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ABSTRACT

Mammalian spermatozoa acquire the capacity for motility during passage 

through the epididymis. This study on rat spermatozoa shows that pH, cAMP and 

protein kinase C (PKC) all play an important role in the initiation of motility. pH has the 

most critical role and until the initial pH change in spermatozoa has occurred between 

the caput and caudal epididymal regions of the rat, second messengers are not 

effective in stimulating motility, but they are involved once such pH change has 

occurred.

The spermatozoa of Fucus serratus differ from mammalian spermatozoa in that 

they are released into the sea prior to fertilisation and the motility of these 

spermatozoa is initiated upon their release into sea water. The ionic composition of 

sea water plays an important role in this activation and it is evident that the presence 

of Na+ is vital for the Initiation of motility. This study shows that a Na+/H+ exchanger, 

a Na'*'-dependent bicarbonate/chloride exchanger and a Na+/K+ pump, which 

regulate the concentration of Na'*’, are present In Fucus serratus and integrated 

activity of these exchangers/pumps causes an increase in intracellular pH (pHi). An 

elevation in pHi correlates to an increase in motility, mediated through the activation 

of the dynein ATPase of the flagella. Motility and respiration of these spermatozoa are 

closely linked, probably because the ATP produced by respiration is used primarily by 

the dynein ATPase. Second messengers have also been Implicated in the 

initiation/regulation of motility and respiration. Indirect evidence shows cAMP and 

PKC are present and regulate motility, possibly through the phosphorylation and 

thereby activation of key regulatory proteins, such as the Na'*‘/H ''' exchanger. A rise in 

intracellular Ca^’*’ is also associated with the activation of Fucus serratus 

spermatozoa but the exact mechanism by which such a rise regulates motility remains 

unclear.
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1.1. Fertilisation.

Fertilisation is the process whereby two sex cells (gametes) fuse together to 

create a new individual with genetic potential derived from both parents. Although the 

actual details of fertilisation vary enormously from species to species, the events of 

conception generally consist of four major activities:

I. Contact and recognition between sperm and egg.

II. Regulation of sperm entry into the egg.

III. Fusion of the genetic material of sperm and egg.

IV. Activation of egg metabolism to start development.

1.1.1. Mammalian Fertilisation.

The 17̂ *̂  century microscopist Leeuwenhoek first discovered sperm in 1678 but 

believed them to be parasitic animals living within the semen, hence the term 

spermatozoa, meaning "sperm animals". However, it was not until the 18^^ century 

that their role in fertilisation was discovered by Hertwig (1875), who demonstrated 

fertilisation when he observed the penetration of an egg by sperm and subsequently 

the union of male and female nuclei. The development and Introduction of the 

electron microscope, in the middle of this century allowed scientists to gain a better 

insight and understanding of the sperm and its ultrastructural features.

Sperm released from the male reproductive tract are not immediately able to 

fertilise an egg (oocyte), but require a period of time to mature within the female 

reproductive tract (Austin, 1961; Chang, 1951). The series of alterations that occur 

during this period of maturation is termed capacitation and is essential for all 

mammalian sperm studied. The process of capacitation, the length of time taken is 

species-specific (Bedford, 1970), prepares the sperm to undergo the acrosome





into the lumen of the seminiferous tubules. They subsequently pass Into the 

epididymis, a colled tube overlying the testes, where they are stored.

Typical mammalian spermatozoa (Rgure 1.1) are "stripped down cells" equipped 

with strong flagella to propel them through aqueous media. They do not contain 

cytoplasmic organelles such as ribosomes, endoplasmic reticulum, or Golgi apparatus 

which are unnecessary for the task of delivering the DNA to the egg. Sperm do 

contain numerous mitochondria located in the midpiece and these organelles provide 

energy to power the flagella. Sperm usually consist of two morphologically and 

functionally distinct regions enclosed by a single plasma membrane:

I. The head, containing an unusually highly condensed haploid nucleus and a 

specialised secretory vesicle called the acrosome vesicle which contains hydrolytic 

enzymes that help the sperm penetrate the outer coat of the egg.

II. The tail, which propels the sperm to the egg and helps it burrow through the egg 

coat.



Flçura 1.1. Structure of a typical mammalian spermatozoid.

1.1.1.2. Epididymal Mi

Mammalian sperm leaving the testis do not have the ability to fertilise eggs but 

gain this ability during the slow passage through the epididymis in a process called 

epididymal maturation (Bedford, etal., 1973). The site where sperm begin to acquire 

the ability to fertilise eggs varies from species to species; for example, boar 

spermatozoa gain this ability in the distal segment of the caput epididymis, whereas, 

rat spermatozoa gain their fertilising ability In the corpus epididymis. It is unlikely that 

all the spermatozoa In a population gain the ability to fertilise an egg at the same time, 

some will acquire this ability faster than others (Yanagimachi, 1988). In general, it is 

not until spermatozoa enter the caudal epididymis that the majority of them gain their 

full fertilising potential.

The most striking change that occurs in spermatozoa during epididymal



maturation is the onset of the ability to move. Spermatozoa isolated from the caput 

region of the epididymis are either immotile or display a slight twitching motion and 

have a reduced metabolic rate, whereas sperm isolated from the caudal epididymis 

display progressive forward motility (Bedford, 1974; Hoskins, ef a/., 1978; Brandt ef 

a/., 1978). Progressive forward motility Is an essential requirement for fertilisation. The 

initiation of motility In sperm as they pass through the epididymis Involves 

physiological, biochemical and morphological changes (Bedford, 1974). The 

composition of the fluid in the lumen of the epididymal tubule differs from one region 

to another and these differences have been Implicated In sperm maturation. For 

example, the concentrations of carnitine, glycerophosphorylchollne. Inositol, Na+, K+ 

and Ca2+ vary in different parts of epididymis (Majumder, ef a/., 1990). Sperm 

maturation also involves changes in membrane proteins (Olson and Danzo, 1981) and 

phospholipids (Voglmayr, 1975).

1. 1. 2.  Fueua serratus.

Fucus is a genus of a very common brown algae found mainly In the intertidal 

regions of rocky shores, all round the British coast. The plants are attached to rocks 

by means of a specialised basal disc called the holdfast and they vary considerably in 

size according to the conditions under which they grow. Under exposed and rather dry 

conditions near high tide marks they rarely extend more than six Inches in length but 

under conditions where they are more completely immersed, and according to their 

age they may be anything up to three feet in length. The thallus of Fucus serratus is 

dark brown in colour and dichotomously branched, the lower part being narrow and 

almost round while the upper parts are flatter and broader with a thick midrib. As the
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plants become mature the tips of the branches generally swell to form receptacles and 

in these many flask-shaped cavities (conceptacles) develop (Figure 1.11). The 

mucilage filled conceptacles contain the reproductive cells and open to the exterior via 

an ostiole. Male gametes (sperm) are formed in small saclike antheridia which develop 

as hairs lining the conceptacle; female gametes (eggs) are produced in larger sacs 

called oogonia, which arise from the conceptacle wall. Although F. serratus and F. 

ceranoides are dioecious, that is conceptades on a single plant contain either 

antheridia or oogonia, some spedes of Fucus, for example, F. spiralis. F. distichus 

and F. viroides are monoecious where conceptacles on a single plant contain both 

antheridia and oogonia (Powell, 1963).

All Fucus plants are diploid sporophytes and the first nudear division in oogonia and 

antheridia is meiotic. in oogonia a single mitosis follows this meiotic division resulting 

in eight (haploid) eggs, while in antheridia four mitotic divisions result in sixty-four 

spermatozoids (McCully, 1968). individual oogonia and antheridia have three cell 

walls which are broken down to release eggs and sperm respectively. The outermost 

of three oogonial wall layers breaks at maturity and the eight eggs enclosed in the two 

inner layers are released into the sea through the conceptacle ostiole. The two outer 

wall layers of the antheridia also become disorganised at maturity releasing the sixty- 

four sperm into the sea still enclosed in an inner wall. Oogonia and antheridia are 

released at low tide and as the incoming tide rises the remaining wall layers dissolve 

releasing the eggs and sperm.





I . I .2 . I .  G a m e f  of Fueu» MamtUM.

The liberated spherical eggs are about 80 pM in diameter, are non-motile and 

are enclosed In a plasma membrane (Callow, et al., 1985). Newly released 

spermatozoids are pear shaped and are approximately 5 pM long (Friedmann, 1961). 

Sperm contain a large nucleus, a single chloroplast, several mitochondria and two 

flagella (Mantón and Clarke, 1956) (Figure 1.III).

Flffure 1.111. Diagrammatic representation of a spermatozoid of Fucus serratus.

The longer posterior flagellum is about seven times the length of the sperm 

body. The anterior flagellum bears helical rows of fine hairiike structures called 

mastigonemes (Mantón and Clarke. 1956) and it remains erect. Spermatozoa are 

bright orange in colour due to carotenoid accumulation in a specialised region of the 

chloroplast known as the eyespot which enables sperm to swim towards diffuse 

illumination and away from intense light. The anterior end of the sperm body is 

extended into a proboscis, a flattened structure composed of 13 microtubules



connected to the flagella apparatus. These microtubules arise in the region of the 

anterior flagellar root and extend around one side of the cell just beneath the plasma 

membrane passing behind the eyespot and ending near the base of the cell (Mantón 

and Clarke, 1956; Berkaloff and Rouseau, 1979; Callow, et a i, 1985). The function of 

the proboscis remains unknown, although it has been suggested that it may play a 

role in the attachment of the sperm to the egg. Mantón (1969) and Friedmann (1961) 

noted that it was always pointed towards the egg surface. Unlike mammalian sperm 

those from Fucus have no acrosomal vesicle.

I.I.2 .2 . Fucus s e m tu a Fertilisation.

It was demonstrated by Thuret as early as 1854 that Fucus sperm cells are 

attracted and excited by the eggs and form a swarming 'halo' around them. The initial 

fertilisation step for Fucus is mediated by the eggs secreting a pheromone-like sperm 

chemo-attractant and the development of a strong chemotactic response by the 

sperm. This chemo-attractant is volatile and non species specific; for example 

chemo-attractant secreted by eggs from both F. serratus and F. vesiculosas are 

equally effective in attracting sperm not only from each other but also sperm from F. 

spiralis. Cooke and colleagues (1951) found a variety of hydrocarbons such as n- 

hexane, ethers and esters were capable of mimicking the natural chemo-attractant. 

Further work by Hlubeck and co-workers (1970) showed that traces of n-hexane 

existed in the fruiting tips of female F. vesiculosa and these workers suggested that 

this substance was the native chemo-attractant. Between 1973 and 1979 Müller and 

co-workers isolated and characterised a conjugated hydrocarbon, 1,3 trans, 5-ds- 

octatriene; C8H12 (fucoserraten), from F. serratus and found that this compound was 

a highly potent sperm attractant of sperm from both F. serratus and F. vesiculosas at 

concentrations of 10*® M. These workers (1979) later showed that fiicoserraten was
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also secreted by the eggs of F. vesiculos*iS and that sensitivity of sperm to this 

compound was three orders of magnitude greater than it was to n-hexane.

Sperm shape changes during the chemotactically mediated approach to the egg 

surface. The body becomes more elongated and ‘comma-like* and the concave side 

of this arched body and hence the proboscis faces the egg surface. Sperm make 

contact with the egg membrane by ‘ probing* the surface with the tips of their anterior 

flagella (Friedmann, 1961) and following specific binding, fusion of the flagella and 

egg membranes occurs. Only a few sperm of Fucus bind to the surface of the egg 

indicating either, that the sperm receptors on the egg surface are not homogeneously 

distributed or, that the attachment of the first sperm somehow prevents further sperm 

from binding (polyspermy). This latter effect could be induced by changes in receptor 

distribution, surface potential or some other mechanism. After gamete fusion, the 

resulting zygote releases the B-linked polypuronide alginic acid from a large number of 

sub-plasmalemmal vesicles. The secretion of this compound commences at the point 

of sperm entry and continues until the whole zygote is encased in a wall of alginic acid 

(Evans et al., 1982). After twenty-four hours the oospore nucleus divides and a cell 

wall is laid down between the daughter nuclei. The lower of the two cells develops into 

the holdfast while the rest of the plant grows from the upper cell.
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1.2. Motility of Spermatozoa

There is very little information concerning the mechanisms that initiate motility 

and respiration in the spermatozoa of Fucus serratus therefore thoughout this thesis 

reference will primarily be made to literature on mechanisms operating in mammalian 

and sea urchin spermatozoa.

The motility of spermatozoa arises from their motile tails which are long flagella 

whose central axoneme emanates from a basal body situated just posterior to the 

nucleus (Lindemann and Rikmenspoel, 1972). The bending of the axoneme, which 

consists of two central singlet microtubules surrounded by nine evenly spaced 

microtubule doublets, produces the movement of flagella. The flagella of some sperm, 

including those of mammals, differs from this model in that the usual 9 2 pattern of

the axoneme is further surrounded by nine outer dense fibres of unknown composition 

(Figure 1 .IV).

12



Schematic representation of a flagellum.

outer doublet microtubule

These dense fibres are stiff and noncontractile, and it is not known what part 

they play in the active bending of flagella. The microtubules of the axoneme are linked 

to structures that generate force and enable it to produce wavelike movements. The 

most important of these structures are the dynein arms which project from the 

microtubule doublets and interact with adjacent doublets to produce bending. Links 

composed of the protein nexin hold adjacent microtubule doublets together and 

prevent sliding between adjacent doublets. Dynein is a large protein complex 

containing two or three globular heads depending upon the species and each head

13



has ATPase activity, that is they catalyse the hydrolysis of ATP. The active bending of 

each flagellum is caused by the sliding of the adjacent microtubule doublets past one 

another and this movement is powered by the hydrolysis of ATP generated by highly 

specialised mitochondria in the anterior part of the sperm tail called the midpiece.

1.3. Energy Requirements for Motilltv and RMPlraHon.

The control of respiration in spermatozoa has been most widely studied in sea 

urchin since these sperm are easily obtainable in large quantities and, like other 

spermatozoa, are devoid of complex machinery to replicate DNA or synthesise 

proteins. Additionally sea urchin sperm appear to have no glycogen and ATP is 

primarily formed by the respiration of a single mitochondrion (Christen, et al., 1982;

1983). In mammalian spermatozoa numerous mitochondria are wrapped tightly 

around the flagella thus providing ATP directly to these high ATP consuming sites.

Oxidative phosphorylation is the process in which ATP is formed as electrons 

are transferred from NADH or FADH2 , high energy molecules formed in the 

tricarboxcyclic acid cycle, to O2 by a series of electron carriers (Figure 1 .V).
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Rffure I.V . Sequence of the electron transport chain.

NADH
i

Rotenone
NADH dehydrogenase 
complex

Antimydn A

Coenzyme Q*cytochrome c 
reductase complex

m

Cyanide
Cytochrome c oxidase 
complex

There are three major membrane-bound enzyme complexes In the pathway of 

electrons transferred from NADH to O2 (indicated In boxes in Fig. 1 .V).

I The NADH dehydrogenase complex: This complex accepts electrons from NADH 

and passes them through a flavin and at least five iron-sulphur centres to coenzyme Q 

(ubiquinone), a lipid-soluble molecule, that transfers electrons to the second complex.

II The coenzyme Q-cytochrome c reductase complex: This complex contains 

cytochromes b and c in addition to an Fe.S protein and accepts electrons from 

ubiquinone and passes them on to cytochrome c, a small peripheral protein that
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carries electrons to the third complex.

Ill The cytochrome c oxidase complex: This complex contains cytochromes a and a3 

and accepts electrons from cytochrome c and passes them to O2 .

The three major complexes in the electron chain are also the sites where the 

transport of electrons is coupled with the generation of ATP a process referred to as 

oxidative phosphorylation. Information on the carrier sequence has been obtained by 

the use of inhibitors that block specific transfer steps in the chain and the site of 

action of some of these inhibitors is shown in Rg. 1 .V. Inhibitors used to determine 

whether the respiration of a cell occurs through the whole span of the electron 

transport chain include:

a) rotenone, a plant toxin which specifically inhibits electron transfer within the NADH 

dehydrogenase complex and prevents the generation of a proton gradient at site I.

b) antimycin A, an antibiotic isolated from Streptomyces griseus which inhibits electron 

flow between cytochromes b and c i and prevents ATP synthesis coupled to the 

generation of a proton gradient at site II.

c) cyanide which blocks the electron flow between the cytochrome c oxidase complex 

and O2. Thus phosphorylation coupled to the generation of a proton gradient at site III 

does not occur.

Oxidative phosphorylation is coupled tightly with the requirement for cellular ATP 

such that electron flow from organic fuel molecules to O2 is adjusted to the energy 

needs of the cell by ADP-mediated respiratory control. Studies of oxidative 

phosphorylation have been greatly aided by the availability of various agents that 

affect the process In different ways. Two different types of compounds are known that 

are either classified as uncouplers or as inhibitors of oxidative phosphoryiation.

Uncouplers of oxidative phosphorylation, for example dinitrophenol (DNP) and 

carbonyicyanide-p-trifiuoromethoxyphenylhydrazone (FCCP), function by dissociating 

the electron transport process from the generation of ATP with which It is normally
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tightly coupled. As stated previously the cellular requirement for ATP controls the rate 

of oxidative phosphorylation. An uncoupling agent frees electron transport from this 

control and allows it to proceed at an uncontrolled pace unaccompanied by ATP 

production. The result is an excessive consumption of O2 and an unimpeded 

utilisation of substrate and dissipation of energy as heat.

Inhibitors of oxidative phosphorylation, for example oligomycin, are agents which 

prevent both O2 cor^umption and ATP generation, but they do so without directly 

inhibiting the electron carriers of the transport chain and can thereby be differentiated 

from inhibitors of electron transport such as rotenone, antimycin A or cyanide. These 

inhibitors interfere directly with the process of ATP synthesis.

Sperm motility is dependent on an adequate supply of ATP and this is produced 

either by glycolysis or by oxidative phosphorylation, depending on the species and the 

availability of substrates (Lardy and Phillips, 1941). The mitochondria of mammalian 

sperm are located in the midpiece of the tail and, therefore, for acquisition of motility 

throughout the entire length of the flagellum, ATP or a high energy equivalent must 

diffuse or be actively transported down the axoneme to the dynein ATPases 

(Gibbons, 1982). Originally it was thought that mitochondrial ATP was sufficient to 

produce full motility in both sea urchin and bovine spermatozoa (Adam and Wei, 

1975). However, observations of the motility of sea urchin sperm indicate that ATP 

diffusion from the single mitochondrion, would not support maximal motility particularly 

in the distal portion of the flagellum (Tombes and Shapiro, 1985). In the spermatozoa 

of sea urchin, the high energy compound, creatine phosphate is involved in the 

establishment of the pool of ATP which is used for motility (Tombes and Shapiro, 

1985; Quest and Shapiro, 1991). The phosphocreatine is formed at the junction of the 

mitochondria and tail by creatine kinase from creatine and mitochondrial ATP.

creatine kinase
Creatine + ATP < ------------------- > Phosphocreatine + ADP
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This phosphocreatine diffuses down the tail where It reacts with ADP in the 

presence of a different creatine kinase isoenzyme to form ATP and creatine. The 

latter reaction is assumed to occur In close proximity to dynein ATPases (Schoff, et 

al., 1989). There is no evidence of a similar system existing In bovine sperm, which 

have virtually no creatine kinase activity (Tombes and Shapiro, 1989) and In these 

sperm, which contain numerous mitochondria, ATP is believed to diffuse down the 

flagellum In sufficient quantities to provide energy for motility as well as for Ion pumps 

and other ATP-utillsing systems. In general, mammalian sperm do not have an active 

system for transporting ATP down the flagellum In response to increasing demands 

and hence changes in motility are limited by the efficiency of this diffusion of ATP 

down the tail (Schoff, et al., 1989). Another enzyme involved in ATP metabolism, 

which appears to be associated with sperm motility is adenylate kinase. This enzyme 

activity has been detected in a variety of cilia and flagella. Including flagella from 

algae (Brokaw, 1961), sea urchin sperm (Tombes and Shapiro, 1985) and bovine 

spermatozoa (Lindemann and Rikmenspoel, 1972). However the activity of adenylate 

kinase in sea urchin sperm is Insufficient to allow maximal motility In the absence of 

the phosphocreatine shuttle (Tombes, et al., 1987). Adenylate kinase Is an ubiquitous 

enzyme that can produce either ADP or stoichimetric amounts of ATP and AMP 

depending on the Intracellular concentrations of the three nucleotides.

adenylate kinase
2ADP ------------------------------------ ATP + AMP

In mammalian sperm adenylate kinase forms ATP In response to high ADP 

levels that develop when motility is stimulated after capacitation, the maturation 

process that occurs as sperm travel through the female tract, or prior to fertilisation 

(Yanaglmachi, 1981). The AMP produced by this reaction diffuses back to the
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mitochondria in the midpiece where it is rephosphorylated by a mitochondrial 

adenylate kinase, located between the Inner and outer mitochondrial membranes, to 

form ADP. The location and specific function of adenylate kinase in sperm tails is not 

fully understood. One proposal Is that the enzyme Is located in the vicinity of the 

dynein ATPases, thus ensuring the availability of additional energy at times of 

increased demand (Schoff, et a i, 1989).

In summary sea urchin sperm have both creatine kinase and adenylate kinase 

activity. On the other hand bovine sperm and sperm from other species, including 

rabbit and human, as well as the flagellated alga Chlamydomonas reinharditii, have 

virtually no creatine kinase activity (Schoff, et al., 1989). In these sperm which lack 

creatine kinase, adenylate kinase activity may replace the phosphocreatine shuttle, by 

increasing the supply of utilisable phosphoryl groups to dynein ATPase.

Spermatozoa are propelled forward by the beating of their flagella. ATP provides 

the energy for this movement and energy coupling is effected by dynein ATPase 

which is localised within the axoneme of the flagella (Gibbons, et al., 1976). Thus, the 

motility and respiration of spermatozoa have the potential for being linked (Christen, et 

al., 1982). ATP generated by respiration is used for motility and the ADP produced as 

a result of motility is required for respiration of tightly coupled mitochondria (Brokaw 

and Benedict, 1968; Christen, et al., 1982). Therefore agents that affect respiration 

may also affect motility.
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1 d Riigulation of Sparm Motllitv.

It Is known that mammalian spennatozoa acquire the capacity to undergo 

forward progressive motility as they pass along the epididymis and that sea urchin 

spermatozoa become motile upon release Into sea water. What remains unclear Is 

regulatory mechanisms that enable sperm to acquire this motility. There are four 

mechanisms that may be Involved In the Initiation and regulation of sperm motility: the 

production of cyclic nucleotides such as cAMP, the activation of protein kinase C 

though the inositol phosphate pathway, changes in calcium concentration and 

alterations of intracellular pH.

1.4.1. Adenosine 3'.5'- cyclic Monophosphate.

Adenosine 3'.5'- cyclic monophosphate (cAMP) has been shown to have a 

regulatory effect In a wide variety of biological systems (Sutherland, et al., 1968).

Figure 1.VI. Schematic representation of the regulation of physiological events 
through cAMP and cAMP-dependent protein kinase.

First messenger 
i

Adenylate cyclase plasma membrane

i
ATP cyclic AMP + Pj

cAMP phosphodiesterase 

i  5'AMP
Protein kinase <- Protein kinase 

(active) (inactive)
i  
i

Phosphorylation of regulatory proteins
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In most cells hormones activate a membrane-bound enzyme, adenylate cyclase 

which leads to increased synthesis of cAMP. A direct correlation between the 

activation of adenylate cyclase and stimulation of motility has been shown in porcine 

spermatozoa (Okamura. et a i, 1985).

Bicarbonate, over the physiological concentration range (1 50 mM) has been

shown to activate both adenylate cyclase and motility in mammalian spermatozoa 

from several species including bovine, mouse, porcine and human as well as in sea 

urchin spermatozoa (Okamura, etal., 1985), thus indicating that bicarbonate-mediated 

activation of adenylate cyclase and the consequent rise in intracellular cAMP levels 

plays a critical role in the regulation of sperm motility (Okamura, et a i, 1985).

The cellular levels of cAMP not only depend upon the rate of cAMP synthesis 

but also on the rate of its degradation catalysed by cAMP-specific phosphodiesterase, 

which converts cAMP 5'AMP. The presence of cAMP in spermatozoa was 

demonstrated in sea urchin sperm by Gray and co-workers (1971), and Casillas & 

Hoskins (1970) observed thyroxin mediated activation of adenyl cyclase in the 

presence of caffeine, a cAMP phosphodiesterase inhibitor, in the spermatozoa of 

monkeys. The latter workers also showed that inhibitors of cAMP-specific 

phosphodiesterase, for example caffeine and theophylline markedly increased not 

only the intracellular levels of cAMP but also the respiration and motility of bovine 

epididymal spermatozoa.

A more direct method of assessing whether cAMP has an effect on the 

metabolism and motility of intact spermatozoa is to incubate them in its presence. 

However, cAMP has a low degree of penetrability and is rapidly hydrolysed by 

phosphodiesterase (Garbers, et a i, 1971). The N^,2'-0-dibutyryi derivative of cAMP 

(dbcAMP) was discovered to be a more effective way in penetrating cell membranes, 

presumably because it is more lipid soluble and more resistant to hydrolysis (Robison, 

et a i, 1968). The addition of dbcAMP to bovine spermatozoa caused a large
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stimulation in their respiration and motility (Garters, et al., 1971).

Thus indirect evidence using inhibitors of cAMP-specific phosphodiesterase and 

more direct evidence using analogues of cAMP has shown that cAMP stimulates 

respiration and motility of spermatozoa. Further the intrasperm levels of cAMP have 

been shown to increase during epididymal maturation of bovine spermatozoa 

(Hoskins, 1973). These increased levels of cAMP play a critical role in both the 

initiation and maintenance of motility of epididymal sperm (Majumder, et a i, 1990).

The cAMP-dependent regulation of sperm metabolism and motility is believed to 

be mediated through the control of a cAMP-dependent protein kinase which when 

activated leads to the phosphorylation of regulatory proteins, see Rgure 1.VI (Tash 

and Means, 1982a & b). Results from various studies have indicated that cAMP- 

dependent protein kinase is present in the cytosol of mammalian spermatozoa 

including bovine (Hoskins, et a i, 1972) and rat (Horowitz, et a i, 1984; 1989), as well 

as in the spermatozoa of sea urchin (Lee and Iverson, 1976). It has been documented 

that the activity of cAMP-dependent protein kinase increases as mammalian sperm 

travel through the epididymis further suggesting that cAMP is involved in the initiation 

and maintenance of motility (Hoskins, et a i, 1974).

The phosphorylation state of several proteins, which were first identified in dog 

sperm using [^^P ] ATP, is closely linked to cAMP-dependent stimulation of flagella 

motility (Tash and Means, 1982a & b). Tubulin and the dynein heavy chain of the 

axoneme are two proteins reported to be phosphorylated in a cAMP-dependent 

manner (Tash and Means, 1982a & b; 1983; Mohri, 1993). Detergent permeabiiized 

models of starfish and sea urchin sperm which had been centrifuged to remove 

material released by the detergent treatment had lost their ability to be stimulated by 

cAMP (Ishiguro, et a i, 1982). This suggested that a factor which stimulated flagella 

motility had been released from the sperm by detergent treatment and was present in 

the supernatant. The activity of this factor as its action was also blocked by protein
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kinase inhibitors suggesting that the activity of cAMP-dependent protein kinase was 

necessary for its activation. A protein was subsequently separated from cAMP- 

dependent protein kinase, using supernatant from permeabilized cells, on a DEAE 

chromatography column. A similar detergent-extractable cAMP-dependent, motility- 

stimulating protein factor was also found in dog, human, rat, pig and bull spermatozoa 

(Tash and Means, 1988) and was also located from other axoneme enhanced tissue 

such as trachea and retina. When a detergent extract of dog spermatozoa was 

incubated with [32p] a t P in the presence of cAMP-dependent protein kinase five 

major phosphoproteins were identified and four of these proteins demonstrated 

marked cAMP-dependerrce for their phosphorylation. The phosphoprotein which 

showed the greatest cAMP-dependent incorporation of 32p had a molecular weight of 

56,000 daltons (Tash, et a/., 1984). This cAMP-dependent phosphoprotein was also 

found in sperm of other species and further, the phosphoprotein from one species 

could activate extracted flagella from other species (Tash and Means, 1988). Tash 

and co-workers (1984) named this protein factor axokinin and showed that it is an 

ubiquitous axoneme-specific protein. The use of a selective inhibitor of cAMP- 

dependent protein kinase, N-[2 (methylamino)ethyl]-5-isoquinolinesulfonamide (H-8) 

confirmed that the phosphorylation of axokinin is required for the initiation of motility in 

the flagella and that this phosphorylation is catalysed by cAMP-dependent protein 

kinase (Tash eta!., 1986).
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1.4.2. Inositol Phosphate Pathway.

The receptor-mediated hydrolysis of membrane-bound inositol phospholipids is 

known to be a common mechanism for the transduction of extracellular signals across 

the plasma membrane of somatic cells (Berridge, 1987a & b). However the precise 

physiological and biochemical role of phospholipases in mammalian spermatozoa is 

undear.

The hydrolysis of phosphatidyl inositol by phosphoinositol-specific 

phospholipase C (PI-PLC) has been reported in human sperm (Atreja and Anand, 

1985), goat sperm (Bansal and Atreja, 1991) as well as in sea urchin sperm (Takei, et 

al., 1984). The activity of PI-PLC changes during the epididymal maturation of goat 

spermatozoa with a 6.5 fold increase in the activity of this enzyme in the sperm and a 

4 fold decrease in its activity in the fluid of the lumen of the epididymis during passage 

from the caput to the caudal epididymis (Bansal and Atreja, 1991). Thus these 

workers conduded that there is an uptake of PI-PLC by the spermatozoa from the 

fluid of the lumen of the epididymis.

PI-PLC hydrolyses phosphoinositides to generate two products, viz: inositol 

trisphosphate and diacylglycérol which can be converted to glycerol which in turn can 

result in the production of triglycerides when combined with fatty acids. These may be 

used as an energy source by spermatozoa during epididymal maturation (Atreja and 

Anand, 1985). More importantly inositol trisphosphate and diacylglycérol may also act 

as second messengers in various tissues and cells (Berridge, 1984). Inositol 

trisphosphate, a small water-soluble molecule mobilises intracellular Ca *̂** from the 

endoplasmic reticulum thus increasing the concentration of Ca^'*’ in the cytosol. Ca^’*' 

has been shown to play a role in mammalian sperm capacitation and activation of 

motility at the time of fertilisation (Breitbart, et al., 1985). Also Ca^'*' is required for the 

activation of almost all phospholipases (Bansal and Atreja, 1991). Diacylglycérol can
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undergo further biochemical changes to form arachidonic acid, which in turn can be 

used in the synthesis of prostaglandins and related signalling molecules, or it can 

activate a specific protein kinase, namely protein kinase C (PKC) which in turn 

catalyses the phosphorylation of a number of proteins with different functions in the 

cell (Nishizuka, 1986). Diacylglycérol together with the phospholipid 

phosphatidylserine binds to PKC, thereby increasing the affinity of the enzyme for 

Ca^'*’ such that the PKC is activated at low concentrations of Ca^'*’ normally found in 

the cytosol. In many cells activation of PKC is most probably achieved by the co­

operative effect of diacylglycérol and an increase in intracellular Ca^'*' brought about 

by the action of inositol trisphosphate. One of the actions of PKC in many animal cells 

is the catalysis of phosphorylation and thereby activation of the plasma membrane 

Na+/H+ exchanger that controls intracellular pH (Stiffert and Akkerman, 1988). An 

increase in this pH has been implicated in the initiation of sperm motility (Christen, et 

al 182; 1983, Lee, 1984a & b).

