ai for all j-
i +1,]
3nd A.M = IW_ dv. = w». V> where

i,] I .] 1»J



mosin-i ¥ (bi_ o+ W-,- >/2 then C7.373 provides an estimate
i,- I’_I I.'I

. : ~-f the swirling -flow.

Nl the

accviracy ¢}

S5ince the swirl velocity 1is

prescribed algebraically at inlet the quantities A. may be

»..vctlv. Ir. particular, th.c total anyular mo,r,entu,a at

allmln stiould idsal:y be pear-ailel although in a ni'tTe
icilietin'i this < only be the case if a shifficien

L
ilet sect,ioii @;1st 10 ma3fitain 3 parallel - Tiovi resil

dculation of A4 At inlet w = €.y t-7
The mass flow around an cannu'YS ©Of inner ra.dius y widtfi dy i
dn = .3M.y .dy .Ww 2.rmry . (e.y ¥ T/y
m = 2.TT.( e-y~/3+ f-y ) *+ Kx
Let m=0 when v = ,. then .. - —2-1-<€. 1" By - = -k

Hence /(2.7¢c) = e.y®/3 + T.y " ™2
Then the Ai representing the inlet mass flow between successive

annuli are given by

A - (Cm -m MY{2.k) - (e.y /3 NN+
i i+i i

>

n N e angular momentum calculated
these At are to be compared with :Ene ana
for each cell throughout the flow.
Numerical Solution and Results”

i v tr™ltdity of the programme code.
In order to test the consistancy a

the numerical solutions derived from the programme catering for

vorticlty and swirl [with vorticity set equal to zero throug

flow] were compared with those produced by earlier prog

Which vorticity was absent. Agreement between the two programmes was

almost exact the basis for comparison being a plot [15x15 ¢

//V -



flow with zero vorticy and the current programme 11x11 grid]

Similar comparisons made for the turbulent B.L give the same level of

agreement. The 1nitial values throughout the flow field for the

various parameters were

() -r” ; linear interpolation throughout the $,T domain;

@ -B” e« the value of the "B” function was set equal to 1

fhrougholt the flow corresponding to an i1nitial 1i1rrotational state.
@, -g- ; initial values of g along a streamline set equal to 1its

inlet value ; 1.e Q1.0 = i J > 1- throughout the duct.

,4) <fle; Initial values of the function Qe/r>4 are calculated from

[7.27] using the iInterpolated values of r and the prescrib

4-iNMi+Tr Ial «S— trlbu bion across the
values of G and H giving the vort|C|ty istriD
*

) ) ) . a ) streamlines,
inlet $ characteristic which varies between

Comparisons can then made between duct shapes by

(1) Increasing the vorticity parameter by altering the inlet

parabolic speed profile for zero swirl»

(11) Keeping the vorticy parameter constant and “winding up* the

swirl ;

(i11) Examining the effect of an inlet flow i1n which the swirl

velocity rotates in opposite senses on the duct walls; 1i.e there

v, than the wall boundaries,

for which the
is a stream surface, other tha

swirl velocity 1iIs zero;

inlet flow profile iIn the axial direction;
(iv) Effect of a concave xnlet now vy

(v) Examples of accelerating flows;

] walls at inlet
(Vi) Patches of constant radii and/or speed

or outlet;



Le programme in fact produces three converged distributions for
laoh solution; 1.e the >r-, "q” and "B’ distributions over the flow
field. The order 1n which these quantities are calculated within

tte numerical routines can sometimes be significant when considering
the number of i1terations required for convergence.

Various combinations were tried including using the most recently
Laculated values iIn the iteration. However it was found that this
lometimes produced instability and that the/ steadiest’ convergence

wes obtained by

(@ calculating the *B” distribution for all 1,j,
" the rn ,jJ and <i,jJ *simultanaeously ( dijj not

[appearing explicitly 1In the expressions for ri,j except on the

boundaries and therefore its influence on the value of r only

being applied via the function).

IThe parameters which define the wall geometry for these ducts are

@D Laminar or Turbulent B.L ; (2) Swirl "strength’

@ Vorticity ; (@) Upper wall PVD.; (5) Lower Wwall PVD.

By varying the parameters controlling swirl, vorticity

combinations of fixed and variable upper and lower walls their

Jan the duct shape may be judged and an i1ndication of the type of

humerical experimentation and iInvestigation that might be undertaken

Jis given below by a selection of computer runs and r

Case (A) Boundary conditions

U wall: “S tford’ -
® pper a 0 r%heogr|t¥¥g? separation value.

(1) Lower Wall: Fixed radius equal to inlet radius.

(1) Outlet : Parallel flow.

/7 é .
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In _ i n &K » 77 w [13 [13 [13 [13 [13 [T

vortioity is shown 1in Fig 7.6.

Effects: Increased vortlcity causes

@) Upper wall; Ilowered by 1i1ncreasing the vorticity.

