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E. Augustyn-Gradkovjska
Stereocontrolled synthesis of plant growth regulators 
Abscisic Acid and Xanthoxin.
Summary

The project is concerned with the total synthesis of plant growth 
regulators related to abscisic acid (ABA). The biological activity 
of these plant growth regulators, ABA and Xanthoxin, and their deri­
vatives : influenced by the stereochemistry of the double bond 
system in the side chain, the 2Z,4E-isomers being most potent. The 
stereocontrolled synthesis of the side chain was to be achieved by 
bridging the positions 1- and 4- with sulphur and for this reason 
4-mercaptO“3“methylbut-2-enoic acid "1$ -thiolactone was prepared.
The synthesis of the ^  -thiolactone proved difficult. The pub­
lished methods of Hornfeldt and Gronowitz, and Wemple were not 
satisfactory for our synthesis. Thus, the former method resulted 
in the mixture of bromothiophenes, which could not be separated 
on the required scale; the method of Wemple which was reported 
to be successful for thioacids and aromatic cx-chloro carbonyl 
compounds, failed to give a required product of the reaction between 
the bis-anion of thioacetic acid and chloroacetone; instead,3,5- 
dichloro-4-hydroxy-4-methylpentan-2-one was formed by aldol con­
densation. Following some examples in the literature, v;here oxygen 
atom was replaced by a sulphur atom, an oxygen analogue of the
iJ' -thiolactone, 3-methyl-2-butenoic acid y -lactone, was prepared 

and reacted with phosphorous pentasulphide, but no positive results 
were obtained. The V  -thiolactone was successfully prepared in a 
new synthesis which involved preparation of 4-chloro-3-methylbut-2- 
enoate (E and Z isomers mixture) in a Wadsworth-Emmons reaction of 
triethylphosphonoacetate and chloroacetone, conversion of (E and Z)
4- chloro-3-methylbut-2-enoate to 4-acetylthio-3-methylbut-2-enoate 
(E and Z) and the treatment of the latter product with methanolic 
HCl to give the y  -thiolactone, which was isolated by distillation 
with 12% yield. The y-thiolactone was then separately reacted 
v;ith benzaldehyde and mesitaldehyde by the method of Gronowitz to 
yield crystalline compounds (3Z)(5Z)-5-benzylidene-4-methyl-3~ 
thiolene-2-one and (3Z)(5Z)-5-mesitylidene-4-methyl-3-thiolene-2- 
one respectively. The new double bond formed in the condensation 
of the y  -thiolactone with benzaldehyde and mesitaldehyde had the 
required Z-configuration in both cases, the fact predicted from 
examination of molecular models and confirmed by means of X-ray 
crystallography. The successful condensation of the y-thiolactone 
with aromatic aldehydes did not, unfortunately, apply to aliphatic 
aldehydes. Thus, p -cyclocitral, failed to condense with the
^-thiolactone under a variety of reaction conditions, whereas, 

cyclohexanecarboxaldehyde reacted with the y-thiolactone in 
MeOH/NaOH to give the required product with low yields, only. As 
an alternative route, useful derivatives of y  -thiolactone, namely
5- bromo-4-methyl-3-thiolene-2-one, trimethylsilyl (4-methylthien-2- 
yi) ether and diethyl-(4-methylthien-2-yl) phosphate were prepared. 
Since Raney nickel was reported to remove the sulphur atom from 
various compounds, it was used for desulphurization of 5-benxylidene- 
4-methyl-3-thiolene-2-one to give desulphurized and reduced product, 
suggesting that milder reaction conditions need to be employed in 
order to preclude double bond hydrogenation.
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1. INTRODUCTION 

1. History

Plants directly or indirectly provide the food for man and
animals and therefore a knowledge of their development has
always been of great importance. A considerable amount of

information on plant nutrition and genetics is known, ^

but there are various aspects of plant physiology which are

no less important: a seed will germinate only under suitable

conditions, plants always bend towards the light, a fruit

when ripe falls off the tree. It ijs now known that these

physiological processes are controlled by plant hormones,

very potent chemicals produced in low concentrations within 
2the plants. With regard to their physiological function, 

the plant hormones are classified as plant growth promoting 

hormones (auxin, gibberellins, cytokinins) and plant growth 

inhibitors (Abscisic acid, Xanthoxin).

3The plant hormones which were discovered first are auxins.
4 These naturally occurring compounds play an important part 
in almost every aspect of plant growth but their most signi­

ficant role is the ability to induce elongation in the plant 

cells. Chemically they are related to indol-3-yl-acetic acid 
lAA (1). ^

The second group of plant growth hormones are gibberelliiis which 
are responsible for cell elongation and division. The first



gibberellins were obtained from a fungus Gibberella fujikuroi. 
6 7 8 The fungus causes a "bakanae" disease, which is 

characterized by the fact that affected plants were often twice
as high as healthy plants. Gibberellins are structurally related

9to gibberellic acid (GA^) (2).

Cytokinins are compounds which are responsible for cell divi­

sion, The first naturally occurring cytokinin, "Zeatin” (3) 

was discovered in 1964 by Letham and was identified as 6-(4- 
hydroxy-3-Tnethylbut-2-enyl)-aminopurine (3). High

levels of cytokinins have been found mainly in cells under­

going rapid division such as in germinating seeds and young 

fruit.

(1  )
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The endogenous substances which inhibit or retard physio­

logical processes in plants are recognized as plant growth 

inhibitors. They represent a group of plant hormones which 

counteract the effects of growth promoting substances. The 
presence of such inhibitors in plants has been known for 

many years. One of the first inhibitors discovered was
coumarin (4). This compound and its derivatives are widely

11distributed in plants. In 1949 Hemberg showed that

dormant buds of the ash tree and potato tubers contain a

high level of inhibitors and that the inhibitor content
12diminishes towards the end of the dormancy period.

( 4 )

The bioassays carried out by early researchers to determine 

auxin levels in plants often showed that the purified and 

unpurified extracts exhibited different biological activity. 

It was concluded that some other compounds must be present
X 3 X Awhich diminished the action of auxins. The extensive

investigation of growth inhibitory compounds began in 1952,

when the technique of paper chromatography was combined with
14 15growth bioassays for the analysis of plant extracts 

The extracts of many plants analysed by means of paper chroma“ 

tography showed that the growth inhibitory compounds fall 
within the same area. This mixture of compounds was named

V



"inhibitor - ^ 16 Among the known components of the

"inhibitor “ A" complex, Abscisic acid (ABA) (5)

and Xanthoxin (6) (7) 20 were shown to be most potent.

2. Discovery of Abscisic Acid (ABA)

Different groups of scientists working on plant hormones re­

ported the discovery of ABA at about the same time. F. T.

Addicott and K. Ohkuma (1963) isolated the active compound
18from young cotton fruit and named it "abscisin II". The

compound was found to be identical to the chemical "donnin".

which was isolated from the leaves of birch (Eagles and Waring,
21 191963) and leaves of sycamore (Cornforth et.al., 1965).

At the Sixth International Conference for Plant Growth Substances

held in 1967 the name "Abscisic acid" was agreed for the new
22biologically active inhibitor.



3. Occurrence and Properties of ABA

Shortly after ABA was separated from cotton fruits and

sycamore leaves, researchers found its presence in the
23pods of lupin, in the leaves of cabbage and in

avocado seeds. 24 ABA is now known to occur widely; it
24is found in many species of higher plants, in ferns

and mosses; 25 however its concentration varies from

organ to organ. Mature, senescing or dormant parts of the

plant like fruits, seeds and buds have the highest content
9 / 9 ̂of the hormone. ABA was recently reported to be a

. , 26metabolite of the fungus Cercospora rosicola.

Soon after ABA was isolated its structure was determined by 

Ohkuma and Addicott (1965). ABA(5) has one asymmetric

carbon atom at C-1*' and therefore exhibits optical activity. 
The naturally occurring enantiomer is dextrorotatory; it 

has the (S)-configuration at the asymmetric carbon atom. The 

synthetic, racemic (•—)—ABA was found to be almost as potent 

as the naturally occurring (+)-enantiomer. Also, the (-)- 

enantiomer showed high biological activity in growth in­

hibition bioassays; however, in bioassays for stomata
28closure (-)-ABA was found to be much less active. The

most important aspect of the structure of ABA molecule is 
the geometrical stereoisomerism of the side chain. The con­

figuration is required for biological activity; the
2E,4E isomer called trans-ABA (8) is biologically inactive, 25



In solution light catalyzes isomerization of ABA to trans-ABA 

to give a 1:1 mixture of both isomers; ABA should be protected 

from light as much as possible to preclude this.

Natural ABA has been obtained as colourless crystals, m.p. 

160°-161°C. The infrared, nuclear magnetic resonance
OQand mass spectra have been reported. ABA shows excep~

tionally high optical activity. This property was used to
24measure quantitatively amounts of ABA in plant extracts.

4. Biosynthesis of ABA

Two biosynthetic pathways have been proposed for ABA: a) 
direct biosynthesis in which ABA is synthesized from isoprene 

units within the chloroplast and throughout the whole plant; 
b) indirect biosynthesis proceeds via carotenoids which are 

photochemically converted into ABA.

Thus, by the use of the labelling technique it was shown

that [2-^^c) -mevalonic acid (MVA) is incorporated into ABA



in intact plants, 30 as well as in isolated chloro-
0*1 O

plasts. With use of (4R- H] mevalonate it was further

shown that the ABA was derived from all ^  precursor and 

that 2Z double bond must have been formed at a later stage 

of the synthesis. These results are however in favour

of a direct biosynthetic route from MVA to ABA but they 
also indicate that the possibility of ABA being derived from 

carotenoids cannot be discounted.

Evidence for a synthesis of ABA from carotenoids was first

presented by Taylor and Burden, who obtained Xanthoxin by
33illumination of a carotenoid violaxanthin. Later

[2-^^c] -Xanthoxin (6) was shown to undergo conversion into

ABA in intact plants. 34

At the present, despite the amount of work contributed to 

this area of research, a precise biosynthetic route to ABA 

is not known.

5. Metabolism of ABA

Milborrow showed that (-)“ (|̂2“ “ABA was metabolised by 

tomato shoots to a glucose ester (9) and phaseic aĉ .̂
(10). Metabolism of ABA to phaseic acid (10) preceeded

via an unstable intermediate 6̂ -hydroxymethyl abscisic acid 

(HABA) (11). Sondheimer and Walton showed that (+)“ (_2- CJ 
ABA is metabolised by bean plants to phaseic acid (10) and



OlH

6 ’ -  OH -  A B A (11)

:ĉ H

c=o

S c h e m e  1
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36dihydrophaseic acid (DPA) (12). Further investigations

on the biotransformation of ABA in plants led researchers
to the discovery of a new metabolite namely epi-dihydrophaseic

acid (13). Glucose ester (9) is the only known product
35 37of metabolism of (-)-ABA,

The physiological role of ABA metabolites is uncertain,
or OQ 39however, Milborrow as well as Wright and Hiron

suggested that the formation of glucose ester (9) represents 

the deactivation mechanism for an excess of ABA in the plant 

tissues, but, whether the process is reversible or not has 

not yet been established.

6. Isolation and Detection of ABA

Growth inhibitors are extracted from plant material by an

organic solvent such as diethyl ether, ethyl acetate or
methanol; however, the best solvent must be determined for

each plant tissue. Acid-base extraction is then carried out

and it is followed by chromatography; the variations used
37 • •include silica gel column, silica gel thin layer

and paper chromatography. The ABA content in purified
plant extracts is then estimated using biological or phy­

sical methods.

The bioassay which is most frequently employed uses the
18ability of ABA to inhibit the plant# growth; this



response is, however, very unspecific as many other compounds

at high concentration will imitate or enhance the effect of

ABA. The inhibition of seed germination test has also been
used but the test takes a few days and requires large quan-

40titles of compound.

The bioassay which is recognised as very sensitive and fast 

uses the ability of ABA to close stomata. However, other

plant hormones 41 42and CO^ have been reported to in­

fluence stomatal apertures and they may interfere with ABA

in this test.

The choice of bioassay depends on several factors such as 

amount of compound available, cost, speed of response or 
specificity. However, there is no single unique method for 
determining biological activity of ABA; also, one needs to 
notice that, although exogenously applied ABA displays its 

activity in selected bioassaysit does not necessarily 

mean that an endogenous hormone would influence these pro­

cesses. Thus, applied (-) ABA may penetrate to the cells 

where it does not normally occur or it may meta­
bolise and the changes observed will not represent

a true response to natural ABA.

In the recent years new instrumental analytical techniques

have been employed to detect ABA and other plant hormones.
3 7Spectropolarimetry, gas chromatography, combined

10



29 43gas chromatography and mass spectrometry, high
44performance liquid chromatography are the analytical

methods which were found very attractive as they allow 
detection of very small quantities of the inhibitor without 

the interference of other phytohormones.

7, Biological Activity of ABA

ABA was shown to be involved in several processes of a 

growing plant. Thus, the first isolation of this hormone
was accomplished following its abscission^accelerating

18activity on the cotton explants. The further work in

this field suggested, however, that ABA was not as closely

involved in the leaves abscission as it was originally 
18 22thought; the experiments which reported the leaves

abscission were carried out with the high ABA concentrations.

which in turn could stimulate ethylene production.
Therefore, there is no clear evidence of the direct influence 

of ABA on the leaf abscission. However, the involvement of

ABA in the fruit abscission is more certain, largely as a
47result of work of Addicott and Davis, who demonstrated

the correlation between the content of ABA and the develop

ment of cotton fruits.

ABA was shown to be involved in the regulation of dormancy. 

Thus, large quantities of ABA were found in a number of 
dormant plants with a highest level of the inhibitor in buds.

11

i



19 48  ̂ 17 24 , , 49 24  ̂ ^tubers, and seeds. The content
the

of the inhibitor diminishes towards the end of^dormancy 

period, while the levels of growth promoting hormones 

sharply increase. The balance between the growth promo­

ting hormones and the inhibitors is thought to determine

the dormancy state, 25 50

An important physiological function of ABA is its involve­

ment in the response of plants to stress conditions. Thus, 

ABA was shown to affect the stomatal aperture enabling the

plants to recover from stresses such as water-logging,
oq  ̂ , 51^3 ter deficit, or mineral deprivation. The

response of stomata to ABA was shown to be reversible.

39

39 51

The inhibition of growth is a very pronounced response of

plants to ABA and this property has often been utilised in
18the biological tests. Recent experiments suggest that

ABA may also be involved in the inhibition of root growth. 52

8 . Synthesis of Abscisic Acid

Large quantities of ABA are required in order to carry out
investigation of its biological activity. Therefore the

27elucidation of the ABA structure by Ohkuma inspired the

search for synthetic routes to this hormone.

The first synthesis of ABA was achieved by J. W. Cornforth

12
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in 1965. 53 The major step of the synthesis involved the

photo-oxidation of (2Z)-3\4'-dehydro- ̂ -ionylideneacetic acid 
54(14) and subsequent re-arrangement of the corresponding

endoperoxide (15) on heating with 0.07N aqueous NaOH. Racemic 

(-) ABA was obtained with a 7% yield (Scheme 2).

In 1966 Mousseron-Canet ^  a^ reported an improved method of 
re-arrangement of the endoperoxides using alumina. However,

Cornforth synthesis and the improved method gave low yields and 

were not suitable for providing the large quantities of the com­

pound needed for biological tests.

Better yields (11%) were obtained in the synthesis designed by 

Roberts, 1968. The preparation initially involved the

reaction of Ot-ionone (16) with t-butyl chromate as an oxidizing 

agent for allylic positions and resulted in the formation of 
4 - 0 X 0 -OC-ionone (17) and l-hydroxy-4-oxo-oc-ionone (18), a 

precursor of ABA. The compounds (17) and (18) were separated 
by chromatography on a silica gel column. 1—hydroxy—4—oxo—Ot— 

ionone (18) was then reacted with carbethoxymethylenetriphenyl- 

phosphorane to give a mixture of stereoisomeric esters (19) and 
(20) which were converted to the corresponding acids ABA and 
trans-ABA. The acids were separated by fractional crystallization 

from chloroform.

In 1978 F. Kienzle reported a new synthesis of ABA (Scheme

4). The optically active ketone (21) was reacted with (Z)-

15



1* (CHj)jSiCI
2. '^y=/«VS*(c»H^»(2 2 )
3. KOH|M/)|MeOH :f% oh

(2 3)

Na [h^AliOCHiCHjpCHj'^ J

:h/)h

H O (t5 x ^R 'iC H j

(29 )

Scheme 4
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trimethylsilyl(3-methyl-2-penten-4-ynyl)ether (22) to give

the precursor (23) of ABA. Compound (23) was reduced with
sodium bis (2-methoxyethoxy)-aluminium hydride Na [̂ Ĥ Al

(OCH^CH^OCH^)^ ) and the resulting product (24) was then
oxidized with MnO^ to the corresponding aldehyde (25) which
was then reacted with Ag^O to give the racemic (-)ABA (Scheme

4). The optically active ketone (21) was prepared in a
58separate synthesis from isophorone (26). Isophorone

(26) was catalytically oxidized to oxo-isophorone (27), 
which was then stereoselectively reduced during a fermen­
tation process to give compound (28). The product (28) was 

then reduced with triisobutylaluminium (TIBA), A1 I[ (CH^)^* 

CHCH^ ) 3 give predominantly the (4R,6R) isomer (29) and 
some (30). The former was subsequently converted to the 
required ketone (21) . Trans-ABA can be prepared by this
same method using ketone (21) and the (E)-geometrical isomer
of trimetylsilyl(3-methyl-2-penten-4-ynyl)ether (22). The

Kienzle synthesis may be used for the preparation of some 
ABA analogues. Its main disadvantage, however, is the large 

number of stages involved.

9. The Structure-Activity Relationship

Parallel to the search for the synthesis of ABA, new routes 
to ABA analogues were developed. These analogues helped to 
determine the features of ABA molecule, which are responsible 

for its biological activity. One of the important aspects of

17
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the structure of ABA is the geometrical isomerism of the

side chain. Only ^-isomer is biologically active

and any changes in the side chain, namely alteration of the

length (31, 32) or stereochemistry (33, 34) of the
side chain as well as the replacement of the methyl group with

61ethyl group (35) render the compound inactive.