If the phosphoinositol phosphate pathway is involved in sperm motility then 

inhibitors of PKC should inhibit motility and stimulators of the kinase should induce 

motility. Rotem and colleagues (1990a & b) have shown that human sperm motility 

was stimulated by the phorbol diester 12-O-tetradecanayl phorbol-13-acetate (TPA) 

and ^-phorbol diester which are activators of PKC but not by the biologically inactive a 

-phorbol diester. On the other hand the PKC inhibitor straurosporine inhibited sperm 

motility. These results together with the obsen/ation that the permeable analogue of 

diacylglycérol, namely 1-oleoyl-2-acetyl glycerol (OAQ), also enhanced the motility of 

human sperm led these workers to conclude that PKC was involved in flagella motility 

(Rotem, et a i, 1990a & b).

It is of interest that in hamster spermatozoa analogues of diacylglycérol, for 

example OAG and activators of PKC such as phorbol 12-myristate 13-acetate (PMA), 

also cause an increase in the levels of cAMP providing Ca *̂** is present (Visconti and
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Tezon, 1989). In the presence of bicartx>nate, which would produce an increase in 

intracellular pH, PMA induced a 40 fold rise in cAMP levels over those produced in the 

presence of PMA alone (Visconti, et al., 1990). The involvement of extracellular 

bicarbonate as well as PKC in the elevation of cAMP was conclusively demonstrated 

by Visconti and colleagues (1990) who incubated spermatozoa with either 1 mM 

diisothiocyanate stilbene 2,2'-disulfonic acid (DIDS) or 1 mM acetamido 4'- 

isothiocyanate stilbene 2,2'-disulfonic acid (SITS) which are well known inhibitors of 

the bicarbonate/chloride exchanger in several systems (Hoffman, 1986). These 

agents caused an 87 -> 95% inhibition of PMA-induced cAMP accumulation. These 

results suggest the presence of an anion transport mechanism in spermatozoa and 

that the transport of bicarbonate across the plasma membrane as well as the activity 

of PKC could be linked to the regulation of cAMP synthesis (Visconti, et al., 1990). 

Thus it would appear that second messenger systems are interdependent in activation 

of sperm motility.

1.4.3. Calcium.

The role of extracellular Ca^'*' in regulating the motility of mammalian and 

invertebrate spermatozoa is unclear. Studies on membrane-permeabilized 

spermatozoa have shown that low concentrations of Ca *̂*’ (10*^ M) produce 

symmetrical waveforms of the flagella whereas higher concentrations (10~^ M) 

produce either assymetrical waveforms or inhibit flagella motility totally (Gibbons and 

Gibbons, 1973). The presence of external Ca^'*' stimulates the motility of hamster 

spermatozoa (Morton, et al., 1974), inhibits the motility of dog spermatozoa (Tash and 

Means, 1982a & b) and has no effect on spermatozoa of guinea pig, mouse or rabbit 

(Vijayaraghavan and Hoskins, 1990). The reason for these species differences remain
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unclear as little is known about the mechanisms regulating the entry of Ca^'*’ into the 

cell and the subsequent effects on motility.

The intracellular concentration of Ca2+ ([Ca^+Ji) has been shown to have a role 

in the regulation of spermatozoa motility (Garbers and Kopf, 1980). In mammalian 

spermatozoa, systems that regulate (Ca^+Ji involve the Na+/Ca2+ exchanger (Rufo, 

et al., 1984), the ATP-dependent Ca2+ pump (Bradley and Forester, 1980) and the 

voltage-dependent Ca2+ channel (Breitbart, et al., 1985; 1990) of both the 

mitochondrial and the plasma membranes.

In sea urchin spermatozoa Ca2+ is required for the acrosome reaction (Dan, 

1954) and the motility of these spermatozoa decreases in the presence of the cation 

chelator EGTA suggesting that Ca2+ plays a role In their activation (Young and 

Nelson, 1974). Both motility and respiration increase on the addition of the Ca2+ 

ionophore A23187 to sperm Incubated in Na^-free artificial sea water (ONaASW), but 

the addition of this ionophore had no additional effect on either the percent of motile 

sperm or their rate of O2 uptake when these sperm were suspended in artificial sea 

water (ASW) (Mita, 1984). The rate of respiration and the percent of motile sperm were 

low when spermatozoa were incubated in ONaASW containing 10 mM CaCl2 , 

suggesting that the activation of sea urchin spermatozoa seen upon dilution into sea 

water is independent of external Ca2+ (Mita, 1984). Schackman and colleagues 

(1978) also reported that there was no uptake of Ca2+ following dilution of sea urchin 

sperm into sea water. The activation of sea urchin sperm is associated with an 

Increase in intracellular pH, which is brought about by the activation of Na+/H+ 

exchange (Lee, et al., 1983) and it is proposed that the resulting alkalisation may 

somehow cause the activation of respiration (Mita, 1984).

The Na+/Ca2+ exchanger has been implicated in both the entry and removal of 

cellular Ca2+ and Is therefore thought to play a role In Ca2+ homeostasis (Langer, 

1982). In bovine ejaculated spermatozoa this exchanger is associated with Ca2+
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uptake which is blocked by caltrin, a low molecular weight protein found in seminal 

plasma. Caltrin binds to ejaculated bovine spermatozoa and inhibits Na+/Ca2+ 

exchange activity and, thus, this protein may play a role in regulating the uptake of 

Ca2+ under physiological conditions (Rufo, et al., 1984). The inhibitory effects on 

Ca2+ uptake of purified caltrin on epididymal bovine spermatozoa is reversed In the 

presence of the amlloride analogue, 3',4 '-dichlorobenzamll, which is an activator of 

C a^*  uptake (Breitbart, eta!., 1990). One possible explanation for these effects is that 

this analogue Inhibits the Na+/Ca2+ exchanger (KaczorowskI, et al., 1985; Breitbart, 

et al., 1990). However, 3',4'-dichlorobenzamil enhanced Ca2+ uptake even when 

added to sperm incubated in ONaASW indicating that stimulation is not due to 

inhibition of the Na+/Ca2+ exchanger (Breitbart, et al., 1990). On the other hand, the 

voltage-dependent Ca2'*' channel blockers, nifedipin and diltiazem do inhibit the 

stimulation of Ca2'*' uptake induced in spermatozoa by the amiloride analogue 3',4'- 

dichlorobenzamil suggesting that this stimulation of Ca2+ uptake may, at least 

partially. Involve the activation of a voltage-dependent Ca2+ channel (Breitbart, et al., 

1990).

As stated previously the intracellular concentration of Ca2'** has a role in the 

regulation of the motility of spermatozoa (Garbers and Kopf, 1980). Changes in 

[Ca2+]i are known to occur during the epididymal maturation of mammalian 

spermatozoa but it is unclear how these changes come about as sperm are 

insensitive to hormones and other physiological agents which affect Ca2+ fluxes In 

other cell types (Hoskins, et al., 1975). The major problem in Investigating the 

mechanisms by which (Ca2+]l is regulated In spermatozoa has been the lack of 

suitable techniques to measure the intrasperm levels of Ca2+. However, the 

introduction of Ca2+ sensitive fluorophores such as Quin-2 and Fura-2 have made the 

measurement of intracellular Ca2'*' feasible in several somatic cells (Tsein, et al., 

1982; Grynkiewicz, et al., 1985). Vijayaraghavan and Hoskins (1989) measured the
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[Ca2+]i, using both Quin-2 and Fura-2, in bovine spermatozoa and showed that 

internal Ca2+ levels are significantly higher when external Ca2+ is present. These 

workers found that the [Ca2-*’]i of these spermatozoa decreases as the amount of 

Quin-2 loaded into the sperm increases even in the presence of external Ca2+. This 

decrease did not appear to be interfering with Ca2+ uptake as exogenous radio- 

labelled Ca2+ (^^Ca^'*’) was taken up at the same rate and to the same extent in the 

presence or absence of Quin-2. This uptake of external ^^Ca2+ was inhibited by 

ruthenium red and by the mitochondrial oxidative phosphorylation uncoupler CCCP. 

However, external Ca^*'' was not taken up by spermatozoa loaded with Quin-2 which 

had first been incubated in the absence of external Ca2+ (Vijayaraghavan and 

Hoskins, 1989). Further, when the metabolic inhibitors CCCP, antimycin A or rotenone 

were present during dye loading, the concentration of intracellular Ca2+ was similar to 

that observed in Ca2+ depleted spermatozoa. These results suggest that external 

Ca *̂*- may enter the spermatozoa through the mitochondria (Vijayaraghavan and 

Hoskins, 1989). Other workers have also shown that bovine caudal epididymal 

spermatozoa accumulate relatively large amounts of Ca^-*- into their mitochondria 

when incubated in Ca2+ containing media (Babcock, etal., 1976).

The capacity for Ca2+ uptake is inhibited in ejaculated bovine sperm when they 

come into contact with the secretions from seminal vesicles. These secretions contain 

two proteins, caltrin and BSPA1/A2 which have been shown to bind to sperm and 

reduce their capacity for Ca2+ uptake (Rufo, et al., 1984; Vijayaraghavan and 

Hoskins, 1990). From these results it has been postulated that a decrease in 

intracellular Ca^*'’ levels may be involved in the initiation of motility during epididymal 

maturation (Vijayaraghavan and Hoskins, 1990). The [Ca2+]i is 6 times greater in 

caput epididymal sperm than in caudal epididymal sperm as measured with Fura-2 

(Vijayaraghavan and Hoskins, 1990) and this higher Ca *̂** content of caput epididymal 

sperm appears to be due to a higher rate of Ca -̂*- uptake by the mitochondria of these
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sperm than that of caudal epididymai sperm. When the rate of mitochondrial Ca^'*’ 

uptake was measured in digitonin permeabilized sperm it was found to be 2 to 3 times 

greater in caput epididymai sperm than in caudal epididymai sperm.

Vijayaraghavan and Hoskins (1989; 1990) have proposed that external Ca^'*' 

has access to sperm only via the mitochondria and mitochondrial Ca^'*' is redistributed 

into the cytoplasm of the sperm as a function of pHi. When intracellular pH (pHi) was 

increased by the addition of NH4CI to caput epididymai spermatozoa a significant 

decrease in the [Ca^'*’]! was obsenred whereas acidification with pyruvic acid results in 

an increase in the (Ca^+Ji (Vijayaraghavan and Hoskins. 1990). The intracellular pH of 

caput sperm is acidic (pH 5.8) compared with that of caudal sperm. This difference in 

pH could therefore account for the higher levels of Ca^'*' found in the cytoplasm of 

sperm isolated from the caput region of the epididymis. The consequences of higher 

(Ca2+]i in caput epididymai sperm relative to the levels found in caudal epididymai 

sperm are twofold. Firstly, high Intrasperm Ca2+ levels have been shown to inhibit 

flagella motility both in sperm that have had their membranes removed (Tash and 

Means, 1982a & b), and in intact sperm. This has been demonstrated using the Ca^'*‘ 

ionophore A23187, which induces high (Ca^+jl, On treatment with this compound the 

flagella motility of bovine epididymai spermatozoa was inhibited (Vijayaraghavan and 

Hoskins, 1990). Secondly, high intracellular Ca2+ levels may regulate cAMP, this in 

turn results in the low levels of cAMP found in caput epididymai sperm relative to 

those found in caudal epididymai sperm (Hoskins, et al., 1975). Regulation of cAMP 

levels may be brought about either by Ca^'*' stimulation of a calmodulin-dependent 

cAMP phosphodiesterase and/or inhibition of a Ca^'''-sensitive adenylate cyclase 

(Vijayaraghavan and Hoskins, 1990). Wasco and Orr (1984) have reported that Ca^'*' 

at concentrations found in caput epididymai sperm stimulates phosphodiesterase 

activity and it has been shown that bovine sperm contain a calmodulin sensitive 

adenylate cyclase (Garty et a i, 1988). Tash and co-workers (1988) have also reported
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the presence of a calmodulin-dependent protein phosphatase in mammalian 

spermatozoa. Thus Ca^’*’ may regulate sperm motility by controlling the activities of 

the enzymes involved in cAMP metabolism (Vijayaraghavan and Hoskins, 1990). 

These workers postulated that the levels of cAMP and hence motility are reduced in 

caput epididymal spermatozoa due to high intracellular concentrations of Ca^'*' and as 

sperm travel along the epididymis the intrasperm levels of Ca^'*' decrease, probably 

due to changes in mitochondrial Ca *̂** handling properties brought about by an 

increase in intracellular pH, and motility is stimulated.

In some spermatozoa, for example guinea pig and hamster, and in contradiction 

to the data on bull spermatozoa presented above, one of the actions of Ca^'*’ is the 

stimulation of cAMP levels. The Mg2'*‘-dependent adenylate cyclases of guinea pig 

and hamster spermatozoa have been shown to be activated by Ca '̂*’ (Hyne and 

Garbers, 1979a & b). The increase in cAMP levels observed in hamster sperm in 

response to Ca^'*' were also associated with an increase in motility (Morton, et al., 

1974). It was demonstrated by Garbers and colleagues (1982) that this Ca^'*' induced 

elevation of cAMP levels in intact spermatozoa required the presence of bicarbonate. 

They showed that this Ca^'^'/bicarbonate induced elevation of cAMP levels was 

blocked by the addition of D-600, a Ca *̂** transport antagonist and that the Ca^'*' 

ionophore, A23187, which facilitates the movement of Ca^'*' into a cell, could replace 

bicarbonate. As sperm contain high quantities of calmodulin, a Ca^''' binding protein, 

(Garbers, et al., 1980) and the activity of some adenyl cyclases is Ca^*/ calmodulin 

dependent (Brostrum, et al., 1975) it may be that this is one mechanism of activation 

which operates in these spermatozoa. The anti-calmodulin drug W13 inhibits the 

m otility of spermatozoa, suggesting that the inhibitory effects of Ca^'*' on flagella 

m otility may be partially mediated through calmodulin (Tash and Means, 1982a & b).

Ca^**'-calmodulin complexes can also activate specific protein kinases and other 

enzymes and via this mechanism Ca^'*' is thought to be involved in the regulation of
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the phosphorylation states of key proteins and enzymes involved in motility (Tash and 

Means, 1982a & b). Using ejaculated dog sperm lysed with low concentrations of 

Triton X I00 these workers have shown that cAMP increases and Ca *̂** decreases the 

incorporation of 32p from [32p]ATP into sperm proteins and this is associated with an 

increase in motility. This evidence Is contradictory to the information stated previously 

again showing that the evidence for the exact role Ca^'*’ is unclear. Two high 

molecular weight phosphoproteins, whose phosphorylation states are modified by 

cAMP and Ca^'*’. have been identified in these dog sperm models and it has been 

suggested that one or both of these phosphoproteins may be associated with dynein, 

the major protein of the flagella responsible for motility (Tash and Means, 1982a & b). 

The Ca2+ induced Inhibition of phosphorylation is due to the action of a calmodulin- 

dependent protein phosphatase which has been identified and localised in the flagella 

of dog, pig and sea urchin spermatozoa (Tash and Means, 1988). These workers 

have also shown that this enzyme is associated with dynein as it is found In the 

dynein fraction when resolved by sucrose gradient centrifugation.

1.4.4. dH.

The spermatozoa of sea urchin remain quiescent whilst in the testes, but upon 

release into sea water they respire and swim at a maximal rate (Hino, et al., 1980). 

There are a number of factors which affect respiration and motility in mature 

spermatozoa including the ionic composition and pH of the media into which they are 

released and the effect of dilution itself.

The pH of ASW affects respiration and motility of sea urchin spermatozoa 

(Christen, et al., 1982; 1983). In ASW of normal ionic composition both the motility 

(Shapiro, et a i, 1981; 1990) and respiration of spermatozoa Incubated at pH 6.0 are
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Inhibited when compared with those incubated at pH 8.0 (Ohtake, 1976a & b; 

Hansborough and Garbers. 1981). Intracellular pH (pHi) can be measured with 

radioactive or fluorescent amines which are able to transverse membranes and 

accumulate Intracellularly in response to pH gradients (Rottenberg, 1979). Using such 

techniques it has been shown that quiescent spermatozoa have an acidic pHi 

(Schackman, et a i, 1981; Lee. étal., 1982). The spermatozoa of sea urchin diluted 

into ONaASW have a more acidic pHi and this is also the case when the external pH 

is decreased (Christen, et al., 1982). thus indicating a relationship between pHi and 

motility in spermatozoa. Lee and colleagues (1982) have shown a direct correlation 

between increased pHi and the activation of respiration and motility of sea urchin 

spermatozoa. Alkalisation of the pHi of these spermatozoa, by incubation in the 

presence of NH4CI. led to a 50 fold increase in the rate of respiration. Whereas 

lowering the pH of ASW caused a decrease in pHi of sea urchin spermatozoa and 

inhibited motility (Hansbrough and Garbers. 1981; Christen, et a i, 1982). However, 

this inhibition was reversed by the addition of agents known to increase pHi i.e. 

monensin. a Na+/H+ exchange lonophore. and speract. a peptide Isolated from sea 

urchin egg jelly (Hansbrough and Garbers. 1981; Repaske and Garbers. 1983).

Na'*‘-dependent mechanisms are known to regulate pHi in many systems 

(Nuccitelli and Deamer. 1982) including sea urchin eggs (Lee. 1984a & b). The 

initiation of motility and respiration of sea urchin spermatozoa upon their release into 

sea water is also Na'*’-dependent. as when these spermatozoa are diluted into Na'*'- 

free sea water (ONaASW) both their respiration and motility are suppressed but this 

effect is reversed on addition of external Na*** (Nishioka and Cross. 1978). The 

activation sea urchin spermatozoa is also accompanied by acid extrusion which again 

does not occur in the absence of external Na'*' thus implying that Na'*‘/H'*' exchange 

may be involved in the initiation of motility in spermatozoa (Nishioka and Cross. 1978). 

This Na**'-dependent acid extrusion has been shown to lead to an increase in pHi.
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which is thought to be the trigger for the initiation of motility in spermatozoa (Christen, 

et a i, 1982; 1983).

Sperm respiration and motility are also sensitive to the K"*" concentration of sea 

water (ASW). The motility and respiration of sea urchin spermatozoa are inhibited 

when released into sea water containing high levels of K'*’ (Gibbons, 1980) and the 

pHi of these spermatozoa is more acidic when the extracellular K*** concentration is 

increased (Christen, et a i, 1982; 1983). A high external K“** concentration has also 

been found to inhibit Na'*'-dependent H'*' release both in intact sea urchin 

spermatozoa and in the isolated flagella of these spermatozoa (Lee, et a i, 1984a & 

b). Studies using the membrane potential probe tetraphenylphosphonium (TPP'*') 

showed that increasing the external K**“ concentration depolarised the membrane 

potential and caused a decrease in the uptake of IPP*** both in intact spermatozoa 

(Schackermann, et a i, 1981) and in isolated flagella (Lee, 1984a & b). The possibility 

that the inhibitory effect of K*** may be due to the depolarisation of the membrane 

potential was confirmed by using other methods to induce membrane depolarisation. 

For example, caesium ions (Cs+) in the presence of valinomycin, a cation ionophore 

which transports K'*' and Cs*** but not Na'*' caused depolarisation of the membrane and 

inhibited the Na+/H+ exchange. However, neither Cs+ nor valinomycin alone had any 

effect on either membrane depolarisation or Na'*'/H'*' exchange. Thus the dilution of 

sea urchin spermatozoa into sea water with an elevated K*** concentration results in 

the depolarisation of their plasma membrane (Schackerman, et a i, 1981 ; Lee, 1984a 

& b), which inactivates Na+/H+ exchange (Lee, 1984a & b) resulting in the 

acidification of the pHi and a decrease in motility and respiration (Christen, et a i, 

1982; 1983).

The activation of sperm respiration is correlated with increased activity of 

axonemal dynein ATPase (Christen, et a i, 1983) which is optimal around pH 7.5 

(Gibbons and Gibbons, 1972). Permeabilized sperm have been used to study
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axonemal motion over a range of pH. These sperm models are activated over a very 

narrow pH range (7.3 to 7.8) which correlates closely with the range in vivo in which 

the activation of respiration and motility of sperm occurs (Christen, et ai., 1982). There 

are three possible situations in which an acidic pHi could lead to the inhibition of 

respiration and consequently the motility of spermatozoa (Christen, et ai., 1982;

1983):

I. independent inhibition of both motility and respiration.

II. inhibition of dynein ATPase located in the axoneme which in turn leads to a lack of 

ADP production thus causing tightly coupled mitochondria to cease respiration.

III. inhibition of mitochondrial respiration resulting in lack of ATP production and 

cessation of motility.

The dynein ATPase activity of sea urchin spermatozoa is inhibited at an acidic 

pHi both in vitro and in vivo and the ATP levels, of these spermatozoa, compared with 

those observed at an alkaline pHi are increased (Christen et ai., 1983). These workers 

concluded that inhibition of mitochondrial respiration is not a factor in the regulation of 

sperm motility when pHi Is acidic. However, Christen and colleagues (1983) also 

showed that uncoupled respiration, in the presence of FCCP, is inhibited by acidic 

pHi. Thus, It is not clear which of the above three mechanisms operate in regulating 

sperm motility. It is evident from the above that respiration and motility are likely to be 

linked (Brokaw and Benedict. 1968) and this association could be due to ATP 

synthesis during respiration being closely coupled to ATP degradation by a single 

class of enzyme, the dynein ATPase (Christen, et ai., 1983).

The pHi of sea urchin spermatozoa is affected by both the Na'*' concentration 

and pH of the media into which they are diluted thus the alkalisation of pHi required 

for sperm activation is in part obtained through Na+ZH'»* countermovements (Lee, et 

al., 1980; 1982; 1983; Christen, et al., 1982). Protons are continuousiy produced by 

metabolism thus a continuous influx of Na*** is needed in exchange for protons in order
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to regulate pHi (Bibring, et al., 1984). This leads to an Increase In Intracellular Na+ 

and thus the driving force for H+ efflux decreases. The addition of K+ (10 mM) to K+ 

depleted ASW In which sea urchin sperm are suspended Induces an Internal 

alkalisation followed by an Influx of K+. This addition has no effect on the pHI In the 

absence of external Na'*', In the presence of Na+ when sperm have been depleted of 

internal ATP or In the presence of ouabain, a Na+/K+ATPase inhibitor. Thus, from 

these results GattI and Christen (1985) concluded that a Na+/K+ATPase pump was 

present in the membrane of sea urchin spemi and that this pump may play a role in 

the regulation of pHI by recycling the Na+ that enters the cells through Na+/H+ 

countermovements.

Mature bovine spermatozoa are stored in the caudal epididymis prior to 

ejaculation and these spermatozoa, when examined in undiluted caudal fluid (pH 5.8), 

exhibited minimal movement. When the pH of this fluid was increased to pH 7.0 or the 

sperm were diluted they became more motile (Acott and Carr, 1984) and this increase 

in motility was attributed to an elevation in pHi (Babcock, et al., 1983). Carr and Acott 

(1989) measured the intracellular pH of sperm under physiological conditions using 

the fluorescent pH probe, carboxyfluorescein, and found that pHi and motility 

increased when the sperm in caudal fluid were diluted or the pH of the fluid was 

raised. These authors concluded that bovine sperm remain quiescent whilst In the 

testes due to the presence of a motility inhibitor in the epididymal fluid and that this 

factor regulates sperm motility by modulating the pHi of sperm. The ability of certain 

phosphodiesterase inhibitors, for example theophylline to initiate motility in immature 

spermatozoa from the caput region of the epididymis may be due not only to their 

ability to elevate the intrasperm levels of cAMP but also to act as weak bases and 

Increase pHi (VIjayaraghavan, et al., 1985). Therefore, it may be that mature 

spermatozoa from the caudal region of the epididymis can be stimulated by either a 

further elevation in pHi or an increase in intrasperm cAMP levels (Vijayaraghavan and
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Hoskins 1986) because the pHi of caudal spermatozoa is higher (pH 6.7 ± 0.05) than 

the pHi of caput spermatozoa (pH 5.84 ±0.1). Spermatozoa isolated from the caput 

region of the epididymis require an elevation in pHi before agents which increase 

cAMP levels have any effect (Majumder, et al., 1990).

As stated previously (Section 1.4.1) cAMP is associated with an increase in 

sperm motility and relationship between pHi and cAMP-dependent phosphorylation 

has been reported (Goltz, et al., 1988). Carr and Acott (1989) have identified a 

protein that is phosphorylated in response to elevations in pHi and three other 

phosphoproteins have been identified in subcelluiar sperm fractions. Two plasma 

membrane phosphoproteins are phosphorylated under conditions which lead to 

increased pHi and another plasma membrane phosphoprotein is dephosphorylated in 

response to increasing pHi (Carr and Acott, 1989).

In conclusion, external Ca^'*' has been absented to have either a stimulatory or 

an inhibitory effect on motility of sperm depending on the species (Majumder, et al., 

1990). The intracellular free Ca^'*’ concentration also affects flagella motility in every 

species examined (Tash and Means, 1983). The concentration of intracellular Ca^'*' is 

regulated by an active Ca^'*’ pump and a Na'̂ '/Ca^'*' exchanger both of which have 

been shown to be present in the plasma membrane of sperm (Majumder, et al 1990). 

Cyclic AMP has been shown to stimulate motility and respiration of sperm (Garbers, et 

al., 1971; Hoskins, et al., 1978). Cyclic AMP and Ca^+ together may also act as 

second messengers and regulate sperm motility by the 

phosphorylation/dephosphorylation of specific proteins required for flagella motility 

(Majumder, et al., 1990). Ca2+ may additionally control motility by bringing about the 

alkalisation of sperm, though its activation of PKC, which has been shown to 

phosphorylate and thereby activate Na'*‘/H''' exchange in fibroblasts (Stiffen and 

Akkerman, 1988). Intracellular pH also plays a role in the regulation of sperm motility 

as agents, for example NH4CI, that cause an increase in pHi stimulate both the
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motility and respiration of sperm. The addition of certain phosphodiesterase inhibitors, 

for example theophylline, to immature caput epididymal sperm initiate motility not only 

because of their ability to raise the intrasperm cAMP level but also to act as weak 

bases and increase pHi. The motility of mature caudal epididymal sperm can be 

stimulated by either an increase in pHi or an elevation of intracellular cAMP levels, 

whereas caput epididymal sperm do not respond to cAMP alone. The reason for this 

difference may be that these latter sperm have a higher pHi than the caput 

epididymal sperm (Vijayaraghavan, et a i, 1985). An increase in pHi has also been 

implicated in the activation of sea urchin spermatozoa upon their release into sea 

water and this alkalisation is thought to be brought about by Na'*‘/H'*' exchange (Lee, 

etal., 1983).

The initial aim of this study was to investigate the mechanisms that regulate the 

initiation of mammalian sperm motility, in particular rat, during sperm maturation. The 

intention was to ascertain which ion pumps/channels were present in the plasma 

membrane of sperm and to examine their role in the regulation of sperm motility. 

Unfortunately, approximately one year into the project a problem arose in that the 

spermatozoa of the rats supplied were becoming totally immotile within a few minutes 

of diluting them into the incubation medium. A great deal of effort was expended in 

trying to establish whether the media or the rats themselves were the source of this 

problem. For example the batch number of the media was checked to see that it was 

the same as the media previously used and it was. Then we tried the same type of 

media but from a different supplier, again to no avail, so we next tried diluting the 

spermatozoa into phosphate buffer however, the spermatozoa still become immotile 

within a few minutes of dilution. Finally we purchased rats from different suppliers 

unfortunately the spermatozoa were still immotile within a few minutes after dilution. At 

the time the concentration of sperm used was 5x10®. More recently it has become
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apparent (Fraser, 1994) that the motility of rat sperm is highly concentration 

dependent and that there is considerable inter animal variation in this dependence. It 

is n(w  clear that optimal concentrations for motility are within the range 5x10® to 

1x10^ and hence this could explain the problems which were encountered.

Whilst we were trying to sort out this problem Dr Paul Bolwell, who had 

previously worked on the fertilisation of Fucus serratus, suggested that I look at the 

mechanisms involved in the activation of sperm from Fucus serratus upon their 

release into sea water. The objectives of this study were:-

I. To examine whether the ions present in sea water influenced sperm motility and 

respiration.

II. To determine the presence of ion pumps/channels and examine the role they play 

in the activation of these sperm.

III. To examine the role of second messengers in the initiation and regulation of 

motility of sperm from Fucus serratus.
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2. MATERIALS AND METHODS.

2.1. isolation of Mammalian Spermatozoa.

Adult male Sprague-Dawley and Wistar rats were killed by cervical dislocation 

and their epididymides were quickly removed and separated into caput and caudai 

regions. These organs were transferred to moist filter paper where adherent adipose 

tissue was removed and then placed into sterile Petri dishes containing 10 cm^ 

Earles' medium (Row Laboratories, Irvine, UK) supplemented with 4 mg/cm^ bovine 

serum albumin and each 100 cm^ of media was supplemented with 100 U/cm^ 

penicillin and 0.1 mg/cm^ streptomycin. Caput and caudal epididymides were 

punctured several times with a 26-gauge needle and the sperm were released by 

gentle compression of the epididymides using broad tipped forceps. The reieased 

spermatozoa were pelleted by centrifugation at 500g for 5 minutes, at room 

temperature, followed by 1200g for 10 minutes. The pelleted spermatozoa were 

resuspended in the media ± bicarbonate at concentrations described in the results 

section. A 10 pi sample was removed for counting using an improved Neubauer 

haemocytometer. The concentration of spermatozoa was then adjusted to 5 x 10^ 

spermatozoa/cm^ and the accuracy of this adjustment was checked by determining 

the cell concentration after dilution.

2.2. Isolation of Spermatozoa from Fucus serntua.

Male Fucus serratus plants were obtained by staff at the Marine Biological 

Station at Millport, Isle of Cumbie, Scotland and delivered within 24 hours of 

collection. Plants were stored between wet newspaper at 10**C and used within a 

week of collection for all experiments. Spermatozoa were obtained by gently washing
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the thallus of the plants with either artificial sea water (ASW) or modified ASW as 

described In the results section, using a Pasteur pipette.

9 a. Composition of Artificial Sea wateL

ASW was of the following composition:

360 mM NaCI 

50 mM MgCl2 

10 mM CaCl2 

10 mM KCI

30 mM Hepes. pH 8.0 (Christen et al.,

1982).

Periodically the osmolality of the ASW was checked using a osometer. 