@ Lower walli Tixed.

(3 Upper Vel.; Little change for i1ncreasing vorticity.

4, Lower Vel.; The velocity profile 1is raised however but remains

monotonic decreasing to outlet.

® Duct [ength; The g\)(ig“ |8H8xh of the duet is shortened.

®) Cross-Stream vel prof)i.ie,- THige> appears to be little change
In this profile.

These comments apply to a velocity distriution calculated on the

basis of an S-.4 “Stratford” distribution. 1t seems that by

increasing the vorticity of the inlet flow (having the effect of

i +0 *wind up* the Stratford
lowering the outer wall ) we can co

number to i1ts full value on the outer wall. [See Fig 7.6]

Case (B) Boundary Conditions.

T TT o_ Outlet Parallel
(@D Upper Wall Fixed; o .

flow;
(2) Lower Wall

@ Increasing non-uniform parabolic pr

Effects". Increase 1In vorticity causes

(D Upper Wall* Fixed N/A,

@ Lower wall: position of wall raised,

(3 Upper Vel Dist; Slow diffusion on fixed wall.

cel”™ rMJi“‘red very slightly.
4 Lower Vel Dist; Velocity profile
[See Fig. 7.7]

+ uall radii sections 1imposed
*Note* For these runs constant Qf negative radii,
automatically because of the occu



rase(C) Boundary Conditions.

) 0T - > (@ L Wall Fixed; (3) Inlet _unif
@D Upper Wall Sb + -O. @ ower Wa €)) nlet non-uniform

(4) Outlet parallel flow.

Effects: Increasing vorticity causes

(@ Upper wall;Little change;
@ Lower wall;FixedN/A,

A Upper Vel. List.; Little orno change;

@ Lower Vel. List.; Smooth slow decelleration

() Cross-stream Vel pro_Pi_ilgx._ ﬁgng gHgBe with little change.

®) Duct Length; Shortened. JLSee Lg -1

Case (D) Boundary Conditions.

n Q s- (31 Inlet non-uniform
(D Upper wall Fixed; (2) Lower wall S t.5. 3)

flov. (4) outlet parallel flow.

Effects: Increasing vorticity causes

(D Upper wall: Fixed N/A
@ Lower wall Lowered.

@ Upper vel Dist.
@ Lower Vel. Dist; Unchanged.
®) Duct Length ; Shortened.
the above examples is that for
A conclusion that can be drawn fro

-,» Xro-rtlcity caused by
the ranges considered the 1Increase

r.itv profile shortens the duct
inlet parabolic veloci y

HC for deccelerating ones.

accentuating the

for accelerating flows and leng

vorticity narrows the due
For deccelerating flows 1increas

widens
For accelerating flows - 1M+

w ..t shape of 1increasing the inlet
Fie. 7 a shows the effect on duct sh p

vorticity distribution.
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Te results obtained for flow with vorticity may be compared with

the shapes of those ducts i1n Chapter 6.

Since the PVD control the values of the wall

recurring numerical problem is the occurance of negative values of

the «all radii on the lower wall. In this event the B.Cs were

relaxed and replaced by either
@ a constant wall radius condition or

@Gi) a constant wall speed condition or

,iu, a -Winding down®" of the parameter controling the PVD. This

alteration will generally speaking be accompanied by a reduction

in the ammount of diffusion occuring at this point but may be

moud up- to an optimum value by the numerical routine 1If

conditions allow. Of the three possibilities (m) e

most -natural” variation to apply given that

a -4 whilst application of (i1) will relax
essentially velocity based whi

) , DT 1n 11all control 1is
the control over the behaviour of the B.L, 1

lost.

radiit only i1ndirectly a



Chapter 8

In this chapter the effect of compressibility is allowed for 1in
the design scheme to i1nvestigate i1ts influence on the flow
behaviour and any consequential change i1n the duct geometry.
The mathematical treatment allows the prescription of arbitrary
stagnation conditions for 1isentropic flow of a gas. Numerical
results are obtained and compared with the incompressible case.
The equations of motion for an axisymmetric compressible flow

with a non zero vorticity vector are

uu + v.u = (1/p)-P [8.1]
: y VX [8.2]
u.v. + v.v - w2/y = ("1/p)-P
uw +v.w + v.w/y =0 [8-3]
* y 8.4
@.yw + (p-y-v) =0 8-4]
[8.5]
C=LWMy).(y-w) 1.£ + [
As In the i1ncompressible case the set of design plane equations 1is
@ ®
[IN(®) ] = 6* .B/q2 e -N +V
» X y
[IN® 1 r - .Aq Ty
X = [ B/Aly o< =-w
X = [-A/B].y oy —((17y).(y-w)
y N\
[wB.y 1 + [GMy 1 0
[y /2 1+ [y2 /B2 ] = 1/92
y *
where 2 r u2 + v2 and Q2 = Qg2 + w2 - u2 + v2 + w2 [8.12]
Svalijat.ion of A FuoctJd”

continuity equation [8.43,
can derive an expression for e* to be substituted into [8.6(a,3

hence evaluate the function A.

