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Pater Wood

Abetract

This Thesis describes the measuresent and interpretation of 
diffuse optical scattering fro« concentrated colloidal | 
dispersions. Hovel «easure«ent techniques using optical fibres are I 
investigated. These are applied to monodisperse spherical latexes 
«rtiere the results are compared with theories of radiative 
transport» and also to plate~lilie Kaolinite particles where 
non-random particle orientation by shear flow is studied at small 
and large Reynolds number.

For the spherical latex dispersions various fibre
configurations are investigated, the results being compared with 
multiple scattering predictions of the inverse scattering length 
S. All configurations give values of S which show the theoretical 
particle size dependence, but the single fibre bundle gives S in 
good absolute agraeawnt with that calculated from an accepted ̂ 
approxlatate solution to the radiative transport equation. | 
Comparisons of S between the single fibre bundle and the | 
conventional integrating sphere method show good agreement, but 
only after maKing large specular reflectance corrections in the ! 
latter case. Measurements made on latex volume fractions <v> up to ;
0.4 shotted a Mxlaum in S at about v » 0.2, Interpreted as ¡ 
non-random destructive interference between ordered particles.

For the Kaollnite dispersions S is measured as a function of 
shear rate, volume fraction, particle size, pH and deflocculant 
concentration. Osing the anomalous diffraction and Rayleigh-Gans 
light scattering approxlauitlons, calculations are given which 
support a mods of particle orientation expected below the critical 
Reynolds number from the particle hydrodynamics over a wide range 
of rotational Peclet number. The results for concentric cylinder 
flow above the critical Reynolds number are explicable in terms of 
Taylor vortices. The shear—induced changes in S in laminar flow are 
shown to be a useful practical measure of the state of flocculation 
of the dispersion.
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CHAPTER It INTRODUCTIOM.

<1.1) Introduction.

Sinçfl* scattering from dilute dispersions of spherical 
particles Is well characterized theoretically. The majority ot the 
optical experimental work carried out on colloidal dispersions has 
been confined to this regime. Little quantitative work has been 
done on well-characterized concentrated samples where the observed 
light can be considered to have undergone more than one scattering 
event. This Is an area of considerable practical Importance In lor 
example paints or food, where the appearance of the sasple Is of 
prime In^ortance. Such a sample will not t>e described using 
single scattering theory.

The work In this thesis Investigates new methods of measuring 
multiple scattering In samples using Incoherent optical fibres. 
The agreement between experiment and theory Is Investigated by the 
use of ««ell-characterIzed sas^les, <i.e. monodlsperse spherical 
particles of knot«n size, lll«imlnated by monochromatic light >, and 
by making comparisons between the optical fibre methods and the 
classical Integrating sphere awth^. In the latter part of the 
Investigation It Is sho««n that optical fibres can be usefully 
employed to measure flow-orlentational effects In concentrated
non-spherical colloidal dispersions.



I

(1.2> Th« scatfrlna proc«sg.

When an obstacle such as an atom, molecule» solid or liquid 
particle Is Illuminated by an electro-magnetic wave, electric | 
charges within the object are set In oscillatory motion by the 
electric field of the Incident wave. The accelerated electric 
charges emit electro—magnetic energy. This secondary radiation Is j 
termed the scattered radiation. The particle may also convert some i 
of the Incident energy Into another form, such as heat. This 
process Is known as absorption. The Interaction between the 
incident wave and scattering particle may therefore be seen as a | 
puir0^y electro—magnetic phenomena, and hence can In principle be 
characterized by the application of Max%#ell’s laws [11. In . 
practice the application of Maxwell’s laws to the Interaction of 
radiation with particles, of even simple geometries, leads to 
solutions that are highly complex (2,31. It has only recently 
proved possible with the advent of cheap and fast computing, to ; 
evaluate the solutions to these equations quickly and easily
within the laboratory. Previous to this tabulated results had to 
be used to provide reasonable approximations to the actual 
scattering sample. The application of Maxwell’s laws to the 
Interaction of an electro-magnetic wave and a single spherical 
particle, (widely known as Mle theory (31), has proved highly 
successful for single scattering calculations.

However, Mle theory only considers a single particle 
Illuminated by monochrosuitlc radiations an Idealised situation 
which Is rarely achieved In situations of practical Importance, i



«there the scattering particles eay be such that the mean free 
path length of a photon «tithin the sample is very much less than j 
the sample thickness. An understanding of the scattering processes 
involved In these materials is highly desirable. It is the ! 
scattering and absorption of light that determines the appearance 
of the material.

(1.2.1) Light scattering from groups of particles.

Mle theory can be applied to groups of particles so long as
the folloiflng conditions are fulfilled:

<a> The particles are of kno«m size (or size distribution), and 
kno«im refractive index.

(b) The mean free path length of a photon «»Ithln the sample is 
significantly greater than the thickness of the sample under 
consideration. (The thickness of a sample being the 
distance ««Ithin the sanqE»le betvwen the Illuminating source 
and the observer ).

(c) The particles are randomly positioned, or alternatively are 
ouch that the repeat distance is longer than the coherence 
length of the Illuminating radiation.

(d) The average separation of the time averaged positions of the 
particles is greater than the coherence length of the 
illuminating radiation.

Condition (a) arises from the simple consideration that «*e



must know what wa are looking at to ba abla to pradlct what will 
happan. Condition <b> ansuraa that tha Majority oi light will hava 
baan scattarad once and once only« l.a. tha sample under 
consideration la dominantly singla scattering. Conditions <c) and 
<d) ensure that no instantaneous coherent phase relationship 
between light scattered by differing particles will exist, i.e. 
light scattered from one particle will not In general Interfere 
either constructively or destructively with light scattarad from 
another. Under these conditions the applications of Mie theory is 
relatively straight-forward, and hence Mle theory can bo easily 
applied to optically thin saa^les with large Interparticle 
separations.

However, single particle (Mle) theory Is inapplicable to 
optically thick samples, where a largo proportion of the observed 
scattered light has undergone more than one scattering event, and 
to sanóles where Interference effects between light scattered by 
neighbouring particles becomes Important. It Is Important here to 
distinguish between these three types of scattering.

(1.2.2) Single, multiple and dependent scattering.

Single scattering occurs when observations are made through 
an optically thin sample. The term optically thin Is here strictly 
defined as meaning that the sample thickness between the source 
and the observer is much less than the mean free path length of a 
photon within the sample.



Multlpl* scattering is where the observed radiation can be 
considered to have undergone, (on average). More than one 
scattering event. This occurs in saeples that are optically thick. 
The term optically thick is here strictly defined as meaning that 
the sample thickness between the source and the observer is much 
greater than the mean free path length of a photon within the 
saiqple.

Dependent scattering occurs when interference takes place
Ibetween light scattered from neighbouring particles. This 

implies that the nelghtwurlng particles are at a separation less 
than the coherence length of the scattered light. This in turn 
Inqplies that the particle separation is less than the coherence j 

j length of the illuminating radiation, (the coherence length of the 
scatttered light cannot be greater than the coherence length of 

j the illuminating light).

Multiple scattering samples may therefore scatter light 
dependently or Independently depending upon the coherence length 
of the Illuminating radiation. The coherence length of the 
Illuminating radiation is giv^ by_the expression [4],

Coherence length  S: V A X

w hereA X " wavelength o f  Il lu m in a t in g  r a d ia t io n ,

\  - bandwidth of illuminating radiation.

The more concentrated the sample, the lower the 
inter-particle separation, and hence the more likely that



dependent scattering will occur. It the particles within the 
saaqple are in Motion, then at some instant in tine there will be 
particles with low enough separations lor their scattered light 
to interfere. This will result in teiq>oral fluctuations in the 
observed scattered light as the particles move together and apart 
within the sample. However, if the illuminated portion of the 
sample is large enough, or the observation time long enough, these 
temporal fluctuations will be averaged out.

For a brief introduction to the subject of multiple 
scattering see reference [S].

<1.2.3) Extinction, scattering, absorption and asymmetry
parameters.

A scattering particle will remove some energy fr<» the 
incident beam. If there are no particles present an observer would 
detect a power P. If a particle is placed between the observer and 
the source, the observer will now detect a power P, , where P, <P. 
We say that this drop in detected power is due to extinction of 
the beam. This extinction may bo due to either scattering or 
absorption by the particle, or. a g.osd>lnatlon of both. If wo define 
W ^  as the amount of power absorbed by the particle, W ^  as the 
amount of power removed from the Incident beam by the particle, 
and W„* as the amount of energy scattered from the Incident beam 
by the particle, then:

^ • ....(1.2 .1 )
The ratio of the povrer removed to the Incident Intensity, I,



defines a quantity with units of area. The areas Ctcand
(the extinction, scattering and absorption cross sections 
respectively), are defined as:

•no
The efficiencies for extinction, scattering and absorption are 
defined thus:

- Q^v/ht Q«» “ and 0,̂ , “ <iu »
where A is the scattering particle cross-sectional area projected 
onto a plane nornal to the direction of propagation of the 
Incident beam. It therefore follows from equation (1.2.1) that;

Q*«»- “ + Qa »
The asymmetry parameter g is defined as;

“ COS& “ cosCHp(&) d(cos0 ).

where p( &) optical power (for unit irradiance) scattered into a 
unit solid angle &, &  being defined as the angle made by the 
scattered light to the forward (incident) beam direction.

The quantity p(9 )  is usually termed the phase function, or 
the scattering diagram. The asyaaietry parameter describes the 
angular dependence of the light scattered from the particle. If 
the particle scatters light equalljf in the forward and backward 
directions, g is equal to zero. If the particle scatters light 
more strongly in the forward direction; 0<g<l, if the light is 
scattered more strongly in the backward direction; 0>g>-l.

A further useful scattering parameter 0^ is defined by,
Qf> ~ Qc4’'* Qf^coad«



(1.3) ScattTlng SMapl«s.

(1.3.1) Latex Sarolas.

Nonodlaperse spherical latex particles suspended in water 
provide a nearly ideal sasple for studying multiple scattering. The 
low size dispersion allows for easy sample characterization. The i 
low relative density 1.05, means that settling effects within the | 
sample are minimized. The refractive index of the latex particles 
is 1.60, (manufacturer's data, at 589 nm>. Latex samples used in 
this investigation were provided from three sources;
(1) Polysciences O.K.,
(li> Sigma Chemicals,
(ill) Unilever.

The Polysciences samples were provided at a quoted concentration of
2.5 % by weight, corresponding to a volume fraction of 0.0238. This 
was checked by weighing and drying of the sasples. They were 
provided surfactant free. All the Polysciences samples had a quoted 
standard deviation in particle size of less than 5 %. The Sigma 
samples were identical to the Polysciences saoplas except that they 
were provided at a concentration of 10 % by weight, (a volume 
fraction of 0.096). The sasplcw obtained from Unilever consisted of 
t%»o highly concentrated samples. They were provided with a long 
chain polysMr surfactant added to the dispersion. The exact 
coiposltlon of the surfactant was unknovm. The Unilever samples 
were only used for the experimental investigation into highly 
concentrated scattering systems, (chapter 8 ).



All saaqples war« obs*rv*d to b* stabl«» no «vidanca baing 
datactad for partlcla aggragatlon In fraah saaplas. Soaa aattllng j 
of partlclaa was notad for partlcla dlanatars largar than 1 micron» |

Ihowavar agitation of tha sanpla appaarad to raturn tha saiig>la to 
normal.

(1.3.2) Kaolinita clay samplas. |
j

It is not tha purposa of this taxt to provlda a datallad ' 
account of kaolin chemistry. The reader is rafarrad to rafarancas , 
[6 ], (7] and (8 ] for a more complete introduction to the subject. |
However for the purposes of understanding the rheo-optlcal
behaviour of the kaolinita clays a brief introduction to the 
subject is given hare. The following text is largely indebted to ; 
Molloy (91.

Kaolin is a naturally occuring aluminium silicate clay 
with a two-layered crystalline structure. Tha unit layer consists 
of an octahedral sheet of oxygen and aluminium atoms linked by 
covalent bonds to a tetrahedral sheet of oxygen and silicon atoms. 
[61. The basal spacing of kaolinita is 0.72 nm bet%Men j
corresponding sheets in stacked., unit layers» [6 ]. Tha layers are 
held together by Van dar Weals' forces. These being coaqparatlvaly 
weak» cleavage of the layers will occur along the parallel planes 
between them. This produces the flat plate-llka structure observed 
in electron micrographs. Kaolinlte particles are approximately 
hexagonal platelets» they can be approximated to by flat thin discs ! 
with an aspect ratio of approximately 10:1 (8 ]. Tha charge on the !



particle tace 1» always negative 16 1» due to IsonorpMc 
substitution. At the edges oi the Kaolin particle the surface is 
made up of the disrupted sheets of silica and alumina. It is 
similar to the oxide surfaces of silica and alumina» hence the 
charge-determining mechanism of the edge is that of an oxide 
surface. Thus the edge is positively charged below pH 7 and 
negatively charged above pH 7. The mode of aggregation is therefore 
pH dependent. For low pH the particles can flocculate in a 
face-to-edge mode due to the interaction of oppositely charged 
electrical double layers. This gives rise to a 'house-of-cards• 
H o c  structure [8 ]. At high pH» as a result of the interaction of 
extended double layers, a similar 'house-of-cards• may be formed» 
[10]. This model accounts well lor the change in viscosity with pH 
as observed in clay suspensions.

Measurements of the refractive index of kaollnite clay 
particles by differential refractometry give a value of 1.57» (91. 
The optical absorption of the particles is very low. It has 
been reported [121 that kaollnite particles suspended in an 
index-matching fluid »«ere transparent up to concentrations of 50 %. 
The relative density of kaollnite is 2.60.

The main saivle used in this investigation (SPS grade 
kaollnite)» were of a broad size fraction» see fig <1.3.1). The 
samples were provided by English China Clays» and were prepared» 
(unless otherwise stated)» according to their instructions to 
achieve maximum deflocculation of the clay particles in suspension.

10



The clay was suspended in de-ionized water and the pH adjusted to 
8.5 . 0.21 % by dry weight ot clay ot sodlua polyacrylate, <In the

I

form of Dlspex, a coanerclal surfactant), was then added. The ji
santples were then thoroughly mixed, using a magnetic stirrer, for 
at least half an hour. The sample pH was then checked and : 
re-adjusted to 8.5 If necessary. Bach sample was then left for ; 
at least 24 hours and mixed again Innedlately prior to an 
experiment, the pH was again checked and If necessary re-adjusted 
to 8.5.

e q u i v a l e n t  s p h e r i c a l  d i a m e t e r

IN  M I C R O N S .

Fig (1.3.1)
Equivalent spherical diameter of kaolin particles In BPS saiple. 
The equivalent spherical diameter Is determined by measuring the 
settling rate of a given size fraction, and equating It to the 

settling rate of a spherical particle.

11



I
Th« larg* slz* distribution of ths sanple, the particle shape, I 

and its high relative density limits the usefulness of using | 
kaollnite clays to study multiple scattering. However, their 
plate-like shape, large axis ratio and low optical absorption make ; 
kaollnite useful for studying rheo-optical effects. The large axis 
ratio maximises the hydrodynamic forces acting upon the sample, and ; 
hence maximises the change of scattering parameter on flow. The low ! 
absorption of the sample minimises ths attenuation of light. ; 
Hence the use of kaollnite is largely confined to the 
investigations of flow effects in concentrated colloidal systems.

12



CHAPTER 2; THEORY.

(2.1) Introduction.

This chaptar Is Intended to provide a brief review of multiple 
scattering theory. A useful starting point for this Is the single 
scattering theory of Mle 12,3]. Mle theory provides exact j 
calculations of the scattering efficiencies for single particles. ’ 
These prove useful In quantifying multiply scattering samples.

(2.2) Mle theory.

It Is not Intended to provide a rigorous derivation of Mle 
theory here. This Is more than adequately covered elsetihere. The 
reader Is referred to standard texts (2,31 for a full derivation. 
Mle theory Is essentially Maxwell's laws of electro-magnetic 
propagation (1,41 as applied to a spherical particle. Mle theory 
allo««s the scattering properties of the particles, (Q«., 
and g>, to be evaluated from the particle size and Its refractive 
Index (relative to the surrounding medium). These properties are 
described by,

(a) the particle size parameter, x,
X - 2 n a / X

««here; a - the particle radius, and
*X m the wavelength of the Illuminating radiation In the 

continuous phase.

(b) The relative refractive Index of the particle, m.

13



m “ n, /n, p

n, “ the refractive index of the particle» and
n. - the refractive index of the continuous phase.* !

If n, is coBiplex then the particle is absorbing, i.e. non-absorbing 
particles have a real refractive index.

From Mle theory we obtain the following series summations to | 
calculate the scattering efficiencies.

(2n+l)[icu+lb„|] ....(2 .2 .1 >

i-t- - x ‘£ i i 2 n + l ) R e ( c u + W

^  cos^ ■

where;
+  n t e l l

•X ̂ Cy)’yt.(x) — yy (x )y> (y ) 
xyRly)X«W ~  y{;(x1yxily} ’

^  - y y«(y) y«Cx) — xysW  ydy'i 
yyÿip'lW — ’

...(2 .2 .2 )

....(2.2.3)

....(2.2.4)

....(2.2.S)

and y • mx.
The primes denote differentiation with respect to the argument.

I

The functions yjÇ̂ (x) and are defined in terms of J«(x>, thej

14



spherical Bessel function of order n, l.e.

- ( ¥ r x » ( z )

and

Also

I  a )  + X . J Z ) ]

^ ( Z )  +  i X«(Z)

«here X(Z) “ ....(2.2.8)

The factors a« and b„ may be calculated using the expressions:

, rrT x ]R e [l„ (y )]  “ R e[2 . (x)l ....<2 .2.9 )a„ -

,(X)

where A.,(y)

[ mAty) + x]Re[?,..(><J -  Re[I,..(>o] 
[m A.yi+§]Lw-Lw
-  -y  ̂(y)/ yccy)

....(2 .2 .1 0)

The basic coaqputatlonal procedure for evaluating thè scattering 
paraswterSf frosi ■ and x, Is to calcolate thè values of and An 
for each n froai thè followlng récurrence relatlonshlps. The 
quantltltes a« and b, may then be calculated, and thè serles summed 
to obtaln thè regulred scattering effIclencles. The récurrence 
relatlonshlps necessary to calculate A„ and ara»

15



where
A,<y) - -n/y+(n/y-A,.,<y>),

A,(y> - co»<y )/8in<y >,

and - <2n-l/x)2^ (Xi-^(XI
where - alnx+lcoax,

• cosx-lelnx.
Care must be taken when calculating the efficiency factors as 

the recurrence relation for 'L,<x) can become unstable for large 
values of n, leading to large errors [131. It is also advisable to 
use a downward recurrence relation to calculate An(13]. Equations
(2.2.1). (2.2.2) and (2.2.3) require summations to infinity, however 
it has been shown that the series quickly converges to a limiting 
value in a little over x terms [131. It has been shown that (13) to 
obtain 4 figure accuracy the number of terms required is 
approximately x 4x̂ *+ 2

A double precision Fortran programme was written to evaluate 
the scattering efficiencies, the programme coding is given in 
appendix I.

The values of Q*c. , Qr calculated by the
programme were initially compared with the tabulated values of 
Wlckramasinghe (141. Wlckramaslnghe gives tabulated values of Q... 
Qfr and C08&  (for both absorbing and non-absorbing spheres), for 
values of m ranging from 1.1 to 2.0 and values of x ranging from 
0.1 to 15.0. It was noted that excellent agreement between the 
programme results and the tabulated values of Wlckramaslnge was 
obtained for all Q«w values. However, large discrepancies were 
observed between the tabulated and computed values of Q̂ r and cos& .
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Careful checking revealed no coding or theoretical error in the 
prograaMM. CoeparIsons of values of cosò- and were nade with 
those ot other authors. These were; Blevln and Brovm [151, 
Brlnkworth [161, Irvine [17,181 and Mehta [191. In all cases 
excellent agreeatent was noted lor all values ol and cosÒv 
(The values ol m In the published values ranges Iro* 1.2 to 2.4. The 
values ol x ranges Iros 0.2 to 2.4). It was therelore concluded that 
the prograanae was correct. It follows that WlcKrawaslnghe s 
values ol and cosò are incorrect. There follows a brief 
explanation as to the laeanlng ol Wlckramaslnghe's values.

The asymatetry parameter cos& (frequently denoted by g). Is 
defined as [3],

cosò cosò P< 0 >d( cosò*» ....(2 .2.11)

where p(0  ̂ “ the phase function ol the scattering particle,
- the optical power (for unit Irradiance) scattered 

Into a unit solid angle about a given direction 9 ,  9- 

being the angle between the scattered light and the 
Incident bean.

p(9 > Is nornallzed such that,
r* . ^

p(9>d(cos9> “ 1 ....(2 .2.1 2)

The quantities Qf, and cM@-are related (by definition) to the 
normalized scattering and extinction cross-sections Qm  and Quv by 
the equation [3],

• Qu) “ Qm, .cos9  ....(2.2.13)
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For non-absorbln9 particlas this simplifies to,
Qfr - OicaCl-COS^),

as QtJ" “ Qi“ •

....(2.2.14)

It Is Instructive here to consider the scattered radiation from 
large spheres. From Van de Hulst [3] the following table Is 
reproduced. It separates the contributions to Quk , Q««» and cos0-
into that from scattered light and that from diffracted light.

Diffracted
Light

Reflected (■ 
Refracted Both

2
1+w

< l+wg.)/( 1+w >

Where; w - the albedo, or whiteness of the particle,
g,- the value of cosQ-when diffraction effects are excluded.

Substituting the values of Q«4 , Qw* and cos§- from the above 
tables for both diffraction and scattering, we obtain from (2.2.13),

m e e e e e ( 2 s 2 e  X5 )
If we now perform the same operation, but exclude the diffracted 
contribution we obtain,

■ X*WQ  ̂ e e e e e C2 e 2 e X 6 )

Bquatlons (2.2.15) and (2.2.16) are Identical, It therefore follo*is 
that the diffracted contribution to the value of Qp. Is zero. It 
follow from the previous table that for very large, non-absorbing 
particles, (l.e. x>>! and W"1 ),

cos 3 * • ( l+».)/2

g, • 2cosé“l ....(2.2.17)
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Conparlsons of cos0- as calculated by the programme given In 
appendix I and those tabulated by Wlckranaslnghe, for large 
non-absorbing particles, to a good approximation, agree with 
equation <2.2.17> when g Is replaced by the Hlckramaslnghe value of 
COS0V It would therefore appear that Hlckramaslnghe has calculated 
his value of cos^ neglecting the contributions from diffraction. 
This Is not stated In his text. He states that his value of cosgh Is 
calculated from the expression.

C O S 0 - - n(n-»-2) Rei a»a„^+ hhtul + Zn-t-l Re(a«bh 1 
X <n>l) n<n+l)

This expression Is identical to that used to calculate cos0- by the 
Fortran programaie. This Is Inconsistent with his results.

In summary then It would appear that Hlckraataslnghe has 
excluded the diffraction contribution to cos5 - In his tabulated 
values. This contribution has not been excluded from his values of 
Qua , the resulting cosqputatlon of Q̂ , using these two values Is 
therefore incorrect. It can be seen from the fact that equations 
( 2.2.15> and <2.2.16) are Identical that Qf, may be calculated from 
values of Q m  and cosò’ either both Including or both excluding the 
diffraction contributions. However negelectlng the contribution In 
either Qm  or cos0- and than Including it In the other will lead to 
Incorrect computations of Of, . This would appear to be
Hlckramaslnghe*s error.

Figs (2.1.1), (2.1.2) and (2.1.3) illustrate the calculated
values of and cosò (respectively ) as a function of particle
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size for a relative refractive index of 1.2 and no alMorptlon.

Fig (2.2.1)
Qm > as a function of particle size. 
Relative refractive index - 1.20.

The 'scatter* of points evident in fig <2.2.1) for x > 15 is in 
fact due to a low anplituda ripple in Qm  . This has been widely 
reported elsetdiere (2, 3 >13»14 1.
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Fig (2.2.2)
Q. »B a function ot particle size. 
Relative refractive Index ” 1.20.
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____ Flo <2.2.3)
COS0- aa a function of partlcla slza. 
Ralatlvo rafractlva Index “ 1.20.
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(2.3) Multiple acattTlna theories.

(2.3.1) Introduction.

The scatterIng properties ol a sample are determined by the 
scattering eftlclencles of the constituent particles, <l.e. how much 
incident light Is scattered by the particles), and the angular 
dependence ol the scattered light, <l.e. how 'scattered* Is the 
scattered light). These quantities can be determined lor 
particles In the single scattering regime from Mle theory. It Is 
highly desirable that the exact nature ol the relationship between 
the scattering power ol a sample, and the scattering elllclency and 
scattering asymmetry, be discovered. Some advances have been made In 
this area by BrlnKworth [201, and others (21,22,231. There still 
remains the question as to whether these quantities may be 
calculated from single scattering theories, and 11 so over what 
range ol particle separations it Is valid to do so.

The following text presents some multiple scattering theories, 
and by comparison ol them, seeks to find a suitable method ol 
determining the scattering po%»er ol a sample from a knowledge ol the 
constituent particle properties.

Recently some work has been done using highly mathematically 
complex [24,25,26] or co«®utatlonally Intensive [27,28,29] models to 
describe multiple scattering In particular situations. These models 
are not considered here as they are not particularly instructive, 
and do not aid an Intuitive understanding ol the multiple scattering
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process due to their specific nature.

(2.3.2) Kubellca-MunK theory.

The Kubelka-Munk theory [30,31] Is widely used In the paints 
and coatings Industry to evaluate the scattering properties of 
materials [32,33,34]. Its wide use stems from Its ease of 
calculation and Its relatively good agreement with experimental 
results. The theory assumes that light is scattered isotropically 
by the particles, and that the scattering sample may be 
characterized using only two parameters, the absorption coefficient 
K, and the scattering coefficient S. The use of only two parameters 
to characterize a sample makes the theory simple to manipulate and 
evaluate in comparison with many other multiple scattering theories, 
but it must also be In error when applied to samples that differ 
from the ideal of perfectly isotropic scatterers.

He shall consider a parallel sided layer of material that Is 
Infinite In lateral extent and of finite thickness, illuminated 
by an Isotropic diffuse flux over the whole extent of one of the 
parallel faces. The material is considered to be perfectly 
homogeneous. In that the Inhoawgeneltles necessarily present for 
scattering to take place are negligibly small In coavarlson with 
dimensions of the system. There are assumed to be t*ro oppositely 
travelling diffuse fluxes within the sample. One of these fluxes 
travels In the forward direction, (in the direction of the 
Illuminating flux), the other In the backward direction. These 
fluxes are denoted by the syad>ols 1 and J respectively. It is
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assumed that In traversing a thickness dz of sample that the forward 
and backward fluxes are reduced by an amount IKdz and JKd* 
respectively due to absorption. This defines the absorption 
coefficient K. Similarly, the forward and backward fluxes are 
reduced by an amount ISdz and JSdz respectively due to scattering of 
the diffuse fluxes. This defines the scattering coefficient S.

z+dz

Fig (2.3.1)
Forward and backward diffusa fluxes 
traversing a sample thickness dz.