Readings were in the range of 960-1050 mOsm/litre.

In some experiments modified ASW was used. For experiments requiring Na*’’- 

free sea water (ONaASW) sodium chloride was replaced by N-methylglucamine (360 

mM) (Sigma, UK) which was prepared as a 1M solution and titrated to pH 8.0 with 

concentrated HCI (Brawley and Bell, 1987). When the concentration of K+ was varied, 

Na+ was substituted for K+, so that [K+] + [Na+] was always 370 mM. Ca^+.free ASW 

(OCaASW) was made by omitting Ca2+ from ASW, adding 1 mM EGTA and the pH 

was readjusted. In each case the osomolahty was checked and adjusted were 

necessary.
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2.4 Activators and Inhibitors.

The activators/inhibitors used in this study were diluted in the following

solvents:-

Amiloride Dimethylsulfoxide (DMSO) SITS H2O

Dibutyl cAMP H2O Theophylline DMSO

Forskolin DMSO Vanadate DMSO

Monensin Ethanol Verapamil DMSO

Ouabain DMSO

Each of the above agents were made up at 100 times the required 

concentration in the appropriate solvent so when added to suspensions of either 

mammalian or Fucus serratus spermatozoa the final concentration of solvent was 1 %. 

Control suspensions of spermatozoa contained the appropriate concentration of 

solvent.

Mammalian spermatozoa from both regions of the epididymis (5 x 10® 

spermatozoa/cm®) were incubated at 37*"C in medium for between 30-60 minutes, as 

indicated in individual experiments, in the presence or absence of activators/inhibitors. 

Spermatozoa from Fucus serratus diluted in the appropriate ASW were incubated at 

lO ’̂C for 10 minutes, again in the presence or absence of activators/inhibitors.

In studies on spermatozoa of Fucus serratus each replicate experiment was 

carried out using different batches of seaweed.
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2.5. Motility Measurement.

At the end of each experiment with either mammalian or Fucus serratus 

spermatozoa 10 pi aliquots were removed using a capillary pipette, placed on a 

haemocytometer and assessed for motility.

Motility was determined by two methods:

1 ) visual evaluation using a phase-contrast microscope,

2) by the video microscopic procedure of Katz and Overstreet (1981). Motility 

was recorded on videotape using a Panasonic video camera and a 20 x phase 

objective. Videotape records were made and analysed on a Panasonic video cassette 

recorder using freeze framing and variable speed framing. The percentage of motile 

spermatozoa was determined by counting all spermatozoa in a video field and 

dividing the number which were motile by the total present. For each experiment the 

percentage motility was calculated for at least five video fields and the results 

averaged.

2.6. Measurement of Sperm Respiration.

Respiration rates were determined by continuous recording with a Clarke type 

oxygen electrode which consists of a platinum cathode and silver anode in saturated 

potassium chloride solution. When a potential is applied across the "cell" formed by 

these electrodes dipping into a test solution four electrons generated at the anode 

reduce a molecule of oxygen at the cathode. If the polarising voltage is in the range 

0.5-0.8 V, then the current generated is directly proportional to the concentration of 

oxygen in the test solution and the change of oxygen concentration with time can be 

recorded.
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To calibrate the electrode zero oxygen concentration was obtained by adding a 

few crystals of sodium dithionite to the buffer solution and adjusting the pen of the 

chart recorder to zero. Air-saturated ASW was taken to be 100% oxygen and the pen 

on the chart recorder adjusted accordingly. The solubility of oxygen in this aqueous 

solution at 10°C is 282.01 pmol of dissolved oxygen per litre (Benson and Krause. Jr.

1984). In these experiments the closed vessel of the oxygen electrode contained a 

reaction volume of 4 cm^. Thus the saturated oxygen content in the reaction mixture 

was 4 X 282.01 = 1128.04 nmol. The full scale deflection on the chart recorder was 

adjusted to 96 divisions for the O2 saturated ASW therefore each division on the 

chart was equivalent to 11.75 nmol of 0 2 -

Sperm respiration was measured by adding 4 cm^ of suspended Fucus serratus 

spermatozoa (1x10^  spermatozoa/cm^) to the reaction vessel of the O2 electrode. 

Oxygen uptake of the continuously stirred suspension was monitored at 10°C using 

the calibrated chart recorder. In some experiments suspensions of spermatozoa were 

incubated at 10**C for 10-15 minutes in the presence of a test reagent before 

measuring O2 uptake. Where the experiment was to investigate whether these 

reagents had an immediate effect on O2 uptake, then additions from 10-100 x stock 

solutions were made through a small hole in the top of the closed reaction vessel. All 

experiments were carried out with some light but this was minimised by turning off all 

artifical lights and partial blocking out daylight on bright days.

2.7. In vitro  ATPaae Assay.

The ATPase activity of spermatozoa from Fucus serratus was estimated using 

the coupled assay of Gibbons and colleagues (1978). in which the ADP formed by 

ATP hydrolysis was coupled with Phosphoenolpyruvate to form pyruvate in the 

presence of Pyruvate kinase, which in turn oxidised NADH. in the presence of lactate
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dehydrogenase, as shown ¡n Figure 2.1. This reduction of NADH could be monitored

on a spectrophotometer, by a decrease in absorbance at 340nm.
Hgura 2.1. Schematic representation of the coupled ATPase assay.

ADP

ATPase

Phosphoenolpyruvate

PK

LDH
Pyruvate + NADH -> 

+ H+
Lactate + NAD

PK = Pyruvate kinase
LDH = Lactate dehydrogenase

An aliquot of sperm suspension (10 pi), containing 1-2x10^ sperm/cm^, was 

diluted into 0.4 cm^ of a solution containing 150 mM KCI, 5 mM MgCl2 , 10 mM Hepes, 

1 mM EDTA and 0.04% (v/v) Triton X-100; pH 6.6, and mixed for 20 seconds by 

tapping the base of the tube by hand. Twenty pi of this permeabilized sperm 

suspension was transferred to a tube containing 1 cm^ of reaction mixture composed 

of 150 mM KCI, 5 mM MgCl2> 10 mM Hepes, 1 mM EDTA, 1 mM dithiothreitol, 40 

pg/cm^ of pyruvate kinase (16 units/cm^), 24 pg/cm^ of lactate dehydrogenase (22 

units/cm3), 100 pM NADH, 0.5 mM ATP and 1.5 mM phosphoenolpyruvate at varying 

pH (7.0 -> 8.4). Activity was followed as the decrease in absorbance at 340nm. To 

investigate which ATPase, if any, was responsible for the activity, various 

activators/inhibitors of individual ATPases were added to the reaction mixture from 10 

X stock solutions to give the following final concentrations: 1 pM oligomycin, 10 pM 

vanadate (Calicobiochem, Nottingham UK) and 1 mM ouabain.

2.8. laolaMon of Sperm Raqella from Fucus sem tus.

Ripe spermatozoa were washed off the thallus of male Fucus serratus plants 

with ONaASW and the concentration of spermatozoa adjusted to 1 x 10^
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spermatozoa/cm3. jh e  lack of Na+ prevents the activation of motility. Spermatozoa 

were pelleted by centrifugation at 600 x g for 5 minutes. 200pl aliquots of the loose 

pellet were diluted with 50 cm3 ©f cold ONaASW and homogenised in an Ice bath 

using a Potter-Elvehgem glass homogenizer fitted with a glass pestle. About 25-30 

strokes were enough to detach most of the flagella, as monitored by phase-contrast 

microscopy. The homogenate was centrifuged at 4®C for 30 minutes at 4000g to 

pellet the sperm heads and any remaining intact spermatozoa. The supernatant fluid 

containing the detached flagella was centrifuged at 12000g for 30 minutes and the 

flagella pellet was resuspended in 1-2 cm3 of ice cold ONaASW. Phase-contrast 

microscopy was used routinely to monitor the extent of contamination by sperm heads 

or intact sperm in the final flagella suspension.

2.9. Measurement of Protein Concentration.

The protein concentration of spermatozoa was estimated by the Lowry (1951) 

method. Protein standards were made from a stock solution of bovine serum albumin 

(200 pg/cm3).

The following stock solutions were prepared:

A. 2% w/v Na2C03  in 0.1 M NaOH

B. 1% w/v CUSO4

C. 2% w/v potassium sodium tartrate

D. Folin ciocaiteau phenol reagent was diluted 1 in 3.

Just before use 1 cm3 of reagent B was mixed with 1 cm3 of reagent C and added to 

100 cm3 of reagent A to form an alkaline copper reagent.
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To each duplicate standard (0.5 cm^), 2.5 cm^ of the alkaline copper reagent 

was added, mixed well and left at room temperature for 10 minutes. Diluted Folin 

ciocalteau phenol reagent (0.25 cm^) was added to each standard, mixed well and 

left at room temperature for 30 minutes. The absorbance of each standard was read 

at 700 nm and plotted against the concentration of bovine serum albumin to give a 

standard curve (Figure 2.11).

Duplicate samples (100 pi) of sperm suspension were diluted to 0.5 cm^ with 

distilled water and treated as for the standards. The absorbance of the samples as 

read at 700 nm and the concentration of protein deduced from the standard curve.
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2.10. Measurement of the Efflux o iM *.

H+ release by both Intact spermatozoa and the flagella was monitored using a 

pH electrode connected to a digital pH/ion meter (Coming 135). Both Intact 

spermatozoa and isolated flagella were suspended in unbuffered ONaASW to a final 

protein concentration between 100 and 200 pg/cm^ and the pH adjusted to 8. The 

suspension (3 cm^) was continuously mixed with a magnetic bar. To increase the 

sensitivity of H+ measurement Hepes was omitted from the ONaASW.

2.11. Measurement of Intracellular pH.

The intracellular pH (pHi) of spermatozoa from Fucus serratus was determined 

using the pH-sensItive fluorescence indicator dye 2',7’-bis-(-2-carboxyethyl)-5(and- 

6)carboxyfluoresceinacetoxymethyl ester (BCECF-AM) (Caliobiochem, Nottingham, 

UK).

Spermatozoa loaded with BCECF-AM were prepared as follows:

Spermatozoa suspensions (1x10^ spermatozoa/cm^ ASW) were incubated for 2-3 

hours with 5 pM BCECF-AM, which was added from a 1 mM stock solution in DMSO. 

Suspensions were then centrifuged at 600g, at room temperature, for 10 min, washed 

three times with ASW and finally resuspended in 3 cm^ ASW. The suspension (1 

cm^) was transferred to a 1 cm path length cuvette and fluorescence intensity was 

scanned over the excitation range 400 -> 550 nm in a Perkin-Elmer LS50 

fluorescence spectrometer. Spectra were obtained for sperm suspensions before and 

after loading with BCECF-AM. Excitation spectra of the free acid, BCECF as well as 

its acetoxymethylester, BCECF-AM (final concentrations: 5 pM) were also obtained in 

ASW.
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The Intracellular hydrolysis of BCECF-AM, was measured In Intact, heat-treated 

or lysed cells. Suspensions of spermatozoa (1x10® spermatozoa/cm® ASW) were 

heat treated at 80°C for 30 minutes. Lysed spermatozoa were obtained by the 

addition of Triton X-100 [0.1% (w/v)] and gentle shaking for approximately 10 minutes. 

Both Intact and treated suspensions of spermatozoa were loaded with BCECF-AM 

(final concentration 5 \iM), as described above, samples were removed at regular 

Intervals over a period of 3 hours and fluorescence measured (excitation 465 nm; 

emission 550 nm).

In order to measure the Intracellular pH of spermatozoa, fluorescence was 

measured following excitation at two different wavelengths, before and after treatment 

with the detergent, digitonin. The differences In the fluorescence Intensity ratios 

following excitation at the two wavelengths Is pH-dependent. Suspensions of 

spermatozoa, loaded with BCECF-AM as previously described, were resuspended In 

3 cm® ASW with pH values ranging from 6.0 -> 10.0. Fluorescence Intensity was 

measured using excitation wavelengths of 490 nm and 465 nm, (emission was set at 

550 nm), before and after the addition of 100 pg/cm® dIgItonIn (prepared as a lOOx 

stock solution In DMSO). The differences In the fluorescence Intensity ratios were 

plotted as a function of external pH. The value of the Internal pH of the spermatozoa 

was obtained by a Interpolation to fluorescence ratio difference of zero.

2.12. Location of Intracellular

Intracellular Ca2+ was located In the spermatozoa of Fucus serratus using a 

zenth standard eplfluorescence microscope equipped with filters suitable for the 

measurement of Fura-2 (350 nm and 385 nm). Photographs were taken with a 

camera loaded with a T max. 400 film.
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2.13. Measurement of the Intraceliuiar ConC^ntratlQn.

The determination of intracellular free Ca2+ concentration ([Ca2+]i) of 

spermatozoa was carried out with the fluorescent Indicator Fura-2 (Molecular Probes 

Inc., Eugene, Oregon, USA), using a modified method of Grynklewicz et al., (1985). 

Stock solutions of Fura-2 acetoxymethylester (Fura-2-AM) were 1 mM In DMSO and 

stored desiccated at -20*C until use. To aid the uptake of Fura-2-AM, 3 \i\ Pluoronic F- 

127 (Molecular Probes Inc., Eugene, Oregon, USA), (0.25 mg In 75 pi DMSO heated 

at 40®C for 20 minutes), was added to 2 pi of Fura-2-AM. This mixture was added to 

0.5 cm3 oCaASW and the resultant solution was sonicated for 30 seconds on ice 

before addition of 0.5 cm3 of sperm suspension. The incubating solution contained 

final concentrations of 2 pM Fura-2-AM and 1x10® spermatozoa/cm3. After incubation 

for 3 hours at 4®C the spermatozoa were pelleted by centrifugation at 600g, at 4°C, 

for 5 min and then washed three times to minimise the carry-over of extracellular 

Fura-2-AM. The sperm pellet was finally resuspended in 1 cm3 oCaASW and 

transferred to 1 cm path-length quartz cuvettes. Fluorescence intensity was measured 

in a Perkin Elmer LS50 fluorescence spectrophotometer. For the examination of 

fluorescence spectra, the emission wavelength was set at 500 nm, and the excitation 

wavelength was scanned over the range 300 -> 500 nm, with an emission slit of 10 

nm and an excitation slit of 1.5 nm. Spectra were obtained for sperm suspensions 

before and after loading with Fura-2-AM.

Figure 2.111 shows a diagrammatic representation of a typical experiment to 

measure the intracellular calcium concentration in the presence and absence of 

activators or inhibitors of motility in spermatozoa of Fucus sarratus.
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Fig y e  2.III. Diagrammatic representation of a typical experiment to measure the 
[Ca^‘* î of spermatozoa of Fucus serratus.

+BrA23187 +M anganese  
+Calcium +EGTA

sperm ^  
suspension ^

F-max F-min

Internal free calcium was calculated from the equation of Qrynkiewicz and 

colleagues (1985):

(Ca2+)i = Kd X (R - Rmln)  ̂(^max "

Kd = the dissociation constant for Fura-2-Ca2+ and taken to be 220 nM (Rink and 

Rozzan, 1985).

R = the ratio of fluorescence Intensity at excitation wavelengths of 350 and 385 nm 

with emission at 500 nm. The fluorescence intensity at this ratio is Ca2+-dependent 

(Grynkiewicz, et al., 1985). Rmin and Rmax are the ratios of the fluorescence 

intensities obtained at excitation wavelengths of 350 and 385 nm, (emission was set 

at 500 nm), under Ca2+ free and Ca2+ saturating conditions respectively.

Maximum fluorescence (Ff^ax) determined following excitation at the two 

wavelengths separately in the presence of the calcium ionophore Bromo A23187 

(final concentration: 25 pM) and Ca2+ (final concentration: 10 pM). Minimum 

fluorescence (F^in) was determined at the two excitation wavelengths in the 

presence of 4 mM EGTA at pH 8.0 and manganese (final concentration: 10 pM), 

which quenches Ca2'**-dependent fluorescence. Figure 2.1V shows typical scans for 

control, Ffpjn ^max*
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The intracellular free Ca2+ concentration was also measured in the presence of 

activators and inhibitors of sperm motility. Suspensions of spermatozoa (1x10® 

spermatozoa/cm®) containing known concentrations of either an activator or inhibitor 

of sperm motility added from lOOx stock solutions were incubated for 15 minutes at 

10®C, these suspensions were then centrifuged at 600g and the pellet resuspended In 

3 cm® OCaASW and loaded with Fura-2-AM as previously described.

2.14. Chemicals.

Ail the chemicals used, unless stated, were obtained from either Sigma 

Chemical Co. (Poole, Dorest, UK) or Merck BDH (Poole, Dorest, UK), and were of 

analytical grade.

2.15. Statistical Analysis.

Statistical comparisons were performed using Student's t test. Unless stated all 

test were compared with untreated controls.
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Rgura 2.1V. Typical Excitation Spectra for Spermatozoa suspended in OCaASW.

Excitation wavelength nm

Typical excitation spectra at 500 nm emission for Fucus serratus sperm suspension 
incubated in OCaASW. The intracellular free Ca *̂** concentration was calculated as 
described above.
Fmin = *** EQTA & manganese 
F = Spermatozoa Fura-2-AM only

max = + Bromo A23187 & Ca2+.
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3. Mammalian Spermatozoa.

Mammalian spermatozoa acquire the capacity for motility during transit through 

the epididymis (Bedford, 1975). Spermatozoa, isolated from the caput epididymis are 

virtually immotile, although some may display a twitching motion whereas 

spermatozoa isolated from the caudal region of the epididymis are motile with 

approximately 10% showing vigorous forward motion (Hoskins, et al 1978; 

Vijayaraghavan, et al., 1985). The biochemical basis for this acquisition of the 

capacity for motility is not fully understood.

In the present study the percentage of rat spermatozoa, isolated from the caput 

region of the epididymis, which were rriotile was only 2.2 ± 1.7% (n = 6) whereas 28.7 

± 3.7% (n = 6) of spermatozoa isolated from the caudal region of the epididymis were 

motile, with 17.3 ± 2.9% of these spermatozoa displaying fast forward progressive 

motility.

3.1. Factors Affecting the Acauiaition of Motility During Epididvmal TranalL

A number of factors have been reported to affect the motility of mammalian 

spermatozoa and these include a number of second messengers. Of these particular 

attention has been placed on pH both external and Internal, cAMP and calcium.

3.1.1. pH.

Following the observation that bicarbonate dramatically stimulates the motility 

levels of guinea pig spermatozoa (Garbers, et a/., 1983) and bovine spermatozoa 

(Vijayaraghavan, et al., 1985), the effect of bicarbonate on the motility of rat caput 

epididymal spermatozoa was tested. The bicarbonate ion was found to have a
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stimulatory effect on the motility of these spermatozoa. The results in Figure 3.1 show 

that there is an increase in motility of caput epididymal spermatozoa from 0.0 ± 0.5% 

to 45 ± 3.9% with increasing bicarbonate concentrations up to 15 mM. No further 

stimulation of motility was observed when the concentrations of bicarbonate were 

increased from 15 mM to 30 mM.

In the case of spermatozoa from the caudal region of the epididymis the addition 

of bicarbonate at the optimum concentration of 15 mM also enhanced the number of 

motile spermatozoa by 196% from 28.7 ± 3.7 to 85.0 ± 3.0%.
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rig. 3.x Tk« lfC«ct oC lleArbemat« oa tka ■otllity of
MaaMllaa fgonatoso«.

C o n c o n tra t io n  o f  B ic a rb o n a to  (nH)

Washed spermatozoa isolated from the caput region of the epididymis (1-2x10^ 
spermatozoa) were incubated with increasing concentrations of bicarbonate at 37*’C 
for 30 minutes. The percent of motile sperm was measured as described in the 
Materials and Methods section (n=10).
*•* P< 0.001.
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other studies have shown that an increase in intracellular pH stimulates motility 

and respiration in lx)vine caudal sperm (Babcock, et al., 1983) and is involved in the 

activation of sea urchin spermatozoa (Lee, et al., 1983). Vijayaraghavan and 

colleagues (1985) showed that the presence of bicarbonate in the incubating media 

leads to an elevation of intracellular pH.

Bicarbonate enters a cell through a bicarbonate/chloride exchanger which acts 

by exchanging external Na"** and HCOa" for internal H+ and C l'. The HC03*/C r 

exchanger is involved in the regulation of intracellular pH in mammalian cells, for 

example, it accounts for 20% of the active acid extrusion from mouse soleus muscle 

(L'Allemain. eta!., 1985). This exchanger is inhibited by stilbene derivatives such as 4- 

acetoamido-4'-isothiocyanostilbene-2,2'-disulfinic acid (SITS) (L'Allemain, et al.,

1985).

Spermatozoa isolated from both regions of the rat epididymis were incubated in 

medium containing bicarbonate in the presence of varying concentrations of SITS for 

30 minutes, after which samples were removed and motility observed microscopically 

(T able 3.1).

Table 3.L The effect of SITS on the motility of spermatozoa isolated from the caudal 
region of the epididymis

Concentration of SITS Percent of Motile Spermatozoa
mM CAPUT CAUDAL

0 45.012.5 78 .013 .7

0.1 40.011.5 70 .011 .8

0.5 33.012.0 52 .012 .2

1 18.011.2 *** 22 .511.7

Values are means ± SD (n=6). 
*** P<0.001.
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The results show that at 1 mM, SITS inhibited the motility of spermatozoa from 

both the caput and caudal regions of the epididymis by 60 and 70% respectively. 

Thus it would appear that the presence of bicarbonate plays a significant role in the 

regulatbn of motility.

Another exchanger which extrudes H'*’ from inside the cell and thus leads to 

internal alkalisation is the Na'*'/H''' exchanger. Monensin, an activator of the Na'*’/H''’ 

exchanger (Pressman, 1976), caused activation of rat spermatozoa from both caput 

and caudal regions (Table 3.11).

Table 3.11. The effect of monensin on the motility of spermatozoa.

Epididymal 
origin of sperm

Concentration of Monensin 
mM

Percent of Motih 
Spermatozoa

Caput 0 37.0 ±1.5
0.1 52.0 ±1 .8

1 66.0 ±2 .5
10 89.0 ± 3.6 ***

Caudal 0 77.0 ±3 .7
0.1 80.0 ±1.8

1 88.0 ± 3.6
10 95.0 ± 4.0 ***

Values are means ± SD (n=6). 
*** P<0.001.

Incubation of both populations of epididymal spermatozoa with 10 mM monensin 

for 30 minutes enhanced their motility. However the extent of stimulation of the two 

populations differed. The motility of caput spermatozoa was increased by 157% 

whereas the motility of caudal epididymal sperm were only increased by 23%.

Thus it would appear that agents which affect the intracellular pH of rat 

spermatozoa also regulate their motility but their effect is greater in sperm from caput
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than in those from the caudal epididymal regions suggesting that the pH in 

spermatozoa from the caudal region may already be closer to that required for 

maximum motility.

3.1.2. Adenosine 3 .5 -cyclic Monophosphate.

Adenosine 3 ',5 '-cyclic monophosphate (cAMP) has also been implicated in the 

acquisition of the capacity for motility which occurs as sperm travel through the 

epididymis (Hoskins, et a i, 1974). Theophylline is an agent known to elevate cAMP 

levels. From Table 3.III it can be seen that the addition of this agent to suspensions of 

spermatozoa increased the number of motile sperm and addition of bicarbonate 

further enhanced the number of motile sperm obtained from the caput region which 

were observed.

Tabla 3.III. The effect of theoohvlline on the motilitv of soermatozoa.

Epididymal Additions Percent of Motile
origin of sperm Spermatozoa

Caput None 2.0 ±1.8
Bicarbonate (15mM) 45.0 ± 3.9 ***
Theophylline (ImM) 11.0±4.5 **

Bicarbonate (15mM) +
Theophylline (ImM) 68.0 ±4.8 ***

Caudal None 28.0 ±3.7
Bicarbonate (15mM) 85.0 ± 3.0 ***
Theophylline (1 mM) 84.0 ±2.5 ***

Bicarbonate (15mM) -i-
Theophylline (ImM) 87.0 ±4.5 ***

Values are means ± SD (n=10). 
**P<0.01 ***P<0.001.
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The addition of theophylline or bicarbonate alone to spermatozoa from the caput 

region of the epididymis, stimulated motility by approximately 450% and 1250% 

respectively. However when both these agents were added to caput spermatozoa 

sperm motility increased by approximately 2400%. The motility of caudal spermatozoa 

is stimulated by 200% by theophylline, a level comparable to that seen when sperm 

are incubated in the presence of bicarbonate. However, in contrast to caput sperm, 

caudal sperm incubated in the presence of both bicarbonate and theophylline showed 

no further increase in motility.

The effect of theophylline with or without bicarbonate on caput sperm was 

examined at different concentrations of this agent and the results are presented in 

Figure 3.11. The data show that in the absence of bicarbonate the percent of motile 

sperm increases from 2.0 ± 1.5 to 48 ± 3.5% as the concentration of theophylline is 

increased from 0 20 mM. On the other hand in the presence of bicarbonate a

dramatic increase in motility is observed at only 1 • 2 mM theophylline and the levels 

of motility achieved are greater than those obsen/ed in the presence of 20 mM 

theophylline alone.

Forskolin, a diterpene, is also known to elevate cAMP levels in other tissues 

(Seamon and Daly, 1981a & b) through activation of adenylate cyclase.

From Table 3.1V it can be seen that forskolin stimulates the motility of sperm 

isolated from the caudal regions of the epididymis. Forskolin has no significant effect 

on the motility of caput sperm in the absence of bicarbonate however, the presence of 

bicarbonate stimulated the motility of these sperm by 173%.

64



Table 3.1V. The effect of forskolin on the motility of spermatozoa.

Concentration of Forskolin Percent of Motile Spermatozoa
pM

CAP (+) CAP (-) CAUD (+) CAUD (-)

0 45.0 ±2.3 3.0 ±1.7 80.0 ±3.0 28.7 ± 3.7

0.1 58.5 ±1.8*** 3.1 ±1.5 88.0 ±1.5** 30.0 ±0.6

1 65.0 ±2.0*** 3.6 ± 0.5 96.5 ±0.5*** 35.5 ±1.0**

10 78.0 ± 3.9*** 4.2 ± 0.6 99.0 ±0.5*** 40.6 ± 2.0***

Values are means ± SD (n=6).
CAP = Caput epididymal spermatozoa + = -i- bicarbonate (15 mM) 
CAUD = Caudal epididymal spermatozoa - = no bicarbonate 
** P<0.01 
*** P<0.001.

Thus it can be seen that in the presence of forskolin the motility of caput 

epididymal spermatozoa was once again enhanced in the presence of bicarbonate. 

The addition of forskolin to sperm isolated from the caudal region of rat epididymides 

stimulated motility both in the absence and presence of bicarbonate. These results 

suggest that further stimulation of motility in the mature sperm can be achieved by 

either the addition of bicarbonate or forskolin, whereas the immature sperm isolated 

from the caput region of the epididymis requires both bicarbonate and forskolin to 

acquire maximal motility.
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F ig . 3 . XI. Th« l£ f« c t  o f Thoophyllino on tho M o t i l i t y  
o f  M u M lia n  SporM toion.

Concentration of Theophylline (mM)

Washed spermatozoa isolated from the caput region of the epididymis (1-2x108 
spermatozoa) were incubated with increasing concentratkxis of theophylline at 37*^ 
for 30 minutes in the presence or absence of bicarbonate. The percent of motile 
sperm was measured as described in the Materials arxl Methods section (ns6).
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3.1.3. Calcium.

Results obtained, from studies using membrane permeabilized sperm from both 

mammalian and invertebrate sources, on the role of external C a^* in modulating the 

motility of intact sperm are conflicting. For example, external Ca^'*' stimulates hamster 

sperm motility but inhibits the motility of sperm from guinea pig, ram and mouse 

(Vijayaraghavan and Hosldns, 1989).

Table 3.V shows the motility of rat spermatozoa isolated from the epididymis 

which had been suspended in media, both in the presence and absence of 

bicarbonate, containing varying concentrations of verapamil a known inhibitor of 

voltage-dependent Ca^’*' channels. Sperm were incubated with verapamil for 30 

minutes at 37*^0 after which time samples were removed and motility estimated 

microscopically.

Table 3.V. The effect of verapamil on the motility of spermatozoa.

Concentration of verapamil Percent of Motile Spermatozoa
pM

CAP (+) CAP (-) CAUD (+) CAUD (-)

0 42.0 ±1.7  2 .011 .5 85.0 13.0 27.012.5

0.1 31.011.0 0 76.011.8 20.511.8

10 25.012.0 0 67.012.0** 16.812.6**

100 17.013.5*** 0 55.011.5*** 10.012.0**

Values are means ± SD (n=6). 
CAP = Caput epididymal sperm 
CAUD = Caudal epididymal sperm 
** P<0.01 
*** P<0.001.

(+) = + bicarbonate (15 mM) 
(-) -  no bicarbonate
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The results show that verapamil significantly inhibits the motility of spermatozoa 

isolated from the caudal region of the epididymis compared with control spermatozoa, 

which had been incubated over the same period of time without any additions. 

However, higher concentrations of verapamil are required to inhibit motility when 

bicarbonate is present. The results with caput spermatozoa also show that verapamil 

inhibits their motility and like mature spermatozoa slightly higher concentrations of 

verapamil are required to inhibit motility in the presence of bicarbonate. This suggests 

that the entry of Ca^'*' though voltage-dependent channels could be regulated by 

intracellular pH.

One way Ca^'*’ may be involved in the activation of sperm motility is through the 

action of Ca'*'-dependent protein kinase C which is activated by diacylglycérol, a 

second messenger formed when phosphatidylinositol-4,5-bisphosphate (PIP2) is 

hydrolysed by phospholipase C (De Jonge, eta l., 1991). Protein kinase C (PKC), like 

other kinases, phosphorylâtes a number of intracellular proteins. Therefore, if this 

PIP2 system is involved in the acquisition of motility in spermatozoa, then agents that 

affect the activity of PKC might be expected to alter sperm motility.

Phorbol diesters are a class of tumour-promoting agents which bind with high 

affinity and selectivity to PKC (MacEwan, et al., 1993). In order to determine if these 

compounds had an effect on sperm motility experiments were performed using 

phorbol 12-myristate-13- acetate (PMA). The motility of epididymal spermatozoa 

following their incubation with varying concentrations of PMA are shown in Table 3.VI.
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Tabla 3.VI. The effect of PMA on the motility of spermatozoa.

Concentration of PMA Percent of Motile Spermatozoa
nM

CAP(+) CAP(.) CAUD(+) CAUD(-)

0 40.5 ±2.5 2.5 ±1 .6 45.5 ±2.5 27.0 ± 2.8

1 49.0 ±1.5 3.5 ±1 .5 66.0 ±1.8 *** 30.0 ±1.8

10 58.0 ±2 .7  *** 4.0 ±1 .0 80.0 ± 3.5 *** 38.5 ±2.7

100 78.0 ±3.5  *** 4.0 ±1 .0 99.0 ±2.6 *** 44.0 ±3.0

Values are means ± SO (n=6).
CAP = Caput epididymal sperm + = + bicarbonate (15 mM) 
CAUD = Caudal epididymal sperm • = no bicarbonate 
* P<0.05 
** P<0.01 
*** P<0.001.