id1r



V.(py) + ®@y)-Qu_ +v > =0
: " L Xy

= - Lu (p.y) +vVv.(p-y) 1/(P>.y)
y

( In(p.y) ) H Vv.CIn(.y) ) 1
CosO.( In(™-y) ) + q.SinG.(C In(]|Dy

( In(p.y) )X -><S +  ( an\r/J-y) )y-yS

e =-q-[ InCy) 1
But by definition of $ we have for any F, (F )8 = @/B).C F ),
Hence e* = - g- [ In( p,y) /B = - [ In™.y) 1]17.92/B
Substituting into [8.6(a)] gives
LIn®» 1 =- L[ In(p.y) 1 .@2/B) .(B/q2 ) = - [ In("y) 1"
= [ In(A.y.") 0O > Ay. =g () = A gi(V)/(".y)

Since g1 (Y) is arbitrary let g (Y) =1 = A = I/C*-V) =
From equation [1.11.7]

T =-Vv/A ;Y =u/A =Y = -p.yv ;Y =p.y-u
Substituting for A into [8.7(a)], [8-10], [8-11] gives

[LIn® 1 =-0Q /(/).y.q2)
t |

RE-Y-Yg In* [ViQID) Aoy 3 =~

* N

tp-y.y )2 + (y )2/B23 = 1/92
\ T *

From [8.3] we may deduce that (y-w) - O ~ (B/9) "

Hence (y.,,) 1s a function of T only "and (as 1n the i1ncompressible
case) we can write y.w = C(T) = w = C(Y)/y [8-13]

In a manner similar to the former, expressions for the X

components of vorticity may be derived in terms of the arbi

function C(Y).



Thus
Q=0/).-¢ywW) = (/Y-C)) = (i/y).cc N =
N r C8.14]
- \

and

= -[(1/y).ca)] = -d/y)tc(Y)]*= -d/y).CCr.T™ +
V *
[8.15]
= -d/y).Y

Inorder to proved further with the solution eet. It IS necessary

to obtain an expression for the 9 component of vorticity iIn

[B.7(a)-1]. This i1s done by considering equation [8.2]

u.v + v.v - w2/y - (1/p)-P N
Uu +v.v + w.w + u.v U.y “WW w2/y = 3
y y y " "
+W . W tw2/y
ag e +v2 +w2 ] +u.CV % ~ - \ vy N

= —d/™) P~ - (C/Y).(C/DN t C2/y3

arye ¢ WIRSR + G )+ car

-(1/1»-p +C.CN/y2 ->

- L2 1 +U.Qa =

[8.16(a)]
u.Qo = - [ (1/2). (Q2)~ + C.Cr/y2

By considering the equations of

isentropic flow of a «as. expressions

m_.y be derived for the 9 component of vorticity 1in terms of

radial coordinate y and quantities defined m the upstre

(where the flow 1i1s known) -
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Prpc;sure- Densi t.v. Temperature and Speed Relations.”.

Consider a particle of the fluid, with the speed, pressure,

density
and temperature at the point X1 denoted by Q1 , pi , and Tn . IF
Ki 1s a quantity depending on the value of the entropy, S,
at X1 , then
[8-16.1]
Let the total energy (enthalpy) of the gas at Xi be denoted
by HI , then
Ho = T + [8.16.2]
i i i
Also p/” =R.T [8.16.3]
where R =c¢cp -cv 7’y " [8-16.4,5]
and the speed of sound i1s given by
= dp/d« [8-16.6]

Suppose that a fTluid element, 1isolated from the surrounding medium,

IS brought adiabatically to rest.

Then 1t = 0 , and by definition the stagnation values Pp =T

at the point Xi (denoted by the subscripts "x,07)

satisfy p. -0
i

ad

H = cp.T
1,0 P 10

Since, by definition the enthalpy 1i1s unchanged by this process then

’ - 4 \ 0 A [8-16.8a]
i 1,0 1»0
Hence from [8.16.2] and [8.16.7]
’ o T + A - .T. [8.-16.9]
i,0 i i -0
[8-16.10]
and 5 i T Pio bl

/91’



Fron [8.16.3]