Considering the change In the forward flux 1, In traversing a 
thlc)cnass dz of sample

dl - -lKdz-lSdz+jSdz , ....(2.3.1)
and similarly for the backward flux 1

-dj • -jKdz—lSdz-4-lSdZ . ....(2.3.2)
Solving these equations simultaneously gives,

i-(K(K+2S ) )i-0 , 
and J-(K(K+2S))J-0 ,
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where the primes denote ditlerentlatlon with respect to-j,.

Hence, ) • C, exp(«z >-»Ĉ  exp<-kz ) ....(2.3.3)

and 1 “ Cjexp(«z >+C*exp<-«cz ) , ....(2.3.4)

where;«- >/K(K-«-2S), C, - Cj(X-K)/(«+K) and C, - C^(«+K)/'(«-K).

This gives the general solutions tor the two fluxes within the 
sample. To obtain a particular solution we must apply the 
appropriate boundary conditions. As the formation of the 
Kubelka-Munk equations envisages a one-dlmenslonal problem It Is 
necessary to apply one-dlmenslonal boundary conditions, l.e. the 
sample Is considered to be Infinite In lateral extent, the boundary 
conditions may not vary over this extent. Suitable boundary
conditions are that;

(a) the sample Is Illuminated by a constant forward flux 1,, along 
one boundary over the whole of Its lateral extent and,

(b) the sample Is backed by an absorbing plane surface at a distance 
d from the first boundary.

Expressing these boundary conditions mathematically; (a) at z-0 
1-1, , (b> at z-d j-0. Hence the following equations for C, and Cj 
are obtained;

C. («■«•K ) - exp( -2»cd)(«-K) 
(k-K) («♦K)
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C. 1. •XP(
(«■»K ) - «x d ( -2««d )<«(-K) 
<ot-K) <ti+K)

The diffuse reflectance R of the sample is given by; j<0)/i(0), 
hence.

R - _____ S.sinh(*d)_______
< K+S >s inh< «td )+«cosh< xd >

.(2.3.5)

The diffuse reflectance R of the sample as a function of sample 
thickness is presented in fig (2.3.2) and fig (2.3.3).

Pig (2.3.2)
The calculated diffuse reflectance of sample as â  
function of illuminated sample thickness. S - 5 mm 
for all curves. Opper curve K - 0.1 miff, middle curve 

K - ImmV lower curve K - 10 miff.
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Pig <2.3.3)
The celculated diffuse reflectance of saeple as a^ 
function of llluelnated sample thickness. K > 0.1 am 
for all curves. Upper curve S ~ 10 moT, middle curve 

8 ~ 1 aaf,' lower curve S « 0.1 mm'J

This expression may be greatly simplified If K<<8, l.e. the 
alasorptlon of the sample Is negligible In cosg>arlson with the 
scattering. We cannot let K tend to zero directly In equation
(2.3.5): If K tends to zero, e( tends to zero and R tends to 1, l.e. 
R Is Independent of the sample thickness. However, by expanding the 
slnh and cosh terms In equation (2.3.S) and neglecting powers of K* 
and above we obtain.
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R - ___________sa__________< K^S >d̂ 3( ll-KSd >/( 3-̂ KSa ) .
Letting K now tend to zero gives,

R - Sd ___ (2.3.6)
< lî Sd)

The expression (2.3.6) may also be derived from equations (2.3.1) 
and (2.3.2) by putting K-0. Fig (2.3.6) illustrates equation
(2.3.4) for various values of S.

S.OO

Fig (2.3.4)
Calculated diffuse reflectance of sample as a function 
of illuminated saiqple thickness, (no absorption). 
Upper curve S - 10 mmi middle curve S - 1 maf̂  lower 

curve S ~ 0.1 bmT.'

29





(2.3.3) Radiative transtT theory.

Radiative transfer theory [36,37] considers the transport of 
energy across a medium, (the carrier or matrix). However, the 
medium has embedded within it particles which may both scatter and 
absorb the incident radiation. The radiative transfer equation 
arises from the consideration of the energy interchanges between 
beams of energy traversing the scattering sample.

Consider a beam of energy, defined as travelling within the 
range of angles between ^ d &  and 9-dd, (where d& is vanishingly 
small), of intensity Kx,»), where x is the lateral penetration of 
the sample, (the sample is assumed to be plane parallel, infinite 
in lateral extent, and of thickness d). The Intensity of the beam 
will be attenuated due to any absorption or scattering by the 
particles. This may be expressed by the equation;

dl(x,») - -(K*S)I(x,»)dl, .(2.3.7)

where dl(x,&) is the loss in intensity due to scattering and 
absorption in traversing a path length dl within the sample. 
Equation (2.3.7) defines the scattering and absorption
coefficients, 8 and K respectively. The beam under consideration 
will also gain by scattering from other beams traversing the 
sample. It is necessary hare to introduce the phase function 
?(&,&' ). This gives the intensity scattered frma a beam I(&* ) into 
the beam I(»). I(»') is defined analogously to I(&). The phase
function is normalized such that.

P(»,®* )dw* - _1_ P(e,e^‘ )dw - 1,
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wher« dw Is dellnad;
dw - sinOdOd^ > -dpd^»

where ^ is the azimuth angle around the axis, and p “ cosw.
The gain of Kx,e-> due to scattering from other beams Is therefore.

dl(x,»> - Sdl P(e,e-’ >I<x,e-* )dw* .(2.3.8)

Adding eguatlons (2.3.7) and (2.3.8) the total change In 
intensity of Kx,©-) In traversing a path length within the sample 
of dl Is obtained, l.e.,

M  - -(K+S)l(x,©) + S_ 
dl 4«

P(&,6^* )I(x,©’)dw* ,

udi - -(K+S)I(x,u) + S 
^dj ^ 1

The expression.
J(x,u) - 1, 

' i

P(p,p' )I(x,^* )dp* 

P(p,p* )I(x,|i* )d^’

....(2.3.9)

....(2.3.10)

is termed the source function.
Bguatlon (2.3.10) may be slnqpllfled by assuming Isotropic 

scattering. If the scattering Is Isotropic then the phase function 
reduces to,

P(p,p* ) - 1.
Therefore the source function Is

J(x,p) -1. I(x,p')e^',
'

and hence the equation of radiative transfer becomes.

u ^  - -(K+S)I(x,u) + 1 
• dx ' Y

,ji’ )d|i', ....(2.3.11)
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Th« source function may bo written.

J< x,p > “ 1. liXtjj’ )<Sp* “ i I(x,p' iOji' * i I(x,p* >d|jV

Now the forward and backward diffuse fluxes are

I<x,p')dp’ and U x )  - K x , p ’)dp’ .(2.3.12)

Hence the source function may be %«ltten
J(x) - lyx) + ll(x>

2 2
Equation (2.3.11) then becomes,

udì - -(K+S)I(x,p) + §(yx)+I.(x)]
'  3 x  2

Equation (2.3.13) may bo Inteqrated to obtain two dependent 
differential equations, in terms of the forward and backward 
diffuse fluxes.

.(2.3.13)

d jp K  x,p>0 )dja ■ -(K+S) l(x,p>0)dp + § [ I^(x)+i;(x)ldp, ....(2.3.14:

^  ml( x,p<0 )dp “ -(K+S) l(x,p<0)dp + I [ I^x)+I(x) Jdp. ....(2.3.15)

The terms on the left hand side of equations (2.3.14) and (2.3.15) 
luiy be evaluated uslnq the Schwarzchlld approximation (371,

pl(x,p)dp ^  1 I(x,p)dp -

pl(x,p)dp i I( x,p )dp “ 1I.( X ).

Hence, equations (2.3.14) and (2.3.15) become,
1 ^ +  - -(2K+S)I*+ SI.,
2dx

...(2.3.16)
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- -<2K+S)I_- SI^ .
2dx

....(2.3.17)

Equations (2.3.16) and (2.3.17) hava tha fora of tha axprasslona 
darivad by Schuatar [38] and KubaDca and Hunk [30].

Equations (2.3.16) and (2.3.17) raprasant approxiaata 
solutions to the radiative transfer equation, equation (2.3.11). 
An exact solution to the radiative transfer equation nay be 
obtained using the source function calculated from the approximate 
solution. Assuming zero absorption, (l.e. K**0),

Id l^  -  -S(I-I_ ),
2dx
1«. - -Sdì-1.).
2dx

The solution to these simultaneous differential equations are,
- Ul-«-S(d-x),

USA---
I_ - IS(d-x).

1-t̂ Sd
Prom equation (2.3.12) we may obtain the source function,

J(x,u) - l(l4.+ i;.) - li l/2-*-S( d-x ) ) ....(2.3.18)
' 2 1+53

Equation (2.3.10) nay be Integrated to obtain expressions for the 
forward (^>0) and backward (|i<0) intensities [36],

l(x,^>0) - I( 0,p>0 )exp(-( K+S )x/p )
* §_ lj( t,p )exp(-(K+S)(x-t )/p )dt, ....(2.3.19)
P K

l(x,p<0) - I(d,p<0)exp(-(K+S)(d-x)/p)
:t,u)exp(-(K+S)(t-x)/u)dt, ....(2.3.20)
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l(0»|i>0) Is the forward incident intensity at x“0, and 
l(d,p<0) is the backward Intensity at x**d.

For the non-absorbing case, with no Illumination at the distal 
boundary, (i.e. K»0, l(d,^<0)>0>,

K0,jj<0>- SI.
1-fSd)

t < 1/2+Sd >exp( > >-Stexp< -St/'fi) Idt. ...(2.3.21)
ii\ A'V'OUI /

J

Therefore,
K0,u<0) - I. [ < 1/2-u )(l-exD< -Sd/u ) )-«-Sd 1....... (2.3.22)

(1+Sd) ' '

From equation (2.3.12) the backward flux, I_is given by;

I_ - l(x,yj<0)dp.

Hence the backward flux at x-0 is.

I. ■ I(0,M<0)dp - I.
' ri+s53

((1/2-p )(l-exp( -sa/’jl ) )-»̂Sd ]dp...... (2.3.23)

I.> I. [ B, ( Sd)( Sd^( Sd ) ) ( Sd-SdexD(-Sd ) ) 1........ (2.3.24)
fTfSn ----2---- “2

where the function B,(a) is defined thus [39];
Bn(a) “ lexp( -ax )dx.

I x"1̂
Abramowltz and Stagun [39 ] provide useful approximations for 
calculating B„(a).

(2.3.4) Comparison of radiative transfer theory with Kubelka-Munk
theory.

The purpose of this section is to examine the limits over
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which the KubeXke-MunK equations may be meaningfully applied. The 
second approximation solution to the equation of radiative transfer 
is not an exact solution in that it uses an approximate source 
function. However, Kottler 1381 has shown, by comparison of the 
second approximation with an exact solution, that the second 
approximation is a good approximation to the exact solution for the 
non-absorbing isotropically scattering case. Hence a comparison of 
the second approximation with the KubelKa-Munk theory will be 
instructive.

Table (2.3.1) compares the diffuse reflectance of a 
non-absorbing isotropically scattering sample as calculated using 
equation (2.3.24) and the Kubelka-Munk equation.

Sd
(1-t̂ Sd)

It can be seen from table (2.3.1) that for low values of Sd, 
(l.e. Sd<0.1), there is very poor agreement between the two
expressions. However, as Sd is Increased the difference between the 
expressions is rapidly reduced, l.e. when Sd • 0.50 the difference 
between the expressions is 10 %, when Sd is increased to 1.0 the
difference is reduced to 3.5 %. It can hence be concluded that the 
application of Kubelka-Munk theory to samples where Sd<l will 
lead to large errors. To evaluate the effects of fitting 
experimental results obtained over a range of Sd values to the 
Kubelka-Munk theory, data was generated using equation (2.3.24), 
(with S»1 mm*>, and fitted to the Kubelka-Munk equation using a 
least squares fitting routine. The diffuse reflectance was 
calculated for path lengths between 0 and Sd(max), in equal steps
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of 0.01. Tabi« (2.3.2> illustrate« the fitted Kubelka-Munk value of 
S as a function of Sd(MX).

Sd R(R-T ) R< K-M > % difference
0.01 0.0252 0.0099 154
0.02 0.0435 0.0196 122
0.03 0.0594 0.0291 104
0.04 0.073« 0.0385 91.4
0.05 0.0867 0.0476 82.0
0.0« 0.0988 0.0566 74.6
0.07 0.110 0.0654 68.5
0.08 0.121 0.0741 63.3
0.09 0.131 0.0826 58.9
0.10 0.141 0.0909 55
0.12 0.159 0.107 48.6
0.14 0.176 0.123 43.4
0.16 0.192 0.138 39.1
0.18 0.207 0.153 35.5
0.20 0.221 0.167 32.4
0.25 0.247 0.200 26.3
0.30 0.281 0.231 21.8
0.35 0.307 0.259 18.4
0.40 0.330 0.286 15.7
0.45 0.352 0.310 13.5
0.50 0.372 0.333 11.7
0.60 0.408 0.375 8.91
0.70 0.440 0.412 6.94
0.80 0.469 0.444 5.49
0.90 0.494 0.474 4.39
1.00 0.518 0.500 3.54
1.20 0.558 0.545 2.36
1.40 0.593 0.583 1.62
1.60 0.622 0.615 1.13
1.80 0.648 0.643 0.795
2.00 0.670 0.667 0.569
2.50 0.716 0.714 0.256
3.00 0.751 0.750 0.120
3.50 0.778 0.778 0.058
4.00 0.800 0.800 0.029

Table (2.3.1>.
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Sd(max) Fitted value of S/ mm"
20 1.02810 1.032
5 1.048
4 1.050
3 1.062
2 1.075
1.5 1.1321.0 1.184
0.9 1.193
0.8 1.2090.7 1.221
0.6 1.240
0.5 1.291
0.4 1.346
0.3 1.434
0.2 1.540
0.1 1.735

Table <2.3.2)

It can be seen irom table (2.3.2) that as long as the maxlmun 
value of Sd exceeds 4 the fitted value of S should be within 5 % 
of the actual value. Hence the Kubelka-Munk expression would appear 
to be a reasonable approximation provided that the values of Sd 
over which It Is applied are large, (l.e. Sd(max) >4).

38



<2.3.5> Four-flux theory.

Four-flux theory [401 Is similar in its approach to the two 
flux theory of Kubelka and Munk. The main differences between the 
two theories arise from the fact that four flux theory considers 
collimated as well as diffuse fluxes within the sample. The 
assumptions of four flux theory are essentially the same as those 
for Kubelka-Munk theory, i.e. the sanqple is infinite in lateral 
extent, scatters light isotropically and is homogeneous. However the 
consideration of collimated flux, as well as diffuse flux. 
Introduces further scattering parameters to account for scattering 
from the collimated flux to the forward and backward diffuse fluxes. 
For the purpose of this analysis it is assumed that the sample is 
negligibly absorbing. As in the Kubelka-Munk theory the interchange 
betmen the fluxes is governed by the various scattering parameters. 
A single scattering parameter S determines the Interchange between 
the forward and backward diffuse fluxes. The scattering parameter S, 
determines the scattering from the forward collimated to forward 
diffuse flux, and a third scattering parameter S, describes the 
scattering from forward collimated to backward diffuse flux. It is 
assumed that all the light scattered becomes diffuse, I.e. no light 
is scattered from the forward or backward diffuse flux into the 
collimated flux. It is assumed in the following derivation that the 
backward collimated flux is zero. The forward and backward diffuse 
fluxes are denoted by 1 and j respectively, the forward collimated 
flux is denoted by I. Considering the change in the fluxes in 
traversing a thickness dz of sample the following equations are 
obtained.
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di - -<S, -»-Si )Idz, 
di - < )-i )Sdz-fS, Idz, 

and dj “ ( j-1 )Sdz-Sj,ldz.
Solving equation (2.3.23) gives,

I - C, exp(-( S , )z ).

....(2.3.25)

....(2.3.26)

....(2.3.27)

sco i t  ering 
sample.

I - ( S . +  ^)I
------- > —--------- >

i
>

!

____ L____ ^ ^ ______ 1 -  S  i + S; +

2 + dz
Plg(2.3.5)

Diffuse and collimated fluxes 
traversing a sample thlcKness dz.

Solving equations (2.3.26) and (2.3.27) simultaneously, and applying 
the boundary conditions that;
(a) The Incident collimated Intensity at z~0 Is I..
(b) The Incident diffuse Intensity at z~0 Is zero.
(c) The sample Is backed by an absorbing surface at z*d, gives the 
expression for the diffuse reflectance R,

R - ( ( S. -S )( 1-BXP( -S» d ) )♦( S, *S, )8d ) 
(l4^Sd)(S, ̂ 8« )

,..(2.3.28)

where S,~ S, -*■ Ŝ
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(2.3.6) Photon dliiuglon theory.

The photon dltiuelon theory (41,42] dlftere from the two 
previous theories greatly In Its approach to the multiple 
scattering problem. The theory treats photons In a diffuse flux as 
If they were molecules of a dilute gas. It Is assumed that the 
photons will diffuse through the scattering medium, under steady 
state conditions with a time Invariant light source. In a manner 
obeying Pick's law. Standard results lor gases give the (analogous) 
photon flux over a plane to be nc/4, (where n Is the number of 
photons per unit volume), and a diffusion coefficient D of cA/3, 
where A  Is the mean free path length of a photon within the 
scattering medium. These results have been reached for gases that 
have only small deviations from Isotropy, hence these results can 
only strictly be applied to photons of an Isotropic flux.

The forward and backward diffuse fluxes will be denoted by 1 
and ) respectively. Considering the flux across an elemental 
thickness of saaqple dz, the total flux density leaving the sample 
!•»

.dz.

and the total flux density entering the sample Is,

....(2.3.29)

1+J+^'b^ .dz. ....(2.3.30)

4 cx ot
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elemental thickness of sanqple.

When the sample is in equilibrium the net photon flux into the 
sample must equal the net photons absorbed by the sample« Denotinq 
the absorption coefficient of the sample as 5!^,then the rate at 
which photons are absorbed over a unit area of sample is,

<i+J )2!^dz.
The factor 2dz arises from considering the mean distance travelled 
by a photon in an isotropic flux in traversing a thickness dz of 
saaqple. Hence when the system is in equilibrium,

i—J ) + ( 1+J 0« ••••(2«3«31)
The photon density along the z-axis say be obtained from Pick’s law 
which states that the photon flux density along any coordinate u 
is,

-“(M)
For an isotropic flux u will point in all directions, it can be 
sho%m that the flux along the z-axls will then be.
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Hence the photon flux densities In the foxwerd and backward 
directions, <1 and j respectively), are;

- D/in\. ....(2.3.32)
‘  ■  " T  m -

.(2.3.33)

Substituting equations (2.3.32) and (2.3.33) Into (2.3.31) gives,

^  - nc ,D
or ..(2.3.34)

....(2.3.35)
From neutron diffusion theory Gate 1421 obtained,

^  ■ 3n

w h e r e l a  the Inverse scattering length. Expressions (2.3.16) and 
(2.3.17) are Identical If,

-  1 /A

For Isotropic scattering It can be shown that - HCk.* Gate
(411 has solved equation (2.3.34) for a sanqtle Infinite In lateral 
extent and of finite thickness d, backed by an absorbing boundary, 
to obtain an expression for the diffuse reflectance R, of the 
sample.

coth(. ....(2.3.36)
coth(.

(2.3.7) Comparison of multiple scattering theories.

Ishlmaru (431 has solved the radiative transfer equation, 
applied to a plane parallel slice of non-absorbing sample. 
Illuminated by collimated flux to obtain the expression.
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R - 3/4HC«><1-cÖsQ- ).d - l/4< l-exp(-MC^ .d>) .(2.3.37)
(1 * 3/4NCm. ( 1-C08^ >.d>

Me«ten (40] has shown that this Is Identical to the lour-tlux 
equation.

R - (S.- S)(l-exp(-S,d)) •»• (S.̂  ̂Sm )S.d,
< 1-fSd X S, S, )

...(2.3.38)

so long as.
s - 3/4NCk. (1-COS0-), ....(2.3.39)
S, - NC„,( 1/2+3/4COSÖ-), ....(2.3.40)
S» - NC,«(lX2-3/4cösö). ....(2.3.41)
S. and Sj may therefore be calculated using Hie

theory.

Brinkworth [44], has compared the photon diltusion theory of 
Gate {42], with the Kubelka-Hunk theory, to provide a usetul 
interpretation of the Kubelka-Munk coefficients R and S.

From the photon diffusion theory the forward and backward photon 
flux densities are,

....(2.3.42)

Also,

i - nc - 2flS[ »4 2\ix/

J - nc ♦ ß/'^\ .4 2Uz/
I d  - 3 n ^ H ] ^ .

....(2.3.43)

....(2.3.44)

The Kubelka-Munk theory gives forward and backward flux densities 
of.

and

di - (S-î K)i-Sj

^  - -(S+K)J+Si 
dz

....(2.3.45) 

....(2.3.48 )
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It follows that (441»
K -  a i/d z -a j/d z  

I+l
s -  i/2( ai/az-t-aj/az - ai/az-aj/az >

l-J 1+3
Equations <2.3.43), <2.3.44) ana <2.3.45) give,

1+3-nc , l-3"D/to\,
2 \az/

ai + ^  - c/^\ , 
az az 2 \az/

ana dl - ^az az
Substituting these values Into <2.3.47) ana < 2.3.46) gives,

K - 2^!!, «»'* S - 3/4^,- H!./
It Is however an assunptlon of equation <2.3.44) that Z^<< 
hence to a gooa approximation,

S - 3/4 ZI,.
<Note, NC*, ana n  • HCu* >.
Brlnkworth (201 later eoaifiea this result to allow for anisotropic 
scattering to give,

S - 3/4NCm. <1-c o s  &).
An laentlcal result to that obtainea by the comparison of four-flux 
theory with the raaiatlve transfer theory of Ishlmaru.

Huagett ana Rlcharas [221 coaqparea Kubelka-Munk theory with a 
numerical raaiatlve transfer theory calculation Involving 22 
fluxes. They obtainea the result that,

K - 2 Z I  »na S - <3a,-a. ).
' V

Where a«ana a, are the first two coefficients of the expression,
P< COS&) P« * COS&) ,
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Mh«r* Pn(cos0) Is the Lsgsndrs polynoslsl ot ordsr n and degrse 
zero. The function is normalized such that,

1/2 |p< cos0)d( COS0) - 1 
giving, a, ~ 1. Hence, *

S - 3/4NC.. ( 1-a, /3 >.
It is possible to show that (44), cos^ “ a,/3, hence.

S - 3/4NCm  <1-c o s &),
an identical result to that obtained above from comparisons of four 
flux theory with radiative transfer theory, and Kubel)ca-Mun)c theory 
with photon diffusion theory. It is therefore reasonable to 
conclude that, to a good approximation, (so long as the absorption 
of the sample is small),

S - 3/4NCM ( 1-cos0-), ....(2.3.49)
K - 2NC,k. . ....(2.3.50)and

The quantities C*» , cos© and C,w may bo calculated from single 
scattering (Mie) theory. It is therefore possible to relate the 
multiple scattering parameters S and K to calculable single 
scattering parameters.

It must be noted that equation (2.3.49) is derived assuming 
t h a t Z ^ < ] C /  «««»I«* to which equation 
(2.3.49) is applied in this investigation. Graaf at al. (231 report 
more cosiplex expressions for S applicable to more highly absorbing 
samples.
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CHAPTER 3: BIPURCATBD OPTICAL FIBRE MBA8URBMBWT8 OP 8>

<3.1 )Bxperlmental system.

A bifurcated optical fibre bundle was used to both illuminate 
a scattering sample and to detect flux reflected from it. Arm (i> 
of the fibre conducted light into the sample. Arm (ii> conducted 
reflected flux out of the sample to the photodetector. See fig
(3.1.1).

T
i llumination 

source.

arm ( ¡ )  Qrm(i l )  photodr.tccior

t h

i l lum inated  
sample "  

th ickness

to
amplifier

^arm (iii)

scatterinq
sample.^

sample
cell.

FigO.l.l)
Bifurcated optical fibre bundle system.

The common arm of the fibre, arm (iii), was centrally placed within 
the cylindrical glass saaqple cell, above (and with its face 
parallel to) the matt black cell base. The parallel slice of 
sample t>etween the face of the coauaon arm and the cell base was 
therefore illuminated by the fibre bundle, the thickness of the 
Illuminated slice of saaqplm being controlled by the height of the
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common arm above the cell base.

The bifurcated optical fibre bundle was made up from many 
multi-mode silica fibres with numerical apertures of 0.50, 
(manufacturer's data, at 589 nm>. The diameter of the common end 
of the fibre bundle was (6.89 ■*-/- .07) mm. The common arm of the 
fibre, arm (ill), contained a 50-50 split of fibres from arm (i> 
and arm (11). They were approximately arranged as two semicircles 
of equal radii.

The light source consisted of a 100 Watt quartz halogen lamp, 
driven by a stabilised power supply. The detection system consisted 
of a silicon photodiode, of active area 100 mn?', and wavelength 
range 350 to 1100 nm. The photodiode was operated in the linear 
response photoelectric mode, the output was fed to a low input 
iaq>edance amplifier, giving a four figure readout of received 
intensity over a six decade range. The sample cell consisted of a 
glass cylinder of diameter 28 mm, height 25 mm, glued to a flat, 
matt black, plastic base. Interference filters, (of approximate 
bandwidth 16 nm), were placed between arm (11) and the 
photodetector to filter the detected flux to the required 
wavelength.

The linearity of response of the detection system was checked 
by Illuminating the photodetector through crossed polarIsers. 
Rotation of the polarlsers, (with respect to each other), gave 
variations in intensity in excellent agreement with Malus* law 
[4], over all six decade ranges.
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The output stability of the lllunlnetlon system was checked by 
monitoring the output Intensity using the above detection system. 
Variations of Intensity with time of less then 2 % per hour were 
noted once the laî v had been allowed to warm up lor 1/2 hour.

Initial experiments showed that it was Important that care was 
taken to ensure that;

<a) the lace ol the common arm ol the probe was parallel with the 
cell base, and

(b> the point at which the conaton arm ol the optical libre bundle 
made contact with the cell base could be accurately
determined.

A cell mounting system was designed that allovred the cell base 
to be aligned parallel with the probe lace to within 0.2 degrees.

A movement system was designed utilizing a 1.8 degree per
step motor, driving a screw thread ol 10 turns per cm. The probe 
was mounted on a carriage driven by the screw thread. The probe 
height could thus be altered In 5 micron steps. The stepper motor 
movestent was governed using software controlled output from the 
microcomputer, via an Interlace circuit. The microcomputer was also 
used to collect the intensity data. An analogue output from the 
photodiode amplifier was led directly to an anologue Input on the 
mlcrocoRvuter.

The output from the amplifier was updated every 0.04 seconds.
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the software used to collect the data was therefore written with an 
In-built sampling time of greater than 0.04 seconds. The use of the 
microcomputer to monitor the received intensity allowed many 
intensity readings to be averaged for each sample thickness. Thirty 
intensity readings ware averaged lor each sample thickness» 
reducing the r.m.s. noise by a factor of approximately 5.

Fig (3.1.2)
Automated experimental system.

Monodisparsa spherical latex particles suspended in de-ionozed 
water were used to provide well characterized scattering saaqples. 
For particle diameters less than 1.5 microns» no settling could be 
detected during an experiment.

