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ABSTRACT. 

Single unit recordings of primary and central auditory 

fibers of the cricket Teleogryllus oceanicus show responses to 

frequencies over the range 1kHz to at least 42kHz. The character

istic frequencies, (ChFs) of units were distributed over most of 

the bandwidth investigated although few units were recorded with 

ChFs below 4kHz or in the region 7kHz to 10kHz. Some units 

showed more than o~ e peak of sensitivity and others were broad

landed with no tuning to a particular frequency. Primary 

units whose ChFs approximated. to the carrier frequency (C.F.) 

of the species proclamation song were the most highly tuned. 

The derived threshold curves for all primary and 

central threshold data had major peaks of sensitivity at 

4.8kHZ and 22kHz. The majority of primary units were 

not spontaneously active and had tonic response patterns but 

phasic responses were occasionally observed. Some central 

units have highly complex response patterns involving correlated 

spiking responses, silent periods and rebound activity. The response 

pattern of a single unit may vary with both the intensity and 

frequency of the stimulus. The implications of these findings 

are discussed. 
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Abbreviations. 

The terminology of Broughton, (1964) has been adopted . 

therefore the term proclamation song rather than calling song is 

used throughout this thesis. When reference is made to published 

work, the terms used by the authors are adhered to. 

The ~abbreviation C.F. is used to denote carrier frequency 

and the term characteristic frequency, (ChF) has been used rather than 

best frequency for the freq~ency at which maximum unit sensitivity 

occurs. 
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Introduction. 

A. Sound emission mechanisms. 

a) Strigilation and rate multipl1tlication. 

The Orthoptera produce several types of song, and 

show highly evolved and sophisticated acoustic behaviour, (Alexander, 

1962). The songs are normally produced by the interaction of 

tooth and file systems which are moved against each other as a 

result of muscle contraction. VVhile some crickets have no str1gilatory 

.. 
ability i.e. Phaeophilacris spectrum, (Kamper and Dambach, 1979), 

most crickets produce sound by rubbing their tegmina together. 

The exoskeleton on the inner edge of each tegmen is modified to form a 

plectrum (Nocke, 1972 and ~ichelsen . and Nocke, 1974) which moves 

over the file on the ventral side of vein V? of the opposite tegmen. 

Both tegmina possess a perfect file and plectrum but the right wing 

usually overlaps the left so that only the left plectrum and right 

file are used. Although the rate of muscle contraction does 

not exceed 200/s during sound production, frequencies in the kHz 

range are ~m1tted. Each movement of the wings causes the file 

to pass over the plectrum thereby converting the single muscle 

twitch into a number of tooth-impacts, (rate-multiplication). 

Sound is usually produced only during the closing strokes of the 
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wings, (Pierce, 1948 and Davis, 1968). As the plectrum strikes each 

tooth in the file it produces a "click". A train of clicks is 

produced during wing closure and has a fundamental frequency 

(equivalent to that at which the plectrum strikes the teeth), and 

a Fourier series of harmonics. Each time a tooth is dropped by 

the plectrum the resulting vibration is transmitted to other 

parts of the wing and the spectrum of the emitted sound is modified 

by the frequency response of systems whose natural frequency may 

or may not be different from the tooth-impact rate. If the tooth-' 

impact rate equals the natural frequency of the sound rad1a.tor 

a state of resonance occurs and the fundamental of the tooth-

impact rate is emP'lasised relative to the harmonics. But if the 

tooth-impact rate is dissimilar to the natural frequency of the 

resonator, the harmonic of the tooth-impact rate most s1DL1lar to the 

resonance frequency of the resonator will be emphasised. 

b) The sound radiator and carrier frequency. 

The maxlmum amplitude of vlbratlon of the resonator 

will occur when energy ls fed into lt at a rate corresponding to 

the resonance frequency, (l.e. when the tooth-impact rate equals 

the resonance frequency). At resonance the system ls self-
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sustaining except for frictional losses due to contact with the 

surrounding medium. (Bennet-Clark. 1971). At the beginning of each 

emission, energy is required to overcome the resistive forces on 

the resonator. If the system is lightly damped (i.e. has a 

high Q-value) the buildup is long-lasting and the resulting signal 

is sharply tuned and the harmonics are of low intensity. The 

radiator sy.stem or "harp" in the crickets has a h1l;h Q··value 

so that rise and decay times are long and the resulting emission is 

relati~ely pure tone with narrow, low-energy side-bands. The 

remainder of the wing acts as a baffie. increasine the effective 

air load on the harp. Although the load is small it increases 

the damping of the system. reducing the Q-value, but facilZitatlng 

the acoustic coupling with the air and thus increasing the 

efficiency of propagation. 

In the male cricket there are two regions of thin 

cuticle on each tegmen, (Dumortier , 196) ). the harp and the 

"IIlrror". . The harp is bordered in the midline of the tegmen by 

V!it, posteriorly by v6 and anteriorly by V7. Pierce, (1948) 

suggested 'that the cricket harp was a resonant system, the mode 

of vibration of the harp depending on the thickness. siee and 
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elasticity of the cuticle. The spectrograms of the proclamation 

and "rivalry" songs of Gryllus campestris show characteristic main 

peaks at 4kHz, (Lottermoser, ... 1952. Huber, 1960. Dumortier, 1963 and 

Rocke, 1972). The carrier frequency of these songs (C.F. 4kHz) 

is equal to the tooth-impact rate which also coincides with the 

resonance £requency of the harp. Nocke, (1971) removed the harps 

and showed. that the sound level was reduced. by 46dB. The court-

ship song has a main peak at 14kHz although components up to 100kHz 

are present, (Lottermoser, 1952). but the relative intensity of the 

ultrasonic components varies greatly between individuals, (Nocke, 

1972). The 14kHz C.F • of_the courtship song agrees well with the 

tooth-impact rate for this song but the radiator is unknown. 

Recke, (1971) found that the mirror was tuned. to 7. 2kHz and the 

14kHz component may be the secom. harmonic of the 7. 2kHz fundamental. 

In contrast, some bush-crickets (e.g. PLatycleis 

affinis, Brought on , 19.54. P. intermed.1a, Broughton et al., 197 5 

and Metrioptera brachyPtera, Lewis et al •• 1971) use systems with 

low ~values and rapid decay following each tooth-impact. This 

heavy damping results in the introduction of numerous side-bandsl 

the frequency spectrum will also contain a dominant frequency and 
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the fundamental frequency of the tooth-impact rate. 

II.Song types and the effects of frequency and temporal patterning on the 

behavioural response. 

a) Categorisation of three song tyPes. 

Insect songs are intermittant and side-bands are 

introduced because of amplitude modulation. Amplitude modulation 

of the songs results in patterns which differ in their temporal 

sequences and complexity. A.lexander, (1960 ) observed the 

behavioural context within which crickets produced different songs 

and categorised the signals according to their inferred function. 

The acoustical repertoire of Teleogryllus oceanicus comprises 

three distinctive song types. proclamation (or calling), aggressive 

and. courtship, (Alexander, 1961), for a detailed description of 

the song types see Bentley, (1977). Proclamation songs are associated 

with the occupi.tion of a territory and. appear to function in 

attracting a mate. aggressive songs occur when males are unaccept-

ably close to each other, (Broughton, personal communication). 

Courtship song is elicited in the clos~ pre~ence of a female 

and. is a "softer" song with a much broader frequency band than the 

proclamation or aggressive songs. In some species the courtship 

song consists of long chirps ending in a rapid "tick", (Alexander, 
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ably close to each other, (Broughton, personal communication). 

Courtship song is elicited in the clos~ pre~ence of a female 

and is a "softer" song with a much broader frequency band than the 

proclamation or aggressive songs. In some species the courtship 

song consists of long chirps ending in a rapid "tick", (Alexander, 
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1975~. Ticks with an energy peak at 14kHz have been reported in 

G. campestris, (Huber, 1963, 1970. Nocke, 1972) and Lewis 

. (personal communication) has shown loud ticks in the courtship 

song of Acheta domesticus w1th frequency components ~p to at least 

30kHz. During courtship the wings are lowered from 4S- to the 

body to 20· and the closing movement of the wings is about three 

times faster than during the proclamation song. These differences 

may give rise to the relatively broad-band courtship song as 

opposed to the narrow band emissions of the procIama tion and 

aggressive songs. 

b) Fhonotaxis and carrier frequency. 

Female crickets show positive phonotaxis to the 

proclamation song of the conspec1fic male, (Regen, 1913). However 

the response is dependent upon the }tlase of the female' s reprod-

uctive cyCle, (Busnel and Busnel, 1954). Many workers have tried 

to ascertain what part of the song is species-specific. But 

all Popov and Shuvalov. (1977) commented. the methods and species 

used have been so different that the results obtained by different 

authors are contradictory in many respects. 

Young female Acheta domest1cus demonstrate negative 



phonotaxis to frequencies in the range 2.,5kHz to 4,5JtHz but with 

maturation, the escape reaction to frequencies around the carrier 

frequency, (C.F.) of the conspecific calling song is replaced 

by positive p~axis, (Shuva1ovand Popov, 1971). Popovand 

Shuvalov, (1977 ) observed similar responses in G. bimacu1a t us. 

Moiseff et al., (1978) used modeis of the conspecific calling song 

• 
of T. ocean1cus (natural C.F •• 4-5.4kHz) to test the effect of . 

altering the C .F. on Iilonotactic behaviour. They found that 

females showed positive phonotaxls to models whose C .Fs ranged 

from 3kHz to 9kHz but negative Iilonotaxis to models with C.Fs 

ranging from 30kHz to 70kH~. Popov and Shuvalov, (1977) found 

that only the fundamental frequency of the proclamation song was 

iJIlportant in the phonotaxis of G. b1maculatus, but Zaretsky, (1972) 

fown that female Scapsipedus marginatus reacted positively to . 

models of the calling song temporal plttern that had a C.F. of 

18kHz, (the fundamental frequency of the natural calling song 

being 5kHzl. Although the C .F. of the proclamation song is 

iaportant for eliciting phonotaxis it is unlikely that it is a 

basic cue for the reCOgnition of the species song since the spectra 

of C.Fs of symmpatric crickets overlap, (e.g. Alexander, 1957. 
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Walker, 1957, 1969. Popov, 1972 and Popov et al., 1974). 
, 

c) Temporal patterning and species-specificity. 

Orthopteran songs with the most complex temporal 

pLtterns occur in regions where there are many species and Alexander, 

(1961) stresses that species which do not live together somet1mes 

have identical calling songs and repertoires. T. oceanicus and 

T. commodus have overlapping geograIJhic distributions, (Hill et ai., 

1972) but hybrids are not found although there are no anatomical 

barriers to prevent interbreeding, (e.g. Leroy, 1966. Hogan, 1967 

and Bentley, 1971). The two species have distinctive calling songs 

which differ in both C.F., (T.oceanicus. 4.5-5.4kHz. T. commodus, 

3.5-4.5kHzJ Hill, 1974) and temporal pattern. HUI, (1974) 

showed that presentation of the heterospecific song in a one-way 

trial elicited positive phonotaxis, but specificity occUlYed in 

the response to two-choice trials when both the conspecific and 

heterospecific songs were presented. Pollack and Hoy, (1979) 

presented models of the calling songs of both T. oceanicus and . 

T. commodus in which the C .Fs were identical and found that 

T. oceanicus could recognize the conspecific calling song from 

its temporal pattern alone. 



The temporal pattern of a song is less likely to 

undergo modification during tra~mission through the biotope than 

is the frequency spectrum since it is dependent on the lowest 

frequency present. High frequencies are particularly susceptible 

to environmental modification (see below) and are therefore less 

likely to encode species-specific information than is the temporal 

pLtterning. It appears that different parameters of the calling 

song confer recognition of the signal as species-specific to those 

• 

that elicit the orientation response. The combination of these 

factors, together with the motivational state- of the female, 

interact as a releasing me_chanism and determine her response. 

c .• Sound transmission. 

a) Geometric spreading. 

Sound waves radiated from a: point source have two 

components. medium displacement and pressure. Utilisation of 

medium displacement only occurs in the near-field since the 

oscillation velocity of the molecules decreases by 12dB per 

. 
distance doubled, (dd). '!he arista of Drosophila detects medium 

displacement and is used in near-field communication, (Bennet-

Clark, 1971 and Burnet et al., 1971). Most animals communicate 

in the far-field and utilize the pressure component of sound waves 
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which decreases by 6dB/dd. However the intensity and spectral 

content of the signal may be changed by environmental factors. 

b) Reflection and diffraction. 

Reflections occur where there are discontinuities 

in the impedance of the medium and where the objects exceed 

the . wavelength of the sound. If the emitter is located on 

the ground the signal may be reflected from the ground producing 

a sound-shadow. The sound pressure at a point is the resultant 

of both the progressive and reflected waves reaching that 

point at a given time. Therefore the reflected waves reaching 

that point may interfere with the direct wave either construct-

ively , (such that the intensity ia enhanced ) or destructively 

(resulting in a reduction of the sound pressure) depending on the 

wa velengths and the .phase angle s involved. 

Objects which are similar in size to the wa ve-

length of sound cause diffraction of the sound in all d1rections 

- which will . interfere with the surrounding sound pressures either 

constructively or destructively. High frequencies have 

relatively small wavelengths and are ther~ore attenuated faster 

than low frequencies during propagation through a complex 
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environment. 

c) The efficiency of insect sound radiators. 

To increase the distance over which communication 

can occur it is advantageous to use low-frequencies, in which 

case a larger emitter is required for efficient radiation. Most 

insects are unable to produce much sound below a few kHz, (Michelsen 

and Nocke, 1974). The efficiency of sound emission increases as 

the diameter of the sound source approaches the wavelength of 

the sound, (Beranek, 1954). To efficiently radiate a frequency 

of SkRz, (about the C.F. of most cricket calling songs) a source 

70mm in diameter is required, (Bennet-Clark, 1975) but the wings 

of most insects are far smaller than this. The radiations from 

a freely suspended membrane are equal and opposite in phase 

i.e. when the membrane on one side produces a compression the 

opposite side undergoes a rarefaction. At high frequencies the 

rad1ation from the front of the membrane is mainly transmitted 

forwards. . At low frequencies the radiation distribution becomes 

aore spherical and front to back cancellations occur with a cut-off 

at a frequency whose wavelength equals the distance from the front 
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to the back of the membrane. (Broughton et al •• 1975). Front 

to back cancellations can be prevented by mounting the membrane 

in an infinite baffle. An approximation of an infinite baffle 

can be achieved by mounting the membrane in a wall which is backed 

by an air-filled enclosure. (i.e. a closed-box). however the air 

will effect the membrane compliance and a resonance will be imposed 

which will boe a function of the dimensions of the enclosure. In 

practice a baffle which is one-quarter the wavelength of the 

lowest f'.requency to be transmitted approximates to a closed-box • 
• 

Although the cricket harp is set in the wing which acts as a .baffle 

the anatomical dimensions of the wing do not allow efficient trans-

mssion of low frequency sounds. The harps of G. campestris are 

situated in the dorsal field of a "box" formed from the tegmina. 

am dorsal surface of the insect body. Nocke. (1971) determined 

that the box acted as a baffle but its dimensions are approximately 

one-eightb of the wavelength of the calling song C.F. J emission is 

therefore inefficient. The harp vibrates as a unit and Nocke. 