- p SfEip [8.16.11]
1,0 i, O \ i,o0

substituting from [8.16.11] 1i1into [8.16.9] gives

Gp. /R-0- ] /R.
PP P pi , 0 m? 1,0
substituting from [8.16.10] ives
1 ,O\ 1 \ 1 ,0 J
cp-p. -p-/(R.p *p ) . =cp.p_. /(R.p. )
1,01 i 1.0 \i1.0
which gives (after some rearrangement)
1 /P .Q2 J1/(c~-1 8.16.12
“ul _‘1’0[ Aj vioo i )-Q2 J1/( ) L 1
r
From [8.16.6] c2 )
i Up; 1
Hence the stagnation speed of sound Is c2 =y3-p /p
i.o i,o \ i,
Then [8.16.12] becomes
[ 1 - J~.@i~1.Q2ic2  Ji/(y-1) [8.16.13]
0
/ = [ 1 - (/-1) .Q2/C2. //</- [8.16.14]
(IOi pi_o) y | I_0]
a/rtT ) [ 1 - C/-D) .Q2rc2. ] [8.16.15]
1 1.0 / 1 1,0
/ = /T_ = (c
(pi IQi,o) (‘P i/§>i,o)Y (Ti |.o) (V
Also H = H =cp.T =cp.p /(R -Q )= 2 /R0 -
i i.0 i.o i.o \ii, 0 N
= (cpl/(cp-cv) y '.c2 /(y-D c2 r "

From [8.16.2] and [8.16.8a]

H r cpo.T + Q@
i i

i i,o0

@/R)-p £ ) + "

VJ



= (Cp/(Cp-Cv)).(p ) + ".Q2

H, = A/¢™-D)).(p 77~ ) +

If the flow is isentropic then the quantities Ki are the same at all

points along a given stream line and equations [8.16.13/14/15] now

define the relationship of p, T, Q along the 1th streamline

rather than a point.

/(YD) . (p/N) + (1/2).Q2 = ci.o2/(y-1) [8.17a]
Since the stagnation speed of sound may vary between streamlines we
may write

ci.o2/(y-1) = H(Y) = (M(~1)) =(P/)  (1/2).Q2 [8.170]

The evaluation of the expression on the RHS of [8.16a] 1s obtained
by differentiating [8.17b] with respect to y, thus

H (y/1y-D) + (1/72).(Q2)

- RN .
Now m = (k. K.(r-i) F.o= k(y-i) =p'”™2 .p /(k )

[(v-D/H1 _(1/P) -P (since p
= /DD (- ()P (2). (@

H = ((1/0).p + (1/72)=(Q2)
Substituting for Hy 1Into [8.16a] gives
u.Qgr H + C.C /y2
Now H H .Y +H .$ H y.u + 0 2ind C " y-u

V vy « Yy oy t
= u.Qo y.UH + p.ye C.C /y2
[8.18]
Qo (C2) H

.y 2.y2



This expression combining density and vorticity is that required

in equation [8.7(a)-!']. Since H and C are fTunctions of Y only

they may be prescribed upstream of the transition region in the
cylindrical flow regime.

The density speed/pressure/temperature relations are given by
equations [8.16.13/14/15] although the absolute density and pressure
throughout the flow will not be uniquely determined until some

base pressure is specified.

This completes the solution sets (1) and (2) listed below

Set (O

[p-B.yy 1 + [(I/p.B).(In y) ] =0
Ioyy 12 + v 7812 1/q2

[LIn® 1 r - (Qo/p.y) .(1/02)
f

\

(Qo/6.y) = [C2/2] /(¥y2) - H [8-18]

[InB] =( Hi'f— Cl /y2 )r/qz [8.18a]
t

Set (2

= [ 1 - {(y-1D)/2}. (Q/co )2 Ji/(/-1)
y-w = c(Y) *
CA/(y-DT-(p/?™) + (1/2).02 = co2/(y"-1) = H(Y)
where 2 - 2 + w2 = w2 + V2 w2 ; 2
Letting Cl = [(2/2] : Hi = H  and eliminating @ Trom [8.18]
and [8.7(a).!] then
N/ (Nly) = Cily2 - Hi o =>

[LIN(B) 1 = [HI - Ci/Zy2 ]1/q2 [8.18a]

20 1



Using the transform of Chapter 3 to map onto the unit square gives
V=r=Cl.ri ;X =c2Xl ;;q =2c3 .1 ;
Q =c3/Qi ;w = C3/W1 ; V = C3/Vl ; u = c3/ui

YI = (Y - C4)/C5 ; $1 = ($ - C6)/C7

a = (C5/C7)2 ; c2 = (C5/C7 )/2 ; C3 = 2.(C72/c5)

Applying this transform to [8.10.1], [8-11.1] and [8.18a] we have

piB.r 1 + [ (I/{fI-B)-(In Nn,1, = O [8.20]

20 (r 2 + (I/r).(r /p.B)2 ] = [8.21]
N\ * r

[mB ] =101H - < /r ].092 [8.-22]
T

where the subscripts have been ommitted and all variables and
constants are quantities iIn the transformed plane. The value of the
density, p, and all other quantities required for is determination
are calculated from the transformed equivalent of equation set (2).
Suitable specificcjtron of conditions on the physical boundaries
together with some choice of the stagnation quantities of the flow
will enable us to use the numerical equivalents of [8.20/21/22] to
calculate the required duct geometry and flow patterns.