Other important aspects of the structure of ABA are the con­

figuration at the asymmetric centre (C-1^) and the presence 

of a hydroxyl group at C-1^. Since the natural (+)-ABA and 

its (-)-enantiomer were found to be equally potent in the 
growth inhibition assays but (-)-enantiomer did not affect 
stomatal apertures, therefore the different structural
requirements are probably needed to control different physi­

ological processes. Furthermore, an experiment with l'- 

desoxy-ABA (36) showed that the compound is easily oxidised 
to ABA(5),̂  ̂ therefore the biological activity may be due to 

the fast conversion of this compound to ABA. ABA analogues 

with a double bond in the ring and without C-4^ carbonyl group

exhibit growth inhibitory activity (e.g. 37, 38). However,
53 56these compounds csn be chemically converted to ABA and

therefore the observable biological activity may be due to their 

metabolism. Also, epoxide (39), which was found very potent, 

can be converted to ABA(5).^^ The C-6' methyl groups do not seem
to have a marked influence on the biological activity of ABA but

63the C-2^ methyl has. Investigations of the biological activity
of many aromatic ABA analogues (40) showed that there was no cor-

19



relation between the nature or number of substituents and
40their activity; all compounds tested (lettuce seed

germination, inhibition of wheat coleoptile elongation) were
40found to be less active than ABA.

10. Discovery of Xanthoxin

The structural similarities between ABA and some carotenoids 
64 and the observation that plants grown in light contain 

more inhibitor - f than those grown in the dark inspired the

search for evidence that ABA could be produced from carote-
64noids and that light was involved in the process. "" In

1970 Taylor and Burden showed that in vitro illumination of
33violaxanthin (41) produced a growth inhibitor, which was

further identified as a mixture of isomers ^ , ^ - ( 6) and

2E,4E“ (7). The inhibitor has been named Xanthoxin. Two
33other products (42) and (43) were also characterized.

In further work Xanthoxin was also obtained by mild oxida­
tion of violaxanthin (41) with zinc permanganate in aqueous 

33acetone.

11. Occurrence of Xanthoxiu

Xanthoxin occurs in nature as a mixture of stereoisomers 
2Z,4E-Xanthoxin (6) and 2E,^-Xanthoxin (7). The inhibitor

20 cwas isolated from higher plants and also from ferns.
However, the ^-isomer (7) is found in larger amounts than

20
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the 2Z-isomer (6) in most plants, thus on the grounds

of stereochemistry Xanthoxin can be said to derive from 

violaxanthin (41).

12» Properties of Xanthoxin

The biological activity of the 22~4E-isomer (6) is con­

siderably greater than that of 2E,4E- and it has been shown
^ 3 3to be comparable with that of (-)-ABA in many bioassays.

An important feature of the chemistry of Xanthoxin is the 

conversion of this hormone to ABA. Thus Xanthoxin was

oxidized to abscisic aldehyde (44) with chromium trioxide in 

pyridine. The resulting aldehyde (44) was further oxidized 

to ABA. The chemical conversion of Xanthoxin to ABA is of 

importance as it relates the stereochemistry of violaxanthin 

(41) to that of ABA and suggests that Xanthoxin could be an 

intermediate in the formation of ABA from carotenoids.

13» Syntheses of Xanthoxin

In 1972 Burden and Taylor reported a synthesis of 0-methyl- 

xanthoxin (45) (46), the key reaction being introduction of

a methoxy group into the 4̂ - position of p -ionone.

22.
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Later, Xanthoxin was prepared from another degradation pro­

duct of violaxanthin, butenone (43), and the synthesis was 

used for preparation of ^2- c) - labelled xanthoxin^

(Sheme 8).

In 1973 Oritani and Yamashita reported a synthesis of (-)

Xanthoxin. This synthesis is outlined in Scheme (9).

Thus, ketone (47) was reacted with a Grignard reagent,

prepared from tetrahydropyranyl (THP) ether (48) and ethyl

magnesium bromide in THF, to give product (49), which was

then treated with dilute H SO to give diol-ketone (50).2 4
Lithium aluminium hydride reduction of diol-ketone (50), 

followed by acetylation with acetic anhydride gave diacetate 

(51), which was dehydrated with phosphorus oxychloride to 

give diacetate (52). Epoxidation of the latter compound (52) 
gave a mixture of ^,0,0-diacetylxanthoxin alcohols (53) and 

(54). Hydrolysis of the mixture of alcohols (53) and (54) 

with 5% NaOH/MeOH followed by oxidation with Mn02 gave 
Xanthoxins (6) and (55) as a stereoisomeric mixture, the 

analytical data for which were very similar to those of
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natural Xanthoxin. 33

In 1978 F. Kienzle £t ^  reported a synthesis of Xanthoxin, 

the key reaction being asymmetric hydroboration of 

safranol isopropenylmethyl ether (56) with (+) and (-)“ 
diisopinocamphenylborane,(IPC)to give the optically 

pure intermediates (57) and (58) respectively. Compound 

(57) was converted into aldehyde (59), which was
further transformed into ester (60). Epoxidation of ester 

(60) with peracetic acid followed by column chromatography 

gave epoxides (61) and (62), which were subsequently con~ 

verted into Xanthoxin (6) and epi-Xanthoxin (55).

14. Biosynthesis of Xanthoxin and its Relationship to 

Abscisic Acid

The origin of Xanthoxin is uncertain as it may be formed from
33violaxanthin photochemically or by the action of en­

zymes. Xanthoxin is found in nature and is thought to
be an intermediate in the biosynthesis of ABA from carotenoids. 

Burden showed that when (2- C) 2Z-Xanthoxin was fed into

tomato shoots it was converted to (+)— ABA with high yields. 

This experiment suggests a biosynthetic route for the for­

mation of ABA from carotenoids and via Xanthoxin.

72In 1973 Milborrow demonstrated that avocado mesocarp

fed with (-)- C2-^^C] -epoxide (39) converted it into
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(+)ABA and (-)“0 , 2̂  -epi-Xanthoxin acid (63). It was 

therefore concluded that the configuration of the l' 2' - 

epoxy group controls whether or not the 4^(S)-hydroxyl 
group can be oxidized. Thus Xanthoxin or a related com­

pound may be an intermediate in the direct biosynthetic 

route to ABA.

Q,H

The in vivo relationship between carotenoids, Xanthoxin and 

ABA is still uncertain; the results of some experiments are 

in favour of the direct biosynthesis of ABA from MVA while 

others indicate that ABA may be derived from carotenoids.
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DISCUSSION AND CONCLUSIONS 

1. Introduction

The syntheses of the plant hormones ABA and Xanthoxin re- 

ported in the literature led to the mixtures of

stereoisomers from which the active isomer could only be 

isolated in very low yields. In our proposed stereo- 
controlled synthesis of plant growth regulators, an inter­
mediate, 4-mercapto-3-methylbut-2-enoic acid -thiolactone 

(64), was to be prepared in order to control the stereo­
chemistry at the double bond and sulphur was to be utilized 

as a bridging element. -thiolactone (64) was to be further 
reacted with benzaldehyde and mesitaldehyde and the new bond 

formed in the condensation was expected to have, and was 

shown to have, the required Z—configuration.

A major product of condensation of thiolactone (64) and 

P -cyclocitral (65) was also expected to have 2Z,4Z geometry 

of the double bond system as shown in structure (66); for­
mation of the 2Z,4E-isomer (67) would be unfavourable for 
steric reasons. Desulphurization of compound (66) followed 

by the introduction of oxygen into the 4''-position should 

yield, eventually, ABA. Introduction of the oxygen into the 

4^-position might be accomplished by microbiological pro

cesses 73 or by using a different aldehyde precursor.
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2. Syntheses of 4~mercapto-3-methylbut-2-enoic acid 

X -thiolactone (64)

2.1 Tautomerism of Hydroxythiophenes

As has been shown above, T-thiolactone (64) is an impor­

tant element in the proposed, stereocontrolled synthesis, 

therefore the first part of the work was devoted to the 
preparation of this compound. 4-Methyl-3-thiolene-2-one 

(64) can be regarded as a hydroxythiophene derivative.
2-Hydroxythiophenes can theoretically exist in three

74 75tautomeric forms (68A), (68B) and (68C).

)H

The early research on hydroxythiophenes showed that the

nature and position of the substituent on the hydroxy-
j-̂ j_Qphene ring decides which tautomeric form will dominate.
Thus, with an electron attracting group in the 5-position the

76 77

76

enol form was found to be most stable. while 4-

methyl-3—thiolene-2-one (64) was shown to exist entirely in 

the conjugated keto-form.
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2.2 Synthesis of 4-methyl-3-thiolene~2--one (64) via 

metalated thiophenes

The first synthesis of 4”taethyl“3~thiolene“2“one (64) initially 

involved metaUation of 3-methyl thiophene (69) followed by 

treatment with butyl borate and oxidation with hydrogen pero­

xide. The final product consisted of a mixture of 3-
methyl-3-thiolene-2-one (23%) (70) and 4-raethyl-3-thiolene- 

2-one (77%) (64) .

The above method of preparation of compound (64) was later 
improved by A. B. Hornfeldt; 2 ,4-dibromothiophene (71) was

used as a starting material and the crude product was chroma­

tographed on a silica column. The major step of the synthesis 
is a metal-halogen exchange reaction. 2,4-Dibromothiophene 

(71) reacts with ethyllithium specifically at the 2- and 4- 

positions; the resulting metalated thiophene undergoes 

further reactions with butyl borate and dimethyl sulphate, 

as represented in Scheme 12 to yield boronic acid (72), which 

is further oxidised to give finally the isomer free 
Y  -1-hiolactone (64) . We attempted to repeat this route by 
the synthesis of 2 ,4—dibromothiophene (71), as starting 

material. Compound (71) had previously been prepared in a 
three step synthesis, which proceeded via brominated thiophenes
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3. Syntheses of Bromothiophenes

3,1 Synthesis of 2,5-dibromothiophene (73)

The bromination of thiophene was first reported by V. Mayer

and involved reaction of stoichiometric amounts of bromine and 
80thiophene without a solvent and gave a mixture of 2,5-

dibromothiophene (73) and monobromothiophene (74). Compound (73) 

was later obtained by bromination of thiophene with N-bromoacetamide

in acetone and with bromine in benzene.

2,5-Dibromothiophene was prepared in our laboratory by the 

method of R. Mozingo, which involved addition of bromine

to a solution of thiophene in toluene followed by heating 

the crude reaction mixture with ethanolic sodium hydroxide.
The crude product was redistilled to give 2,5-dibromothiophene 

(73) (38%); monobromothiophene (74) and some low boiling 

compounds (32%). Compound (73) was analysed by means of i.r. 
and n.m.r. spectroscopic methods and its purity was checked 

by g.l.c.

-
+
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The n.m.r. spectrum of 2,5-dibromothiophene (73) shows
83a single peak at cT6.65 * ; the molecule is symmetri­

cally substituted and both protons H-3 and H-4 are magne­

tically equivalent.

The i.r. spectrum of 2,5-dibromo thiophene (73) shows the 

following absorption bands: a medium intensity band at

3120 cm”  ̂ is due to the C-H stretching vibrations, a band
-1 84at 1520 cm is due to the ring vibration modes ; the

fundamental stretching frequency for C=C (at 1640 cm  ̂ in

olefins) is not present in 2,5-dibromothiophene (73). This

frequency would be expected to be altered, since it is en

closed in the ring and is essentially symmetrical. A band
at 1310 cm  ̂has been assigned to the vibrations of sulphur

between two carbon atoms on the thiophene ring; this band

appears in the spectra of many substituted thiophenes and
its position was found to be little affected by substitution.

A medium intensity band at 478 cm  ̂may be due to the

C-Br stretching vibrations. 84

* Foot Note

In and n.m.r. spectra the chemical shifts are reported

in p.p.m. on cS" scale from internal standard T.M.S. (cÎ=0).
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3.2 Preparation of 2,3,5,-tribromothiophene (75)

2,3,5-Tribromothiophene (75) was prepared by the method of 
85Rossenberg, which involved reaction of stoichiometric

amounts of bromine and 2,5-dibromothiophene (73) followed 

by heating a crude reaction mixture with ethanolic sodium 

hydroxide. The product (75) was purified by distillation 

(b.p. 88°C-94°C/0.2 mm Hg). It was obtained with yields of 

42.5% and 46% in two successive reactions and of purity 

94.5% and 96.5% respectively (g.l.c. analysis). Tribromo- 

thiophene (75) solidified in form of long, white needles of

m.p. 23°C-25°C.

The n.m.r. spectrum of 2,3,5-tribromothiophene (75) shows 

one peak at c56.72 which is due to the proton H-4.

2,3,5“Tribromothiophene (75) has also been prepared in our 

laboratory by the direct bromination of thiophene. The pre“ 

paration involved addition of bromine to a cooled solution 

of thiophene in toluene followed by heating for one hour and 

washing with water and aq. NaOH. The crude product was re~ 
distilled to give 41% of 2,3,5-tribromothiophene (75).

Treatment of the bromothiophenes with alcoholic KOH or
NaOH originates from the fact that the reaction

mixtures from chlorination of thiophene need to be heated
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with alcoholic NaOH in order to destroy stable chlorine 

addition products and increase the yield of chlorine sub­

stitution products. 84 Bromine addition products (e.g.
compound (76)), have never been isolated, they are thought,

. 84however, to exist as very unstable intermediates. Thus,

a crude reaction mixture obtained in our preparation of

2.3.5- tribromothiophene was not heated with a base but was 

washed with aq. NaOH at room temperature; this procedure 

proved satisfactory in the preparation of product (75).

2.3.5- Tribromothiophene (75) was further used for the syn­

thesis of 2,4-dibromothiophene (71).

3.3 Preparation of 2,4-dibromothiophene (71)

2,4-Dibromothiophene (71) was prepared by the method of 
Lawesson in the reaction of 2,3,5~tribromothiophene

(75) with n-butyllithium in diethyl ether at low tempera­

tures (-30°C) followed by hydrolysis of the lithiated 

thiophene (77).

In the reaction, one of the bromines on the thiophene ring 

is substituted with lithium; this type of substitution is 

known as the halogen-metal exchange reaction.

Among the lithiated thiophenes (77), (78) and (79) formed
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in the course of the reaction, compound (77) is thermodyna­
mically most stable. 76 The stability of the compound (77)
is the result of the 2-, 5- directing properties of the 

76sulphur 
properties

and also the directing and co-ordinating 

of the bromine.

When the reaction of 2,3,5-tribromothiophene (75) with 
n-butyllithium was carried out over a period of 10 minutes, 

a mixture consisting of 2,4- (71), 2,5- (73) and 2,3- (80)- 
dibromothiophenes and some starting material (75) was ob­

tained with a relative ratio of the components, calculated 

from the n.m.r. integrals equal to (in %): 45, 34, 9

and 12 respectively.

Better yields of the title compound (71) were obtained when 

the reaction time was extended to 30 minutes and the relative 

amounts of the products calculated from the n.m.r. integrals 

were as follows: 2,4-dibromothiophene (71) 74%, 2,5;dibromo- 
thiophene (73) 14%, 2,3-dibromothiophene (80) 12% and no peak 

corresponding to 2,3,5-tribromothiophene (75), a starting 

material, was found in the n.m.r. spectrum.

The products could not be separated by distillation due to 

their close boiling points. Attempts to analyse the
mixture by means of t.l.c. technique failed as all the com­
ponents of the mixture showed as a one spot, which could not
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be resolved by using different solvents. Also, mixture of 

dibromothiophenes could not be separated by means of HPLC 

chloroform or hexane was used as a mobile phase; column; 

"Partisil 5"; U.V. 254 run.

Because 2,4-dibromothiophene (73) could not be obtained 

free of isomers the next stage of synthesis was not 

undertaken, instead another synthetic route was tried.

4. Synthesis of Y  -thiolactones via bismetalated thioacetic 

acid

4.1 Reaction of monochloracetone with thioacetic acid 

initiated by LDA

Various thiolactones were prepared by Wemple and co-workers 

in a synthesis, which involved reaction of thioacids with 

lithium diisopropylamide followed by condensation of the 

resulting bis lithium salt of thioacids with Ot- or - 
chloro ketones, to give corresponding ^-hydroxy thioacids. 

The latter further cyclized to thiolactones (Scheme 15).

89

We adopted the above method of synthesis of thiolactones for 
preparation of 4-mercapto-3-methylbut-2-enoic acid - thio- 

lactone (64) via ^-hydroxy thioacid (81). Thus, thioacetic 

acid was first reacted with two equivalents of lithium di-
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isopropylanide in THF at -78 C and the bisanion of thioacetic acid
was expected to form at this stage of the synthesis. One equivalent

of monochloroacetone in THF was then added to the reaction mixture
and the reagents were stirred for one hour. A dark brown crude

product was distilled and the distillate was further purified by
chromatography on a silica column using chloroform for eluting.

The product (82) was obtained with an overall yield of 5% and its
1 13structure was determined by means of i.r. and H and C n.m.r. 

spectroscopic methods, (spectra 1-4).

In the i.r. spectrum a band at 3400 cm  ̂ indicated the presence 

of an OH group; C-H str. vibrations gave rise to a band at 
2995 cm a C=0 str. absorption band appeared at 1710 cm 

and a C-Cl str. absorption was observed at 645 cm

The signals in ^H n.m.r. spectrum were assigned as follows: 

the peaks at <Tl.42, <T2.42 and <5i 2.43 were assigned to CIÎ  
protons, the multiplets at S  3.64 and ^  3.69 to CH^ protons and 
the peaks at 4.56 and cT 4.59 to CK protons. Broad peaks at 

3.25 and <5* 3.45 which disappeared on D^O shake were assig­

ned to the OH groups.

13The broad band decoupled C n.m.r. spectrum showed 12 peaks,

which were arranged in pairs indicating a mixture. The single
13frequency off-resonance decoupled C n.m.r. spectrum showed
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the following groups of peaks: the distinguishable quartets 

at c5^21.4, c5̂ 22.8 and c5"28.8, (5^29.6, two triplets at ci 49.9 

and c^51.2, two doublets at d 63.9 and cT66.2 and two single 

peaks for the quarternary carbons at <5^73.7 and 74.6 and far 

downfield the single peaks for the carbonyl carbon were found 

at ci 203.7 and 205.0. After analysis the following structure 

was assigned to the reaction product:

CH,
♦ I «

C IC H .— C —  CH 
i I 

OH Cl

(82 )

3,5-Oichloro-4-hydroxy-4-methyl“2“pentanone (82) is a 

colourless liquid. The compound undergoes decomposition on 

standing. Its molecule has two asymmetric carbons, there­

fore the compound has four stereoisomers.

The Newman projections (Scheme 17) show that the protons and 

carbons in any pair of diastereoisomers are in magnetically 

different environments, therefore, they can give rise to 
different peaks in the n.m.r. spectra. In fact, the peaks 

corresponding to protons and carbons in any pair of dia- 

stereoisomers can be distinguished in the h and C n.m.r.
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spectra respectively, (spectra 1-4).