(1971) suggested that the veins V1-v4 traversing the harp. function 

to increase the stiffness of the harp (therfore increasing the 

natural frequency) without raising the harp mass (the "studding" 
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principle). This will also increase the coupling efficiency, 

Hocke, (1971, 1972) showed tha. t in Gryllus sound is produced as 

a doublet source, the sound pressure being maximal on the axis of 

vibration with a miniJl8l\at right angles to the sagittal plane. 

The emission of Gryllus is . :directional, sound being directed back-
~. 

wards by holding the two fore-wings at 90- to each other and at 

about 45- to the substrate. The sound pressure behind the animal 

exceeds that in front and at the sides by 6dB, (Hocke, 1971). 

d) The effects of temperature, humidity and vegetation on the effective 

propagation distance. 

The velocity of sound in air is dependent on tempexaturel 

heating of the earth' s surface during the day results in sound waves 

travelling faster and being bent away from the surface creating 

. a sound-shadow. .At night the reverse phenomemon occurs. To 

compensate for these variations in the effective propagation dis-

~nce.strategies of climbing to higher positions in the vegetation 

during the day and returning to the surface at night may be employed. 

With increasing humidity the dissipation maximum of sound in air 

will shift from low to high frequencies, (Michelsen, 1978). 

Vegetation affects the microclimate in terms of temperature, humidity 

and air turbulence. Many animals inhabit zones of dense vegetation 
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where multiple scattering of sound by leaves can result in an excess 

6dB attenuation per dd, (Heister and Ruhrberg, 1959 and Heister, 1960). 

Absorption of sound by leaves and. stems can amount to an :extra):6ciB 

attenuation per meter. Attenuation of the high frequency components 

·of signals by vegetation is such that ultrasonic frequencies although 

highly directional can only be used over distances of a few meters, 

(e.g. Silver et al., 1980). Zha~tiev and Dubrovin, (1968) divided 

11 species of tettigoniids into two groups on t~e basis of the C.F. 

of the calling songs. the first group had sonic C.Fs in the range 

8-1,5kHz, the second group had ultrasonic C .Fs ranging from 2O-40kHz. 

Field observations indicated that the first group had a lower mean 

population density than the second. Electrophysiological 

experiments demonstrated that the insects using sonic C.Fs could 

perceive natural sounds from distances of more-. than 9111. Zhantiev 

and Dubrovin concluded that the difference was due to attenuation 

by vegetation. 

D.Frequency discrimination by insects. 

Katsuki and Suga, (19.58, 1960) demonstrated that 

insects could discriminate frequencies. Rocke, (1972) showed 
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that the whole nerve threshold curve for G. campestris had at least 

two optima J one near 4kHz and a second near 14kHz. These are-

the frequencies at which the calling and rivalry songs show 

main and secondary peaks. Esch et al., (1980) demonstrated the 

preuence of clusters of -tuned primary units in G. campestris 

and G. b1maculatus in the range 2kHz to 20kHz. Rhe1nlaender, (1975) 

and Kalmring et al., (1978) showed that primary units in the 

tett1goniid Decticus verrucivorus were tuned to frequencies across 

the whole of the bandwidth investigated, (2kHz to 40kHz). The 

retention of frequency information in general may be important 

for directionality, (Colas et al., 1980 and Hill et al., 1980) 

and ultrasonics may be important in predator-prey interactions. 

Behaviow::al studies, (Popov et al., 1975 and Moiseff et al •• 1978) 

indicate broad-band reception in crickets. 

E. Strategies for directional hearing. 

a)Binaural time difference. 

Directional cues can be determined from the arrival 

time ot sound at each ear and are dependent on the effective inter-

aural separation. In vertebrates the pinnae may affect time of 

arrival cues by causing complex reflections which alter the path 

length of the sound to the tympana. In crickets the tympLna are 
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directly exposed and the interaural distance in T. commodus 1s 

about 1.6cm, (Boyan, 1978). Since sound travels at J44m/s i ·n air, 

the interaural time difference experienced by the tympana for sound 

incident at 90· is about SOps. Bailey and. Thomson, (1977) have 

demonstrated that T. commodus can resolve sounds incident from 10· 

to the longitudinal body axis, at this angle of incidence the 

theoretical interaural time difference is only 8ps. Reliable 

coding of such short time periods would require accurately balanced 

receivers. 

b) Sound shadow effects. 

In the cricket, sense organs responsive to sound are 

situated on the proximal part of the prothoracic tibiae. Inter-

posed between the ears are the head and prothorax which constitute 

a potent1a1 barrier to sound waves reaching the contrala teral ear. 

Hill and Boyan, (1977) tested frequencies up to 5kHz in T. commodus 

and demonstrated that there ~s no appreciable attenuation of the 

sound at the contralateral ear. The C.F. of the proclamation 

song of T. commodus is about j. 7kHz and the body does not produce 

a sound-sh&dow since its dimensions are small relative to the wave-

length. Therefore the sound pressures acting on the external 
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surfaces of the tympana are similar in amplitude when the wave-

lengths used are long with respect to the dimensions of the inter-

posed anatomy. 

d) Binaural phase comparison. 

Binaural phase- comparison could be used to localize 

a sound source but the receivers must be separated by at 111 .... rros~ 

half a wavelength since with shorter wavelengths it is not possible 

to determine which ear is in the leading P1ase ~ (Kom shi, 1977). 

Theoretically the upper limit for phase comparison by T. commodus 

is a bout 11kHz but even at 4kHz (the C. F. of the calling song) the 

oscillations are too clos~ _ together for the receptors to discriminate 

phase, (Boyan, 1978). 

d) The Fessure gradient mechanism. 

Hill and Boyan, (1977) presented a 4kHz sound to 

T. commodus and demonstrated that the effective sound pressure 

at the-contralateral ear was reduced by about 20dB relative to that 

at the ipsUa teral ear. In crickets the prothoracic leg trachea. 

originates at the spiracle and descends in the leg behind.; the 

tympana, (Zeuner, 1936). In the prothorax a branch of the trachea 

runs ventrally to abutt the symmetrical element from the opposite 



18. 

side forming a connection between the tympana of opposite legs. 

Hill and Boyan, (1977) . showed that sound was transmitted in the trachea 

:trom the ipsilateral to the contralateral ear. When the component 

waves were of similar phase and amplitude destructive interference 

between the internal and external sound pressures occUDed. There-

fore the effective sound pressure results :trom the pressure gradient 

across each of the membranes, (Michelsen, 1971; Lewis, 1974 and 

Michelsen and Nocke, 1974). The system is inherently directional 

since the relative phase of the sound pressures acting on the :tront 

and. back of each membrane is a fUnction of the angle of incidence. 

Maximal augmentation (~) of the response can alsC? occur when 

the two waves are of similar amplitude and phase. The dimensions 

of the leg trachea in T. commodus are such as;·~to enable efficient 

transmission of sound at :f'.requencies approximating the fundamental 

._J' 

frequency of the proclamation song. Frogs, small reptiles and 

birds which also communicate using wavelengths that are long relative 

to the interaural separation also have patent connectionsbet~een 

the tympana, (Strother, 1959. Wever and. Vernon, 1957. Schwartzkopff, 

1952. Coles et al., 1980 and Hill et al., 1980). Coles et al., 

U 980) and Hill et al., (1980) have shown that the quail ear functions 
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as a pressure gradient receiver. 

E. Aim of the investigation. 

As shown above the majority of studies on gryllids 

have concentrated on responses to frequencies lower than 20kHz. 

The question arises whether crickets, with their relatively narrow-

band emission (at least of the proclamation and aggressive songs) 

also show broad-band reception and tuned units in the ultrasonic 

range. The following experiments were designed to look at the 

frequency range over which responses could be eliCited, (within 

the limits of the experimental equipment) and to provide a detailed 

characterisation ,of the responses of single units. Recordings 

of primary units were undertaken to investigate the input to 

the central nervous system. Comparison of the primary and 

central responses may help in understanding ' the information 

processing that occurs in the central nervous system. 



CHAPl'ER. II. ~o-48 

Ma ter1.als and Methods 



20. 

Experimental techniques. 

A) The crickets. 

Crickets, Teleogryllus oceanicus, were cultured in the 

laboratory from eggs originally provided by Dr. R. Dawkins (Oxford). 

The animals were fed on rat cubes (Dixons FFU(M», a wheatgerm 

cereal (Bemax) and occasionally slices of apples and orange, and 

they had continual access to water. The crickets were kept in a 

separate insect room in perspex tanks at 23·C and 30% relative 

humidity on a 12hr light/dark cycle. Eggs were collected in Petri 

dishes filled with moist sand and the young emerged approximately 

three weeks after the eggs had been laid. 

The juveniles were segrega ted at the 5th instar and 

males and females reared separately. Selected males and females 

formed the breeding colony. The culture has been maintained for 

a three-year period. 

B) The generation of the stimulus. 

Pure tones were produced using a function generator 

(Famell ro2), and the frequency of the wavef011ll was monitored using 

a counter, (Heathkit 1M-4100). Alternatively. white noise based on 

the output of a noisy resistor could also be switched into the 
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circuit. The continous waveform (pure tone or white noise), 

provided the input to a Tone Burst Generator, (TBG) which was built 

in the laboratory, Taylor, (1978a., b). Fig.l Record-Mode. The 51 channel 

of a Grass 588 Stimula tor was used to provide a trigger which ga ted the 

output of the TBG enabling stimulus repetition rates to bL.modified by 

the manipulation of the 51 channel. By this means st1mulus trains 

of 10 st1muli/ s could also be generated thus approximating the 

syllable rate of chirps in the song of T. oceanicus. A series of 

fixed st1mulus durations (25, .50, 100, 200, 300, 400 and 600ms) 

could be selected with an Alternative facility for the continous 

variation of the stimulus duration, (see section H). The TBG 

also had independently variable "rise-fall times but, during the 

, 

exper1ment only symmetrical rise-fall times (r,5ms) were used. The 

ga ted signal was amplified (Xelex Power ~Amplifier DD8) and then 

attenuated in ldB steps using a Hatfield Attenuator 2125. The 

output of the attenuator could be switched to one of two loudspeakers, 

(Fig.1 Record-Mode). IDw frequency st1muli (below 5kHz), were emitted 

using a Kef B200 loudspeaker (specified frequency range 25Hz to 3.,5kHz). 

An Audax TWB loudspeaker (specified frequency range 1Hz to 40kHz) was 

used to emit frequencies exceeding 5kHz up to a maximum of 42kHz. 





Fig.l Block diagrams of experimental apparatus used in Record 

and Replay-Modes. arrows indicate s1gqal movements. AJIlp, 

. aaplifier: Atten, attenuatora "Env"a' stimulus envelope: 

F .G.2, Function Generator: Freq., frequency of stimulus: 

Oac., oscilloscope: "Fhones", monitor headphones I R/Resp 

Anal., response analog: Spike, discriminated spikes: 

still, stimulus: Stim. Trig •• stimulus trigger: TBG, 

Tone Burst Generator I Trig., Trigger I W. N • I white noise I 

Win., window. For further details see text • 

. ~ 

',. 
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c ) The experimental room. 

The experimental room was approximately J.Ox2.5x2.5m 

and was situated in a basement. A chipboard channel, square in 

cross-section and closed at one end (l.0x1.0x1.Jm) ran diagonally 

across the room. The channel was lined on all sides w1 th mineral-

wool wedges, (Rockwool slab insulation, densitYJ 100kgjcubic meter, 

thicknessJ 6Omm) calculated lower cut-off frequency 212Hz, (calculated 

using the equation for a conical horn with non-absorptive surfacel 

Beranek, 19.54). The loudspeakers (Audax 'N8B and Kef B200) were 

mounted on a removable piece of chipboard which fitted flush in the 

plane of the closed end of the channel. 

A magnetic stainless-steel baseplate was sited at the 

open end of the channel. The upper surf'ace of the baseplate was 

covered with foam rubber and was below the 1.evel o'f the mlneral-

wool wedges in the channel. On the baseplate a micromanipulator 

(Prior) was used to support a right-angled copper tube ( .. ' diameter), 

which carr1:-e.d an adjustable plate on which the preparation was 

positioned, (Fig. 2). The plate consisted of a .~pex.;Sh"t 

(O.lx1.8xJ.8cm), supported on thin metal rods (O.2cm diameter, 

2.0cm long) and served to minimize sound-field disturbance in the 



Fig.2 Photograph of the preparation during recording from 

central units. el electrodea HI headstage# PI preparation a 

SI slave cylinder of microdrive. 
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vicinity of the preparation which was placed 21cm above the level of 

the baseplate. A second micromanipulator was mounted on a vertical 

post and enabled coarse adjustment of the position of. the micro-

electrode. The post was 2cms thick and was placed beyond the 

preparation. The headstage (Neurolog 100) was attached to the vertical 

post at a height of 18cm above the baseplate, (Fig. 2). 'Ibe whole 

table was enclosed by a Faraday cage (mesh diameter 1.,5cm) to reduce 
I I 

electrical interference. 

i) D) Calibration of the sound-field. 

~). Anechoic conditions. 

Since the sound pressure at a given point consists 

of both the original progressive wave and the reflected waves 

reaching the point, in·/est1gations of the effect of stimulus intensity 

on a response must be performed under either an!3choic or free-field 

conditions. To demonstrate the efficiency of sound absorption by 

the Rockwool wedges, a microphone (Bruel and Kjaer t" Type 41)4) 

was mounted in the position normally occupied by the preparation; . 

the d1aphragm of the microphone was parallel to the lasepla te • 

The condenser microphone provided the input to a 

Frequency AnJlalyser (Bruel and Kjaer Type 2107) and the analog signal 

... - . - t·· ." ___ ~ .... _ ~ .... . . ... ... _ - -
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was displayed on one channel of an oscilloscope, (Tektronix D1J), 

Fig. J. The Si channel of a Grass 588 stimula tor was used to produce 

square waves ("clicks"), duration O.1ms which were switched into the 

sound production circuit prior to amplification by the Xelex DD8 

Amplifier, (Fig. 1 Record-Mode). The square waves were displayed 

on the second channel of the oscilloscope, (Fig. J) The signal was 

emitted by the Audax '!'WBB loudspeaker. 

The emission of a "click'" resulted in a significant 

disturbance of the sound pressure level, (SPL) at the microphone 

(Fig. J upper). Transduction of the signal and the time taken for 

the sound pressure wave to _travel from the loudspeaker to the micro-

phone resulted in a delay in the microphone response relative to the 

stimulus trigger. The delay (approximately 4ms) constitutes a 

correction factor used in the determination of latency measurements. 

Echoes were produced when a sheet of reflective material 

(cardboard) was placed in front of the wedges, (Fig. J lower). The 

voltage change produced by the echo was 1/ 6th that of the original 

progx:essive wave. On removal of the cardboard to expose the wedges 

an echo occurred 6ms after the trigger but its amplitude was barely 

discernible above the background noise level, indicating that the 

\ \ 

, 
I 

I , 





Fig.3 A.nalog signals from a condenser microphone photographed 

from the oscilloscope. Upper; microphone response to a 

"click" emitted under experimental conditions. Lower; 

echo produced when a sheet of card was lowered in front 

. ..; of the Rocoool wedges, (for details see text). 

' . 
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wedges are highly absorptive, (Fig.3 above). 