In the presence of bicarbonate PMA enhances the motility of spermatozoa 

isolated from the caudal epididymal region, at a level of 100 nM, by 117%, and this 

agent also significantly enhances the motility of caput epididymal spermatozoa when 

bicarbonate was present in the incubating medium. In the absence of exogenous 

bicarbonate, PMA stimulated the motility of caudal epididymal spermatozoa by 66% 

but had no significant effect on the motility of the immature caput epididymal 

spermatozoa. Thus it would appear that bicarbonate plays a role in the PMA-induced 

rise in sperm motility.

To investigate whether the PMA effect on motility depends upon the uptake of 

exogenous bicarbonate, the percent of motile caudal epididymal spermatozoa was 

studied in the presence of SITS (1 mM), an inhibitor of the bicarbonate/chloride 

exchanger and the results are shown in Table 3.VII.
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Tabte 3.VII. The effect of SITS on PMA-stimulated motility.

Additions Percent of Motile Spermatozoa

• (no bicartx)nate)

- (no bicarbonate) 
•i-PMA (100 nM)

+ bicarbonate (15 mM) 
+ PMA (100 nM)

-t- bicarbonate (15 mM) 
+ PMA (100 nM)
+ SITS (1 mM)

28.0 ± 3.5

43.0 ±1.5

99.0 ± 2.5

30.0 ± 4.0

Values are means ± SD (n=6)
** P>0.01
***p>0.001 + bicarbonate and PMA v no bicarbonate + PMA 
+++P>0.001 + bicarbonate, PMA and SITS v + bicarbonate and PMA

Again PMA enhanced the motility of caudal epididymal spermatozoa both in the 

absence and presence of external bicarbonate. However, this stimulation was 

abolished when these spermatozoa were incubated in the presence of SITS. Thus the 

entry of bicarbonate plays a key role in the PMA-induced stimulation of sperm motility.

For further evidence that protein kinase C plays a role in the stimulation of 

sperm motility an inhibitor of protein kinase C, 1-(5-isoquinolinylsulfonyl)-2- 

methylpiperazine (H-7), (Rotem, e ta/., 1990a) was tested for its effect on the motility 

of spermatozoa incubated in the presence of bicarbonate. In the presence of 

20pg/cm^ H-7 spermatozoa isolated from the caput section of the rat epididymis were 

totally immotile and the motility of caudal epididymal spermatozoa was inhibited by 

177% from 87.0 ± 3.7 to 20.3 ± 4.1% (n=6).
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4. Factors Affecting Respiration and Motiittv of Spermatozoa from Fucus 
serratus.

The aim of this study was to investigate the mechanisms involved in the activation of 

motility of spermatozoa from Fucus senatus upon their release into sea water. Before 

studies on the activation of the Fucus serratus spermatozoa could begin it was 

necessary to develop techniques to determine the number of spermatozoa in a 

sample and to measure their motility.

4.1. Measurement of Sperm Concentration.

Suspensions of spermatozoa from Fucus serratus can be quantified under a 

microscope, using a haemocytometer, but this is a tedious and lengthy procedure. In 

order to determine whether a spectrophotometric method was an accurate and 

efficient way of estimating the number of spermatozoa in a suspension the 

concentration of spermatozoa was determined both microscopically and by 

absorbance measurements at 340 nm. The number of spermatozoa in a suspension 

was adjusted to give 1x10^ spermatozoa/cm^ and the absorbance of 10 separate 

aliquots of this suspension were read at 340 nm. It is clear from Figure 4-1 that there is 

a positive correlation between these two methods of ascertaining the number of 

spermatozoa in a suspension (correlation coefficient of 0.84). The absorbance at 340 

nm was 0.314 ± 0.022. Thus, this spectrophotometric method was subsequently used 

to measure sperm concentration.
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4.2. OamolaHtv of Sea water.

The experiments carried out in this study involved the measurement of O2 

uptake in ASW and in modified ASW. For this reason it was important that the 

osmolality of the various sea water solutions was relatively constant.

Initially the osomolahty o f all the ASW solutions were checked and Table 4.1 

illustrates the figures which were obtained.

Table 4.1. The osmolaHty of sea water.

ASW OsmolaHty (mOsm/litre)

1 1000
2 1030
3 1011
4 980
5 1015
6 1000
7 1043
8 1000
9 998

10 976

It can be seen that these measurements were consitent. Subsequent batches of 

ASW and modified ASW were checked periodically and no samples were detected 

outside the accepted range.
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4.3. Respiration and Motilitv of SpermatQMa.

Spermatozoa are propelled forward by the beating of their flagella and ATP has 

been shown to provide the energy for this motion in spermatozoa from sea urchin, 

therefore motility and respiration of spermatozoa have the potential for being linked 

(Christen, et a i, 1982).

A possible relationship between respiration and motility in the spermatozoa of 

Fucus serratus, was investigated by using a Clarke oxygen electrode attached to a 

closed vessel to measure oxygen uptake and a microscope to assess motility. Rgure 

4<ll illustrates that there is a positive correlation between O2 uptake and the 

percentage of motile sperm (correlation coefficient of 0.81).

Thus it would appear that these two parameters are also linked in spermatozoa 

isolated from Fucus serratus.
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Pig. 4.x. Th« C orrtlatloft batvaaa Two lo t M a  of lo t lM t la g  tho 
Moabor of tporaatoso« la  a Saagla.

N uaiber o f  Sporm atozoa (X 10^ )

Washed spermatozoa were suspended in ASW and aliquots were removed and the 
number of spermatozoa in the suspension was estimated a. microscopically, using a 
haemocytometer and b. spectrophotometricaliy by reading absorbance at 340 nm. 
both procedures were carried out as described in Materials and Methods.
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rig. 4.ZI. Tb« C o rr« l« tlo a  b«tv««B th« Oxygta Opt«k« and 
tb« r«re«Bt o f  l lo t llo  Sporaatoso« l a  a Saapla.

P orcont o f  H o t i lo  S perm atozoa

Washed spermatozoa (1*2x10^ speimatozoa/cm^) were suspended in ASW and 
aliquots were removed, motility was estimated microscopically and O2 uptake was 
measured using an oxygen electrode. Both procedures were carried out as described 
in Materials and Methods.
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4.4. The Effect of Temperature on Motility of Spermatozoa.

When suspensions of spermatozoa from Fucus serratus (2x10^ 

speimatozoa/cm^) were incubated in ASW at varying temperatures, motility was 

maximal at a temperature of 10‘'C (Table 4.II).

Table 4.11. .The effect of temperature on the rriotiitty of spermatozoa from Fucus 
senatus incubated in ASW at pH 8.0.

Temperature of ASW Percent of Motile
°C Spermatozoa

4 8 ± 2

6 21 ±2

10 8 5 ± 6

25 5 0 ± 5

37 23 ±2

60 0

Values are means ± SD (n = 15)

4.5. The Effect of pH on Oxygen Uptake of Spermatozoa.

It has been reported that external pH affects motility and respiration of 

spermatozoa from sea urchin (Christen, et a i, 1983). The effects of pH on O2 uptake 

and motility of spermatozoa from Fucus serratus at lO^C are shown in Table 4.III It is 

evident that both O2 uptake and motility were maximal when the pH of the ASW was 

8 and both were inhibited when the external pH was either more acidic or basic.
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Tabte 4.III. The effect of external pH on the motility and oxygen uptake of 
spermatozoa from Fucus serratus.

pH Percent of Motile 
spermatozoa

Oxygen Uptake 
nmoles O^/min/tO® sperm

5 1 8 ± 4 12.96 ± 1.84

6 3 0 ± 5 10.28 ± 1.82

7 51 ± 3 29.25 ±4.15

8 8 5 ± 7 46.62 ± 3.53

9 54 ± 4.5 24.03 ± 2.41

10 4 0 ± 6 16.45 ±3.25

Values are means ± SD (n = 15, from different batches of seaweed)

The initiation of respiration of sea urchin spermatozoa is dependent upon both 

the ionic composition and pH of the medium (Christen, etaJ., 1982) and as shown in 

Table 4.III the rate of respiration of spermatozoa from Fucus serratus is also 

dependent upon the pH of the ASW. Altering the external pH also alters the 

intracellular pH of sea urchin spermatozoa (Lee, et al., 1982; Christen, et al., 1982;

1983). Table 4.1V shows that decreasing the external pH of spermatozoa of Fucus 

serrafus which causes acidification of the intracellular pH (Christen, et a i, 1982; 1983) 

decreases the rate of respiration both for coupled and FCCP-treated uncoupled 

spermatozoa.
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Table 4.1V. The effect of external pH on coupled and uncoupled respiration.

Extracellular pH Mean O2 uptake
nmoles 02 /min/IO^ spermatozoa

-FCCP + FCCP

5.0 4.23 ±1.18 5.88 ±1.76

6.0 14.98 ±2.94 16.39 ±1.76

7.0 32.90 ±3.53 34.55 ± 3.29

8.0 42.01 ± 4.23 42.01 ± 4.44

Vales are means ± SD (n=6, from different batches of seaweed)

4.6. The Effect o tihe  Ionic Composition of Sea water on Sperm Respiration and 
Motility.

Spermatozoa from Fucus serratus are released into sea water prior to 

fertilisation and therefore the ions present in sea water may play a role in the 

activation of motility and respiration of these spermatozoa. Suspensions of 

spermatozoa (2x10^ spermatozoa/cm^) were incubated, for 10-15 minutes, in ASW 

from which each ion is omitted in turn and the percent of motile sperm and O2 uptake 

were measured (Table 4.V). In each experiment the ionic strength of the ASW 

remained the same, for example, N-methylglucamine replaced Na'*' in experiments 

requiring Na'*’-free sea water and when the concentration of K'*' was varied, Na*  ̂was 

substituted for K+, so that [K+] + [Na+] was always 370 mM.
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Table 4.V. The effect of the composition of artificial sea water on motility and oxygen 
uptake of spermatozoa from Fucus serratus.

Ion omitted Percent of Motile 
Spermatozoa

Mean O2 Uptake 
nmoles 02/min/IO® sperm

- 8 4 ± 4 46.82 ± 2.29

7 7 ± 5 43.29 ± 2.29

Ca2+ 25 ± 2 *** 15.60 ± 1 .7 6 * -

Na-^ 1 ± 0.25 *** 8.11 ±2.26 ***

Mg2+ 2 9 1 2 *** 17.77 ±1.59 ***

Values are means ± SO (n = 10). 
*** P< 0.001.

These results show that when spermatozoa were incubated in sodium free ASW 

percentage motility and respiration were decreased by 100% and 83% respectively. 

External Ca^'*’ was also important for the initiation of nrK)tility and respiration in these 

spermatozoa and when this ion was omitted from ASW the percentage of motile 

sperm was decreased by 70% and oxygen uptake by 67%. Mg *̂** also appears to 

play a role in the activation of spermatozoa as in its absence sperm motility was 

inhibited by 65% and O2 uptake by 62%.

These results suggest that the presence of external Na*** is essential for 

spermatozoa to acquire motility and this is linked to the rate of respiration. The 

presence of Ca^**' and Mg^'*’, although enhancing motility and respiration, are not 

essential.

The effect of varying concentrations of Na'*’, in ASW, on oxygen uptake in the 

spermatozoa of Fucus serratus is shown in Figure 4.III. Spermatozoa suspended in 

Na’*’'free ASW for 10 • 15 minutes had an O2 uptake of 8.10 ± 0.59 nmoles 

02 /min/IO^ spermatozoa and were immotile, as measured microscopically. Increasing
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the Na’*’ concentration in ASW resulted In an elevation in O2 consumption which 

reached an optimum at 360 mM Na*** which is the Na*** concentration in natural sea 

water. Further increases in Na'*' concentration resulted in a fall in oxygen 

consumption. The percentage of motile sperm also increased from 0 to 85% as the 

amount of Na*** present in ASW rose from 0 to 360 mM, after which motility fell to 65% 

when 500 mM Na-*- was present in the sea water.

As previously stated the O2 uptake of spermatozoa is lower in Na'*'-free sea 

water (ONaASW) than in its presence. However, when Na'*’ was re-introduced to a 

suspension of spermatozoa in ONaASW O2 uptake appeared to rise within the first 

two minutes after Na'*' had been re-introduced (Table 4.VI). However, such an 

addition would increase the osomolarity which in turn would cause a significant 

decrease in O2 solubility. This means that the value of 282.01 pmoles/litre could be 

artificially high. However it is unlikely that this would totally account for the difference 

recorded between the O2 uptake in the presence and absence of Na***.

Table 4.VI. The effect of Na'*' on O2 uptake of spermatozoa.

Composition of ASW Mean O2 uptake
nmoles 02 /m in/IO^ spermatozoa

Control 

ONaASW 

+ 360 mM Na'*'

43.59 ±1.65 

8.11 ±2.26 *** 

13.25 ± 3.03

Values are means ± SD (n = 10). 
*** P<0.001.
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Fig. 4.IXX. Tb* lff«et o£ tb« ■« CoBC«ntratlon o£ AJV 
oa tb« Oxyg«a Uptak« of fponatosoa.

Concentration of Na (mM)

Washed spermatozoa (1-2 xIO ^ spermatozoa/cm^) were incubated in ONaASW at 10 
°C for 10 min in the presence of increasing concentrations of Na'*’ added from a lOx 
stock soiution of NaCI. O2 uptake was measured as under Matericds and Methods. 
Vaiues are means ± SD (n=10).

P< 0.001.
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4.7. The Effect of n4iexane on Sperm Motilltv and Respiration.

The interaction between Fucus gametes is mediated by the secretion of a 

pheromone-like sperm chemo-attractant by the eggs (Müller and Sefeiiadis, 1977). A 

variety of simple hydrocarbons including n-hexane, ethers and esters mimic the 

natural chemo-attractant (Cook, et a l„ 1951) although the sensitivity of Fucus sperm 

to n-hexane is some three orders of magnitude less than the natural chemo-attractant, 

Fucoserraten.

The effect on O2 uptake and motility of spermatozoa of Fucus serratus was 

ascertained in the presence of ASW containing 1 mM or 10 mM n-hexane.

Table 4.VII. The effect of n-hexane on the O2 uptake and motility of spermatozoa.

Conditions Percent of Motile Mean O2 uptake
Spermatozoa nmoles 02/m in/l 0^ spermatozoa

Control 85 ±1.50 45.24 12.41

+1 mM
n-hexane 99 ± 0.35 137.2412.22 ***

+ 10 mM
n-hexane 94 ± 0.50 85.9411.59 ***

Values are means ± SO (n = 10). 
*** P<0.001.

The results in Table 4.VII show that both O2 uptake and sperm motility were 

stimulated when incubated with n-hexane by 203% and 11% respectively in the 

presence of 10 mM n-hexane and by 90% and 16% respectively by 1 mM n-hexane. 

In both cases this hydrocarbon enhanced O2 uptake to a much greater extent than it 

stimulated the percent of motile sperm and, therefore, an increase in the rate of 

respiration may be required first before there is an increase in motility.
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It is clear from previous results (section 4.4 and 4.5) that the pH and ionic 

composition of the surrounding medium is important in initiating sperm motility. This 

would suggest that ion channels play a crucial role in this activation process.

5.1. The_Ma-*-/H-*- Exchanger.

From the results already discussed it would appear that Na+ is a major trigger of 

sperm motility. External Na+ crosses membranes via a Na+/H+ exchanger, which 

serves as a regulator of pHI in most cells and the rate of Na+/H+ exchange is strongly 

dependent on the internal H+ concentration. Aronson and colleagues (1982; 1985) 

have proposed that cytoplasmic H+ acts as an allosteric activator of the Na+/H+ 

exchanger.

The diuretic drug amiloride is an inhibitor of the Na+/H+ exchange activity and 

acts by competing with Na+ for the external binding site on the exchanger. When 

amiloride was added to a suspension of spermatozoa from Fucus serratus (2x 108 

spermatozoa/cm3) motility decreased as shown in Table 5.1.

85



Table S.l. The effect of amiloride on the motility of spermatozoa from Fucus serratus.

Concentration of amiloride Percent of Motile Spermatozoa 
(pM)

Values are means ± SD (n=15, from different batches of seaweed). 
*** P<0.001.

Amiloride inhibits the number of motile sperm by 16% even when present at the 

very low concentration of ICh^M. However, maximum inhibition (67%) was reached 

when 50 pM amiloride was included in the incubation medium. Amiloride also caused 

a decrease in O2 uptake by these spermatozoa. Results in Rgure 5.1 show that 

spermatozoa which had been incubated in ASW in the absence of amiloride respired 

at a rate of 45.18 ± 2.17 nmoles 02 /min/IO® spermatozoa, whereas the addition of 

amiloride (final concentration 50 pM) produced a significant (P<0.001 ) decrease in O2 

uptake of 64% to 16.33 ± 0.59 nmoles 02 /min/IO® spermatozoa. Thus the same 

concentration of amiloride (50 pM) produced the maximum inhibition of both 

respiration and sperm motility.
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rig. S.I. Th« lff«et of Aailorid« oa th« Oiygoa Uptak« of fporaatoso«.
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Concentration of Amiloride (̂ M)

Washed spermatozoa (1’2x10^ spermatozoa/cm^) were incubated at 1 0X  for 15 min 
in the presence of varying concentrations of amiloride. additions were made from 
lOOx stock soiutions. Values are means ± SD (nslO, from 10 different batches of 
seaweed).
*** P< 0.001.
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The monovalent cationic ionophore monensin, which catalyses electrically 

neutral Na'*‘/H'*‘ exchange across cell membranes (Pressman, 1976; Hansbrough and 

Garbers, 1981), activates the O2 uptake of spermatozoa from Fucus serratus. The 

results in Figure 5.11 show that the O2 uptake in the absence of monensin was 46.82 ± 

2.29 nmoles 02 /m in/IO^ spermatozoa whereas 0.1 pM monensin significantly 

(P<0.001) Increased O2 uptake by 457% to 261.03 ± 5.78 nmoles 02 /min/IO® 

spermatozoa.

In sea urchin sperm a Na'̂ '/H'*' exchanger participates in the regulation of 

intracellular pH, which is dependent on the presence of external Na*** (Darszon, at a i, 

1987; Garcia>Soto, et a i, 1987). The investigations already described with amiloride 

and monensin were carried out in ASW, containing the complete complement of 

salts. It seemed appropriate to test these two agents in Na'*‘-free ASW where uptake 

of O2 by spermatozoa is normally absent or very low. The addition of amiloride (final 

concentration: 50 pM) to spermatozoa incubated in ONaASW resulted in a further 

decrease in O2 uptake by 78%, whereas the addition of monensin (final 

concentration: 0.1 pM) to spermatozoa in ONaASW had no significant effect on O2 

uptake (Figure 5.111).
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5.2. The Ha*/K *  ATPase pump.

The Na+/H+ exchange is driven by the transmembrane Na'*’ gradient which in 

turn is generated by Na+ZK'*’ ATPase.

In many systems, during the Na+/ H+ exchange one H+ is extruded for every 

Na'*' entering the cell and this Na*** is then pumped out again by the ATP-dependent 

Na+/ K+ ATPase. If this Na+/K+ pump is present and responsible for the efflux of 

Na*** in spermatozoa from Fucus serratus then motility and O2 uptake should be 

slowed down under one or more of the following conditions:

I. in the presence of an inhibitor of this pump,

II. by substituting Li+ for Na+,

III. after depletion of cellular ATP.

I. Ouabain, a compound isolated from certain plants, is a potent inhibitor of the 

Na+ZK'*' pump. It specifically binds to the outer surface of the Na+ZK+ ATPase and 

blocks both ion translocation and ATP hydrolysis. The effect of ouabain on both the 

motility and O2 uptake of spermatozoa from Fucus serratus was measured and the 

results are shown in Table 5.11.
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Table 5.11, The effect of ouabain on the motility and O2 uptake of 
spermatozoa of Fucus serratus.

Concentration of Ouabain Percent of Motile Mean O2 Uptake
(mM) Spermatozoa nmoles 02/m in/l 0® sperm

0 80 ± 9 54.66 ± 2.55

0.01 5 6 ± 8 * 35.09 ± 4.48

0.1 22 ± 3 *** 21.34 ±1.70

1 32 ± 6 *** 27.46 ± 2.51

10 15 ± 2 *** 8.21 ±1.43

Values are means ± SD (n = 10). 
* P<0.01 
*** P<0.001.

The results shown in Table 5.11 indicate that ouabain effectively inhibits sperm 

motility even when present at low concentrations (10*5M), but the greatest inhibition of 

81% is observed at the highest concentration used of 10 mM.

The inclusion of ouabain in the incubation media also resulted in a decrease in 

O2 uptake. From the results in Table 5.11 it can be seen that in ASW O2 uptake of 

spermatozoa was subject to 85% inhibition by 10 mM ouabain. Even in the presence 

of low concentrations of ouabain (0.01 mM) 36% inhibition in O2 consumption 

occurred. It is clear that the inhibition of O2 uptake by ouabain takes effect 

immediately, as suspensions of spermatozoa initially allowed to respire for 2 minutes 

exhibited an immediate fall in O2 uptake (31%) on addition of ouabain (10 mM). 

Additionally, ouabain inhibits by 79% the very low O2 uptake exhibited by 

spermatozoa suspended in Na+-free ASW (Table 5.III.). Thus ouabain is a potent 

inhibitor of O2 uptake in spermatozoa from Fucus senatus.

92



Tabla S.lll. The effect of ouabain on O2 uptake of spermatozoa incubated in 
ONaASW.

Composition of ASW Mean O2 uptake
nmoles 02/m in/IO^ spermatozoa

ONaASW

•f 10 mM ouabain

8.11 ±2.29

1.59 ±0.59

Values are means ± SO (n = 10, from different batches of seaweed). 
*** P<0.001.

II. Lithium is a very good substitute for Na'** in Na'*’/H'*' counter movements 

(Ives ef a /1983; Paris and Pouyssegur, 1983), but intracellular Li'*' is only pumped out 

of cells at a very limited rate by the Na+/K+ ATPase pump (Dunham and Sengh, 

1977). Previous studies on various cell types have shown that Na'*' enters the cell in 

exchange for H'*' ions which leads to the internal alkalisation of the cell (Gatti and 

Christen, 1985) and this intracellular alkalisation would probably be reduced in the 

presence of lithium.

93



Tabla S.IV. The motility and O2 uptake of spermatozoa from Fucus serratus in the 
presence of lithium ions.

Percent of Motile Mean O2 uptake
Spermatozoa nmoles 02 /mln/IO® spermatozoa

Control

ONaASW

89 ± 3  

1 ± 0.25 ***

Li-ONaASW 22 ± 4

47.18 ±1.94 

8.11 ±2.26 *** 

22.38 ± 3.53 ***

Values are means ± SD (n = 10, different batches of seaweed). 
*** P<0.001.

The results in Table S.IV show that both O2 uptake and percent of motile sperm 

were inhibited by 53% and 75% respectively, when Na+ was replaced by Li+ in ASW. 

However, the spermatozoa were more active in the presence of ONaASW containing 

Li*** than spermatozoa suspended in ONaASW alone implying that Li'*’ can partially 

substitute for Na'*’ in spermatozoa of Fucus serratus, this is presumably because the 

initial countermovements would cause the expulsion of however as Li'*’ cannot be 

cycled it cannot maintain this expulsion. Therefore, it would appear that the Na+/K+ 

ATPase pump may be only one of the components involved in activating spermatozoa 

of Fucus serratus.
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5.3. The BIcarbonate/Chloride Exchanger.

There are two exchangers which involve bicarbonate, the first is an acid 

extruder which acts by exchanging external Na**’ and HCO3 '  for internal H**' and C r, 

the second is an alkali extruder which exchanges intracellular HCO3 '  for extracellular 

Cl“. The Na+, HC03“-CI", H+ exchanger is inhibited by stilbene derivatives such as 4- 

acetaniido-4'-isothiocyanostilbene-2.2'-disulfonic acid (SITS).

The results in Table 5.V show that spermatozoa incubated in ASW in the 

presence of 0.01 mM SITS had an O2 uptake of 16.85 ± 1.20 nmoles 02 /m in/IO^ 

spermatozoa which represented an 60% inhibition of respiratory activity. Higher 

concentrations of SITS (0.1 -1  mM) did not markedly increase this inhibition. 40% of 

the inhibitory effect of SITS occurs within the first minute after its addition to 

spermatozoa. SITS also inhibits motility in these sperm as shown in Table 5 .V. 

Maximal inhibition of motility occurred when 0.1 mM SITS was present in the 

incubating ASW, where percent of motile sperm fell from 85 ± 2% to 23 ± 1 % , a 73% 

inhibition of sperm motility.

Table 5.V. The effect of SITS on the motility and O2 uptake of spermatozoa.

Concentration of SITS Percent of Motile Mean O2 Uptake
(mM) Spermatozoa nmoles 02/min/IO® sperm

0 8 5 ± 2 38.25 ± 2.30

0.01 30 ± 1 *** 16.85 ±1.20

0.1 23 ± 1 11.76 ±0.60

0.5 38 ± 2 14.52 ±1.27

1 47 ± 2 *** 18.67 ±1.76

Values are means ± SD (n = 15). *** P<0.001.
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5.4. Ca2» Channels.

One of the ways by which external Ca2+ enters a cell is through voltage- 

dependent Ca2+ channels. A known Inhibitor of these channels is verapamil. 

Suspensions of spermatozoa incubated in ASW containing varying concentrations of 

verapamil showed a decrease in both O2 uptake and the percent of motile 

spermatozoa. The results are shown in Table 5.VI.

Table 5.VI. The effect of Verapamil on the motility and O2 uptake of spermatozoa.

Concentration of Verapamil 
(pM)

Percent of Motile 
Spermatozoa

Mean O2 Uptake 
nmoles 02 /min/IO® s|

0 89 ±3.2 46.35 ±3.14

0.1 43 ±1.4  *** 20.61 ± 4.91 ***

1 39 ±0.9  *** 9.68 ±1 .92***

10 36 ±2.0  *** 14.37 ±4.42***

100 28 ±4.1 *** 12.97 ±4.69 ***

500 23 ±2.3  *** 10.69 ±1.94***

1000 14 ±2.0  *** 7.21 ±1.47 ***

Values are means ± SD (n = 15. from different batches of seaweed). 
*** P<0.001.

The inhibition of O2 uptake and percentage motility increased from 44% and 

57% respectively at 0.1 pM verapamil to 84% for both parameters at a concentration 

of 1 mM.
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6. Intracellular Mechanism« Associated with Activation of Motllitv.

6.1. Na^-dependent

it has been demonstrated in spermatozoa from sea urchin that the extrusion of 

H'*' produces an increase in cytoplasmic pH (Lee, 1984 a & b) and this is a 

prerequisite for activation of sperm motility. It is dear from these results and those of 

others that this process is Na*** dependent and reiies upon the activation of the 

Na'*'/H*'‘ exchanger. For exampie the activation of sperm motiiity accompanied by acid 

extrusion which occurs when these sperm are reieased into sea water does not occur 

in the absence of external Na*** (Nishioka and Cross, 1978).

6.1.1. Characteristics of Na* -dependent H-*7eiea8e in Intact spermatozoa.

Figure 6.1 shows resuits of experiments in which the pH of Fucus serratus sperm 

suspensions, in Na'*’-free ASW, were monitored using a pH electrode. Samples of 

spermatozoa were also removed at various time intervals for quantitative estimation of 

sperm motiiity. As previously illustrated spermatozoa suspended in Na'*'-free ASW are 

virtually immotile. The addition of 360 mM NaCI to a suspension of spermatozoa in 

ONaASW resulted in a decrease in the pH of the medium in which the sperm was 

suspended, by 0.4 of a pH unit, from 8 to 7.6 suggesting the release of acid from the 

spermatozoa. The percent of motile sperm increased to over 80%. The release of acid 

could be divided into two phases; an initial rapid release for 30 seconds was followed 

by a slower rate of release (Rgure. 6.la,a>| and a2 respectively). The latter phase 

involving the slow release of H'*’ was inhibited in the presence of potassium cyanide 

(KCN), (Figure. 6.1b) suggesting that this slow release was associated with 

respiration.
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The efflux of H'*’ was also sensitive to the K'*' concentration in the ASW. When 

Na'*’ (360 mM) was added to spermatozoa suspended in Na'*'-free ASW containing 

160 mM K+ (nomial concentration of K+ in sea water is 10 mM) there was neither an 

efflux of acid nor an increase in percentage motility, in fact motility was inhibited by 

60% compared to the motility of spermatozoa incubated in normal ASW (Rgure. 6.1c). 

On the other hand, in the presence of a high K*** concentration, the concentration of 

Na'*’ remained normal (360 mM), acid release was induced by the addition of the 

Na'*'/H''' exchange ionophore, monensin (50 pM) (Rgure. 6.1c) and this was 

accompanied by an increase in motility to approximately 98%. There was no 

monensin induced H'*’ release in the complete absence of Na*** (Rgure 6.Id), but 

subsequent addition of 360 mM NaCI to the sperm suspension resulted in a decrease 

in the pH 0.3 of a pH unit and an increase in sperm motility to 95%.

6.1.2. Characteristics of Na-*--dependent H-*- Release in Isolated Flagella.

Spermatozoa are propelled forward by their flagella and if acid extrusion plays a 

role in motility then it is very probable H'*’ would be released from isolated flagella. 

The characteristics of the efflux of H*** from isolated flagella are shown in Rgure 6.11 

and are similar to those of intact spermatozoa. There was no decrease in the pH of a 

suspension of isolated flagella suspended in Na'*’-free ASW (Rgure 6.11a). However, 

on addition of 360 mM NaCI the pH decreased by 0.35 of a pH unit. As with intact 

spermatozoa no acid was released by the flagella when placed in ASW containing a 

high concentration of KCI (final concentration 160 mM) (Rgure 6.11b). The pH of the 

flagella suspension remained unchanged in the presence of monensin (50 pM) when 

incubated in ONaASW, but upon the introduction of Na*** to a suspension of isolated 

flagella the pH decreased by 0.3 pH units (Rgure. 6.11c). Thus it seems probable that 

the acid is released from the flagella but release from other regions cannot be ruled
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Figur» 6.1. Characteristics of acid extrusion from intact spermatozoa.

Na (360 mM) Monensin

2 minutes

0.1 pH 
unit

A 250pl aliquot of sperm suspension was added to 5 cm^ of Na+-free ASW 
(ONaASW) or high K*** (160 mM) ASW (KASW) and the pH monitored. At various time 
intervals aliquots were removed for motility assay (mot). When indicated sodium (Na) 
or monensin were added in small aliquots from concentrated stock solutions (pH 8) to 
give final concentrations of 360 mM NaCI and 50 pM monensin respectively. KCN ( 
final concentration: 1 mM), when tested, was added to the ONaASW before the 
addition of spermatozoa.
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Figura 6.11. Characteristics of acid extrusion from isolated flagella.