The range of Y and $ may be normalized in the transformed design
Plane by choosing c4 ,ce as the minima and c5 , ¢/ as the ranges

of $ and Y.

Thus O-<Y=<x1l



Rnimdarv Conditions

From Crocco’s equation Vu -tV + V Q [8.22.1]

Far upstream, 1i1n the region of cylidrical, axisymmetric flow

= 0 = 0 v =0 [8.22.2]

From equations [8.7/8/9] the prescription of the axial and
circumferential swirl velocity profiles will necessarily define the

vorticity vector 1i1n the (y,0) plane

Q = (0 )X ( W/y).yw* )y + (-u) .8

Further, taking the "dot” product of Crooco’s equation with V gives

V.VH TV.I7s + V.(Vaq ) =XV.Vs [ Vector Ildentity]
A
Hence v.Vh + T v.Vs = 0
Thus 1f H 1s defined such that V.H = 0,

1.e the total energy of a particle flowing along a streamline is
constant, it necessarily follows that v.AS = 0

1 ¢ the rate of change of entropy inthe direction of the flow is
zero and constant along a streamline giving isentropic flow.
Similarly isentropic flow implies that the total energy H of a
particle i1s constant along a stream line.

The conditions on the physical boundaries i1n compressible flow may

be chosen from the same range available iIn the i1ncompressible case.



Thus

(1) Inlet: An i1nvariant distribution of the radial coordinate

r (=y2) based on a non-uniform inlet speed profile having a
parabolic varitation across the duct together with a swirl speed
distribution of the form w = a.y + b/y.

(2) Outlet: Parallel flow condition across the duct rd =0.

(3 Upper Wall: Prescribed velocity distributions based on “mixed”’
B.C or altrernative acccelerating flows.

(4 Inner Wall: As for (3). Condition (3) and (4) may be applied
piecewise iIn conjunction with constant velocity and/or radius
distributions 1f desired.

In the case of compressible flow some choice of the stagnation
quantities co, po, 0 must be made 1In order to specify the density
uniquely 1n [8.19]. If the flow were potential then the stagnation
speed of sound would be constant throughout the medium, however 1iIn
general 1i1ts valuey co™may vary for every stream line. Arbitrary
stagnation conditions may be prescribed by expressing the stagnation
quantities on each stream line as a function of the corresponding
values at some station (inlet say). Having established this set of
stagnation conditions we can express the variables of state p,p, T
and ¢ 1n terms of the local speed of the medium. For an 1isentropic

flow of a gas with constant specific heats we have

PIM+ (112). Q@@ =k

P/ = R,T T = k*.c2



gqt.agnatinn Conditions
The stagnation conditions on the 1™h stream

line being denoted by the subscripts "i,0 we have

=>
D 1.0 "i.o i

[A(1/-D1.p/~ + (1/2)Q2 = [//(y~DI-P =>
c/(-H + (1/72).Q2 - c2 N [8.23a]

Critical Values ) ) )
Suppose that at some station "jJ” on the streamline

"1° the speed of the gas becomes equal to the local speed of sound,

then from [8.23a]

Q . =c

1. lej} i>J

C2 /(-1 + (@/2).C*2 =c2 /(7/-D ==

i_j i i i,o /

c* = (2/\*+ D"™.c - ¢c* ; (since the critical sound speed 1is
i.] / 1,0 i constant for a given streamline.)

For ~ r 1.4, c*1 = 0.9128.c1,0
It follows that for the flow to remain subsonic on a given streamline

Q. < = (2/yr L)irze
1

= 0.9128.C
i_j i i

.0 .0
The other critical values of the variables of state may be obtained
from [8.23] to [8.26]. In order to ensure subsonic flow we may

choose a constant k4 ,say, such that Qi = k < 1.0 "

density Speed Relation

Eliminating *p” [8.23a] and [8.25] we have

KAK-1 = [ 2 /(y-1) - (1/2).Q2 7] =



Gi.J 1 " i.o # 1.J

Choosing some particular density "a,b (say) we have

fa

Re’f-ering all densities to this arbitrary density”a,b we have

= nc2_"-(y-1)/2.Q2

If nis chosen as the stagnation density on stream line a then

Q - 0 and
a,b ?a..”Pa.o

Q /p ~Cc /¢ )2 - {y-D/-c2 HY.Q2 1i/(>-i) [8.29b]

"1,013,0 1.0 a.o

If, in addition, the stagnation speed of sound is the same for each

stream line then O ~ P "a’o ~ Ao (say) -> (cI oa. O’\
0O =0 [ 1- {(k-D/2}.02 /[c2 J/({(/-)) [8-29c]
*ild "o - i,j ©