2. Sound intensities. 

To calibrate speaker outputs a t .. microphone (Bruel and 

Kjaer Type 4135) was placed horixontally in the sound field with the 

diaphragm faCing the sound source. The microphone was positioned above 

a preparation so that the diaPlragm approximated to the position of the 

ipsilateral organ. Sound pressure levels were measured at 1kHz steps 

over' the experimental frequency range (Bruel and Kjaer Frequency 

Analyser Type 2107) and are everywhere expressed in dB SPL re la ti ve to 

0.OOOO~/m2. Further tests indicated that the sound field was within 

+ -1-.2,5dB at a distance of 4cm about the preparation. Calibrations were 

repeated every 2 months and following the replacement of a loudspeaker. 

The output of the Audax NaB loudspeaker fell rapidly above 35kHz 

restricting the range of stimulus intensities that could be investigated. 

E) Microelectrodes. 

Microelectrodes were pulled from · l.~ diameter capillary 

gLass (Clarke Electromed1cal GC 15OF), using a vertical microelectrode 

puller (Scientific Research Instruments). The electrodes were filled 

with either potassium acetate (3M) ar potassium chloride (3M) 

immediately prior to use. Electrode resistances were measured using a 

. ... . . ,-"-,--- ... _ • _ '_~"" _ _ 4 _ ~ _ -. 





Fig.4 Microelectrode holder. A silver wire (Ag) was soldered 

to the "cap" and inserted into the electrolyte of the 

glass electrode. The "cap" made electrical contact 

w1 th a brass ft t ting from which the signal was taken 

.... to the head stage • 

' . 
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00 Amplifier (Neurolog 102) and ranged from 20 to 4OMOhm. The electrodes 

were held in an electrode holder (manuf'actured in the workshop, Fig.4). 

The electrolyte contacted a silver wire soldered to the "cap" of the 

holder. During the experiment the electrode holder was inserted via 

the "cap" into a small brass fitting from which a lead connected to 

the "A" terminal of the headstage, (Fig.2). 

F') The preparation. 

Adult crickets were anaethetized with carbon-dioxide gas and 

the antennae, meta thoracic and mesothoracic legs removed. Both pairs 

of wings were also cut 6£f. The insect was waxed w1 th 1 ts ventral sur-

face uppermost to a perspe~ holder, (S.Ox1.SxO.2cm thick) which also 

carried a 1mm socket into which was soldered a length of silver wire 

(the indifferent electrode), which was inserted into the abdomen. 

The prothoracic legs were waxed at the tarsae and. feJr.ara to thin right-

angled wires attached to the stand. Care was taken to ensure that the 

position of the legs approximated the normal stance. The head was 

pulled bac~ to expose the thin neck cuticle and. waxed in place. The 

maxillae and. mandibles were removed and the labium lifted to expose the 

pharynx. Connective tissue was cut to free the oesophag.us and the fore 

and midgut removed via a slit made in the abdomen. The cavity was plc ked 

I I 



with tissue soaked. in Clarke's Ringer. The labrum and labium were then 

removed.. When recorAing from the central nervous system the neck cuticle 

was cut away to reveal the ventral neck connectives between the sub- ~ 

oesophageal ganglion (sce) am the prothoracic ganglion ('Ihl). Care was 

taken to minimize damage to the tracheae and the acoustic tracheae were 

left intact. A small piece of blue tissue paper moistened with ringer was 

inserted. Qenea th the connectives, (Fig. S'c) • When recording from primary 
; I 

units the soft cuticle between the presternal process, presternum and 

prothoraeic coxa was removed to reveal Th! and the leg nerve, (Fig. 5d). 

No contralateral recordings were made, the animal being 

• rotated through 180 to enable both right and left connectives and leg 

nerves to be examined using an ipsilateral sound source. The connective 

res~nses were recorded with the longitudinal axis of the animal perpendicular 

to the loudspeaker. Primary units were recorded with the longitudinal 

axis of the cricket in line with the l?udspeaker. The prepare. tion was 

1llum1nated by a cold light source (Schott KLl.50B), and the electrode 

lowered ~er visual guidance (Bausch and 10mb microscope), When the 

electrode was located above the site of penetration, the microscope 

and light source were removed from the sound field and the electrode 

further advanced using a hydraulic microdrive (Clarke HMD-IM). Early 

r '-"'/O"nII!~--'---_---""-,,,,----- .. -. -- - --, . . - ---. --- - .- - - -.. . _---



Fig • .5a Caudal view of left prothoracic .tibia to show large 

posterior tympanum (PI'). b. Frontal view of the left 

~blA 
prothoracic tympaft~ to show the small anterior 

tympanum (AT). 

.. 







Fig.Sc Dissection to expose the cervical connectives (CC) 

between the suboesophageal and prothoracic ganglia. 

AI anterior: P; posterior: * recording position for 

the majority of central units. d. Dissection to enable 

... primary unit recording showing the leg nerve (LN) 

running to the coxa (right upper). A J anterior I 

P, posterior. 
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experiments indicated that few units responded well to white-noise 

bu1;. a response could usually be elicited by either a , 5kHz or a 12kHz 

tone. The search stimulus consisted of the output of two oscillators 

set at 5kHz and 12kHz respectively, The sine waves were mixed (TBG) 

aM the resultant search stimulus emitted using the Audax TWSB loud-

speaker. A series of penetrations was made until a stimulus-locked 

response was detected. The neural response was monitored on an oscillo-

scope in the experimental room and via headphones, (Danasound), Fig.1 

Record-Mode. The stimulus "envelope"was monitored on the second channel 

of the oscilloscope. '!he response analog and stimulus "envelope" 

were also passed to a ' storage oscilloscope, (Tektronix D13) outside 

the room, (Fig. 6) • The neural response was taken to the headstage 

from where it was taken to a preamplifier, (Neurolog 10J) .and was 

further amplified using an A.C. amplitier (Neurolog 105). Filters 

removed frequenCies above 10kHZ and below 100Hz am a '50Hz notch filter 

was also incorporated to reduce mains interference. 

The stimulus (or Grass Sl) trigger, TBG "envelope" and 

response analog were recorded on magnetic tape (FhUlips portable 

instrumentation recorded Ana-log 7) at a speed of 15ips (frequency 

response OHz to 5kHz on DR). '!he stimulus "envelope" rather than 

........ ... . . - - - . ... 
i 
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ng.6 View of apparatus outside the experimental room which 

_8 used in recording and analysis of cia ta and in the 

generation of the stimulus • 
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the pulsed tone was recorded on tape because, at high frequencies, 

the response of the tape recorder degraded the signal, (Figs.1 

Record-Mode and 7). 

Ten stimuli were presented for each test frequency, 

intensity and duration. Test experiments indicated some adaptation 

to stimulus repetition rates of 2 stimuli per second and unless 

stated otherwise a stimulus repetition rate of 1 stimulus every 

1.5 seconds was used. Response intensity curves were determined 

by attenuating the stimulus in .5dB steps except near threshold 

where IdB steps were investigated. During recording the 

stimulus intensity was reduced to determine the threshold level of 

the response. The lowest intensity at which a unit responded to 

two out of five successive stimuli was defined as the threshold level. 

Threshold curves were drawn 1ndicating the range and sensitivity of 

units to the frequencies tested. 

G) Replay of data. 

During replay the taped stimulus trigger was used to 

trigger the storage oscilloscope, (Tektronix D13) which displayed the 

response analog and stimulus "envelope", (Figs.1 Replay-Mode and 7). 

The stlmulus trigger was also amplified (Xelex DDB) and used to gate 





F1g.7 D1agram of the steps in the analysis of data and 

the generation of dot-displays, (for details see 

text) • 
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the S1 channel output of the Grass S88 Stimulator which in turn 

triggered the TBG, (Fig.1 Replay-Mode). During analysis the TBG 

was used to produce an.d "envelope" (termed. "window" during replay 

to distinguish from record-mode stimulus "envelope"), which had 

transient rise-fall times (less than 1ps), Fig. 7 • . ,,_Whereas in the 

record-mode, the TEe gated a sine wave or white noise input, in the 

replay-mode the TBG was used to gate the response analog. Thus the 

TBG only passed the section of the response analog that occwred in the 

"window" , (Fig. 7). The position of the "window" in time ( relative 

to the stimulus trigger pulse), could be moved by varying the 

"Delay Function" of the Sl channel of the Grass S88 Stimulator. 

The onset of the "window" could therefore be set for any point between 

the first trigger pulse (zero delay) and the succeeding trigger 

I. 

pulse, ( maxi-Dtm delay). The duration of the "window" could be 
I 

I I 

changed by varying the "Continuously Variable Flat Top Duration" ru."lction 

of the TBG. By these means the entire stimulus-evoked response 

could be encompassed, whatever its latency or duration. For units 

with discrete "on" responses followed by silent periods and rebound 

exc itiat ion , the data were re-run to enable to enable different 

windows to be examined. The "w1ndowed" analog signal was then 



amplified (amplifier built in the department, frequency response 

20Hz to 20kHz) and the output of this amplifier was then attenuated 

using a continously variable potentiometer. The signal provided 

the input to the 52 delay function of the st1mula tor and ga ted the 52 

output. 5ince 52 delay requires a minimum of 6v input, adjustment 

of the potentiometer enabled the circuit to act as a 5chmitt Trigger 

discriminator, a 13V square wave pulse being produced at the main 

52 output for each discriminated spike regardless of the original 

spike amplitude. The 52 output was used to produce Z-modulation 

of the response analog fed directly to the left vertical amplifier 

of the Tektronix D13 oscilloscope via the External Intensity Input. 

This resulted in the brightening of the response analog at the voltage 

where 52 out put was inl tia ted, (Fig. 7) • The discr1m1na tor was set and 

maintained for each unit. The 52 output was also counted (Radio , I 
I 

Spares counter 2.58-798) giving a digital record. of spike number. 

Stimulus triggers were also counted in both replay and record. modes, 

(Fig. 1). 

Dot-displays were produced by reducing the intensity of 

the left vertical (response analog) oscilloscope beam until only 

Z-modulatlon brightened dots were visible, (Fig. 7). With the 

-------- ---- ----
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oscilloscope in the storage mode. dot data could be displayed and 

.the responses to successive stimuli moved down the screen using a D.C. 

resistor-division circuit. Each dot-display was photographed 

(Canon F .P. camera; Kodak Recording Film 2475. 12mm extension :,,·ing). 

and summarized the data obtained for either 5 or 10 successive 

presentations of any stimulus. (Fig. 7). A photographic record 

of the response analogs for selected stimuli were also taken. In 

most cases this was the approximate "mean" response for any stimulus. 

This mean value was determined from the pulses counted by the Radio 

Spares counter. From counts of spike numbers. means. standard-

deviations and variances were calculated. 



CHAPl'ER Ill. 49-81 

Response Properties of Primary Auditory Fibers in the Cricket 

Teleegryllus oceanicus (Le Guillou). 
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Summary I 

Single unit recordings of primary auditory fibers 

of Teleogryllus oceanicus show responses to frequencies over the 

range O.5kHz to 42kHz. The characteristic frequencies, (ChFs) 

of units were distributed over most of the bandwidth investigated 

although few units were recorded with ChFs below 4kHz or in the 

region 7kHz to 10kHz. Some units showed more than one peak of 

sensitivity and others were broad-banded with no tuning to a 

particular frequency. Units whose ChFs approximated to the 

carrier frequency of the proclamation song were the most highly 

tuned. The majority of units had a tonic response pattern 

and were not spontaneously active. The implications of these 

findings are discussed. 
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Introduction. 

In the cricket. sense organs responsl~e to substrate 

and airborne vibration are situated in the proximal part of the 

tibia. The subgenual organs respond to low frequ~ncy airborne 

sound (below 3kHz) and substrate vibration. and are present in all 

three pairs of legs. (Dambach. 1972.1976). Only the anterior tibiae 

possess tympana and complete tymplnal organs. the morphology of which 

is well documented. (Young and Ball. 1974, Eibl. 1978). Previous 

physiological studies at the level of the tympanal nerve have 

shown a correlation between the carrier frequency (C.F.) of the 

~onspecific songs and the tuning of the tymplnal organs in a 

variety of cricket~ " (e.g. Nocke. 1972 and Hill and Boyan. 1977). 

Hocke. (1972) shOWed that the threshold curve for the tympanal 

organ of Gryllus campestris had at least two optima J one near 

4kHz and a second at 14kHz. These "were ,the "frequene1es at " which 

the spectrograms of the calling and rl valry songs show main and 

secondary peaks; the courtship song shows a single peak at 14kHz. 

Zhantlev and Tshukanov, (1972) also showed two response peaks in 

G. bimaculatus. Further. by destruction of the branches of the 

tymplnal nerve. they showed that the low frequency peak (optimum 
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4-,SkHz, range 1-15kHz) could be ascribed to the proximal part of the 

tympanal organ, while the high frequency peak (optimum 16kHz, range 

lO-5OkHz) originated from the distal portion. AnatomiCEt.l studies 

also suggest a subdivision of the receptor cells into at least a 

proximal and a distal group, (Young and Ball, 1974. Eibl, 1978) 

but the morphological basis of any frequency discrimination is still 

problematical. The evidence may be indicative of frequency 

discrimination by a minimum of two groups of cells in the cricket ear 

but the extent of the frequency resolution cannot be ascertained 

using gross recording techniques sinQe only the more accessible axons 

_1' be recorded. A t the single unit level Esch et al., (1980) suggest 

that in G. campestris aM G. b1ma.culatus, fibres tuned to the C.F. 

of the calling song predominate. Within the frequency range investi-

sated, (2kHz to 20kHz) 22 out of J4 units were most sensitive to 

4-5kHz (the C.F. of the calling songs). In addition two fibres 

responding to higher frequencies (best frequencies/characteristic 

frequency (ChF), 12kHz and 17kHZ) were recorded and, in four animals, 

fibres which were max1mally responsive below 2kHz. This paper presents 

the results of an investigation, at the single unit level, of primary 

fibres of Teleogryllus oceanicus over the frequency ~nge 500Hz to 42kHz • 

T - - -." ~ .- '.' 
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Materials and Methods. 

The crickets were obtained from a culture held 

. in the laboratory. Both male am female crickets were used 

two to six weeks after the final moult. successful recordings 

were made in 30 animals. 

The crickets were anaesthetised with carbon-dioxide 

cas and the antennae, mesothoracic, metathoracic legs and both 

pairs of wings removed. 'Ibe insect was waxed with its ventral 

surface uppermost to a thin perspex holder and a silver wire serving 

.as · the indifferent electrode, inserted into the abdomen. The 

prothoracic legs were waxed_at the femora and tibiae· to thin, 

right-angled wires attached to the stand. 'Ibe gut was removed 

am the cavity plugged with paper tissue soaked in insect ringer, 

(Clark's). A small piece of soft cuticle was removed between the 

prothoracic sternel1um am the base of the coxa to give access to the 

leg nerve, (LK). Neither the prothoracic ganglion nor the acoustic 

tracheae wer.e exposed during the dissection. 

'Ibe preparation was positioned 21c. above the 

experimental baseplate with the head towards the loudspeaker for 

the initial recording. .otation through 180· enabled the other 
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LN to be examined. This procedure resulted in the original 

recordings being made with the anterior tympana facing the sound 

. source J following rotation the posterior tympana faced the source. 

The experimental room was approximately 3.0 x 2.5 x 2.5m 

and was situated in a basement. A chipboard channel, square in cross-

section (1.0 x 1.0 x 1.3.), and closed at one end ran diagonally 

across the room. The channel was lined with mineral-wool wedges 

(Rockwool) which were also used to cover the walls opposite the 

open end of the channel. The loudspeakers were sited at the closed 

end of the channel. An Audax '!'W8B, (specified frequency range 

1Hz to 40kHz), was used to emit frequencies exceeding 5kHz up to a 

maximum of 42kHz. Low frequency stimuli (below 5kHz) were 

emitted using a Kef B200 loudspeaker, (specified frequency 

range 25Hz to 3.,5kHz). The prepLration was situated on a base-

plate below the open end of the channel and . the sound-field 

intensity was uniform w1 thin ldB at a radius of 4cm from the insect. 