Na (360 mM) Na (360 mM)

2 minutes

0.1 pH 
unit

A 250 \i\ aliquot of isolated flagella was suspended in 5 cm^ of ONaASW or high K*** 
(160 mM) ASW (KASW) and the pH monitored. At various time intervals aliquots were 
removed for motility assay (mot). When indicated sodium (Na) or monensin were 
added in small quantities from concentrated stock solutions (pH 8) to give final 
concentrations of 360 mM Na+ and 50 pM monensin respectively.
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6.2. Eatimation of liIlULM. illular pH.

6.2.1. Uptake and Hydrolysto of BCECF-AM bv Spermatozoa from Fucus aerratua.

The decrease observed in the pH of the medium when the motility of 

spermatozoa from Fucus serratus increased may well reflect an increase in internal 

pH. In the present studies the fluorescent probe BCECF-AM was used to monitor 

changes in internal pH of sperm from Fucus serratus. BCECF is a pH-sensitive 

fluorescent probe which is taken up by spermatozoa in its acetoxymethylester form 

and hydrolysed to BCECF once inside the cell, which ensures it is trapped within the 

cell.

Suspensions of spermatozoa from Fucus serratus were incubated with BCECF- 

AM (5 pM) for 3 hours and then extensively washed to free them of external probe. 

The fluorescence intensity of spermatozoa loaded with BCECF-AM was then 

measured, over the excitation range 300 600 nm, with emission set at 550 nm. The

results in Figure 6.111 show that the excitation peak of these loaded spermatozoa was 

490 nm, which is characteristic of the free acid hydrolysis product BCECF whereas, 

the excitation peak of the unhydroiysed acetylmethyl ester form of BCECF is 465 nm 

(Fig. 6.III). Therefore, after 3 hours Fucus serratus spermatozoa have taken up 

BCECF-AM and it has become hydrolysed to BCECF. Further evidence that BCECF- 

AM is hydrolysed intracellularly to BCECF was obtained from experiments in which the 

increase in fluorescence intensity was monitored over a period of time (Figure 6.1V). 

The increase normally obsenred was inhibited by lysing the sperm during incubation 

with the detergent Triton X-1CX) (0.1% v/v) or following inactivation of the sperm by 

prior heat treatment (Rgure 6.1V)* The probe did not affect O2 uptake by the 

spermatozoa when compared with control sperm over a period of 5 hours (Figure 

6.V). indicating that there was little or no adverse effect of the BCECF-AM hydrolysis 

products on cellular function.
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Rgura g.lM. Excitation Spectra of spermatozoa incubated with BCECF-AM.

Excitation wavelength nm

Excitation spectra (emission was set at 550 nm) fo r 
a = BCECF- free add (5 pM); 
b =: BCECF-AM (5 pM);
c s  Spermatozoa from Fucus serratus labelled with BCECF-AM (5 pM); 
d =: Autofluorescence of spermatozoa from Fucus serratus.
All the above scans were carried out in ASW. Spermatozoa were incubated with 
BCECF-AM (5 pM) for 3 hours at 10**C, washed three times in ASW to remove 
extracellular dye arid resuspended in ASW before scanning.
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rig. c.xv. Th« Opt«k« and lydrolytit 
fey tpazBatoso*.

of BdCr-All

Washed intact, heat-treated or lysed spermatozoa (1-2 xIO^ spermatozoa/cm^) were 
loaded with BCECF-AM (5pM). At regular intervals samples were removed and 
fluorescence measured as described in Materials and Methods. Results 
expressed as a % of the maximum fluorescence. (n=6).

are
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rig. <.v. Th« lff«et of ICIcr-AII oa tho
Oxygon Optnko and Motility of tpoi itoton.

A. Oxygon Uptnko

Control
-t- BCECF-AM (5^M)

Washed spermatozoa (1-2x10® spermatozoa/cm®) were irxxjbated In ASW containing 
5 pM BCECF-AM at 10®C. At the time points indicated 3 cm® aliquots were removed
and both O2 uptake and motility measured, as described in Materials and Methods 
Values are means ± SD (n=6).
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6.2.2. Measurement of the Intracellular pH of Spermatozoa from Fucus serratuB.

Using the fluorescent indicator BCECF it can be seen that spermatozoa of 

Fucus serratus incubated in ASW at lO ’̂C had an intracellular pH of 8.0 ±0.1 (Fig. 

6.VI). It has already been shown that the ionic composition and pH of ASW affects 

both motility and respiration of these spermatozoa. To investigate whether these 

parameters had an effect on the pHi of spermatozoa this pH was measured at various 

ASW compositions and pH values. The pHi was measured in ASW, ONaASW and 

OCaASW and found to be 0.6 of a pH unit and 0.7 of a pH unit lower in ONaASW 

and OCaASW respectively than in ASW (Table 6.1).

Table 6.1. The effect of the composition of ASW on the pHi of spermatozoa.

Composition of ASW Extracellular pH Intracellular pH

ASW 8.0

ONaASW 8.0

OCaASW 8.0

Values are means ± SO (n = 3).

The pH of ASW was also important in regulating intracellular pH. When 

spermatozoa were diluted in acidic ASW their intracellular pH was also acidic however 

as the pH of ASW was raised from 5.0 -> 8.0 then the pHi increased from 6.1-> 8.0 

(Table 6.11).
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Table 6.11. The effect of extracellular pH on the pHI of spermatozoa. 

Extracellular pH Intracellular pH

5.0 6.1 ± 0.1

6.0 6.9 ± 0.2

7.0 7.3 ± 0.1

8.0 8.0 ± 0.1

Values are means ± SD (n = 3).

As previously mentioned intracellular pH increases in sea urchin sperm 

(Christen, et a!., 1982; 1983) when they are released into sea water and this change 

in pH, which has been associated with ¿perm activation, involves the Na‘*‘/H''‘ pump. 

Thus, it seemed appropriate to investigate the intracellular pH of spermatozoa from 

Fucus serratus incubated in ASW containing either an inhibitor or activator of this 

pump. Figures 6.VII and 6.VIII show the results of typical experiments. In the presence 

of the inhibitor, amiloride (final concentration 50 pM), pHi was lower by 0.3 units 7.7 ± 

0.15 (n=3) than the pHi of spermatozoa suspended in ASW only (Figure 6.VII). 

Conversely, in the presence of the activator monensin (final concentration 0.1 pM) pHi 

increased by 0.8 units to 8.8 ± 0.05 (n=3) compared with the pHi of spermatozoa 

suspended in ASW in its absence (Rgure 6.VIII).

108



F i g .  6 . V Z . Th« Z n t r « e « l l t t l a r  p i  o f  fp«3  
o f  Fucus s « s r « t u s .

ito s o s

pH

Washed spermatozoa (1>2x10^ spermatozoa/cm^) were incubated in ASW containing 
5 pM BCECF-AM for 3 hours at 10*’C. After peHetirig (2 cm^ aliquots) by centrifugation 
(SOOg, 5 min) the spermatozoa were resuspended In 2 cm^ ASW at the indicated pH. 
Ruorescence intensity was measured following excitation at both 490 nm and 465 
nm, (emission was set at 550 nm), before arvd after the addition of 100 pg/cm^ 
digitonin. The differences in fluorescence intensity ratios before and after digitonin 
addition were plotted as a function of external pH.
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rig. c.viz. Th« lff«ct of Aallorld« oa tba Zatraeallalar pi 
of tpozaatoioa.

i

pH

Washed spermatozoa (1-2x10^ spermatozoa/cm^) were incubated in ASW containing 
amiloride (50 pM) at lO^C for 15 minutes. Spermatozoa were then pelleted by 
centrifugation (2000 rpm, 5 min) and resuspended in ASW containing 5 pM BCECF- 
AM and incubated for 3 hours at 10°C. After pelleting the spermatozoa (2 cm^ 
aliquots) by centrifugation (500g, 5 min) the spermatozoa were resuspended in 2 cm^ 
ASW at the indicated pH. Ruorescence inten^ty was measured following excitation at 
490 nm and 465 nm, (emission was set at 550 nm), before and after the addition of 
100 pg/cm^ digitonin. The differences in fluorescence intensity ratios before and after 
digitonin addition were plotted as a function of external pH.
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rig. 6.VZZZ. Th* lff«ct of Nononsin on tbo Zntracollular pH 
of SpoxMtoxoa.

&4

pH

Washed spermatozoa (1-2x10® spermatozoa/cm®) were incubated in ASW containing 
monensin (0.1 pM) at lO^C for 15 minutes. Spermatozoa were then pelleted by 
centrifugation (2000 rpm, 5 min) and resuspended In ASW containing 5 pM BCECF- 
AM and incubated for 3 hours at 10®C. After pelleting the spermatozoa (2 cm® 
aliquots) by centrifugation (500g, 5 min) the spermatozoa were resuspended in 2 cm® 
ASW at the indicated pH. Fluorescence intensity was measured following excitation at 
490 nm and 465 nm, (emission was set at 550 nm), before and after the addition of 
100 pg/cm® digitonin. The differences in fluorescence intensity ratios before and after 
digitonin addition were plotted as a function of external pH.
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6.3. The Effect of pH on the ATPase Activitv of Permeabillzed Spermatozoa.

In sea urchin sperm the activation of motility and respiration correlates with 

increased activity of dynein ATPase which is localised in the axoneme (Christen, et 

al., 1983). It is probable that the ATP produced during respiration of spermatozoa 

from Fucus serratus is used for this activity. The ATPase activity of spermatozoa from 

Fucus serratus was estimated in sperm permeabilized with Triton X-100 (0.04% v/v) 

using the coupled assay of Gibbons and colleagues (1978) described in the Materials 

and Methods section. As shown in Figure 6.IX the ATPase activity of spermatozoa 

increased greatly when the pH of the incubating media was increased from 7.0 to 8.4 

and the results show that the transition in activity occurs over a few tenths of a pH 

unit. Other ATPases, e.g. mitochondrial ATPase and Na'*‘/K'*‘ ATPase may also be 

present in these spermatozoa and contributing to the ATPase activity shown in Figure 

6.IX. In order to ascertain the activities of individual ATPases assays were performed 

in the presence of known inhibitors of each one. The addition of oligomycin (1 pM) to 

the spermatozoa incubated at 10**C had no effect on the ATPase activity, indicating 

that mitochondrial ATPase was not contributing to the activity measured (Figure 6.IX). 

However the addition of vanadate (10 pM), an inhibitor of dynein ATPase, (Gibbons, 

et al, 1978; Okuno, 1980; Okuno and Brokaw, 1981) eliminated nearly all ATPase 

activity (Figure 6.IX).

The addition of the Na'̂ '/K'*' ATPase pump inhibitor ouabain (1 mM) resulted in 

less than 10% inhibition of ATPase activity, indicating that ATPase activity was 

primarily due to dynein ATPase (Figure 6.X).
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F ig . C.ZX. fh%  l f f « e t  o f  p i  OB tho IT taao  l e t l T i t j  o f  fp o tM to to *  X.

After permeabilization with 0.04% Triton X-100, spermatozoa were diluted into media 
of different pH and assayed for ATPase activity, as described in Materials and 
Methods, in the presence of oligomydn and varuidate.

113



rig. (.X. Th« lff«ct of pi oa th« ATPato XetlTlty of Iponutoso* ZZ.

After permeabilization with 0.04% Triton X-100, spermatozoa were diluted into media 
of different pH and assayed for ATPase activity, as described in Materials and 
Methods, in the presence of ouabain.
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In order to determine whether dynein ATPase is directly linked to respiratory 

activity this enzyme was inactivated using the inhibitor vanadate. When added to a 

suspension of spermatozoa, vanadate inhibited respiration in the presence or 

absence of the respiration uncoupler FCCP and the inhibited rate of respiration was 

the same in both coupled and uncoupled sperm, see Table 6.III.

Table 6.III. The effect of vanadate on the O2 uptake of spermatozoa.

Conditions

ASW

ASW + vanadate 
1 pM 

10 pM 
100 pM

Mean O2 uptake
nmoles 02 /min/IO® spermatozoa 
-FCCP +FCCP

42.01 ± 4.44

17.39 ±2 .14*** 
11.16±1.13*** 
3.97 ±1.63 ***

18.15 ±2.47 
11.77±1.34 
4.82 ±0.88

Values are means ± SO (n = 6). 
*** P<0.001.

Thus, it appears that either respiration, even when it is uncoupled, requires a 

functional dynein ATPase activity or vanadate interferes directly with the respiratory 

chain.
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6.4. The Respiratory Chain.

Oxidative phosphorylation is carried out by respiratory assemblies, as shown 

below, that are located in the inner membrane of mitochondria. Several inhibitors 

block the transfer of electrons through this transport chain, including rotenone, 

antimycin A and potassium cyanide.

NADH => NADH-Q 
reductase

SITE I

QH-cyt.c ctc.c cyt. O2 

reductase oxidase

SITE II SITE III

Rotenone, a plant toxin, specifically inhibits electron transfer within the NADH-Q 

reductase complex, (site I), antimycin A, an antibiotic isolated from Streptomyces 

gríseas, blocks electron flow between cytochromes b and c i (site II) and potassium 

cyanide inhibits the transfer of electrons from cytochrome c to  molecular oxygen, (site 

III).

The effect of these inhibitors on the O2 uptake of spermatozoa from Fucus 

serratas, was investigated. Addition of spermatozoa (final concentration of 2 x 108 

spermatozoa/cm3) to artificial sea water (ASW) resulted in a rapid decrease in oxygen 

levels in the ASW over the first 3 minutes (Fig. 6.XI). This initial rapid decline was 

followed by a slower but steady decline in oxygen (Fig. 6.Xla). The addition of 

rotenone or antimycin A and/ or potassium cyanide to a suspension of spermatozoa 

inhibited this O2 uptake (Fig. 6.Xlb). This inhibition of respiration caused by antimycin 

A was reversed by the addition of trimethyl-p-phenylene diamine (TMPD), an artificial 

electron donor which can supply electrons to cytochrome c, (Fig. 6.Xlc), confirming 

that antimycin A was inhibiting electron transport in this system. This suggests that 

respiration of Facas serratas spermatozoa involves electron transport through a

116



mitochondrial respiratory chain similar to that documented for mammalian and sea 

urchin spermatozoa.

The respiration of spermatozoa from Fucus serratus was also inhibited by 

oligomycin and this was reversed by 2, 4-dinitrophenol (DNP) (Rgure G.XIIa). As DNP 

is an uncoupler of oxidative phosphorylation these results suggest that electron 

transport in the spermatozoa is coupled with the phosphorylation of ADP.

The rate of respiration in dense suspensions of spermatozoa, (Fig. 6.Xllla 1) 

was lower than that in diluted suspensions. (Fig. G.XIIIb 1). On the addition of DNP to 

dense suspensions of sperm (3 x 108 spermatozoa/cm^) the rate of respiration was 

enhanced by 40 ± 5% (Figs. O.XIIIa 1 & 2), whereas the addition of DNP to dilute 

suspensions of spermatozoa (2 x 10^  spermatozoa/cm^) only resulted in a 

enhancement of the respiratory rate by 8.5 ± 1.2% (Fig. G.XIIIb 1 & 2). The 

spermatozoa in these experiments were also examined under a microscope, 90% of 

the spermatozoa were motile and were swimming vigorously.
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The effect o f rotenone. antimydn A and cyanide on the respiration of 
spermatozoa of Fucus serratus.

Changes in oxygen levels in suspensions of spermatozoa of Fucus serratus in the 
presence of various inhibitors.
i  indicates sperm addition (final concentration was 2 x 10^  spermatozoa/cm^). 
i  indicates the addition of (1) rotenone (Rot, final concentration: 50pM).

(2) antimydn A (AMA, final concentration of 0.1 pM).
(3) potassium cyanide (KCN. final concentration of 0.1 mM).
(4) TMPD ( final concentration of SOpM).

The figures in brackets are respiration rates expressed as nmole 02 /min/IO^ 
spermatozoa. Traces shown in the figure are the average derived from the results of 
at least five experiments.

118



R y u f  The effect of oiigomycin and DNP on the respiration of spermatozoa of 
Fucus serratus.

Change in oxygen levels in spermatozoa in the presence of oiigomycin and an 
uncoupling agent.

li indicates sperm addition (final concentration; 2x10^  spermatozoa/cm^). 
i  indicates the addition of (1) oiigomycin (final concentration: 50pM).

(2) 2 ,4<dinitrophenol (DNP. final concentration: 50pM).
The figures in brackets are respiration rates expressed as nmole 02/min/IO^ 
spermatozoa. Traces shown in this figure are the average of at least five experiments.
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Fiyura ftm ii. The effect of DNP on the respiration rates of densely packed and dilute 
suspensions of spermatozoa.

Fig. e.XIa Dense Spermatozoa

Fig. e.Xlb Diluted Spermatozoa

Change in oxygen levels in sperm suspensions in the presence of DNP.
Figure 6.Xla and 6.Xlb shows the O2 decrease in dense and diluted sperm 
suspensions respectively.
U indicates the addition of spermatozoa (final concentration: dense suspensions 3 

xIO ^ spermatozoa/cm^; diluted suspensions 2 x 10^ spermatozoa/cm^). DNP (final 
concentration: 50pl) was added to the sperm suspension from the start of the run.
The figures in brackets are respiration rates expressed as nmole O2/m in/10^ 
spermatozoa. Traces shown in the figure are the average derived from the results of 
at least five experiments.
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Many systems involved In sperm motility require ATP and this energy- 

dependence in spermatozoa from Fucus serratus was tested by measuring the 

percentage of motile sperm after incubation with an inhibitor of oxidative 

phosphorylation, antimycin A. This inhibitor rapidly causes depletion of active sea 

urchin sperm ATP levels (Christen, et al., 1983). Spermatozoa from Fucus serratus 

were incubated in ASW with or without antimycin A (2 pM).

Table 6.1V. The effect of ATP depletion on motility.

Additions to ASW Percent of Motile 
Spermatozoa

antimycin A

8 5 ± 4  

33 ± 0.5 ***

Values are means ± SD (n=10). 
*** P<0.001.

Table 6.1V shows that after depletion of intracellular ATP the percentage of 

motile spermatozoa was significantly reduced (61%).
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6.5. Second Messengers.

6.5.1. Adenosine 3'.S‘-cycllc Monophosphate.

A regulatory role of adenosine 3',5'-cyclic monophosphate (cAMP) on axonemal 

motility has been demonstrated with reactivated mammalian sperm models 

(Lindemann, 1978; Mohri and Yanagimachi, 1980). Cyclic nucleotides have also been 

shown to play a role in regulating the motility of mature mammalian spermatozoa 

(Hoskins and Casillas, 1975). For example, the addition of either cAMP 

phosphodiesterase inhibitors or dibutyryl cAMP (dbcAMP) to bovine epididymal 

spermatozoa (Hoskins and Casillas, 1975) and human ejaculated spermatozoa 

(Schoenfield, eta/., 1973) have been shown to stimulate their motility.

6.5.1.1. The Effect of Phosphodiesterase InhibHors.

The addition of 6 mM caffeine, a cAMP phosphodiesterase inhibitor 

(Schoenfield, et a i, 1973), to spermatozoa from Fucus serratus increases motility 

from 85 ± 3.0% to > 98 ± 0.5% (n=6). The results in Figure 6.XIV show that the 

presence of caffeine in the incubating ASW not only stimulates motility but also 

enables spermatozoa to maintain this activated level of motion over a period of 3 

hours, whereas in the absence of caffeine sperm motility falls to 25 ± 6.0% over the 

same time period. Caffeine (6 mM) also stimulates the respiration rate of 

spermatozoa. O2 uptake increased significantly (P<0.001) from 46.35 ± 1.88 to 84.95 

± 3.50 nmoles 02/mln/IO® spermatozoa (n = 6) after a 15 minute incubation period.
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Pig. 6.XIV. Th« Ifftet of C«ff«ln« on th« Motility of Sporaatoso«.

Time (h)

Washed spermatozoa (1-2x10^ spermatozoa/cm^) were incubated at lO^C in ASW 
containing 6 mM caffeine. At the indicated time intentais 10 pi samples were removed 
and motility was quantified by videomicroscopy. The values are means ± SD (n=6).
*** P<0.001

123



4« ^  V. '»Of»*

Another cAMP phosphodiesterase Inhibitor, theophylline has been shown to 

Induce vigorous motility when added to epididymal bovine spermatozoa (Hoskins, et 

al., 1974). Spermatozoa of Fucus serratus were incubated in ASW containing various 

concentrations of theophylline for 10 minutes then examined microscopically to 

measure motility. The results are shown In Table 6.V.

Table 6.V. The effect of theophylline on the motility of spermatozoa.

Concentration of theophylline Percent of Motile
(mM) Spermatozoa

10

20

40

50

81 ± 2.5

89 ±1 .0

93 ±1 .0

96 ±1.5

99 ±1.0

Values are means ± SD ( n = 10).

At a concentration of 50 mM, theophylline almost all of the cells are motile. 

Theophylline also stimulates O2 uptake in spermatozoa of Fucus serratus at all 

concentrations studied with the peak stimulation of 140% occurring after incubating 

spermatozoa for 15 minutes In the presence of 50 mM theophylline (Fig. 6.XV). Even 

at lower concentrations of theophylline, for example 20 mM a significant increase 

(48%) in O2 uptake over the same time is obsenred.
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rig. i.XV. Th« lff«et of Thoophyllino on tbo Oxygon nptnko of Spornotoioo.

Washed spermatozoa (1-2x10^ spermatozoa/cm^) were incubated at 1 0 X  in ASW 
for 15 minutes with the indicated amounts of theophyliine. O2 uptake was measured 
as described in “Materiais and Methods". The values are means ± SD (nslO).
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6.5.1.2. The Effect o f D lbutyryl cAMP.

Cells are unable to take up exogenous cAMP but the cAMP analogue dibutyryl 

cAMP (dbcAMP) can cross the plasma membrane. The addition of dbcAMP to 

spermatozoa of Fucus serratus enhanced their motility. When 5 mM dbcAMP was 

included in the ASW the percentage motility of spermatozoa increased from 85 ± 

2.0% to 99 ± 0.5% (n=6). Thus dbcAMP increases the amount of motile spermatozoa 

by approximately 15%. As previously shown (Table 4.11) the motility of spermatozoa is 

strongly dependent on extracellular pH. The effect of dbcAMP on the percent of motile 

sperm was determined over a narrow pH range. The results are given in Table 6.VI 

and Figure 6.XVI.

Table 6.VI. The effect of pH on the motility of spemnatozoa.

pH Percent of Motile Spermatozoa

6.0 30 ±2.0

6.4 37 ±5.0

6.8 42 ± 2.0

7.2 52 ± 2.0

7.6 69 ±1.0

8.0 87 ± 3.0

8.4 80 ±4.0

8.8 55 ±5.0

9.2 31 ±3.0

Values are means ± SD (n = 10).
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The percent of motile spermatozoa is optimum at pH 8.0 and is substantially 

reduced when the extracellular pH is below 7.0.

The results in Figure 6.XVI show the striking change in the relationship between 

motility and pH when sperm were stimulated with 5 mM dbcAMP. Spermatozoa 

incubated in ASW at the lower pH range (6 7.5) exhibited greatly enhanced motility

in the presence of dbcAMP. At pH 6.0 motility was stimulated by 110% but as the pH 

of the ASW was increased towards the optimum of pH 8.0 the extent of stimulation 

decreased to only 16%.

The addition of dbcAMP to suspensions of spermatozoa also resulted in an 

increase in the rate of respiration. The results in Figure 6.XVII show that in the 

presence of 5 mM dbcAMP (pH 8.0) O2 uptake increased significantly (P<0.001) by 

117% from 46.35 ± 2.88 to 100.46 ± 4.94 nmoles 02/mln/IO® spermatozoa. Even at 

the relatively low concentration (0.1 mM) of dbcAMP O2 uptake increased by 25% 

from 46.35 ± 2.88 to 58.14 ± 2.35 nmoles 02 /min/IO® spermatozoa and this 

stimulation occurs almost immediately. The addition of 5 mM dbcAMP to a suspension 

of spermatozoa which had been incubated for 2 minutes produced an immediate rise 

in O2 uptake from 14.31 ± 2.56 to 22.56 ± 1.26 nmoles 02/min/IO^ spermatozoa 

(58% stimulation).

6.5.1.3. The Effect of Forskoiin.

Forskolin has been shown to activate the motility of mammalian spermatozoa 

and it seems to employ cAMP as a second messenger (Garbers and Kopf, 1980; 

Tash and Means, 1982a & b; Brokaw, 1987). The addition of varying concentrations 

of this agent to a suspension of spermatozoa from Fucus serratus resulted in an 

elevation of O2 uptake (Figure 6.XVIII). 100 pM, forskolin increased O2 uptake from 

45.18 ± 2.22 to 103.74 ± 2.22 nmoles 02/min/IO® spermatozoa.
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The results of these experiments with inhibitors of phosphodiesterase, cAMP 

analogues and other agents which affect cAMP levels demonstrate that the nK)tility 

and respiration of spermatozoa from Fucus serratus can be influenced by modulators 

of the adenylate cyclase/cAMP second messenger system, thus implying a role for 

that system in sperm motility. Additionally, other second messenger systems may also 

be involved.
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6.5.2. The Presence of Protein Kinase C In  Spermatozoa.

Calcium-dependent protein kinase C is activated by the second messenger 

diacylglycérol (De Jonge, et al., 1991). Phorbol diesters are compounds that stimulate 

protein kinase C in vivo and in vitro (Castatagna, et al., 1982), and the present 

experiments were performed using phorbol 12-myristate 13 acetate (PMA).

In preliminary experiments (n = 3) when 100 pM PMA, a concentration based on 

data for somatic cells (Castagna, et al., 1982), was added to spermatozoa, no 

significant effect on O2 uptake was observed although slight inhibition of sperm 

motility (10%) occurred. As these results were inconclusive lower concentrations of 

PMA were tested. Results in Figure 6.XIX show that when spermatozoa were 

incubated for 10 minutes in the presence of 1 nM PMA, a significant (P<0.001) 

increase in O2 uptake (370%) occurred in comparison with untreated controls. PMA, 

at the same concentration also stimulated the percent of motile spermatozoa by 12% 

(from 81 ± 2% to 91 ± 1%), when compared with untreated controls. In other systems 

protein kinase C is dependent on Câ *** for activity but PMA slightly stimulated O2 

uptake and motility of spermatozoa even when they were suspended in OCaASW. 

Upon the addition of PMA (1 nM), O2 uptake rose from 15.78 ± 1.70 to 19.98 ± 2.35 

nmoles 02 /min/IO® spermatozoa (n=10) and motility increased by 15%, from 84 ± 1% 

to 97 ± 1% (n=10). Rink and colleagues (1983) have reported PKC mediated 

reactions in human platelets, which were stimulated by phorbol diesters but were 

Ca2+-independent. The above results show that both Ca2+-dependent and Ca2+- 

independent PKC mediated reactions may be involved in the activation of 

spermatozoa from Fucus serratus.

To confirm this stimulatory effect of PMA on O2 uptake an additional phorbol 

diester, 4 p-phorbol 12, 13 didecanoate (^PDD), was tested for its effect on O2
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rig. C.ZXZ. Th* lff«et of PIU oa tho Oxygon Uptoko of Sporaatoioo.
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Washed spermatozoa (1-2x10^ spermatozoa/cm^) were incubated at lO^C in ASW 
for 15 minutes with the indicated amounts of PMA. O2 uptake was measured as 
described in "Materials and Methods". The values are means ± SD (n=10).
***P<0.001
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Tabte 6.VII. The effect of p-PDD on the O2 uptake of spermatozoa.

Concentration of ^PDD 
nM

O2 uptake
nmoles 02/min/IO^ spermatozoa

0 44.29 ±2.06

0.1 92.18 ±5.29***

1 162.31 ±4.64 ***

10 117.15 ±2.47 ***

Values are means ± SD (n = 6). 
*** P<0.001.

The results in Table 6.VII show that 1 nM p-PDD stimulates O2 uptake by 266%.

To further establish whether protein kinase C plays a role in the activation of 

sperm motility and respiration an inhibitor of protein kinase C, 1-(5- 

isoquinolinyisulfonyl)-2-methylpiperazine (H-7) (Rotem, et al., 1990a), was tested for 

its effect on motility and respiration of spermatozoa incubated in ASW (Figure 6.XX 

and Table 6.VIII).
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Table 6.VIII. The effect of H-7 on the motility of spermatozoa.

Concentration of H-7 Percent of Motile Spermatozoa 
pg/cm^

0 84 ± 2.5

5 73 ± 5.0

10 60 ±4.9

15 37 ±5.9

20 24 ± 5.5

30 19±1.5

Values are means ± SD (n = 6). 
** P<0.01.

*** P<0.001.

It can be seen from Table 6.VIII that the motility of spermatozoa incubated in 

ASW was inhibited by H-7 and the greatest degree of inhibition (77%), that was 

observed, occurred at 30 pg/cm^. At a level of 30pg/cm^, H-7 also inhibited the O2 

uptake of spermatozoa suspended in ASW (88%) (Figure 6.XX).

As H-7 is an inhibitor of PKC it seemed appropriate to investigate whether this 

compound inhibited motility and respiration after the spermatozoa were stimulated 

with the phorbol diester PMA. A suspension of spermatozoa were incubated with H-7 

(20 ug/cm^) for 10 minutes, then PMA, at a final concentration of 1 nM, was added 

and the suspension incubated for a further 10 minutes after which time motility and 

O2 uptake were measured (Table 6.IX).
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Tabla 6.IX. The effect of H-7 on PMA stimulated spermatozoa 

Conditions Percent of Motile 
Spermatozoa

ASW 
+ PMA 
+ PMA & H-7

84 ±2.5  
99 ± 1.0 
28 ±1.5  ***

O2 uptake
nmoles 02 /mln/IO® sperm

44.24 ± 3.06 
125.06 ±3 .57*** 

7.64 ± 2.35 ***

Values are means ± SD (n=10) 
*** P<0.001

The results in the above table show that H-7 inhibits both motility and respiration 

of spermatozoa even In the presence of an activator of PKC, PMA, which had 

previously been shown to stimulate both the motility and respiration of spermatozoa of 

Fucus serratus and the degree of inhibition was as great as when H-7 alone was 

added to spermatozoa.

In conclusion, it would appear that PKC is the target for stimulation by PMA and 

inhibition by H-7 and that PKC may play a role in the enhancement of motility and 

respiration of Fucus serratus spermatozoa.
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rig. C.ZZ. Tb« lff«et of 1-7 on tho Oxygon Uptoko of fpornotoioo

Concentration of H-7 (^g/ml)

Washed spermatozoa (1-2x10^ spermatozoa/cm^) were incubated at 1 0X  in ASW 
for 15 minutes with the indicated amounts of H-7. O2 uptake was measured as 
described in "Materiais and Methods". The values are means ± SD (nsio).
***P<0.001
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6.5.3. External Calcium,

As already demonstrated calcium is an ion that appears to play a critical role in 

initiating sperm motility. Spermatozoa incubated in ASW minus Câ *** (OCaASW) have 

70% fewer motile sperm and an O2 uptake 67% lower than spermatozoa incubated in 

ASW (Table 4.III). The re-introduction of calcium into the ASW results in an increase 

in both the motility and O2 uptake of these spermatozoa. Ca^*** (10 mM) stimulates 

sperm motility by 89% and O2 uptake by 89%.