The experimental procedure was as follows:
(1) The sample cell was filled with the scattering sample.
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<2) Th« common arm ol the optical fibre bundle was placed within 
the saiq>le and moved downwards until it was in contact with the 
base of the cell.

< 3) The common arm was then moved upwards through the samplet and 
the reflected intensity measured as a function of illuminated 
sample thickness.

(3.2) Initial experiments.

The data obtained was initially analysed by fitting to the
Kubelka-Munk equation for a scattering and absorbing sample [401,

1 “ _____ A.S.sinh(o»d)______ , ....<3.2.1)
(K+S)slnh(«<d) +ÄCOSh(Äd>

where I is the detected intensity, and A is a constant relating the 
detected intensity to the reflectance R of the sample.

It was found that the values of K returned by such fits were 
very small, at least 1000 times smaller than the fitted value of S. 
It was therefore decided that the non—absorbing expression for 
the diffuse reflectance R, could safely be used with little loss 
in accuracy. The data was fitted to the non—absorbing KubelKa—Hunk 
expression.

A.Sd ....<3.2.2)
< T fS d )

The fits themselves were carried out using a least squares 
fitting programme. Figures <3.2.1) and <3.2.2) illustrate exal^ples 
of fits to both the absorbing and non-absorbing Kubelka-Munk 
expressions.
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SAMPLE THICKNESS / MM 
Fig (3.2.1)

Ratlactad Intsnslty as • function of probo holght. 
Latox aphoras suspandsd In wator. Moan dlaaatar 0.73 pm, voluaa fraction 0.0238. Navalength - 589 na. Solid lino 
shows flttod curva, aquation (3.2.1). Fitting rasults; 
8 “ 2.95 nsT,' A « 0.63 (arbitrary units) and K “ 0.0007 nn.'
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PlQ 0.2.2)
Rallected intaiwlty as « function of proba halght.
Latax apharas auapandad in watar. Haan dlaMtar 0.73 fuif 
voluM fraction 0.0238. Wavalangth - 589 na. Solid lina 
shows fittad curv^ aquation (3.3.2). Pittinq rasults;

S - 2.85 asiV A “ 0.62 (arbitrary units).

It can ba saan fro« fig (3.2.2) that a fairly good agraaaant 
])«twaan tha axpariowntal data and tha non-absorbing Kubalka-Hunk 
axprassion is obtainad.

It was found that tha fittad valua of S could ba «ada to vary 
by up to 30 %, by sinply rotating tha input ar« in tha focussad 
baam fro« tha quartz halogan laaqp. This affact was thought to ba 
dua to tha finlta saparation batwaan tha input and output routas of
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the optical flux into and out ot the sample. By focussing the lamp 
on different parts of the input arm, (as is effected by rotating 
the fibre in the beam of light), the effective separation of the
influx and efflux routes is varied. This implies that;
<i> the measured value of S is highly dependent upon the fibre 

separation, and
<li) if a perfectly diffuse flux is incident upon the input arm, 

rotating the fibre in the beam will have no effect on the 
measured value of S.

A diffuser was fitted over the input arm of the optical fibre. The 
diffuser was manufactured out of a solid block of PTFB, a highly
scattering non-absorbing material [45J. The diffuser was
approximately 5 nun thick and of diameter 20 mm. It was made to fit 
tightly across the input arm of the bifurcated fibres. With the 
diffuser fitted it was found that repeatable results could be 
obtained, (no matter how the input arm was rotated in the
Illuminating beam), if the diffuser was evenly Illuminated. The
diffuser did however reduce the intensity input to the sample. To
counter this a more powerful lamp was employed, a 250 W quartz
halogen lamp. The quality of lit appeared to be unaltered by the 
use of the diffuser.

(3.3) S as a function of particle size.

Intensity readings lor sample thicknesses between 0.00 and 
14.85 mm were recorded (in equal steps of 0.15 mm), and fitted to 
equation (3.2 .2 ) for the monodisperse latex samples, (at a volume
fraction of 0.0238), lor two wavelengths, 589 nm and 546 nm. The
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results srs glvsn In tsblss <3.3»1) snd (3«3«2)> Ths 
results ere cospered with the theoretlcel values as cowuted trom 
Mle theory and equation <2.3.49). The experimental value ot S 
quoted in the tables is the mean result from four separate 
experiments on each sample. The quoted error is the standard error 
of the four results.

cle diameter S( Mie )/mm'' S( Bxp )/mm" S< exp )/S( Mie )
microns

0 .11 2.87 0.56 +/- .02 0.200 ♦/- .001
0.25 8.19 2.70 W ~  .07 0.33 +/- .01
0.37 9.01 3.5 ♦/- .1 0.39 +/- .01
0.48 8.84 3.1 ♦/- .1 0.39 +/- .01
0.73 7.03 3.0 +/- .1 0.42 +/- .01
1.05 5.95 2.4 •*■/- .1 0.41 +/- .01
1.43 5.02 2.25 ♦/- .05 0.45 .01

Table (3.3.1): Wavelenath ■ 589 n*«

Particle diameter 
/ microns

S< Mie )/mm*‘ S< Bxp >/mm”‘

3.94
8.33

10.00
8.57
7.30
6.46
5.12

0.75 ♦/-
3.0 ♦/- 
3.5 +/-

3.00 */~
3.00 ♦/- 
2.65 ♦/-

2 .1 */-

S< Bxp )/S< Mie}

0.190 +/- .001 
0.36 ♦/- .01 
0.35 .01
0.35 +/- .01 
0.411 ♦/- .001 
0.41 ♦/- .01 
0.41 +/“ .02

Table <3.3.2)t Wavelength - 546 nm.

It can be seen from the above tables that aqreement between 
the experimental and theoretical abeolute values of S is very poor. 
However, the ratio of the experimental to theoretical values 
remains approximately constant over the whole particle size ranqe, 
lor both wavelengths, at 0.40 ♦/- .04. The exception to this is 
the 0.11 micron sample. This might be explained 11 the size of the
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0 .1 1 micron sample has been slightly -estimated by the 
manufacturers. This is illustrated in figures (3.3.1) and (3.3.2) 
which give both the experimental and the theoretical values of S 
as a function of particle size. Note that the experimental values 
of S have been multiplied by a common factor of 1/0.40 to reduce 
the discrepancy bet%«een the absolute experimental and theoretical 
values of S.

Pig (3.3.1)
Scattering parameter as a function of mean particle size. 
Solid line represents theoretical results generated for 
a constant volume fraction of 0.0238. The experimental values 
have been multiplied by a factor of 2.5. Wavelength - 589 nm.
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PARTICLE DIAMETER / MICRONS 
Fl9<3.3.2>

Scattarlna parameter as a tunction of mean particle size. Solid line represents theoretical results generated lor 
a constant volume fraction of 0.0238.have been multiplied by a factor of 2.5. Wavelength 546 nm.
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(3.4) S as « function ot sanpl« concentration.

The scattsring paranetsr S of two monodisparse latex sanples, 
<0 .54 and 0.73 micron mean diameters), ware measured as a function 
of decreasing sample concentration. The samples were diluted with 
de-lonlzed water to decrease their concentrations. The 
concentration of the sanvles was measured by drying and weighing.

The experiments wars carried out at a wavelength of 589 nm. 
The Illuminated sample thickness was varied between 0.00 and 4.95 
mm, for all the samples. The Intensity readings being recorded for 
steps of 0.05 mm In sample thickness. The results were analysed by 
fitting to equation (3.3.2) The fitting results are given In tables
(3.4.1) and (3.4.2), and Illustrated In figures (3.4.1) and
(3.4.2) . The quoted value of 8 Is the mean of the fitting results 
to four separate experiments on each sample. The quoted error In S 
Is the standard error of the four values of S so obtained.

Volume Fraction
<♦/- 3%) S/mm~
0.0238 2.94 .04
0.0227 2.81 ♦/- .03
0.0216 2.69 */- .04
0.0206 2.63 .03
0.0184 2.41 .06
0.0129 1.80 +/- .02
0.0104 1.55 +/- .01
0.0079 1.26 .02
0.0058 1.00 +/- .02
0.0037 0.77 +/- .02

iikia. (3.4.1)
0.54 micron samole.
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Volum« Fraction
+/- 3%) S/ronf
0.0238 2.98 +/- .05
0.0214 2.67 ♦/- .09
0.0185 2.28 +/- .02
0.0162 2.04 +✓- .03
0.0135 1.73 */- .02
0.0124 1.48 +/- .02
0.0090 1.28 +/- .01
0.0074 1.10 ♦/- .02
0.0044 0.76 -*•/- .03

Table (3.4.2)
0.73 micron semole.

Pig (3.4.1)
Scattering parameter S as a function of volume fraction 
of sample. Mean particle size “ 0.54 microns. Illuminating 

wavelength • 589 nm.
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Pig <3.4.2)
Scattering parameter S as a function of volume 
of aaavle. Mean particle size - 0.73 microns. Illuminating 

wavelength “ 589 nm.

It can be seen from fig <3.4.1) and fig <3.4.2) that to a good 
approximation, the results lie on a straight line. If the equation 
S- 3/4NC«, <1-cos^ ) Is correct then we would expect a linear 
relationship between S and the volume fraction of the sample, but 
with the intercept at the origin. Thus the finite Intercepts 
Illustrated In fig <3.4.1) and fig <3.4.2) suggests that there Is a
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flaw In the bilurcatad exparimantal system. The nature 
ol the problem is unclear. Ho%*ever, It was noted earlier that 
focussing the Illumination on different parts of the Input arm gave 
differing values ol S. Moving the position ol the local point on 
the input arm had the effect ol varying the separation between the 
Influx and efflux routes within the sample. This Implies that the 
measured value of S Is dependent upon the separation between the 
influx and efflux routes. This effect may be connected with the 
fact that a non-zero Intercept Is obtained.

(3.5 ) R«parimants with fibres of different nUBWtlCat W W t W g g .-

Further experiments were carried out using two new bifurcated 
optical fibre bundles, types K2 and A2, of numerical apertures 0.21 
and 0.66 respectively, (manufacturers data, quoted at 589 nm). 
Both bundles were made up from silica multi-mode step Indexed 
fibres, and were supplied by Schott UK. The diameters ol the 
cosmon end of the bifurcated bundles were <3.02 •*•/- .04) mm lor 
bundle K2, and (3.01 +/- .04) mm for bundle A2. The mixture ol the 
input and output fibres, at the common end ol the bifurcated 
probe, could be (very) roughly approximated to by two 
semi-circles of equal radii.

The experlMnts were carried out at a wavelength ol 589 nm. 
The Illuminated sample thickness was varied between 0.00 and 4.95 
mm. In 0.05mm steps, lor all the samples. The results »»ere 
analysed by fitting to equation (3.2.2). An example ol the lit
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obtained lor libras A2 and K2 are Illustrated In llgures (3.5.1) 
and (3.5.2). The llttlng results are given In table (3.5.1). 
Table (3.5.2) coepares the experimental values ol S with the 
theoretical values. The quoted values ol S In the tables Is the 
mean value Irom lour experiments on the same sample. The quoted 
error Is the standard error ol the lour results.

Fig (3.5.1)
Rellected Intensity as a lunctlon ol Illuminated sample 
thlc)cnass. Mean diameter “ 0.73 microns. Wavelength “
589 nm. Fibre type K2, (MA-0.66). Solid line Illustrates 
lltted curve» equation (3.3.1) with A “ 0.24 (arbitrary 

units) and S - 4.6 mm*.'
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Pig (3.5.2)
Reflected Intensity as a function of Illuminated sample 
thickness. Mean diameter “ 0.73 microns. Wavelength “
589 nm. Fibre type A2, (NA-0.21). Solid line Illustrates 
fitted curve, equation (3.3.1) with A - 1.7 (arbitrary 

units) and S ~ 4.0 mml

Particle 
dla./microns

S( exp )/mm
Fibre K2 Fibre A2

0.76 + / -  .02 0.99 +/-.04
4.1 + / -  .1 3.8 + / -  .1
5.0 ♦ / -  .2 4.4 + / -  .2
4.8 + / -  .2 4.3 + / -  .3
4.5 •*•/- .2 4.1 + / -  .2
3.8 + / -  .2 3.4 + / -  .1
3.7 + / -  .1 3.4 + / -  .1

Table (3.5.1).
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Particle 
dla./microns

S( Mle )/mm'' S( exp )/S( Nle )
Fibre K2 Fibre A2

0.11 2.87 0.26 +/- .01 0.35 +/- 01
0.25 8.19 0.49 +/- .02 0.47 +/- .01
0.37 9.01 0.55 +/- .02 0.48 +/- .02
0.48 8.84 0.60 +/- .02 0.53 +/- .02
0.73 7.03 0.64 +/- .02 0.58 +/- .02
1.05 5.95 0.64 ♦/- .03 0.58 -*•/- .02
1.43 5.02 0.70 +/- .02 0.67 +/- .02

Table (3.5.2).

These results are Illustrated In tig (3.5.3) and fig (3.5.4). 
The solid line on these graphs represents the theoretical values of 
S. as computed from Mle theory and equation (2.3.49). Note, the 
experimental values of S on the graphs have been multiplied by a 
correction factor, to reduce the discrepancy between the absolute 
experimental and theoretical values of S. For fibre K2 the 
correction factor is 1/0.60. For fibre A2 the correction factor Is 
1/0.55.

It can be seen from fig (3.5.3) and fig (3.5.4) that the 
results from the two new fibre bundles broadly reflect the trends 
predicted by theory, (with the possible exception of the 0.11  

micron sample as noted in the previous experiment). However, there 
is no clear relationship revealed by these experiments between the 
absolute values of S recorded by each fibre type, and the numerical 
aperture of that fibre. This is illustrated in the table (3.5.3).
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Pig (3.5.3)
Scattering parameter S as a function of mean particle 
diameter. Bifurcated optical fibre bundle type K2. 
Solid line represents theoretical curve. Wavelength “

589 nm
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Fig (3.S.4)
Scattering parameter S as a function of mean particle 
diameter. Bifurcated optical fibre bundle type A2. 
Solid line represents theoretical curve. Wavelength “

589 nm

Humerlcal
Aperture

Mean value
of S<the)/S<Mle>

0.21
0.50
0 .6 6

0.60 +/- .07 
0.40 */- .04 
0.55 ♦/- .07

Table 0.5.3).
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I
<3.6) Conclusion.

It has been shovm that the bifurcated optical fibre bundle 
method can be used to measure changes in the scattering parameter 
of colloidal dispersions. It has also been noted that the absolute 
value of S measured by a bifurcated bundle Is highly dependent upon 
the separation between the Influx and efflux routes within the 
sample. There is poor agreement between the absolute theoretical 
and experimental results, however the changes In S as predicted by 
theory are accurately reflected In the experimental results. The 
effect on the absolute value of S of varying the numerical aperture 
of the bifurcated optical fibre bundle is unclear, presumably this 
Is due to any effect being swamped by changes In the measured 
value of S due to variation of the finite separation loetween the 
Influx and efflux routes within the sample, between differing 
optical fibre bundles.
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<3.7) Dlacusslon.

The assumptions of Kubelka-Hunk Theory are (40];
(a) The scattering sample scatters light Isotropically.
(b) The sample Is plane parallel» and Infinite In lateral extent. 
<c) The Illuminating radiation Is perfectly diffuse.

It Is also an Implicit assumption of the boundary condition» 
that at Z-0» (where the forward Intensity is 1, )» the reflected
flux» j» is lost to the scattering system» (l.e. It Is not returned 
to be rescattered).

There follows a brief discussion as to whether the experiment 
fulfills these assumptions» and what effect violations of these 
assumptions have on the results.

(3.7.1) Bffect of non-lsotroDlc scattering.

Anisotropic light scattering means that the light scattered 
from a particle Is scattered preferentially forwards or 
backwards. Altering the ratio of back-scattering to 
forward-scattering does not affect the derivation of the 
Kubelka-Nunk equation. However» the Kubelka-Munk equation allows 
for only two fluxes within the sample» and a single scattering 
parameter to relate the Interchange of flux between them. More 
meaningful results would be obtained by considering many fluxes 
within the sample» with different scattering parameters to describe 
their interchange. The higher the number of scattering parameters»
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the better the approximation to a real anlsotroplcally scattering 
sample. This Is essentially the approach of Mudgett and Richards 
122), who considered a 22 flux theory. By comparison of their 
results with Kubelka-Munk theory, they obtained the result that, S
- 3/’4NCks <1-c o s &^>. Hence, anisotropic scattering modifies the 
Interpretation of the Kubelka-Munk scattering parameter S by the
factor 3/4( 1-cos 0-).

(3.7.2) Effect of sample geometry.

The sample geometry used In the fibre experiments Is neither 
plane parallel, nor Infinite In lateral extent. However, we might 
define a sample as being effectively Infinite In lateral extent If 
a major proportion of the light travelling within the sample does 
not reach the horizontal glass cell walls.

From the Kubelka-Munk theory, the reflectance of a thickness d 
of sample, (above an absorbing boundary). Is given by equation
(2.3.6), l.e.

R - Sd
(1-t̂ Sd)

The diameter of the glass cell was 28 mn, the thickness of the 
common arm of the (thickest) bifurcated probe was approximately 10 

mm. The probe to cell wall clearance was therefore approximately 9 
mm. For a sample of scattering parameter 3 mm^ this gives a 
reflectance of 0.97. Hence for a sample of even moderate
scattering, a maximum of only 3 % of the Input Intensity could 
reach the cell walls. It would therefore seem reasonable to 
conclude that the errors In S due to the sample being non-lnflnlte
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are smaller than the experimental error, (ol approximately 4 %).

Experiments vrere conducted to check this result. The probe 
to cell wall clearance was reduced to 3 mm, (by using a call ol 
smaller diameter >, and S measured In the usual fashion lour times 
for a latex sample of mean particle diameter 1.43 microns. The mean 
value of S obtained using the smaller cell was 2.3 mm'with a 
standard error ol 0.1 mml This compares to a mean value of 2.25 mm' 
(with a standard error of 0.05 min'), obtained for the larger 
diameter cell. Hence there Is no difference Isetween these results 
above the combined error.

A further experiment was made to study the dependence ol S on 
the cell geometry outside the parallel slice of sample between 
the probe and cell base. A white collar, (ol diameter 20 mm), was 
fitted to the common arm ol the prolae, flush with the probe face. 
S was then measured In the manner described above. The collar was 
then replaced with a matt black collar and S re-measured. No change 
In S was detected above the combined experimental error of 7 %. It 
would thus appear that the flux behaviour outside of the 
illuminated parallel slice of sample has a negligible effect on the 
measured value of S.

(3.7.3) Effect of non-dlffuse Illumination.

The Illuminating radiation cannot be perfectly diffuse. Even 
if diffuse light were Input to the optical fibres, the emergent
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b«am would be non-dlifuee, due to the transmission characteristics 
of the optical fibre bundle (461.

The Illumination within the sample is therefore neither 
perfectly diffuse, nor perfectly collimated. However if we consider 
the case of a collimated beam of light traversing an isotropically 
multiply scattering sample, then it is clear that the scattering 
will quickly act to diffuse the transmitted intensity. Therefore a 
non-diffuse illumination should quickly become diffused by the 
scattering sample. He might therefore expect the effect of
non-dlffuse Illumination will be minimal, except lor optical path 
lengths < 1/S, where the averaging effect of multiple scattering 
has not diffused the illuminating radiation.

A coaqparison between theories assuming collimated and diffuse 
illumination Illustrates this point. From four-flux theory (40) the 
diffuse reflectance R of a semi-infinite, plane parallel,
non-alasorblng sample, backed by an absorbing boundary, illuminated 
by collimated radiation is, i

R -  < & -S)<l-exD(-<S, ■*’ )d>}■•■(& -t-S. )Sd> . ....(3.7.1)(i4d)<è.iàf>------------- -----
where S, S, and S,are as defined in section (2.3.5).

From the comparison of four flux theory with radiative transfer 
theory, (section 2.3.7),

S - 3/4NCm(l-cÖ80-),
S, - NC«. ( l/2i-3/4cos0->,
S, - NC«.(l/2-3/4cös&).
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Por low valúas of S^d, <i.e. S,d<<l>, we can nake the approximation 
that,

l-exp( -4/3( S, +S^ )d)-4/3< S, +S» )d
henee we obtain.

R - S,d .
iUSá'>

___(3.7.2)

For large values of Sj d, <l.e. S3 d>>!>, we can make the 
approximation that.

hence we obtain.
l-exp<-4/3< S, +S, )d)-l.

R - Sd
n+sai

___< 3.7.3 )

The equivalent expression derived from Kubelka-Munk theory, (which 
assumes diffuse Illumination), Is,

R - Sd 
(l-t-Sd)

.(3.7.4)

Hence lor samples with Sd »  1 the observed reflectance Is 
unaltered by the use of collimated or diffuse Incident flux, and 
the reflectance of the sample Is as predicted by the Kubelka-Munk 
equation. However for low values of Sd the reflectance Is dependent 
upon the mode of Illumination, and the Kubelka-Munk expression does 
not accurately predict the reflectance of the sasq>le. In the 
experiments conducted here the value of Sd Is varied, hence an 
Imperfect fit will be obtained when using the Kubelka-Munk 
equation. For positive values of cos0- S, < S, we might therefore 
expect that the value of S obtained by fitting the results obtained 
for collimated Illumination to the Kubelka-Munk equation will 
return values of S less than the actual value. This was confirmed 
by generating reflectance values as a function of sample 
thickness using the four-flux equation (3.7.1) with cos& “ 1. The
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data so generated was fitted to the Kubelka-Munk aquation <3.7.4).
I The lit returned values of S that were dependant upon the maximum 
value of Sd to which the data was fitted. So long as the maximum 
value of Sd exceeded 5 the fitted value of S was within 4 % of the 
value used to generate the data from equation <3.7.1). The fitted 
value was always less than the value used to generate the data. The 
quality of the fit obtained was good, better than that obtained 
between the experimental data and the Kubelka-Hun)c expression. For 
all the samples used in the experiments Sd was greater than 5, 
hence even If total collimation of light Is assumed, <the worst 
possible case), a maximum error of only 4 % is Introduced by 
assuming diffuse illumination, <l.e. fitting to the Kubelka-Munk 
expression). The degree of collimation of the Incident light Is 
dependent upon the numerical aperture of the illuminating fibres. 
The experiments with fibres of differing numerical apertures might 
therefore be expected to show an increase In the measured value of 
S as the numerical aperture is Increased. However no clear trend 
was observed In the results, <see section 3.5).

It Is Important to note that the optical fibre bundle will not 
detect the reflected diffuse flux evenly over the whole of its 
angular range. However If the reflected flux Is perfectly diffuse 
then this will not affect the results. The fibres will singly 
detect a constant proportion of the reflected diffuse intensity. 
This does however assume that the reflected flux Is perfectly 
diffuse whatever the sample thickness.
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(3.7.4) Interfacial reflections.

We now consider the light that Is reflected back Into the 
sample at the probe face due to Internal Interfaclal reflection. If 
we assume that some fraction m of the reflected diffuse Intensity 
Is reflected from the probe end, then the forward flux at the z~0 

boundary, l.e. the probe end. Is not 1, but 1, •♦•«1. This modifies the 
boundary conditions applied In the derivation of the Kubelka-Munk 
equations. Applying the modified boundary condition yields 
the expression for the observed diffuse reflectance R,

(1-003(0) - (1-oQSd 
1, l+(l-o()Sd

....(3.7.5)

Hence fitting the results to the equation R-Sd/(1+Sd) will return 
values of S that are a factor (l-oo less than the actual value of 
S. The diffuse reflectance of the flbre/sample Interface was 
calculated to be 0.028 (47], (see Appendix II). Hence the fitted 
value of S will be approximately 3 % less than the actual value due 
to Interfaclal reflections at the probe/sanqple Interface. This 
alone cannot account for the large discrepancy between the 
experimental and theoretical results.

In conclusion then It can be said that:
(1) The Interpretation of the Kubelka-Munk scattering parameter Is 

modified by a factor 3/4(l-cos&) due to anisotropic scattering.
(2) The effect of the sample being non-lnflnlte and non-parallel 

over the whole of Its lateral extent Is negligible, so long as 
the Illuminated thickness of sample Is parallel.

(3) The use of non-dlffuse Illumination reduces the value of S
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obtained by a maximum of 4 % so long as Sd > 5.
<4> The effect of Internal Interfaclal reflections, between the 

sample and probe face. Is to reduce the measured value of S by 
a factor (1-eO, where «( Is the diffuse Internal reflectance of 
the Interface. For the fibre bundle used here “ 0.03, 
therefore the reduction In the measured value of S Is 
small, of the order of the experimental error.

The combination of factors (3) and <4> will reduce the
measured value of S by a maximum of only 7 % from Its actual value.
These effects cannot therefore account for the fact that
experimental values Of S are only approximately 40 % of the
theoretical values.
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CHAPTER 4; SIHGLB OPTICAL PIBRB BXPBRIMBMTS.

(4.1) Introduction.

In an effort to quantify the effects of having a finite 
separation between the Influx and efflux routes within the samples, 
experiments were conducted using single, separate optical 
fibres. This allowed the separation between the Influx and efflux 
routes wlhln the sample to be controlled.

Two experimental methods are described In this chapter. The 
first Is a simple system to demonstrate that changes In S can be 
measured using separate, single, optical fibres, mounted In an 
absorbing boundary. The second system utilizes separate optical 
fibres to Illuminate and detect the reflected flux from a parallel 
slice of sample of variable thickness. Thus allowing absolute 
measurements of S to be obtained for varying separation between the 
Influx and efflux routes within the sample.

The optical fibres used throughout these experiments were 
polymer, step Indexed, multimode fibre, of numerical aperture 0.47 
and diameter approximately 1 mm.

(4.2) Fixed path length, separate fibre system.

The fibre optic system developed was an adaption of that 
developed by Boersboom and Ten Borsch ( 48 ] to measure multiple 
scattering In solid saaqples. The system consisted of two fibres.
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mounted on a circular plate, <of diameter 2 .0 cm), with a 
nearest edge separation of 2 .1 mm, placed within a cylindrical 
glass sample cell. The lace ol the mounting plate was painted matt 
black to provide the absorbing boundary. The fibres were polished 
flat with the mounting plate, and positioned approximately 
centrally on the mounting plate. The sample cell consisted of a 
glass cylinder of diameter 5 cm, 5 cm long, with a flat glass base. 
The mounting plate was positioned centrally in the filled sample 
cell, approximately 3 cm from the base of the cell, see flg(4.2.1).

Prom Kubelka-Munk theory, a sample of scattering power 2.9 mm) 
(the minimum scattering parameter of any saiqtle used in this 
experiment), and thickness 3 cm would reflect 99 % of the incident 
flux. Hence, for the samples used here 3 cm is to a good 
approximation an infinite thickness of sample. The dominant 
absorbing surface is therefore the matt black fibre mounting plate.

The fibres were held in this position throughout the 
experiment and the scattering sample changed. The same monodisperse 
spherical latex particles suspended in de-ionlzed water, (at a 
volume fraction of 0.0238), as used previously, provided the 
scattering samples. The same illumination and detection systems 
as detailed in chapter three were used, the detected light being 
filtered to 589 nm immediately before the photodetector. The input 
Intensity held constant throughout the experiments. The 
intensity reflected from the sample, through the output fibre, was 
recorded for each sandle.
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Plg<4.2.1>
Optical fibra mounting.