Echoes were not detected on either the Bruel and KjLer equipment 

or on the oscilloscope at the frequencies investis't.ted.. All 

dB values are given with reference to 0.00OO2N/m2• 

Glass aicroelectrodes filled with 3M potassium 

. .. ,- _._.0-:r _.: . - .......... - ....... -. .. . -_ .• ~_' . . . - -. - -, . . 
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chloride (20 to 4OMCtun), were used for recording and were advanced 

using a remote hydraulic microdrive (Clarke ~lM). Responses 

were monitored both visually and on headphones. 

The search stimulus (50ms duration, 5ms rise-fall 

time, one stimulus every 1.5s) consisted of the mixed output of 

two oscillators set at 5 and 12kHz, (Taylor, 1978a,b). When 

a single unit was obtained the 5 and 12kHz components of the search 

stimulus were tested individually to ascertain if the unit was 

"low" or "high" frequency responsive. During experiments these 

oscillators were switched off and the output of a more accurate 

F.arnell FG2 continously variable oscillator was used as the 

stimulus. The output frequency was monitored using a Heathkit 

counter. Sound intensities were changed using a Hatfield 2125 

Attenuator which could be varied in IdB steps over 100dB. The 

rise-fall time of the stimulus was always 5ms and the .5Oms stimulus 

duration was chosen to approximate to the syllable duration of the 

conapecific song. However a variety of fixed stimulus dura tions 

QOuld also be selected. "cont1nous" tones (exceeding 600ms duration) 

• > 

were occasionally used. The effect of a stim~us repetition rate 

of 10 stimuli/s was also investigated. This rate approximates to 
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the syllable repetition rate in the proclamation song of T. oceanicus. 

Due to the instability of the unit recordings 

(see ~lso Esch et al., 1980) only 5 stimuli were usually presented at 

each frequency, .. intensity and duration. Further, it was not 

,always possible to collect complete response-intensity data. 

Threshold curves were collected for each unit, the threshold 

level being defined as the lowest sound intensity which elicited 

a.response to at least two out of five successive stimuli. 

The stimulus trigger, stimulus "envelope" (defined 

as the D.C • gate for the tone pulse) and the response analog 

were recorded on magnetic tape (Philips instrumentation recorder _. . 

Ana-log 7, frequency response 1Hz to 5kHz on DR at 15ips). Spikes 

were discriminated off-line using the Schmitt trigger of a Grass 

S88 delay function. The TTL-compatible S2 output pulses were 

then counted (Radio Spares Counter 2.58-798). Means, standa.rd-

dev1ations, variances and cumulative counts of spike number were 

calculated. The approximate mean response analog for selected stimuli 

·together with dot-displays sum--rising the 118sponses to five identical 

stimuli were ptlotogra~ed. Iatencies were determined and defined as the 

time between the onset of the stimulus and the first spike of the response. 
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Results. 

A. Characterisation of units by their Threshold Curves. 

a) 15 recorded units (36%) were max1mally sensitive to frequencies 

in the range 4 to 5kHz, (Fig.8 e.g.78) and are therefore tuned to the 

C.F. of the proclamation song, (4.,5kHz, Hill, 1974). The threshold 

curves of these units were sharply tuned and the roll-off values 

on either side of the ChF were between 35 and 107dB/octave, (see also 

Fig.l0). The maximum sensitivity at the ChF of these units ranged 

from 46 to 69dB. If the dynamic range of a single unit is considered 

to be JOdB, these units could potentially code intensities from 46 to 

100dB. i.e. intensity coding may be extended by range fractionation 

(Rhe1nlaender, 1975). 

The majority of the units with ChFs approximating 

the C.F. of the proclamation song did not respond to frequencies 

in excess of 20kHz. 

b) 10 units, (2~) had threshold curves which were broad-banded 

nth no tuning to a specific frequency, Fig.8 e.g.l10. Such 

' units were relatively insensitive and did not respond to frequencies 

a bove 30kHz. 

c) Threshold curves of 10 units (2~) showed maximum sensitivity to 





Fig.8. Representative threshold curves of single primary units 

showing the distribution of characteristic frequencies 

over the range O.5kHz to 42kHz. (Animal Nos. 78, 104, 

. 107, 110 and 111). 
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frequencies in excess of 10kHz, (Fig.8 e.g. 104). They were more 

broadly tuned. than units with ChFs in the range 4kHz to 5kHz. 

d) 3 units, (7%) were recorded w1 th threshold curves which were 

incomplete but which indicated probable maximu~ sensitivity to frequencies 

in excess of 40kHz, (Fig.8 e.g. 111). 

e) 4 units, (10%) were recorded which showed two distinct peaks 

of sensi~ivity, Fig.8 e.g. 107; this unit had optima at 20 and 30kHz, 

(c.f. Esch et al., 1980). 

This data shows that primary units can code frequencies 

over the range O. 5kHz to 42kHz although there are frequency gaps in 

which no tuned. units are found. 

B • Derived Tympanal Nerve Threshold Curve. I ' 

The lowest intensity required to elicit a response 

in any unit to each of the test frequencies was determined. and 

on the basis of all primary data a threshold curve for the tympanal 

I 
organ was derived, (Fig.9). High intensities (7~) were required I ' 

to elicit .a response to airborne sound at O.5kHz and may indicate 

that these units are preferentially responsive to substrate vibration, 

(see Kalmring et al., 1978). Above 1kHz the threshold curve 

shows four peaks of sensitivity at what may be harmonically related 



I 

F1g.9 .Derived threshold curve for T. oceanicus (for details see 

text) and the comparable threshold curves obtained for 

T. commodus (after Hill and Boyan. 1977) and G. campestris 

(after Nocke. 1972). 
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frequencies. The curves obtained for tympanal nerve recordings 

in G. campestris, (Nocke, 1972) and T. commodus, (Hill and Boyan, 

1977) are also shown. The threshold curve of T. commodus has 

an optimum at the C.& of tM proclamation song (J.8kHz) but the 

range of frequencies investigated was limited. The threshold curve 

for G. campestris has two distinct optima. at 4 and 14kHz which 

I I 

coincide with peaks in the spectrograms of the conspecific songs, 

(Nocke, 1972). The derived curve for T. oceanicus is more 

: I 

sensitive than that for G. campestris to frequencies in excess of 

4.SkHz and the frequency range investigated extends beyond that 

used by Nocke. 

I 
C • Representative Units of Differing Response TyPes. I I 

Tol07PN1& The threshold curve of this unit was highly tuned, 

(lower roll-off. 45dB/octave, upper roll-off. 107dB/octave), and 

centered on the C.F. of the proclamation song, (Fig.lO). At the 

ChF the unit responded with only a single spike at intensities 

from thresQold to Th+JOdB. At higher intensities the response 

. consisted of a volley of spikes. The dynamic range within which 

~o.r\~of 
spike number increased linearly with ~st1mu1us intensity at the ChF 

was approximately 20dB, (Th+JOdB to Th+,5OdB). The unit responded 



Fig.10 Threshold curve for unit TolO?PNl with ChF at 4.8kHz. 

Bars represent mean spike number in response to a 50ms 

stimulus at 4.8kHz; stimulus intensities represented by 

the baseline of each bar. Inset; response analog to 

the stimulus parameters shown. 
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tonically at Th+50dB with a mean response latency of 10ms, (Fig.l0 insert). 

At 4.5kHz at an intensity of 86dB, spike number increased linearly with 

stimulus duration over the range 25 to lOOms; the unit was not spon-

taneously active. 

To120PN6z The threshold curve of this unit was broad-banded; it was 

relatively insensitive,»(maximum sensitivity 69dB at O.8kHz)and 

was not spontaneously active, (Fig.ll A). 

At 4.5kHz and 8kHz the response was "simple" 

consisting of a tonic discharge during the stimulus presentation; 

no rebound activity was observed, (Fig.llA insert). Spike 

number increased with stimulus intensity for at least 15dB above 

threshold and was mirrored by a decrease in the latency of response. 

At O.5kHz the response pattern of the unit was atypical, 

spikes only occw:r1ng at the termination of the stimulus. At 

higher intensities the response consisted of tonic firing followed by 

a silent period and "rebound" activity. The s16nal to 

noise ratio at this point in the experiment was not high enough to 

. pendt quantitative analysis but analogs of responses to three 

successive stimulus presentations are shown, (Fig.l1B). 

Tol05PN11 This threshold curve shows two distinct peaks of sensitivity 



/ 

Fig.l1A Threshold curve for unit To120PN6. Bars as in Fig.l0. 

Inset J response analog for a SOms stimulus. B. Response 

of unit To120PN6 to a 500Hz stimulus at two intensities. 
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at 6kHz and 20kHz, and responses were elicited over the entire range 

from 2 to 40kHz, (Fig. lU). The response pattern was tonic. At 

4.5kHz the mean spike number increased linearly over the range 

Th+B to Th +2JdB and was related to a decrease in the latency to first 

spike. Responses to five successive stimuli showed no adaptation. 

At 35kHz the mean spike number increased with intensity 

up to Th+10dB after which the response decreased and then p1ateaued 

at Th+20dB (Fig.l2B). This decrease in response is due to a 

reduction in the spike number per response rather than to adaptation 

to successive stimuli. The mean latency of the first spike decreased 

with intensitles up to Th+10dB, then remained constant. At 4.,5kHz 

the mean spike number increased with stimulus durations up to 4OOms. 

Stimulus duration was also coded at 35kHz, although some adaptation 

to successive stimuli was evident with durations in excess of 4Ooms. 

To lllPN'l and PNBa Units N7 and NB were recorded simultaneously. The 

threshold curve of N7 was broad-band extending from 10 to 40kHz and 

was re1ati~e1y insensitive, (Fig.13). Spike number increased 

. gradually with intensity at 22,27 and 35kHz. at 38kHz a high spike 

number was elicited at Th+JdB. At frequencies lower than 22kHz 

the response of N7 masked that of NB. NB was more sensitive than 

.. - -- .,. - ". 

~ , I 
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Fig.12A. Threshold curve for unit To105PN1. Bars as in Fig.10. 

Inset, response analog to a 50ms stimulus. 
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Fig.12B. Left upper:mean spike response per stimulus to 4 • .5kHz 

and 35kHz versus intensity above threshold. Left 

lower: mean latency in ms against dB above threshold 

for these two frequencies, (Error bars are not shown 

since the variance was less than 2.4 spikes/stimulus). 

Right upper: Cumulative spike number at 35kHz for 

six intensities above threshold. At each intensity 

the increase in spike number with successive stimuli 

is similar. Right.lower: as right upper but at 4.5kHz, 

four intensities tested, (for details see text). 
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Fig.i) Threshold curves for two units recorded simultaneously 

Response bars as in Fig.i0. 

to ,SOms st imuli. 

Insets show response analogs 
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N1 to freq uencies in excess of 22kHz and responded up to at least 

42kHz. The amplitude of the response of NB was insufficient for 

electronic counting but the signal to noise ratio enabled the unit 

to be counted by eye. Unlike N7, NB respondeG: w1 th a volley of spikes 

even at threshold, maximum response was reached at approximately 

Th+10dB. 

D. Response Patterns of Primary Units. 

The majority of primary units responded with a 

tonic discharge at suprathreshold intensities. With increasing 

intensity the latency of response decreased to a minimum of 6ms, 

(Fig.l4a,f). At the C.F. _of the proclamation song (appro 1mately v 

4.,5kHz) the typical discharge plttern was elicited, although in 

Fig.14b the after-discharge is more pronounced. Primary units 

responding Plasically with a single spike were recorded in four 

experiments, (Fig.l4c). Response patterns consisting of an initial 

volley of spikes, a"sllent" period, and a second volley of spikes 

were observ.ed in some units in response to O.5kHz, 21kHz and 35kHz, 

"(Fig.l4d,eJ c.f. Nocke, 1912). At o.5kHz the initial volley of spikes -
only occUDM on termination of the stimulus. In contrast at 35kHz 

the entire response occUD&d during the stimulus period. 



., 

Fig.14 Response analogs showing the range of response patterns 

obtained for units from the tympanal nerves of T. oceanicus. 

Stimulus parameters as given; stimulus durations, 50ms. 
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1 stlmulus/1.5s 

c) 4.6kHz 86dB 

e) 27kHz 94dB f) 30kHz 87dB 
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Discussion. 

Previous studies of the cricket auditory system 

have concentrated on those frequencies that are characteristic 

of the ' almost pure-tone species songsl little ~ttention has been 

paid to frequencies outside this range. The tympanal whole nerve 

threshold curves obtained for G. campestris. (Nocke, 1972) and 

Scapsipedus marginatus, (Zaretsky, 1972) show' two threshold 

minima, one at the C.F, of the proclamation song and one at the 

third harmonic. Zaretsky and Eib1, (1978) using suction electrodes 

on S. marginatus . showed that different groups of units responded to 

the C.F. of the proclamation song and to its third harmonic. They 

concluded that their results indicated a lack of uniformity in the 

size and distribution of tympanal receptor axons of S.marginatus. 

Esch et al., (1980) reported a clustering of single un1 t threshold 

curves at 4, 10 and 15kHz in G. campestris. On this : ·lasis they 

suggested. a separation of acridid grasshoppers, bush-crickets and gry11ids 

based. on the degree of grouping of receptor threshold curves. They 

. concluded. that the difference might reflect the constraints of 

auditory behaviour in th~se species I crickets produce narrow-banded 

songs whereas those of bush-crickets and acridid grasshoppers are 

. ' .. ~ . . . - . - . ---.~ .. - .. --- ... . _. ---- -_ . 
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broad-banded. However the apparent grouping of threshold curves 

at the C.F. of the species songs may be due to bias in the recording 

techniques employed by these studies. The frequency ranges invest-

19ated extended only from 2kHz to 20kHz. Thus while the proportion 

of recorded units with characteristic freq uencies (ChFs) similar 

to the carrier frequency (C.F.) of the songs appears high, units 

with ChFs above 20kHz and below 2kHz may have been missed, perhaps 

entirely I no statement as to their prevalence can therefore be 

made. The search-stimulus used by Esch et al., (1980) was a 

synthesised proclamation song with a C.F. of 4-5kHz. this may have 

resulted in a "preferential" recording of units with ChFs at this 

frequency. Ka1mring et al., (1978) showed that the primary units 

of the tettigoniid Decticus verrucivorus were tuned to frequencies 

across the whole of the bandwidth investigated, (2kHz to 40kHz) 

and in this study a determined attempt was made. using a high 

frequency stimulus to search for ultrasound units. Although the 

threshold curves for units in T. oceanicus are less tuned than 

·those in D. verrucivorus the ChFs do range over most of the bandwidth 

recorded 
investigated, (O.5kHz to 42kHZ). Few units wer~Awith ChFs below 4kHz 

or in the region 7 to 10kHz but units were recorded whose ChFs are 



likely to be above 42kHz, (Fig.8). This study suggests that the 

primary units of the cricket are more similar to those of tettigoniids 

and acridid grasshoppers than had been previously thought. Therefore 

the separation suggested by Esch et al. appears premature. Broad-

band reception and frequency analysis may be important when both 

interspecific interactions and conspecific communication are 

considered. Behavioural studies have indicated broad-band reception 

by gryllids. Popov et al., (1975) found that tethered G. bimaculatus 

tended to move away from a loudspeaker emitting high frequencies. 