If [8.29c] applies then we have adiabatic isentropic flow and the

density/speed relationship i1s i1dentical for each stream lin

throughout the flow. |If, on the other hand, stagnation conditions

vary across the fTlow then the more general relationship [8.29a]

holds. In [8.29a], let 1i1=I. i-e the reference density is that

at the i1nner inlet point of the transition region then

= (/)LD 1 -[c2 - 1y*-D/23.Q2n ~ D]

But C2 z c2 - [(/-1)7/2].Q2 => ~ A /NKHL/< 1>
1,1 1.0 T 1.1 -

Refering all densities to ~and setting M

p = c2 MW =1 ;K=2¢c2 =

ft /0 =[ (c /cC da -

A 1.o 1.1



Thus [8.29] 1i1s the numerical form of the speed-density [8.19a]

=[P - P .2 Ji/V-1)
t.i o i,]

i 1.ol .1 0
where the P1 may in general be different for each streamline.

where P_ = (c_. /c )2 and P = (}/"—I)/(Z.czl1 )

The choice of the P1 1s arbitrary but some rationale iIs necessary 1in
order to produce a feasible fTlow regime iIn the transition region. The
choice of Pi1 across the duct will implicit ly define the density
variation in the transition region and also the i1nlet conditions

(e.g Mach number) across the duct. These i1n turn will define the
upstream values of density, pressure and temperature. Similarly a
choice of distribution of p or T In some region of the flow will
imply the distribution for Pi .

Choice of P1 .
Suppose that on the 1th streamline we wish to iImpose

a density variation of the order of Di across the duct at inlet. Then

A -p +D =1+D since =1
[i-3(CI1,1 i i ( Sn,! )

=[P -P .2 Ji/7(3/-1)
i O 1,]
IT the desired density variation Is now chosen then the Pi are

defined since Q IS prescribed at inlet. Thus let Di be
11J
set equal to some % variation of the i1nlet density

p n (1 +D )OI + Po .Q [8-29d]
i i 1.J
The value of Po depends upon the value of the i1nlet Mach number on

the hub.

Thus let M = /c ; Hence P = -1).M2/7(2.Q2 iIs known
« Ql-l 1.1 (% ) 1 ( Ql*l )

since Q1,1 is prescribed at inlet.

Z0O-



Since all P1 and Po are now defined the density-speed relation for

each of the streamlines is specified

J: [ Pi - PO-Q% . n/ ) -

r..

In summary (1) The i1nner inlet Mach number,Mj on the hub is chosen
which defines Po =(/-1).M2/(2.Q2 ) since all
Q1 ,1 are prescribed. . -
(i1) Some % variation (Oi1 ) of density are chosen which
defines the Pi ’s since Qi L are prescribed at inlet station

Since the P1 are now defined, the corresponding value of the Mach

numbers at i1nlet may be calculated from the relation
Pi = (c /c ) %
i .0

1,1

Since c2 + A.Q2 =2 where A = (y-1)/2
i»J i, ] i,o

for j=1 2 + A.Q2 3 2
i, 1 i1 i, 0

=> p =c2 /c2 + A.Q2 /c2
i 1.1 1,1 1,1 1,1

But the i1nlet Mach numbers are defined by

W -0Q /c . M =0 /C and eliminating c’s
n il il 1 1,1 1,1

P ¢Q  /Q R.[LaMR + A]
s i

n 1 1.1

which expresses P1 i1n terms of quantities at inlet. Solving for the

inlet Mach numbers Mi gives

=M [P .Q /Q X -A.M J-I/2
1 i 1,1 1,1 1

Alternative methods of defining the density-speed relation can be
based on choosing different distributions of other flow variables at

some station of the flow.



This particular choice suffices only to establish a feasible
relationship between the quantities Q and Q at the i1nlet station.
However the the technique does indicate a method by which

other appropriate properties of the flow such as temperature,
pressure or functions of them might be prescribed. Equation [8.29]
shows that the density varies iIn a sense opposite to that of speed
for a given streamline (i.e iIn the J direction). However this

IS not necessarily the case along any other vector particularly the
Y characteristic since the density is a function of the i1nlet Mach
number for any given line and it would be possible to choose inlet
conditions to change the "sense’ of the density speed relation.

Thus let

A=(_ /c )X >0 ;B =(/—!)(20% 1) >0

N = A - B.Q2 >0
1.o 1,1 f ’

where B i1s constant but A i1s a function of the stagnation speed of
sound on the streamlines and hence a function of the Mach numbers.
Thus ~ r [ A - B.Q2]N
d” (p) dA + (~ ) .dQ
N. A -B.Q2]n-i.dA + N.[ A - B.Q2]JN-i("2.B.Q).dQ
= N.[ A -B.Q2 IN-i.( dA - 2.B.Q.dQ )

df = N.[ A - B.Q2 IN-i.( dA/dQ - 2.B.Q ) [8.30]
dQ
Now if (i) A = constant (-)(2.B.NQ).[ A -B.Q2 JN-i <0 ;
dQ
and (ii) A N constant dP = 2.N.Q.[ dA/d(Q2 ) - B] -[ A - B.QZ]N-1
dQ

Thus 1f the choice of i1nlet Mach number i1s such that dA/d(Q2)- B >0

for some region of the i1nlet then” will vary iIn the same sense as Q.