The compound (82) was formed as a result of condensation of 

two monochloroacetone molecules (Aldol type addition). Under 

the reaction conditions monochloroacetone was converted into 
its enolate anion which reacted further with another molecule 

of monochloroacetone to yield dimer (82). The formation of 

product (82) is not favoured mainly for steric reasons. 

Also, the compound (82) is likely to dehydrate easily and 
further polymerize. That would explain the low yields of 

the product (82).

The reaction of thioacetic acid with monochloroacetone was
repeated in the presence of N,N,N*,N*-tetramethylethylene-

diamine (TMEDA); the TMEDA and n-butyllithium complex was
90reported to be a very good metalating agent. p -Hydroxy

thioacid (81) was not however formed under the adjusted 

reaction conditions.

^ —Hydroxy thioacid (81) could not be obtained in the above 
synthesis, yet this preparation may suggest a method for 

making ot , ^-substituted ketones.
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4.2 Reaction of Phenacyl Chloride with Thioacetic Acid

89The reaction of phenacyl chloride with thioacetic acid was

initiated by LDA and gave S-phenacyl thioacetate (83) with 15%

yield and some recovered phenacyl chloride, 28%. S“Phenacyl
1 13thioacetate was then analysed by means of H and C n.m.r. and 

i.r. spectroscopy. In the mass spectrum the fragmentation 

pattern represented in Scheme (18) was observed.

S-Phenacyl thioacetate (83) was next reacted with t-BuOK in an 

attempt to cyclize it to the corresponding thiolactone (84).

The thiolactone (84) was not detected among the reaction 
products but the product (85) of desulphurization of S- 

phenacyl thioacetate was found. Compound (85) was then 

purified by means of preparative TLC technique.

The desulphurization of S-phenacyl thioacetate (83) is 

believed to proceed via an episulphide, which decomposes 

under the reaction conditions to give benzoylacetone (85).

The presence of the peak at c5̂ 6.19 in n.m.r. spectrum
13and the peak at ^96.8 in C n.m.r. spectrum suggests that 

product (85) exists in the enol form.
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O O
" c

Ph \ h ,

O 0
C

Ph^ ^CHj

<5'96.7 ^6.19 (85 )

The U.V. spectrum of compound (85) recorded in MeOH showed

the absorption maximum at X. 314 nm; addition of a drop  ̂ max
of 2M M<iOH caused the X shift to 328 nm; acidification ofmax
the mixture with IM HCl caused \ shift back to 314 nm.max

Mass spectrum of product (85) suggested the following frag' 

mentation;

-f C-fCH^-- C — CH.
II *
® m|  ̂ 43,38%

M - 1 6 2
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5, Attempted preparation of 4-mercapto-3-inethylbut-2-
enoic acid If-thiolactone (64) via its oxygen analogue

5.1 Preparation of 4-hydroxy-3-methylbut-2-enoic acid 

-thiolactone (86)

89As the method of Wemple did not give satisfactory results

when adopted for the preparation of the title compound (64), 

a synthetic route via its oxygen analogue was tried. Fol­
lowing some examples in the literature» which demonstrate that

oxygen atom in a ring can be replaced with a sulphur atom
91using a variety of reagents, e.g. ^2^5

92
or p-methoxy-

phenylthionophosphine sulphide, we attempted to obtain

^ - thiolactone (64) by reacting its oxygen analogue (86)

with ^2^5 *

93Compound (86) was prepared in a 3 step synthesis. First 
ethyl bromoacetate and monochloroacetone were reacted in the 

Reformatsky reaction to give ethyl 4-chloro-3-hydroxy-3-
methylbutanoate (87) with an average yield of 35%. The product

1 13 • _(87) was analyzed by means of H, C n.m.r. and i.r. spectro­
scopic methods and the results were compared with those quoted 

in the literature.

Although the use of two cx -halo carbonyl compounds might lead 

to two different products, the problem was overcome by reacting
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a relatively reactive oc-bromo ester with a cx-chloro
ketone which is much less reactive in the Reformatsky re- 

93action.

^-Hydroxy ester (87) was then treated with KOH in methanol 
to give a mixture of methyl-E-4“hydroxy-3-methylbut”2-enoate 

(88) and -lactone (86). The ratio of the compounds (88)
and (86) present in the reaction product was calculated from 
1.H n.m.r. integrals and it was found to be 2 : 1 respectively. 

1.Also, H n.m.r. spectrum showed that under the reaction con­
ditions transesterification took place and methyl ester (88) 

was obtained from ethyl ester (87).

Photo-irradiation of a mixture containing E-ester (88) and 

Y -lactone (86) in the ratio 66:34 gave a product which 
contained compounds (88) and (86) in the ratio 18:82 re-

spectively.

The product (86) was then purified by distillation (36%
1 1 3yield) and analyzed by means of H, C n.m.r. and i.r.

spectroscopic methods. The H n.m.r. and i.r. results were
93 13compared with the literature data. The C broad band

decoupled and single frequency off resonance decoupled 
(s.f.o.r.d.) spectra showed following peaks: a peak at
c5 14.6 corresponding to the CH carbon; the methylene

carbon gave rise to ̂ eak at <5^77.4; a peak at ^117.1
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corresponding to the olefinic carbon “CH-; the quarter­

nary carbon gave rise to a peak at <S 166.6 and downfield 

at <6 174.0 a peak due to the carbonyl carbon was found.

5.2 The reaction of T -lactone (86) with P S2 5

4-Hydroxy-3-methylbut-2-enoic acid V  -lactone (86) was then 

reacted with phosphorus pentasulphide. When the reaction 
was carried out in THF at room temperature over a period of 

4 days, the n.m.r. and g.l.c. analyses showed that the 

starting material (86) only was recovered. The reaction 
was repeated and the reagents were refluxed for 24 hours.
The n.m.r. analysis of the crude product indicated that 
only the starting X -lactone (86) was present in the product 

The negative results of the reaction are probably due to the 

low solubility of ^2^5 THF.

6 . The novel synthesis of V-thiolactone (64)

Due to the difficulty in obtaining the Y  -thiolactone (64) 

by the methods described above, new synthetic routes were 
tried. They involved preparation of a suitable unsaturated 

thio— or mercapto acid which on cyclization would yield 

the required Y  -thiolactone (64) , (Scheme 21).
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6.1 Attempted preparation of -thiolactone (64) by
cyclization of ethyl 4-mercapto-3-tnethylbut-2-enoate (89)

In an attempt to obtain "Tr-thiolactone (64) by cyclization of 

Z“ isomer of mercapto acid ethyl ester (89), ethyl-(E and Z)- 

4-chloro-3-methylbut-2-enoate (90) was reacted with NaHS. 

Compound (90) was prepared in our laboratory from triethyl-

phosphonoacetate (91) and monochloroacetone by the Wadsworth

I  ̂ 94Emmons method.

When THE was used as a solvent, only starting materials were 

recovered probably due to the low solubility of NaHS in this 

solvent.

The reaction was then repeated in the more polar, aprotic 

solvent, DMSO, and the n.m.r. spectrum of the crude product 
showed that it contained unreacted substrate (90) and some other 
unidentified compounds. The expected peaks for Y-thiolactone 

(64) were not present in the spectrum and no further identifi­
cation of the products was undertaken. Instead another method 

of synthesis of Y -thiolactone (64) was tried.
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6.2 Preparation of -thiolactone (64) by cyclization of 
ethyl 4~acetylthio-3-methylbut~2-enoate (92)

6.2.A Reaction of (2-oxopropyl)-thioacetate (93) with 

triethylphosphonoacetate (91)

In an attempt to prepare compound (92), (2-oxopropyl)“ 
thioacetate (93), made in our laboratory from thioacetic 

acid and monochloracetone, was reacted with triethyl­
phosphonoacetate (91). It was possible that a mixture of

olefins (92) and (94) would result, (see Scheme 22).

In the compound (93) both carbonyl groups can take part in

the reaction with Wadsworth—Emmons' reagent, yet it was
expected that the main product would arise from nucleophilic
attack of phosphonate ylid (91a) on the carbonyl carbon of

the acetone moiety. Only a small amount of product was
expected to form from the attack on the carbonyl carbon of

95the thioester function.

The reaction conditions were altered several times; the 
reaction time was extended, an excess of phosphonate was used. 

Also the reaction was conducted at elevated temperature.
n.m.r. analysis of the crude products however, showed 

absence of any peaks in the olefinic region of the H n.m.r. 
spectra, suggesting that none of the expected olefins were ob-

60



tained; probably the phosphonate ylid was not formed under 

the applied reaction conditions.

6.2.B Reaction of ethyl-(E and Z)-4-chloro-3-methylbut-2- 

enoate (90) with thioacetic acid

E t h y l -(E and Z)-4-chloro-3-methylbut-2-enoate (90) was 

reacted with thioacetic acid to give e t h y l -(E and Z)-4- 
acetylthio-3-methylbut-2-enoate (92) , which was used in 

the further reactions without purification since the yield 

was better than 95%.

The structure of compound (92) was confirmed by means of
and n.m.r. spectroscopy. From the H n.m.r. inte-

grals it was found that product (92) was a mixture of (E) 

and (Z) isomers in the ratio 6:4 respectively.

6.2.C Cyclization of ethyl-4-acetylthio-3-methylbut-2-enoate

(92) to -thiolactone (64)

The following experiments were carried out in order to cyclize 

compound (92) to —thiolactone (64).

Two 10% solutions of compound (92) were prepared, one in 
deuterated chloroform and another in deuterated DMSO. The 
solutions were placed in n.m.r. tubes with a catalytic amount
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of £-toluene sulphonic acid and the progress of the reactions 

was followed with n.m.r. spectroscopy. No(changes were 
observed when the tubes were kept at room temperature. How­

ever, on raising the temperature to 60°C the peaks due to 
Y  -thiolactone (64) appeared in the n.m.r, spectrum for
the reaction carried out in CDCl^. The new peaks for compound

(64) were found at 6  6.09 and 6  3.98. The peaks at S  5.73, 
c5" 4.15 and (S 2.02, which were due to the Z-isomer (92) had 

considerably diminished. From the H n.m.r. integrals it was 

found that 68% of Z-isomer (92) was converted into -thio­

lactone (64) after 48 hours of heating the mixture to 60 C. 
The E-isomer (92) did not undergo any changes under the re­

action conditions.

The n.m.r. spectra of the reaction carried out in DMSO 

showed no changes even on heating to 60°C for several days. 
This may suggest that the cyclization of compound (92) to 
Y  -thiolactone (64) does not take place in highly polar 

solvents such as DMSO.

Ethyl-4-acetylthio-3-methylbut-2-enoate (92) was also suc­

cessfully cyclized to ^  -thiolactone (64) by heating it in 

methanol in the presence of HCl. (Scheme 23).

Y -Thiolactone (64) was purified by distillaixon; it was 

obtained 95% pure with an average yield of 12%. The low
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yields of the product (64) were due to the large losses of 
this compound in the lower boiling fraction, where it was 
found as an approximate 1 : 1  mixture with some side product, 

and to the fact that only the Z-isomer (92) could be cyclized 
to give ^  -thiolactone (64). An attempt to separate product 

(64) from other components of the lower boiling fraction by 
means of high performance liquid chromatography (H.P.L.C.) was 

unsuccessful.

“Thiolactone (64) was analysed and its structure confirmed 

by means of Ĥ, n.m.r. and i.r. spectroscopic methods,

(spectra 5~8).

The i.r. spectrum shows a strong absorption band at 1680 cm 
due to the C=0 str. vibrations; a band at 1640 cm is assig­
ned to C=C str. vibrations and an absorption band at 840 cm 
belongs to the =C-H deformational vibrations and C-H str. ab­

sorption bands are found at 2960 cm and 3000 cm

The 60 MHz and 220 MHz ^H n.m.r. spectra were recorded for 

^  -thiolactone (1 1 ) and showed three peaks at ¿5̂ 2 .2 2 ,
<5 4.01 and 6.15. The peaks were broadened due
to the long rcr^e coupling between the V-thiolactone protons. 
From the expanded spectrum, which showed three well resolved 
multiplets, the following values for coupling constants were 
found: ^3 (CH-CH^)* *̂3 (CH-CH^) = 1 .4Hz and  ̂] (CH^-CH^)
= 0.7 Hz. The n.m.r. broad band decoupled and s.f.o.r.d.
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spectra allowed assignment of chemical shifts for Y-thiolactone 

(64) carbons. Thus the peaks at <5*18.9 and c5* 41.0 were assig­

ned to the methyl and methylene group carbons. A peak at 
c5̂ 128.2 was assigned to the =CH carbon and it showed as a 

doublet in the s.f.o.r.d. spectrum. The peaks downfield from 

TMS at <5* 168.1 and cTl99.8 belong to the quarternary and 
carbonyl carbons respectively and they remained as single peaks 

in the s.f.o.r.d. spectrum.

The fragmentation pattern observed in the mass spectrum of 
compound (64) (Scheme 24) follows that observed for thiolactones.

Thus, a molecular ion (m'*’) occurs at m/e 114, it is a base 
peak of the spectrum; The fragmentation pattern suggests that 
the molecular ion undergoes fragmentation either with the loss 

of a CO fragment to give rise to a radical ion m/e 86 or with the 

loss of a CHO radical to give rise to the ion m/e 85.

7. The reactions leading to improvement of Y* -thiolactone 

(64) yields

Because the separation of Y  -thiolactone (64) from the other 

products of the reaction was difficult and resulted in low 
yields of this compound, efforts were made to improve the 
yield o f Y  -thiolactone (64) and the following experiments

were carried out.
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A. The starting material consisting of a mixture of ethyl- 
(E and Z)-4-acetylthio-3-methylbut-2-enoate (92) was re­

fluxed for 1 week in methanol in the presence of Hfil. The 

progress of the reaction was followed with n.m.r. spectro­

scopy, (Table 92/1).

The n.m.r. spectra showed that isomerization of E- 

isomer (92) to Z-isomer (92) did not take place but Z- 
isomer (92) cyclized to ^  -thiolactone (64) and E-isomer 

(92) was converted into ')i-mercapto ester (95).

From the n.m.r. integral it was found that the starting 

reaction mixture contained 45% of Z-isomer (92) and 55% 

of E-isomer (92); the crude reaction product contained 
Y  -  thiolactone (84) (40%), methyl-E-4-mercapto-3-methylbut-

2-enoate (95) (5 5%) and some other products.

Table 92/1

Time
Relative amounts of thiolactone 
in reaction mixture calculated from 
n.m.r. integrals

0 0

1 hour 25%

3 hours 30%

6 hours 33%

24 hours 40%

7 days 40%
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B. In the next experiment methyl-E-4-mercapto-3”methylbut“ 

2-enoate (9 5) > a side product in the -thiolactone (64) 

synthesis, was successfully converted to 'iJ-thiolactone (64) 

in a photochemical reaction. The reaction progress was

followed with n.m.r. spectroscopy and the amounts of 
-thiolactone (64) formed in the course of the reaction 

were calculated from the H n.m.r. integrals, (Table 92/2).

The n.m.r. spectrum showed that the reaction did not 

take place at room temperature, however, on heating the 

reaction mixture to the reflux point of methanol and ir­

radiating (wavelength of the light: 340 nm) for 8 hours,
^ -thiolactone was formed with a good yield of 54%. Further 
isomerization of E-isomer of 'i -mercapto ester (95) could not 
however, be achieved as ^ -thiolactone (64) began to decompose 

on prolonged heating under the reaction conditions.

ŜH ^SH

E - ( 9 5 ) Z - ( 9 5 ) (64 )
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Table 92/2

Time Temperature Y - thiolactone 
(1 1 ) content

0 room temperature —

3 hours room temperature 0

5 hours reflux 31

8 hours reflux 54

10 hours reflux 42

Re-cycling of E-mercapto ester (95) and subsequent conversion 

into Y-thiolactone (64) may therefore considerably improve 

overall yield of the latter compound.

C. Isolation of Y “ thiolactone (64) by extraction.

Y -Thiolactone (64) was separated from other products of the 

reaction, e.g. mercapto ester (95) by extraction of ethereal 
solution of a mixture of reaction products with water or 5% 
aq. sodium hydroxide; Y -thiolactone was found in the aqueous 

layer and was finally obtained with 95% purity.

As the solubility of Y -thiolactone (64) in water is higher 

than that of other side products, e.g. compound (95), the 
extraction technique can provide a method for separation and 

purification of Y -thiolactone (64) and can give higher 

overall yield of this compound.
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8, Isolation and identification of reaction product accom­

panying ^ -thiolactone (64)

Methyl-E-4-mercapto-3-methylbut-2-enoate (95) can be isolated
o o ,from the reaction mixture by’distillation, b.p. 96 C-99 C/

0.6 ram Hg, or extraction; the structure of this compound 

was confirmed as follows:

The compound (95) was reacted with acetic anhydride in the 
presence of HCIO^ as a catalyst and the reaction product was 

identified by means of n.m.r. spectroscopy to be raethyl- 
E-4-acetylthio-3-raethylbut--2-enoate (92). Also, compound 

(95) was cyclized to ^ -thiolactone (64) in the photochemical 

reaction.

Analysis of the n.m.r. spectrum of product (95) led to the 

following spectral assignments:

Solvent: CDCl^; internal standard T.M.i 80 MHz

proton
assignment type c5̂ / p • p • • U/Hz Integration

5 -SH 1.52 (H2- 1

6 -CH3 2 . 2 2 H6) » 3

4 ' “ 2
3.18 1.3Hz 2

7 -OCH^ 3.70 3

2 = CH 5.84 1
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On shaking a solution of compound (95) in CDCl^ with D^OjH-D 

exchange on S-H group took place and as the result of it a 

doublet at cTS.lS, due to the coupling between the methylene 

protons and SH proton, collapsed into a single peak and the 

triplet due to SH proton disappeared, (Spectra, 10, 11).

9. The reaction of ^ -thiolactone (64) with benzaldehyde

4-Mercapto-3-methylbut-2-enoic acid ^  -thiolactone (64) was

reacted with benzaldehyde in the presence of hydrogen chloride
78to give 5-benzylidene-4-methyl-3-thiolen-2-one (96)^

(Scheme 25). Under the reaction conditions product (96) 

crystallized out in form of yellow needles (m.p. 61.5 C—

63°C, methanol, yield 5 7%);analytical data for this compound 

were consistent with the proposed structure.