Moiseff et al., (1978) presented a synthesised conspecific song 

(C.F. 3kHz to 100kHz) to adult female T. oceanicus and studied the 

steering responses of the tethered cricket. Their results indicated 

positive phonotaxis to stimuli with C .Fs from 3kHz to 9kHz but 

negative phonotaxis when the C .Fs ranged from 30kHz to 70kHz. The 

ability to analyse broad-ba~d sounds means that more potential 

information is available to the animal in terms of frequency, intensity 

and direction. At higher frequencies the acuity of localization 

. should improve as shown by Hill et al., (1980). Coles et al., (1980) 

in the quail. This possibility must be tested behaviourally for 

the cricket but it may prove difficult to demonstrate if the 

.l 
) 
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response ls one of negatlve phonotaxls as suggested by Hlll. 1974. 

Popov et al •• 1975 and Popov and Shuvalov. 1976. 
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Summary I 

Single unit reco~ings of central auditory f1bers 

of Teleogryllus oceanicus show responses to frequencies over the 

range 1kHz to at least 40kHz. Approximately.5O% of units had 

broad-band threshold curves with indistinct peaks of sensitivity. 

Some brGad-band units had secondary peaks of sensitivity near the 

carrier frequency of the proclamation song. Only 10% of units 

were tuned to frequencies below 10kHz, while 40% of units were 

tuned to frequencies in excess of 10kHz. The derived threshold curve 

for all central unit data had two major peaks of sensitivity at 

4.8kHz and 22kHz. Some units have highly complex response patterns 

involving correlated spiking responses, silent periods and 

rebound activity and the response pattern of a sinGle unit may vary 

with botll intensity and frequency of the stimulus. The implications 

of these findings are discussed. 

. ....,.... ... -.. , '\ -. . -... . -- ".- . 
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Introduction. 

The ventral nerve cord of insects contains both 

ascending and descending auditory neurons as well as T-shaped neurons 

which connect both rostral and caudal parts of the central nervous 

system, (Suga and Katsuki, 1961a,bl Zhantiev and Tschukanov. 1972). 

Ventral cord neurons in the acridid Locusta migratoria (Kalmring, 1975; 

" " Cokl, 1977) and in tettigoniids, (Khune et al., 1980) have been shown 

to respond to both vibrational and airborne sound stimuli. The primary 

neurons are thought to project to the ventral cord neurons either 

directly or via interneurons and the combination of inputs to each 

ventral cord neuron will determine its response characteristics. 

Most neurophysiological studies in crickets have 

concentrated on the responses to the frequencies typical of intra-

specific communication and few have looked at the effects of frequencies 

in excess of 20kHz. Rhein1aender et al., (1976) reported a ventral 

cord unit in Gryllus bimaculatus responding to frequencies ranging 

from 3kHz to 50kHz a.nd suggested that it might be used in predator 

avoidance behaviour. Popov et al., (1975) found that G. bimaculatus 

tended to move away from high frequency stimuli and Moiseff et al., 

(1978) demonstrated negative phonotaxis by Teleogryllus oceanicus 
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to stimuli with carrier frequencies ranging from 30kHz to 70kHz. 

V"t plUS' 

Earlier work (Hutchings and Lewis, ~) demonstrated that primary 

units in the leg nerve of T. ocea.nicus responded> to frequencies 

over the range 500Hz to at least 42kHz. In this study of ventral 

cord units. frequencies in the range 1kHz to 40kHz were investigated 

Each unit was tested with a wide range of artificial stimuli through-

out its frequency:: range to enable a more complete characterisation 

of its responses. 

Materials and Methods. • 

The crickets were obtained from a culture held in 

the laboratory. Both male and female crickets were used two to 

six weeks after the final moult J successful recordings were made in 

J8 animals. 

The crickets were anaesthetised with carbon-dioxide 

gas and the antennae, mesothoracic, metathoracic legs and both 

p.irs of ~s removed. The insect was waxed with its ventral surface 

uppermost to a thin perspex holder and a silver wire, serving as the 

indifferent electrode, inserted into .the abdomen. The prothoracic 

legs were waxed to thin rlght:ang1ed wires attached to the stand. 

- - "".-;--
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The gut was removed and the cavity plugged with tissue soaked in 

Clarke's insect ringer. The neck cuticle was cut away to reveal the 

ventral neck connectives between the suboesophagea1 and the prothoracic 

ganglia. Care was taken to minimize damage to tracheae and the 

acoustic tracheae were left intact. A small piece of moistened 

blue tissue paper was inserted beneath the connectives. 

The preparation was placed in a Faraday cage in 

anechoic conditions:the temperature of the experimental room was 

Details of the recording apparatus and 

stimulus production have been described elsewhere, (Hutchings and 

. -
"" prv.s Lens, 1-981 p4O). Glass micr~e1ectrodes were used to record the activity 

of single units in the ipsilateral connective. The electrodes 

were £i11ed with JM potassium chloride; the measured resistances 

ranged between 20MOhm and 4OMChm. 

At least ten stimuli were presented at each frequency, 

intensity and. duration, and the response analog, stimulus trigger 

and stimulus "envelope" (defined as the D.C. gate for the tone pulse) 

recorded on magnetic tape (Hli1ips instrumentation recorder Ana-log 7. 

frequency response 1Hz to 5kHz on DR at 15ips). r.. ta was analysed 

V'\ pt«¥ 

off-line as described elsewhere, (Hutchings and Lewis, ,W81 p43). 
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Results. 

A. Characterisation of Units by their Threshold Curves. 

'a) 5 units, (13.2%) had characteristic frequencies (ChFs) approximating 

the carrier frequency, · (C.F.) of the proclamation song, (4.,5kHz) 

Fig.1.5'.a, unit 22. A further 9 units showed secondary peaks of 

sensitivity in this region, (Fig.15a, units 29 and 24). The 

minimum intensity required to elicit a response from any unit to a 

4.5kHz tone was 36dB. 

b) Threshold curves of 18 units, (47.4%) were broad-banded with indistinct 

peaks of sensitivity. Many of these units responded to :frequencies 

over the range 1kHz to at ~east 40kHz, (Fig.1S-a, unit 29). The 

threshold curves of some other broad-band unit s showed more than one 

defined peak of sensitivity, (Fig.1Sb, unit 36). 

c) 15 units, (39.,5%) had ChFs in excess of 10kHz, (Fig.15b, unit 27). 

Unit 27 was the most sensitive unit recorded, responding to 22kHz 

at JOdB. If the dynamic range of a unit is considered to be JOdB 

range frac~ionation at 22kHz by units in Fig.15b could enable 

coding of intensity over the range JOdB to 120dB. 

B. Derived Threshold Curve for Units in the Cervical Connectives. 

The lowest intensity required to elicit a response 



Flg.l5a.bl Representative threshold curves of single central 

un! ts showing units with clear LF and HF characteristic 

frequencies e.g. units 22 and 27 (see text for details) 

and broad-band threshold curves. e.g. units 29. 24 and 16. 
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in any unit to each of the test frequenc~es was determined and on 

the basis of all central unit data a threshold curve for the central 

neurons was derived, (Fig~6). Intensities in excess of 80dB were 

required to elicit a response at 1kHz. The derived curve had two 

major peaks of sensitivity at 4.8kHz and 22kHz. Above 22kHz the 

threshold levels increased although there was a slight improvement' in 

sensitivity at 38kHz. 

The derived curve for primary units recorded in ' 

T. oceanicus, (shown 20dB less sensitive than the real values to 

aid clarity) is presented for comparison, (Fig.16 ). Both curves 

have peaks of sensitivity at the C.F. of the proclamation song and at 

22kHz and 38kHz. No units were recorded that were tuned to 

frequencies in the range ?kHz to 10kHz I this ' freqmm~y band apparently 

constitutes a relatively insensitive region in the derived threshold 

curves of both central and primary units. Few individual primary 

and central unit threshold curves could be directly compared but 

. 
primary unit 10? and central unit 38, recorded in different animals, 

had strikingly similar curves both in respect of their ChFs, (4.8kHz) 

and their ~OdB values on either side of the C.F., (Fig,l?). 

However there are differences, notably the peak in unit 38 at 6kHz. 



Fig.16 Derived threshold curve for T. oceanicus central (C) 

units. . The comparable threshold curve for T. oceanicus 

primary (p) units is shown 20dB less sensitive than the 

real values to aid clarity, (for d~ils see text). 

Table! Numbers and percentages of recorded central and primary 

units with broad-band, (Broad); low frequency, (L.F.) 

and high frequency, (H.F.) characteristic frequencies, 

(ChF). Units with more than oneChF are combined with 

the broad-band numbers, (see text for rurther details) • 

• 
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Fig.l? Threshold curves for a single central unit, (C 38)~all ~pikes 

and a single primary unit, (p 10?) recorded in different 

an1aals. Insets; response analogs to the parameters 

shown. The ChFs and lower roll-off values for both units 

are similar. 

". 
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C. Central Units with "Simple" Response Patterns. 

To 24AN4 a This unit responded tonically and had a broad-band 

threshold curve extending from 5kHz to 30kHz, (Fig .18 ). It was 

relatively insensitive, with lowest threshold in. the range 18kHz to 

24kHz. Dot-displays of responses to two intensities presented at 

14kHz show an increase in spike number at the higher intensity and 
.'-

a reduction in the latency of response. At 24kHz, (86dB) the 

response was similar to that at 14kHz, (8.5dB). Trains of 5kHz were 

coded and little adaptation o~ the response occUDed durtng 68 of fhe 

trained stimulus. T~e unit did not respond to white noise and it 

was not spontaneously active. 

To27ANla This un1 t responded to frequencies in the range 5kHz 

to 40kHz, (Fig.lsa) with a pronounced peak of sensitivity at 22kHz. 

The unit responded tonically during the stimulus with some after-

discharge, (A.&. F1g.19a inset) and was not spontaneously active. 

At 10dB above threshold, (Th+10dB) intensity coding was clear for 

white noise, (W.N.), 10kHz and 20kHz and no adaptation was apparent 

in the re~ponses to 10 successive stimuli, (Fig.19b). Increases in 

intensity at 5kHz, 28kHz and W.N. resulted in only a slight increase 

in mean spike number followed by inhibition at high intensities, (Fig. 



• 

Fig.18a Threshold curve for unit To24AN4. Bars represent 

mean spike number in response to 50ms stimuli; 

stimulus intensities represented by the baseline of each 

bar. Inset; response analog to parameters shown. 

b. Dot-displays of the responses to 10 successive 

SOms stimulus presentations for the parameters given. 

Stimulus repetition rate; 1 stimulus/1.5s. For 

this and future Figs. open circles represent frequencies 

at which no response could be elicited to the maximum 

experimental stimulus intensity. 

• 
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Fig.l9a Threshold curve for unit To2?ANl with ChF at 22kHz. 

Bars as in Fig.1B. Inset I response analog to the 

stimulus parameters shown. b. Cumulative spike numbers 

against stimulus number at Th+10dB for 5kHz, 20kHz and 

V.N., (white noise). The gradients indicate no 

adaptation to successive stimuli. 

number against stimulus intensity. 

c.Mean spike 

At high intensities 

inhibition of the response to 5kHZ, 28kHz and V.N. 

stimuli is evidentlno inhibition of the response 

to 20kHz stimuli up to Th -.:3aiB occUl$d. 

, . . 



~ 
A. 
U) 

'" ID 
'a 

i 
1 

8. 

5.p ••• 1 

98. 

10d8 .boy. Thr •• hold 

, 
I 
I 
I 
I 

i 
5 

20 

I 
I 
I 

i 
10 

To27A N1 

I 

I I 

I 
I 

I i • 

20 30 40 
kHz 

20 

o ~'------~i----~' 
10 0 US 32 

SIImIua Number cB .t»oy. ThrHhold 



F1g.2Oa Threshold curve for unit ToJlANlB. Bars as in Fig.l8. 

Inset J response analog to the stimulus parameters shown. 

b. Dot-displays of the response to ten successive stimuli. 

Stimulus duration; ,SOms. Stimulus repetition rate; 

1 stimulus/l.5s, except at 20kHz 6Jd,B when the rate was 

10 stimuli/Se 
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19c). At 20kHz spike number increased with intensity up to Th+JOdB. 

ToJlANlBI This unit responded to frequencies over the range 6kHz 

to at least 40kHz, (Fig. 20a) and there were three regions in which' ~ 

sensitivity was relatively high, 6kHz, IJ:~ and 27kHz. The 

response was tonic with some after-discha=ge and showed little 

habituation at stimulus repetion 13tes of 10 stimuli/s, (Fig.2Oa 

I 

inset and b). Latency decreased with increasing stimulus intensities 
I ' 

up to Th+8dB but further increases in intensity only slightly reduced 

the response latency, (Fig.21a) The latency of response was similar 

at all frequencies tested when stimuli of comparable intensity above 

threshold were presented. With pure-tones the mean spike number 

increased with intensity (up to Th+2.5dB) at the frequencies tested, 

(Figs.2Oa and b). No adaptation was shown on the responses to . 

ten stimulus presentation (1 stimulus/l.5s, Fig.20b). At Th+10dB 

the responses to 10kHz, 20kHz and 40kHz were similar but at 

Th+20dB the gradients of the cumulative curves indicate a preferential 

response to high frequency stimuli, (Fig.21b,c). 

D."Complex" Units. 

ToJlAN11 This unit responded to frequencies ranging from 4kHz 

- ~ . ' -." 



c 

F1g.21a ToJ1AN1B, (as in Fig.20a,b) showing "latency to the first 

spike of the response for three frequencies. .. 

b. Cumulative spike number against stimulus number 

at '!b+10dB. c. as b. at Th+20dB. 
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Fig.22 Threshold curve for ToJ1AN1. Bars as in Fig.1B. Inset; 

response analog to the stimulus parameters shown. 
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Fig ~ 23 Dot-displays of spontaneous and stimulus-induced 

spiking activity by To31AN1. (as in Fig.22). All 

spikes throughout a 1.5s period following a stimulus 

trigger were discriminated. No sound was presented 

during the spontaneous activity recording although 

a stimulus "envelope" was generated. 
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to 40kHz; best sensitivities occUDed above 12kHz but were inter-

spersed with regions of relative insensitivity, (Fig.22). Intensity 

coding was poor. at the frequencies tested and the units showed a 

high degree of spontaneous activity, (B to 9 spikes/s, Fig.2) ). 

Presentation of W.N. at ?0dB resulted in a response (mean latency 

64 ms) which occUDed after termination of the stimulus, spontaneous 

activity was suppressed for approximately 400ms after the spike 

burst. At 26kHz a short latency, (mean 16ms) tonic response was 

elicited and spontaneous activity was again depressed for approximately 

400ms following the spike volley. 

Tol0AN1: 'Ibis unit r!tsponded to frequencies in the range 

4.;kHz to 20kHz, (Fig.24 ) and was spontaneously active, (Fig.2S). 

The response to low intensity, (less than BOdB) 5kHz stimuli consisted 

of 4 or .s spikes occUJr1.ng at least 40ms after the stimulus onset, 

(Fig.2;a, b ) and spontaneous activity was inhibited throughout the 

interval between stimuli, (l.ls). At higher intensities, (i.e. 