Finite Difference Forms

The complete set of equations giving the solution for compressible

flow comprises

CC.B).r 1 + [{M/(®-B)>.(Unr) ] =0 [8.20]
Vv £ C «
“LCr D)2 + (1/r).( r»/{Q-B})2 1 = Q2 [8.21]
n r
[ InB ] = [ Hl— Cllr 1-92 ) [8.-22]
A = tP - P0.Q23/™ [8.23]
where ~1/(™1)) T < =u2 +v2 ;Q =u2 +v2 +w2 and H, G, Pi

and Po are known functions of Y.
Comparison with the i1ncompressible case shows that the array [B]
has, effectively, been replaced by the matrix [*.B] (see below).

Thus from equations [7.15c], [7-16c], [7-17c]

[B-r" 1] + [(I/r).(In ) 1 =0 [7.15C]
Y 2 «
( r )2 + (I/r) .(r 7B)2 = 02
Y «

[ InB 1 =][H-C /r ].02
T 1 1

Thus In the numerical iteration, the density 1i1s calculated at each
point of the grid from [8.27 and used to calculate the new B matrix
The structure of the fTinite difference equations for compressible
flow 1s substantially the same as for the i1ncompressible case, the
modifications being given iIn the appendix.

The “x” coordinate is obtained from the equivalent finite

difference form of [8.8a] and [8.9a]. 1.e

~ = [B/A]l.y [8.8a] X, = [-A/B].y [8.9a]

JUuO



With the transform of Chapter 3 these become

« = X + B ~0F - ).d$/dy [8-29]
i, g+l iij il \ilJ i1j+1 i

)}-In(r /r  )1.dv/d$  [8.30]

I +1, i »J 1. J+¢ ]t I

Equations [8.29] and [8.30] are used to evaluate the x coordinate

at each grid point.

Summary of Results.
OUTLET VALUES ((HUB AL, CASING AP,)

R(AL,AID) R(AP,Al) Q(AL,Al) Q(AP,AI)

0.916996039 2.47786903 .584282606 542575350
0.898233270 2.44923131 5861876253 .543979439
0.833708864 2.36262394 592780901 .548270577
0.633074333 2.08096679 .614223702 .563302140

The above results are for compressible flow with zero swirl

and uniform inlet flow. The preliminary result seems to be that

the whole duct shape i1s depressed downwards for iIncreasing Mach
number . The exit speeds across the duct are approximately uniform.
Numerical results and observations. The program thus far developed
for the numerical solutions has the following variable set of

Input parameters which define the flow

(@D Upper wall Distributions of functions of (r,q) of the

following types (@) constant radii patches, (b) constant velocity

patches, (c) decellerating flows , (d) accellerating flows.

@ Lower Wall As for (1) above.
A Inlnt. Avial Profile Parabolic axial velocity profile with
variable maximum and inlet wall speeds contributing to a non zero

vorticity vector.

zif



@ TrJdet Swirl Swirl velocity profile of the form a/y + b.y.
®) Ont.let Speed Distribution Parallel flow condition.
@il F.oundary Sayer Choice ol boundary layeib vs) laminai ,

(b) turbulent.
(7)) Variable Den.sitv Distribution of Mach numbers across the flow
at inlet implying density variation throughout the flow.
In addition there are other subsidiary parameters such as ratio of
nlet di.ict radii and duet “lengt.ii” which jnay he varied.
The multiplicity of combinations of variable paraiuetei.s moke-s It
impossible to investigate the widest drange of possiblities but some
general couciusions are given below.
(1TFig 8.1 a.3.1 .a. - For a fixed lower boundary and a laminar
boundary layer on the point of separation on thei upp>er Wdll, an
increase iIn Mach number at inlet causes the upper wall to move
inwards. The wall speed distribution 1i1s proportionally little
changed by a change iIn the contour.
@ Fig 8.2 & 8.2.a.: For a fixed Mach number at inlet and fixed
lower wall an i1ncrease iIn the swirl parameter raises the outer wall.
Except for geometrical displacement the sr>eed distribution is little
clnnged.
Alternative fTlow constraints and preracriytions may be applicable
depending upon cir<aumstance and suitabl.,- numerical formulations

will all.ow their inclusion iIn the design scheme to produce duct

contours .satisfy"ing these requirement.s.

JI/A.















Cericlus 1. 11

The formulation of the design problem i1n this thesis allows the
incorporation of the following flow parameters iIn the numerical
techniques to influence the flow pattern and lienee the geometry ol

th< allnu]ar duct.