The condensation reaction of -thiolactone (64) with

benzaldehyde was repeated and the progress of the reaction

was followed with U.V. spectroscopy. A U.V. spectrum re
corded for the reaction mixture after Ihour showed a small

absorption band at X, 341 nm, the intensity of which
increased as reaction progressed; the U.V. spectrum of the

final product (96) recorded in MeOH shows two absorption

bands with the maxima at 341 nm and ^38 nm

( t, = 3.2 X 10^, t = 6.6 X 10^).
1 ^

71





In the mass spectrum of compound (96) a molecular ion occurs

at m/e 2 0 2; it is also the most abundant ion (corresponding

to the base peak). The main fragmentation mode on electron
, . , 96impact is similar to that observed for thiolactones.

Thus, the cleavage of the bonds OC to the carbonyl leads to 
the loss of CO and the resulting ion, M-28 (96a) (Scheme 26), 
decomposes further either by the loss of H^CC**CH (probably 

to (96c) (m/e 137)) or by the loss of proton radical probably 

to the cation (96b) (m/e 173). The extrusion of sulphur from 

the latter cation (96b) corresponds to an ion at m/e 141.

The loss of sulphur directly from the molecular ion, M-32, 

is not observed.

A weak ion at m/e 77 is probably due to the phenyl cation 

formed as the result of the rupture of the bond (X to the 

benzene ring.

Another fragmentation mode occurs probably with the loss of 

methyl radical from molecular ion, M-15 (presumably to ion 

96e) as suggested by the presence of a peak at m/e 187.

The further investigation of the structure of compound (96) 

was carried out by means of and n.m.r. spectroscopy.
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10. Structure determination of 5~benzylidene-4-inethyl-3~
1 13thiolene-2-one (96) by means of H and C n.m.r. spectro­

scopy

The n.m.r. parameters are listed in table 96/H (Spectra 12, 13)

Table I 96/H

80MHz; Solvent: CDCl, : Internal standard T.M.i * 5.

proton
assignment type ci / p • p • ni • 3 /Hz Integration

H(7) ™ 3 2.28 H(7) 3

H3 = C-H 6 . 1 1 - H(3) 1

H6 = C-H 7.07 = 1 . 2 1

H(2' )-H(6 )̂ -"6«5 7. AO 5
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Irradiation of the peak at 6  ̂2.28 caused the multiplet at 

66.11 to collapse into a single peak. The methyl protons 

might be expected to couple to the alkene protons H(3) 

and H(6) with ] [ h (7) - H(3)} being larger coupling
constant. Thus on the basis of the double resonance ex­

periment the peak at db.ll is assigned to H(3). The peak 

at cT6.ll shows further splitting presumably due to coupling 

between H(3) and H(6).

Broad band proton decoupled, s.f.o.r.d. and proton-coupled

n.m.r. spectra allowed assignment of chemical shifts
13for carbons in compound (96). The C n.m.r. parameters 

are listed in table 96/C. (Spectra 14 - 16).

13The peaks found at ci 14.9 and cT 194.3 in the C n.m.r. 
spectrum were easily assigned to methyl group carbon and to 
carbonyl carbon respectively. The proton coupled C n.m.r. 
spectrum shows the quartet of doublets at cTl4.9 for the CH^ 

carbon. This multiplet arises as from coupling between C(7) 

H(7) and between C(7) and -H(3). The signal from carbonyl 
carbon, C(2) appears at cT194.3 as a doublet due to coupling 

with H(3) .

13.The peak at cf 161.0 is assigned to C(4) as in the C n.m.r, 

spectrum of 4-methyl-3-thiolene-2-one (64) , a starting 

material, the chemical shift for this carbon is d'168.3.
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Table 96/C

solvent CDCl^, internal standard T.M.S., 20MKz

Carbon
Assignment Type y p • p • ® • 3 c-H/Hz

C(7) CH3 14.9 (C(7)-H(7)) = 128.6 
(C(7)-H(3)) = 3.4

CC3) =C-H 127.7 (C(3)-H(3)) = 173.2 
(C(3)-H(7)) = 5.1

C(2'),CC6') =C-H-ortho 129.0

C(4’) =C-E-para 129.4

C(6) =C-H 129.7

C(3’),C(5’) =C-H-meta 130.1

C(l’) »cc 135.0

C(5) =c< 136.5

C(4) =C< 161.0

C(2) C=0 194.3 (C(2)-H(3)) = 6.7

Coupling constants C~H and chemical shift 

values for carbons in compound (96).
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This same carbon gives rise to a multiplet in the proton- 

coupled n.m.r. spectrum presumably due to the coupling

of this carbon with H(7) and H(3).

In the aromatic region of the spectrum, two high intensity 

peaks at 1 3 0 . 1 and 129.0 are assigned to the orth^-and 

meta-carbons of the benzene ring. As an olefinic substi­
tuent in monosubstituted benzene shifts the ortho-carbons

upfield by 2 . 0 p.p.m. and meta-carbons upfield by 0 .2 p.p.m.
N 97from ¿^128.5 p.p.m. (shift for unsubstituted benzene),

the peak at 6^130.1 was assigned to meta-carbon and the peak

at 6^129.0 to ortho -

A peak at rfl27.7 is due to carbon C-3; in the spectrum of
Y  -thiolactone (64), a starting material, the chemical shift

13for this carbon is 6  128.2. In the proton-coupled C n.m.r. 

spectrum this peak shows as a doublet of quartets. The peak 

arises as a result of coupling of carbon C(3) with H(3) and

H(7).

The peak at (Yl29.4 was assigned to para carbon C-A*'. This

peak shows as a doublet in s.f.o.r.d. n.m.r. spectrum

In the proton-coupled n.m.r. spectrum a multiplet at

6  136.5 is assigned to C(5). The peak arises as a result of 

coupling between C(5) and the remote hydrogens H(7) and H(6).
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A peak at c$^135.0 is assigned to a quarternary carbon C(l');

this peak appears as a singlet in both broad band decoupled
13and s.f.o.r.d. C spectra.

11. The reaction of -thiolactone (64) with mesitaldehyde

Since the stereochemistry of the double bond system of the 

compound (96) was shown (X-ray crystallography pp 85-94) to 

be the same as that of ABA, the reaction of the thiolactone 
(64) with a sterically hindered aldehyde was next investigated, 

Thus V  -thiolactone (64) was reacted with mesitaldehyde in the 

presence of hydrogen chloride to give product (97) (yield 28%, 

m.p. 107.2°-109.1°C). The reaction was carried out under the 

same conditions which were employed for the condensation of 

Y  -thiolactone (64) with benzaldehyde.

Vi.

( 6 4 ) (97)

In the mass spectrum product (97) exhibits a fragmentation 

pattern similar to that observed for its analogue (96).

Thus, an abundant molecular ion (M ) at m/e 244 appears to 

undergo fragmentation by two different pathways. One frag
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mentation mode gives rise to a fragment ion at m/e 229, 

which is the base peak of the spectrum. The ion m/e 229 de­

composes further by the loss of CO (probably to 97c, m/e 201), 

Alternatively the rupture of bonds «C to carbonyl in the mole­

cular ion gives fragment ion M-28 (m/e 216, probably species 
97b) which appears to decompose further by loss of the proton 

radical followed by the loss of sulphur to give the m/e 183

ion. The latter fragmentation mode is characteristic for
96thiolactones. The loss of sulphur directly from the

molecular ion is not observed.

12. Structure determination of 5-mesitylidene-4-methyl-3-
1 13thiolene-2-one (97) by means of H and C n.m.r. 

spectroscopy.

The structure of the compound (97) was further investigated 
13 1by means of C and H n.m.r. spectroscopy, (Spectra 18-20). 

n.m.r. parameters are listed in table 97/H.
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Table 977H

soIvent CDCl.; Internal standard T.M.S., 80MHz

Proton 
• Assignment Type /p • P • ni» D /HZ Integra­

tion

H(2") H(6”) CH3 2.18 6

H(4”) CK3 2.28 ^ 3 h (7)- 3

H(7) CH3 2.38 H(3) 3

H(3) =CH- 6.14 =0.7 1

H(5’) K(3') »CH- 6.88 2

H(6) =CH- 7.18 1

In a double resonance experiment a peak at 6  7.18 was irradi­

ated but no change in the alkane region of the spectrum was 
observed. However, irradiation of the peak at 6  6.14 caused 

the doublet at c^2.38 to collapse into a single peak. There­
fore on the basis of the double resonance experiment the peak 

at 6  2.38 was assigned to methyl group protons H(7) and the 

peak at 6  6.14 to proton H(3) . The peak at ¿6.14 shows 
further splitting probably due to coupling between H(3) and H(6).

13.The broad band proton decoupled and s.f.o.r.d. C n.m.r.
98

spectra as well as the Attached Proton Test (A.P.T.) ex­
periment allowed assignment of chemical shifts for carbons in
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1 ̂compound (97). The C n.m.r. parameters are listed in the 

table 97/C.

The A.P.T. experiment involves a pulse sequence, which allows 

for the differentiation of the carbons on the one

hand and the CH^ and quarternary carbons on the other hand. 
The pulse sequence employed in A.P.T. is represented below.

Hi channel 180®

channel

90® 1 8 0 '

The pulse sequence for an attached proton test in a hetero- 

nuclear system.
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The time, t , a waiting time, is closely correlated with a

coupling constant. In the A.P.T. experiment carried out on

the sample, was made equal to ^ C-hj  ̂where J is
the average value for the coupling in ssCH, —CH and -CH
systems. The free induction decay (F.I.D.) for carbon nuclei

is recorded and fourier transformed after time 2 'C and the
spectrum obtained shows positive peaks for CH^ and CH carbons

and negative peaks for CH^ and quarternary carbons. Thus,

the carbons C-2, C-4, C-5, C-1', C-2', C-4' and C-6’ give
negative peaks while the carbons C-7, C-6, C-3, C-3' and C-5*

13give positive peAks. In the C broad band decoupled spectrum 

a high intensity peak at 6  20.2 was easily assigned to the 

carbons of the ortho—methyl groups (C—2'* and C—6 ) and a 

lower intensity peak at^21.0 to par a—me thy1 group carbon 
(C-4"). A signal at cS* 14.5 was assigned to carbon C-7; in 
the spectrum of —thiolactone (64) the starting material,

the chemical shift for that carbon is ^  16.2.

Four olefinic carbons (=CH; meta-C-3*, meta-C-5 *, C-3 and 
C-6) are easily found as they give positive peaks in the 
A.P.T. spectrum. Thus, a high intensity peak at 128.4 is 

assigned to two magnetically equivalent meta-carbons (C-3 
and C-5’). The peak at ^  128.9 is assigned to carbon C-3, 
as in V  -thiolactone (64) spectrum carbon C-3 gives a peak 

at 129.2, therefore, the signal at S  129.9 belongs to 

carbon C-6.
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Table 97/C

Solvent CDCl^, internal standard T.iI.S., 20MKz

Carbon
Assignment Type 6 /p.p.m.

C-7 CH3 14.5

C-2", C-6" «I3 20 .2

C-4" CH3 2 1 . 0

C-3’, C-5' m.eta=C-H 128.4

C-3 =CK- 128.9

C-6 =CK- 129.9

c-i' =cc: 131.9

C-2', C-6’ ortho 135.5

C-5 137.9

C-4’ para 141.9

C-4 =C< 158.6

C-2 ^ C =0 194.1

Chemical shift values for carbons in 

compound (97).
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The chemical shifts for the carbonyl and quarternary carbons 

were then found; all these carbons give negative peaks in 
the A.P.T. spectrum. Thus, the carbonyl carbon (C-2) signal 

is found downfield at 6  194.2. A single peak at 6  158.6 is 
assigned to a quarternary carbon C-4, which in the spectrum 

of an analogue (96) shows at c5' 161.0. The substituted 
quarternary ortho~carbons, C~2* and C~6 , show an intense 

single peak at 6  135.5. The signal at ¿137.9 belongs to 
carbon C-5. In order to make further assignments for the 

peaks at 6  131.9 and 6  141.9 the theoretical cf" values for 

C-1* and C-4’ (para-carbon) were found. The calculated 

chemical shifts were as follows: cS' (C-1’) = 134.4

and 6  (C-4’) = 138.4. Therefore the peak at d'131.9 was 

assigned to C-1’ and at ¿141.9 to C-4 .

Thus, 'i-thiolactone was reacted with benzaldehyde and 

mesitaldehyde to give ABA analogues (96) and (97) re­
spectively and the stereochemistry of these compounds was 

further shown to be the same as that of ABA. For this
reason compound (96) was tested for its biological activity; 

it caused an increase of the internodal distances when

applied to growing tomato plants, but was not active in 

other tests.
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13. X-ray Crystallography

The structures of compounds (96) and (97) were investi­

gated by means of X-ray crystallography in order to deter­

mine the stereochemistry at the new double bond formed in 
the condensation of X-thiolactone (64) with benzaldehyde 

and mesitaldehyde respectively. As was mentioned previously, 

it was important that the new double bond had the Z—confi­

guration.

13.1 Structure determination of 5-benzylidene-4-methyl-3- 
thiolene-2-one (96) by means of X-ray crystallography

The compound (96) crystallised from methanol as yellow large 

crystals. The crystals were broken into smaller fragments 

and a fragment selected for the X-ray crystallography, having 

dimensions c.a. 0.15 x 0 . 1 2 x 0 . 2 mm, was mounted on a quartz 

fibre on a Philips PWllOO goniometerhead.

M

b) Determination of the structure

The data were collected on a PWllOO four circle diffractometer.
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using MoKoo radiation ( 0,7=069A) from a graphite

monochromator and a B  - 2Q scan mode. No absorption

corrections were applied.

The unit cell was found by using an automatic peak-hunt 
routine from 25 low angle diffraction points. Refined cell 

dimensions were derived from the angular measurements of 25 

strong high angle reflections. Cell data and the parameters 

used in data collection are shown in table A.

The variance of the intensity (I) was calculated as [ k  (I)̂
+ (0.041)^ I } where I ^ (I) I is variance due to counting
statistics and the terms in I was introduced to allow for

I and (I) were corrected forother sources of error.
Lorentz and polarization factors with use of a program written 

for the PWllOO diffractometer and equivalent reflections were 

averaged giving a total of 848 data with 1 j ^  (1) 3 .0 .

First attempts to solve the structure by the automatic centro-
100symmetric direct methods using the SHELX 76 program 

and using normalised E values E>1.2 by the multisolution
sign expansion pathway failed. Examination of the E

maps produced from this run showed patterns of fused rings 

which were chemically not reasonable. The E values of the 
reflections chosen oy the program for origin and multisolution 

determination were of the order of 3.5, which indicated a 
possible overconsistent solution. Subsequently a convergence

88



map was printed to allow hand selection of suitable origin 
and multisolution reflections. These values were used with 

the tangent multisolution refinement method with E^l.l, 
again without a success. A run with 1.3 also failed to 

yield a recognizable solution. The structure was solved by 
taking the same hand selected origin and multisolution values 

as used in the tangent refinement and using 'Z 2 centrosymmetric 
method with ^  1.1 . The E map calculated from a solution with 

the highest figure of merit showed the location of all non 

hydrogen atoms in the molecule (the highest 14 peaks). The 

structure was refined first in 3 cycles using isotropic 
thermal parameters for 14 non~hydrogen atoms by full“matrix 

least squares to give R = 0.16. 6 cycles of anisotropic
refinement for all the non-hydrogen atoms gave R = 0.08.

A difference map calculated at this stage gave reasonable

positions for all but two of the hydrogen atoms. The methyl

group was not as well defined as only one hydrogen atom was

readily found. In final cycles of refinement the found
hydrogen atoms were included in the calculation of structure

factors at the map positions but not refined, and the second
and third methyl hydrogen were calculated assuming C-H=1.08

A and angle H-C-H = 109°. The final R = 0.073 with
w = 1 / and R = 0.070. The final difference mapw
showed a maximum of 0.6 e/X  ̂at 1.18 R from S atom. The 

scattering factors were those of Cromer and Mann and

correction for the real and imaginary parts of the anomalous
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dispersion were applied.

Discussion

The final atomic co-ordinates are given in Tables 1-96 and 

2-96, bond lengths and angles in Tables 4-96 and 5-96, 
thermal parameters, table 3-96, intermolecular contact dis­

tances and important non-bonded intramolecular contacts 

tables 6-96 and 7-96 respectively.