B;dB and 95.dB) the duration of spontaneous activity suppression was 

reduced and rebound activity increased with successive stimuli, 

(Fig.25b). After presentation of ten stimuli the spike repetition 

rate remained elevated for approximately 600ms before spontaneous' 

... .... ... .,... •. - '1 ...... " . '. \lot .. JiO J""""'" ~ • -... ~ ,.. .,. .. - -... ... . .. -.. ~ --- . - -- - --------- -----



F1g.24 Threshold curve for Tol0AN1. Inset I response analog 

to the parameters shown. 
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Fig.2.5 Response analogs of To10AN1, (as in F18.24). 
Row a. responses to a single 5kHz st1aulus 

at the intensities shown. Row b. responses to a number of successive stimuli. Note 

the gradual increase in rebound activity with successive stimuli at 85dB and 95dB. 

Intensities identical with those above in Row a. Spon.1 spontaneous activity over 
I 

the same time period as preceding photographs in Row b. Row c. response analogs to 

15kHz and 20kHz stimuli at the intensities given. Stimulus repetition rate in all casesl 

1 stimulus/l.5s • Stimulus duration. 50ms in all cases. 
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levels of activity were regained. At still higher intensities 

(i.e. 10,5dB) the response was inhibited. The response patterns to 

15kH~ and 20kHz stimuli were similar to those to 5kHz stimulation. 

T032AN1z This unit responded to frequencies above 6kHz up to 

" at least 42kHz and was not spontaneously active, (Fig.26 ). The 

pattern of response varied with both intensity and frequency, 

(Fig. 27 ). At 12kHz, (69dB) the response consisted of two groups 

oof spikes, increasing the stimulus intensity resulted in a filling 

in of the silent period between the spike groups and at B)dB a 

tonic response pattern with after-discharge occuDed. Inhibition 

at high intensity resulted in a response pattern similar to that at 

69dB. At 15kHz spike number increased with stimulus intensity 

becoming tonic with after-discharge at 68dB and above, no inhibition 

was shown at this frequency. 'Ibe response to W.N. was similar to 

that produced at 12kHz to high intenSty stimuli. When low frequency 

trains of stimuli were presented, (Fig.28 ) spikes occurre(j during both 

the period and interval although coding stabilized with successive 

stimuli. Clear coding of the stimulus period occurred to high frequency 

and W.N. trains of stimuli. 



Fig.26 Threshold curve for unit To)2AN1. Bars as in Fig.18. 

Inset J response analog to the parameters shown. 
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· i . 

filii 

F18.2? Dot-displaya of the responses of unlt ToJ2AHl (asln F18 26) to ten successlve SOU st1aulus 

presentatlons at the frequencles and lntena1tles shown. NuaberB In brackets glve the 

threshold lntenslt)' (dB) for the unlt at the above frequenc)'. st1.llulus repetitlon 

rate. 1 ·stlllulus/l.Ss. 
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F18.28 Response analogs and dot-displays of the responses of 

unit Toj2AN1. (as in Figs 26 .and 27) to the parameters 

shown. Stimulus repetition rateJ 10 stimuli/se 



119. 

To32AN1 

8kHz 85dB 12kHz 92dB 

25kHz 85dB 40kHz 79dB 

W.N.69dB/SPL 

Ten 50ms stim./s 



120. 

ToJ8AN1 and N2a These units were recorded simultaneously but could 

be clearly distinguished from each other as single , discrete units, 

(Figs.29a and b insets). ) 

The threshold curve for NI was sharply tuned to the 

C.F. of the species proclamation song, (4.5kHz) and the unit responded 

to frequencies in the range 3kHz to 20kHz, (Fig. 29a) • The response 

pattern of NI was tonic with a high spike repetition rate (approximately 

460 spikes/s) and spike number did not increase with increased 

stimulus intensities, (Figs.29 and 30 ). 

_ The threshold curve for N2 extended from 3kHz to 40kHz, 

(Fig.29b) but no response was obtained to maximum stimulus intensities 

at either 27kHz or 37kHzJ the unit was most sensitive to W.N., 

responding to S2dB stimuli. The response pattern of N2 was highly 

comploxl intensity coding occUDed at some frequencies with inhibition 

at high intensities. 

i) ;Response i:ntensity characteristics at different frequencies. 

At 4.5kHz, 48dB, (Th+JdB) the response of NI was tonic 

and suppression of spontaneous activ1ty was apparent for SOms 

follow1ng the stimulus, (Fig.JO). At 6IdB, the spike repet1t1on 

rate increased and spontaneous act1v1ty was 1nh1b1ted for about 25Oms. 



F1g.29a Threshold curve for unit ToJ8ANl with ChF at 4.5kHz. 

Bars as in Fig.18. 

parameters shown. 

Bars as in Fig.18. 

parameters shown. 

Inset; response analog to the 

b. Threshold curve for unit To 38AN2. 

Inset; response ana10e to the 
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Fig.30 Response analogs far ToJ6ANl and N2 (as 1n Fig 29) to 4 • .5kJIz. 8kHz and 2.5kJ1z st1lllull 

at the intensities shown. For details see text. Spon., spontaneous activity. 
I 

(no sound was produced during recordings of spontaneous activity although a 

stimulus "envelope" was generated). Stimulus repetition rate, 1 stimulus/ 1.581 

stimulus duration, 5Oms. 
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Fartial inhibition of the response occuued at higher intensities and 

was associated with an , earlier recovery of spontaneous activity levels. 

A similar pattern of response occ~ at 8kHz; NI did not respond to 

25kHz. 

N2 responded to 4. 5kHz with a single spike which 

occUlfed after termination of the stimulus. The latency de'creased 

with intenstiy and the response was totally inhibited at 81dB. More 

than one spike was produced in response to 7.5dB and 8.5dB. 8kHz 

stimuli, inhibition of the response occured at 90dB. The latency of 

the N2 response at 25kHz was reduced to about 30ms and at higher 

intensities the response pattern was tonic. Spike number increased 

with intensity and after-discharge occUD&d at 9.5dB. At 25kHz no 

inhibition was apparent at the intensities tested. 

ii)Effect of stimulus duration. 

N1 coded stimulus durations up to at least 6s and the 

response showed little adaptation after the initial 30ms. The 

period of spontaneous activity suppression was related to the duration . 

of stimulus-locked acti vi ty, (Fig. 31a. b) • When 400ms stimuli were 

presented spontaneous activity was inhibited throughout the entire 

stimulus interval, (l.ls) 

. .-r- ..... __ #_ .- . . . ~ . " ( -.: .. , . . ... ._- - . .. - - ' ..-- "' ---~-



Fig. J1a Response analogs of un1 ts To)8AN 1 and N2 (as in F1gs 29 and JO). to &tlllul! of varying 

durat10ns at the frequenc1es and 1ntens1tles shown. 
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Fig.J1b Period of post-stimulus inhibition for unit ToJBAN1 

(as shown in Figs. 29&. JO and J1) versus stimulus 

duration (ms) • 

• 
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130. 
N2 responded to a SOms 5.,5kHz stimulus with a burst of spikes 

(mean latency SOms), followed by a silent interval prior to a second 

'low repetition rate period of spike activity, (Fig .31a). Presentation 

of a 100 ms stimulus resulted in N2 activity 50ms after stimulus onset, 

a silent period and more spikes some 350ms after the stim~us onset, 

these continued at a low repetition rate (12 spikes/s) until the 

onset of the subsequent stimulus. Similar patterns of response 

resulted from stimulation with 200ms and 400ms tones, the latency of 

the initial response being 5Oms. At 8kHz the response was limited 

to 1 to 3 spikes (latency approximately 6Oms) irrespective of stimulus 

duration. Rebound activity occUlfed after termination of the stimulus. 

At frequencies above 10kHz the latency of response was reduced and 

at 2,5kHz the latency was about 3Oms. N2 responded tonically with 

rapid adaptation to long tones. 

iii)Effect of stimulus repetition rate. 

Nl responded to both 25ms and SOms trains of stimuli, 

(10 stimuli/s) with a burst of spikes coding stimulus period and 

suppression of spontaneous activity in the intervals, (F1g32). 

At 5kHz, 12kHz and 25kHz the response to SOms trains of stimuli 

adapted out after presentation of 4 or .5 stimuli. At 4 • .5kHz 



Fig.32 Response analoes for units To38ANl and N2 (as in 

Figs. 29. 30 and 31) to stimuli with the parameters 

shown. Stimulus repetition ratel 10 stimuli/se 
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To38AN1,N2 

4.5kHz 25ms stim 4.5kHz 50ms atlm. 

5.0kHz SOms stim. 12.0kHz SOms stlm. 

25.0kHz 50ms stlm. 
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N2 reliably coded trains of 50ms stimuli with a single spike per 

stimulus but only responded to the first presentation of a train of 

25ms stimuli. 

ToJ5AN1z This unit responded to f'requencies in the range 

8kHz to 40kHz and was most sensitive to 12kHz, (Fig. 33 ) • The 

unit responded to W.N. and was not spontaneously active. Little 

coding of stimulus intensity occwred at any frequency, (Fig.)4 ). 

At intensities higher than Th+20dB the responses usually 

consisted of a single spike of uniform latency, e.g. Fig.)4, 12kHz. 

-..t"'f'''r 
In cases where a second spike occ~ it ",appeared to be associated 

S'o~ 
with the termination of the-.stimulus e.g. 16kHz, .8OdB. However 

the response pattern to both SOms and 300ms, 16kHz stimuli was 

similar, indicating that the second spike is not an "off" response. 

Discussion. 

Ventral cord units of Teleogryllus oceanic us respond 

to frequencies over the bandwidth 1kHz to at least 40kHz. The 

relative insensitivity of the threshold curves froJfl our cultured 

animals in comparison to those obtained from wild an1m&ls may 

reflect altered selection pressures in the laboratory, (see e.g. 



I'1g • 33Threshold curve for To3.5AN1, ChF 12kHz. Bars as in 

.~ 

I'1g .18. Inset I response analog to the parameters 

ehOllD. 
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Fig.)4 Dot-displays of the responses of unit ToJ5AN1 (as in Fig. 

JJ) to ten successive stimuli at the parameters shown. 

Nuabers in brackets refer to the threshold level at that 

frequency. Stimulus duration SOma unless stated other

wise. stimulus repetition ratel 1 stimulus /1.5s • 
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Ball and Hill, 1978 and Goodman et al., 1979). 50% of ventral 

cord units exhibit either more than one ChF e.g. FiC.1-;si; unit 36 

or enhanced sensitivity to a broad range of frequencies e.g. Fig. 

unit 29. Rheinlaender, (197-;5) reported a similar percentage of 

broad-band units in the tettigoniid Decticus verrucivorus. In 

the present study, highly tuned units with clear, single ChFs, 

(e.g.To27AN1 and To)8AN1), were divided into low-frequency (ChFs 

less than or equal to 10kHz) and high-frequency. (ChFs in excess 

of 10kHz)groups, Table I, (Fig. 16). On the basis of this division 

nearly 13% of threshold curves were low-frequency whereas 40% were 

tuned to high-frequencies. These findings agree with 

those of Kalmring et al. (197'2) am Kalmring, Q. 97 5) in Locusta and 

with Rhe1nlaender's, (197~) observations in D.verrucivorus. In 

addition many of the broad-band units had secondary peaks of sensitivity 

near 4.5kHz indicating that some information concerning carrier 

frequency (C.F.) may be integrated with that of other frequencies. 

The large ~rcentage of high-frequency units recorded in the ventral 

cord may be somewhat s\.JlJrising but may indicate that detailed 

processing of high-frequency information occurs at a higher level. 

The retention of frequency information in general may be particularly 
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important for directionality, (Hill and Boyan, 19771 Hill et al,. 1980 

Coles et al., 1980) and ultrasonics may be involved in predator-

prey interactions, (Popov et al., 19751 Casadayand Hoy, 1977 and 

Moiseff et al., 1978). Primary threshold curve data for T. oceanicus 

have approximately equal percentages of low, high and broad-band 

units, (Table I Fig. 16) although the number of high-frequency units 

may have been slightly over-estimated due to experimental procedure. 

On the basis of all the data it appears unlikely that there is a 

simple lal relationship between any primary and central unit in 

T. oceanicus. Rheinlaender, (1975) found that the responses of all 

ventral cord units of D. verrucivorus differed from those of the 

It 

receptor Units and this has been confirmed by Kuhne et al., 1980 

and Silver et al., 1980. 

The responses of central units result from variations in 

the combinations of excitatory and inhibitory inputs which they receive 

and they are also likely to be influenced by the hormonal and. 

aotivational. state of the animal. Some central units integrate inform-

ation from both ipsilateral and contralateral receptors as well as 

interneurons, (Boyan, 1978). In the present study all inputs to the pro-

thoracic ganglion remained intact, therefore reciprocal interactions 
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may be involved in the generation of response patterns, as has been 

clearly demonstrated for the omega-neuron, (Wohlers and Huber, 1978). 

In addition many central units are multimodal and their responses 

reflect the complexity of their synaptic inputs, (e.g. Kalmring 

et al., 1979 and Kuone et a.l., 1980) 

Due to the complexity of central acoustic units 

it is difflcu1t to find homo1ogies with the data of other workers 

particularly since the majority of studies have tested only a 

limited set of stimulus parameters. Since the response pattern 

of a unit may vary with both frequency and intensity of stimulation 

(e.g. ToJ8AIU and also Kalmring, 197.5), it is necessary to present 

a wide variety of stimuli to provide a detailed characterisation 

of a unit. A stimulus may cause a long-lasting reduction in the 

level of spontaneous activity as well as a direct spiking response, 

(Rhein1aender, 197.5 and ToJ1AN1, Fig.2J). Such a 10ng- term 

reduction in spontaneous activity may be a significant part of the 

response rather than a passive hyperpolarisation following the direct 

response. Rheinlaender, (197.5) found that the durations of the direct 

discharge and suppres ':>iol1 depended on stimulus intensity in different 

ways and neurons · have been reported that respond to sound stimuli only 

. - - ....,.~ .- '- .... . 
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via suppression of spontaneous activity, (Rheinlaender and Kalmrinc, 

1973, Casaday and Hoy, 1976). Changes in spontaneous activity levels 

may alter the state of post-syna.ptic )leurons and their subsequent 

responses. Rheinlaender, (1975) also reported phasic units in 

D. verrucivorus whose responses were virtually independent of stimulus 

intensity, duration and frequency. S1m1lar patterns of response have 

been seen in Locusta, (Kalmring, 1971) noctuid moths, (Roeder, 1966), 

and have now been recorded in T. oceanicus, (e.g. T03.5AN1 Fig.34). 

Attempts have been made to classify central units 

into groups on the basis of physiological and anatomical characteristics, 

(Rehbein, 1974, 1976 and Kalmring et al., 1978 for Locusta migra.toria I 

Rheinlaender et al., 1972 and Rheinlaender and Kalmring, 1973 for 

D. verrucivorus). In crickets few units have been characterised 

anatomically an physiologically. Casaday and Hoy, (1976) 

recorded and intraganglionic neuron, int-2 1n T. oceanlcus which 

appears to be homologous with the !.SAN recorded by" Popov et al., 

(1978) in Gryllus bimaculatus and the omega-neuron recorded in .. 