(4.2.1) Results.

Table (4.2.1) illustrates the reflected intensities, as 
function of the mean particle diameter of each sample.

Particle Diameter/’ 
microns

Intensity Detected/ 
Arbitrary Units.

0.11 0.33 +/- .020.25 0.070 ♦/- .003
0.37 0.043 +/- .002
0.48 0.063 +/- .0020.54 0.063 ♦/- .003
0.95 0.067 +/- .002
1.43 0.12 +/- .01

Table (4.2.1)
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4.2.2) Analvls of result».

Fig (4.2.2) Illustrates a log-log plot oi the Intensity as 
, function of theoretical scattering parameter, as calculated from 
iguation (2.3.49).

LOQ (SCATTERINB PARAMETER / MM)
Pig (4.2.2)

The log of the reflected intensity as a function of the log of the theoretical scattering parameter of the sample. 
Solid line shows fitted curve of gradient -(1.6 +/- .2).

It can l9e seen from fig (4.2.2) that there is an approximately 
linear relationship between the log of the reflected intensity and 
the log of the theoretically calculated scattering parameter. The
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I
fitted line gives,

S"‘
or S x l  •

>i/T
Fig (4.2.3) illustrates the experimental scattering 

coefficient as calculated from equation (4.2.1) as a function of 
mean particle size. The solid line on fig (4.2.3) Illustrates the 
theoretical value of S as calculated from equation (2.3.49).

Fig (4.2.3)
S as a function of particle size as calculated from the 
experimental results and equation (4.2.1). The solid line represents the theoretical curve calculated from equation

(2.3.49).

Let us assume that the optical output from the Influx fibre is 
perfectly diffuse, and that the absorption of the scattering sample
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is negligible. The optical power P ialling on an imaginary 
hemisphere ot radius x, centered on the influx fibre is then.

P(r ) - Kr).4vtr\
I(r ) P(r ) 

4 w  r*
....<4.2.2)

The only absorption present is that due to the matt black mounting 
plate. Assuming that all the light incident on the plate is 
absorbed, then in increasing the imaginary sphere radius from r to 
r-«-dr, the change in the optical power is,

dP(r> - -Kr)2«rdr. ....(4.2.3)
Hence from (4.2.2),

Hence,

dP<r) - -P(r )dr , 
2r

dP( r ) - -dr.
P< r ) 2r

P(r) -

where C is a constant of integration. Therefore from (4.2.2),
K r )  - C .

4vtr**
....(4.2.4)

The output intensity is solely dependent upon;
<1) the input intensity I.,
(11) the scattering parameter of the saaqple S,
(ill) the separation of the optical fibres within the sample.

Hence, I e I, S^r. .(4.2.5)

Equation (4.2.4) gives z “ -2.5. A dimensional analysis of (4.2.5) 
gives y “ -2.5. Hence,

S « . .(4.2.6)
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This cospares with the esplrlcal equation,
S «e

The agreement between the theoretically derived equation and the 
empirical aquation Is poor. This may be due to the Illuminating 
radiation being non-dllluse. In practice, for low values of r, 
little of the intensity from the Input fibre would be incident on 
the matt black mounting plate. This would tend to decrease the 
dependence of the intensity on the distance from the input fibre.

(4.2.3) Conclusion.

It has been shown that two optical fibres mounted in an 
absorbing mounting can be used to measure changes In the scattering 
parameter of optically thick colloidal samples. Absolute 
measurements of the scattering parameter can be made using such a 
method if the Instrument has been previously calibrated.

( 4 .3)  Variab le path length, separate o p tica l f ib re  system.

This experiment worked on the same principles as the
bifurcated optical fibre experiment, detailed In Chapter 3. A
parallel slice of sample, above an alssorblng boundary, was
Illuminated. The reflectance of the sample was monitored as ' a 
functon of sastple thickness. Two single fibres provided the
illumination and detection routes to the sample. The use of two
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separate optical fibres allowed the distance between the Influx and 
efflux routes to be varied by altering the fibre separation.

The two fibres were mounted in and polished flat with a 
cylindrical aluminium mounting plate, (of dlasteter 2.0 cm). The 
mounting plate surface, being polished aluminium, was highly 
reflecting. The same movement, detection and Illumination systems 
as detailed In chapter three were employed, and the output 
Intensity filtered to 589 nm.

Plg(4.3.1>
Fibre mounting and sample call geometry.

The sample cell consisted of a glass cylinder of radius 26mm 
with a matt black plastic base. Care was taken to ensure that the 
cell base and fibre mounting ware parallel before commencing the 
expar iment.

Experiments were carried out on two samples of monodlsparse
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spherical latex particles suspended In deionized water (at a volume 
traction of 0.024), of mean particle diameters 1.43 and 0.54 
microns. The reflected Intensity as a function of sample thlc)cness 
was measured for san«)le thicknesses between 0.00 and 4.95 nun, (In
0.05 n» steps), lor a range of Input-output fibre separations. The

V»fibre V separations were measured using a travelling microscope.

(4.3.1) Results.

It was found that as the fibre separation was Increased a flat 
region developed In the Intensity readings lor low sample
thicknesses. This Is shown schematically In fig (4.3.2).

Plg(4.3.2)
Schematic Illustration of flat region In Intensity.

This can be explained by considering the light traversing the 
sample from the Input to output fibre. The Input Intensity Is 
not diffuse, but restricted to the forward direction by the 
numerical aperture of the fibre, (N.A. “ 0.47). Hence for low
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sample thicknesses the input intensity is directly incident upon 
the absorbing cell base before it can be diffused by the 
scattering of the sample. Therefore, at low sample thicknesses the 
majority of the Input Intensity Is Immediately absorbed. The 
intensity detected at low sample thicknesses Is hence very low, and 
largely independent of the sample thickness. Until an appreciable 
fraction of the input intensity Is scattered sideways before it 
reaches the absorbing cell base, l.e. when the sample thickness Is 
of the order of 1/S, little change in Intensity with sample 
thickness will be detected.

It is clear that Kubelka-Munk theory is inapplicable over 
these flat regions. In an attempt to overcome this problem, and to 
provide consistent fitting conditions for all the results. 
Intensity readings lor Illuminated sample thicknesses between 0.0 
and 0.50 cm were neglected from all data sets. The remaining data 
was fitted to the non-absorbing Kubelka-Munk equation, equation 
<2.3.6),

R - Sd/<1+Sd>,
using a fitting programme employing a least squares fitting method. 
The fitting results are presented In table (4.3.1) and (4.3.2). 

Fibre Separation / mm Fitted Value of S / nulT*
0 . 0 1  + / -  . 0 1  
0.09 +/- .02 
0.23 ♦/- .02 
0.32 +/- .02 
0.45 ♦/- .02 
0.60 +/- .02

11 +/- 1
6.2 +/- 0.4 
4.0 +/- 0.3 
2.6 +/- 0.1
2.3 +/- 0.1 
1 . 6  + / -  0 . 1

Table <4.3.1 )
0.54 micron sample. Wavelength 589 nm.
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Fibre Separation / mm Pitted valoe of S / miff'

0.01 +/- 
0.07 +/- 
0.09 +/- 
0.17 +/- 
0.22 */- 0.29 +/- 
0.42 -*•/- 
0.55 +/-

Table (4.3.2) 
1.43 micron sample. Wavelet

8.1 +/- .4
6 +/- 1

5.2 +/- .4
4.1 +/- .2
3.7 +/- .13.0 +/- .2
2.3 +/- .1
2.1 +/- .1

Ì ■ 589 nm.

Examples of the data obtained are illustrated in flg<4.3.3) and
( 4.3.4 ).

SAMPLE THICKNESS / MM 
Fig (4.3.3)

Reflected intensity as a function of illuminated sample 
thickness. 0.54 micron sample. Solid line shows fitted 
Kubelka-Munk expression. Fibre separation - 0.01 ♦/- .01 mm.
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Pig (4.3.4)
Retlected Intensity as a function of Illuminated sample 
thickness. 0.54 micron sample. Solid line shorn fitted 
Rubelka-Munk expression. Fibre separation “ 0.60 */- .02 mm.

The fitted value of S as a function of fibre separation Is 
Illustrated In fig (4.3.5). The solid line on fig (4.3.5) 
represents a curve of the form,

S - A/(1+Bd).
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Pig <4.3.5>
Fitted value of S as a function of fibre separation. 
0.54 micron diameter sample. Navelength “ 589 nm.
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FIBRE SEPARATION / MM
Fig (4.3.6)

Fitted value o£ S as a function of fibre separation. 
1.43 micron diameter sample. Wavelength - 589 nm.

(4.3.2) Conclusion.

It has been shovm that the value of S obtained by performing a 
Kubelka-Munk fit on reflected intensity data as a function of 
illuminated sample thickness» (above an ateorbing boundary)» from 
optical fibres with a finite separation» is highly dependent upon 
that fibre separation. This has important implications lor the 
bifurcated optical fibre system. The influx and efflux routes in 
that system are physically separate» we cannot therefore expect to 
obtain values of S from the system that agree well with the 
theoretical value of S.
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CHAPTER 5; SIWGLB OPTICAL PIBRB BONDLB AND BEAMSPLITTER
EXPERIMENTS.

(5.1) Large diamat« bundl«.

The concluelons reached from the previous experiments 
suggest that any reduction in the separation between the input and 
output routes from the sample will Improve the agreement between 
the experimental and theoretical results. It is possible to use a 
single fibre to provide both input and output routes by using a 
beam splitter arrangement. See fig (5.1.1).

source source

(detector

optical
"fibrp.

/

Fig (5.1.1)
Separation of input and output 
beams by the use of a beamsplitter.

The use of a single fibre bundle greatly reduces the distance 
between the input and output routes from the sample. However a 
disadvantage with this system is that 50 % of the input intensity 
focussed on the beam splitter is lost before it reaches the fibre. 
Similarly 50% of the output Intensity from the fibre, (the light
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r«<l«ct«d from th« sampla). Is lost befors It rsachss ths dstsctor. 
Hence only a naxinum of 25 % of the Input Intensity can reach the 
detector, (even if 100 % of light Incident on the saeple is 
reflected and detected). In addition, due to In^erfect beam 
splitting and Interfaclal reflections between the fibre and beam 
splitter, some input intensity is directly reflected into the 
photodetector. The magnitude of this intensity is large compared 
with the output intensity from the sample, (approximately 5 times 
larger). The interfacial reflections between the beam splitter and 
fibre were minimized by using Glycerol as an index matching fluid 
between the fibre and beam splitter.

Fig (5.1.2)
Single bifurcated bundle experimental system.
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A single optical fibre bundle of dianeter (6.7 */-.!) mn and 
NA 0.5 was used to illuminate the sample and to detect the 
reflected flux. A prism was used to separate the input and output 
intensities.

The same illumination, detection and stepper motor movement 
systems as described previously in chapter three were used. The 
non-illuminated end of the optical fibre bundle was placed within 
the sample cell and moved upwards from the absorbing base, the 
reflected intensity being measured as a function of illuminated 
sample thickness. The results were analysed by fitting to equation
(3.2.2). The sample cell consisted of a 28 mm diameter glass 
cylinder with a matt black plastic base. The samples used were 
monodlsperse spherical latex particles suspended in de-lonlzed 
water at a volume fraction of 0.0238. To measure the intensity 
offset necessary to account for Imperfect beam splitting, 
(resulting in some light being Incident upon the photodetector 
without having been scattered by the sample), the output from the 
photodetector anq>llfler was zeroed, (using an offset control on the 
anqpllfler ), with the end of the fibre Saundle placed in a Rayleigh 
horn.

Typical experimental results are illustrated in fig (5.1.3). 
The solid line illustrates the fitted curve, equation (3.2.2).
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Pig (5.1.3)
Reilected intensity as a function of Illuminated sample 
thickness. 0.33 micron sample at 569 nm. Solid line Is 

the fitted theoretical curve, equation (3.2.2).

(5.1.1) 8 as a function of particle size.

Table (5.1.1) gives the fitted values of S as a function of 
mean particle size. The quoted value of S Is the mean value 
obtained from four experiments on the same sample. The quoted error 
Is the standard error of the four results. The table also compares 
the theoretical and experimental values of S.
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Particle Diameter 
/ microns

S( exp >/mXr' S<Hle)/iMir' S( exp )/S< Mle)

1.40 ♦/- .08 2.77 0.51 .02
6.9 */- .3 8.20 0.84 */- .04
7.3 +/- .2 8.39 0.87 */- .02
7.0 ♦/- .5 8.20 0.85 +/- .06
6.9 +/- .1 8.10 0.85 ♦/- .01
5.1 +/- .2 6.10 0.84 +/- .02
4.4 .2 5.05 0.87 -f/- .04
Table <5.1.1)

l.BO

Plg<5.1.4>
Pitted value of 8 as a function of particle size, 
experimental results multiplied by a factor of 1.18 
to reduce the discrepancy Ssetvteen experimental and 
theoretical results. Solid line Illustrates theoretical 

result, equation (2.3.49).

It can be seen from table (5.1.1) that there Is a much
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Improved agreement between the experimental and theoretical 
results. An average S(experimental> to S(theoretical> ratio of 0.85

.01 was obtained for the single fibre bundle system, compared 
with a ratio of 0.40 */- .04 for the bifurcated fibre system. The 
only discrepancy in the results is that for the 0.11 micron sample. 
It can be seen from fig (5.1.4) that this may be due to an 
over-estimation of the particle size.

The solid line in fig (5.1.4) represents the theoretical 
curve. Note that the experimental results have been multiplied by a 
factor of 1/.85 to reduce the discrepancy between the experimental 
and theoretical results.

(5.1.2) S as a function of concentration.

Experiments were conducted to check the linearity of response 
of the system, (i.e. whether the measured value of S varies 
linearly with the theoretical value). Experiments were conducted 
on a 0.25 micron mean dlaaieter san^le. The sample was diluted with 
de-lonlzed water and the reflectance of the sample measured as a 
function of illuminated sample thickness. The fitting results are 
presented in table (5.1.2) and illustrated in fig(5.1.5).

Volume Fraction of 
Latex.

0.0238
0.0195
0.0151
0.01060.0067

Fitted value 
of S/mkT'

6.8 +/- .4 
5.6 +/- .5
4.2 +/- .3
3.2 */'- .2 2.0 +/- .1

Table (5.1.2)
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Fl9(5.1.5>
Measured value of S as a function of sample 
concentration. Particle diameter “ 0.25 urn. 

Wavelength “ 589 nm.

The equation relating the scattering parameter S to the single 
scattering (Mie) parameters is;

S - 3/4NC«.(1-COS&)
If this equation is valid, then there should be a linear 
relationship between the numlaer concentration N, (or volume 
fraction v), and the scattering parameter S. Experiment shows 
that S is closely proportional to v, hence validating the N 
dependence of the above equation and suggesting a linearity in the 
method with respect to changes in S. It is later shown that S is
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not proportional to N at higher concentrations. This can be 
explained In terns of particle-particle Interactions.

<5.2) Snail diameter bundle.

Assuming theory to be correct there still remains the question 
as to why the system does not return values of S that are equal to 
the theoretical value. This may be explained as follows. Light 
flux Input to the sample through one fibre does not return to the 
detector solely through that fibre. There will be a sideways 
translation of a proportion of the light, resulting In some of the 
light Input from one fibre exiting the sample through another. 
Hence, there Is an effective finite separation between the 
Influx and efflux routes. This effect will be larger the larger the 
diameter of the fibre bundle, as the maximum distance between the 
influx and eflux routes will be equal to the fibre bundle diameter. 
To test this hypothesis, a second experiment was carried out 
using a smaller diameter, <3.0 -*■/- .01 mm), fibre bundle, with 
the same numerical aperture, (0.5) as the previous fibre bundle. 
The same Illumination, detection, movement, beam splitter, sas^le 
cell and cell mounting system detailed In the previous experiment 
were used. As before the reflected Intensity as a function of 
Illuminated sample thickness was recorded and fitted using a least 
squares simplex method to equation <3.2.2).
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1.43 ♦/- .08 0.88 +/- .01
7.3 -*•/- .3 0.89 +/- .03
8.2 +/- .5 0.98 +/- .06
7.5 +/- .2 0.91 +/- .03
7.4 +/- .2 0.91 ♦/- .02
5.7 +/- .1 0.95 +/- .02
4.9 +/- .1 0.97 +/- .02

(5.2.1) S aa a iunctlon of partlcl« size.

Table (5.2.1) presents the results for the 3.0 mm diameter 
fibre bundle experiments. The table also compares the theoretical 
and experimental results.

Particle Diameter/ S(Mle)/nan' S( Bxp )/mm"' S( Bxp )/S( Mle) 
microns.

0.085 1.63
0.25 8.19
0.33 8.38
0.48 8.19
0.54 8.09
1.05 6.00
1.43 5.05

Table (5.1.3).

It can be seen by a comparison with the S(exp)/S(Mle) ratio in
table (5.1.2) that the agreement between the experimental and
theoretical results is Inqproved by the use of smaller diameter 
optical fibre bundle. An S( exp )/S(Mie) ratio of 0.93 +/- .03 is
obtained for the 3.0 mm diameter bundle, compared with 0.85 -•■/- .01 
for the 6.7 mm diameter bundle. There is still a discrepancy of 
approximately 7 % between the experimental and theoretical
results, of which approximately one half is accounted for by the 
effects of interfacial reflections, (see section 3.5.4). The 
remaining 4 % may well be accounted for by there being a still
finite separation between the Influx and efflux routes.

(5.3) Conclusion.

It has been shown that the agreement between the experimental 
and theoretical values of S has been much Improved by the use of a
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CHAPTER 6: THB IWTBGRATING SPHERE.

< 6.1> Introduction.

This InvBstlgatlon was conducted to provide an Independent, 
(l.a. non-llbre), measurement ot the scattering parameter S. 
It should however be recalled that such measurements require large 
corrections [32,33] owing to the refractive index mls-match between 
the air and the sample.

port Q

port b

integrating
sphere

Fig (6.1.1)
The integrating sphere.

The integrating sphere is a hollow sphere, internally coated 
with a highly diffuse reflective coating, (an albedo of 0.97 is 
typical).
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Suitable apertures around the sphere allow tor Illumination, 
detection and insertion of the scattering sample. The sample may be 
Illuminated directly by the source, (sample at a, illumination 
through c, detector at b, see fig (6.1.1>>. In this mode of 
operation most of the specular reflections from the sample are 
lost through the input aperture c. Only the diffusely reflected 
radiation is observed by the detector at b, see fig (6.1.2).

detector

collimated 
light 

source

Pig (6.1.2)
Collimated illumination, diffuse detection.

Alternatively the sanqple may be illuminated indirectly, and 
diffusely, by placing the sai^le over aperture a and illuminating 
the side of the Integrating sphere through b, see fig (6.1.3). The 
light input through b is diffusely reflected around the sphere
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until it is incident upon the sample at a, it is then, to a good 
approximation, diffuse.

Fig(6.1.3)
Diffuse illumination, collimated detection.

The detector at c then measures only the diffuse light 
reflected from the sas^le.

The integrating sphere relies upon the sphere acting to 
diffuse any light falling upon it. To approach this ideal the 
Internal coating should be perfectly diffusely reflecting, and the 
ratio of aperture cross-section to the sphere's Internal area must 
be vanishingly small [331. The sphere used in these experiments had 
an Internal diameter of 150 mm and throe apertures of 
cross-sectional area 804 mm*, giving an Internal surface area to
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aperture area ratio o£ approximately 0.03S.

(6.2) Bxoerlmental method.

The standard method of use of an integrating sphere is to 
illuminate a knotm thickness of sample backed by a tile of known 
absorbance and measure the combined diffuse reflectance of the 
saii«)le and tile. The scattering power of the sample may then be 
calculated fron the equation,

R » a-»( 1—a )Sd ....(6.2.1)
!■•■( 1-a )Sd

where a is the reflectance of the backing tile.

j There seemed little to be gained by using this method to
' evaluate S. Hence, as previously the reflected intensity was 
measured for varying sample thicknesses above an absorbing 
boundary. The results were fitted to equation (6.2.1), with the 
quantity a left as a floating parameter in the fit to account for 
the finite reflectance of the absorbing boundary.

The stepper motor movement system developed earlier was 
adapted to move a matt black plastic plunger upwards through a 
cylindrical glass sample cell with a glass bass, see fig (6.2.1). 
The sample cell was filled with a scattering sample and placed on 
top of aperture a, the sample was then illuminated, and the plunger 
moved upwards through the sample.
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matt blacii 
plunder

Fig(6.2.1>
Sample cell and alasorblng boundary.

Experiments were conducted using a white light source with the 
sample under direct, (collimated) illumination, and diffuse 
detection, (sample at a, illuminated through c, detector at b>. The 
experiments were then repeated for indirect, (diffuse), 
illumination and direct (collimated) detection, (sample at a, 
sphere wall illuminated through b, detector at c). Experiments were 
also conducted using direct laser (lOmH HeNe, 633 nm) illumination.

The detection system detailed earlier in chapter three was 
used to detect the reflected flux, (the input to the detector was 
filtered to 589 nm for white light Illumination). The monodlsperse 
spherical latex particles suspended in de-ionlzed water, at a
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volume fraction of 0.0238, provided the scattering samples.

(6.3) Results.

Figures (6.3.1) 
obtained for laser

and (6.3.2) Illustrate typical results 
illumination and diffuse white light

illumination. The solid line represents the fitted curve, i.e. 
equation (6.2.1).

Fig (6.3.1)
Reflected intensity as a function of sample thickness. 
Laser illumination. Wavelength “ 633 nm, mean particle 
diameter - 0.33 microns. Solid line shows fitted curve,

I.e. equation (6.2.1).
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SAMPLE THICKNESS / MM 
Pig (6.3.2)

R«ll«ct«d intensity as a function of saaple thickness. 
Diffuse white light illusination. Reflected intensity 
filtered to 589 nm. Mean particle diameter * 0.33 microns.

Solid line shows fitted curve, l.e. equation (6.2.1)

A comparison of figures (6.3.1) and (6.3.2) with the data 
obtained using optical fibres, i.e. figures (3.3.1), (3.3.6),
(3.3.7) and (5.1.3), show that a much better quality of fit is 
obtained using the integrating sphere.

Tables (6.3.1), (6.3.2) and (6.3.3) compare the theoretical 
and experimentally obtained values of S. The experimental values 
have been corrected for internal interfacial reflections at the 
sample-glass, glass-air Interfaces, (assuming a sample refractive 
index of 1.33), see section (3.7.4). The quoted experimental value 
of S is the mean value obtained from four experiments on the same
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sample. The quoted error is the standard error of the four results.

Particle
Diameter
/microns
0.085
0.11
0.25
0.33
0.48
0.54
1.05
1.43

S< exp > 
/ mm"'

.75  ♦/-  . (  

.93  + / -  .C
8 .7  ♦/-  . ;
7 . 8  ♦/-  .3
8 .3  +/ -  .!
8 .3  ♦/-  . i
7 . 3  +/ -  .:
6.0 ♦/- .:

Particle
Diameter
/microns

S( exp > 
/ mm"'

.88  +/ -  .C
1.03 +/- .C

7 . 5  + / -  . ]
8.0 •*■/- .«
8.3 +/- .i 
9.0 +/- .: 
7 . 7  + / -  . :
6 . 5  ♦ / -  . :

S( Mle) S( Bxp >/S< Mle )
/ mnT
1.26 .60 +/- .02
2.24 .42 +/- .02
7.82 1.11 +/- .06
7.38 1.06 +/- .04
7.81 1.06 +/- .06
7.59 1.09 */- .07
5.89 1.24 +/- .08
4.98 1.20 +/- .06

.1)
Llmated (laser )
ingth • 633 nm.

S(Mle> S( Bxp )/S( Mle >
/ mm"'
1.24 .71 +/- .06
2.87 .36 +/- .02
8.19 .92 +/- .01
8.38 .95 +/- .09
8.14 1.02 •06
8.08 1.11 +/- .04
5.95 1.29 -*•/- .02
5.05 1.29 ♦/- .06

Table (6.3.2)
S obtained for collimated Illumination. 

Wavelength “ 589 nm.

Particle Mle)Diameter S( exp) S( Mle) S( Bxp )/S(
/microns / mm'-1 / mm"'
0.085 .98 ♦/- .03 1.24 .79 */- .02
0.22 8.7 +/- .5 8.19 1.06 -*•/- .06
0.33 8.2 +/- .1 8.38 .98 +/- .01
0.48 8.7 +/- .3 8.14 1.07 +/- .04
0.54 8.5 ♦/- .8 8.08 1.05 •*•/- .09
1.05 7.00 +/- .05 5.95 1.18 ■►/- .01
1.43 6.3 •»•/- .1 5.05 1.25 +/- .02

Table <6.3.3)S obtained for diffuse Illumination.
Wavelength • 589 nm.

It Is clear from the results that It makes little difference
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to the measured value of S whether the sample Is Illuminated 
directly or Indirectly. This is however to be expected, when the 
sample is illuminated with collimated flux the tlux reflected from 
the sample will illuminate the Internal surface of the integrating 
sphere. The integrating sphere will diffusely reflect this flux to 
re-llluminate the sample. Hence, when the sample is illuminated 
with collimated flux, it is also illuminated with diffuse flux due 
to the reflectance of the sample.

The agreement between the theoretical and experimental values 
of S is unaltered by using laser illumination, as we would expect 
if the measured value of S is Independent of the coherence length 
of the illuminating radiation.

(6.4) Conclusion.

It has boon shown that the agreement between the theoretical 
and experimental values of S is good so long as the internal 
interfacial reflections are taken into account. It is therefore 
reasonable to conclude that the equation S-3/4NCiui<l-cos0) is, to 
at least a good approximation, valid over the tested particle size 
range for samples of negligible absorption.

The much Improved fit to the Kubelka-Munk expression obtained 
using the integrating sphere is presumably due to the Integrating 
sphere more closely matching the assumptions of the theory, l.e. 
the sample is diffusely illuminated, and the Influx and efflux 
routes are not physically separate.
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CHAPTER 7; ABSORPTION MBASURBMBMTS.

(7.1) Introduction.

In the previous experiments it had been assumed that the 
absorption coefficient K of the scattering sample was negllgble in 
comparison to the scattering parameter S. No attempt was made to 
measure K, other than to confirm that K << S. The aim of the 
following experiments was to determine whether measurements of K 
may be made using the optical fibre method.

(7.2) Initial Experiments.

Measurements of the scattering parameter S, and the alasorptlon 
coefficient K, were made using a single optical fibre bundle, (of 
diameter 6.38 */- .08 mm and NA 0.50), and beam splitter
arrangement, as outlined in chapter five. As in the previous 
optical fibre bundle experiments, the reflected intensity as a 
function of illuminated sample thickness was measured. The results 
were fitted to the Kubelka-Munk equation for a scattering and 
absorbing sample.

R “ l-r( a-bcoth< bSd)) 
a-r+bcoth< bSd) >

where a « Jl+K/S, b « < a-1 J
r - diffuse reflectance of the base of the cell.

....<7.2.1)

The quantity r was left as a fitting parameter. Two 
experimental studies are described below where in one r is 
approximately zero (black backing), and in the other r is
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appxoxinataly one (white backing).