6.5.4. Intracellular Calcium.

As exogenous calcium stimulates O2 uptake and motility in spermatozoa of 

Fucus serratus, it seemed that changes in intracellular free calcium concentration 

might play a role in the initiation of sperm motility.

6.5.4.I. Thft Eifgfit Of EG IA.

Unbound Câ *** in a cell can be decreased to nanomoiar concentrations by 

introducing a Ca^'*’ specific chelator such as EGTA. Therefore, any processes 

mediated by a rise in the cytosolic level of Ca^'*', such as has been postulated for the 

initiation of motility in spermatozoa should be blocked with such a chelator. The 

addition of varying concentrations of EGTA to suspensions of spermatozoa resulted in 

the inhibition of both motility and respiration. The results in Table 6.X show that 10 

mM EGTA inhibited O2 uptake by 70% from 42.98 ± 2.31 to 12.96 ± 2.04 nmoles 

O2/m in/10^  spermatozoa and motile spermatozoa by 82%. Even lower concentrations 

of EGTA caused substantial inhibition; 0.1 mM inhibited O2 uptake by 26% and sperm 

motility by 61%.

139



Table 6.x. The effect of EGTA on the motility and O2 uptake of spermatozoa.

Concentration of EGTA Percent of Motile Mean O2 Uptake
mM Spemiatozoa nmoles 02 /m in/IO^ sperm

0 94 ±2.3 42.98 ± 2.31

0.01 75 ±2.1 *** 33.05 ± 3.72

0.1 37 ±4.9  *** 32.01 ± 2.86

1 28 ± 4.0 *** 24.19 ±2.56

10 17 ±1.4  *** 12.96 ±2.04

Values are means ± SD (n = 10). 
*** P<0.001.

The respiration rate of spermatozoa from Fucus serratus incubated in OCaASW 

in the presence of 10 mM EGTA was very low [3.07 ± 1.42 nmoles 02/min/IO® 

spermatozoa (n = 6)] and almost all the sperm were immotile [<2 ± 1% motility (n = 

6)]. After centrifugation (600 x g for 10 minutes) to remove excess EGTA, the 

spermatozoa were resuspended in normal ASW and their O2 uptake measured, upon 

the re-introduction of Ca^'*’ the O2 uptake of these spermatozoa increased by 188% 

to 8.86 ± 1.90 nmoles 02/min/IO® spermatozoa (n = 5) and the percent of motile 

sperm increased by 700% to 16 ± 1.4% (n = 5). Although, following the re-introduction 

of Ca^'*' to sperm after their incubation with EGTA, both O2 uptake and the percent of 

motile spermatozoa rise the levels do not achieve that seen when spermatozoa are 

incubated in ASW in the absence of EGTA. This implies that, at the concentration 

added, EGTA is still capable of chelating some of Ca^'*’ added to the spermatozoa.

These results indicate that Ca^'*' affects both respiration and motility in 

spermatozoa of Fucus serratus and may play a role in the initiation of both these 

parameters when these spermatozoa are released into sea water.
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6.S.4.2. The Effect of the Ca^-»- lonoDhore A2318L

Spermatozoa are insensitive to hormones and physiological agents, known to 

affect calcium fluxes in other cells (Hoskins and Casillas, 1975; Garbers and Kopf, 

1980). The only way known to increase intracellular calcium levels in mammalian 

spermatozoa is through the effect of the calcium ionophore, A23187 (Reed and 

Lardy, 1972; Vijayaraghavan and Hoskins, 1989). As the previous results with 

free ASW, EGTA and verapamil (see chapter 5) indicate that the intracellular 

concentration of Ca^'*' may play a vital role in the onset of motility and respiration of 

spermatozoa of Fucus serratus, these parameters were measured in the presence of 

the ionophore, A23187. Spermatozoa, suspended in ASW, CX^aASW and ONaASW, 

were incubated in the presence of A23187, at a final concentration of 10 pM, which 

had been shown to activate Fucus eggs (Brawley and Bell, 1987), for 10 minutes after 

which time samples were removed and both percentage motility and O2 uptake were 

measured, the results are shown in Table 6.XI.

Table 6.XI. The effect of A23187 on the motility and O2 uptake of spermatozoa.

Conditions Percent of Motile Mean O2 Uptake
Spermatozoa nmoles 02 /m in/IO^ sperm

ASW 84.0 ±1.4 41.55 ±2.37
+ A23187 99.0 ±0.8 *** 80.77 ±1.77 ***

OCaASW 23.0 ± 2.6 15.37 ±1.54
+ A23187 28.0 ±2.9 18.25 ±1.79

ONaASW 1.0 ±0.9 8.12 ±0.58
+ A23187 87.0 ±6.2*** 25.00 ± 2.61

Values are means ± SD (n=10)
P<0.001.
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The presence of the calcium ionophore stimulated both motility and O2 uptake 

of spermatozoa suspended in all three types of sea water however, the degree of 

stimulation differed. The O2 uptake of spermatozoa suspended in ASW was 

enhanced by 94% and these spermatozoa had virtually 100% motility. When added to 

spermatozoa suspended in OCaASW, A23187 did not significantly increase O2 

uptake nor sperm motility. At a concentration of 10 pM, A23187 stimulated the O2 

uptake of spermatozoa, suspended in ONaASW, by 208% and the percent of motile 

spermatozoa increased to a level equal to that seen in spermatozoa suspended in 

ASW.

These data demonstrate that spermatozoa were sensitive to the calcium 

ionophore, A23187. The reduced response to A23187 by spermatozoa suspended in 

ASW compared to spermatozoa suspended in ONaASW may be due to the presence 

of a Na'*‘/Ca2'*‘ antiporter, which exchanges intracellular Ca^'*’ for extracellular Na'*', 

this exchange would be eliminated in Na'*'-free ASW.

6.S.4.3. Measuring Intracellular Calcium.

The introduction of fluorophores, for example Quin-2 and Fura-2, to quantitate 

intracellular free calcium levels has made studying the effects of intracellular calcium 

feasible in several somatic cells (Tsien, 1980; 1981; Tsien, et al., 1982; Rink and 

Pozzan, 1985). These fluorophores have also been used to measure the 

concentration of intracellular free calcium in bovine epididymal spermatozoa 

(Vijayaraghavan and Hoskins, 1989), and in sea urchin spermatozoa (Trimmer, et al.,

1986). Fura-2 is available as a membrane-permeable acetoxymethylester (Fura-2-AM) 

in which form it readily crosses the plasma membrane and enters the cytoplasm, 

where it is hydrolysed by intracellular esterases to the parent free acid (Fura-2), see 

Rgure 6.XXI. This acid form is membrane impermeable and thus becomes trapped

142



within the cytoplasm and can be used for the direct measurement of intracellular free 

calcium concentrations [Ca^***]! (Mazorow and Millar, 1990). The fluorescent properties 

of Fura-2 are such that the ratio of fluorescence intensity at excitation values of 350 

and 385 nm, with emission set at 500 nm, is Ca *̂** dependent (Grynkiewicz, et al., 

1985).

6.S.4.4. nuorescence Microscopy.

The uptake of Fura-2-AM was visualised using a Zenith fluorescence 

microscope, as described in Materials and Methods. The photographs in Figure 6.XXII 

show that Fura-2-AM was taken up into the body of the spermatozoa of Fucus 

serratus.
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Figure gJ«L Structures of Fura-2-AM and Fura-2.
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6.5.4.S. Uptake and Hydrolysis of Fura-2.

Suspensions of Fucus serratus spermatozoa were incubated with Fura-2-AM 

(2 pM), for 3 hours and then extensively washed to free them of external probe. The 

fluorescence intensity of incubated spermatozoa was then measured over the 

excitation range 300 500 nm, with the emission wavelength set at 500 nm. The

resultant spectra are shown in Rgure 6.XXIII and these show that the excitation peak 

of spermatozoa loaded with Fura-2-AM was 340 nm, which is characteristic of the free 

acid hydrolysis product Fura-2 (Qrynkiewicz, etal., 1985) whereas, the excitation peak 

of the unhydrolysed acetyl methylester form of Fura-2 is 385 nm (Fig. 6.XXIII). Thus, 

it is apparent that Fucus serratus spermatozoa have succeeded in accumulating Fura- 

2-AM, de-esterifying it to Fura-2, and retaining Fura-2 inside the cell.
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F\aun  6.XXIII. Excitation spectra of spermatozoa incubated with Fura-2-AM.

wavelength (nm)

Excitation spectra (emission was set at 500 nm) for: 
a = Fura-2 (2 pM); 
b = Fura-2-AM (2 pM);
c = Spermatozoa from Fucus serratus loaded with Fura-2*AM (2 pM); 
d = Autofluorescence of spermatozoa from Fucus senatus.
All the above scans were carried out in ASW. Spermatozoa were incubated with Fura- 
2-AM (2 pM) for 3 hours at 4**C, washed three times in ASW to remove extracellular 
dye and resuspended in ASW before scanning.
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In order to determine whether Fura-2 had any toxic effects, suspensions of 

spermatozoa were loaded with Fura-2-AM (3 pM) and incubated for 4 hours. Samples 

were removed at regular intervals and assessed for both O2 uptake and motility. The 

results in Figure 6.XXIV show that over a period of 3 hours O2 uptake and the number 

of motile spemi decreased by 22% and 18% respectively compared with the 16% and 

13% respective decreases observed in untreated controls. It would appear, therefore, 

that at this concentration Fura-2 has little toxic effect on spermatozoa of Fucus 

serratus.
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Suspensions of spermatozoa loaded with or without Fura-2-AM (3 pM) were incubated 
for 4 hours at lO^C. Samples were removed at regular inten/als and assessed for both 
O2 uptake and motility as described in the Materials and Methods section. Values are 
means (n=6).
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e.5.4.6. Tha Effact o f Extracellular on the Concentration o f Intracellu lar

The intracellular free Ca2+ concentration (ICa2+]i) of Fucus serratus 

spermatozoa was measured as described in Materiais and Methods and typicai 

excitation spectra of spermatozoa loaded with Fura-2-AM are shown in Figure 6.XXV. 

The [Ca^‘'’]i of these spermatozoa was calculated according to the equation of 

Qrynkiewicz and colleagues (1985), and a detailed calculation can been seen in 

appendix 1. The [Ca^**']i of Fucus serratus spermatozoa incubated in ASW was 

96.36 ± 1.20 nM (n = 6) however, when spermatozoa were suspended in OCaASW 

the [Ca2'*']i decreased to 83.60 ± 1.55 nM (n = 5), Rgure 6 .XXVI shows typicai 

spectra for spermatozoa incubated in OCaASW.

The effect of extracellular Ca *̂** concentration on free intracellular Ca^'*’ 

concentration of spermatozoa is shown in Table 6.XII.

Table 6JCII. The effect of external Ca^'*' on the [Ca^'*']i as measured using the 
fluorescent probe Fura-2-AM.

Concentration of Extracellular Ca^+ Concentration of Free Intraceiiuiar Ca^+
mM nM

0 83.60 ±1.55

2 87.14 ±2.00

5 89.30 ±1.50

10 96.36 ±1.20

15 98.88 ±3.56

20 94.00 ±2.86

Vaiues are means ± SD (n = 3).
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The results show that when the external concentration of Ca^'*' was increased 

from 0 to 10 mM the intracellular free Ca^'*' concentration of spermatozoa rose by 

13%, indicating that external Ca2+ enters the cell probably through a Ca2+ channel. 

Attempts were made to measure [Ca^'*’]! in the presence of verapamil, an inhibitor of 

voltage-dependent calcium channels, but it unfortunately interfered with the 

fluorescence signal.

6.S.4.7. The Effect of External p H on the Concentration of Intracellular Ca^* .

As the pH of the sea water into which Fucus serratus spermatozoa are released, 

plays an important part in the initiation of their motility and respiration, it seemed 

appropriate to examine whether the external pH had any affect on the concentration 

of intracellular free Ca^'*' in these spermatozoa. The results are shown in Table 6.XIII.

Table 6JCIII. The effect of external pH on the as measured using the
fluorescent probe Fura-2-AM.

External pH Concentration of Free Intracellular Ca *̂** 
nM

10.0

63.00 ± 2.50 

80.70 ±1.88

95.5011.00 

84.45 1  2.10 

79.1511.20

Values are means 1 SD ( n=3).
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The results show that when the external pH of the ASW was acidic (pH 6.0), the 

[Ca2'*’]i of Fucus serratus spermatozoa was 34% lower than the [Ca^'*’]i of 

spermatozoa incubated in ASW at pH 8.0. Also, as the pH of the ASW was raised 

above 8.0, the [Ca^'*’]i decreased. Thus, it would appear that the pH of the sea water 

into which these spermatozoa are released affects the intracellular concentration of 

Ca2+.
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Figura 6.XXV. Typical Excitation Spectra for Spermatozoa suspended in ASW.

F min

Excitation wavelength nm

Typical excitation spectra (emission was set at 500 nm) for Fucus serratus sperm 
suwension incubated in ASW, in the presence of Fura-2-AM. The intracellular free 

concentration was calculated as described in the Materials and Methods 
section.
Fmin » EQTA -f manganese 
F = ASW
Pmax » + Bromo A23187 + Ca2+.
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Figure 6 J(XVI. Typical Excitation Spectra for Spermatozoa suspended in OCaASW.

Excitation wavelength nm

Typical excitation spectra (emission was set at 500 nm) for Fucus serratus sperm 
suspension incubated in OCaASW. The intracellular free Ca *̂** concentration was 
calculated as described in the Materials and Methods section.
Fmin = *  EQTA & manganese 
F > OCaASW
^max = + Bromo A23187 & Ca2+.
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6.S.4.8. The Effect of Morwnsin and Ouabain on the Concentration of intracellular 
Calcium.

A rise in intracellular pH has been shown to play a role in the initiation of both 

motility and respiration in the spermatozoa of Fucus serratus. The increase in pHi is 

thought to be brought about through Na'*'/H'*' countermovements and this study has 

shown that monensin, an activator of the Na'̂ /H'*’ exchanger, increases the pHi in 

spermatozoa of Fucus serratus (see section 6.2.2.). The addition of monensin to sea 

urchin spermatozoa resulted in not only an elevation of pHi but an increase in [Ca2'*‘]i 

as well (Harumi, et al., 1992) These authors concluded that an elevation of pHi, due to 

Na’̂ '/H'*’ exchange through the plasma membrane may cause [Ca^'*’]i to increase.

In order to examine whether monensin had any affect on the [Ca^''’]i in 

spermatozoa of Fucus serratus suspensions of spermatozoa (1x10^ sperm/cm^) were 

incubated at lO^C for 15 minutes in the presence of monensin (0.1 pM). 

Spermatozoa, pelleted by centrifugation, were resuspended in 0.5 cm^ OCaASW and 

loaded with Fura-2-AM as described in Materials and Methods. Figure 6.XXVII shows 

typical excitation spectra of spermatozoa incubated with monensin and loaded with 

Fura-2-AM and the free intracellular Ca *̂** concentration was calculated using the 

equation described in Materials and Methods. The [Ca '̂**]! of spermatozoa stimulated 

with monensin was found to be 170 ± 6.75 nM (n=6), a 103% increase in [Ca^+ji 

when compared with spermatozoa incubated in OCaASW without monensin.

The Na'*'/H''' exchanger is driven by the transmembrane Ma'** gradient which in 

turn is generated by Na'*‘/K'*' ATPase. Thus, if a rise in pHi, brought about through 

Na'*'/H'*' exchange, plays a role in stimulating [Ca^'*’]i, then ouabain, an inhibitor of 

Na'*'/K''' ATPase, may cause a decrease in [Ca2'*’]i. Suspensions of spermatozoa 

(1x10^ sperm/cm^) were incubated at 10*^0 for 15 minutes in the presence of ouabain 

(10 mM), after which time the suspensions were centrifuged, resuspended in 0.5 cm^ 

OCaASW and loaded with Fura-2-AM, as described in Materials and Methods. Typical 

excitation spectra of spermatozoa incubated with ouabain are shown in Figure
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6.XXVIII and the free intracellular Ca^'*' concentration, calculated as described in 

Materials and Methods, was found to be 20.53 ± 4.70 nM (n=6). Therefore, the 

addition of ouabain to spermatozoa of Fucus serratus resulted in a 75% decrease in 

the [Ca2'*']i when compared with spermatozoa incubated without ouabain.

These results indicate that pHi, generated by Na'*’/H'*‘ exchange which in turn is 

maintained via a Na'''/K''' ATPase, causes the [Ca^'*’]! to rise in the spermatozoa of 

Fucus serratus.
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n ç u f  SJOCVil. Typical Excitation Spectra for Spermatozoa suspended in CX^aASW 
in the Presence of Monensin.

Excitation wavelength nm

Typical excitation spectra (emission was set at 500 nm) for Fucus serratus sperm 
suspension incubated in OCaASW in the presence of ^ ^ e n s in  (0.1 pM/cm^). The 
intracellular free Ca *̂** concentration was calculated as described in the Materials and 
Methods section.
Ffpjp = + EGTA & manganese 
F = ••• Monensin
Fmax = + Bromo A23187 & Ca2+.
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Fli^urm gJOiVIII. Typical Excitation Spectra for Spermatozoa suspended in OCaASW 
in the presence of Ouabain.

Excitation wavelength nm

Typical excitation spectra (emission was set at 500 nm) for Fucus serratus sperm 
suspension incubated in OCaASW in the presence of Ouabain (10 mM/cm^). The 
intracellular free Ca^'*’ concentration was calculated as described in the Materials and 
Methods section.
Fmin = EGTA & manganese 
F s + Ouabain

max = + Bromo A23187 & Ca^+.
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e.5.4.9. Thft Effftct of PMA and H-7 on the Concentrattan_Qt iDtracellular Calcium.

The activator PMA and inhibitor H-7 of protein kinase C have been shown to 

stimulate and inhibit respectively both the O2 uptake and motility of spermatozoa of 

Fucus serratus. has also been shown to be required for increased activity of 

PKC and, therefore, experiments were carried out to examine whether these agents 

affected the free intracellular Ca^'*’ concentrations of the spermatozoa. Suspensions 

of spermatozoa (1x10^  sperm/cm^) were incubated at 10X  for 15 minutes in the 

presence of either PMA (1 nM) or H-7 (20 pg/cm^). Spermatozoa pelleted by 

centrifugation were then suspended in 0.5 cm^ OCaASW and loaded with Fura-2-AM 

as described in Materials and Methods.

Typical excitation spectra of spermatozoa incubated with either PMA or H-7 and 

loaded with Fura-2-AM are shown in Figures 6.XXIX and 6.XXX respectively, and the 

free intracellular Ca *̂** concentration was calculated using the equation described in 

Materials and Methods.

The [Ca2'*’]i of spermatozoa stimulated with PMA was found to be 156 ± 5.85 

nM (n=5), and 30.8 ± 5.9 nM (n=6) when spermatozoa were inhibited with H-7. 

Spermatozoa suspended in OCaASW had an [Ca^‘*']i of 83.6 ± 1.55 nM (n=:5), thus 

the presence of PMA stimulated the free intracellular Ca2+ concentration by 87%, 

whereas this was inhibited by 63% when spermatozoa were incubated with H-7. '
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Fleura 6.XXIX. Typical Excitation Spectra for Spermatozoa suspended in OCaASW in 
the Presence of PMA.

Excitation wavelength nm

Typical excitation spectra (emission was set at 500 nm) for Fucus serratus sperm 
suspension Incubated in OCaASW in the presence of PMA (1 nM). The intracellular 
free Ca^'*' concentration was calculated as described in the Materials and Methods 
section.

+ EQTA & manganese 
F = + PMA
Fmax = + Bromo A23187 & Ca2+.
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R ffur» 6JOQC. Typical Excitation Spectra for Spermatozoa suspended in OCaASW in 
the Presence of H-7.

Excitation wavelength nm

Typical excitation spectra (emission was set at 500 nm) for Fucus serratus sperm 
suspension incubated in OCaASW in the presence of H-7 (20 pg/cm^). The 
intracellular free Ca^'*' concentration was calculated as described in the Materials and 
Methods section.
Fmin = EQTA & manganese 
F = + H-7
Fmax= = ^  Bromo A23187 & Ca2+.
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In these studies the mechanisms by which spermatozoa acquire their motility 

were investigated in sperm from both a mammalian source, viz. rat, and from the 

brown alga Fucus serratus. Experimental work was begun with the rat sperm and, 

later studies were carried out with sperm of Fucus serratus.

7.1. Mammalian Spermatozoa.

Mammalian spermatozoa acquire the capacity for motility during passage 

through the epididymis (Bedford, 1975). Spermatozoa isolated from the caput region 

of the epididymis are essentially immotile; 1-2% show a slight twitching motion, 

whereas the majority of sperm collected from the caudal region show vigorous 

progressive motion. Although the biochemical mechanisms by which this motility is 

acquired are not fully understood. There are three regulatory factors that either 

singularly or in combination seem to control the motility of mammalian spermatozoa. 

These are:

1) intracellular pH

2) CAMP

3) calcium.

7.1.1. intracellular pH.

intracellular pH (pHi) has been shown to regulate the initiation of mammalian 

sperm motility in a variety of species, including bovine (Babcock, et al., 1983; 

Vijayaraghavan, et al., 1985; Majumder, 1990) and sea urchin (Lee, et al., 1983). 

Vijayaraghavan and colleagues (1985) have shown that bicarbonate induces an 

increase in intracellular pH in bovine spermatozoa and concomitant with an increase 

in motility bicarbonate has also been shown to contribute to the acquisition of motility

163



in sperm from saimonide fishes (Mohsawa, et a i, 1993). As sperm pass from the 

testis to the sperm ducts the concentration of seminal bicartx>nate increases 

(Morisaw, et at., 1993).

In this study the effect of pH on the development of motility in rat spermatozoa 

was assessed. Sperm collected from caudal and caput epididymis were incubated in 

the presence of bicarbonate, at various cor^entrations within the physiological range 

of 1 to 50 mM. Such conditions resulted in induction of motility in caput epididymal 

spermatozoa and further increased the motility of caudal epididymal spermatozoa. 

Bicarbonate normally enters cells through a bicarbonate/chloride exchanger, which 

acts by exchanging external Na'*' and HCO3'  for internal H'*' and Cl*. This exchanger 

is inhibited by stilbene derivatives such as SITS and DIOS (L'Allemain, et al., 1985) 

and the addition of SITS to rat caput and caudal epididymal spermatozoa substantially 

reduced the bicarbonate-induced stimulation of motility. These results suggest that 

bicarbonate plays a crucial role in the onset of motility and enters the cell via a 

bicarbonate/chloride exchanger. The entry of bicarbonate would result in extrusion of 

H*** causing an increase in pHi, which may be a key factor in the initiation of motility. 

Bicarbonate has also been shown to activate adenylate cyclase, the enzyme which 

catalyses the formation of cAMP (Okamura, et al., 1985; Rojas, et al., 1992), and 

therefore, may act as the first physiological messenger for this enzyme. If this is the 

case then the activation of motility in rat spermatozoa may be due to a combination of 

an increase in pHi and in the intracellular levels of cAMP.

A Na'*'/H''’ exchange system which is present in the plasma membrane of 

numerous animal cells has been shown to play a critical role in the regulation of pHi in 

sea urchin spermatozoa (Lee, et al., 1984a & b). This enzyme mediates the counter­

transport of Na'*' into the cell and H'*’ out of the cell. In the present studies monensin, 

a monovalent cationic ionophore which catalyses Na***/ H'*' exchange (Pressman, 

1976; Hansborough and Garbers, 1981), caused an increase in the motility of rat
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spermatozoa from both regions of the epididymis. However, the extent of stimulation 

of motility of the two epididymal spermatozoa populations differed with, once again, 

the greater degree of stimulation occurring in caput spermatozoa. Thus, it would 

appear that an increase in pHi has a greater effect on caput epididymal spermatozoa, 

than on the more mature caudal epididymal spermatozoa. This is not unexpected as 

the caput sperm are virtually immotile in the absence of stimulatory agents, whereas 

the caudal sperm already show some degree of motion. In a number of mammalian 

species including bovine, the pHi of caudal epididymal spermatozoa is more alkaline 

than that of caput epididymal spermatozoa (Majumder, 1990), and appears to be 

directly related to the extent of nrK)tility. The present studies strongly suggest that an 

increase in pHi is also required for the initiation of motility in rat spermatozoa.

7.1.2. Adenosine 3'.S'-cyclic Monophosi

Cyclic nucleotides have been shown to play a role in the acquisition of the 

capacity for motility which occurs as mammalian spermatozoa travel through the 

epididymis (Hoskins, et al., 1974; Hoskins and Casillas, 1975; Vijayaraghavan and 

Hoskins, 1990). Spermatozoa from the bull and ram exhibit an increase in cAMP 

levels during transit through the epididymis (Hoskins, etal., 1974; Aman, et al., 1982). 

On the other hand, cAMP levels in hamster spermatozoa have been shown to 

decrease during epididymal transit (Del Rio and Raisman, 1978; White and Aitken, 

1989).

cAMP is synthesised through the activation of a membrane-bound enzyme, 

adenylate cyclase. Forskolin, a diterpene, is a known activator of adenylate cyclase 

(Seaman and Daley, 1981a & b; Vijayaraghavan, et al., 1985) and when rat 

spermatozoa were incubated with this compound the motility of the more mature
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caudal sperm was stimulated, but this compound had little effect on the motility of 

immature caput spermatozoa. If however, bicarbonate was present forskolin induced 

a marked stimulation in the motility of these immature spermatozoa. As already 

discussed quiescent spermatozoa, isolated from the caput region of the epididymis, 

have been reported to have an acidic pHi (Vijayaraghavan, et al., 1985) and an 

elevation in pHi, induced through the entry of bicarbonate is required for induction of 

motility (Vijayaraghavan, et al., 1985; Majumder, 1990). It may that forskolln can only 

stimulate adenylate cyclase and irKrease the intra-sperm levels of cAMP after this 

initial induction has occurred. In mature caudal epididymal spermatozoa the primary 

stimulus needed for the initiation o f sperm motility is already present, and forskolin is 

able to stimulate cAMP production in the absence of external bicarbonate. Both 

bicarbonate and forskolin have been reported to activate adenylate cyclase in bovine 

caudal spermatozoa (Vijayaraghavan, et al., 1985; Okamura, et al., 1985; Rojas, et 

al., 1992) and the findings of the present study indicate that these compounds in 

combination have a greater stimulatory effect on adenylate cyclase than they have 

separately.

The cellular levels of cAMP not only depend upon the rate of cAMP synthesis 

but also on its rate of degradation and a cAMP-specific phosphodiesterase catalyses 

the conversion of cAMP 5'AMP. Theophylline, a phosphodiesterase inhibitor 

(Vijayaraghavan, et al., 1985) induced a significant rise in the percent of motile 

spermatozoa in both epididymal populations of rat spermatozoa. However, once again 

a significantly greater enhancement of motility was obsenred when this compound 

was added to the caput epididymal spermatozoa in the presence of bicarbonate, but 

not in the case of the caudal epididymal spermatozoa. Further, in the presence of 

bicarbonate lower concentrations (1>2 mM) only were required to induce maximal 

motility in rat caput epididymal spermatozoa whereas in its absence higher 

concentrations of theophylline (20 mM) were needed to induce maximal motility.
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indicating that bicarbonate increased the sensitivity of caput epididymal spermatozoa 

to the stimulatory action of theophylline. These results are compatible with a number 

of different mechanisms for initiation of sperm motility. It is probable that the entry of 

bicarbonate causes an increase in the pHi of spermatozoa which in turn stimulates 

quiescent spermatozoa. At this stage cAMP may also be involved in the stimulatory 

mechanisms and low concentrations of theophylline are sufficient to increase cAMP 

levels such that motility is enhanced. Bicarbonate, is known to elevate intra-sperm 

levels of cAMP through the activation of adenylate cyclase (Okamura, et al., 1985; 

Rojas, et aL, 1992). It is possible that initiation of motility in caput epididymai 

spermatozoa by bicarbonate is due to such activation of the adenylate cyclase in the 

plasma membrane of rat spermatozoa. Such a mechanism would be consistent with 

the observation that only low concentrations of theophyiiine are required to increase 

the levels of cAMP to concentrations needed for this initiation of motility in immature 

spermatozoa. Theophylline, by itself, is capable of initiating motility in immature caput 

epididymai spermatozoa and this may be due to its ability to elevate the intracellular 

concentrations of cAMP. However, given other results using forskolin it is more likely 

that theophyiiine acts as a weak base (pka 8.7) thus increasing the pHi of these 

spermatozoa.

The concentration of cAMP has been reported to increase,, in a number of 

mammalian species, as spermatozoa transcend the epididymis (Vijayaraghavan, et 

al., 1985), thus the levels of cAMP may already be higher in rat spermatozoa in the 

caudal than in the caput region of the epididymis. In this situation, the addition of 

either bicarbonate or theophylline may be sufficient to enhance the levels of cAMP, 

through the activation of adenylate cyclase, and further stimulate the motility of caudal 

spermatozoa whereas, the caput epididymai spermatozoa require both bicarbonate 

and theophylline to elevate cAMP levels to those needed to initiate motility.
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In this study, circumstantial evidence obtained using bicarbonate, forskolin and 

theophylline would suggest that a rise in pHi is an essential prerequisite for the 

initiation of the motility of rat spermatozoa, as they pass though the epididymis and 

the intra-sperm levels of cAMP play a role in this process. cAMP generally causes 

phosphorylation, through a cAMP-dependent protein kinase, of key regulatory 

proteins. For example, tubulin and the dynein heavy chain are two proteins reported 

to be phoshorylated and activated in a cAMP-dependent manner (Tash and Means, 

1982; 1983). The existence of such a mechanism in rat spermatozoa requires further 

investigation.

7.1.3. Calcium.

The role of extracellular Ca2+ in regulating the motility of mammalian 

spermatozoa is unclear, as both stimulatory and inhibitory effects have been reported. 

For example, external Ca2+ has been shown to stimulate the motility of hamster 

spermatozoa (Morton, et al., 1974), inhibit the motility of dog spermatozoa (Tash and 

Means, 1982a & b) and to have no effect on the spermatozoa of rabbit 

(Vijayaraghavan and Hoskins, 1990). The reasons for these species differences are 

unclear, as very little is known about the mechanisms regulating the entry of Ca2+ 

into the cell and its subsequent effect on motility. However, levels of intracellular Ca^'*' 

have been shown to have a role in the regulation of mammalian sperm motility 

(Garbers and Kopf, 1980; 1983). One system that regulates the intracellular 

concentration of Ca^'*’ is a voltage-dependent Ca *̂** channel in the plasma membrane 

of spermatozoa (Breitbart, et al., 1990) and verapamil is an antagonist of this Ca^**’ 

channel. In these studies the motility of rat spermatozoa from both regions of the 

epididymis decreased in the presence of this inhibitor implying that a voltage-
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dependent Ca2+ channel is present. The consequent decrease in intracellular Ca2+ 

levels, brought about by verapamil somehow triggers a drop in the percent of motile 

spermatozoa.