(11 Inlet. Vorticity Distributions and Velocity Profiles.
(@ Swirl Coinponent parameter.
(3L Density/pressure/ Mach Number distributic.)ns at Inlet.

(@ Inner and outer wall prescribed velocity distributions and/or
radius.

(B) Effect of Laminar or Turbulent Boundary Layers and Separation
Criteria.

The 1nvestigation in detail of the effect tliat variation 1in

the.se parameteins might have on the flow geometry, either

individually or in concert, would be made by a substantial amount

of numerical experimentation and optimum configurations deduced.

The separation criteria applied iIn calculating the wall velocity

distributions are applicable to situation.s whore the wail

curvature i1s not large. This 1s u.suaily a roas-jnablt- ciosumption

in the axial direction but iIn the case of swirling flows, iIf the

inner wall collapses towards the axis™ the swirl velocity iricreciso:®

substantially implying a large pressure gradient across the boundary

layer to support the inward acceleration. This contravenes the

usual E.L assumption (for flows where there are no large changes iIn

curvature) that the presssure gradient of the free stream is

"impres.sed” upon the B.L. In the case of the outer wall



this 1Is not such a serious drawback since (in the examples
considered) the curvature of the wall i1In the 0O direction is of the
same order of magnitude as the *small’ axial curvature.

Current boundary layer theory does not provide us with detailed
knowledge of the behaviour of skewed boundary layers that would be
expected i1in the case in swirling flows, however there is no reason,
in principle, why alternative boundary conditions based on further
analysis of boundary layer behaviour together with general fTluid flow
considerations could not be i1ncorporated into the general numerical
design approach presented in this thesis arid extend our ability to
generate duct shapes supporting fTluid regimes with arbitrary but

consistant flow properties.



Appendices

z =X+ 1y Z 1 ;s =i~;2z2" =X-1iy ;2 - 1; Zz*
’ y X y
i F =F .z +F .ZFx = F
For any function, F, X 2 "%y o X =7 .
zx =1 [F
z Yy * 7 Z Ze
X = + z*)/2 ;X 1/2 ; X = 1/2
(z 2*) 2 zZe
y = (z-2z/@i) sy -i/2 5y =i/2
- = F -
X z yZ L X
- = CF +
z * X z= yyz*
F = [F +F /4 =717 2[F/4]
zz* XX vy Yy
) 2 2
ITQ =u- 1.v ; € =U +V ;Q = V- u =9g.e~1® ; g-u + Vv
X Yy X 'y
Then Q=~[(u + v )-1.(v -u ) }J/2 - [€ - 1.Q }/2
X y X y
©) _
For any function F
F =F.x +F.y =COSO.F + Sin0O.F :x - Cos0O :Y_ = Sin0
X s y s X y s S

F =F .x + F .y =-Sin0O.F + CosO.F X = Sin0 yn = CosO
n X n 'y n « y ”

ds = dx.CosO +dy.Sin0 : dn = -dx.Sin0 + dy.CosO



€
F + 1.F [ CosO.F + SinO.F ] + i1.[ -1.SIin0O.F + CosO.F ]
S n X y X y
[ CosO - 1.Sin0 ].F + 1.[ CosO - 1.Sin0 ],F
N\
Yy
e-ie.[F + F ]=2e-1e.F
X Yy z*
(InQ + i.(nQ) = 2.e-ie.(InQ) [from (4)]
S n Ze
= 2.e-1¢e .(17Q)-Q
Ze
= 2.e-ie/(q.e~i®©®).Q [from (2)]
Ze
= [€ - 1.0 ]/q [from (2)]
(6) ) ) ) )
(InQ ) +1.C InQ ) =1L1In (q.e-10) ] + i.[ In (q.e"1®) ]
S n s n
= [Ing - 10 ] + i.[ Ing - 10 ]
s n
=L dng +0 T+ 1.[ (dng) -0 ]
s n n s
= [0-1.Q]17q [from (5)]
@
F =F % +F .Y F =F % +F .Y
S $ s Y s n $n Y n
But from definitions of $ and ¥ ;$ =0 and Y =0
n
$ =q and
S 2
Hence F =q.F - F =q.F
S 2 9 n 1Y
@)
d$ =% ds +$ .dn =g .ds + 0 = ¢
S n 2
dY rY ds +Y .dn =0 + q -dn - (@
n
® ) )
From (3) ds =dx.CosO + dy.SinO ; dn = -dx.Sin0 + dy.CosO
dx =ds.Cos® - dn.SIn® ; dy = ds.Sin0 + dn.CosO
dz = dx + 1.dy =(ds.Cos®© - dn.Sin0 ) + 1 (ds.Sin0 + dn.Cos0O)
= ds.(CosO + 1.Sin0) +i1.dn.(CosO + 1.SIn0) = ei0.(ds + 1.dn)
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