The perspective view of the molecule and its planarity are
shown in Figures 1 and 2 respectively. In spite of the steric

interactions the molecule was found to be planar giving the

maximum overlap of the h orbitals. The X-ray crystallo

graphy gave the answer to the problem of the geometrical

isomerism by proving that the new double bond formed in the
reaction has Z-configuration. Also interatomic distances

between the ortho-H on the benzene ring and sulphur atom

suggests the existence of the hydrogen bond making the
molecule even more rigid. Finally, the bond angle C-1 5 C 4

75has been confirmed to be near 90 .
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TABLE 1-96 Fractional atomic coordinates and
2thermal parameters (A ) for (96)

Atom X y z U. U iso or e

S(l) -0.0511(2) 0.2071(2) 0.1547(3) 0.052(1)

0(1) -0.2595(4) -0.0811(7) 0.0857(9) 0.076(4)

C(l) -0.2204(6) 0.0941(10) 0.1449(12) 0.053(5)

C(2) -0.2960(7) 0.2399(10) 0.2210(12) 0.056(5)

C(3) -0.2266(6) 0.4234(9) 0.2783(11) 0.047(4)

C(4) -0.0859(6) 0.4394(8) 0.2450(10) 0.046(4)

C(5) 0.0018(6) 0.6079(9) 0.2900(11) 0.046(4)

C(6) 0.1431(6) 0.6530(9) 0.2742(10) 0.044(4)

C(7) 0.2209(7) 0.5191(11) 0.2032(12) 0.054(5)

C(8) 0.3549(7) 0.5738(11) 0.1885(12) 0.057(5)

C(9) 0.4158(7) 0.7677(12) 0.2461(13) 0.062(5)

C(IO) 0.3416(7) 0.9024(12) 0.3204(14) 0.065(5)

C(ll) 0.2076(7) 0.8483(10) 0.3351(12) 0.054(5)

C(31) -0.2846(8) 0.5979(12) 0.3578(18) 0.062(6)
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TA B LE 2-96 Fractional atomic coordinates for the
hydrogen atoms for Cj^HjqOS (96)

Atom X y z

H(2) -0.3888 0.2057 0.2551

H(5) -0.0343 0.7337 0.3511

H(7) 0.1816 0.3786 0.1670

H(8) 0.4077 0.4793 0.0976

H(9) 0.5106 0.8163 0.2181

H(10) 0.3861 1.0470 0.3551

H(ll) 0.1594 0.9327 0.3796

H(31a) -0.3836 0.5479 0.4035

H(31b) -0.2470 0.6856 0.2583

H(31c) -0.2552 0.6733 0.4757
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O 't UO O 00 CO O m vO >4-
m UO >o St îTN m MO >n •4 ITN m uo
O O O O O O O O O O O O O O• • • • • • • • • • • • • •
O O O O O O O O O O O O O O

4"-N 4*̂ /-N /—V /*-N 41̂ O
es en 4 m nC 00 ON en

Nm/ S.p' S**C Nim»' 'w' Nw/C
CO O O ü U CJ ü U O O Ç-) ü ÇJ

94



TABLE 4-96 Bond l e n g t h s  (A) f o r  C j j HjqOS (96)

S(l) -C(l) 1.789(7) S(l) -C(4) 1.772(7)

0(1) -C(l) 1.226(8) C(l) -C(2) 1.442(11)
C(2) -C(3) 1.352(9) C(3) -C(4) 1.466(9)
C(3) -C(31) 1.501(12) C(4) -C(5) 1.345(8)

C(5) -C(6) 1.454(9) C(6) -C(7) 1.388(11)

C(6) -C(ll) 1.409(9) C(7) -C(8) 1.383(10)

C(8) -C(9) 1.390(11) C(9) -C(IO) 1.367(12)
C(10) -C(ll) 1.382(10)
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TABLE 5-96 Bond angles (*) for C^^HjqOS (96)

C(4) -S(l) -C(l) 91.8(3) 0(1) -C(l) -S(l) 122..5(6)
C(2) -C(l) -S(l) 109.2(5) C(2) -C(l) -0(1) 128..2(6)
C(3) -C(2) -C(l) 115.5(6) C(4) -C(3) -C(2) 113..5(6)
C(31) -C(3) -C(2) 124.7(7) C(31) -C(3) -C(4) 121..7(6)
C(3) -C(4) -S(l) 109.8(4) C(5) -C(4) -S(l) 126,.3(5)
C(5) -C(4) -C(3) 123.8(6) C(6) -C(5) -C(4) 131,.9(7)
C(7) -C(6) -C(5) 125.4(6) C(ll) -C(6) -C(5) 117,.9(6)

C(ll) -C(6) -C(7) 116.7(6) C(8) -C(7) -C(6) 121,.9(7)

C(9) -C(8) -C(7) 120.2(7) C(IO) -C(9) -C(8) 119 .1(7)

C(ll) -C(IO) -C(9) 120.9(7) C(IO) -C(ll) -C(6) 121 .2(7)
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TABLE 6-96 Intermolecular distances (Ä) for (96)

I

1}

S(l) ...S(l) 3.49 -1 0.0 0.0 0.0

0(1) ...8(1) 3.70 -1 0.0 0.0 0.0

C(5) ...8(1) 3.78 -1 0.0 1.0 0.0

C(6) ...8(1) 3.82 -1 0.0 1.0 0.0

H(9) ...0(1) 2.54 1 1.0 1.0 0.0

H(31b) ...0(1) 2.50 1 0.0 1.0 0.0

C(7) ...0(1) 3.34 -1 0.0 0.0 0.0

H(7) ...0(1) 2.59 -1 0.0 0.0 0.0

H(8) ...0(1) 2.96 -1 0.0 0.0 0.0

H(8) ...0(8) 3.04 -1 1.0 1.0 0.0
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TABLE 7-9 6  Intramolecular distances (A) for (9 6 )

0(1) ...8(1) 2.66 0(2) ...8(1) 2.64

C(3) ...8(1) 2.66 0(5) ...8(1) 2.79

C(6) ...8(1) 3.38 0(7) ...8(1) 3.22

H(7) ...8(1) 2.49 0(2) ....0(1) 2.40

H(2) ...0(1) 2.71 0(3) ....0(1) 2.36

C(4) ...0(1) 2.56 H(2) ....0(1) 2.11

C(4) ...0(2) 2.36 0(31) ,...0(2) 2.53

H(31a). ..0(2) 2.59 0(5) ,...0(3) 2.48

H(2) .,. .0(3) 2.05 H(5) ...0(3) 2.65

H(31a).,..0(3) 2.07 H(31b) ...0(3) 2.11

H(31c)....0(3) 1.99 0(6) ...0(4) 2.56

C(7) ,...0(4) 3.16 0(31) ...0(4) 2.59

H(5) ...0(4) 2.05 H(7) ...0(4) 2.94

H(31b) ...0(4) 2.80 H(31c) ...0(4) 2.81

C(7) ...0(5) 2.53 0(11) ...0(5) 2.45

C(31) ...0(5) 3.01 H(7) ...0(5) 2.76

H(ll) ...0(5) 2.54 H(31b) ...0(5) 2.89

H(31c) ...0(5) 2.96 0(8) ...0(6) 2.42

C(9) ...0(6) 2.81 0(10) ...0(6) 2.43

H(5) ...0(6) 2.07 H(7) ...0(6) 2.08

H(ll) ...0(6) 1.96 0(9) ...0(7) 2.40

C(IO) ...0(7) 2.75 0(11) ...0(7) 2.38

H(8) ...0(7) 2.09 0(10) ...0(8) 2.38

C(ll) ...0(8) 2.75 H(7) ...0(8) 2.04

H(9) ...0(8) 2.12 0(11) ...0(9) 2.39

98

1



table 7-96 continued

H(8) ...C(9) 2.06 H(10) ...C(9) 2.08

H(9) ...C(10) 2.03 H(ll) .. .C(10) 1.98

H(5) ...C(ll) 2.50 H(10) ...C(ll) 2.10

H(2) ...C(31) 2.78 H(5) ...C(31) 2.60
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()

perspective view and the planarity of the molecule of 
5-benzylidene-4-methyl-3-thiolene*-2-one (96) .
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13.2 Structure determination of 5~:nesityledene~4-

methyl-3~thiolene-2-one (97) by means of X-ray 

crystallography

a) Crystal preparation

The structure of (3Z)(5Z)-5-mesitylidene — 4-methyl-3- 

thiolene-2“one (97) was investigated by means of X-ray 

crystallography. The compound (97) crystallised from 

methanol as pale yellow, irregular shaped crystals. The 

crystals were broken into smaller fragments for the pre­

liminary measurements under a polarising microscope. A 

fragment of crystal selected for the X-ray study, having 

dimensions c.a. 0.15 x 0 . 1 2 x 0 .2 mm was mounted on a quartz 

glass fibre on a Philips PW 1100 goniometerhead.

b) Determination of the structure

The data were collected on a PWllOO four circle diffractometer 

using MoKot radiation ( A = 0.71069^) from a graphite mono­

chromator and a "0 - 20 scan mode. No absorption corrections 

were applied. The structure was solved by use of the auto-

f -I

101



matic centrosymmetric direct methods using the SHELX 76 

program. Normalised E values with E ^  1.2 were

applied to the multisolution Z   ̂ sign expansion pathway 

and the E map calculated from a solution with the highest 

figure of merit showed the location of all the non-hydrogen 

atoms in the molecule (the highest 17 peaks). The structure 

was refined first in 3 cycles using isotropic thermal para­

meters for 17 non-hydrogen atoms by full-matrix least 

squaresj 6 cycles of anisotropic refinement for all the 

non-hydrogen atoms gave R = 0.078. A difference map cal­

culated at this stage gave reasonable positions for all of 

the hydrogen atoms. In final cycles of refinement the found 
hydrogen atoms were included in the calculations of structure

factors at the map positions but not refined. The final R
2

value was 0.074 with the weighting scheme using w = 1/ <5" F
and R = 0.078. The final difference map showed a maximumw
of 0.6 e/R at 1.18 R from sulphur atom. The scattering

factors were those of Cromer and Mann 101 and correction

for the real and imaginary parts of the anomalous dispersion 

was applied.

c) Discussion

The final atomic co-ordinates are given in Tables 1-97 and 

2-97, bond lengths and angles in tables 4-9'̂  and 5-97, 
thermal parameters tables 3-97. A perspective view of the

102









TABLE 1-97 Fractional atomic coordinates and
2thermal parameters (A ) for (97)

Atom X y z
U. U 

I S O  or e

S(l) 0.7739(1) 0.5213(2) -0.0262(2) 0.078(1)

C(l) 0.8943(5) 0.6770(8) -0.0751(9) 0.091(4)

0(1) 0.9084(4) 0.7073(7) -0.2161(6) 0.146(4)

C(2) 0.9628(4) 0.7516(7) 0.0748(8) 0.077(4)

C(3) 0.9231(4) 0.6923(6) 0.2138(7) 0.062(3)

C(31) 0.9825(5) 0.7480(8) 0.3801(8) 0.082(4)

C(4) 0.8181(4) 0.5654(6) 0.1882(6) 0.055(3)

C(5) 0.7555(4) 0.4898(6) 0.3073(6) 0.058(3)

C(6) 0.6473(4) 0.3650(5) 0.2813(5) 0.052(3)

C(7) 0.5383(4) 0.4131(5) 0.2629(5) 0.052(3)

C(71) 0.5226(4) 0.5980(6) 0.2717(6) 0.062(3)

C(8) 0.4357(4) 0.2893(6) 0.2434(6) 0.061(3)

C(9) 0.4414(5) 0.1189(6) 0.2421(6) 0.062(3)

C(91) 0.3311(5) -0.0110(7) 0.2203(9) 0.091(4)

C(10) 0.5501(5) 0.0747(6) 0.2633(7) 0.067(3)

C(ll) 0.6531(4) 0.1923(6) 0.2843(6) 0.062(3)

C(lll) 0.7687(5) 0.1376(7) 0.3094(10) 0.104(4)
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TABLE 1-97 Fractional atomic coordinates and
.2thermal parameters (A^) for (97)

Atom X y z U. U ISO or e

S(l) 0.7739(1) 0.5213(2) -0.0262(2) 0.078(1)

C(l) 0.8943(5) 0.6770(8) -0.0751(9) 0.091(4)

0(1) 0.9084(4) 0.7073(7) -0.2161(6) 0.146(4)

C(2) 0.9628(4) 0.7516(7) 0.0748(8) 0.077(4)

C(3) 0.9231(4) 0.6923(6) 0.2138(7) 0.062(3)

C(31) 0.9825(5) 0.7480(8) 0.3801(8) 0.082(4)

C(4) 0.8181(4) 0.5654(6) 0.1882(6) 0.055(3)

C(5) 0.7555(4) 0.4898(6) 0.3073(6) 0.058(3)

C(6) 0.6473(4) 0.3650(5) 0.2813(5) 0.052(3)

C(7) 0.5383(4) 0.4131(5) 0.2629(5) 0.052(3)

C(71) 0.5226(4) 0.5980(6) 0.2717(6) 0.062(3)

C(8) 0.4357(4) 0.2893(6) 0.2434(6) 0.061(3)

C(9) 0.4414(5) 0.1189(6) 0.2421(6) 0.062(3)

C(91) 0.3311(5) -0.0110(7) 0.2203(9) 0.091(4)

C(10) 0.5501(5) 0.0747(6) 0.2633(7) 0.067(3)

C(ll) 0.6531(4) 0.1923(6) 0.2843(6) 0.062(3)

C(lll) 0.7687(5) 0.1376(7) 0.3094(10) 0.104(4)
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TABLE 2-97 Fractional atomic coordinates for the
hydrogen atoms for CjjHjgOS (97)

Atom X y z

H(2) 1.0457 0.8477 0.0707

H(31a) 1.0537 0.8358 0.3779

H(31b) 1.0045 0.6295 0.4175

H(31c) 0.9205 0.8064 0.4914

H(5) 0.7966 0.5420 0.4340

H(71a) 0.4444 0.6177 0.3014

H(71b) 0.5801 0.6811 0.3349

H(71c) 0.5442 0.6172 0.1430

H(8 ) 0.3566 0.3333 0.2227

H(91a) 0.2585 0.0376 0.1924
H(91b) 0.3408 -0.0952 0.2772

H(91c) 0.2874 -0.1233 0.1227

H(10) 0.5538 -0.0639 0.2499

H(lla) 0.8406 0.2592 0.3718

H(llb) 0.7530 0.0004 0.2895

H(llc) 0.8650 0.1188 0.2674
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TABLE 4-97 Bond l e n g t h s  (A) for HjgOS ( 9 7 )

S(l) -C(l) 1.804(6) S(l) -C(4) 1.772(5)

C(l) -0(1) 1.218(10) C(l) -C(2) 1.442(9)

C(2) -C(3) 1.347(9) C(3) -C(31) 1.491(8)

C(3) -C(4) 1.443(6) C(4) -C(5) 1.356(7)

C(5) -C(6) 1.460(6) C(6) -C(7) 1.391(7)

C(6) -C(ll) 1.424(7) C(7) -C(71) 1.516(7)

C(7) -C(8) 1.408(6) C(8) -C(9) 1.393(8)

C(9) -C(91) 1.500(7) C(9) -C(IO) 1.382(8)

c(io) -C(ll) 1.384(7) C(ll) -C(lll) 1.506(8)
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TABLE 5-97 Bond angles (*) for C^5Hi60S (97)

C(4) -S(l) -C(l) 91.0(3) 0(1) -C(l) -S(l) 121.6(5)

C(2) -C(l) -S(l) 109.2(5) C(2) -C(l) -0(1) 129.1(5)

C(3) -C(2) -C(l) 114.9(5) C(31) -C(3) -C(2) 123.8(4)

C(4) -C(3) -C(2) 114.4(5) C(4) -C(3) -C(31) 121.7(5)

C(3) -C(4) -S(l) 110.4(4) C(5) -C(4) -S(l) 122.1(3)

C(5) -C(4) -C(3) 127.5(5) C(6) -C(5) -C(4) 126.9(4)

C(7) -C(6) -C(5) 121.8(4) C(ll) -C(6) -C(5) 118.6(4)

C(ll) -C(6) -C(7) 119.6(4) C(71) -C(7) -C(6) 122.8(4)

C(8) -C(7) -C(6) 119.6(4) C(8 ) -C(7) -C(71) 117.6(4)

C(9) -C(8) -C(7) 121.1(5)’ C(91) -C(9) -C(8) 120.2(5)

C(10) -C(9) -C(8) 118.3(4) C(10) -C(9) -C(91) 121.5(5)

C(ll) -C(IO) -C(9) 122.6(5) C(10) -C(ll) -C(6) 118.8(5)

CClll )-C(ll) -C(6) 120.9(4) cdii:)-C(ll) -C(IO) 120.3(5)

Ill
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14. Reaction of ’y-thiolactone (64) with p-cyclocitral (65)

Following the successful reactions of 'K-thiolactone (64) with 

aromatic aldehydes, particularly the sterically hindered mesit- 

aldehyde, the condensation of compound (64) with aliphatic 

aldehydes was investigated.

Thus, ^ “thiolactone (64) was reacted with P-cyclocitral (65) 

and the reaction was repeated under several different conditions 

the reaction was carried out in HCl/MeOH at low temperature 

(0°- +5°C) and at room temperature, also the reaction was 

performed in the presence of base in a protic solvent or using 
Nan in tetrahydrofuran. The oily, brown crude products were 

obtained in each case and were analysed by means of t.l.c. and 

GC-MS techniques. The analyses showed that the products con­

sisted of the mixtures of many compounds, among which p-' 
cyclocitral (65) and cyclohexenecarboxylic acid (98) were 
detected. Mass spectra of the individual components indicated 

that their molecular weights were different from that of the 

required product (66). Thus, the crude reaction products 

were not analysed further.

( 9 8 )
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A possible explanation for the failure to condense ^ -thio- 

lactone (6A) with ^-cyclocitral (65) is that ^ -cyclocitral 

having acidic Y -hydrogens as well as a double bond and the 

carbonyl group may under the reaction conditions applied 
undergo isomerization or polymerization or other side re­

actions leading to the undesired products.

15. The reaction of -thiolactone (64) with cyclohexane-

carboxaldehyde (99).

^  -thiolactone (64) was reacted with cyclohexanecarbox- 

aldehyde (99) under various reaction conditions. l>Jhen the 

reaction was carried out in the presence of hydrogen chloride, 

only starting materials were found in the crude reaction 

mixture. However, the reaction carried out in HeOH/NaOH at 

room temperature gave a yellow crystalline product which was

chromatographed on silica column, using CH^Cl^ as eluant to

give 0.03 g (1 .8%) of a crystalline compound (t.l.c. r =

0 .3 3 , CH^Cl^), identified as a condensation product (100)
of Y -thiolactone (64) and cyclohexanecarboxaldehyde (99). 

1.The H n.m.r. analysis of the other column fractions sug­

gested that they did not contain the required condensation 

product (100), therefore the detailed analysis of those 

fractions was not undertaken.

The mass spectrum of the reaction product (100) shows an
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abundant molecular ion at m/e 208 (64%) . The base peak of the 

spectrum is an ion at m/e 127 (probably species 100a), corres­

ponding to the loss of cyclohexene radical from the molecular 
ion; similar fragmentation is observed for alkylthiophenes and 

occurs with the migration of hydrogens. The fragment ion

at m/e 127 seems to undergo further fragmentation with loss of 

CH^O to give m/e 97.

Alternatively, the molecular ion appears to undergo fragmen­

tation by the loss of cyclohexene followed by the loss of CO 

to give an ion at m/e 98; a similar fragmentation mode is 

observed for the aromatic analogues (96) and (97).

The structure of the compound (100) was further investigated 
1 13by means of H and C n.m.r. spectroscopy (spectra 21-26).

The n.m.r. parameters are listed in the table 100/H.
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■'V,

Table 100/H

Solvent CDCl^; internal standard T.M.S., 80MHz

Proton
Assignment Type cS'/ppm D /Hz Integra­

tion

H-2', H-3’ 
H-4' H-5' 
H-6 ’
H-1'

™ 2

:iC-H

\

1 .1-2 . 2

y
1 1

H-7 2.23 H-3-H-7 3

= 1.3

H-3 =C-H 6 . 1 1 H-3-H-7 1

= 1.3

H-6 =C-H 6.14 H-6-H-1’ 1

= 9.3

m

i

Irradiation of the peak at d'6.11 causes the doublet at S i . 23 

to collapse into a single peak; the methyl protons can be ex­

pected to couple to the alkene proton H-3. Therefore on the 

basis of the double resonance experiment the peak at c5”6.11 is 

assigned to the H-3.

m

Irradiation of one shoulder ( 6.20) of the doublet at cTb.lA
102causes the other shoulder ( d  6.09) to disappear. Thus,

the peaks at c56.20 and d6.09 belong to the same doublet.
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r  V

In the chair conformation the cyclohexane ring can be ex­

pected to have the large substituent in the equatorial 

position.

2A large coupling constant J vie (H-1' - H-6) = 9.3Kz. 
indicates that the rotational isomer, which contributes 

most to the J value is that with the vicinal protons H-1’ 

and H-6 in an anti coplanar arrangement with respect to 

each other, that is with the dihedral angle between 

C-(H-l') and C-(H-6) near 180°, and with H-1’ close to 

sulphur.