Considering the results obtained with agents that cause an increase in levels of 

cAMP, it is of interest that intracellular Ca^“** can also cause enhancement of the 

concentration of intracellular cAMP (Rasmussen, 1970), which is coupled with an 

initiation of motility in both guinea pig and hamster spermatozoa (Garbers, et al., 

1982). It may be that a similar mechanism operates on the entry of Ca^'*’ into rat 

spermatozoa and this is different from the mechanism in bovine spermatozoa where 

the intracellular concentration of Ca^'*' was higher in imnriotile caput spermatozoa than 

in the more motile caudal spermatozoa (Vijayaraghavan and Hoskins 1990). These 

authors suggested that the higher Ca^'*' concentrations in caput epididymal 

spermatozoa impeded motility by regulating cAMP levels, through either stimulating a 

calmodulin-dependent cAMP phosphodiesterase or inhibiting a Ca^'*'-sensitive 

adenylate cyclase. Thus, it is clear that further studies on the role Ca^'*’ plays in the 

regulation of motility of rat spermatozoa need to be carried out. These could include 

the direct measurement of the intracellular Ca^'*' concentrations using fluorescent 

indicators for example, Fura-2, in both caput and caudal epididymal spermatozoa.

Ca^'*’ is also known to be an activator of Ca2''‘-dependent protein kinase C 

(Rotem, et al., 1990 a & b; DeJonge, et al., 1991). Phorbol diesters, such as phorbol 

12-myristate-13-acetate (PMA) are compounds that stimulate this protein kinase C 

(PKC) (Castagna, eta!., 1982; MacEwen, et al., 1993) and in the present studies the 

addition of PMA to mature rat spermatozoa enhanced their motility both in the 

presence and absence of exogenous bicarbonate. Thus, it may be that another action 

of Ca^'*' in the initiation of motility of rat spermatozoa is the activation of PKC. 

However, as well as activating PKC, phorbol diesters have been reported to increase 

the levels of cAMP in hamster spermatozoa (Visconti, et al., 1990). These workers
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also showed that bicarbonate stimulated the PMA-dependent cAMP accumulation and 

that this increase was abolished when inhibitors of the bicarbonate/chloride 

exchanger, for example SITS and DIDS, were present. From these results Visconti 

and colleagues (1990) concluded that the transport of bicarbonate across the plasma 

membrane of hamster spermatozoa, and the activity of PKC could be linked to the 

regulation of cAMP synthesis. In the present study SITS also inhibited the PMA- 

iriduced stimulation of motility, suggesting a similar interaction between the entry of 

bicarbonate, the activity of PKC and increasing cAMP levels in the regulation of rat 

sperm motility. On the other hand it may be, simply, that a rise in intracellular pH, 

brought about through the entry of bicarbonate, may be required to induce maximal 

activity of PKC.

The motility of quiescent caput epididymal spermatozoa, in the absence of 

exogenous bicarbonate, were not significantly affected by PMA whereas, in its 

presence, motility was stimulated. As reported before the pHi of caudal epididymal 

spermatozoa is higher than that of caput epididymal spermatozoa (Vijayaraghavan, et 

al., 1985) and it is possible that an increase in the pHi of caput epididymal 

spermatozoa is needed before stimulation of PKC activity and consequent activation 

of motility, in caudal epididymal spermatozoa the PMA alone can stimulate motility 

and rises in pHi, brought about through bicarbonate uptake, stimulates the motility of 

caudal epididymal spermatozoa further.

From these results it seemed highly probable that PKC is present in rat 

spermatozoa and is involved in initiation of motility. To further establish the presence 

of PKC in rat spermatozoa and its role in the regulation of sperm motility, an inhibitor 

of PKC, H-7 (Rotem, et al., 1990a) was added to spermatozoa in the presence of 

bicartx>nate. Caput epididymal spermatozoa were totally Immobile and the motility of 

caudal epididymal spermatozoa was significantly inhibited. The results with PMA 

suggesting that PKC is present and is a key component of the systems regulating rat
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sperm motility and this conclusion is reinforced by these results with H-7. It is likely 

that PKC causes the phosphorylation and thereby activation/deactivation of key 

regulatory proteins but this is still to be determined.

In conclusion, from the various results of this study on rat spermatozoa it seems 

dear that, as in other mammalian spermatozoa, pH plays a major role in the initiation 

of motility and this may be linked with cAMP levels and the activation of PKC. Until the 

initial pH change in spermatozoa has occurred between the caput and caudal 

epididymal regions of the rat, second messengers are not effective in stimulating 

motility, but the evidence clearly suggests that they are involved in the stimulation of 

motility after such pH changes have occurred.
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7.2. Fucua ammtua Spermatozoa.

The spermatozoa of Fucus serratus differ from mammalian spermatozoa in that 

they are released into sea water prior to fertilisation and the motility of these sperm is 

initiated upon their release into sea water.

A number of extemai factors appear to be invoived in this initiation of motility 

including temperature, pH and the composition of the sea water into which the 

spermatozoa are released. Present studies on the motility of the spermatozoa of 

Fucus serratus have shown these activities are maximal when the temperature of the 

sea water is 10'*C and the pH of sea water into which they are released is 8.0. At 

lower pH values both motility and respiration are inhibited. These results might well be 

expected as the general temperature and pH of the seas where these spermatozoa 

are released is around 10**C and 8.0 respectively, in addition the sea water is 

obviously a critical component in sperm rriotility as spermatozoa diluted into sea water 

with reduced Na'*', Ca^'*' and Mg^'*’ levels are considerably less motile than those 

released into normal ASW. This inhibition of motility can be reversed by the 

reintroduction of the appropriate ion.

7.2.1. Respiration of Spermatozoa from Fueua memtus.

Respiration of spermatozoa in this study was monitored using an O2 electrode. 

As these sperm have a chloroplast which may produce O2 care was taken not to carry 

out experiments in bright light. Further the electrode is surrounded by a water jacket 

which would absorb some light. Nevertheless it is possible that photosynthesis was 

occuring at a very low level. However, all treated sperm were compared with
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untreated controls. Oxygen uptake was decreased by a number of agents and where 

it was elevated this was often by a considerable amount. Therefore, it seems unlikely 

that a very low photosynthetic rate would alter the conclusions drawn from the results 

of these experiments.

Movement of spermatozoa requires energy and this is provided by the 

hydrolysis of ATP, in particular, by dynein ATPase which is localised in the flagella. 

Spermatozoa are relatively simple cells and in those studied ATP is primarily formed 

by the respiration of mitochondria (Christen et al., 1982) in which ADP is 

phosphorylated to ATP as electrons are transferred from NADH or FADH2 to O2 by a 

series of electron carriers. Respiration of the spermatozoa of Fucus serratus is 

sensitive to rotenone, antimydn A and potassium cyanide indicating that oxygen 

utilisation results from electron transport through the whole span of the mitochondrial 

electron transport chain similar to that found in other species. Further, oligomycin 

inhibits respiration suggesting that this electron transport is coupled to oxidative 

phosphorylation. The rate of respiration in dense suspensions of spermatozoa was 

lower than that in diluted suspensions. In diluted sperm suspensions the addition of 

DNP, an uncoupling agent of oxidative phosphorylation, only had a slight effect on the 

respiratory rate although it did reverse oligomycin inhibition. However, DNP did 

enhance the O2 uptake of dense sperm suspensions. Thus, it could be concluded 

from these results that respiration coupled to oxidative phosphorylation occurs at a 

maximum rate in a diluted sperm suspension, whereas those in dense suspensions 

respire at a considerably reduced rate. Therefore, the mitochondria of spermatozoa 

in a dilute suspension are in state 3, as defined by Chance and Williams 1956, in 

which the availability of ADP does not limit the respiratory rate. Thus, in diluted 

suspensions, spermatozoa either control their ATP consumption to exactly match its 

synthesis, or they split ATP quicker than they phosphorylate ADP. Spermatozoa in a 

diluted suspensions swam vigorously where as, those in a dense suspensions were
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largely immotile. The more motile sperm in dilute suspensions would have higher ADP 

levels resulting from ATP utilisation by the dynein ATPase which in turn would 

stimulate mitochondrial respiration (Brokawand Benedict, 1968; Christen et a i, 1982, 

1983). Spermatozoa in dense solutions probably compete for the available oxygen 

reducing respiratory rates, once again suggesting that these are closely linked to 

motility.

7.2.2. Intracellular Mechanisms associated with activation of motility.

7.2.2.1. Intracellular pH.

As described earlier internal pH is an important regulatory factor of motility of 

spermatozoa from a number of species including bovine, sea urchin (Vijayaraghavan, 

et a i, 1985; Roos and Boron, 1981; Schackman, et a i, 1978; 1981; Christen, et a i, 

1982; 1983; Lee, 1984a &b) and rat (this thesis).

The pH of the sea water into which Fucus serratus spermatozoa are released 

greatly affects both their respiration and motility suggesting that pHi is also important 

in the initiation of motility in this species. The pH sensitive fluorescence probe, 

BCECF-AM, was used in this study to measure intracellular pH (pHi). BCECF>AM was 

taken up and fully hydrolysed to the free acid (BCECF) within three hours, as shown 

by a shift in the excitation spectra from a maximum at 465 nm, characteristic of 

BCECF-AM, to 490 nm, which is attributable to the free acid. No intermediate 

products were formed during this process and the hydrolysis of BCECF-AM had no 

adverse effect on either the O2 uptake or motility of spermatozoa of Fucus serratus. 

Modifying the pH of the dilution medium is one experimental method which has been 

used to alter the intracellular pH of spermatozoa from a number of species such as 

sea urchin (Christen, et a i, 1982). Measurements of pHi in sperm from Fucus serratus
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showed that as the extracellular pH of ASW was lowered from 8.0 to 5.0, the pHI 

decreased from 8.0 to 6.1. In these studies changes in the external pH, and by 

inference pHi, closely correlated with changes in sperm respiration and motility. It is of 

considerable interest that this mechanism operates in Fucus as although, pHi is 

known to influence motility in mammalian and some invertebrate sperm, the motility of 

other invertebrate sperm for example Horseshoe crab, changes independently of pHi 

(Clapper and Epel, 1981).

A number of mechanisms by which this change in pHi is achieved have been 

described for other species. Lee and co-workers (1982) have found that pHi for sea 

urchin spermatozoa in ONaASW is more acidic than when Na*** is present. As the pHi 

of these spermatozoa was affected by both the pH and Na'*’ concentration of the 

ASW it was proposed that regulation might involve Na'*‘-dependent H*** movements 

(Lee, eta l., 1980; 1982). Similar proposals have also been made for changes in pHi in 

other ceil types including sea urchin eggs (Johnson and Epel. 1976) and snail 

neurones (Meech and Thomas, 1980). As similar results with ONaASW were found 

with Fucus serratus spermatozoa, experiments were devised to identify such ion 

movements in this species. Monensin, a monovalent cationic ionophore, catalyses 

neutral Na+/H+ exchange across cell membranes (Pressman, 1976; Hansborough 

and Garbers, 1981). When added to spermatozoa from Fucus serratus the O2 uptake 

was activated suggesting Na'*‘/H ''’ exchange could be a key factor in motility of these 

sperm. The Na'*'/H''' exchanger is inhibited by amiloride in other cells (Johnson and 

Epel, 1976) and addition of this compound to spermatozoa of Fucus serratus resulted 

in an inhibition of both respiration and motility. The evidence clearly points to the 

presence of a Na'*’/H ''' exchanger in the membranes of spermatozoa of Fucus 

serratus. In spermatozoa of sea urchin, the activation of such a Na'*'/H''’ exchanger 

leads to the extrusion of H'*', producing an increase in intracellular pH (Lee, 1984a & 

b). In the present study intact spermatozoa suspended in Na’*’-free ASW are virtually
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immotile and elicit no decrease in the pH of the medium but on the addition of Na'*' a 

decrease in the pH of the medium by 0.4 pH units is obsenred. Intracellular pH, 

measured using BCECF-AM, was lower in spermatozoa suspended in ONaASW than 

in those suspended in ASW and the motility of these spermatozoa increased to over 

80% when Na*** was added. The intracellular pH of Fucus serratus spermatozoa also 

decreased in response to amiloride and increased in the presence of monensin and 

the motility of these spermatozoa paralleled these changes. Thus it seems, that in a 

similar way to that observed in sea urchin (Nishioka and Cross, 1978; Christen, et al., 

1982, 1983; Lee, et al., 1982, 1983; Lee, 1984a & b), changes in intracellular pH, 

probably regulated by Na'*'/H'*’ counter-movements, play a critical role in the regulation 

of respiration and motility of spermatozoa of Fucus serratus.

Another ionic component of sea water which affects the motility of Fucus 

serratus spermatozoa is the concentration of K“** ions. The Na'*'-dependent H'*' release 

was particularly sensitive to the K“** concentration of the sea water. There was no acid 

efflux and motility was inhibited when spermatozoa were suspended in ASW 

containing a high concentration of K*** (160 mM compared with normal 10 mM) nor did 

spermatozoa suspended in ONaASW, containing a high concentration of K’*', activate 

acid efflux on addition of Na'*' (360 nm). However, partial acid release could be 

induced, under these inhibitory conditions, by the addition of monensin, the Na'*’/H''’ 

exchange ionophore. In addition to this the motility of Fucus serratus spermatozoa 

was also stimulated under these conditions. The Na'*’/H'*’ exchanger in sea urchin 

spermatozoa is electroneutral with a voltage-sensitive gate. At high concentrations, 

K*** depolarises the membrane potential of sea urchin spermatozoa (Schackerman, et 

al., 1981; Lee, 1984a & b; 1985; Hammi, et al., 1992). The depolarisation of the 

transmembrane potential closes the gate and inhibits the Na'̂ ’/H'*’ exchanger in both 

its forward, (Na'*’ in-H'*' out) and reverse, (Na'*' out-H*** in) directions (Lee, 1984a & b; 

1985). Thus, one possible explanation of the inhibitory effect of increased K'*’ on Na'*’-
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dependent H'*’ extrusion and motility of Fucus serratus spermatozoa, is that the cell 

membrane of the spermatozoa depolarises and inactivates the Na'*’/H'*’ exchange. As 

a result acid would be trapped inside the spermatozoa fixing the intracellular pH 

resulting in immobilisation of the spermatozoa.

The ways in which changes in internal pH trigger acquisition of motility is 

unclear. However, it is possible that the flagella of spermatozoa may be subject to 

direct control by pH changes. Isolated flagella of Fucus serratus spermatozoa, which 

still had their membranes intact, had characteristics of H'*' efflux similar to those of 

intact spermatozoa. For example, isolated flagella exhibited no acid release in 

ONaASW but caused a decrease in the pH of the medium by 0.35 units on addition of 

Na'*’. However, the slow metabolic Na'*’-dependent H*̂  release seen in intact 

spermatozoa was not observed in isolated flagella presumably because no 

mitochondria are present. Care was taken to ensure that all preparations of flagella 

were virtually free of intact spermatozoa. In agreement with the results obtained with 

intact spermatozoa Na'*'-dependent acid release was inhibited by high external K*** 

concentrations and this inhibition was again partially reversed by the addition of 

monensin, suggesting that the primary site for activation of motility in response to 

changes in H*** ion concentration is in the flagella themselves. As these are the 

primary agents of movement such a mechanism would be direct and rapid.

As a consequence of an internal alkalisation process in spermatozoa, removal 

of protons which are continuously produced by metabolism would also imply a 

continuous influx of sodium (Bibring, et al., 1984). The consequent increase in the 

internal Na'*' concentration in turn would decrease the driving force for H*** extrusion. 

To counteract this tendency an active mechanism for the extrusion of Na'*' should 

exist in these spermatozoa, it has been shown that Na'*'/K''‘-ATPase pumps located in 

the plasma membrane of sea urchin spermatozoa play a role in regulating pHi by 

recycling Na'*’ (Gatti and Christen, 1985). When Li'*' was substituted for Na'*’ in ASW
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both respiration and motility of spermatozoa from Fucus serratus were reduced. 

Lithium is a poor substitute for Na+ in the Na+/K+ exchange suggesting the presence 

of this pump in Fucus serratus. Further, ouabain, a specific inhibitor of Na+/K+ 

ATPase, also inhibited both respiration and motility when it was added to suspensions 

of spermatozoa. These results Indicate that motility of spermatozoa from Fucus 

serratus is regulated by pHi which is influenced by internal Na+ levels which in turn 

are controlled by a Na+ZK**" ATPase.

The entry of bicarbonate into a ceil is another way in which intracellular pH can 

be raised (Boron, ef a/., 1979) and as already discussed, the presence of bicarbonate 

has been shown to cause an elevation in the pHi of mammalian spermatozoa 

(Vijayaraghavan, et at., 1985). In these sperm, bicarbonate enters a cell through a 

bicarbonate/chloride exchanger which acts by exchanging external Na+ and HC0 3 " 

for internal H+ and Cl’ .,The O2 uptake and rrwtility of spermatozoa of Fucus serratus 

was Inhibited by the inhibitor of this exchanger, SITS. In several mammalian 

spermatozoa including bovine, mouse and human as well as in sea urchin 

spermatozoa (Okamura, et al., 1985) in addition to elevating pHi, bicarbonate also 

appears to be Involved in the activation of adenylate cyclase. Therefore the SITS- 

induced Inhibition of motility in Fucus serratus spermatozoa may be due to either an 

acidification of the internal pH and/or through decreased activity of adenylate cyclase 

with a consequent decrease in cAMP levels which may also be associated with 

initiation of motility.

As previously mentioned one way that an increase in pHi could trigger the 

motility of Fucus serratus spermatozoa is through Its effect on dynein ATPase. At low 

external pH the activity of dynein ATPase appeared to be inhibited to a greater extent 

than that of respiration, for example at pH 7.0 dynein ATPase activity fell by 84% 

when compared with the activity obsen/ed when the external pH was 8.0, whereas O2 

uptake only decreased by 34% when the external pH was changed from 8.0 to 7.0. It
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may be that an acidic pHi initially Inhibits the activity of the dynein ATPase and 

respiration of the mitochondria is subsequently Inhibited by the resultant drop in ADP 

concentration. This would provide a mechanism where changes in pH directly 

influence flagella movement. However, both coupled and uncoupled (FCCP-treated) 

respiration are inhibited under conditions that lead to an acidic pHi thus, an acidic pHi 

may inhibit both respiration and motility. Christen and colleagues (1983) have found 

that at low intracellular pH, FCCP causes the depolarisation of the potential across 

the mitochondrial membrane in sea urchin spermatozoa and, under these conditions, 

mitochondria are fully uncoupled. Uncoupled respiration was, however, not achieved 

even under conditions of pH that totally inhibit dynein ATPase activity in spermatozoa 

of Fucus serratus, suggesting more complex interactions where pHi affect other 

intracellular messengers. Thus, the availability of ADP determined by dynein ATPase 

activity is probably not the only reason for changes in mitochondrial activity, in the 

presence of vanadate, an inhibitor of dynein ATPase. both the coupled and 

uncoupled respiration of Fucus serratus spermatozoa were inhibited, implying that O2 

uptake requires a functional dynein ATPase even in the presence of an uncoupler. 

However, In this study the investigations looking at the effect of pH on the ATPase 

activity of permeabilized spermatozoa were carried out at pH 8.0. At this external pH 

the intracellular pH is alkaline (8.0) and thus, the inhibitory effect on respiration seen 

at acidic pHi did not exist therefore, vanadate might inhibit mitochondrial activity 

directly.

In vitro dynein ATPase has an alkaline pH optimum and its activity increases 

sharply around pH 7.5 (Gibbons and Gibbons, 1972). Motility of the axoneme is 

activated over the narrow pH range of 7.3 to 7.8 in permeabilized sperm preparations 

(Goldstein, 1979). This is also the pH range in which respiration and motility of sea 

urchin sperm are increased in vivo (Christen, et ai., 1982) and is similar to the range
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which results in an increase in these two parameters in spermatozoa of Fucus 

serratus.

In conclusion, internal pH is likely to play a role in controlling the rate of ATP 

hydrolysis by dynein ATPase and this ATPase activity is limiting for the respiration of 

tightly coupled mitochondria in a manner similar to that of spermatozoa from sea 

urchin.

T.2.2.2. Adenosine 3'.5'-cyclic Monophosphate.

The role of cAMP, in the regulation of motility of mammalian spermatozoa is well 

established (Hoskins and Casillas, 1975; Tash and Means, 1982; Vijayaraghavan, et 

al., 1985). In part, evidence for this has come through the use of stimulators of 

adenylate cyclase, and inhibitors of cAMP-spedfic phosphodiesterases. In this study 

of spermatozoa of Fucus serratus, similar approaches were applied to see if cAMP 

had any role in the initiation of the respiration and motility of these spermatozoa, upon 

their release into sea water.

Forskolin is known to be a potent activator of adenylate cyclase in somatic cells 

(Seamon and Daley, 1981a & b) and has been shown to stimulate the motility of 

bovine spermatozoa, presumably through the activation of adenylate cyclase 

(Vijayaraghavan, et a i, 1985). However, it has been reported that forskolin does not 

interact with the adenylate cyclase located in spermatozoa (Stengal and Hanoune,

1984). It has also recently been shown that in porcine spermatozoa forskolin 

stimulates Ca^'*’ uptake, through a verapamil-sensitive Ca^'*' channel and enhances 

the intracellular concentration of free Ca^'*' (Okamura, et a i, 1993). A rise in 

intracellular Ca^'*' Is known to be important in the regulation of flagella motility in many 

mammalian species of spermatozoa (Majumder, et a i, 1990; Ashizawa, et a i, 1992).
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Thus, the Increase in both motility and respiration seen when forskolin was added to 

suspensions of spermatozoa of Fucus sorrstus, may be due to Its ability to stimulate 

the uptake of external Ca2+, thereby increasing Intracellular Ca2+ levels rather than 

its ability to Increase cAMP levels through the activation of adenylate cyclase. Further 

studies on possible changes in protein phosphoryiation patterns in response to cAMP 

and Identification of forskolin activated Ca2+ channels are necessary to resolve this 

problem.

Two phosphodiesterase inhibitors, viz. caffeine and theophylline significantly 

stimulated the percent of motile Fucus serratus spermatozoa and their O2 uptake and 

enabled these spermatozoa to maintain this elevated level of motion for a period of 

three hours. In the absence of inhibitors the percent of motile spermatozoa fell over 

the same period of time suggesting that a rise in the intracellular level of cAMP does 

play a role in the regulation of sperm motility and respiration. A more direct means of 

assaying the influence of cAMP on the motility and respiration of spermatozoa is to 

incubate spermatozoa with cAMP directly. Dibutyryi cAMP (dbcAMP) has been shown 

to be more effective as an experimental agent than cAMP, due to its resistance to 

hydrolysis and its greater lipid solubility (Garbers, at al., 1971). The addition of 

dbcAMP to spermatozoa of Fucus serratus, incubated in ASW at pH 8.0, resulted in 

an increase in both motility and respiration. The results in this study also showed a 

striking change in the relationship between motility and pH when these spermatozoa 

were stimulated with dbcAMP. When spermatozoa were suspended in ASW at a low 

pH (6 7.5), the addition of dbcAMP greatly enhanced their motility however, as the

pH of the ASW was increased towards the optimum of pH 8.0, the extent of dbcAMP- 

induced stimulation decreased. At the pH of normal sea water the role cAMP plays in 

the regulation of motility is minimised and therefore, once again these results support 

the idea that the pH of the ASW is the most significant factor in the regulation of 

sperm motility.
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In this study indirect evidence, using caffeine, theophylline and dbcAMP points to 

the presence of cAMP in the spermatozoa of Fucus serratus and its participation in 

the regulation of respiration and motility of these spermatozoa. Even though cAMP 

has been reported to be present in many plants, for example Soya bean (Blowers and 

Trewavas, 1989), its exact role remains undear. In mammalian cells, cAMP initiates 

responses through the activation of cAMP-dependent protein kinases, which 

phosphoryiate and thereby control the activities of key regulatory proteins. However, 

all attempts to locate cAMP-dependent protein kinases in plants have so far been 

unsuccessful (Blowers and Trewavas, 1989). The evidence gained in this study 

further supports the existence and possible regulatory role of cAMP in plants.

If cAMP does have a second messenger role in the regulation of sperm motility 

and respiration, then a first messenger would be required to trigger an increase in the 

intracellular levels of cAMP, presumably through activating adenylate cyclase. The 

eggs of sea urchin contain a sperm-activating peptide, which has many biological 

effects on the spermatozoa, such as stimulating their motility and respiration rate as 

well, as activating a rise in the intracellular levels of cAMP (Harumi, et al., 1992). The 

eggs of Fucus serratus secrete a pheromone-like sperm chemo-attractant 

(Fucoserraten), which produces strong chemotactic responses by spermatozoa 

(Muller and Serferadis, 1977; Muller, 1979) and this chemo-attractant can be 

mimicked by a variety of hydrocarbons, such as n-hexane (Cook, eta l., 1951). in this 

study both the O2 uptake and motility of spermatozoa of Fucus serratus were 

significantly stimulated when suspended in ASW containing n-hexane and the chemo­

attractant secreted by the eggs of Fucus serratus may similarly affect spermatozoa. 

However, whether such agents trigger a rise in the concentration of cAMP, possibly 

through binding to the cell membrane and activating adenylate cyclase remains to be 

investigated.
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T.2.2.3. The Inositoi Phoaohate Pathway.

The inositol phosphate pathway is a common mechanism for the transduction of 

extracellular signals across the plasma membranes of somatic cells (Berridge, 1987 a 

& b). The hydrolysis of phosphoinositol, by phosphoinositol-specific phospholipase C 

(PI-PLC). has been reported to be involved in the activation of both human (Atreja and 

Anand, 1985) and sea urchin (Takei, ef a/., 1984) spermatozoa. The PI-PLC mediated 

hydrolysis of phosphoinositide generates inositol trisphosphate, which mobilises 

intracellular Ca2+, and diacylglycérol, which in the presence of Ca2+ activates protein 

kinase C (Rotem, ef a/., 1992). As already discussed, there is indirect evidence for the 

presence of the enzyme in spermatozoa from various species. For example, it has 

been reported to be present in mature spermatozoa of pig epididymis (Kimura, et al.,

1984), in human ejaculated spermatozoa, where it is thought to play a role in flagella 

motility (Rotem, ef a/., 1990a & b; De Jonge, ef a/., 1991), and in this project in rat 

spermatozoa.

Fucus serratus on the other hand is a plant and although PKC has been 

reported to be present in plants (Anderson, 1989; Drobak, 1993)), its role remains 

unclear and therefore, it was of considerable interest to investigate whether PKC is 

involved in the activation of Fucus serratus spermatozoa. When activators and 

inhibitors of mammalian PKC were added to suspensions of these spermatozoa 

respiration and motility were enhanced and inhibited respectively. The presence of the 

phorbol dIesters phorbol 12-myristate 13 acetate (PMA) and 4 p-phorbol 12,13 

didecanoate (p-PDD), which are known activators of mammalian PKC caused 

activation of sperm. Phorbol diesters are not readily metabolised in somatic cells and 

therefore, only very low concentrations of these diesters are necessary to stimulate 

PKC and elicit a cellular response (Castagna, et al., 1982). The concentrations used 

in this study were similar to those which elicit responses in somatic cells (Castagna, ef
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al., 1982), suggesting that PKC may be involved in the activation of spermatozoa of 

Fucus serratus. These results are surprising and exciting as the PKC isoiated from 

piants so far. are not activated by phorboi esters and as yet no physioiogicai activity 

has been connected to the addition of extraceilular phorboi esters to higher plant cells 

(Anderson. 1989). Thus, the results in this study are the first to demonstrate a phorboi 

ester activated PKC in plants and show a physiological response to the addition of 

external phorboi esters to plant tissues. There is considerable evidence that PKC is 

dependent upon Ca *̂** for activity however, in these studies PMA slightly enhanced 

motility and O2 uptake in the absence of Ca^'*' and, indeed, in the presence of EGTA, 

which was surprising. These results are not without precedent in that PKC mediated 

reactions elicited by another phorboi diester 12-0 -tetradecanoyl phorbol-13-acetate 

(TPA) have been shown to be Ca^'''-independent in human platelets (Rink, 1987). 

Therefore, Ca^'*‘-independent activation of PKC cannot be ruled out in the 

activation/regulation of motility and respiration in spermatozoa. It is also possible that 

other mechanisms which are activated by PMA maybe involved in the activation of 

sperm motility, as this compound has been shown to stimulate the intracellular 

concentration of cAMP In hamster spermatozoa (Visconti, ef a/., 1990).

H-7, an Inhibitor of PKC (Rotem, et al., 1990a) markedly decreased both O2 

uptake and motility of Fucus serratus spermatozoa. However, PKC is not the only 

target for H-7 inhibition, which also inhibits cAMP-dependent protein kinase (Ki = 3.0 p 

rnol/l), (Hidaka, et al., 1984). On the other hand. H-7 inhibited O2 uptake and motility 

of spermatozoa even in the presence of an activator of PKC. implying that PKC is the 

main target of H-7 inhibition In these spermatozoa.

The results obtained, in this study, using phorboi diesters and H-7 imply that 

protein kinase C has a role in regulating motility and respiration in the spermatozoa of 

Fucus serratus, possibly through the phosphorylation of key regulatory proteins. One 

of the actions of PKC in animal cells is catalysing the phosphorylation and thereby
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activation of the plasma membrane Na+/H+ exchanger, thereby inducing cytosolic 

alkalisation (Siffert and Akkerman, 1988; Tse, et al., 1993). The rise in intracellular 

pH, which has been shown to be involved In the activation of Fucus serratus 

spermatozoa, is Induced through Na+/H+ exchange, and If this exchanger is the 

target for PKC activity in these spermatozoa. It would be activated with the 

consequent effect on motility and respiration of these spermatozoa.

7.2.2.4. Calcium,

The role of external calcium in the initiation and/or regulation of sperm motility 

appears to vary in different species, as Ca^'*' can have either a stimulatory or an 

inhibitory effect (Feng, et al., 1988; Ashizawa, et al., 1992). In plants, there is 

evidence to suggest that Ca^’*’ acts as a second messenger, in many physiological 

processes; such as, cell elongation and enzyme activation (Hepler and Wayne. 1985; 

Marme, 1989) but, the mechanisms by which Ca2+ regulates these processes are 

unresolved. A Ca^*''-dependent protein kinase activity has been reported to occur in 

the membranes of pea shoots (Hetherington and Trewavas, 1982) and a 

Ca2+/calmodulin-dependent protein kinase activity has been demonstrated in the 

membranes of courgettes (Marme, 1989). As well as these two types of protein 

kinases, a Ca^'*' and phospholipid-dependent protein kinase has been identified in the 

membranes of courgettes (Schafer, et al., 1985). A link may also exist between the 

Ca2+ messenger system and protein kinase C. Although these three Ca2+-dependent 

protein kinases have been located in plants, nothing is known about the biochemical 

or physiological function of the substrates, if any. which these kinases phosphorylate.