G. b1maculatus and G. campestris by Wohlers and Huber, (1978) 

On the basis of the existing data from a variety of studies in different 

animals some attempt may be made to ~ homologies for ventral 
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cord units. Units have been reported which are tuned to the C.F. 

of the proclamation songs. The characteristics of some of these 

units are summarised in Table II. These units had a relatively high 

level of spontaneous. activity which was suppressed during sound 

presentation; they were non-habituating and duplicated the temporal 

structure of the proclamation song. Although little is known of the 

anatomy of these units they are described as producing small spikes 

and are often recorded simultaneously with a large amplitude spiking 

unit, (Hill ,1974; T03aANl and N2). The similarities in the 

physiological characteristics of units in Table II suggests that they 

are the same unit type in anyone species or homologues in different 

species. 

Table III summarizes the data on a number of units 

which respond to frequencies over the range 3kHz to at least 20kHz. 

These units are characterised by rapid adaptation to stimuli in excess 

of 10 stimuli/Se The response pattern of these units cha.nged with 

frequency; below 10kHz the response had a long latency and a low-

discharge rate; a short latency, tonic response. waS" . elicited to 

frequencies in excess of 10kHz. 

Despite some similarities between the other units 



';"able IT Stu"mary of ven-oral ecru -.,nits f rom differe::t Gryllicl s that show similar response 

characteristics. 
The units are tuned to tte carr ier frequency of t r.G species 

1 
~ . proc_a:r.a "G J_on song . 

ChF; charac:'sristic f:-e~'Jency : S . A.; :::;pontaneouc activi -:y 

level s . 



AUTHOR UNIT SH:CnS FtlEQUEHCY RAt«.;E, ChF S.A. E~ OF IJmATION, REH:TITION ANATOMY AlID OI'HER DETAns 

RATE AND SONG TYPE. 

Popov, 1971 L.F. G~luS 4-5kHz Tonic response over whole intensit{ ra~e. Marked after-
b culatus ~ifc.,r~e to h!fh inlrnsit{ 4~z s illul • Syh1bpi08a~ 

• • 0 SOlle Me a er s iau us ceases. ow 0 a • 

Stout and Huber, Pulse Gr,lllus Responds to calling Responds to calling song, codes Non-habituating. 
1972 coder caa~stris song. pulse duration and rate. 

Zhantiev and C-neurons GrllluB 
Tschukanov, 1972 b1lllaculatus 

Popov !!:...!!., Type 11 Grlllus 4-2OkH., ChFs4-5kH. Yes Follows aaplitude .ooulation of Spontaneous activity totally suppressed during response 
1974 billllculatus 10-2OkHz calling song, codes 100lls stiauli. to calling song. 

Rheinlaender L.r. G~lUS )-10kHz, Chr. 5kHz Yes Codes teaporal pattern of calling Axon runs to protocerebrua. Terainal branches go to the 
~., 1976 b-ciiIatus (High) song, codes pulse duration and lateral region between the protocerebrua and deutocerebrum 

repetition ratos of pulses and and to the frontal region of the protocerebrwa. 

~ 

~ 
• 

chirps. 

HUl, 1974 STU Teleogryllus 2-16kHz, ChF,).5-4kHz Yes Codes pulse train. Spike rate Small allplitude spikes, non-habituating. Latency not 
couodus decreases during stiaulus but closely correlated with intensity. 

codes duration. 

STU TeleO«ryllus Chr. 4.5kHz Yes Codes durations in excess of 200as 
oceanicus pulse nu.her and repetition rate. 

Ball and HUl, STU TeleO«ryllus e-?kHz ChF,).4-4kHz Follows trains of stlauli with 
couodus sustain~ spiking to long tones. 

Boyan, 1978 STU Ttlleoeryllus ChF'J.5-4kHz As 8i11,(1974). Directional, cardioid directivity pattern, maxiMa at 9(f 
couodus 

Elsner and Popov, L.r. Gr,lllus Chr ,4.5-5kHz Yes Codes calling and aggressive songs Soma contralateral to axon. One main dendritic branch 
1978 biJlaculatus (High) following chirp repetition rate. restricted to a.nterior part of prothoracic neuropile. S., 

Poor coding of courtship song. suppressed when sound is presented. Duration of 
suppression related to intensity and duration of the 
stiaulus . 

Hutchlngs and ToJ8ANl Teleogryllus )-lOkHz Chr, 4.5kHz Yes Codes 6s sti.ulus with little Small aaplitude spikes, recorded slaultaneously with 
Leds, l-98lil\ poeu adaptation. Follows repetion rates a large aMplitude unit, (see Table Ill). S.A. suppressed 

up to at least 10 stilluli/s. by sound. Duration of suppression related to intensity, 
dura tion and direct spiklng response. 

-- - _._- - -



Table IH Su,,"1\8.ry of ventral cord units frcl1 different insects that show similar response 

charac"teristics. 
The units are responsive to a wide range of frequencies . 

ChF; characteristic frequency; S.A . spontaneous activity levels. 



AUTHOR UNIT SPECIES FREQJENCY RANGE, ChF S.A. EFFECT OF OORATION ,IlEPETITION RAM ANATOMY AND aI'HER DETAIlS 
AND SOt«:: THE 

Kalaring, 1975 Gl- locusta 4-40kHz isollla contralateral to the axon in the aesothoracic ganglion. 
neuron a1gratoria High thresholds, response varies between phasic and tonic. 

Gasaday and Hoy, int-l Te 1 eogryll us No data Yes Did not reliably code the temporal Axon terainates in the brain. Soaa contralateral to the 
977 oceanicus of the calling song. ~xon in the prothoracic ganglion. 

~helnlaender H.F. Gr,lllus J-50kHz No Codes short duration stlauli. Response aay exceed stimulus duration and is partially 
~., 1976 billl8culatus Follows courtship and aggressive inhibited to 5kHz stiMuli. Possibly used to detect brief 

songs. ultrasonic sounds of predators. 

~lll, 1974 LAU Teleogryllus J • .5-16itHz ChF 1 3 • .5-4kH~ No consistent temporal coding. Often recorded with a small aaplitude unit, (see Tablell). 
co_odus Sustained stiaulation results in a decrease in the response 

within the first 2OOas. Infrequently inhibition of the 
LAU Tele2ta!,lllus r esponse occurs with an offOresponse on cessation of the 

oceanicus ChFI 4.5kHz stimulus. 

... 
g:.. 

Ball and Hill, LAU Teleo~,lllus 2-15kHz ChF 14-4. 5kH~ LAU recponds to repeated stiauli 
1978 coaaodus but the spike rate declines 

during extended stblUli. I 

I 

50yan, 1978 L Teleo~,lllus As for Hill, 1974 Directional, possibly used by feaale for locating a 
coJUlOCiu8 singing lIale. 

Elsner and Popov, H.r. Gr,lllus J-40kHz Best above No Fast adaptation to sti.uli · A.xon ascends to brain. tel'llinal branches are lblited to 
1978 biaaculatus 10kHz exceeding lOOms, then after-dis~ ipsilateral side and prilll8rily to the protocerebru.. 

charge. Only codes repetition rates Most dendritic arborisations are contralateral to to the 
up to 10 stilluli/s. Poor response soma in the ganglion. Prob9.bly used in evaslve behaviour. 
to calling song. 

Wohlers and Huber, AIAJ. Gr,lllus Active range 12-20kHz Morl*tologically simllar to H.F. unit of Elsner and Popov, 
billB.culatus Excited above 10kHz (1978) a nd to int-l of Casaday and Hoy, (1977). Il'SP'S to 
Gr,lllus the carrier frequency of the species calling songs. 
call1!!:!stris Latency suggests AIAA is a first-order neuron. 

Hutchings,' ''81 ToJ8~N2 Teleogryllus 4-40kHz ChFI 3.5kHz No Codes short duration sti.uli Recorded simultaneously with a saall a.plitude unit, 
oceanicus accurately, reproduces high (see Table 11). Ultrasonic response poosibly used in 

frequency SCas stiauli at rates of 
10 sti.uli/s. 

predator-prey interactions. 

-- - - ---
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recorded in this study and those reported by other workers there 

is insufficient information to justify further grouping. , On the 

basis of the results in Tables II and III it does appear that there are 

homologous units in the different species of gryllids but it is 

difficult to draw strong comparisons with the acridids or tettigoniids. 

It is clear from this discussion that wherever possible a standard 

set of stimuli should be tested and supported with anatomical data; 

only then can conclusive comparisons be drawn. 



CHAPrER V. 
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General Discussion. 
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Discussion. 

The behavioural studies of Popov et al., (1975) and 

Moiseff et al., (1978) Lniicated that crickets are capable of broad-

band reception but the behavioural importance of ultrasound to crickets 

has received little attention except in these studies. Most workers 

have concentrated on the low frequencies typical of the proclamation 

and aggressive songs but the courtship songs of crickets are relatively 

broad-banded and ultrasonic components have been shown in the songs of 

G. campestris, (Lottermoser, 1952) Nemobius fasciatus, (Plelemeier, 

1946) and Acheta domesticus, (Lewis • personal communication). The 

ultrasound in courtship so_ngs may be of low intensity but these 

signals are usually produced when the male is very close to the female, 

ultrasound may therefore be used 'lR intraspecific communication. 

Ultrasound signals may also be produced by predators either directly 

i.e. the squeaks of rodents and bat cries, (Sales and. Pye, 1974) or 

spuriously during movement through the under~~owth. Rhe1nlaender 

et al., (1976) described a ventral cord unit(H.F. neuron) in 

G. bimaculatus which they suggested was suitable for the analysis 

of signals produced by rodents and bats. Broad-band noise can be 

produced in the biotope when vegetation is rustled in the wind or 



moved by predators, and it may mask some animal calls. . However few 

of the central units of Teleogryllus oceanicus respond to white noise 

and this may indicate the prescence of a filtering mechanism for 

"random" noise in the environment. 

In this study both primary and central units have 

bee~ recorded which are max1mally sensitive to frequencies above 

20kHz and some were recorded which are likely to have c~racteristic 

frequencies, (ChFs) in excess of 4~z. Some units responded to a 

wide range of frequencies but were relatively insensitive, while 

others &~owed peak sensitivity at a particular frequency. Low 

frequency, . (L.F.) primary units were more sh8.rply tuned than high 

frequency, (H.F.) units. In addition both primary and central 

units were recorded that showed more than one ChFl (e.g. Figs 8,1.5, 

8. unit 1071 1.5 unit 36). Although the primary threshold curves of 

T. oceanicus are less tuned than those recorded in Decticus verrucivorus, 

(Kalmring et al., 1978), it is likely that crickets, like bush-crickets 

are able to perform an approximation of a Fourier analysis rather 

than a simple frequency discrimination as suggested by Pumphrey, (1940). 

The basis of frequency discrimination (and/or analysis) 

in insects has been a matter of considerable discussion. A number 
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of factors intervene between stimulus incidence and action potential 

production. One important stage is the membrane displacement. 

Johnstone et al., (1970) investigated the resonance properties of the 

tym18na1 membranes of T. commodus and T. oceanicus using the Mossbauer 

technique and concluded that the membranes were tuned to a narrow 

spectrum of frequencies with a peak sensitivity at 4kHz. They 

suggested that the tuning curves of single units could result from 

resonant properties of the membrane alone. Dragsten et al., (1974) 

used a laser technique to demo~te that the posterior tym18nic membrane 

of G. pennsy1vanicus was mechanically tuned to .5 • .5kHz; the frequency 

at which the tympanal nerve threshold curve shows a sensitivity peak. 

Larsen and Miche1sen, (1977) also used a laser technique and found 

that the velocity curves for the posterior tympanum of G. campestris 

did not show the fine tuning of the tym18na1 nerve threshold curve. 

Membrane resonances will contribute to the tuning of the receptor 

organ since the transfer of energy to the receptor will be maximised 

at the resonance frequency"' of the membrane. The resonant properties 

of the tympanic membranes may be due in 18rt to the characteristics of 

the acoustic tracheae. Baton et al., (1977) found that the tym18nic 

membrane did not seem to play an important role in the frequency 
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sensitivity of the tympanal organ in T. oceanicus. G. campestris or 

Acheta domesticus. The receptor cells are situated in a haemocoelic 

space with no direct attachment to the tympanal membranes but their 

tuning may be enhanced as a consequence of their anatomy. Zhantiev 

and Tschukanov. (197~ have suggested that both the anatomy and 

attachment of the receptor cells are involved in tuning. Young and 

Ball. (1974) were able to divide the scolopidla of T. commodus into 

.5 groups on the basis of anatomy. In this study .5 types of primary 

thresho~d curve were distinguished but it is not yet possible to 

correlate ~he anatomical and physiological results. Further experiments 

are required in which the recorded units are marked back to the cell 

bodies. 

The derived threshold curves for primary and central 

unit .. data are similar both in terms of sensitivity and frequency range 

indicating that intensity and frequency information coded peripherally 

18 retained at the level of the cervical connectives. Some units 

code stim~us intensity. the number of spikes produced usually inc-

reasing linearly with the losarithm of sound intensity. The accuracy 

of coding depends on the number of spikes produced per dB intensity 

change. Units may show prefered intensity ranges within which 
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intensity is accurately coded but the coding of intensities close to 

threshold level is often poor. At intensities in excess of JOdB 

above threshold, the majority of unit responses are saturated, the 

dynamic range of most units .is about JOdB. Since the units responding 

to anyone frequency have differing thresholds, then as the response 

of one unit saturates a second will reach threshold level and respond 

to higher intensities. Therefore intensity coding can be extended 

by range fractionation, (Rheinlaender, 197.5). Some primary and 

central. units show intensity coding only at certain frequencies 

within their frequency ranges. These units may be involved in 

direction and distance coding, (see below). Other units respond 

phasically or achieve maximal spike production within a . few dB of 

threshold and maintain this output at higher intensities. Such units 

are unsuitable for intensity coding. 

The majority of recorded units in T. oceanicus· are 

tuned to the carrier frequency, (C.F.) of the proclamation song. Changes 

in the relative percentages of low and high frequency units recorded in 

the leg nerve and cOlmectives indicate that some analysis of low 

frequency information OCCUDS at the level of the prothoracic ganglion. 

Casaday and Hoy, (1977) recorded an intraganglionic neuron (int-2) in 
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T. oceanicus which was tonically excited by 5kHz tones and accurately 

coded the temporal pattern of the species song. This unit appears 

homologous to the LSAN, (Fbpov et al., 1978) and the omega cells 

recorded in G. campestris and G. bimaculatus by Wohlers and Huber, (1978). 

These cells are tuned to the C.F. of the species proclamation songs, 

(Elsner and Popov, 1978) but the tuning is no sharper than that of 

the primary units recorded in these species, (Esch et al., 1980). 

The LSAN, int-2 and omega cells are thought to relay receptor signals 

to higher order interneurons without modifying the temporal pattern 

significantly. Interaction between the two omega cells is used in 

determining sbund direction, (Wohlers and Huber, 1978) and may be 

important in localising singing conspecifics in the field. 

Narrow-band or pure-tone calls which begin and end softly 

are difficult to localise,(Marler, 1955). The ability to analyse 

broad-band sounds means that more potential information is availabLe 

to the animal in terms of fr~uency and intensity which may be used 

in localizing a sound-source. Directional cues are ultimately 

determined from differences in the effective intensity of sound 

registered by the two receivers, (Hill and Boyan, 1977), comparisons 

occuring within the central nervous system. However, distance is 
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also coded in terms of intensity functions. Despite the attenuation 

due to geometric spreading and environmental factors which may cause 

artifactual variations in the sound pressure, the intensity of a sound 

is still a reasonable parameter for judging the distance of an : emitter. 