The samples were prepared from a suspension of 0.180 */- .007 
micron spheres In de-lonlzed water« with a volume fraction of 
0.041. The absorption of the sample was varied by the addition of a 
dye solution. The dye solution was made from Malachite Green 
dissolved In distilled water. A solution of 7.5xlo’ % by weight of 
dye was used to provide absorption within the samples. The detected 
radiation was filtered to a wavelength of 589 nm.

Intltlal experiments were carried out on 10 ml of the 
scattering sample to which was added 0.11 ml of the 7.5x10 % dye 
solution. The results quoted below give the mean and standard error 
from four experiments on the sample. Typical (fitted) experimental 
results are Illustrated In fig (7.2.1).

S - 5.6 mm* +/- 2 %
K - 6 m" ♦/- 50 %

It Is clear that the error In K Is significantly greater than 
the error In S. The large error In K Is due to an Inability of the 
fitting programme to obtain an accurate measurement of the 
absorption of the sai^le from the reflected Intensity 
measurements. A measurement of the absorption of the sample Is more 
easily obtained If the reduction In reflected Intensity as a 
function of sample thickness above a reflecting (white) boundary Is 
measured as; (a) the reflected Intensity Is then highly dependent 
upon the absorption of the sai^ple and (b) the fitting programme can 
obtain an accurate measurement of the reflectance of the sample 
from the reflected Intensity data.
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Fig (7.2.1)
Retlectad intensity as a iunctlon ol sample thickness lor an 
absorbing sample with a matt black cellrepresents litted eguatlon (7.2.1). Wavelength - 589 nm.
Latex volume fraction ” 0.041» mean diameter ” 0.18 |im,

0.11 ml of dye solution added.

The matt black cell base was replaced with a matt white cell 
base» the Intensity reflected at zero sample thickness was then 
commensurate with a reflectance of 1. This provides a reference 
point by which all intensity measurements may be converted to 
reflectance measurements. The reflectance of the sample at 
Infinite sample thickness is solely dependent upon the ratio of S 
to K» hence a measurement of the reflectance of the sample at large 
sample thickness allows the absorption coefficient K to be 
accurately estimated by the fitting programme.
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Experiments were conducted on a second scattering and 
absorbing sanqple made from 15 ml of the scattering sample and 0.4 
ml ot the dye solution. The experimental results were fitted to 
equation (7.2.1) with a cell base reflectance of 1. The results 
given below quote the mean and standard error from four 
experiments on the sample. Typical experimental results are 
Illustrated In fig (7.2.2).

S - 5 mm‘'+/- 20 %
K - 0.15 mm''+/- 7 %

Pig (7.2.2)
Reflected Intensity as a function of sample thickness for an 
absorbing sample with a matt white cell base. Solid line 
represents fitted equation (7.2.1). Wavelength - 589 nm» 
Latex volume fraction “ 0.041, mean diameter ” 0.18 pm,

0.4 ml of dye solution added.
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It is clear that the error In K has been greatly reduced, and 
the error in S Increased. The experimental value of K has been 
increased by several orders of magnitude over the value obtained 
using a black based cell. It should be noted here that the 
difference between the values of K obtained using the two 
experimental systems, (one with a white based cell, the other with 
a black based cell>, arises from the fitting routine. A low value 
of K being obtained when the black based cell is used as the 
fitting routine is Incapable of determining the reflectance of the 
sample from the intensity data. Using a white based cell allows the 
fitting routine to determine the reflectance of the sample, hence K 
may be more accurately determined from the fit.

(7.3) Absorption measurements on scattering samples.

«Experiments were carried out on the scattering sample with 
varying amounts of dye solution added. The fitting results are 
Illustrated in fig (7.3.1). Note the dye concentration is expressed 
in terms of the percentage by weight of dye solution added to the 
scattering sample.

It c ^  be seen from fig (7.3.1) that to a good
approximation there is a linear relationship between the dye 
concentration and the fitted value of K. The finite value of the 
Intercept implies that the pure scattering sample used has a finite 
absorbance of .09 ■*■/- .01 mm*. Measurements on the scattering
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sample with no dye added, using this experimental system, yielded a 
value of K of .06 -*■/- .01 mml This is in good agreement with the 
extrapolated result. The gradient of the K vs dye concentration
curve is .023 +/- .002 ram'%".'

Fig (7.3.1)
Absorption coefficient K, as a function of dye 
concentration added to the scattering sample.
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The value of K obtained tor zero dye concentration is somewhat 
large. Observations of the sample with the naked aye showed that 
the sample appeared to have a green tint for even low dye 
concentrations, no such visible observations of absorption wore 
noted in the pure scattering sample. It therefore appears likely 
that the absorption measured in the purely scattering sample is an 
artifact of the experimental system. This affect may be 
explained by considering the numerical aperture of the optical 
fibre bundle. Consider an optical fibre bundle immersed in a 
non-absorbing scattering sample, parallel to a perfectly 
white, flat boundary. For low path lengths, i.e. Sd << 1, the 
majority of the light emergent from the fibre will be directly 
reflected by the white base back to the fibre bundle, see fig 
<7.3.2a). As the path length increases the divergence of the 
emergent beam will cause less of the light reflected from the 
white base to be detected by the optical fibre bundle, (so long as 
Sd < 1), see fig <7.3.2b). Hence a decrease in the detected optical 
power will be observed. If these results, obtained for a 
non-absorbing sample, were fitted to equation (7.2.1), a finite 
absorption coefficient would be returned by the fitting routine, 
due to the apparent decrease in sample reflectance with sample 
thickness. Such a process would account lor the relatively large 
absorption recorded for the pure scattering samples.
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Fig <7.3.2)
Decrease in detected retlected intensity due 
to numerical aperture of optical fibre bundle.

(7.4) Absorption measurements on non-scattering SATOtgg.-

For the purpose of comparison further experiments wore 
conducted to measure the absorption of the dye solution as a 
function of dye concentration for a non-scattering sample.

A cylindrical glass cell with a glass base was illuminated 
from below by collimated white light. The cell was filled with 
a dye solution and a single optical fibre bundle placed within the 
sample. The fibre bundle was then moved upwards through the sample, 
and the Intensity transmitted through the fibre bundle measured as 
a function of illuminated sample thickness.
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fibre

illumination

Fig (7.4.1>
Absorption measurement experimental system.

The same Illumination, detection and mechanical movement 
systems as detailed In chapter three were used. The transmitted 
light was filtered to 589 nm. The data was fitted to Lambert's law 
(49 1,

I - Ic exp< -NCjk, d ).

The results are Illustrated In fig (7.4.2).
Vb A',«
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DYE CONCENTRATION / * BY WEIGHT 
Fig (7.4.2)

Fitted value of NC^ as a function of dye concentration,Cn.

It can be seen that to a good approximation there Is a linear 
relationship between NC^ and the dye concentration. The gradient 
of the fitted straight line Is 0.0179 +/- .0005 nun'C, and the
intercept Is .002 +/- .003 mm'. It has been shown that, (section 
2.3),

K - 2NCj»
Hence, the ratio of the gradient of K vs Cn to the gradient of NC^
vs (>i should be egual to 2.

Ratio - .023 W -  .002
.0179 +/- .0005
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Hence,
- 1.3 -f/- .1 

Ke - 1.3 MC4» . 
where Ke - the experimentally determined value of K. 
But,

where Kt
Kt - 2NC,k> ,

the theoretical value of K.

Hence, Ke/Kt - (1.3 +/- .l)NC.u - 0.65 +/- .05 
2NC,te

Measurements of S using this fibre bundle returned values of S that 
were 62 4 % of their theoretical value, l.e.,

S<exp )/S(the ) - 0.62+/-.04
Therefore it would appear that the experimental values of S 

and K are related by the same factor to the theoretical values of S 
and K.

Note: The comparatively low ratio of S( exp )/S<the> was unexpected. 
A ratio of 0.85 was obtained using a similar system with a fibre 
bundle of radius 6.72 mm. The S( exp>/S(the) ratio was checked 
using several monodlsperse latex samples with no significant change 
being observed. Examination of the fibre bundle under a microscope 
revealed that large areas of the fibres were broken. This would 
result in an Increase in the effective separation between the 
Influx and efflux routes to and from the sample, hence the low 
S<exp>/S(the) value obtained with this fibre bundle.

(7.5> Conclusion.

It has been shown that accurate measurements of the changes in
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CHAPTBR 8; COMCBNTRATION BPFBCTS.

<8.1) Introduction.

It has been shovm that to a good approximation,
S - 3/4NC^(1-c o8 0),

for volume fractions, v less than 0.025. It Is well-knovm 
111,50,51] that lor high volume fractions, S Is a non-linear 
function of v. The purpose of this Investigation is to 
examine this effect, comparing the results from monodlsperse 
spherical particulate systems with results from non-spherleal 
particulate systems.

Two latex samples were used in this Investigation;

(1> A suspension of 0.180 -«■/- .007 micron diameter spheres, with 
a volume fraction of 0.270.

%■
A(11 > A suspension of 0.21 .09 micron dlamter spheres, with

a volume fraction of 0.378.

The concentration of these samples was varied by the addition 
of distilled water, and checked by weighing and drying the samples.

Experiments were also carried out on broad size fraction 
samples of kaolin clay particles, (English C^lna Clay grade EPS), 
suspended in distilled water. The samples were prepared as 
detailed In section 1.3 for maximum particle deflocculation, 
i.e. the pH of the sample was adjusted to 8.5 and 0.21 % by dry
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weight of clay of sodium polyacrylate was added. All samples were 
agitated Inmedlat^ey before each experiment to eliminate any 
sedimentation. As with the latex spheres, the concentration of the 
kaollnlte samples was monitored by drying and weighing.

(8.2) Experimental procedure.

A single optical fibre bundle, (of diameter 6.38 +/- .08mm 
and NA 0.50), was used In conjunction with a beam splitter to 
measure the scattering parameter of the samples as a function of 
concentration, (using the method detailed In chapter 5). The same 
Illumination, detection and mechanical movement systems were used 
as described previously In chapter three. The detected light was 
filtered to 589 nm. The reflected Intensity as a function of 
Illuminated sample thickness was measured and the results were 
fitted to eqpiatlon (3.2.2), l.e

I - A.Sd
(1-̂ Sd)

(8.3) Results.

The scattering parameter of the three samples as a function 
of volume fraction are given In tables (8.3.1), (8.3.2) and
(8.3.3) . The quoted experimental value of S for any given 
concentration Is the mean value obtained from four experiments on 
the same sample. The quoted error Is the standard error of the four 
results.
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Volume Fraction. S /
0.270 23 +/- 2
0.238 24 +/- 1
0.190 26.2 +/- .5
0.172 27.7 +/- .3
0.139 27 +/- 2
0.101 22 +/- 1
0.078 20 +/- 1
0.026 11.2 -*■/- .5

Table (8.3.1)
0.180 +/- .007 micron soheres.

Volume Fraction S / mm”'
0.378 11.4 +/- .8
0.341 12.7 +/- .3
0.309 12 +/- 2
0.276 13.7 +/- .8
0.249 14 +/- 1
0.215 15 +/- 2
0.182 15 +/- 1
0.123 13.5 +/- .8
0.057 11.0 +/- .8
0.036 7.3 +/- .8
0.0084 2.8 +/- .5

Table (8.3.2)
0.21 ♦/- .09 micron soheres.

Volume Fraction
0.366
0.328
0.213
0.141
0.111
0.075
0.042
0.015

S / mnT'
67 ♦/- 3
61 -f/- 3
48 ♦ / - 3
34 1
22 ♦ / - 1
18 * / - 1

8.9 * / - .1

3.8 .

Table <8.3.3) 
Kaolin aamplea; SPS.

These results are Illustrated In llg <8.3.1>, llg <8.3.2) and
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fig < 8.3.3 >.

Pig < 8.3.1>
Measured scattering parameter as a function of sampli 
concentration. Latex sample, mean particle diameter • 

0.18 pm, wavelength “ 589 nm.
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Fig (8.3.2)
Measured scattering parameter as a function of sample 
concentration. Latex sample* mean particle diameter “ 

0.21 pm* wavelength “ 589 nm.
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VOLUME FRACTION 

Fig (8.3.3)
Measured scattering parameter as a function of sample 
concentration. Kaolin sample, English China Clay grade 
SPS. Broad size fraction, 80 % < 2 pm. Wavelength - 589 nm.

It can be seen from figs (8.3.1) and (8.3.2) that the latex 
samples peak In scattering parameter at a volume fraction of 
approximately 0.20. This Is In reasonable agreement with the 
results of Meeten et al. (Ill, obtained with monodisperse spherical
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latex particle». The drop in the effective scattering cross 
section per particle with concentration has been widely reported 
elsewhere [50,51,52]. The clay particles do not show such a peak in 
scattering parameter, although a decrease in scattering efficiency 
per particle is evident.

(8.4) Analysis of results.

The expression used to calculate the scattering parameter S of 
a monodlsperse system is,

S - 3/4NCk, < l-cos©^).
This predicts a linear relationship between S, and the number 
concentration (per unit volume), N. To a good approximation this 
expression has been shown to be valid by previous experiments, 
for volume fractions less than 0.025. The non—linear relationship 
between N and S at higher volume fractions therefore Implies that 

the above equation inapplicable to samples of high volume
fraction as, the quantities C,« and <1-cos 0- > Vc affected by the 
particle number density. Gate [521, proposed that the values C m  
and (1-cosg- ) were modified due to the scattering particles 
affecting the effective refractive index of the continuous phase of 
the scattering medium. Hence, the increasing concentration of 
scattering particles reduces the refractive index mis-match between 
the scattering particle and the continuous medium, thus
(generally), reducing the value of Qk«* Gste assusied a linear 
relationship between the particle concentration and the bulk 
refractive index n of the scattering sample. Using the data of 
Hiltner and Krleger (531 the following en«)lrlcal relationship
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between the bulk refractive index n', and the volume fraction v, of
the latex is obtained [40],

n* “ 0.27v + 1.333.
This expression is in good agreement with that of Meeten et 

al. (111.
n* “ m,+X(ro»-m, )v,

where; m, - the refractive index of the continuous phase, <i.e. in 
this case that of water. 1.333),

m, - the refractive index of the scattering particles, (l.e.
in this case that of latex, 1.60),

“ a constant with a value between 0.94 and 1.05.

We may therefore determine the bulk refractive index of the 
sample from the above equations for a given volume fraction of 
latex. Using the new refractive index a new relative refractive 
index, m’, (m* -m /n* ), and size parameter x*, <x’- 2wan*/V, may 
be calculated. Using these values of m* and x' the concentration 
dependent values of Qk« and (1-cos^ ), (and hence S), may be 
calculated from Mie theory. The tables below illustrate the values 
of S so calculated.

il. free. n* x* m* S/bmT'
0.270 1.40 1.35 1.140 47.9
0.238 1.39 1.34 1.148 46.7
0.190 1.38 1.33 1.159 42.3
0.172 1.38 1.32 1.163 40.0
0.139 1.37 1.31 1.170 34.8
0.101 1.36 1.30 1.179 27.6
0.078 1.35 1.30 1.184 22.3
0.026 1.34 1.28 1.197 

Table (8.4.1)
0.180 */- .007 micron sample.

8.4
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>1. frac. n' X* S/mm"'
0.378 1.43 1.60 1.118 52.1
0.341 1.42 1.59 1.127 54.1
0.301 1.41 1.58 1.135 53.6
0.276 1.40 1.57 1.143 54.7
0.249 1.40 1.57 1.143 49.3
0.215 1.39 1.56 1.151 47.1
0.182 1.38 1.55 1.159 43.9
0.123 1.36 1.52 1.176 35.5
0.057 1.35 1.51 1.185 18.0
0.036 1.34 1.50 1.194 12.4
0.0084 1.33 1.49 1.200 3.05

Table (8.4.2)

The process is not quite so straightforward for the kaolin 
sample as there is a large distribution of particle sizes, (see 
section 1.3). However, we can make an estimate of the effective 
mean particle size from the scattering parameter of the sample at 
low volume fractions. Taking the result for the most dilute sample, 
l.e. V - O.OIS, S - <3.8 +/- .3) mml Figure (8.3.4) Illustrates 
the scattering parameter as a function of particle diameter lor a 
sample of refractive index 1.57 and volume fraction .015. It can be 
seen from the graph that a monodlsperse sample at this volume 
fraction with a scattering parameter of <3.8 +/- .3) mm'corresponds 
to a mean particle size of (.18 +/- .02) microns, or (0.65 +/- .2) 
microns. The size distribution data presented in fig (1.3.1), 
would suggest that the larger diameter is the more appropriate. 
Having determined an approximate effective mean diameter the 
effect of particle concentration on the observed value of S can be 
calculated from Gate's theory.
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n ’ x ‘ m'
1.42 5.68 1.106
1.41 5.64 1.113
1.38 5.53 1.135
1.37 5.46 1.149
1.36 5.44 1.155
1.35 5.40 1.162
1.34 5.37 1.169
1.34 5.35 1.174

function
relative

S/m«r'

Fig (8.4.1)
Calculated scattering parameter as a 
of particle size. Wavelength “ 589 nm, 

refractive Index, m - 1.19.
Vol. frac.

0.366 
0.328 
0.213 
0.141 
0.111 
0.075 
0.042 
0.015

Table (8.4.3)Kaolin clay sawpletSPS grade.

The calculated and experimental values of S as a function of 
volume fraction are Illustrated In fig (8.4.2), fig (8.4.3) and fig
(8.4.4).
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Pig (B.4.2)
Comparison oi theoretical (upper curve) and experimental 
(lower curve) values of S. 0.18 micron latex sauaple. 

Wavelength “ 589 nm.
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Fig (8.4.3)
CoaparlBon of th«or«tlcal (uppar curve) and experimental 
(lower curve) values of S. 0.21 micron latex sample. 

Wavelength ” 589 nm.
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Fig (8.4.4)
Comparison oi theoretical (lower curve) and experimental 
(upper curve) values of S. Kaolin SPS grade sample. 

Wavelength •* 589 nm.

It is clear from a comparison of the theoretical and 
experimental graphs that Gate's theory overestimates the decrease 
in scattering efficiency for the clay sample, and underestimates it 
for the latex saa«>les. In addition there is very poor agreement 
between the experimental and theoretical values of S.

(8.5) Discussion.

There has so far been limited success in finding an accurate 
theoretical model to describe multiple scattering in highly
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concentrated systems. The model proposed by Gate (52 ] would appear 
to be a useful first approximation in that it does predict the 
broad trends observed experimentally, l.e. a drop in scattering 
efficiency per particle with concentration. Meeten and Kllley (11] 
proposed a more complex model, this explains the drop in scattering 
efficiency per particle by assuming there Is some type of 
concentration-dependent llquid-llke ordering of particles. By 
applying Mie theory results computed for concentric spheres, 
scattering efficiencies can be calculated. Meeten and Kllley report 
good agreement with experimental data. However the choice of radius 
for the liquid-llke ordering is (presently) somewhat arbitrary, 
this leads to limitations in the applicability of such a theory to 
practical situations.

The results obtained may be explained by assuming that there 
Is a reduction in scattering efficiency due to close packing of the 
particles. The spherical particles exhibit a much larger reduction 
in scattering efficiency per particle with increasing volume 
fraction. This is commensurate with such a system as the 
roonodlsperse spherical particle samples will be capable of more 
ordered packing than the polydisperse non-spherleal kaollnlte 
particle samples, thus resulting in a larger drop in scattering 
efficiency in the spherical particle samples. This is consistent 
with the results presented by Fltzwater and Hook [54] for 
measurements of the scattering parameter S as a function of volume 
fraction of rutile titanium dioxide, TiO^ , (see fig (8.5.1) 
reproduced from Pltzwater and Hook). Rutile TiO^ particles are 
approximately spherical, and hence packing of such particles would
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be somewhere between the two extremes of the monodisperse spherical 
latex particles, and the highly polydlsperse plate-llke kaolin 
particles. Fig <8.5.1) shows that the drop In scattering 
efficiency per particle for TIO, 1s less than that obtained 
for the latex samples, and higher than that obtained for the 
kaollnlte samples.

Pig (8.5.1>
Kubelka-Munk scattering coefficient S as a function of 
volume fraction of titanium dioxide. Figure reproduced 

from Fltzwater and Hook (541.

<8.6) Conclusion.

The drop In scattering efficiency per particle observed In
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highly concentrated scattering systems can be explained In terms ol 
close packing ol particles. It has been shovm Irom the experimental 
results that the more ordered the particle system, (and hence the 
more ordered the packing at high concentrations), the higher the 
drop In scattering elllclency with particle concentration.
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CHAPTER 9: FLOW BPPBCTS IN CONCENTRATED COLLOIDAL SYSTBMS.

(9.1) Introduction.

Non-spherleal particles will be partially orientated by 
laminar flow [2). Flow-orlentatlon la due exclusively to the 
anlsometry of the particle and any torque produced by the velocity 
gradient.

Fig (9.1.1)
Torque exerted on a rigid rod by velocity gradient.

Fig (9.1.1) Illustrates the two dimensional case of a rigid 
rod In a shear field, the same argument may be extended to the 
plate-llke kaollnlte particle.

Fig (9.1.1) also Illustrates the velocity vector v 
which Is parallel to the X-axls, and the velocity gradient G 
parallel to the Y-axls. A third vector n Is defined as being 
mutually orthogonal to the velocity vector and the velocity
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gradient, and hence Is parallel to the Z-axls, into the plane oi 
the paper. The shear plane Is defined as the plane that contains v 
and G, l.e. the (v,6> plane.

The torque exerted on the particle is dependent upon the 
particle orientation, hence as the particle rotates due to the 
effect of the torque exerted on it, so the torque acting upon it 
alters. Hence a particle will rotate with a (generally) 
non—uniform angular velocity. Neglecting inertial forces, the 
angular velocity of the particle will he a minimum when the torque 
exerted on the particle is a minimum. It can be seen from figure
(9.1.1) that a minimum torque will be experienced by the particle 
when its longest axis is parallel to the direction of the stream 
lines. Therefore in any one rotation the particle will spend most 
of its time with its longest axis in the direction of the stream 
lines.

Opposing the alignment effect of the velocity gradient is the 
randomizing influence of Brownian motion. Brownian motion will 
cause random variations in the motion and orientation of the 
particles. This will result in a distribution of orientations 
for any group of particles. The probability of a spheroid having a 
given orientation is governed by the rotary convective-diffusion 
equat ion (55,561,

*>p - D,Vp -V(wp)
■St

,.(9.1.1)

where p “ the probability of a spheroid having a given orientation, 
the rotary-diffusion constant and 

w “ the angular velocity of the particle.
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No general solution of equation (9.1.1) exists» but numerical 
and asymptotic solutions are available. The solution obtained Is 
dependent upon the rotary Peclet number, P, defined as

When P—»00 rotary diffusion Is negligible and the particle 
rotation and orientation Is governed by the applied shear. When 
p—»0 Brovmlan motion Is dominant, hence all orientations are 
equally probable, l.e. the particles are randomly orientated.

For a very thin oblate spheroid, regarded as a disc. In a 
continuous medium the rotary diffusion coefficient D, about any 
diameter Is given by the expression [57],

IV- aki,4«vd’
where d - the diameter of the spheroid, 

k “ Boltzman's constant,
T  - the Kelvin temperature,\  - the viscosity of the surrounding medium.

For a sample of oblate spheroids with face diameters 1.5 
microns at a volume fraction 0.025, the above equation gives D - 45 
sec*. Hence, strong alignment would be expected for G m 45 sec^ <l.e. 
Ptel). Thus strong alignment Is experimentally obtainable.

Aligning the particles within a colloidal dispersion results 
In optical anisotropy In the dispersion. The optical effects of 
shear Induced orientation of kaollnlte have been studied In the 
single scattering regime (57,58,591. Information on the size and 
shape of the suspended particles, and their stability, may be
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extracted from such rheo-optlcal measurements (58,591. Little work 
has been conducted on rheo-optical affects in highly concentrated 
and multiple scattering samples. Single scattering measurements are 
of limited use In studying the effects of particle Interactions, 
which will be virtually absent at low particle number densities. It 
has recently been shown however that It Is possible to make 
rheo-optlcal measurements on concentrated, multiple-scattering 
samples, to extract Information on particle orientation and 
Interactions (91.

(9.1.1) Kaollnlte clay samples.

The samples used In this Investigation were kaollnlte clays 
suspended in water. Kaollnlte clays are Ideally suited to 
rheo-optlcal investigations due to their shape, a flat thin plate 
of typical dlameter/thickness aspect ratio 10:1 (81, and their low 
absorption of light In the visible region (91, which maximises the 
received Intensity for reflectance and transmittance measurements. 
The effect of flocculation on the rheo-optlcal properties of the 
sample may also be easily studied, as kaollnlte suspensions can be 
flocculated or deflocculated by manipulating the pH of the saaqple 
(91. Deflocculation may also be achieved by the addition of a 
surfactant, see section (1.3). The major disadvantage of the 
kaollnlte Is that the clay particles have a high relative density; 
2.6. This leads to high settling rates within the 
suspensions, causing drifting of optical Intensity readings as the 
particles settle out of the suspension. The refractive index of 
kaolinite Is 1.56 (9].
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(9.1.2) Previous multiple scattering rhgo-optlcal roeaaurements.

Neasurenents of shear induced optical changes on multiple 
scattering samples have been made [91 using the fibre geometry 
shown in fig (9.1.2). The rheo-optical measurements were confined 
to light directions normal to the shear plane. Shear induced 
changes in the reflectance of the samples were studied, and no 
attempt was made to relate these to changes in the scattering 
parameter of the sample. Flg(9.1.2) Illustrates the apparatus used 
by Molloy 19 1 to monitor changes in reflectance of kaolinite clay 
samples with volume fractions between 0.05 and 0.30.

Pig (9.1.2)
The rheo-optlcal experimental system of Molloy.

A bifurcated optical probe was used by Molloy to both 
illuminate and to detect the reflected light from the sample, (as 
in the bifurcated optical fibre experiments, chapter 3). The 
bifurcated optical fibre was held at a known height above the base 
of the cell, and the cell rotated at a known frequency, generating
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I a shear ileia within the sample between the base of the cell and 
the end of the probe. The change in the intensity reflected 
from the sample as a function of the generated shear field was 
monitored. Typical results obtained by Molloy, for a Kaolinite 
sample of nominal size range 0.6-0.7 microns at a volume fraction 
of 0.09 is Illustrated in fig <9.1.3). It should be noted that G 
was not uniform over the illuminated volume in this apparatus. The 
velocity gradient indicated in fig <9.1.3) is averaged over the 
illuminated volume.

Pig (9.1.3)
Change in reflectance as a function of shear rate. Kaolinlte 
clay sample, nominal size range 0.6-0.7 microns, volume 

fraction 0.09. Reproduced from Molloy [9].
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Reflectance changes as a function of shear rate were measured 
by Molloy [9] for kaollnlte samples of varying particle sizes. It 
was found that the reflectance of the sample, when viewed at the 
normal to the shear plane, Increased on shearing the sample. 
Molloy concluded that this was evidence of the particles 
orientating themselves In the shear field. The particles will 
orientate themselves so that the normal to their faces will spend 
most of their time normal to the shear plane (57), see fig (9.1.1). 
This will result In the geometric area presented to the optical 
fibre probe face being Increased. If we assume the diffraction 
limit approximation for the scattering cross-section (31, (i.e. the 
scattering cross-section Is twice the geometric cross-section), 
then the change in the scattering cross-section Is simply the 
change In the geometric cross-section. It can be concluded from 
this simple analysis that,

(I) the scattering cross-section will Increase under shear when 
observed parallel to the velocity gradient, and

(II) the scattering cross-section will decrease under shear when 
observed parallel to the velocity vector.