The results in this study show that plays an important role in initiating the 

motility and respiration of spermatozoa isolated from the brown alga, Fucus serratus.
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In the presence of Ca2+-free sea water (OCaASW) there were 70% fewer motile 

spermatozoa and the O2 uptake of these spermatozoa decreased by 67%, when 

compared with spermatozoa incubated in normal ASW. However, upon the re- 

introduction of Ca^'*’ (10 mM) both the motility and O2 uptake of these spermatozoa 

increased. The presence of a Ca^'*’ channel was also indicated in the spermatozoa of 

Fucus serratus, as the addition of verapamil inhibited both motility and respiration. 

These results show that spermatozoa of Fucus serratus behave in a similar manner to 

sea urchin sperm which display a marked stimulation of motility in external calcium 

concentrations up to 9 mM (Tash and Means, 1983; 1987), as might be expected 

given that they are both released into the same environment.

The intracellular concentration of Ca2+, ([Ca2+]i), has been shown to have an 

important role In controlling motility in mammalian spermatozoa (Garbers and Kopf, 

1980; Ashizawa, et a i, 1992). Although the mechanisms regulating (Ca^+JI have not 

been completely elucidated, optimal Ca^'*' concentration probably depends on the 

balance between Ca^'*' uptake and release, which are controlled by Ca *̂** pumps and 

channels in the plasma and mitochondrial membranes.

In this study, the intracellular Ca2+ concentration of Fucus serratus 

spermatozoa was manipulated with EGTA and the ionophore A23187. Unbound Ca2+ 

in a ceil can be decreased to nanomolar concentrations by introducing a Ca^'*'- 

specific chelator, such as EGTA and the addition of this compound to suspensions of 

Fucus serratus spermatozoa resulted in the inhibition of both O2 uptake and motility. 

Non selective, non-localised Ca2+ entry across membranes is promoted by A23187, 

an ionophore (Reed and Lardy, 1972), which has been shown to be a useful tool for 

the study of Ca2+ flux in mammalian spermatozoa (Simpson, et al., 1987). The 

presence of A23187 promoted an increase in the motility and O2 uptake of Fucus 

serratus spermatozoa suspended in either ASW or ONaASW, but had no significant 

effect when spermatozoa were incubated In OCaASW containing EGTA. A23187 may
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override both mitochondrial and plasma membrane pumps allowing free entry of 

and consequently an increase in [Ca^'^]i (Simpson, et al., 1986), implying that an 

increase in [Ca^***]! is a critical factor in the regulation of respiration and motility. This 

is in agreement with results from studies in many mammalian species where 

intracellular Ca^'*’ has been shown to be involved in sperm motility (Majumder, et al., 

1990; Ashizawa, et al., 1992).

The direct measurement of (Ca^+Jl has been carried out using fluorescent Ca2+ 

indicators Quin-2 and Fura-2 (Tsien, 1981; Tsein, et al., 1982; Grynkiewicz, et al.,

1985) In numerous mammalian spermatozoa (Altken, et al., 1986; Babcock and 

Pfeiffer, 1987; Thomas and Melzel, 1988; Vijayaraghavan and Hoskins, 1989; 1990) 

as well as in zygotes of Fucus senatus (Brownlee, 1989). In this study the [Ca^+Ji of 

spermatozoa of Fucus serratus was measured using Fura-2. The membrane- 

permeate acetoxymethylester form of Fura-2 (Fura-2-AM) showed a shift In the 

excitation spectrum, from that of Fura-2-AM to that of the free acid, Fura-2, after three 

hours in spermatozoa that had been washed three times. These results show that 

Fura-2-AM could be readily loaded into Fucus serratus spermatozoa and was 

subsequently intracellulariy hydrolysed to the free acid. Further O2 uptake and motility 

measurements of spermatozoa loaded with Fura-2-AM showed that, at the 

concentration of Fura-2 used and over the time period studied no toxic effects 

occurred. It therefore seemed that Fura-2 was a suitable indicator for measurements 

of intracellular free Ca *̂** concentration of Fucus serratus spermatozoa.

As the extracellular concentration of Ca^’*' was increased from 0 -> 10 mM, the 

[Ca2+]i of Fucus serratus spermatozoa increased by 13%, This Ca2+ entry into the 

spermatozoa is most probably through a calcium channel as verapamil, a Ca^'*'- 

channel blocker, prevented such increases. Unfortunately, verapamil interfered with 

the fluorescence signal and it was not possible to verify whether the uptake of
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external Ca2+ into Fucus serratus spermatozoa occurred through a verapamil- 

sensitive channel, using this particular approach.

External pH also effects the [Ca^'*']i of Fucus serratus spermatozoa and as 

already discussed the pH of the sea water into which spermatozoa are released is a 

critical factor in the regulation of their motility and respiration. Spermatozoa released 

into acidic ASW had an [Ca^''']i 34% lower than that of spermatozoa released into 

ASW at pH 8.0, which was the average pH of the sea water at the location where the 

plants were collected. The [Ca^'*’]! of these spermatozoa also decreased as the pH of 

the ASW rose above 8.0.

Results obtained in this study have also shown that modifying the pH of ASW is 

one way of affecting the intracellular pH of spermatozoa and a rise in pHi stimulates 

motility and respiration in Fucus serratus spermatozoa. This is in agreement with 

results obtained for other species, including sea urchin spermatozoa (Christen, et al., 

1982; 1983), where the increase in pHi is thought to be brought about through 

Na'̂ ’/H'*’ contermovements. An increase in the pHi of Fua/s serratus spermatozoa 

accompanied by activation of motility and respiration was seen in the presence of 

monensin, an activator of the Na+ZH'*' exchanger. However, monensin, not only 

increased the pHi of Fucus serratus spermatozoa, but also resulted in a 103% 

increase in the [Ca^'̂ Ji levels compared with control spermatozoa incubated in the 

absence of monensin. Monensin has also been shown to stimulate uptake in

mouse spermatozoa (Fraser, 1993). The Na'̂ '/H'*' exchanger is driven by a 

transmembrane Na*** gradient, generated by a Na'*'/K'*' ATPase and ouabain, an 

inhibitor of this enzyme, induced a decrease in the [Ca^''']i of Fucus serratus 

spermatozoa. Fraser (1993) has suggested that monensin, through activating Na'*'/H''‘ 

exchange causes a rise in the intracellular concentration of Na'*’ which sets in motion 

a sequence of ionic changes, including the depolarisation of the cell membrane and 

the Influx of Ca2+ via voltage-dependent calcium channels. Thus, the entry of Na+,
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through Na+/H+ exchange, could activate the motility either by activating the entry of 

Ca^'*’ via voltage-dependent calcium channels and/or through increasing the pHi of 

these spermatozoa. An increase in pHi, as well as activating spermatozoa in its own 

right has also been shown to activate calcium channels in both invertebrate (García- 

Soto, et al., 1985; 1987) and mammalian (Babcock, 1988) sperm cells. The evidence 

from this current work indicates that spermatozoa from Fucus seiratus may employ 

similar mechanisms for activation of motility and O2 uptake, but more direct studies on 

Ca^'*’ channels need to be carried out before detailed pathways can be proposed.

The results in this study indicate that an increase in pHi by Na'*'/H'*‘ exchange 

through the cell membrane, which in turn is maintained via a Na'*'/K'*‘ ATPase, may 

cause an increase in the [Ca^'*’]i of Fucus serratus spermatozoa.

Protein kinase C activity may be involved in activating the motility and 

respiration of Fucus serratus spermatozoa and previous workers have shown that this 

enzyme activates/regulates cellular processes through catalysing the phosphorylation 

of key regulatory proteins, including in some cells the Na'*’/H''' exchanger (Siffert and 

Akkerman, 1988; Tse et al., 1993). When the [Ca^+Ji of Fucus serratus spermatozoa 

was measured in the presence of either the phorbol diester, PMA, or H-7 the [Ca^+]i 

was stimulated and inhibited by 88% and 37% respectively. It would seem, therefore, 

that PKC has a role in regulating the intracellular concentration of free Ca^'*'. One 

possible mechanism consistent with these findings is that a chemo-attractant, 

released from Fucus eggs, activates PKC, which catalyses phosphorylation and 

thereby activation of the Na'*‘/H'*‘ exchanger of the ceil membrane. The activation of 

this exchanger would in turn produce a rise in the intracellular pH of Fucus serratus 

spermatozoa, which increases the [Ca^'*']i, both of which stimulate motility and 

respiration by activating voltage-dependent Ca^'*' channels.
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Many mechanisms seem to be involved in the regulation of the motility and 

respiration of Fucus serratus spermatozoa and the factors affecting the motility of 

these spermatozoa are shown in Figure 7.1.

The motility and respiration of Fucus serratus spermatozoa appears to be 

activated upon their release into sea water and the concentration of at least three ions 

in sea water viz. Na+, Ca2+ and Mg2+ appear to be essential in this activation. It is 

evident that the most important of these Is Na**’. The results of these studies suggest 

that the concentration of Na'*’ is regulated via various channels and pumps, i.e. the 

Na+/H+ exchanger, the Na+-dependent bicarbonate/chloride exchanger and the 

Na+ZK'*' pump. The presence of these exchangers/pumps In spermatozoa from Fucus 

senatus has been implicated by the use of specific inhibitors and activators. By 

mechanisms already discussed It is highly probable that It is Integrated activity of 

these pumps which cause the demonstrated increase in intracellular pH. This rise is 

closely linked with increased motility and respiration of Fucus serratus spermatozoa, 

and evidence indicates that the increase in nrK>tility is directly mediated through 

activation of the dynein ATPase of the flagella. Any factor that increases the activity of 

this enzyme will increase the rate of respiration. All the results strongly suggest that 

respiration and motility of these spermatozoa are closely linked, most likely because 

the ATP produced by respiration is used primarily by the dynein ATPase.

Second messengers, have also been strongly implicated in the 

initiation/reguiation of the motility and respiration of Fucus serratus spermatozoa. 

Indirect evidence with phosphodiesterase inhibitors and analogues of cAMP have 

shown that cAMP is involved and causes increases in motility. In most cells a rise in 

cAMP is triggered through the activation of adenylate cyclase and studies with 

forskolin indicate that this also may be the case in Fucus serratus spermatozoa. 

However, the first messenger which activates adenylate cyclase remains unknown, 

but a chemo-attractant released by Fucus eggs, similar to n-hexane, maybe the first
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messenger however, investigations to ascertain this first messengers exact role in 

initiating/regulating sperm motility need to be undertaken. Further work needs to be 

done on spermatozoa from Fucus serratus to Identify the phosphorylated protein 

products of a cAMP activated protein kinase.

Another second messenger system that appears to have a role in the regulation 

of sperm motility is the inositol phosphate pathway. Indirect evidence using activators 

and inhibitors have shown that protein kinase C may be involved In Increasing the 

motility and respiration of Fucus serratus spermatozoa. One action of PKC which may 

be involved In spermatozoa of Fucus serratus is the phosphorylation and consequent 

activation of the Na‘*'/H+ exchanger. This in turn would bring about intracellular 

alkalisation, thus activating the motility of spermatozoa. The activation of PKC activity 

could also regulate sperm motility through controlling the phosphorylation state of 

axonemal proteins. The existence of such a mechanism needs further investigation.

External Ca2+ is also Important in activating the motility and respiration of Fucus 

serratus spermatozoa, and Ca2+ appears to enter spermatozoa through a voltage- 

dependent channel. A rise in external Ca2+ levels causes a corresponding Increase in 

intracellular Ca2+ levels which correlates with an increase in the motility of Fucus 

serratus spermatozoa. Results In this study have also shown a link between a rise in 

pHi and an increase in the Intracellular concentration of free Ca2+ but the exact 

mechanisms by which [Ca2+]| regulates the motility of spermatozoa remains unclear. 

There are many Ca2+ binding proteins in cells Involved in a wide range of regulatory 

activities and further work is necessary to Identify such proteins and their role in 

regulating motility in spermatozoa from Fucus serratus.

From the work presented It is dear that the mechanisms that regulate motility In 

spermatozoa from Fucus serratus are complex and involve a number of different 

factors. Many of these factors such as pH appear to be general to all spermatozoa so 

far studied. The importance of other factors, such as Na+ and temperature, which are
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critical for the activation of sperm from Fucus serratus may be related to the 

specialised surroundings in which fertilisation occurs. It is clear that the action of each 

of these factors needs to be studied intracellulariy In order to fully evaluate the 

mechanisms by which they operate.
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Appendix 1.

Intracellular Free Ca^'*' Concentration.

The concentration of intracellular free Ca2+ ([Ca2+]|), using the fluorescent 

compound Fura-2-AM, was calculated using the equation of Grynkiewicz and 

colleagues (1985):

(Ca2+]| = Kd X (R - Rnf̂ jn) / (Rrriax “

Kd = the dissociation constant for the Fura-2-Ca2+ complex = 220 nM 
R = the ratio of fluorescence emission obtained after excitation at 350 and 385 nm, 
of spermatozoa loaded with Fura-2-AM.
f^mln = minimum fluorescence ratio of spermatozoa loaded with Fura-2-AM 
obtained in the presence of EGTA and manganese.
*̂ m€ü< = maximum fluorescence ratio of spermatozoa loaded with Fura-2-AM 
obtained in the presence of bromo A23187 and Ca2+.

For example, Rgure 2.1V which shows typical scans over the excitation range 

of 200 to 500 nm for spermatozoa of Fucus serratus loaded with Fura-2-AM in the 

presence or absence of Ca2+. The following values for fluorescence emission at 

500 nm were obtained following excitation at 350 and 385 nm.

Ruorescence Values
350 385

Spermatozoa loaded with 
Fura-2-AM (-Ca2+) 240 54.50

Spermatozoa loaded with 
Fura-2-AM + EGTA & manganese 165 68.75

Spermatozoa loaded with 
Fura-2-AM + Bromo A23187 & Ca2+ 310 36.90
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Appendix 2.

Abbreviations

BCECF-AM

[Ca2+]j

CAMP

dbcAMP

FCCP

Fura-2-AM

H-7

Hepes

Name of Compound

Adenosjne-5'-monophosphate

Artifical seawater

Adenosine-S'-triphosphate

2',7’-bls-(-2-cartx)xyethyl)-5(and-6)
carboxyfluorescein

2',7'-bis-(-2-carbo^ethyl)-5(and-6)
carboxyfluoresceinacetoxyl
methytester

intracellular concentration of free 
calcium

Adenosine 3',5'-cyclic 
monophosphate

Dibutryl adenosine 3',5' cyclic 
monophosphate

Dimethyl sulfoxide

2,4-dinitrophenol

Ethylene diaminetetraacetic acid

Ethylene giycoFbis (p-amino- 
ethylether) N.N'.N'.N'-tetraacetic acid

Carbonylcyanide-p-trifluoromethoxy
phenylhydrazone

Fura-2- acetoxy methylester

l-(5-isoquinoliny1sulfonyl)-2-methyl
piperazine

N-2- hydroxyethylpiperazine-N •2- 
ethanesulfonic acid
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Appendix 3.

Current Research

In the present study caudal epididymal spermatozoa showed some degree of 

motility. A recent report suggests that caudal epididymal spermatozoa in the rat are 

immotlle and they become motile upon ejaculation (Armstrong et al., 1994). It is 

probable that dilution of spermatozoa into Earles' medi^^as carried out in our study 

stimulated motility, whereas undiluted spermatozoa in caudal epididymal fluid, as 

observed by the above authors, are immotile. These authors examined the role of 

intracellular signal transduction mechanisms in regulating the motility of epididymal 

spermatozoa. The addition of Ca2+ to immotile spermatozoa Induced motility as did 

the addition of dibutryl cAMP, bicarbonate or the phosphodiesterase inhibitors 

caffeine and theophylline. These latter results suggested that the adenylate cyclase 

pathway is involved in the regulation of motility in rat caudal epididymal 

spermatozoa. These results are in agreement with our findings which suggest a role 

for Ca^+ and the adenylate cyclase pathway in the regulation of sperm motility both 

in rat epididymal spermatozoa and Fucus serratus spermatozoa. However, in 

contrast to our findings in rat epididymal spermatozoa Armstrong and colleagues 

(1994) showed that the addition of activators of protein kinase C (PKC), such as the 

phorbol diester PMA, failed to induce nrK>tility in rat caudal epididymal spermatozoa. 

These differences cannot be entirely explained by a dilution factor, as in our studies 

both diluted and undiluted spermatozoa responded to PMA with increased motility. 

Further studies using a variety of conditions are necessary to resolve these 

anomalies. In a recent study by Ashizawa and colleagues (1994a) on fowl 

spermatozoa the activators of PKC SC-9 and OAG inhibited sperm motility, and the 

inhibitor H-7 had no effect. Once again this is in contrast to our findings in the rat. in 

Fucus serratus the addition of phorbol diesters, known to activate PKC, also
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stimulated the motility of spermatozoa and the addition of H-7 caused a decrease in 

the motility. Ashizawa and colleagues (1994a) also reported that the addition of 

SC-9 and OAQ was also associated with a rise in the intracellular free Ca^'** 

concentration. It was not clear why the presence of these agents inhibited motility 

even though the intracellular free Ca^'*’ concentration increased, when in their 

absence such an increase stimulated nru}tility (Ashizawa et a!., 1994a & b). In our 

study the activators of PKC also caused a rise in the intracellular free Ca *̂** 

concentration in Fucus serratus spermatozoa and an inhibitor of PKC, H-7 caused 

a decrease in the level of intracellular free Ca^'*'. Other workers (Rotem et al., 

1990a & b) have also shown that the addition of phorboi diesters, as well as OAG 

stimulate the motility of human spermatozoa. Thus it appears that activation of PKC 

may well have species specific effects on the regulation of sperm motility.

Calcium as a signal transducer was thought to have two main effects on 

mammalian spermatozoa. Firstly, it modulates flagella wave form and secondly, it 

has been shown to inhibit motility when present at micrownolar concentrations 

(Undermann and Kanous, 1989). However, more recent studies have shown that it 

can activate motility at micixwnolar concentrations (Ashizawa et al., 1994b). Fowl 

spermatozoa, immobilised by raising the temperature from 30**C to 40^C, were 

restored to maximal motility by the addition of Ca2+. Further, In the presence of the 

Ca^+ chelator, BAPTA/AM the motility of intact fowl spermatozoa was negligible at 

30*’C, a temperature at which these spermatozoa are normally active. The same 

authors showed that the addition of excess Ca^+ caused a rise in intracellular free 

Ca^'*’ coupled with stimulation of motility. Once again these results are in agreement 

with our finding for Fucus serratus spermatozoa and imply that a rise in the 

intracellular free Ca^'*' concentration is vital for sperm motility. Calmodulin, the 

Ca2'*’-binding protein involved in mediating the effect of Ca^'*' on cellular processes 

(Means et al., 1982) has also been shown to be present in spermatozoa (Garbers et 

al., 1980). Ashizawa and colleagues (1994b) have shown that calmodulin is 

involved in the regulation of motility in fowl spermatozoa and this regulation is
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downstream of entry. The addition of the calmodulin antagonists W-7 and 

trifluoperazine inhibited the motility of fowl spermatozoa even in the presence of 

Ca^'*' and. although Ca^'*' restored motility in BAPTA/AM treated spermatozoa, it did 

not do so in the presence of W-7 (Ashizawa et al., 1994b). These authors also 

reported that both the oxygen uptake and ATP concentration of fowl spermatozoa 

are markedly lower in the presence of calmodulin antagonists, suggesting that the 

inhibition of motility of fowl spermatozoa obsen^ed in the presence of W-7 and 

trifluoperazine may be due to calmodulin-regulated energy depletion. Ashizawa and 

co-workers (1994b) have also suggested that calmodulin regulates sperm motility 

through stimulating adenylate cyclase and consequently increasing levels of cAMP, 

which is a prerequisite to the stimulation of sperm motility in most mammalian 

species.

As previously mentioned activation of sperm motility appears to be species 

specific. Other differences in the regulation of motility from, for example, fowl and 

mammals have been reported. Milliwnolar concentrations of Ca^'*' are required for 

maximal motility in fowl spermatozoa, whereas at this concentration Ca^'*’ inhibits 

the motility of mammalian spermatozoa (Ashizawa et al., 1994b; Tash and Means, 

1982). Cyclic AMP is required for the initiation and maintenance of motility in 

mammalian spermatozoa (Tash and Means, 1982; Linderman and Kanous, 1989), 

but it is not required to initiate fowl sperm motility (Ashizawa et al., 1994a & b). In 

our study, on the motility of Fucus serratus spermatozoa, we have shown that as 

with fowl spermatozoa m illk^olar concentrations of Ca^'*’ stimulate sperm motility. 

However, for these spermatozoa we have also shown, indirectly, that cAMP is 

necessary for the initiation and stimulation of motility. Thus the regulation of motility 

of spermatozoa appears to be unique to each species studied and the spermatozoa 

of Fucus serratus has similarities with mammalian spermatozoa, in that cAMP 

stimulates motility and PKC is also involved but, mill^molar concentrations of Ca *̂** 

stimulate the motility of Fucus serratus spermatozoa in a similar mannu’ to that 

observed with fowl spermatozoa.
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TabI* Two - Th« Eff»ct Of Temo ra tu f On Sorm  MotiHtv

Th» concentration of sperm was adjusted to 1 x 10'sperm/ml in all experiments

Temperature
oC

% Motility 1 Temperature 
_____________ |o C __________

% Motility 1 Temperature 
lo C

% Motility

4 10 5 21 l l i i 85
6 23 80
10 22 87
8 22 83
8 24 90
7 17 81
9 20 89
11 23 79
5 18 91
8 20 96
6 22 83
6 19 87
10 H 25 74
7 20 78
9 19 92

25 50 az 23
52 20
58 27
47 19
40 22
48 25
42 25
46 21
49 26
60 24
51 24
54 21
52 22
48 25
53 21









TabI# S»vn - Th« Effect Of Nâ ■ On Th> Oxygen Uotak» Of Sp»rm

AbaoilMmeaat
340nm

No Of Sparm 
xlOK

N oD iviaion«/
min

Abaorbancaat
340nm

N oO f Sparmx 
loV'

N oD M siona/
min

>SOmM •flOOmM
0.345 1.1 0.627 0.314 1.0 1.277
0.377 ^2 0.504 0.314 1.0 1.151
0.408 1.3 0.507 0.314 1.0 1.304
0.440 1.4 0.770 0.314 1.0 1.124
0.440 1.0 0.560 0.314 1.0 1.187
0.314 1.1 0.574 0.314 1.0 1.009
0.345 1.1 0226 0.314 1.0 1.241
0.345 1.1 0.831 0.314 1.0 1.329
0.377 12 0.600 0.314 1.0 1.225
0.345 1.1 0.473 0.314 1.0 1.203

4.200mM ^ m M
0.314 1.0 2.430 0.408 1.3 4.356
0.314 1.0 2256 0.471 1.5 4.283
0.251 0.8 1.840 0.659 2.1 7.350
0.471 1.5 3.582 0.345 1.1 2.970
0.628 2.0 4.610 0.283 0.9 2.700
0.345 1.1 2.621 0.314 1.0 3.410
0.408 1.3 3250 0.314 1.0 3.210
0.345 1.1 2.409 0.440 1.4 3.914
0.471 1.5 3.375 0.440 1.4 4.424
0.440 1.4 3.413 0.440 1.4 4.264

.^360mM 4400mM
0.345 1.1 4.092 0.314 1.0 3.590
0.597 1.9 6.574 0.345 1.1 3.256
0.314 1.0 3.850 0.534 1.7 5.780
0.283 0.9 2.970 0.722 2.3 7.245
0.408 1.3 4.459 0.816 2.6 8.840
0.408 1.3 4.875 0.314 1.0 2.950
0.408 1.3 4.550 0.314 1.0 3.580
0.408 1.3 4.654 0.283 0.9 2.853
0.408 1.3 4.680 0.314 1.0 2.800
0.345 1.1 4.048 0.408 1.3 4.875

+500mM
0.314 1.0 2.000
0.314 1.0 1.980
0.314 1.0 1.990
0.314 1.0 1.884
0.314 1.0 1.900
0.314 1.0 2.000
0.314 1.0 2.100
0.314 1.0 1.960
0.314 1.0 2.080
0.314 1.0 2.025









Table Thirteen - The Effect Of Ouabain On Jbm Oxy9en Uptake Of Sperm Incubated In QNflASW

Abeorbanee at 
340nm

No Of
Spam
x10>^

No
Divialona/
min

-t-Ouabain
0.314 1.0 0.176
0.345 1.1 0.216
0.722 2.3 0.380
0.471 1.5 0.141
0.408 1.3 0.267
0.345 1.1 0.081
0.283 0.9 0.095
0.440 1.4 0.203
0.534 1.7 0213
0.565 1.8 0.117

















Tabl«Nin»to«n.ThaEffactOfExtr«c*MulafDHQnThalniraMMafPHQfSMrm

Extrac«llutar
pH nuorMC«nc« RMMling« 

496nm 450nm

Fluor—c»nc< Roadingo
Aftor DigHonin
495nm «450

oHS.O
259 94 271 103
252 83 284 97
257 87 289 100

251 102 293 110
287 90 310 88
263 87 314 96

&& 297 79 328 75
267 116 357 119
293 129 319 115

ZZ 239 115 370 121
237 83 375 100
241 82 369 95

L& 253 81 381 86
287 145 359 113
231 105 385 107

SLZ 296 88 397 80
272 72 408 76
274 89 400 85

QA 302 107 449 93
226 66 437 81
261 127 430 107

6£ 238 95 486 97
269 128 481 108
256 109 469 102

&2 220 168 480 121
217 141 495 119
223 148 490 118

SA 123 74 504 108
115 78 474 106
119 61 500 101

10.0 138 66 588 105
157 74 539 99
184 52 550 80

oH6.0
&Q 323 68 299 77

333 81 288 88
328 70 293 75

6A 318 84 300 90
320 84 290 87
310 80 289 85

fi.fi 381 97 263 72
370 74 270 55
312 93 280 79

L2 232 64 251 63
247 63 283 68
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Tabi» TwenW-Fiv - Th> Effect Of CaffeitT (6mM  ̂On The Motiiitv And OxvMn Untato

Table Twenty-Six - The Effect Of Caffeine On The MolHitv Of Soerm

The concentration of sperm was adjusted to 1 x 1cFsperm/ml in all experiments

Time % Motility
Control e Caffeine

Time % Motility
Control -tCaffeine

Í2b f if i 84 Q.Sh 86 88
f if i 8Z 86 88
fiS 88 82 8Z
fi4 82 Z8
a i 84 81 84
82 86 Z8 88

lb 88 88 1.5h 58 86
62 85 56 86
68 88 66 86
6Z 88 55 8Z
6á 8Z 5Z 88
66 88 61 8Z

2b 46 81 2.5h 41 88
48 8Z 88 85
48 88 42 8Z
46 86 42 88
44 82 45 86
46 86 41 85

2b 8Z 84
88 86
8Z 88
8Z 85
86 85
86 86

















Tabl# Thirty-Thr—  - Thm Effact Of Forakdin On Thm QxvQtn Uptate Qt.Sfl«m

Table Thirty-Four - Th« Effect Of PMA M nM  ̂On TTt  Motilitv Of Soerm

Abeorbenceat
340nm

No Of
8 p ^
xIO»

% Motility
Abeorbaneeat
340nm

No Of
Spenn
xIO»

% Motility

Control ♦PMA
0.440 1.4 83 0.377 12 100
0.565 1.8 84 0.377 12 98
0.659 2.1 80 0.377 12 97
0.314 1.0 79 0.691 22 96
0.314 1.0 82 0.942 3.0 96
0.471 13 81 0.879 23 96
0.565 1.8 78 0.659 2.1 00
0334 1.7 83 0.942 3.0 96
0283 0.0 81 0.848 2.7 98
0.471 1.5 78 0.848 2.7 97







TabtoThirty-h«n>.Th« Effect Of H-7(>iPMASIim ula<KiSotfin

Ab^ortMutc« at 
340nm

No Of
Sparm
x I O l

%MotlHly
No
DMaiona/
min

Abaorbanea
at340nm

No Of
% Motility

No
DIviaiona/
min

Control +PMA
0.597 1.9 86 6.726 0.330 1.05 100. 11.526
0.565 1.8 87 7.182 0.377 12 100 12.383
0.345 1.1 81 4274 0.440 1.4 100 15.190
0.377 12 83 4.380 0.597 1.9 99 19.847
0.408 1.3 83 4.411 0.345 1.1 97 11282
0.471 1.5 85 6206 0.377 12 98 13.096
0.502 1.6 81 5.520 0283 0.9 99 9.300
0.345 1.1 82 4271 0.408 1.3 99 14.365
0.408 1.3 87 4.741 0.408 1.3 98 14.044
0.377 12 87 4.896 0.345 1.1 99 11.531

+PMA + H7
0.345 1.1 30 0.495
0.377 12 27 0.600
0.408 1.3 28 1.040
0.345 1.1 27 1.012
0.345 1.1 30 0.935
0.314 1.0 29 0.380
0283 0.9 29 0.594
0.754 2.4 26 1.056.
0.345 1.1 28 0.946
0.314 1.0 26 0.620

Table Forty - The Effect Of EGTA On The Motility Arxi Oxygen Uptake Of Sperm

Abaorbance at 
340nm

No Of 
Spann
X 10»

% Motility
No
DMaiona / 
min

Abaorbanca
at340nm

No Of 
Sperm x 
10»

%MotHity
No
Divlaiona/
min

Control +0.01 mM
0.314 1.0 96 3.855 0.597 1.9 77 5.966
0.314 1.0 97 3.552 0.314 1.0 73 2.486
0.314 1.0 96 3.461 0.597 1.9 74 4.722
0.314 1.0 91 3.764 0.597 1.9 72 5.926
0.314 1.0 91 3.864 0.754 2.4 76 7.538
0.314 1.0 92 3.500 0.942 3.0 73 7.521
0.314 1.0 95 3.902 0267 0.85 75 2.587
0.314 1.0 93 3.412 0.314 1.0 78 2.583
0.314 1.0 91 3.826 0.440 1.4 78 3.513
0.314 1.0 96 3.460 0.471 1.5 75 4.676

+0.1 mM +1mM
0.471 1.5 39 4.428 0.534 1.7 32 3.871
0.345 1.1 35 2.746 0.659 2.1 24 3.866
0283 0.9 31 2228 0.345 1.1 22 1.948
0.754 2.4 43 7.058 0267 0.85 30 1.865
0.502 1.6 41 4.757 0.754 2.4 26 4.618
0.377 12 44 3.018 0.973 3.1 34 7270
0.565 1.8 33 4.459 0.848 2.8 31 6.334
0.440 1.4 30 4.106 0.848 2.7 25 5.969
0.502 1.6 36 4.754 0.471 1.5 25 2.784
0.471 1.5 34 3.761 0.597 1.9 31 3.610

+10mM
0.314 1.0 18 1277
0.314 1.0 15 1.326
0.314 1.0 17 0.880
0.314 1.0 17 1.171
0.314 1.0 19 0.929
0.314 1.0 18 1258
0.314 1.0 17 1.080
0.314 1.0 15 1251
0.314 1.0 16 0.903
0.314 1.0 15 0.955
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