13Broad band proton decoupled and C n.m.r. s.f.o.r.d. 
spectra allowed assignment of the chemical shifts for all 

carbons in compound (100). The C parameters are listed 

in table 100/C.
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Table 100/C

Solvent CDCl^; internal standard 1[.M.S., 20MHz

Assignment Type 6  /p.p.m.

C-7 CH3 14.6

C-3', C-5' ™ 2
25.5

C-4' ™ 2
25.8

C-2', C-6 ' ™ 2
32.1

C-1' ^CH 42.1

C-3 = CH- 128.9

C-5 = Cc: 136.9

C-6 = CH- 138.2

C-4 = c< 159.4

C-2 C=0 193.7

A singlB peak, at 14.6, which appears as a quartet in the 

s.f.o.r.d. spectrum was assigned to carbon C-7. In the 

analogues (96) and (97) the chemical shifts for this carbon 

are 6 14.9 and 614.5 respectively.

A high intensity peak at 6  25.5 was assigned to methylene 

group carbons C-3' and C-5’ and the lower intensity peak at 

6 2 5 . 8  to carbon C-4'. The peaks shc^’ triplets in the 

s.f.o.r.d. spectrum.
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The methylene group carbons C-2' and C-6' are deshielded 

and they correspond to a peak at c^32.1, which appears as 

a triplet in the s.f.o.r.d. spectrum.

The peak at c5'42.1 belongs to carbon C-1', the proton shows 

as a doublet in the s-f-off resonance decoupled spectrum.

The peaks at d'lgS.? and d'159.4 are due to the carbonyl 

carbon C-2 and the quarternary carbon C-4 respectively. The 

peak at c5̂ 136.9 shows as a singlet in both broad band de­

coupled and s.f.o.r.d. spectra and was assigned to C-5.

The olefinic carbons C-3 and C-6 correspond to the peaks at
13c5' 128.9 and cT 138.2 respectively. In the C n.m.r. spectrum 

of -thiolactone (64), a starting material, the chemical 

shift for C-3 is cTl28.2.

. , 103Carbon C-6 , a terminal olefinic carbon, is de-shielded 
and it shows downfield shift at cJl38.6, comparing with the 

chemical shift for that carbon in the analogues (96) ( d  119.b) 

and (97) ( <5129.9).

The side products (101) and (102) may also form in the reaction 
of X-thiolactone (64) with cyclohexanecarboxaldehyde (99). 

However, the analysis carried out on the isolated product 
suggest structure (100). Thus, in the UV spectrum of the 

analysed compound a bathochromic shift of
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16. Preparation of ^ -thiolactone (64) derivatives 

16.1 Introduction

As an alternative route to the condensation product (66) of 
Y  -thiolactone (64) with ^-cyclocitral (65) the following 

derivatives were prepared:

5-bromo-4-methyl-3-thiolene-2-one (103) ,

diethyl (4-methylthien-2-yl) phosphonate (104) and

trimethylsilyl (4-methylthien-2-yl) ether (105)

The compounds may provide suitable alternatives to (64) in 

the synthesis of product (66) .
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16.2 Preparation of 5-bromo-3-thiolene-2--one (103)

The bromination of -thiolactone (64) was carried out

with N-bromosuccinimide in CCl,. Allylic bromination with4
N-bromosuccinimide proceeds by a free-radical mechanism, 

with the allylic hydrogen being abstracted by a bromine 

radical to give -thiolactone (64) radical, which on further

reaction with bromine yields product (103). 104 (Scheme 32).

1 13The H and C n.m.r. spectra of the major reaction product 

are in favour of structure (103) and suggest also that the 

compound (106) (the product of bromination at the methyl 

group) and a side reaction product (107) do not accompany C-5 

brominated ^ -thiolactone (64). The reaction product (103) 

was purified by distillation (b.p. 74°C/0,3 mm Hg), and it 

was obtained in 2 1% yield.

The structure of 4-bromo-4-mercapto-3-methylbut-2-enoic acid
1 13y -thiolactone (103) was confirmed by means of H and C 

n.m.r. spectroscopy (spectra 27, 28). The H n.m.r. para­

meters are listed in the table 103/H.
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Table 103/H

Solvent CDCl^; internal standard T.M.S., 80MHz

proton
Assignment Type cT /ppm 3 /Hz Integration

3 =CH 6.19 '' 3  (K- 6 - 1
H-3)=1.47

5 Br-C-H 6 . 1 2 1

6 CH. 2.32 3 (H-6- 3
3 H-3)=1.47

A doublet at cT2.32 and a quartet at cf6.19 arise as a result 

of coupling between the methyl group protons H-6 and an ole- 

finic proton H-3, as could be established from the value of 
their coupling constant. Thus a peak at c5’2.32 was assigned 

to the methyl group and the peak at C^6.19 to proton H-3.

The peak at cT6.19 shows further suggestion of coupling 

between proton H-3 and H-5. The peak at ^6.12 was assigned 

to proton H-5; broadening of this peak suggested that the 

proton H-5 is coupled to the methyl group protons (H-6) and 

to proton H-3.

The n.m.r. parameters for compound (103) are listed in

table 103/C.
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Table 103/C

Solvent CDCl^; internal standard T.M.S., 20MHz

Carbon

Assignment Type cT/p.p.m.

C-6 CH^ 17.4

C-5 ^C-Br 52.2

C-3 =C-H 129.2

C-4 =C 168.2

C-2 C=0 194.2

The peaks at <^19U.2 and d'l68.2 were easily assigned to a

carbonyl carbon C-2 and a quarternary carbon C-4 respectively.
13.A peak at c5l29.2 showed as a doublet in the s.f.o.r.d. C 

n.m.r. spectrum and it was assigned to carbon C~3. In the 
n.m.r. spectrum of “thiolactone (64), a starting 

material, carbon C-3 shows at c5"l28.2. Carbon C-5 gave rise 

to a peak at <^52.2, which appeared as a doublet in the 
s.f.o.r.d. spectrum. A peak at <5" 17.4 belongs to the
methyl group C-6 ; it shows as a quartet in the s.f.o.r.d. 
13.C n.m.r. spectrum.

In the mass spectrum of compound (103), the molecular ion 

showed as two low and equal intensity peaks at m/e 192 and 

at m/e 194, which confirms that the ion contains one bromine
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atom. The loss of bromine radical from the molecular ion 

gave rise to an ion at m/e 113, which is the base peak of 

the spectrum and it appeared to undergo further fragmen­

tation by loss of CO to m/e 85, (48%, probably species 
103b). The ion at m/e 85 decomposes either by

loss of sulphur to ion m/e 53 (37%) or by loss of methane 

to ion m/e 69 (14%). The fragmentation of compound (103)

is similar to that observed for thiolactones. 96

16.3 Reaction of 5-bromo-4-methyl-3-thiolene-2-one (103) 

with triethylphosphite.

4“Bromo—4“mercapto—3—methylbut~2—enoic acid -thiolactone

(103) was further reacted with triethylphosphite using a 

procedure of Korte. The n.m.r. spectrum of a side

product, which distilled off from the reaction vessel and 
was collected in a receiver, indicated that it was ethyl 

bromide. A light brown and oily crude reaction product was 

purified by distillation (b.p. 110°-116 C/O.3 mm Hg) to give 

a colourless liquid (0.36 g, 72%). The product was further 

analysed by ^H, ^^C and n.m.r. spectroscopy (spectra
29-30). The n.m.r. parameters are listed in table 104/H. 

The structure (104) was assigned tojthe reaction product.
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Table 104/H

Solvent CDCl^; internal standard T.M.S., 80MHz

Proton
/ppm D/Hz

Assignment Type

H-2' CH- 1.33 2 (H-1’-H-2’) =
3 7.2 Hz

H-6 ™ 3 2.15

H-1' CH- 4.25 2  (H-r-H-2’) =
2 7.2 Hz

H- 5 =C-H 6.36

H- 3 =C-H 6.49

In the n.m.r. spectrum the signals due to methyl and
methylene carbons present in the alkoxide groups and a signal 

due to the methyl group carbon on the thiolactone ring were 

found in the aliphatic part of the spectrum, as expected.

The peaks at <^111.7 and 115.7 were assigned to the olefinic 

carbons C-3 and C-5 respectively. These peaks show as
overlapping doublets in the s.f.o.r.d. spectrum. The peaks 

at 6  ̂152.6 and <^134.9 are due to the quarternary carbons C-2

and C-4 respectively.

In the n.m.r. spectrum compound (104) gives rise to a 

peak at d ' (-6 .50) *; this value is consistent with the
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chemical shifts of similar compounds. 106

The mass spectrum of compound (104) shows a molecular ion 

at m/e 250 (49%). The base peak of the spectrum is a frag­

ment ion at m/e 114, which has probably been formed as a 
result of a six-membered re-arrangement with hydrogen tran­

sfer. The resulting fragment ion m/e 114, appears to undergo 
further fragmentation similar to that observed for -thiolac- 

tone (64). The fragmentation pattern for product (104) suggests 

that alternatively the molecular ion undergoes a re-arrangement 

with a loss of CH2=CH2 to give fragment ion at m/e 222 (probably 

species 104b).

* Footnote

85% H PO was used as an internal standard and positive 
3 4

are those downfield of ^2^^4
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16.4 Trimethylsilyl (4-methylthien-2-yl) ether (105)

The title compound (105) was prepared by the method of 

Brownbridge in the reaction of ^  -thiolactone (64)

and chlorotrimethylsilane. The product (105), a colour­

less liquid, was purified by distillation, b.p. 38°-40°C/

0.6 mm Hg and was obtained with 32% yield; compound (105) 

decomposes easily on standing.

(CHASiCI, _ jj ^
)-Si(CH5)j

1 13The compound (105) was next analysed by means of H and C
n.m.r. spectroscopy technique. The H n.m.r. parameters are

13listed in table 105/H and the C n.m.r. parameters are in

table 105/C.

In the n.m.r. spectrum two single peaks at ci5.09 and
6  6.09 were assigned to the protons H-5 and H-3 respectively; 

the peaks are broadened, probably due to coupling of the protons 

H-2 and H-5 with methyl group protons.
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Table 105/H

Solvent CDCl^, internal standard, T.M. S. 80 MHz

Proton
Assignment Type /ppm Integration

H-1' Si-CH^ 0.25 9

H-6 CH3 2 . 1 1 3

H-5 =C-H 5.09 1

H-3 =C-H 6.09 1

13.In the olefinic part of the broad band proton decoupled C 

n.m.r. spectrum two peaks at 107.9 and 111.6 are due 

to the carbons C-2 and C-5 respectively. The peaks appear
13.as overlapping doublets in the s.f.o.r.d. C n.m.r. spectrum

Table 105/C

Solvent CDCl^ , internal standard, T,M.S. 20 MHz

Assignment Type cT/ppm

C-6 CH3 16.7

C-3 =C-H 107.9

C-5 =C-H 1 1 1 . 6

C-4 /C= 134.9

C-2 =c-o- 159.8

Absence of any peaks due to the methylene protons H-5 and carbon 

C-5 in the and n.m.r. spectrum confirms that the compound 

(105) exist as trimethylsilyl thienyl ether form.
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17. Desulphurization reaction

108 109 ,Following some examples in the literature, ue
sulphurization of 5”benzylidene-4“methyl“3“thiolene“2“one

110(96) with Raney nickel was attempted. Raney nickel W-2 
and W- 5 were freshly prepared from nickel-aluminium

alloy for the reactions.

Desulphurization with Raney nickel W-2 was not effective and

compound (96), the starting material was recovered. However,
1 .sulphur atom was removed with Raney nickel W-5; the ri n.m.r. 

and i.r. spectroscopic analyses of a crude product showed that 

hydrogenation of the double bonds also took place, indicating 

that the milder reaction conditions may need to be employed 

to preclude this.

18. Conclusions

Y  -Thiolactone (64), the key intermediate in the proposed 
stereocontrolled synthesis of the plant growth regulators was 

prepared in a three step synthesis, which was conducted under 

the mild reaction conditions throughout and employed readily 
available materials. The products prepared in the first and 

second stages were of high purity and were obtained with the 
good yields. Y -Thiolactone was formed in the third stage 
of the synthesis, by cyclization of 4-acetylthio-3-methylbut- 

2-enoic acid ethyl ester (56), with lower yields. The low
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yields of this compound were due to the fact that only the 

Z-isomer (92) could be cyclized to give ^  -thiolactone (64) 

and to the difficulties in separating X  -thiolactone (64) 

from a side product. Therefore, it is suggested that any 

further improvements of the X  “thiolactone (64) yield may 

be focussed on changing the relative amount of the isomers 
in the mixture, e.g. in the photochemical reaction or possibly 

using a different intermediate. The short synthesis leading 

to Y  -thiolactone (64) may be considered as a model for the 
preparation of a wide range of 4-substituted (or 3-substituted) 

y -  thiolactones. The very few 4“substituted X -thiolactones, 
reported so far in the literature were synthesized ^  4-sub­

stituted thiophenes, which could be prepared only in long 
syntheses. A vital result of the stereocontrolled synthesis 

under investigation was the proof that the double bond formed 

in the condensation of X -thiolactone (64) with the substi­
tuted and unsubstituted aromatic aldehydes had the Z-con- 
figuration, that is the configuration required by ABA and its 

analogues to exhibit biological activity. By the analogy, 
the condensation products of X  -thiolactone (64) with aliphatic 
aldehydes, e.g. cyclohexanecarboxaldehyde can be expected to 

have this same stereochemistry.

The acidic properties of the methylene group protons on 
X  -thiolactone ring allowed preparation of 5-arylidene 

and 5-bromo-derivatives with good yield.
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However, X -thiolactone (64) failed to couple with 

p —  cyclocitral and the reaction product with cyclo- 

hexanecarboxaldehyde was obtained with low yield. There­

fore in order to develop a more general method of prepara­

tion of 5 - alkylidene derivatives of the Y -thiolactone 
and in particular to effect the condensation with f -cyclo­

citral another method of synthesis may be tried, e.g. pre­
paration via enamines or employing organolithium compounds 

or by using different aldehydes.

In the further step of the proposed stereocontrolled syn­
thesis, the bridging element (a sulphur atom) was removed with 
Raney nickel, W-5; desulphurization was, unfortunately, accom­

panied by hydrogenation of double bonds, suggesting that 
milder reaction conditions need to be employed in order to 

effect selective desulphurization only.
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experimental

1. General

Unless stated otherwise reactions were carried out under 
nitrogen gas, which was dried by passing it over silica gel and 

phosphorus pentoxide and it was then filtered through glass 

wool.

The silica gel adsorbent used in chromatography columns was 

of 70 - 230 mesh, supplied by B.D.H. Chemicals Limited.

Thin layer chromatography was conducted on commercially 

supplied silica"Coated aluminium or glass plates of 0.25 mm 

thickness and with fluorescent indicator for 254 nm wavelength. 

Large, silica coated preparative plates were made up at the 

Polytechnic of North London.

2. Solvents

The solvents were of G.P.R. grade and were dried for the 
reactions. Thus, benzene and toluene were distilled and stored 

over sodium wire. THE was stored over calcium hydride and 

distilled for the reactions from lithium aluminium hydride 

in an atmosphere of nitrogen. Diethyl ether was dried over
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sodium wire. Dry ethanol and methanol were prepared by 

refluxing with magnesium turnings. Carbon tetrachloride 

was dried over anhydrous calcium chloride and distilled 

for the reactions.

The solvents of "Analar" grade were used for U.V. and 

n.m.r. instrumental analysis.

3. Reagents

The reagents were mostly obtained from commercial sources.

Thioacetic acid (with CaSO^ as a stabiliser) and chloroacetone 

were distilled for the reactions. Sodium hydride was used as 

a 50% dispersion in mineral oils.

Hydrogen chloride was either drawn from a cylinder or it was 

prepared from concentrated sulphuric acid and hydrochloric 
acids ; the gas was dried by passing it over concentrated

sulphuric acid.

n-Butyllithium was prepared by the method described by Vogel 

in the reaction of metal lithium (shavings) (0.62 mole) 
with butyl bromide (0.25 mole) in sodium dried diethyl ether at 

-10°C and under nitrogen. Excess of lithium was separated from 

the product by filtration in the atmosphere of nitrogen and
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butyllithium in ether was immediately used in the reaction.

4. Analytical Techniques

Carbon and hydrogen combustion analyses were carried out by 

the microanalytical services of the Polytechnic of North 
London and by ICI Laboratories, Jealott’s Hill, Bracknell,

Berks.

Infrared spectra in the region 600-4000 cm"^ were recorded 
on a Pye Unicam SP2000 double beam spectrometer. The spectra 

were recorded as KBr disc or liquid films as stated.

Ultraviolet spectra were recorded in the region 190-450 nm 

in methanol solutions, on a Pye Unicam SP1800 double beam

spectrometer.

Routine n.m.r. spectra were recorded using a Perkin- 

Elmer R-12B 60 MHz spectrometer. Fourier Transform and 
spectra were obtained using a 80 MHz Broker WP 80 MHz 

instrument at the Polytechnic of North London, a 90 MHz 
Jeol-90 at Jealott’s Hill Laboratories (ICI) or a 220 MHz 

Broker at PCMU Laboratories at Harwell. The H, C and
31P n.m.r. spectra were recorded for solutions in CDCI3 , 

unless otherwise stated.
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Mass spectra were recorded using a Hitachi-Perkin Elmer 

RMS4 single focussing instrument, MS9 double focussing 
instrument or a Hewlett-Packard instrument equipped with 

facilities for combination G.C.-M.S.

Gas chromatography analyses were conducted on a Perkin- 

Elmer model F-11 gas chromatograph with a flame ionization

detector .

H.P.L.C. analyses were carried out on a Waters Associates 

A.L.C. 210 instrument using Cecil Instruments variable 

wavelength U.V. monitor for detection.

X-ray crystallography data were obtained with a Philips 

PW 1100 four circle diffractometer with MoK qc radiation 

( 0.71069 A) from a graphite monochromator.
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Synthesis 1

2.5-Dibromothiophene (73) 82

The reaction was carried out in air atmosphere.