The results of Molloy agree well with these conclusions in the 
limited respect that an Increase in scattering parameter of the 
sample Is recorded under shear for olsservations of the sample 
parallel to the velocity gradient.
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(9.1.3) Alms of rheo-ODtlcal experiments.

The main disadvantages with the rheo-optlcal measurements on 
concentrated systems so iar carried out, [91 are that; <a) no 
attempt was made to relate the changes In rellectance to actual 
changes In the scattering parameter o£ the sample, and <b) 
measurements ol changes In reflectance with shear rate were only 
conducted parallel to the velocity gradient.

The magnitude of the change in the observed reflected 
Intensity will be dependent upon the experimental geometry and the 
scattering parameter of the sample. It is therefore difficult to 
make meaningful comparisons between samples. In addition. It would 
be instructive to study reflectance changes normal, as well as 
parallel to, the shear plane. We would expect that If the
increase in the reflected Intensity observed normal to the shear 
plane is Indeed due to shear orientation of the particles, a 
corresponding decrease will be observed parallel to the shear 
plane.

Thus the following objectives ware chosen:

(a) To relate the measured changes In reflectance of the sample to 
changes In the scattering parameter S.

(b> To develop a system capable of monitoring changes In
reflectance both parallel and normal to the shear plane.

<c> To maximize these observed changes In reflectance.
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In lollowing these alms two sets of experiments were carried 
out using different flow geometries. The first set were done using 
a slot-flow cell, where the fluid flowed In a long slot of Internal 
dimensions 3 mm by 30 mm, thus the generated velocity gradient 
was non-uniform across the cell thickness. The second set of 
experiments, designed partially to study the G-dependence of S, was 
based on an Inner-rotor concentric cylinder rheometer. For this 
design G was closely uniform across the volume of fluid probed by 
the fibres.
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<9.2> Slot-ílow cell.

A rectangular flow cell of Internal dimensions 0.30 cm by 
3.0 cm, was constructed out of matt black optically absorbing 
plastic, see fig (9.2.1).

r / '
.r-Q

-y-Q
velocity vector

Fig (9.2.1) 
Slot-flow cell.

Five fibres were mounted in a straight line along the centre 
of the top of the cell, approximately half way along the length of 
the cell. The fibre separations are given in fig (9.2.2). A further 
fibre was mounted directly opposite the first fibre in the group, 
on the bottom of the cell. The dimensions are given in fig (9.2.2).
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Fig <9.2.2)
Optical fibre mounting geometry.

The fibre detection system worked on the principle. of 
transmission of light through the flowing sample. Fibre 0 was used 
to Illuminate the sample. Light transmitted along the sample was 
detected by fibres 1«2,3 and 4. Light transmitted across the sample 
was detected by fibre 5. The same Illumination and detection 
systean as detailed earlier were used. The detected Intensity was 
filtered to 589 nm using an Interference filter of approximate 
bandwidth 16 nm.

Care was taken when developing the cell to minimize turbulence 
and eddy currents. The Internal dimensions were held constant from 
the reservoir at the top of the cell to the output tube at the 
base. The sample was therefore picked up evenly from the
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reservoir, <%*hen the sample was pumped downwards), minimizing 
'turbulence and eddy currents. Observations of the flow, (aided by 
the addition ol small black particles to the clay), were made by 
replacing the top ol the cell with a clear section ol plastic. The 
particles llowed through the cell in straight lines to within 
approximately 2 cm ol the outlet pipe at the bottom ol the cell. No 
turbulence or eddy currents could be detected lor the maximum 
obtainable Ilow rates. Settling was minimized by keeping the 
volume ol the reservoir small and mounting it so that there were no 
horizontal surlaces lor particles to settle on. Settling ellects 
were still noticeable, (i.e. drilting ol results and long 
relaxation times). However, to some extent these could be countered 
by the experimental procedure. This consisted ol llowlng the 
sample at the maximum H o w  rate in reverse, (up the cell), this 
had the ellect ol blowing air through the reservoir, thoroughly 
mixing the sample. The desired H o w  rate would then be selected, 
and the pump reversed, (so that the H o w  was now In the correct 
direction lor unturbulent How, I.e. doim the cell), h reading ol 
Intensity would then be recorded.

The dimensions ol the cell ensured that the dominant shear 
Held was between the closest surlaces. For H o w  between two 
parallel plates, Inlinite in lateral extent, the velocity prolile 
is a parabola. II we assume that the velocity prolile within the 
cell was parabolic then the shear Held within the sample may be 
determined.

Let the dimensions ol the cell be 2a and 2b, where a<<b.
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The volume flow Q is given by,
Q - 2b u< X >dx.

Where u(x> Is the parabolic velocity profile of the sample.

Hence,
u( x ) -  u,( a ' -X* )/s f

Q -  2b u.<a' - x ' ) .d x ,

Q - Sb«u,,
3

u . -  3 9 _  .
8 ab

The shear rate G Is given by
G “ du • 3 4|C. 

dx 4 a'b
Hence at the walls, <x-a), where the shear rate Is a maximum.

The mean shear rate, (when x-a/2 ), is given by,
0,“ i  9 _ .« a'b

Turbulence may be expected If the Reynolds numl»er Is greater 
than approximately 1000. The Reynolds number Is given by the 
expression,

R - 3 Qp.8 a'<̂^
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For a kaollnlte sample of volume fraction 0.025, R “ 1000 
corresponds to a mean shear rate of 1560 seel It was earlier shown 
that a shear rate of 45 sec' corresponds to a Peclet number of 
approximately 1, hence large Peclet numbers may be obtained using 
this apparatus with no danger of turbulence.

(9.2.1) Spherical latex samples.

Experiments were conducted to determine the response of the 
optical fibre detection system as a function of the scattering 
parameter of the flowing sample. The Intensity transmitted to each 
fibre was measured as a function of volume fraction of a sample 
of spherical latex particles, (of mean particle diameter 0.18 
microns). The scattering parameter of the latex samples had 
previously been determined, as a function of volume fraction, 
using the single optical fibre bundle method detailed In chapter 5. 
The received Intensity as a function of sample scattering parauneter 
Is Illustrated In figs (9.2.3) and (9.2.4). The received Intensity 
was noted to be Independent of the shear rate, as to be expected 
for a sample of spherical particles.
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SAMPLE SCATTERING PARAMETER / MM

Fig (9.2.3)
Rec«ived intensity as a function of sample scattering 
parameter lor fibres 1»2«3 and 4. 0.18 pm spherical latex samples. Wavelength - 589 nm. Triangles - fibre 1, squares 

m fibre 2, crosses “ fibre 3 and diamonds “ fibre 4.
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SCATTERING PARAMETER / MM 
Fig (9.2.4)

Received Intensity as a function of sample scattering 
parameter lor fibre 5. 0.18 pm spherical latex samples.

Wavelength - 589 nm.

It can be seen from fig (9.2.3) that the received Intensity 
Initially Increases, lor fibres 1 and 2, as the scattering 
parameter of the sample is increased. A peak In received intensity 
is reached alter which It falls. No such rise In received Intensity 
can be detected lor fibres 3 and 4. The peak in Intensity can be 
explained in terms of the fibre geometry. To analyse the 
transmission of light through the cell It Is instructive to 
visualise lour diffuse fluxes within the sample. Two fluxes travel 
up and down, (1 and j respectively), in a direction parallel to the

152



tlbre sides. Two further fluxes, <K and 1) travel along the cell, 
parallel to the fibre faces. See fig (9.2.5).

VZy/////XV77/////A

op-tiCQl
fibre

ti _k^

/ / / //////7////////A

Fig (9.2.5)
Four fluxes travelling within flow cell.

For a sample of zero scattering parameter only the downward 
flux j, due to the illuminating fibre, would be finite. There would 
be no interchange to the other three fluxes as there is no 
scattering. Hence no flux would be detected by fibres 1,2,3 and 4. 
Increasing the scattering parameter from zero would result in some 
of the downward flux J being scattered into the upward flux 1, and 
the sideways fluxes k and 1. Hence fibres 1,2,3 and 4 would now 
detect some reflected flux. As the scattering parameter of the 
sample is Increased further, more flux is scattered into l,k and 1 
from J and hence the flux detected by fibres 1,2,3 and 4 Increases 
with increasing sample scattering parameter. Fibres 1,2,3 and 4 
detect the upward flux i, but as we travel laterally away from the 
illuminating fibre, fibre 0, i is increasingly dependent upon the
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lateral fluxes k and 1. As the scattering parameter of the sample 
is Increased, so the attenuation of K and 1 with distance is 
increased, hence the upward flux i decreases with increasing fibre 
separation, d. For any given fibre separation a point will be 
reached where the increase in k and 1 due to an increase in 
scattering from j will be negated by the increase in attenuation of 
k and 1. At this point a maximum in intensity will be detected by 
that fibre. Any further increase in the scattering parameter of the 
sample will result in a decrease in the detected flux. For low 
fibre separations the attenuation of k and 1 is low, hence the peak 
in detected intensity occurs for high scattering parameters. For 
large fibre separations the attenuation of k and 1 is large, hence 
the peak in detected intensity occurs at low sample scattering 
parameters. The response of the detecting fibres can therefore be 
characterized as follows;

< i ) Before the peak in received intensity is reached the received 
intensity is dominantly determined by diffuse reflection from 
the sample, i.e. the intensity increases with increasing 
scattering parameter.

(ii) After the peak in received intensity is reached the received 
intensity is dominantly determined by diffuse transmission 
through the sample, i.e. the intensity decreases with 
increasing scattering parameter.

The turnover point between predominantly reflected to 
predominantly transmitted flux is determined by the product Sd, 
where d is the separation between the illuminating and detecting
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fibres and S is the scattering parameter ol the sample. This is 
Illustrated in the calibration curves. It can be seen from ilg
(9.2.3) that for fibre 1, with a separation of 2.68 nun, the peak in 
received Intensity occurs at a sample scattering parameter of 
approximately 0.6 mml Hence the product Sd, for the peak 
intensity, is 1.6. For fibre 2, with a separation of 5.60 mm, the 
peak occurs at a sample scattering parameter of 0.3 mm, l.e. for 
fibre 2 the peak intensity occurs for an Sd of approximately 1.7. 
Taking a mean of these two Sd values it is possible to calculate 
the value of S for which the peak in intensity occurs lor fibres 3 
and 4. For fibre 3, separation 8.65 nun, S(peak) “ 0.19 nuiT.' For 
fibre 4, separation 11.44 nun, S(peak) “ 0.14 nunl The scattering 
parameters ol the latex samples used to obtain the data illustrated 
in fig (9.2.3) wore greater than 0.2 nun*. This would explain why no 
maxima were observed lor fibres 3 and 4. Hence, so long as the 
product Sd > 1.7 the detected flux is predominantly transmitted.

It is important to consider what may be concluded from these 
results about the path of the detected light through the sample. 
When the detected intensity is Increasing with increasing 
scattering parameter, l.e. the detected flux is dependent on 
reflection from the sample, the majority ol the detected flux must 
have travelled through the sample parallel to the velocity 
gradient. Hence, observations ol the sample would be mostly 
dependent upon the scattering parameter of the sample parallel to 
the velocity gradient. When the Intensity is decreasing with 
Increasing scattering parameter, i.e. the detected flux is 
dominantly dependent upon lateral transmission through the
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sanple, the majority of the detected flux must have travelled 
through the sample parallel to the velocity vector. Hence 
observations would depend mostly upon the scattering parameter of 
the sample parallel to the velocity vector.

The above discussion has neglected fibre 5, the fibre mounted 
directly opposite the input fibre. It can be seen from fig (9.2.4) 
that this fibre detects transmitted flux, (at no point does the 
received intensity Increase with increasing scattering parameter). 
Hence fibre 5 detects flux transmitted parallel to the velocity 
gradient.

(9.2.2) Kaolinite samples.

The received intensity as a function of shear rate was
monitored lor an SPS grade, (broad size fraction, 80 % < 2 pm),
kaollnite clay sample at a volume fraction of 0.020. The
scattering parameter of the sample was measured to be 5.21 +/- .08 
rarfi using the single optical fibre bundle method detailed in 
chapter 5, giving Sd « 6.2 for the minimum fibre separation. From 
the criterion of section (9.2.1) it therefore follows that all the 
detecting fibres were operating in transmission mode. The received 
Intensity change as a function of shear rate for fibres 1,2,3 and 
4 is illustrated in fig (9.2.6). Fig (9.2.7) Illustrates the
received intensity change detected for fibre 5. The clay sample was 
prepared as detailed in section 1.3 lor maximum deflocculation. 
Fibre 0 was used to illuminate the sample, as in the previous
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experiment. <It was necessary to use a relatively dilute sample as 
for volume fractions > 0.02 the attenuation of light was too great 
to obtain results from fibre 4).

Pig <9.2.6>
Received intensity change as a function of the mean shear 
rate for fibres 1,2,3 and 4. SPS grade kaollnlte sample. 
Wavelength - 589 nm. Volume fraction - 0.02. Triangles - 
fibre 4, squares - fibre 3, crosses “ fibre 2, diamonds

“ fibre 1.
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-IMEAN SHEAR RATE / SEC

Fifl (9.2.7)
Received Intensity change as a function of the mean 
shear rate lor fibre 5. SPS grade kaollnlte sample.

Wavelength •• 589 nm. Volume fraction “ 0.02.

It can be seen from fig (9.2.6) that the observed intensity 
change is highly dependent upon the fibre separation. At a fibre 
separation of 1.04 cm, (fibre 4 detecting), the maximum observed
change in intensity was approximately 500 %. The changes in 
intensity illustrated in fig (9.2.6) were converted into changes in 
effective scattering parameter S, using the data obtained with the 
latex samples. The effective scattering parameter as a function of
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shear rate la Illustrated in fig <9.2.8) lor fibres 1,2,3 and 4, 
and in fig (9.2.9) for libra 5.

MEAN SHEAR RATE / SEC

Fig (9.2.8)
Bffactlve scattering paranetar as a function of the nean 
shear rate for fibres 1,2,3 and 4. SPS grade kaollnlte 
sanple. Wavelength - 589 nm. Volune fraction - 0.02.
Triangles - fibre 4, squares - fibre 3, crosses - fibre 

2, diamonds “ fibre 1.
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Pig <9.2.9>
Bllectlve scattering parameter as a function of the 
mean shear rate for fibre 5. SPS grade kaollnlte sample. 

Wavelength “ 589 nm. Volume fraction » 0.02.

It can be seen from fig <9.2.8) that there Is good agreement 
between the values of S measured by the four fibres. We would 
expect that the measured change In S would be dependent upon the 
path of the light within the sample, (as the scattering parameter 
1s directionally dependent). Hence It can be concluded from the 
data Illustrated In fig <9.2.8) that the proportion of the light
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path travelled by the detected light In any given direction is 
approximately the same lor all four detecting fibres.

The data presented in figs (9.2.8) and (9.2.9) can be
Interpreted as showing that the effective scattering parameter
increases on shear when the sample is viewed parallel to the
velocity gradient, and decreases when viewed parallel to the
velocity vector. This Is In good agreement with the proposed model 
of particle orientation In shear fields, assuming that an Increase 
In geometric cross-section presented to the propagating flux 
results In an increase In the scattering parameter. This assumption 
Is later examined in section (9.3.3) and Is shown to be valid for 
multiple scattering platelets.

Experiments were conducted on SPS grade kaollnlte clay samples 
with volume fractions between 0.01 and 0.30. Figure (9.2.10) 
Illustrates the percentage change in effective scattering 
parameter, observed when switching from a .mean shear rata of 0 to 
55 sec~,' as a function of volume fraction.

161



Fig (9.2.10)
Percentage change in effective scattering parameter as a 
function of sample volume fraction. Change in scattering 
parameter measured in varying the mean shear rate from 0 to 55 
sec~.' SPS grade kaollnlte samples. Lower curve “ observations 
parallel to velocity vector» upper curve “ observations 

parallel to the velocity gradient. Wavelength “ 589 nm.

It can be seen from fig (9.2.10) that;

(i ) When viewed parallel to the velocity gradient the maximum 
percentage change in effective scattering parameter Induced 
by shear alignment of the particles remained approximately 
constant with volume fraction at 25 5 %» for volume
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fractions between 0*02 and 0>30>

<li> When viewed parallel to the velocity vector the maximum 
percentage change in effective scattering parameter induced 
by shear alignment of the particles remained approximately 
constant with volume fraction at 65 +/- 5 %, lor volume
fractions between 0.03 and 0.30.

It is difficult to meaningfully compare the data obtained at 
low volume fractions with that obtained at high volume
fractions. At low volume fractions multiple scattering becomes 
negligible, altering the interpretation of the results. The drop in 
the change in effective scattering parameter below volume fractions 
of 0.03 Is therefore Interpreted as Illustrating the transition 
from single to multiple scattering, as oppposed to a change In 
kaollnlte particle interactions.

The maximum change in the effective scattering parameter on 
flow is approximately 3 times greater when the sample is viewed 
parallel to the velocity vector than when the sample is viewed 
parallel to the velocity gradient.
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<9.2.3) Plocculatlon detection.

Experiments were conducted to ascertain whether particle 
flocculation could be detected optically using the slot-flow cell. 
When floes form within a kaollnlte sample a large *house-of-cards' 
type structure Is formed 181. These large structures will be 
approximately spherical, l.e. they cannot be aligned, (as the 
Individual particles can), by a shear field. Hence the scattering 
parameter of a completely flocculated kaollnlte sample under shear 
is isotropic, and hence no flow-induced optical changes should be 
apparent. Flocculation of particles may be induced either by 
manipulating the pH of the sample, or by varying the dosage of 
deflocculant, Dlspex being used In the studies below. The active 
ingredient of Dlspex Is sodium polyacrylate.

(9.2.4) Flocculation Induced bv pH adjustment.

A broad size fraction, (SPS grade) clay sample of volume 
fraction 0.01 was prepared as detailed In section (1.3). i.e. 0.21% 
(by dry weight of clay), of sodium polyacrylate In the form of 
Dlspex was added and the pH adjusted to 8.5 by the addition of a 
sodium hydroxide solution. Half of the sample was placed In the 
slot-flow cell, and the Intensity change on shearing the sample, 
(at a mean shear rate of 49 sec), as a function of decreasing pH, 
recorded from fibre 3. The pH of the sample was decreased by the 
addition of IM hydrochloric acid .The scattering parameter of the 
sample was measured using the single optical fibre bundle method
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detailed in chapter 5 to be 2.65 +/- .05 mini the input to output 
separation fibre was 8.65 mm, giving Sd “ 23. Hence the fibre 
system was operating in transmission mode. The flow call was then 
emptied and cleaned and the remaining original solution placed in 
the cell. The change in intensity on flow was monitored lor 
increasing pH by the addition of IM sodium hydroxide. The same 
Illumination and detection system as detailed earlier were used, 
and the detected radiation filtered to 589 nm. The results obtained 
are illustrated in fig (9.2.11).

Fig (9.2.11)
Intensity change on flow as a function of sample pH. 
Kaolinite clay, SPS grade. Volume fraction - 0.01. 

Wavelength •589 nm.
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It can be seen from the results that there is a very sharp 
decrease in the change in intensity on shear at a pH of 
approximately 4. The change in Intensity of approximately 200 % for 
pH > 4.8 sharply drops to a change of about 10 % for pH <3.5. 
Similar results are presented by Molloy [91 lor kaollnlte samples 
undergoing ultrasonic orientation. The results of Molloy show the 
sharp drop occuring at higher pH, approximately 6, this is probably 
due to the difference in sample preparation between the 
experiments. Molloy prepared several samples of differing pH 
prior to the experiment. In these experiments the pH of one 
sample was manipulated in situ, it may well be that the clay 
hydrochloric acid reaction had not gone to completion when the 
Intensity readings were recorded. This experiment Illustrates the 
accuracy with which particle flocculation may be monitored using 
the slot-flow cell.

It was noted during the experiments that the intensity 
detected from fibre 3 remained constant with pH for the unsheared 
sample, l.e. the scattering parameter of an unsheared kaollnlte 
sample is independent of sample pH. This is in good agreement with 
the results of Molloy (91.

<9.2.5) Flocculation induced by Dispex dose adjustment.

An SPS grade kaollnite clay sanqple of volume fraction 0.15, 
(31.4 % by weight), was prepared without the addition of Dispex and 
the pH adjusted to 8.5. The sample was placed in the slot-flow cell 
and the intensity change as a function of shear rate recorded. Long
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relaxation timea were noted lor the zero flow reading. This was 
presumably due to the Increased density and viscosity of the high 
volume fraction kaollnlte sample. This effect, combined with the 
drifting of results due to settling, made It difficult to obtain 
consistent results. To overcome this the change In Intensity 
between mean shear rates of 2.9 sec' and 49 sec'were measured as a 
function of Dlspex dose. The results are Illustrated In fig 
(9.2.12).

PERCENT SODIUM POLVACRYLATE ADDED BY DRY HEIGHT DF CLAY. 
Pig (9.2.12)

Intensity change on flow as a function of Dlspex dose. 
Kaollnlte clay, SPS grade. Volume fraction “ 0.15. 

Wavelength • 589 nm.
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It can be seen from the results that a maximum Intensity 
change Is observed at a sodium polyacrylate dose of 0.20 % by dry 
weight of clay. This is in good agreement with measurements of 
viscosity of SPS as a function of sodium polyacrylate dose [ 611 
carried out by English China Clays, see fig <9.2.13).

2.00
E-f03

l.SOE+03

SOO

0.00
0.00 0.10 0.20 o .ao  0.40 O.SO 0.60

PERCENT SOOZUM POLYACRYLATE AOOEO BY DRY MEIOHT OF CLAY

Fig (9.2.13)
Viscosity of SPS grade kaollnite dispersion as a function 
of Dispex dose. Data supplied by English China Clays.

The viscosity of a kaollnite sample is dependent upon its 
state of flocculation. The higher the flocculation, the greater the 
average inter-particle forces, the higher the viscosity.
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Theretore the minimum In the viscosity corresponds to maximum 
deflocculation of the sample. Hence the maximum Intensity change on 
shear due to shear particle alignment will coincide with the 
minimum in viscosity. It can bo seen from a comparison of figs
(9.3.2) and (9.3.3) that this is Indeed the case.

The decrease in the change of scattering parameter, and the 
Increase in viscosity, noted for sodium polyacrylate doses > .23 % 
is interpreted as evidence for reflocculation of the sample. This 
has been reported elsewhere (91, however the exact mechanism of 
this effect is unclear.
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(9.3) Concentric cylinder shear cwll.

In the previous rheo-optlcal systems the velocity gradient 
created within the sample was not constant over the volume ot 
sample under observation. To overcome this a shear system was 
developed consisting of two concentric cylinders manufactured from 
black acetyl acetate. Five polymer, multimode optical fibres, of 
numerical aperture 0.47 and diameter 1 mm were mounted along 
the circumference of the exterior cylinder. These are termed the 
azimuthal set. Four further fibres were mounted along the axis of 
the exterior cylinder, orthogonal to the first line of fibres, 
these are termed the axial set. The ends of the fibres were 
polished smooth with the Internal face of the exterior cylinder. 
The dimensions are given In fig (9.3.1).

Fig (9.3.1) 
Concentric shear cell.

170



Ttì0 outer rotor was designed to fit in place of the stator in 
a Haake RVlOO rheometer. The inner cylinder was rotated using 
the rheometer controls. The same illumination and detection systems 
as detailed previously were used to illuminate the sample and 
detect the reflected flux. Fibre 0 was used to illuminate the 
sample, and fibres 1 to 8 used to detect the transmitted flux. 
The optical fibre mounting geometry is given in fig <9.3.2). The 
detected flux was filtered to 589 nm immediately before the 
photodetector.

FIBRE INTERNAL D 
FROM FIBRE

1 1.71
Z 3.43
3 S. 14
4 6.86
S i.78
6 3.S6
7 S.34
8 7. 12

Fig (9.3.2)
Optical fibre mounting geometry. Fibres 1,2,3 and 4 are 
termed the azimuthal fibres, and fibres 5,6,7 and 8 are 

termed the axial fibres.
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To reduce the effects of settling, the sample was pumped, 
using a perlstal(*lc pump, from the bottom to the top of the cell 
between Intensity readings.

The velocity gradient G developed between the cylinders is 
almost constant over the sample so long as the gap to cylinder 
radius is small {621. The velocity gradient G is, by definition,

G - Rdw/dr

where R the radial distance from the axis of rotation.

So long as the gap width s Is small, (l.e. r.cbr,),

<G> - wR/Cr^-r, ),

where r, - the radius of the internal (rotating) cylinder,
r̂  - the radius of the external (stationary) cylinder.

Concentric cylinder viscometers, particularly those with the 
outer cylinder stationary and the Inner cylinder rotating, are 
prone to generate Taylor vortices 1621 within the cell gap at 
angular velocities exceeding a critical value T, given by.

vt*V*(r. + u) , 
2Ps* r‘

.(9.3.1)
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where V - the kinematic viscosity and
P - 0.0057K l-0.652(s/r,)> + 0.00056/< l-0.652< s/r,) )'.

When the angular velocity T Is exceeded the laminar flow of 
the sample Is destroyed by a three-dimensional motion: the sample 
flow breaks up Into symmetrical ring-shaped vortices spread at 
regular intervals along the length of the cylinder, rotating 
alternately In opposite directions, see fig (9.3.3). The above 
expression Is valid for a Newtonian liquid, and hence some 
Inaccuracy may be expected when applied to a non-Newtonian 
colloidal dispersion. The kinematic viscosity, and hence T Is 
dependent upon the kaollnlte sample concentration. For a sample of 
volume fraction 0.024, the critical value of T as predicted by 
equation (9.3.1) Is reached at a shear rate of 15 sec"!

outer cylinder  ̂
y  ^

inner cylinder

Fig (9.3.3)
Schematic Illustration of Taylor vortex 
flow in rotating concentric cylinders.
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(9.3.1) Spherical latex sawples.

The shear cell was filled with samples of monodlsperse 
spherical latex particles suspended In water. The scattering 
parameters of the samples had previously been determined using the 
single optical fibre bundle method detailed in chapter 5. The 
Intensity detected by each fibre was recorded as a function of 
sample scattering parameter. The results are illustrated In figs 
< 9.3.4 ) and (9.3.5 ).

Pig (9.3.4).
Detected Intensity as a function of sample scattering 
parameter for the azimuthal fibres 1>2,3 and 4. Spherical 
latex particle sample, mean particle diameter ” 0.16 urn. 
Wavelength - 589 nm. Triangles - fibre 4, squares “ fibre

3, crosses “ fibre 2 and diamonds ” fibre 1.
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Fig (9.3.5).
Detected Intensity as a iunction of sample scattering 
parameter for the axial fibres 5,6,7 and 6. Spherical latex 
particle sample, mean particle diameter “ 0.18 pm. Wavelength 
- 589 nm. Triangles » fibre 8, squares • fibre 7, crosses - 

fibre 6 and diamonds “ fibre 5.

It can be seen from figs (9.3.4) and (9.3.5) that the results 
obtained using spherical latex particle samples closely resemble 
those obtained previously in the slot-flow cell system, see fig
(9.2.4), as we would expect and lor the same reasons. It can be 
concluded from the above results that so long as the scattering 
parameter of the sample Is greater than 2 mm,' the flux detected by 
the optical fibres is dominantly dependent upon transmission of
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flux through the sample parallel to the (n,v> plane, (see tig
(9.1.1) tor axis definitions). It is Important to note that the 
azimuthal fibres detect flux transmitted in the direction of flow 
(the V direction), and the axial fibres detect flux transmitted 
across, (orthogonal) to the flow direction, (the n direction).

It was noted that rotating the inner cylinder had no effect on 
the detected intensity, as is to be expected with spherical 
particle samples.
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(9.3.2) Broad alze iractlon kaollnlt« Sawplea.

An SPS grade kaollnite clay sample, <oi volume iraction 0.021 
and S - 5.5 .1 mm*>, was prepared, as detailed in section 1.3,
for maximum particle deflocculation, l.e. the pH of the sample was 
adjusted to 8.5 and 0.21 % by dry weight of clay of sodium 
polyacrylate, (In the form of Dlspex). The sample was Illuminated 
from fibre 0 and the Intensity detected from fibres 1 to 8 recorded 
as a function of shear rate. The results are Illustrated In figs 
(9.3.6 ) and (9.3.7 ).

Fig (9.3.6)
Intensity detected from azimuthal fibres 1,2,3 and 4 as a 
function of shear rate. SPS grade kaollnite clay sample, 
volume fraction “ 0.021. Wavelength ” 589 nm. Diamonds “ fibre 
1, crosses - fibre 2, squares - fibre 3, triangles ~ fibre 4.
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Fig (9.3.7)
Intensity detected from axial tlbres 5,6,7 and 8 as a function 
of shear rate. SPS grade kaolinlte clay sample, volume fraction 
“ 0.21. Wavelength - 589 nm. Diamonds “ fibre 5, crosses - fibre 

6, squares “ fibre 7, triangles > fibre 8.

The change in effective scattering parameter, calculated using 
the data obtained for spherical latex samples, is illustrated in 
figs (9.3.8) and (9.3.9).
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Fig (9.3.6>
Scattering parameter as a function of shear rate for 
the azimuthal fibres 1,2,3, and 4. Diamonds “ fibre 1, 
crosses “ fibre 2, squares “ fibre 3, triangles “ fibre 

4, SPS grade clay sample, volume fraction “ .021.

It is clear from fig (9.3.8) that the change in effective 
scattering parameter experienced by the light detected by the 
azimuthal fibres 1,2,3 and 4 is approximately identical between the 
four fibres. The scattering parameters measured by the four axial 
fibres, fig (9.3.9), do not show such good agreement, however the

179



same general trends can be observed tor all lour axial llbres.

Fig (9.3.9)
Scattering parameter as a function of shear rate lor axial 
llbres. Diamonds - fibre 5, crosses - fibre 6, squares - 
fibre 7, triangles - fibre 8, SPS grade clay sample, v - .021.

The previous graphs show three Important features;

(I) the scattering parameter of the sample decreases on shear 
when the sample is viewed parallel to the velocity vector, 
(azimuthal fibres),

(II) the scattering parameter of the sample initially Increases 
only marginally when the sample is observed parallel to the 
n-directlon, (axial fibres),

(ill) at shear rates of approximately 17 sec",' sudden changes of
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scattering parameter with shear are observed for both the 
azimuthal and axial fibres.

Points (1> and (11) may be explained in terms of a simple model of 
particle orientation. The kaollnlte particles population is split 
Into three orientation sets corresponding to the three principal 
axes X, Y and Z. Random orientation is then represented by the 
particle face normals of each set being aligned with one of the 
principal axes. See fig (9.3.10).

Q

-> X

Pig (9.3.10)
Simple model of random orientation of kaollnite particles.
Set (a), particle face normal parallel to X-axis. Set (b) 
particle face normal parallel to Y-axis. Set (c), particle 
face normal parallel to Z-axis. Z-axis out of plane of paper.

The effect of simple shear fields on a kaollnite sample may be 
easily evaluated in terms of this model. Fig (9.3.11) illustrates 
the effect of applying a velocity gradient in the Z-directlon, 
(velocity vector in X-direction ), to a sample initially in the 
random state.
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W  X

Plçr (9.3.11)
Effect of shear field on particle orientation. Velocity 
vector in the X-dlrection. Velocity gradient in the Z- 

dlrectlon. Z-axis into plane of paper.

The particles in sets (a) and <c) will experience a minlnun 
torque when their particle face normals are aligned with the 
Z-axis. Hence the particles will rotate with a non-constant angular 
velocity, spending most of their time with their particle face 
normals aligned with the Z-axls. The particles in set (b> will 
experience a torque causing them to rotate about the Y-axis.

The azimuthal fibres detect flux that has been transmitted in 
the X-dlrection, (l.e. the v-direction). Mote that for simplicity 
the curvature of the cylinders is neglected here, the Y-axis is 
defined as being parallel to the axis of rotation of the inner 
cylinder, (the n-dlrection ), the Z-axis is defined, (at any point 
along the gap radius), as pointing towards the axis of
rotation, (the G-dlrectlon), the X-axis is hence at a tangent to 
the cylinders. It can be seen from fig (9.3.10) that when the
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particles are randomly orientated Ilux travelling In the 
X-dlrectlon will see one third ol the particles lace-on, 
corresponding to set <a), and two-thirds ol the particles edge-on, 
corresponding to sets (to) and (c). Alter the particles have been 
aligned by the shear Held, Ilux travelling In the X-directlon will 
see all the particles edge-on, lig <9.3.11>• Hence there is a net 
decrease in the geometric cross-section presented to Ilux 
travelling in the X-directlon due to shear alignment ol particles.

The axial libres detect Ilux that has been transmitted In the 
Y-direction, <i.e. the n-dlrectlon ). Hence lor random orientation 
the axial libres observe two-thirds edges and one-third laces, llg 
(9.3.10). When the particles have been aligned by the applied shear 
Held the axial libres still detect two-thirds edges and 
one-third laces, H g  (9.3.11). Hence no change in scattering 
parameter would be observed according to this model.

The predictions ol this model are in broad agreement with the 
experimental results observed at low shear rates; a large 
decrease in scattering parameter on shear is observed by the 
azimuthal libres, very little initial change in scattering 
parameter is observed by the axial libres.

The above model gives an adequate qualitative explanation ol 
the results observed lor low shear rates. However, at shear rates 
ol approximately 17 sec'sudden changes in the scattering parameter 
are observed by both the axial and the azimuthal Hbres. It can be 
concluded Irom this that either the simple two-dimensional laminar
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flow of the sangle was disturbed at high shear rates, or the nature 
of the kaollnite particle Interactions was altered by the applied 
shear field. Equation <9.3.1) predicts that Taylor vortices will be 
formed for shear rates greater than 12 sec~'for a kaolin sample of 
volume fraction 0.024, it therefore seems likely that the sharp 
transitions apparent for both axial and radial observations of the 
sample are due to Taylor vortices forming within the sample. The 
agreement between the experimental and theoretical onset of vortex 
flow is suprislngly good considering equation (9.3.1) is only 
strictly valid for a Newtonian liquid, whereas kaollnite 
suspensions are non-Newtonian colloidal dispersions. Taylor 
vortices will produce a three dimensional flow within the cell, see 
fig (9.3.12). This will result in additional velocity components 
in both the Y and Z-directions. The orientation of the particles 
will then be dependent on the relative strengths of the velocity 
components. If the velocity vector in the X-dlrection is dominant, 
(as is the case prior to vortex flow being Initiated), then little 
change in the particle orientation, (and hence the observed 
value of S), will result. However, in the circular flow generated 
within the vortex, the velocity vector of any particle is a 
function of its position along the Y-axis. Hence, the different 
groups of particles observed by each of the azimuthal fibres, 
(which are mounted in the cell normal to the Y-axis), all have 
approximately the same distribution of velocity components. 
Therefore, the same degree of average particle orientation, (and 
hence S), is observed by each of the azimuthal fibres. However, the 
groups of particles observed by the axial fibres, (mounted 
parallel to the Y-axis), will in general have differing velocity
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coaponant distributions. Hence different degrees of average 
particle orientation, and hence different S values, will be 
observed by each axial fibre.

Pig (9.3.12)
Schematic Illustration of a Taylor Vortex generating 
velocity components In the Y and Z-dlrectlons.

(9.3.3) Concentration dependence.

Experiments were conducted on SPS grade kaollnlte samples with 
volume fractions between 0.03 and 0.30, using the four 
azimuthal detecting fibres. Fig (9.3.13) shows that the percentage 
Increase In scattering parameter on Initiating laminar flow was 
Independent of volume fraction at 55 */- 5 %, In reasonable
agreement with the results from the previous slot-flow rheo-optlcal 
experiments. For all concentrations the scattering parameter 
dependence on shear rate resembles that Illustrated In fig (9.3.7).
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Th* sane sharp decrease In scattering parameter was noted between 
shear rates of 15 to 25 sec~'tor all the sanples, indicating the 
onset of Taylor vortex flow.

VOLUME I^CTION 
Fig (9.3.13)

Percentage Increase in effective scattering parameter as 
a function of sanple volume fraction. 8PS grade Kaolinite 

sanple. Wavelength “ 589 nm.

(9.3.4) Fractionated Kaolin

Kaolinite samples of nominal eguivalsnt spherical diameter 
(e.s.d.) ranges 0.4-0.5, 0.7-0.8, 1-2, 2-3, 3-4 and 5-6 microns
%«ere prepared in the usual manner for maximum particle 
deflocculatlon. The samples %»ere supplied by Bngllsh (nilna Clays. 
Fig (9.3.14) illustrates the distribution in particle face
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diameters lor a nominal 0.4-0.5 micron e.s.d. sample.

Pig (9.3.14)
Particle lace diameter distribution obtained Irom scanning 
electron micrograph ol nominal 0.4-0.5 micron e.s.d. sample.

The samples were placed In the cell and the Inner cylinder 
rotated. The Intensity detected Irom the azimuthal llbres as a 
lunctlon ol velocity gradient generated within the sample was 
recorded. Figure (9.3.15) Illustrates the percentage change In 
ellectlve scattering parameter as a lunctlon ol shear rate lor all 
the samples.
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SHEAR RATE / SEC 
Fig <9.3.I5>

Peccentftgs ch*ngB In scattBrlng p«rain®ter as a function of shear 
rate. Fractionated Xaollnlte clay samples. Measured using 
azimuthal fibres, 1,2,3 and 4. Upright crosses - 5-6, diagonal 
crosses » 3-4, triangles • 2-3, diamonds » 0.7-0.8, squares

0.4-0.5, points - 1-2 <pm). Wavelength - 589 nm, v - 0.024.

It can be seen from fig (9.3.15) that as the particle size 
Increases the rate of change of scattering parameter with shear 
rate Increases. This Is to be expected: If the particle size 
Increases so the Peclet number and the degree of particle 
orientation Increases for any given shear rate. The shear rate 
necessary to completely align the particles was observed to 
decrease with Increasing particle size. The effective scattering 
parameter at maximum alignment as a function of particle size Is
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lllustratad ln fig (9.3.16).

MEAN E.S.D. / MICRONS 
Fig (9.3.16)

Scattering parameter of aligned« (measured using azimuthal 
fibres) and unallgned Kaolinite clay sanyples. Wavelength 
- 589 nm. Volume fraction ” 0.024. Sguares “ aligned 

sample« diamonds « unallgned sanqple.

The non-aligned measurements of S were carried out using the 
single optical fibre bundle method detailed In chapter 5. For both 
aligned and non-aligned measurements of S the value quoted Is the 
mean result from four experiments on the same sample.

(tampion« Meeten and Moon [591 measured the scattering
cross-section of fractionated Kaolinite clay samples subject to 
laminar shear flow using very dilute suspensions where single
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optical scattering was predominant. Measurements of the scattering 
cross-section %«ere carried out parallel to the velocity gradient, 
(l.e. along the Z-axls>, orthogonal to the measurements carried out 
above. Their results are reproduced In fig (9.3.17).

0.00 0.00 1.00 1.00 2.00

MEAN E.S.D. / MI(»0NS
2.00 3.00

Fig (9.3.17)
Measured values of NCu>o< aligned and non-aligned fractionated 
kaollnlte clay saiqples. Wavelength “ 546 nm. Squares “ aligned
sample, diamonds - unallgned. Concentration • 1 kg m . Reproduced 

from C3iamplon et al. [59].

Comparisons of figs (9.3.16) and (9.3.17) show good 
qualitative agreement for the unsheared measurements of C^a and 
S. Recalling that,

S - 3/4NCk.( 1-cos&),
It can be concluded that the effect of the (l-cos0-) term In the
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above equation Is to smooth out the peaks Illustrated in the single 
scattering experiment, fig (9.3.17).

It Is Important when comparing the sheared sample results 
between these experiments to remember that the results are from 
orthogonal observations of the sheared sample, l.e. the single 
scattering measurements were made for light travelling parallel to 
the velocity gradient, (hence when aligned, faces of the particles 
were observed), and the multiple scattering measurements, (from the 
azimuthal fibres) were made orthogonal to the velocity gradient, 
parallel to the velocity vector, (hence when aligned, edges of the 
particles were observed). Hence, a decrease In C , « observed In the 
single scattering experiment due to particle orientation changing 
from random to face-on, would correspond to an Increase In C m  In 
the (orthogonal) multiple scattering experiment as the particle 
orientation would change from random to edge-on.

For samples of e.s.d. less than 2 microns the measured 
values of C«« decrease on shear In the single scattering experiment, 
hence the value of C m  must Increase In the (orthogonal) multiple 
scattering experiment. In fact, a decrease In S, (which Is 
proportional to NC m  >* 1® observed. It can be concluded from this 
that there Is a larger compensatory decrease In the factor (l-cos©-) 
In the multiple scattering experiment, (l.e. an Increase In cos&), 
as the particles orientation changes from random to edge-on. Hence, 
cos O' for edge-on particles must be greater than cosÔ- iot face-on 
particles, l.e. edge-on particles scatter light more strongly In 
the forward direction than face-on.
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It is posslbls to obtain an sstimata ot coad- for non-spharical 
particlaa using Raylaigh-Gans scattering theory [3]. It is an 
assuaqption of Rayleigh-Gans theory that;

2kr ln-l| << 1.
Nhere; k • the wave nueber of the illuminating radiation, “ 2Vtn/X , 

r “ characteristic dimension of the particle, 
m “ relative refractive index of the particle.

Although this means that this method is not completely accurate 
over the particle size range of Interest, no other tractable 
approximation exists. From Raylelgh-Gans theory [3] the scattered 
intensity I, at a distance r from a scattering particle is;

-  L, k V < i-t-cos9- >R‘ (e-,i)
2r»

....<9.3.1)

Where; k - the wave number of the Illuminating radiation in the 
medium,

Ot - the polarisabllity of the scattering particle,
I - the intensity Incident upon the particle,
6- “ the scattering angle and 
f “ the azimuth angle.

The function R(&>^>, for cylinders of finite length 1 and radius a, 
is given by the expression [3],

RCe-,^) - F(u)B(s),

u • (2kasln(e/2)si>^),

8 “ (klsin<e/2>cos/3).

Where I® the spherical Bessel function of order n, and the
angle jb is given by the expression.

where.
F(u) - 2 J, < u ) and

u
and

B(s > and
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coap “ -cos'^sln(©/2) + Bln'^08(9/2)C08^,

where ^  ” the angle between the direction of propogatlon of the 
Incident light and the cylinder axis normal, l.e. when the particle 
is face-on to the Incident light when the particle is
edge-on to the Incident light 90*.

The assymetry parameter cos0- is given by the expression (141,

C O 8 0 -

Hence from <9.3.1>, 

cos0 “

i< e-,̂  )8inecoseded^ .(9.3.2>

< l-»coa& )R*< 6-,̂  IsinecosedOd^
,.<9.3.3>

( l-i-co«f9- )R*'< 6 ',^  IsinOdOd^

A BBC Basic programme was written to run on a BBC model B 
microcomputer to evaluate cos0* from equation (9.3.3), the 
programme coding is given in appendix III. The Integral was 
evaluated numerically using the trapezium rule with angular steps 
of 0.01 radians for both 9- and For face on illumination it was 
not necessary to evaluate the Integrals over all as the 
scattering is spherically symmetrical. The functions J, <x> and 
Ji,^(x) were evaluated using polynomial expressions from Abramowltz 
and Stegun ( 39].

Fig (9.3.18) Illustrates values of cos0- as calculated by the 
programme given in appendix III, for both face-on and edge-on 
kaollnite particles, (compare wtlh fig (2.2.3), cos& lor spherical
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particles). Values of cos& are Illustrated for particle diameters 
up to 2.5 microns, above 2.5 microns the calculated values of cosQ- 
were observed to oscillate for ^he face-on particles, but this size 
was outside of the present range of Interest.

___  Fig (9.3.18)
COS& as a function of particle size for edge-on (squares) and face-on (diamonds) kaollnlte particles with an axis ratio 

of 10:1. Wavelength “ 589 nm.

It can be seen from fig (9.3.18) that cos©- for edge-on 
kaollnlte particles is always greater than cosQ- for face-on
particles, in good (jualatitlve agreement with the experimental 
results.

It Is possible to calculate the scattering efficiency of
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arbitrarily shaped particles using anomalous diffraction theory 
[3]. It has been shovm by single scattering measurements that 
anomalous diffraction theory Is In good agreement with 
experimentally determined scattering efficiencies for unallgned 
kaolinlte particles (591. Scattering efficiences were calculated 
from anomalous diffraction theory (using the programme listed In 
appendix IV), for edge-on and face-on kaollnite particles. It was 
therefore possible, (using the previously calculated values of 
cos9- ), to calculate scattering parameters of face-on and edge-on 
kaollnite particles. A scattering parameter for randomly orientated 
particles was estimated using a weighted mean of the scattering 
parameters for face-on and edge-on particles, (it was assumed 
that random orientation could be represented by 2 edge-on particles 
per face-on particle). Fig (9.3.19) illustrates the scattering 
parameters of randomly orientated and edge-on kaolinlte particles 
so calculated.

It can be seen from a comparison of figs (9.3.16) and 
(9.3.19) that there is reasonable qualitative agreement between the 
theoretical and experimental results. The peak In scattering 
parameter observed experimentally for the unallgned 0.7-0.8 micron 
e.s.d. sample Is predicted by the theoretical curve. 
However, the theoretical curve shows the scattering parameter 
dropping quickly with particle size above a particle diameter 
of 0.8 microns, for both aligned and non-aligned samples. A much 
slower drop In scattering parameter Is observed In the 
experimental results. This discrepancy Is possibly due to 
Inaccuracies In Rayleigh-Gans theory generated by calculating
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values oi cos©- outside of the range of strict validity of the 
theory. It «ay also be due to the large polydispersity of face 
diameters in the samples, this would tend to decrease the slopes in 
fig (9.3.19).

PARTICLE FACE DIAtlETER / MICRONS 
Fig (9.3.19)

Theoretically cong>uted scattering parameters of randomly 
orientated (squares) and edqe-on (diamonds) kaolinite 
particles. Wavelength - 589 nm. Volume traction - 0.024.

The calculated scattering parameters illustrated in fig 
(9.3.19) are highly dependent upon the assumed mean axis ratio of 
the kaolinite particles. An axis ratio of 10:1 has been assumed 
here, however mean axis ratios as low as 7.7 and as high as 12 have 
been reported (63).
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(9.3.5) Concluelon.

î It has bssn shown that slngls optical fibres, mounted in a
¡flow channel, may be used to measure rheo—optical effects arising 
I from particle orientation in concentrated colloidal dispersions. It 
has also been shown that, for optical fibres mounted in the 
same plane and facing in the same direction, with a lateral 
separation d, the detected flux is dominantly transmitted through 
the sample so long as the product 8d > 1.7. The percentage change 
in the observed intensity has been shown to be dependent upon the 
fibre separation d, changes in intensity on flow orientation of the 
particles of up to 700 % being recorded. The change in the 
scattering parameter experienced by the detected flux has been 
shown to be Independent of d, (so long as in varying d the range of 
shear rates over which S is measured remains unaltered). This makes 
such an optical fibre geometry a convenient method of measuring 
rheologlcally induced changes in the scattering parameter of 
colloidal samples.

It has been shown that the change in scattering parameter on 
flowing colloidal kaolinlte samples is Independent of volume 
fraction between volume fractions of 0.03 and 0.30 for observations 
both parallel and normal to the applied velocity gradient. It has 
been shown that the state of flocculation of a flowing kaollnite 
dispersion may be accurately monitored using optical fibres. The 
results obtained for the flocculation pH dependence are in 
reasonable agreement with those obtained by Molloy ( 9 ]
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using ultrasonic orientation of particles. It has also been shown 
that the Dlspex dose lor maximum particle deflocculatlon determined 
optically Is In good agreement with previous measurements based on 
dispersion viscosity.

A single model of particle orientation has been shown to be 
capable of predicting the change In scattering parameter observed. 
It has been shown that the onset of Taylor vortex flow In the 
concentric cylinder system may be accurately determined, and that 
the experimentally observed shear rate necessary to Induce Taylor 
vortex flow Is In reasonable agreement with hydrodynamic theory. In 
addition It has been shown experimentally that kaollnlte particles 
scatter light more strongly In the forward direction when viewed 
edge-on than when viewed face-on. This Is In good agreement with 
Raylelgh-Gans scattering theory. It has also been shown that, by a 
combination of anomalous diffraction theory and Raylelgh-Gans 
theory, the scattering parameters of both aligned and non-aligned 
kaollnlte samples, (and In particular the sign of the changes In 
the multiple scattering parameter caused by shear flow), may be 
understood.
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rHAPTBR lot DIBCOSSIOM ftMD C0WCLU8I0W3.

This chapter Is Intended to provide a brief sumiary of the 
results, conclusions and structure of the Investigation. In 
addition the practical applications of this work will be 
considered.

(10.1) Overview of investigation.

The aim of this work has been to investigate the use of 
optical fibres lor measuring the diffuse reflectance of
concentrated colloidal dispersions, and hence extract
useful Information about the dispersion. The structure of the 
Investigation has been directed to bridge the two extremes between 
(relatively) well theoretically characterized systems,
(monodisperse, spherical, well stabilised samples), and systems of 
more practical usefulness, (polydlsperse, non-spherical samples), 
which are not as well defined theoretically.

The initial work in this investigation is concerned with 
validating the use of optical fibres to measure multiple light 
scattering parameters in densely scattering colloidal samples. Two 
problems were evident at this point;

(1) how to extract information on the multiple scattering 
parameters from the samples, and

(li) how to assess the accuracy of the results so extracted.

Problem (i) at first sight would appear to bo relatively
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straightforward. The reflectance of a multiple scattering sample Is 
dependent upon the samples multiple scattering parameters. Hence, 
measurements of the samples reflectance, (as a function of sample 
thickness above an absorbing boundary), will give a measurement of 
the multiple scattering parameters. However, analyzing the 
reflectance data Is far from straightforward. There are several 
multiple scattering theories with which the data may be analyzed. 
They range from the simplistic Kubelka-Munk theory 1301, to the 
highly complex, but much more exact, radiative transport theory 
[36,38,431. In general, the more complex the theory, the greater 
the number of parameters needed to describe the multiple scattering 
within the sample, but the greater the number of parameters, the 
better the 'fit* between experiment and theory. However, simply 
increasing the complexity of the theory (to increase the number of 
parameters, and hence improve the fit). Is not the perfect 
solution: lor any given experimental data set, increasing the 
number of parameters used to characterize that set will not only 
lead to a better 'fit', but also an Increase in the errors on the 
values of the theoretical parameters determined from the 'lit*. 
This is particularly so lor the monotonie experimental data sets 
obtained, (see figs (3.2.1), (3.2.2) and (3.5.1)). Hence there Is a 
compromise between error due to non-exact fitting of theory, and 
error due to having a multitude of fitting parameters. Because of 
this fact the simplistic Kubelka-Munk theory, (which employs only 
two multiple scattering parameters S and K), was used to analyze 
the data. The Kubelka-Munk theory gave reasonable fits to the 
experimental data, see figs (5.1.3), (6.3.1) and (6.3.2). This does 
not mean that the more complex theories are redundant, and the more
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exact radiative transfer theory is employed to explore the range of 
validity of the Kubelka-Munk theory in section <2.3.3). In section 
<2.3.7) photon diffusion, four-flux and radiative transfer theory 
are all used to explore the meaning of the Kubelka-Munk scattering 
coefficients. Finally in section <3.7.3) the effect of using 
non-diffuse illumination is analyzed by comparing Kubelka-Munk 
theory with four-flux theory.

Problem <ii), how to assess the accuracy of the multiple 
scattering measurements, is again less straightforward than it 
would at first appear. Standard calibration materials for multiple 
scattering from colloidal dispersions do not exist. However, for 
monodisperse spherical particle samples of moderate concentration 
<volume fraction v less than .05), optical effects due to close 
packing of particles are negligible, but multiple scattering is 
still predominant. Thus a theoretical value of the Kubelka-Munk 
scattering coefficient can be calculated from the single particle 
scattering parameters, see section <2.3.7). A further problem 
arises here in that little experimental work has been carried out 
to verify the multiple scattering theoretical results. Hence, 
discrepancies between the theoretical and experimentally determined 
values could arise either from errors in theory, or faults in the 
application of the optical fibre system. To overcome this problem 
the scattering parameters of monodisperse spherical latex
samples at a volume fraction of 0.0238, for which the single 
scattering parameters may be calculated, were measured using 
various optical fibre geometries, <see chapters 3,4 and 5), and, as 
an independent check, using the classical integrating sphere
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method, (see chapter 6). The agreement between the absolute values 
of S from theory, the Integrating sphere method, (chapter 6) and 
the single optical fibre bundle and beam splitter method, (chapter 
5), was good, (so long as internal inter facial reflections at the 
sample/window interface were taken into account, see section
(3.7.4)), thus validating the theoretical calculation of S, and the 
single fibre bundle and beam-splitter method of measuring S. The 
other optical fibre methods for measuring S, (i.e. the bifurcated 
optical fibre bundle, and single optical fibre methods), could then 
have their performance checked using the theoretically calculated 
values of S.

Having validated the use of optical fibres to measure multiple 
scattering in spherical latex samples of relatively low volume 
fractions, the single optical fibre bundle method was employed to 
examine the agreement between theory and experiment for high volume 
fraction samples, (I.e. v > 0.10), where significant deviation has 
previously been noted from the linearity between S and v predicted 
by theory (see chapter 8).

Measurements of absorption in multiple scattering samples were 
also carried out using two optical fibre techniques, (chapter 7). A 
straight comparison between absorption measurements for multiple 
scattering and non-scattering samples allowed the performance of 
the two optical fibre methods employed to be assessed.