Bromine (95g, 0.6 mole) was added dropwise to a cooled 

(20°C) solution of thiophene (30g, 0.3 mole) in toluene 

(30ml). The reagents were stirred for 1 hour at room 

temperature and a solution of sodium hydroxide (25g) in 
ethanol (70ml) was added dropwise over i hour. The reaction 

mixture was refluxed for 16 hours, cooled to room tempera­

ture and diluted with water (40ml). The brown organic 
layer was separated and dried with anhydrous magnesium 
sulphate. Toluene was removed on a rotary evaporator and 

a brown crude product (68g) was redistilled to give mono- 

bromothiophene (74) (17g) b.p. 46°-88°C/ 15 mm Hg and 2,5-
dibromothiophene (73) (32.Og. yield 38%), which distilled

82
as a colourless liquid at 90°C-9 6.5°C/ 1 5 mm Hg, (lit.

b.p. 200°C-210°C, yield 44%); 1.6260 (lit. 84

n f  = 1.6288): ^ ___ (liq- 3120, 1520, 478max.
- 1  . 84(C-Br) cm (lit. ^ (liq. film) 3100, 1510,

max« 83
H470 cm'S; (60 «Hz) 6.65 (2H, s) (lit.

(60 MHz) (cyclohexane) 6.69 (2H, s)), g.l.c.. (
1 «f 1 P90M + 15% B34 on cncomosorb 5 ram i.d. metal column of 15% czum

1 Qn°r Ki 20 nsi. chart speed 60 cm/1 h)W, column temp. 180 C, psi, (.ud

144



tr = 4.1 min.

Synthesis 2

2 , 3. 5-Tribromothiophene (75) 85

2,3,5-Tribromothiophene was prepared by the method of 

Rosenberg. It was obtained with the yield of 46% 

(lit. 42%), b.p. 88°C-94°C/0.2 mm Hg, m.p. 23 C-

i.p. 29°C (ethanol); 
83

25°C (ethanol) (lit. m.
(60 MH.) 6.72 (IH.s) (lit. (60 MH.) (cyclo­

hexane) 6 .7 5 , lH,s); Sc 132.4(d), 113.6(s), 1 1 2 .l(s). 

110.7 (a), (lie. rfedSHHa) (CCl^) 133.8 (d),

115.5(a), 114.0(a), 112.7 (a)); g.l.c.,: (12’ x 5 am.
i.d. metal column of SE30% on Chromosorb W, column temp. 

150°C, 22 psi, chart speed 1 cm/min. t^ = 3.2 min.

Synthesis 3

The direct bromination of Thiophene.

A aolution of thiophene (30 g, 0.3 mole) in toluene (50 ml) 

was cooled to 0°C and bromine (96 g, 0.6 mole) waa added 
dropwise. The reagents were stirred for 2 hours at room 
temperature, cooled down again to 0°C and another portion of 

bromine (79 g, 0.5 mole) added. The reagents were refluxed 
1 hour and some water (60 ml) added. The aqueous and organic
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layers were separated. The organic layer was washed with 

a saturated solution of sodium hydroxide (5 x 40 ml) then 

with water (3 x 40 ml) and dried with anhydrous MgSO^.

Solvent was removed and the crude product (76.3 g) was re­
distilled to give 2 ,5-dibromothiophene (27 g, yield 32%, b.p. 

48°C-60°C/0.2 mm Hg) and 2 ,3 ,5-tribromothiophene (44.3 g, 

yield 41%, b.p. 90°C-96°C/0.2 mm Hg, m.p. 22°C-26°C ethanol, 
^  (60 MHz) 6.68 (s,2H) 2 ,5-dibromothiophene (73), 6.76

(s,lH), 2 ,3 ,5-tribromothiophene (75).

Synthesis 4

2,4-Dibromothiophene 87

2 ,3 ,5-Tribromothiophene (8 g. 0.02 mole) in diethyl ether 

(35 ml) was treated with freshly prepared n-butyllithium

(1.7 g. 0.02 mole) in diethyl ether (35 ml) for thirty 

minutes at -40°C. Cold water (50 ml) was then added and 

the organic and aqueous layers were separated. The aqueous 

layer was extracted with diethyl ether (3 x 30 ml) and the 
combined ether extracts were dried over anhydrous magnesium 

sulphate. Fractional distillation of the crude mixture 

(6.0 g) gave product (2,5 g. b.p. 26°C-29°C/1 mm Hg), which 
consisted (relative amounts of compounds in the distillate 

were calculated from the ''H n.m.r. integral), 2,4 dibromo 
thiophene (71) (74%), 2 ,5-dibromothiophene (73) (14%), 2,3-
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dibromothiophene (80) (12%).

2 ,4“Dibr omo thiophene; (60 MHz) 7.10 (lH,d, J 2"4
83

1.6 Hz), 6.93 (lH,d, ^2-4 '"H
(60 MHz) (cyclohexane) 6.97 (lH,d, 32-4
(lH,d, 1 1.6 Hz); 2 ,5-dibromo thiophene 6.65* \J 2“4
(2H s) (lit. d' (60 MHz) (cyclohexane) 6.69 (2H,s)).V, » / ^

Synthesis 5

3,5-Dichloro-4-hydroxy-4-methylpentan-2-ojie 82

113In the preparation of n-butyllithium THF was used as
a solvent instead of diethyl ether; other conditions of the 

reaction remained unchanged.

A solution of diisopropylamine (23.9 g, 0.24 mole) in THF
,0(80 ml) was cooled to 0°C and a fresh solution of n-butyl­

lithium in THF (200 ml) (prepared from 0.27 mole of ethyl 
bromide and 0.67 g atom of lithium metal) was added slowly.

The reagents were stirred for an additional 10

minutes. The reaction mixture was then cooled to (-78 C)

(CO^/acetone) and thioacetic acid (9 g, 0.12 mole) in THF

(50 ml) was added over a period of 3 minutes. The reagents 
were stirred for 15 minutes and chloroacetone (10.8 g, 0.12 
mole) in THF (50 ml) was added over 3 minutes. Stirring was
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continued for 1 hour at -78°C. The reaction mixture was 

then quenched with ice cold 5% HCl (200 ml) and extracted 
with diethyl ether (4 x 40 ml). Drying (anhydrous magnesium 

sulphate) and concentration of the ether extracts gave 12.5 g 

of Che crude product which was purified by distillation to 

give 2.4 g. of the product, b.p. 68°C-94°C/0.6 mn Hg. which 

was further chromatographed on a silica column. Chloroform 
was used as an eluting solvent. 1 ,5-dichloro-4-hydroxy^ 

■,.tny 1,.enran-2-one (82) (°.9g. 5%) was obtained.

i (liq. film) 3400 (0-H), 2995 (C-H), 1710 (C=0), 645
N max
(C-Cl) cm'S l.M (2 3H.S), 2.42 (3H.s), 2.43 (3H,s),

3.25 (s.OH). 3.45 (s.OH). 3.64 (2H.q, AB, 11.7 Hz,). 3.69
(2H,q,AB, 11.7 Hz) 4 . 4 7 (IH.s) 4.56 (IH.s) ; 21.4

(q). 22.8 (q) 28.8 (q). 29.6 (q). 49.9 (t), 51.1 (t), 63.9
(d). 66.2 (d). 73.7 (s). 74.6 (s), 203.7 (s). 205.0 (s).

Synthesis 6

i!

The solution of TMEDA (27.8 g) (0.24 mole) in THF (30 ml) 
was added dropwise to n-butyllithium «« (0-24 mole)

in THF (200 ml) at 0°C. The reagents were stirred for S 
hour, cooled to -78°C and thioacecic acid (9 g. 0.12 mole)
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continued for 1 hour at -78°C. The reaction mixture was 
then quenched with ice cold 5% HCl (200 ml) and extracted 
with diethyl ether (4 x 40 ml). Drying (anhydrous magnesium 

sulphate) and concentration of the ether extracts gave 12.5 g 

of Che crude product which was purified by distillation to

give 2.4 g. of the product, b.p. 68°C-94°C/0.6 mm Hg, which
was further chromatographed on a silica column. Chloroform 
was used as an eluting solvent. 1 ,5-dichloro-4-hydroxy-Ji:: 

„.■tbyluentan-2-one (82) (°.9g, 5%) was obtained.

(N (liq. film) 3400 (0-H), 2995 (C-H) , 1710 (C 0), 645
^ max
(C-Cl) cm'S ¿"h 1.« (2 3H,s), 2.42 (3H,s), 2.43 (3H.s),

3.25 (s,0H), 3.45 (s,0H), 3.64 (2H,q, AB, 11.7 Hz,), 
(2H,q,AB, 11.7 Hz) 4.47 (1H,S) 4.56 (1H,S); 21.4
(q), 22.8 (q) 28.8 (q). 29.6 (q), 49.9 (t). 51.1 (t), 63.9 
(d), 66.2 (d). 73.7 (s). 74.6 (s), 203.7 (s), 205.0 (s).

Synthesis 6

The solution of TMEDA (27.8 g) (0.24 mole) in THF (30 ml)
89 115

was added dropwise to n“butyllithium (0.24
in THF (200 ml) at 0°C. The reagents were stirred for  ̂

hour, cooled to -78°C and thioacetic acid (9 g, 0.12 mole)
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in THF (50 ml) was added dropwise. After stirring for 

15 minutes monochloroacetone (10.8 g, 0.12 mole) in THF 

(50 ml) was added dropwise and stirring was continued for 

1 hour. The reaction mixture was then quenched with ice 

cold 5% HCl (200 ml) and extracted with ether. Ether 
extracts were dried over anhydrous magnesium sulphate, 

concentrated and the crude product distilled to give
3,5-dichloro--4-hydroxy-4~methvlpentan-2-one (82)

(21.2%), b.p. 61°C-91°C/0.4 urn Hg. N (Uq- 3500,
2995, 1720, 650 cm'S (60 MHz): 1. 40 (3H,s), 2.40

(3H,s), 3.65 (2H,m), 3.83 (2 x lH,s,0H), 4.47 (lH,s),

4.55 (lH,s).

Synthesis 7

The reaction of phenacyl chloride with thioacetlc aci^

Thioacecic acid (9 g, 0.12 mole) in THF (50 ml) was added 
dropwise CO a freshly prepared solution of lithium di- 
isopropylamide (25.70 g, 0.24 mole) in THF (340 ml)

at (-78°C). The reagents were stirred for 15 minutes at 
that temperature and phenacyl chloride (18 g, 0.12 mole) in 
THF (50 ml) was added. The reagents were stirred for an hour 

at -78°C, quenched with ice cold 5% HCl (200 ml) and extracted 

with ether. The ether extracts were dried over anhydrous 

sodium sulphate and concentrated leaving a crude product
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(22 g) , a light brown oil of sharp smell, which was re­
distilled to give phenacyl chloride (5.1 g, recovered 28%, 

b.p. 82°C-86°C/0.1 mm Hg) and S-phenacyl thioacetate (83) 

(2.3 g, 15%, b.p. 130°C/0.1 mm Hg). The following data 

were recorded for S-phenacyl thioacetate (83):

^  (liq. film), 3070, 2920, 1700, (C=0), 1650 (C-C)
1 max
cm"S 2.35 (3H,s), 4.37 (2H,s), 1 , h 3 - l . S 2  (5H,m,Ph),

30.2 (q). 36.7 (t). 128.7 (d) 129.0 (d), 129.4 (d). 1 3 5 .9(s),

193.5 (s), 194.4 (s); m/z 195 (M , 12%) 77 (100).

Synthesis 8

Tho. reaction of phenacyl thioacetate (831 with potassio» 

t-butoxide in t-butyl alcohol.

Phenacyl chioacetate (83) (1.5 g. 8 mmole) in t-butyl 
alcohol (4 ml) was added to a freshly prepared solution 
of t-BuOK in t-butyl alcohol (8 ml) (prepared from 8 mmole 

of K and i-BuOH. 8 ml) at room temperature. The rea­
gents were stirred for 3 hours and 5% HCl was added, until 

pH 6, the organic products were extracted with diethyl 

ether and dried (MgSO^). The crude product (0.9 g) was 
purified by means of preparative TLC to give 1-phenyl-l.3- 

tutcnedione (85) (0.15 g. (12%)) and the recovered phenacyl

thioacetate (83). The T.L.C. plate (10 cm x 10 cm x 2 mm)
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with a fluorescent indicator (60F-25A) was used, develop” 

ing solvent consisted of a mixture of n-pentane:MeOH;i- 

propanol = 12:2:1.

l-phenyl-l,3-butanedione (85) ^max* (OH),
3020 (C-H), 2840 (C-H), 1620 (C=0); 2.21 (3H,s),

6.19 (lH,s), 7.64 (5H,s): cT 25.8 (q), 96.8 (d), 127.1
(d), 128.8 (d), 132.4 (d), 135.1(8), 183.6(s), 193.8 (s); 

m/z (M 162, ^6%), 77 (100).

Synthesis 9

Ethyl-4-chloro-3-hydroxy-3~methylbutanoate (37).

Reformatsky reaction of ethyl bromoacetate with monochloro- 

acetone.

The Reformatsky reaction of ethyl bromoacetate with mono-
93

chloroacetone was carried out as described by W. Epstein.
The analytical data for the product, ethyl-4-chloro”3-hydroxy- 

3-methylbutanoate (87), obtained with an average yield of 35%, 

were found as follows:

max
-1 93(liq. film) 3480, 3000, 1740 (C*0) cm (lit.

(liq. film) 3540, 1730 cm ’'); cf'jj (60 MHz) 1.28
max

(3H, t, 6.2Hz, OCH^CH^), 1.35 (3H, s), 2.63 (2H,s), 3.65
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(2H,s, CH^Cl), 3.78 (lH,s,OH), 4.15 (q,2H, 6.2 Hz, -OCH^CH^) 

(lit. for methyl ester (87) 1.35 (3H,s), 2.70

(2H,s), 3.68 (2H.^H2C1), 3.76 (3H,^CH3), 3.91 (lH,s,0H));

¿  14.2 (q), 25.2 (q), 42.2 (t), 52.04 (t), 60.9 (t),c
71.2 (s), 172.2 (s,C=0).

Synthesis 10

A. Preparation of 20% HCl/MeOH solution

Hydrogen chloride was bubbled through absolute MeOH

(cooled in an ice bath) until saturation; and (1 ml) ali­
quot was withdrawn with a pipette, diluted with H^O to 25 ml 

and Che HCl concentration was estimated by titrating with 

0,25 M Na2C0^ in Che presence of methyl red indicator. y 

the end of Che titration the colour of the citranc had 
changed to yellow. The BCl/MeOH solution was diluted(4-6 times) 

uith absolute MeOH in order to obtain the required concentra- 

tion of 20% HCl in MeOH.

B. 20% w/w solution of KOH in absolute MeOH (15.3 ml) was
cooled to 0°C and ethyl 4-chloro-3-hydroxy-3-methylbuCanoate

(87) (6 g, 0.03 mole) was added dropwise. The reagents were
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stirred at this temperature for 1 hour. The reaction mixture 

was acidified with 20% HCl/MeOH (pH 3, universal pH indicator) 

and then solid NaHCO^ was added (pH 7). The precipitates were 

separated and some diethyl ether (10 ml) was added to the 
filtrate, the precipitate was filtered off. The filtrate was 

dried over anhydrous magnesium sulphate, the solvent was 
evaporated off and the yellow, oily crude product (3.8 g) was 

redistilled to give a fraction (1.5 g. 42%) of b.p. 64°C-70°C/ 

0.5 ran Hg. The integrals in the n.m.r. spectrum showed 
that the fraction contained 4-hydroxy-3-methylbut-2-enoic acrd 

Y  -lactone (86) (37%) and methyl-E-4-hydroxy-3-methylbut-2-

enoate (88) (63%).

4-hydroxy-3-methylbut-2-enoic acid X -lactone (86):

6 (60 MHz) 2.11 (3H,s), 4.68 (2H,s), 5.80 (lH,s),
H

(lit. "" 2.12 (3H,s), 4.73 (2H,s), 5.78 (lH,s));93
H

methyl-E-4-hydroxy-3-methylbut-2-enoate (88): (60 MHz)

2.04 (3H, s). 3.42 (IH.s.OH), 3.65 (3 8,5 ,0083), 4.12 (28,s),
V . 935.92 (lH,s) (lit.

4.15 (2H,s), 4.94 (lH,s,0H), 6.02 (lH,s)).

^  2.09 (3H,s), 3.69 (3H,s,0CH^),
H
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Synthesis 11

(86) by photochemical reaction.

A mixture (3.75 g) of 4-hydroxy-3-methylbut-2-enoic acid 
Y  -lactone (86) and methyl-E-4-hydroxy-3-methylbut-2-enoate 

(88) and a catalytic amount (1.5 ml) of 20% HCl/MeOH (prepared 

as described in synthesis 10) in absolute methanol (275 ml) 

were placed in the U.V. reaction vessel. The reaction mixture 

was irradiated with U.V. light, wavelength 340 nm,for 1 hour. 

The solution was then poured into a round bottom flask and 
neutralized with solid sodium bicarbonate. The solvent was 

evaporated to dryness and a residue in H^O was extracted with 

diethyl ether (4 x 40 ml). The ether extracts were dried over 

anhydrous magnesium sulphate and the solvent was removed on a 

rotary evaporator. The n.m.r. spectra showed that the 

crude product (2.8 g) contained a mixture of 4-hydroxy-3- 
methylbut-2-enoic acid Y-lactone (86) and methyl-E-4-hydroxy- 

3-methylbut-2-enoate (88) in the ratio 82:18. Distillation 

gave 0.8 g(36%)of pure Y-lactone (86), b.p. 52 C-59 C/0.6 mm

Hg (lit. 58°C-62°C/0. 6 mm Hg).
-1

max 2980, 1750, 1650 cm ,

93 ^ (liq. film) 1750, 1640 cm ^); (60 MHz)
 ̂ max
2.11 (3H,s), 4.68 (2H,s), 5.80 (lH,s), (lit 
(3H,s), 4.73 (2H.S), 5.78 (IH.s)); <T̂  14.6 (q), 77.4 (t),

117.1 (d), 166.6 (s), 174.0 (s).
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Synthesis 12

Preparation of S-(2-oxopropyl)-thioacetate (93)

To a solution of thioacetic acid (7.6 g, 0.1 mole) and 
potassium carbonate (13.8 g, 0.1 mole) in acetone (90 ml), 

a solution of chloroacetone (9.2 g, 0.1 mole) in acetone 

(90 ml) was added dropwise over a period of 20 minutes.
The reaction mixture was cooled in an ice bath in order to 

keep the temperature below (+ 35°C). The reagents were 

stirred overnight. The precipitate was filtered off.. 