The second part of this investigation is concerned with 
non-spherical colloidal particles and the application of optical
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fibres to measuring flow induced changes in their scattering 
parameters. Due to the nature of the investigation it is necessary 
to use non-spherlcal particles. Kaolinite clay suspensions were 
used for the majority of this investigation. The kaollnlte particle 
have a low optical absorption, (maximizing transmission of light) 
and a flat plate-like shape of high aspect ratio, (maximizing their 
Peclet number). In addition to this the rheology and stability of 
kaolinite clays is well documented. Highly polydisperse kaolinlte 
samples were provided in large quantities by English (^ina Clays 
International, a small quantity of more monodisperse samples was 
also provided. Exact single scattering theoretical results do not 
exist for kaollnlte particles, however approximate scattering 
theories were applied to the samples with some measure of success, 
see section (9.3.4). The application of a simple 
multiple-scattering theory is also prohibited due to the highly 
anisotropic scattering and light propagation through the samples. 
The analysis of the optical fibre methods is therefore, by 
necessity, highly empirical lor use with flowing kaolinite 
suspensions. The optical response of the various shear flow systems 
was therefore assessed using the raonodlsperse spherical latex 
samples. The rheo-optical data obtained with kaolinite samples was 
than interpreted using this data.
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<10.2) Conclusions.

(10.2.1) Spharlcal and randomly orl«ntated particles.

It has been shown that a bifurcated optical fibre bundle can 
be used to measure the diffuse reflectance of a purely scatterlna 
sample as a function of sample thickness and, by analysis of these 
results, a measure of the scattering parameter S of the sample may 
be obtained. By use of well characterized samples, <monodisperse 
spherical latex particles suspended in water), it has been shown 
that the particle size and concentration dependence, < for v < 
.025), of S predicted theoretically are accurately reflected In the 
experimental results. However, the absolute experimental values of 
S were not In agreement with the absolute theoretically predicted 
values, i.e. there was a constant factor, (independent of both 
particle size and sample concentration), relating the two values of 
S. It was shown experimentally, by the use of single optical 
fibres, that the discrepancy between absolute experimental and 
theoretical values of S was due to the finite separation between 
the optical Influx and efflux routes within the sanqpl«» ««d this 
discrepancy was shown to be resolvable by use of a single optical 
fibre bundle.

The application of optical fibres to Illuminate the sample 
where the incident flux is partially diffuse was Investigated by 
comparing the predictions of Kubelka-Munk two-flux theory with the 
four-flux theory. Provided that reflected Intensity data was 
obtained up to sufficient optical thicknesses Sd, (where d Is the
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thickness of the reflecting sample), the use of Imperfectly diffuse 
Illumination was sho*m to have only a small effect on the measured 
value of S. B.g. for Sd > 5, the error Introduced by using 
Inverfectly diffuse Illumination was less than 4 %. It was also 
shown theoretically that for the bifurcated optical fibre bundle 
the corrections to S which allow lor Internal specular reflection 
at the sample/llbre Interface are small, approximately 3 %. This 
compares with the correction of approximately 60 % necessary In the 
integrating sphere method of obtaining S. This illustrates a major 
advantage of the optical fibre method, as neglecting the öfter 
unknown interfacial specular reflections leads to only small errors 
in the measured value of S. In the Integrating sphere method the 
interfacial corrections are large and are often impossible to 
calculate accurately without knowledge of the sample refractive 
Index.

The validity of the two-flux Kubelka-Munk theory was also 
Investigated by comparison with the radiative transfer theory* It 
was shown <section <2.3.4>> that only If the optical thickness of 
the sample was small would large errors occur when applying 
Kubelka-Munk theory to the sample to obtain values of S. B.g. for 
Sd < 0.5, error In S > 30 %. However, If the reflectance of the 
sample Is measured up to large optical thicknesses the error Is 
much reduced, e.g. for Sd > 4 the error introduced by applying the 
Kubelka-Munk theory to calculate S Is < 5 %. In this work all data 
was obtained up to values of Sd > 5.

Reflection measurements to obtain S were also carried
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out, (chapter 6), using the classical integrating sphere method. 
Good agreement was noted between experiment and multiple scattering 
theory lor the well characterized latex samples used, so long as 
the large interfacial specular reflections were taken into account. 
This validated the theoretical calculations of S, and the use of 
such calculations in assessing the performance of the optical fibre 
probes.

Measurements of the absorption coefficient K, within multiple 
scattering samples were also carried out using the single optical 
fibre bundle method, (chapter 7), but using both a white and black 
backing. In both cases the reflectance of the sample was monitored 
as a function of sample thickness. It was shown that when using the 
black backing an accurate measurement of K could not be obtained. 
However, by the use of a white backing K could be determined 
accurately, although with diminished accuracy in S.

The concentration dependence of the scattering parameter of 
both spherical latex and non-spherical kaolinlte particles was 
investigated up to volume fractions of 0.38. The decrease in 
scattering efficiency per particle noted at high concentrations, (v 
> .05), was explained in terms of close packing of particles.

(10.2.2) Shear-orientated kaolinite particles.

It has been shown that single optical fibres may be used to 
measure flow-induced changes in the diffuse scattering of colloidal 
kaolinlte dispersions. The optical fibre geometry outlined in
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sections'<9.2) and <9.3) is very sensitive to flow-induced changes 
in scattering parameter. Changes in detected intensity of up to 
700 % were recorded on flowing a sample« and these changes were 
explicable in terms of shear-induced particle orientation. The 
experiments detailed in sections (9.2.4) and (9.2.5) show that it 
is possible to measure sensitively the state of flocculation of a 
Xaollnite sample using optical fibres. A simple model of 
shear-induced particle orientation has been shown to be capable of 
predicting the changes in scattering parameters observed on 
flow. Approximate scattering theories, i.e. Raylelgh-Gans and 
anomalous diffraction theory, ware applied to the kaolinite 
dispersions. These enabled the scattering parameters of both 
aligned and non-aligned kaolinite particles, and in particular the 
signs of the flow Induced changes in S, to bo understood.

It has been shown that the optical fibre method can measure 
flow-orientational effects in non-spherical particle dispersions. 
Fair agreement is found between the experimental results and the 
approximate scattering theory that can be applied to such 
particles.
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APPENDIX I.
CALCULATION OP MIB SCATTERING COBPPICIKNTS.

(1) Introduction.

The programme coding owes a large debt to that of Bohren and 
Huffman 1131. The programme listing below is as coded into the 
computer, it should therefore be possible to execute the 
programme, <on a suitable machine), with no alterations. The 
double precision Fortran programme was executed on a VAXll/780 
mainframe.

It is Important to note that the programme listed below 
assumes that neither the particles nor the supporting medium is 
absorbing.

(11) Mia scattering programme.

PROGRAM MIB ^DOUBLE PRECISION Z,S,M,X,Y,RBB(-1,300 ),IMB(-1,300> 
DOUBLE PRECISION RBA<0:300>,RBB<0:300)DOUBLE PRECISION IMA( 0:300 ),IMB( 0:300 ),U,V,NB,NC,WB 
DOUBLE PRECISION QSCA,QPR,QC,AV,RN,NN,N,A<0:300) 
INTEGER NMX,NMAX

VnUTB( 6,100) 
RBAD(5,110) X 
HRITB( 6,120) X 
WR1TB( 6,140) 
RBAD(5,110) M 
WRITE!6,120) M
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NMAX - X+4.0*(X**.333)+2.0
Y-M*X*1.0
NMX - NHAX4^50

10
WRITB( 6,150) NMX 
NN-NMX-1 
A(HMX)-0.0 
DO 10, N-1, NN 

RN-NMX-N+1 
A< NMX-N )-l.0*< RN/Y )• 

CONTINUS
•< 1.0/< RN/+AÍ NMX-N+1 ) ) >

RBB(-1>-DCOS( X )
IMB< -1 )— DSIN< X >
RBB< 0 )-DSIN( X >
IMB(0 )-DCOS< X )
DO 20, N-1, NMAXRBB(N >-< < 2.0*N-1.0 >/X)*RBB< N-1 )-RBB< N-2 ) 

IMB(N )-< < < 2.0*N-1.0)/X )*IMB<N-1 ) )-IMB(N-2) 
CONTINUS

DO 30, N-1, NMAXZ-1.0*A(N)/M+1.0*N/X 
S-1.0*M*A< N)+l.0*N/XU-< Z*IMB(N)-IMB(N-1))/< Z*RBB< N )-RBB< N-1> > 
V-( S*IMB( N)-IMB< N-1>)/< S*RBB( N )-RBB(N-1 ) > 
RBA( N)-l.0/<1.0+U**2.0)
RBB( N )-l.0/< 1.0-*-V**2.0 >
IMA< N )— 1.0/< 1.0/0+0 )
IMB< N )— 1.0/< 1.0/V+V )

CONTINUS

HRITB( 6,210)
QSCA-0.0
DO 40, N-1, NMAXQSCA-QSCA+<2.0*N+1.0)*<RBA(N)+RBB<N ) ) 
CONTINUS

WB-0
DO 50, N-1, (NMAX-1)

NB-1.0*N*< N+2.0 )/< N+1.0)NC-1.0*(2.0*N+1.0)/(N*(N+1.0) >
WB-WB+1.0+NB*< RBA(N)*RBA(N+1)+IMA(N )*IMA(N+1)) 
WB-WB+1.0*NB*( RBB< N)*RBB< N+1)+IMB< N)*IMB< N+1>)
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730
740 50
750
760
770
780
790
800
810
820
830
840
850
860
870 100
880 110
890 120
900 140
910 150
920 210
930 250
940 260
950
960
970
980

.0*NC*( RBA( N )*RBB( N )>IMA< N N ) >
CONTIMUB

QSCA>2.0/< X* * 2.0)*QSCA
QC-4.0/< X**2.0)*WB
QPR-QSCA-QC
AV-QC/QSCA
WRITB<6,250) QSCA,AV
WRITB( 6,260) QD

FORMAT<IX,’INPUT X ’ ) 
FORMAT<D21.15)
FORMATCD21.15)
FORMAT<IX,•INPUT M ’ ) 
FORMAT( 15)
FORMAT<• •>FORMAT<• QSCA- ’,021.15,' 
FORMAT<’ QPR- ’,021.15)

COS- ’,021.15)

BNO

(111> Oallnltlon oí variables.

Variable Oellnltlon

RBA<n) One dimensional array, used to store the 
real part ol a,,. For any value ol n, the 
value ot Re(anl Is stored In RBA(n).

IMA(n) One dimensional array, used to store the 
Imaginary part of a,̂ . For any value of n, 
the value of Im(a„ ) Is stored In IMA(n).
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RBB<n> One dimensional array, used to store the 
real part of b„. For any value ot n, the 
value ol Re[bnl is stored in RBB<n).

IMB(n> One dimensional array, used to store the 
imaginary part o£ b«. For any value ol n, 
the value ol Im(b„J is stored in IMB<n).

RBB(n) One dimensional array, used to store the 
real part ol̂ r, • Pot «"V value ol n, the 
value ol RBl^nl is stored in RBB(n).

IMB( n ) One dimensional array, used to store the 
imaginary part o I^a • For any value ol n, 
the value ol Iml^ 1 is stored in IMB(n>.

A(n) One dimensional variable, used to store the 
value ol A>». For any value ol n the value ol 
is stored in A<n>.

Size parameter x, (x • 2v»a/A).

M Relative retractive index m, (m ” n, / n^ ).

Y - mx

NMAX Integer variable, represents the limit lor 
the summations and upward recurrence
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variables are defined as being double precision, 
i.e. they all have 16 significant figures. This 
Is necessary to reduce rounding errors that may 
become magnified In the recurrence relationships.

100 - 150 Requests input of the size parameter x, and the 
relative refractive index m. Input Is echoed on 
screen.

190 Calculate required number of terms for 
convergence. Note if the number of terms for 
convergence Is greatly exceeded, the accuracy of 
the programme may be greatly affected by rounding 
errors in the recurrence relations.

200 Calculate y, y-mx.

210 Calculate the starting point <n»NMX), for
estimation of An(y), by a dovmward recurrence 
relation.

250 - 310 Calculate An(y) for 0<n<NMX. Store results in one 
dimensional array, A<n).

350 - 420 Calculate real and Imaginary parts of by
upward recurrence for 0<n<NMax. Store the results 
In two one dimensional arrays, RBB<n) and IMB(n).
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460 - 550 Calculate real and iawglnary parts ot a. and b, , 
for 0<n<HMJO(, using the calculated values of 
An(y>, and^nly)' Store In lour one dlaenslonal 
arrays» RRA(n)» IMA(n)» RBB(n) and IMB(n)«

590 - 630 Evaluate series sunmatlon nscessary to calculate
Q, .  , i.e. C  <2n+lXRBta, l+RB(tv n.

670 - 740 Evaluate series summation necessary to calculate
. cosS ,  1 .e. ̂ n < n + 2  >/<n+1 >•< RE( a„ a^)+REl >mm

+ < 2n+l )/(n<n+l ) ).<RE( a„b^ 1 ).

780 -  810 Calculate Q* ,  and Q, *  .coo^ from results of
series summations. Hence calculate cos0-and Q̂ r •

820 - 830 Output 0,,^  , c o8§ -  and Qf,  .

(V) Validation of Programme.

The values of Q m  , Qr *nd cosò- calculated by the programme 
were initially compared with the tabulated values of Wlckramaslnghe 
114 1. WicKramaslnghe gives tabulated values of Q m  • Q»r and coS- 
(for both absorbing and non-absorbing spheres), for values of m 
ranging from 1.1 to 2.0 and values of x ranging from 0.1-( .1 >-5.0, 
5.0-<.2>-15.0. It was noted that excellent agreement was obtained 
(better than 1 %) for 0 »  However large discrepancies were observed 
between the tabulated and computed values of Q r̂ *nd cos0- . It was
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first sssvimsd that the programme was at fault, however careful 
checking revealed no coding or theoretical error In the programme. 
No previous reports of errors In Hlckramaslnghe's tabulated 
values have been discovered. Comparisons of values of cosS- and 9̂ ' 
were then made with those of other authors. Those were; Blevln and 
Brown (15J, Brlnkworth (16 1, Irvine (17,161, Mehta (191. In all 
cases excellent agreement was noted. In those cases where tabulated 
results C as opposed to graphical results ) were presented, the 
agreement between the tabulated and computed results was better 
than 1 %. For the graphical results, agreement was well within 
the limits Imposed by estimating values of cosS- and Qf. from the 
graphs. The values of m within the published values ranged from 1.2 
to 2.4 and the values of x ranged from 0.2 to 30. It was therefore 
concluded that the programme was correct In predicting values of 

and cosò- between values of m of between 1.2 and 2.0, and 
values of x between 0.2 and 30.
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APPENDIX II; INTBRMAL DIPFUSB RBPLBCTAHCB OP A WIHDOW.

(1 ) Theory.

The incident flux density H« at an Interface can be calculated 
from lo , the radiance, by the radiance-to-flux equation [47],

K. I, C08\du, ..(1)

where; “ the angle made by I with the surface normal, 
m solid angle.

Now, doi “ 2nsin(̂ dî ,
therefore H,«vrl^. ....(11)
The diffusely reflected flux density H at the Interface Is given by 
the expression;

H - R io cosi\^db>. ....(ill)

where R is the specular reflectance of the Interface, (a function 
of ).

R may be calculated for Incident unpolarised irradiance from 
equation 147],

R - l/2( |r,|+ |ii|),
where r̂  and n  are the Fresnel field-reflectance coefficients for 
the electric vector polarised parallel and normal, (respectively), 
to the plane of Incidence. For non-absorbing media the standard 
results are [49];

216



tan<Hm - »\w)
tanTifTTp

sln(<k» - <V»> isin(«^+
and

lor ivslnf|j,̂  1, 
"w

for n«8in(||̂  1, 
nv

lor n«sln%5 1, 
nv

lor n«8lni|i>' 1. 
nw

Where; n, • the refractive Index of medium 1, 
nv “ the refractive index of medium 2, 
■\« - the angle of Incidence,
<\k - the angle of refraction.

Combining equations <11> and <lil> yields.

( lrfl'4-lxj >cosî 8in<|_dr|_.

The diffuse reflectance R of the surface is given by.

hence.
< |rj|+ Ir^l )cos(^sini^di^. .< iv)

This Integral cannot be evaluated directly due to the^nature of r̂ 
and , numerical solutions must be used to evaluate R.

A BBC Basic programme was vrrltten to estimate R̂  from equation 
(Iv). The programme was run on a BBC model B microcomputer and 
evaluated the Integral (using the trapezium rule), over the range 
0«^VT/2 in steps of 0.01 radians.
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(11) Programme coding.

H - 0 
MODB 7 
e% - 6203004 
CLS
PRINT "RBFRACTIVB INDBX MBDIUM 1 
PRINT "RBPRACTIVB INDBX MBDIUM 2

INPUT NX 
INPUT N2

80 FOR langle - 0.01 TO PI/2 STBP .01 
90 IF (Nl*SIN(langla)/H2) >• 1 THBN PROCONB 
100 IF <N1*SIN( langle)/N2) < 1 THBN PROCTWO110 PRINT TAB<1>;<langle/PI*180 );TAB<9 );<rangle/PI*180>;

TAB( 17 ); Rp; TAB( 25 ); Rs120 H - H -«■ <(ABS<Rp>*ABS<Rp>H<ABS<Rs)*ABS(Rs>))*PI* 
COS(langle >*SIN( langle )

130 NBXT langle 
140 H - H*.01/PI 
ISO PRINT H 
160 STOP

DBFPROCONB 
rangle “ PI/2 
Rp - l: Rs “ 1 
BNDPROC

DBFPROCTWO
rangle • ASN(N1*SIN( langle>/N2>
Rp “ (TAN< langle - rangle >)/(TAN( langle 
Rs “ (SIN<langle - rangle ) >/< SIN<langle + 
BNDPROC

rangle >) 
rangle > >

<111> Results.

The programme was tested against published results C32>47] and 
was found to agree to within 2 % of the published values.

To calculate the reflectance of the sample/blfurcated optical 
fibre bundle Interface It Is necessary to evaluate R for the core, 
cladding and epoxy resin separately. The core, cladding and epoxy 
resin have refractive Indices 1.56, 1.46 and 1.58 respectively and
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relative areas 14:76:10. The sanqple retractive index is a function 
of the sample concentration, however for low volume fractions the 
refractive index of the sanqple will be close to that of water, i.e. 
1.333. Assuming a sample refractive index of 1.333 the following 
reflectances were calculated by the programme;

sample to core, 
sample to cladding, 
sample to epoxy.

R - 0.039, 
R - 0.024, 
R - 0.042.

The reflectance of the fibre bundle interface is therefore;

R - (.14*0.039) + (.76*0.024) + (.10*0.042).

- 0.0279.
Hence approximately 3 % of the diffuse flux incident upon the 

fibre bundle face would be reflected back into the sample.

The corresponding reflectance for a sample to glass Interface, 
(such as is used in the integrating sphere), is 0.598, i.e. 
approximately 60 % of the diffuse flux incident upon the glass 
slide is reflected back into the sample.

Neither of these calculated Interfacial reflections varies by 
more than 10 % lor changes in san«>le refractive index of +/- 0.05.
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APPENDIX III; CALCULATION OF ASYMMBTRY PARAMBTBR OF 
KAOLINITB PARTICLES PROM RAYLBIGH-GAN8 THEORY.

(1) Theory»

Rayleigh-Gans theory (31 gives the scattered Intensity I, at a 
distance r from the scattering particle;

....<i)1 (6 - ,* )  -  I jJ ^ < l+ co s '^ e -)R '(& id ).
"Tr^

Where; k • the wave number of the illuminating radiation in the 
medium,

*• - the polarisability of the scattering particle,
1« - the intensity Incident upon the particle,
6- - the scattering angle,
^ - the azimuth angle.

The asymmetry parameter g <“cos®), is defined by the expression
(13 1,

I< 9,^ )sinecosedOd^
cos5 “

Hence from <i).

C O S 0 -

I(e’,o)slneddd^

{l-fcos* »)R*< »,4 )sinecosed9d^ ___ ( il >
( 1-i-cos* »>R * ( e-,^ )s in e d e d ^

The function R(9-,^> is known for finite cylinders (3 1, (see 
section (9.3.4>), and hence the asymmetry parameter may be 
calculated by evaluating expression (11).
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A BBC Basic programme was written to run on a BBC model B 
microcoiqputer to evaluate expression <li>. The integrals were 
evaluated using the trapezium rule over angular steps of 0.01 
radians for both O- and

<11> Programme coding.

GET; IF Q - 69 THEN FC

10 MODE 3
20 stpl “ 0.1: stp2 “ 0.1 
30 PRINT:PRINT
40 PRINT "EDGE OR FACE ON ? (E/T) ":

ELSE FC - 1 
50 PRINT:PRINT60 IF FC - 1 THEN PRINT; "FACE ON CALC. OF <COS>" ELSE PRINT; 

"EDGE ON CALC. OF <COS>"
70 PRINT:PRINT "INPUT CYL. PARTICLE DIAMETER (MICRONS) "; INPUT D 
80 D - D*1E-6:A-D/2*L-D/10 
90 PRINT:PRINT 

100 NUM-0:DEN-0 110 WV-589E-9:K-2*PI*1.333/WV 
120 IP FC - 1 THEN GOTO 140 
130 FOR Thi - 0.00001 TO 2*PI STEP stpl 
140 FOR Theta - 0.00001 TO PI STEP stp2 
150 IF FC-1 THEN BETA - ACS<-SIN<Theta/2> ) ELSE

BETA - ACS(COS<Theta/2)*COS(Thl>)
160 Z - 2*K*A*SIN(Theta/2)*SIN(BETA)
170 T - K*L*SIN(Theta/2)*C0S(BETA>
180 PROCJIN
190 PROCJHLFN
200 F-J1N*2/Z
210 E-JHLFN
220 Int-<1+C0S( Theta >*COS< Theta)))*P*F*E*E 
230 NUN-NUM>Int*COS(Theta >*SIN(Theta >
240 DEN-DBN-Mnt*SIN( Theta >
250 NEXT Theta
260 IP FC>1 THEN GOTO 280
270 NEXT Thl
280 CS-NUM/OIEN
290 PRINT; "DIAMETER (MICRC»)S) - ";D*1E6:PRINT;"<COS> - ";CS
300 GOTO 30
310320 DEFPROCJIN
330 IF Z<-3 THEN PRINT "ERROR IN JIN"
340 IF Z>3 THEN GOTO 390 
350 Zl-Z/3360 JlN-.5-.56249985*Zl*2+.2109357*Zl“4-.03954289*Zl*6+ 

.00443319*Z1*8-.000317*Z1*10 
370 J1N>J1N*Z 
380 GOTO 430
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390 Z2-1/Z1400 F1-.79788456+.00000156+Z2+.01659667*Z2“2+.00017105*Z2*3- 
.00249511*Z2*4+.00113653*Z2*5-.00020033*Z2*6 

410 Thl»Z-2.35619449+.12499612+Z2+.00005650*Z2*2-.00637879*Z2*3 
-.00074348+Z2 * 4+.00079824+Z2 * 5-.00029166+Z2 * 6 

420 JlN-l/(SQR(Z))*Pl*COS<Thl>
430 BNDPROC 440
450 DBPPROCJHLFN 
460 JHLFH-SIN<T>/T 
470 BNDPROC

(lii) Accuracy of programme.

The programme was executed with decreasing angular step sizes 
(line 20), to Increase the accuracy oi the Integral approximation. 
It was found that 11 the step size was decreased by a factor of 10 
(to 0.01 radians) the calculated values of cos0- altered by 
approximately 5 %. Decreasing the step size by a further factor of 
10 produced changes In the calculated value of cos5 of less than 1 
%. It was therefore concluded that the programme was accurate to 
within approximately 6 % for an angular step size of 0.1 radians. 
This was considered to be adequate considering the hlg(i degree of 
polydlsperslty of the samples.
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APPHMDIX IV; CALCULATICTl OP SCATTERING CROSS-SBCTIOW OP 
KAOLINITB PARTICLES PROH ANOMALOUS DIPPRACTIOM THEORY.

< i ) Theory.

Anomalous diffraction theory (31 assumes that optical rays 
Incident upon a particle traverse the particle without reflection 
or refraction. Scattering from the particle 1s assumed to arise 
solely from a phase shift due to the path length traversed by the 
light within the particle. These assumptions define the limits over 
which anomalous diffraction theory may be accurately applied:
<1) The refractive Index m of the particle Is close to that of 

the medium m, l.e. m-1 << 1.
<11) The size of the particle Is large compared to the 

wavelength of the Illuminating radiation, l.e. x >> 1.
(ill) The absorption of the particle Is small.

Interference occurs between the scattered wave and the forward 
Incident wave due to the phase shift Induced in the scattered wave. 
By considering the superposition of the Incident and scattered 
waves over the area of the geometric shadow the following 
expression is obtained.

• 2 (l-cos^( X ,y ) Idxdz.

Where ^<x,y) Is the phase shift Induced In the scattered wave and 
the <x,y) plane Is parallel to the plane of the advancing optical
wavefront.
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Champion et al. (581 have calculated expressions for the 
scattering cross-sections of octagonal particles of axis ratio 10s1 
for face, side and edge-on Illumination.

Slde-on;

where^ • 2< m-1 )x,
Edge-on;

C.- 2KV( l-t-sln(A/yZ) - ajjip. -(✓?-! )sIn/^l.X, <VZ-1 IT
where ̂ - 2< m-1 )Xj.

Face-on;
Cj - Jsyi l-cos2( m-1 )x, 1.

Where; k “ the wave number, 2Mn/>,
>k - the wavelength of the Illuminating radiation, 
V “ the volume of a single particle, 
t « the thickness of the particle, 
d - the diameter of the particle - lOt.

Reasonable agreement between experimental observations and 
theoretical predictions of (using the above equations) was noted 
by Champion et al., (who also noted that the slde-on and edge-on 
theoretical values of were graphically Identical). A BBC Basic 
programme was written to run on a BBC model B microcomputer to 
calculate as a function of particle size for both edge-on and 
face-on particles. The programme results were found to be In 
excellent agreement with those of Champion et al. The results for
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edge-on and face-on particles were used to calculate a scattering 
cross-section for randomly orientated particles using the 
expression,

C, « i<C, + C^+ C, ),
3

where; C, • the average scattering coefficients for a group of 
randomly orientated particles.

< li > Prooramine listing.

10 e% - fc030406
20 PRINT "INPUT WAVELENGTH": INPUT WV
30 PRINT "INPUT REF. INDEX OF PARTICLE": INPUT M2
40 PRINT "INPUT REF. INDEX OF MEDIUM": INPUT Ml
50 K - 2*PI*M1/WV
60 M-M2/M1
70 CLS
80 strt - O.OlE-6 
90 stp “ lB-6 
100 step “ O.OlE-6110 PRINT TAB<1>;“DIA.";TAB(9);C<FACB);TAB<19>;"C(BDGB)";

TAB( 28>;"C<RAN>"
120 FOR T - 0 TO stp STEP step 
130 V - T*PI*<T*5)*<T*5)
135
140 X3 - 0.5*K*T150 C3 - 2*<K*V/X3)*( l-COS<2*<M-1)*X3)
160170 X2 - 0.5*SQR<0.5*<l-«-l/1.414))
180 X2 - X2*K*10*T
190 R2 - 2*(M-1)*X2200 C2 - (K*V*(2.414)/<2*X2))*(l+<1/R2)*SIN<R2/2.414))-SIN(R2)/

R2-C0S(R2 >/( 2.414 ) )
CR < C3+2*C2 >/3
PRINT TAB(0);T*10;TAB( 8 );C3;TAB<18);C2;TAB<28>;CR

250 NEXT T
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