Acetone was removed on the rotary evaporator and some 
ether (80 ml) was added to the oily residue. The product 

in ether was washed with water (3 x 20 ml) and dried over 
anhydrous magnesium sulphate. Solvent was removed and the 

crude product (brown and oily, 11 g) was purified by dis 
tillation to yield (8.1 g 61%) S-(2-oxopropyl)-thioacet^ 

(93), b.p. 60°C-61.5°C/0.3 mm Hg. ^ (Uq- 2930
(C-H) , 1720 (C=0), 1440 (C-H), 640 (C-S) cm ; 2.24

(3H,s), 2.35 (3H,s), 3.73 (2H,s).
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Synthesis 13

Preparation of triethylphosphonoacetate (91). 105

A mixture of triethylphosphite (0.2 mole) and ethyl bromo-

acetate (0.2 mole) was slowly heated to 140 C and ethyl
bromide, a side product, was collected in a Dean and Stark

apparatus; the reaction was complete when no more ethyl
bromide was collected. Triethylphosphonoacetate was puri-

o , • 105 ,fied by distillation, b.p. 118 C/0.7 mm Hg (lit. .p*
142°-146°/9 mmHg); yield 84%; (60 MHz) 1.32 (9H,m),

2.92 (2H,d.^]p_^ 21 Hz), 4.15 (6H,m)

Synthesis 14

Preparation 

enoate (90). "

of ethyl-(K and Z ) -4-chloro-3--methylbut-2:
94

To a suspension of sodium hydride (0.96 g, 0.02 mole) in 
benzene (8 ml) triethylphosphonoacetate (7.17 g, 0.032 mole) 

was added dropuise and the temperature was kept within the

range 30°-35°C. The reagents were then stirred for 45
TVio solution became clear and minutes at room temperature. The solution

« o n 02 mole) was added dropwise at monochloroacetone (1.8 g, O.uz moie;
20°C-30°C. The colour of the reaction mixture changed
from yellow to brown during the addition of monochloroacetone
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and a gelatinous precipitate formed. The reagents were 

then heated to 60°C for 5 minutes, cooled to room tern- 

perature, quenched with water (30 ml) and extracted with 
diethyl ether (5 x 20 ml). The ether extracts were com­
bined and dried over anhydrous magnesium sulphate, solvent 

was removed on a rotary evaporator and a yellow crude 
product was obtained (3.58 g). Distillation gave 1.4 g
(44%) of ethvl-(E and z)-4-chloro-3-methylbut-2-enoate (90),

b.p. 80°C/0.4 mm Hg. E-isomer (90): 1-31 (3H,t,]8.2
Hz, -OCH^CHj), 2.22 (3H,s), 4.18 (2H,q, ]8.2 Hz -OCH^CHj), 

4.65 (2H,s), 5.99 (lH,s); Z-isomer (90): (f̂  1-31 (3H,t,
] 8.2 Hz, -OCH^CHj), 2.02 (3H,s), 4.02 (2H,s), 4.18 (2H,q, 

3 8.2 Hz, - OCHjCHj), 5.80 (lH,s); E-isomer (90): Í

14.4 (q), 16.6 (q), 43.1 (t) , 60.2 (t.O-CH^-), H9.6 (d) ,
152.6 (s), 165.9 (s,C-0); Z-isomer (90): ^ 14.4 (q),
17.6 (q), 42.2 (t), 60.2 (t,0-CH2-), U9.2 (d) , 152.6 (s),

165.4 (s,C=0).

Synthesis 15

To a mixture of thioacetic acid (0.61 g, 0.08 mole) and 
potassium carbonate (1.10 g, 0.08 mole) in acetone (8 ml)
ethyl-(E and z)-4-chloro-3-methyl-2-butenoate (1.30 g.
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0.08 mole) in acetone (18 mi) v/as added dropwise at room 

temperature. The reaction mixture was cooled in an ice 

bath, to keep the temperature below 30°C. The reagents 

were then stirred at room temperature overnight. The 
precipitate was filtered off. The filtrate was concen­

trated and a crude product was redissolved in diethyl 

ether (100 ml), washed with water (2 x 15 ml) and the 

ether layer dried over anhydrous magnesium sulphate.
Diethyl ether was then removed on a rotary evaporator and 
an oily,brown product (1.43 g) was purified by distillation
to give ethyl-(E and Z ) -4-acetylthio-3-methylbut-2-enoate_

(92), b.p. 92*^0/0.08 mm Hg, yield 0.68 g, 41%. E-isomer 
(92) é  1.22 (3H,t-0CH CH ), 2.18 (3H,s-SCOCH^), 2.02 

OH.S). 3.51 (2H,S), 4.U (an.q.-OCHjCH^). 5.90 (IH.s); 

Z-isoner (92) „ 1.22 OH.t.-OCH^CHj). 1.92 (3H,s,-
SCOCHj), 2.02 (3H,s), 4.13 (2H,s), 4.14 (2H,q,OCH2CH^),

5.74 (lH»s); E-isotner (92) 14.29 (q) » 17.79 (q).
30.12 (q), 37.93 (t.S-CH^). 59.83 (t.-OCH^-), U8.67 
(d,-CE-), 153.25 (s), 166.22 (s,-C0-0R), 194.22 (s,-SC0CH^); 

Z-isomer (92) 14.29 (q) , 23.90 (q). 30.12 (q) . 30.34
(t,S-CH ), 59.83 (t.-OCHj), 119.00 (d,=CH-), 154.16 (s).

166.22 (s.-CO-OR), 195.28 (s.-SCOCH^).
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0.08 mole) in acetone (18 mi) v/as added dropwise at room 

temperature. The reaction mixture was cooled in an ice 

bath, to keep the temperature below 30°C. The reagents 

were then stirred at room temperature overnight. The 
precipitate was filtered off. The filtrate was concen­
trated and a crude product was redissolved in diethyl 

ether (100 ml), washed v/ith water (2 x 15 ml) and the 

ether layer dried over anhydrous magnesium sulphate.
Diethyl ether was then removed on a rotary evaporator and 
an oily,brown product (1.43 g) was purified by distillation 
to give ethyl-(E and Z)-4-acetylthio-3-methvlbut-2-enoate 

(92), b.p. 92*^0/0.08 mm Hg, yield 0.68 g, 41%. E-isomer 
(92) é  1.22 (3H,t-0CH CH ), 2.18 (3H,s-SCOCH^), 2.02 
(3H,s), 3.51 (2H,s), 4.14 (2H,q,-OCH2CH^), 5.90 (lH,s); 

Z-isomer (92) é  ^ 1.22 (3H,t,-OCH2CH^), 1.92 (3H,s,- 

SCOCH ), 2.02 (3H,s), 4.13 (2H,s), 4.14 (2H,q,0CH2CH^),

5.74 (lH,s); E-isomer (92) 14.29 (q) , 17.79 (q),

30.12 (q), 37.93 (t,S-CH2), 59.83 (t,-0CH2-), 118.67 
(d,=CH-), 153.25 (s), 166.22 (s,-C0-0R), 194.22 (s,-SC0CH^);

Z-isomer (92) O 14.29 (q), 23.90 (q), 30.12 (q), 30.34c
(t^s-CH^), 59.83 (t,-0Ch2), 119.00 (d,=CH-), 154.16 (s), 

166.22 (s,-C0-0R), 195.28 (s,-SC0CH^).
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Synthesis 16

Preparation of 4-mercapto-3-‘methylbut-2-enoic acid 

thiolactone (64). -

_

To a solution of HCl in absolute methanol (30 ml, prepared 

from 20% HCl/MeOH (5 ml) and 25 ml of absolute methanol), 
ethyl-(E and Z)-4-acetylthio-3-methylbut-2-enoate (4.5 g, 

0.02 mole) was added dropwise at room temperature over a 
period of 15 minutes. The reagents were refluxed overnight. 

Solid sodium bicarbonate was then added to pH7. Precipitate 

was filtered off and methanol was removed on a rotary eva­
porator. The crude mixture was dissolved in diethyl ether 

(30 ml) and extracted with H^O (2 x 15 ml). The organic 
layer was dried over anhydrous magnesium sulphate. Solvent 

was removed on the rotary evaporator. Distillation gave
20% of 4-mercapto-3-methylbut-2-enoic acid -thiolactone

(64), b.p. 72°C-80°C/0.3 mm Hg (lit. b.p. 69 C-70 C/
0.9 mmHg); ^ (Uq- £il") 3000, 2960, 1680 (C=0) ,' max
1640 (C=C) cm'\ (220MHz) 2.22 (lH,m. J 1.4Hz,

1  , , 0.7 Hz), 4.01 (lH,m, ] 5 j J 3 , 5

2.23H
Hz

6.15 (lH,m 1.4 Hz ] 1.4 Hz) (lit.
(1H,S,  ̂0.75 Hz, 3 3 ^̂  1.5 Hz), 4.02 (lH,m, ] 0.7

J 3 ^ 3  1.5 Hz), 6.15 (lH,t,, 3 3 ^ ^  1.5 Hz J 3 ^ 5  1.5 Hz); <( 
18.9 (q). 41.0 (t), 128.2 (d,-CH-), 168.1 (s), 199.2 (s,C=0);
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Amax (MeOH) 224 nm ( £ : 1 . 6  x 10^), 266 nm  ( £ : 3 . 8  x

10^); m/z 114 , 100%).

Synthesis 17

(2Z) (4Z)-4-mercapto-3-methyl-5“phenylpenta-2,4-dienoic

acid ii-thiolactone (96). - 78

A  solution of 4- m e r capto- 3-methylbut “ 2 enoic acid

thiolactone (64) (1.6 g, 0.014 mole) and benzaldehyde

(1.48 g, 0.014 mole) in absolute methanol (14 ml) was

cooled to (+ 5°)C (ice bath) and HCl-gas (dried with cone.

H SO ) was bubbled through. After an hour the reaction 
2 4

mixture was allowed to wa r m  up to room temperature. The 

solvent was removed and the yellow crystalline (2Z)— (4Z)—
• X'4- m e r c a p t o - 3~methyl~ 5 ~phenylpenta- 2 ,4-dienoic acid------

thiolactone (96) was recrystallized from MeOH, m.p. 61.5 C-

63°C yield 57% ^ (KBr) 3040, 2930, 1680, 1450 cm ^

^  2.28 (3H,s), 6.11 (1H,S), 7.07 (lH,s), 7.38 (5H,m);
H

(i' 14.9 (q), 127.7 (d), 129.0 (d, o r t h o - C ) , 129.4 (d),
c

129.7 (d, C^H,-CH=), 130.1 (d, m e t a - C ) , 135.0 (s), 136.5 6 6
(s, .C"-S), 161.0 (s), 194.3 (s,c=0); X  „ 3 ^ 341

nn ( t  :3 . 2  x 1 0 ^), 238 nm ( £  : 6 . 6  x 1 0 ^ ;  m/z (M* 2 0 2 ,

100%); Found: C, 69.6; H,5.1. requires C, 71.2;

H, 5.0%.
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Synthesis 18

(2Z) (4Z)~4~nercapto~4~methy 1~5~*(2* ,4* ,6*~trimethylphenyl) 

penta-2,4-dienoic acid ^ - t h i o l a c t o n e  (96)» ~

HCl gas was dried by bubbling through concentrated 

Absolute ethanol was used for the reaction.

A solution of mesitaldehyde (0.74 g, 5 nmole) and 4-methyl- 

4-mercapto-2-butenoic acid -thiolactone (64) (0.55 g, 

5mmole) in absolute ethanol (7.5 ml) was stirred at 0 C and 

HCl was bubbled through for 1 hour. The reaction mixture was 

allowed to w a r m  up to room temperature and the solvent was 

removed on a rotary evaporator. The product was recrystal­

lized from methanol to give 0.34 g (28%) of (2Z)(4Z)-4- 

m e r c a p t o - 4-methyl-5-(2*,4*,6*-trimethylphenyl) penta-2,4 ^  

dienoic acid Y - t h i o l a c t o n e  (96) (yellow crystals) m.p.

1°C ^  (KBr) 3000, 2940, 1680, 1600 cm107.2 C-109 max
4  2.18 (6H,s), 2.28 (3H,s), 2.38 (3H,s), 6.14 (lH,s),

6.88 (2H,s), 7.18 (lH,s); 6  14.5 (q), 20.2 (q, 2 x meta

C H ^ ) , 21.0 (q, p a r a - C H ^ ) , 128.4 (d, m e t a - C ) , 128.9 (d) ,

129.9 (d), 131.9 (s), 135.5 (s, 2 x o r t h o - C ) , 137.9 (s, = C ’-S),

141.9 (s), 158.6 (s), 194.1 (s, C = 0 ) ; X (MeOH) 341 nmmax

(¿; 1.1 X 10^), 267 n m  (£:1.1 x 10^), 216 nm(£;1.4 x 10 ); m/z

244 (m "̂ * 64%), 229 (100); Found C,74.0;H,6.5;C^^H^^ OS re­

quires C 73.8, H 6.4%.
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Synthesis 19

(3Z) (5Z)-5~cyclohexyl-4-tnercapto-4-Tnethylpenta-2,4- 

dienoic acid ^ -thiolactone (100). “

Cyclohexanecarboxaldehyde was purchased from Aldrich and was 

used without further purification (the purity of the compound 
was checked by n.m.r.). 4-mercapto-3-methylbut-2-enoic 

acid ^  -thiolactone (64) was redistilled for the reaction.

A 5% solution of sodium hydroxide (0.02 mole) in methanol 

(20 ml) was stirred at room temperature and (4~mercapto 3 

methylbut-2-enoic acid ^  -thiolactone (64) (1 g, 0.08 mole) 

was added dropwise. Stirring was continued for 10 minutes 

at room temperature and cyclohexanecarboxaldehyde (1 g, 0.08 

mole) was added dropwise. The reagents were stirred for 

another 20 minutes at room temperature. Some solvent was 

removed on a rotary evaporator and the residue was dissolved 

in Et^O (90 ml), washed with diluted HCl (1 x 10 ml) with 

aqueous sodium bicarbonate (1 x 10 ml) then with H^O (1 x 

10 ml) and dried over anhydrous MgSO^. The ether was removed 

and a brown crude product (1.02 g) was chromatographed on a 

silica column ("Merck" product) using CH^Cl^ as an eluting 

solvent. A  white crystalline product (3Z)(5Z)-5-cyclohexyl-4j

was obtained (0.03 g, 1.8%). mp. (CHCL^), 80.5°C-83 C,
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(KBr) 2920, 1640, 1670 cm"^; <L 1.1-2.2 I max n
(llH,m), 2.23 (3H,s), G.ll (lH,s), 6.14 (lH,s);

d' 14.6 (q), 25.5 (t, 2 x CH ) , 25.8 (t) , 32.1 c ^
(t, 2 X CH^), 42.1 (d. CH), 128.9 (d, =C-H), 136.9 

(s), 138.2 (d), 159.4 (s) , 193.7 (s, C=0); X 
(MeOH) 281 nm ( 4 : 1.5 x 10^); n/z 208 64%) , 127 (100) ;

Found: C, 69.6; H, 7.8 requires C, 69.2;

H, 7.8%.

max

Synthesis 20

4-Bromo-4~mercapto~3~methylbut-2-enoic acid ^ -thio;
103lactone (64). -

4-Mercapto-3-nethylbut-2-enoic acid Ì  -thiolactone (64) 

(1.14 g, 0.01 mole) and N-bromosuccinimide (1.77 g,
0.01 mole) in carbon tetrachloride (30 ml) and a catalytic 

amount of benzoyl peroxide were refluxed for 1.5 hours.
By the end of the reaction succinimide precipitate could 

be seen suspended in the solvent. Heating was stopped and 

the reaction mixture was allowed to cool down, the pre­
cipitate was filtered off and the filtrate was concentrated 

to give a brown crude product (0.99 g) which was purified 
by distillation, b.p. 74°C/0.3 mm Hg, to give 0.39 g (21%)
of 4 - b r o m o - 4 - m e r c a p t o - 3 - m e t h y l b u t - 2 - e n o ic acid ^  - t h i o l a c j

tone (64) max (liq. film) 3200, 2960, 1685, 1625,
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780 cm ^; H2.32 (3H,d,

(lH,s), 6.19 (lH,q,
3.6 

1.47 Hz);

1.47 Hz), 6.12
17.4 (q).3.6 ' c

52.2 (d, CHBr), 129.2 (d, =CH), 168.2 (s), 194.2

(s, C=0); m/z 193 (M *, 6.3%), 113 (100), 85, (48).

Synthesis 21

2-Diethyl (4-methylthien-2-yl) phosphonate (104)

4“B r o m o — 3“methyIbut—2“enoic acid “thiolactone (103)

(0.48 g, 2 mmole) was added to triethylphosphite (0.41 g,

2 mmole) and the reagents were heated to 120 C for 15 

minutes and evolving ethyl bromide (0.1 ml), a side 
product, was collected in a receiver. The crude product 
(0.69 g) was distilled to give 2-diethyl (4-methylthien-2-yl)

phosphonate (104), (0.35 g, 72%) b.p. 110Vll6°C/0.3 mm Hg.
\  (liq. film) 3030, 2990, 1685 (C=C), 1290 (P-0), 1040 
» max* i i i a ^

(P-O-C); Ci 1.33 (3H, q, J 7.2. Hz, -OCH^CH^), 2.15 (3H,s), H
4.25 (2H, t, 3 7.2 Hz, -OCH^CH^), 6.36 (lH,s), 6.49 (lH,s);

cT 15.9 (q), 16.2 (q), 16.5 (q), 65.0 (t), 65.3 (t),
111.7 (d), 115.7 (d), 134.9 (s), 152.6 (s) ; cT^ -6.50;

m/z 250 (m "̂ , 49%), 114 (100).
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Synthesis 22

Trimethylsilyl (4~methylthien-2-yl)-ether (105). -

A solution of zinc chloride (0.14 g, 0.01 mole) in tri- 

ethylamine (3.03 g, 0.01 mole) was stirred for one hour 
at room temperature and 4-methyl-3”thiolene-2-one (64)

(1.14 g, 0.01 mole) in dry acetonitrile (8 ml) was added 
dropwise. After 5 minutes of stirring chlorotrimethylsilane 

(3.2 g, 0.02 mole) was added. The reaction mixture was 
stirred overnight, dry diethyl ether was next added, and 
precipitate was filtered off. The filtrate was concentrated 

and the colourless, yellowish liquid product was obtained 

(1.3 g). Distillation of the crude reaction product gave 
trimethylsilyl (4-methylthien-2-vl) ether (105), (0.56 g, 

32%), b.p. 38°-40°C/0.6 mm Hg. (60 MHz), 6.09 (lH,s) ,

5.09 (lH,s), 2.11 (3H,s), 0.25 (9H,s); ^  159.8 (s,“C~0~),

134.9 (s), 1U.6 (d), 107.9 (d), 16.7 (q) , -0.3 (q) .
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U.v. spectrum of 4-methyl-3-thiolene-2-one (64)
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Progress of the reaction of benzaldehyde with ^ “thiolactone 

followed with U.V. spectroscopy.
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