There are therfore many potential ambiguities in the information 

present at the primary level. Rhe inla ender , (1975) and Lewis, (in 

prep,) propose that different forms of analysis must occur within the 

central nervous system and help to minimise ambiguity. Some central 

units receive both ipsilateral and contralateral input and crossed-

inhibition enables large differences: to be maintained whatever the 

incident sound intensity. The omega-cells, (Wohlers and Huber, 1978) 

receive auditory input entirely from the cell body side. Two such 

mirror-image cells exist in the protharacic ganglion and they mutually 

' 1nhIbIt one another. Wohlers and Huber suggest that the omega cells 

may enhance the ipsilateral-contralateral differences arriving from 

the peripheral pressure-gradient system. In the avian auditory 

midbrain, the binaural El cells may also be used to produce a response . 

whIch reflects a dIfferential input, (Coles and AItkin, 1979 and 

Coles et al.,1980). Other insect central' units occur whose responses 

are independent of direction, (Rheinlaender, 1975). Such cells may 
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reflect the overall intensity levels and be used in determining the 

distance of a sound-source. Units which code the effective intensity 

of sound at only one of the receivers may also provide a directional res-

ponse. Lens, (in prep.) suggests that a separation 0:6 direction 

and intensity parameters can be achieved by this form of analysis. This 

data must be analysed at a higher level but it is also likely to 

descend in the ventral cord in T-shaped fibers, (Rheinlaender et al., 

1972) and descending neurons, (e.g. Zhantiev and Tschukanov, 1972; 

Rheinl.aender and Kalmring, 1973; Zhantiev and Kallnkina, 1977 and Boyan, 

1978). The destination of these fibers is not yet known. 

When male crickets, bush-crickets and grasshoppers sing 

they produce both airborne sound and vibration which is transmitted to 

the substrate. Attenuation of the high frequency components is high 

but the lower frequencies important in amplitude modulation may be 

propagated via the substrate. Dambach, (1972) demonstrated" that 

primary neurons in the three pairs of legs of G. campestris and 

G. b1maculatus were responsive to vibration and that each pair of legs 

showed maximum sensitivity at different frequencies. Many workers 

have shown that units in the ventral cord ot bush-crickets and acridids 

" are responsive to both sound and vibration stimuli, (e.g. Cokl et al., 
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1977 in Locusta migratorial Kalmring et al., 1980 in Tettigonia 

.. 
cantansl Kuhne et al., 1980 in D. verrucivorus and Silver et al., 1980,~ 

D. verruci vorus and T. cantans). In this study primary units were 

recorded in T. oceanicus that were responsive to 500Hz airborne sound 

stimuli at high intensities. These units may be preferentially: 

responsive to vi bra tory stimuli like the VS units of D. verruci vorus, 

Kalmring et al., (1978). The central acoustic neurons of D. verr-

ucivorus are influenced by both airborne sound and vibration stimuli 

" and the- effect may be either inhibitory or excitatory, (Kuhne et al., 

1980). Many insects sing in dense vegetation and vibrations trans-

mitted via the legs to stems and leaves may be propagated, carrying 

species-specific information associated with the amplitude modulation 

pattern of the song. Similarly predators may cause vibration 

during movements through the undergrowth I simultaneous processing 

of both sound and vibration stimuli may facillitate localisation of 

the emitter by the receiver at airborne sound intensities which 

produce saturation of acoustic receptors~ Although the majority of 

acoustic ventral cord neurons tested with sound and vibration stimuli 

are effected by both modalities, Boyan, (1980) found units in the 

brain of G. bimaculatus which appear to be unimodal indicating that 
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some separate processing of data from the different modalities must occur. 

The units recorded in T. oceanicus appear capable of 

performing broad-band frequency analysis although the degree of 

tuning of the primary units is not as sharp as that seen in the tett-

igoniid D. verrucivorus, (Kalmring et al., 1978). The sensitivity 

to ultrasound may reflect the importance of high frequencies in 

intraspecific communication but may also be involved in predator 

detection. The complexity of some central unit responses may reflect 

the resUlts of binaural processing and the variation in response patterns 

with stimulus frequency, intensity and duration indicates that 

considerable integration occurs at the level of the ventral cord. 



REFERENCES • 
158-168 



1.58. 

Referenc·es. 

Alexander, R.D.: Sound production and associative behaviour in insects. 

Ohio J. Sci. 2L' 101-113 (1957) 

Alexander, R.D.: Sound communication in Orthoptera -and Cicadidae. 

Animal Sounds and Communication. ed. W.E. Ia.nyon and W.N. 

·Tavolga. American Institute of Biological Sciences, 

Washington, 38-92 (1960) 

Alexander, R.D.: Aggressiveness, territoriality and sexual behaviour 

in field crickets. Behaviour !L, 130-223 (1961) 

Alexander, R.D.: Evotutionary change in . 'cricket acoustical 

communication. Evolution 12, 443-467 (1962) 

Bailey, W.J., Thomson"P.: Acoustic orientation in the cricket 

Teleogryllus oceanicus (Le Guillou). J. expo BioI. ~, 61-75 

(1977) 

Ball, E.E., Hill,K.G.: Functional Development of the Auditory System 
-

of the Cricket, Teleogryllus commodus. J. comp. Physiol. 127, 

131-138 (1978) . 
~ 
Bentley, D.R.: Genetic control of an insect neuronal network. Science 

N.Y. 174, 1139-1141 (1971) 

Bentley, D.R.: Control of cricket song patterns by descending inter

neurons. J. comp. Physiol. 116, 19-38 (1977). 

Bennet-Clark, H.C.: Acoustics of insect song. Nature Lond. ~, 

255-259 (1971) 

I Bennet-Clark, H.C.: Sound production in insects. Sci. Prog. Oxf. 

62, 263-283 (1975) -
Beranek, L.L.: Acoustics. McGraw-Hill New York, (1954) 

Boyan, G.S.: Neural mechanisms of directional hearing in crickets. 

Ph.D. thesis, Australian National University, Canberra, Australia, 

(1978) 



159. 1 

Boyan, G.S.: Coding of directional incormation by a descending inter

neuron in the auditory systen of the cricket. Naturwiss. §2, 

212-213 (1978) 

BQyan, G.S.I Auditory Neurones in the Brain of the Cricket Gryllus 

bimaculatus (DeGeer). J. comp. ~ysiol. 140,81-93 (1980) 

Brought on , W.B.I Notes sur quelque caracteres de Platycleis affinis 

'F1eber (Tettigoniidae).-In, L'Acoustique des Orthopt€res~ . 

R.G. Busnel (Ed). Fasc. hors Serie des Annales des Epiphytes. 

Faris I.N.R.A. 203-247 (1954) 

Brought on , W.B.: Method in bio-acoustic terminology. In, Acoustic 

Behaviour of Animals ed. R.G. Busnel. (Amsterdam, Elsevier) , 

Brought on , i:.B.. Samways, M.J., · Lewis, D.B.a Low frequency sounds in 

non-resonant songs of some bush-crickets (Orthoptera, Tettigoniidea) 

(with some discussion of frequency discrimination in Orthoptera) 

Ent. exp. et apple 18, 44-54 (1975) -
Burnet, B., Connolly, K., Dennis, L.: The function and processing of 

auditory information in the courtship behaviour of Drosophila 

melanogaster. Anim. Behav. 12, 409-415 (1971) 

Busnel. M.C., Busnel, R.G.I La d1rectivit~ acoustique des deplacements 

de la femelle d'Oecanthus pellucens Scop. Inl Colloque sur 

l'acoustique des Orthopteres (ed. R.G.Busnel), 356-364. 

Farisl Inst. Nat. Recherche Argon (1954) 

Casaday, G.B., Hoy, R.R.: Auditory interneurons in, the cricket 

TeleogrYllus oceanicuSI Fbysiological and Anatomical properties. 

J. com~. Fbysiol. 121, 1-13 (1977) -
" Cokl, A., Kalmring, K. , '"Wittig, H. I 'lhe!responses of auditory ventral-

cord neurons of Locusta migratoria to vibration stimuli. 

J. camp. Fbyslol. 120, 161-172 (1977) -



160. 

Coles, R.B., Aitkin, L.M.I The response properties of auditory neurons 

in the mid-brain of the domestic fowl (Gallus gallus) to monaural 

and binaural stimuli •. J. comp. Physiol. ~, 241-252 (1979) 

Coles, R.B. t Lewis, D.B., Hill, K.G., Hutchings, M.E., Gower, D.M.I 

Directional Hearing in the Japanese Quail (Coturnix coturnix 

japonica). II.Cochlear Physiology. J. expo BioI. §2, 153-170 

(1980) 

Dambach, M.: Der Vibrationssin der Grillen. I. Schwellenmessungen 

an Beinen frei bewglicher Tiere. J. comp. Physiol. 121, 281-304 -
(1972) 

Dambach, M. I Der"Vibrationssinn" bei Grillen. Umschau 12, 683-684 

(1976) 

Davis, W.J .Jnr. I Cricket wing movements during stridulation. Anim. 

Behav. 16, 72-73 (1968) -
Dragsten, P.R., Webb, W.N., Paton, J.A., Capranica, P.R.a Al.ditory 

membrane vibration measurements at sub-angstrom levels by optical 

heterodyne spectroscopy. Science ~, 55-57 (1974) 

Dumortier, B. I The physical characteristics of sound emissions in 

Arthropoda. In, Acoustic Behaviour of Animals. R.G.Busnel (Ed.) 

Elsevier Amsterdam (1963) 

Eibl, E.: Morphology of the Sense Organs in the Proximal Parts of the 

Tibiae of Gryllus campestris !,. and Gryllus bimaculatus deGeer 

(Insecta, Ensifera). ZooM:;:--~, 185-205 (1978) 

Elsner, N., Popov, A.V.a Neuroethology of Acoustic Communication. 

Adv •. lnsect Pbysiol. il, 229-355 (1978) 

Each, H., Huber, F., Wohlers, D.W. I Primary Auditory Neurons in 

Crickets I Physiology and Central Projections. J. comp. 

Fhysiol. !Il, 27-J8 (1980) 

Goodman, C.S., Pearson, K.G., Heitler, W.J.a Variability of identified 

-. . " . neurons in grasshoppers. Comp. Biochem. Physiol. ~, 455-462 (1979) 



161. 

Hill, K., Acoustic communication in the Australian field crickets 

Teleogryllus commodus and T. oceanicus (Orthopteral Gryllidae). 

Ph.D. thesis University of Melbourne, Melbourne, Australia (1974) 

Hill, K.G.I Carrier frequency as a factor in phonotactic behaviour of 

female crickets (Teleogryllus commodus). J. comp. Physiol. 

2.l, 7-18 (1974) 

Hill, K.G.; Boyan, G.S.a Sensitivity to frequency and direction of 

sound in the auditory system of crickets (Gryllidae). J. comp. 

Physiol. 121, 79-97 (1977) -
Hill,K •. G., toftus-Hills, J.J;, Gartside, D.F.I Pre-mating isolation 

between the Australian Field Crickets Teleogryllus commodus 

and T. oceanicus (Orthoptera I Gryllidae) Aust. J. Zool. £Q., 

1.53-163 (1972) 

Hill, K.G., Lewis,D.B., Hutchings, M.E., Coles, R.B.I Directional 

Hearing in the J&panese Quail (Coturnix coturnix japonica) 

I. Acoustic Properties of the Auditory System. J. exp. BioI. 

86, 13.5-151 (1980) -
Hogan, T.W.I Interracial mating of a non-diapausing and a diapausing 

race of Teleogryllus commodus (Walk.) ( Orthoptera I Gryllidae) 

Aust. 3. Zool. 12, 541-.54.5 (1967) 
.. 

Huber, F. I Untersuchungen uberdieFunktion des Zentralnerven systems und 

1nsbesondere des Gehines bei der Fortbewegung und der Lauter-

zeugung der Grillen. Z. vergl. Fhysiol. 44, 60-132 (1960) -
Huber, F.: The role of the central nervous systeJR in Orthoptera during 

the co-ordination and control of stridulation. In, Acoustic 

Behaviour of Animals. R.G. Busnel, ed.. E.sevier Amsterdam. 

(1963) .. 
Huber, F.I Nervose Grundlagen der Akustichen Kommunikation bei 

.. 
Insekten. Pheinisch-WestfRlische Akad. Wiss. 205, 41-91. 



162. 

Hutchings, M., Lewis, B.: Response Properties of Primary Auditory 

Fibers in the Cricket Teleogryllus oceanicus (Le Guillou). 

J. comp. Fhysiol. (in press). 

Johnstone, B.M., Saunders, J.C., Johnstone, J.R. I Tympanic membrane 

response in the cricket. Nature Lond. ~. 625-626. (1970) 
.. 

Kamper, G.. Dambach, M. I Communication by lnfrasound in a Non-

Stridulating Cricket. Naturwiss. §2, 5530 (1979) 

Kalmring, K.I Akustiche Neuron 1m Unterschlundganglion der 

Wanderheuschreke Locusta migratoria. Z. vergl. Ibysiol. zg, 

95-110 (1971) 

Kalmring, K. I The afferent auditory pa. thway in the ventral cord of 

Locusta migratoria (Acrididae). I. Synaptic connectivity and 

information processing among the auditory neurons of the 

ventral nerve cord. J. comp. Physiol. 104, 103-141 (9175) 
.. 

Kalmring, K., Kuhne, R.I The coding of Airborne-Sound and Vibration 

Signals in Bimodal Ventral-Cord neurons of the Grasshopper 
--

Tettigonia cantans. J. comp. Ibysiol. 1J2, 267-21-5 (1980) 

Kalmring, K •• Rheinlaender, J., Rehbein, H.G.: Akustiche Neuronen 

1m Bauchmark der Wanderheuschreke Locusta migratcria. Z. vergl 

Physiol. 1.2, 314-332 (197')) 
.. 

Kalmring, K., Kuhne, R •• Moysich, F.: The Auditory Pathway in the 

ventral cord of the M1gratory Locust (Locusta migratoria): 

Response Transmission in the Axons. J. comp. Ibysiol. 126 

25-34 (1978) 

Ka.lmring, K., Lewis, D.B •• Eichendorf, A.I The Physiological 

Characteristics of the Primary Sensory Neurons of the Complex 

Tibial Organ of Decticus verrucivorus L. (Orthoptera, 

Tettigonioidae). J. comp. Physiol. ~, 109-121 (1978) 
.. 

Kalmring, K., Rehbein, H.G., Kuhne, R.I An auditory giant neuron in 

the ventral cord of Decticus verrucivorus (Tettigoniidae). 

J. comp. Physiol. ~, 225-234 (1979) 



Katsuki, Y., Suga, N.I Electrophysiological studies of hearing in 

common insects in Japan. Proc. Jap. Acad. ~ 6JJ~6J8 (1958) 

Katsuki, K., Suga, N.I Neural Mechanisms of hearing in insects. 

J. exp. BioI. 1(. 279-290 (1960) 
.. Kuhne. R., Lewis ,B •• Kalmring, K. I The response of ventral cord neurons 

of Decticus verrucivorus (L) to sound and vibration stimuli. 

Behav. Processes, 2, 55-74 (1980) 

Konis~i, M.I Spatial localisation of sound. Inl necognition of complex 

acoustic signals (ed. T.H. Bullock). Dahlem Konferenzen 12?-14J 

(1976). Life Sciences Research Report 2,(1977) 

Larsen, O.N., Michelsen, A.I Biophysics of the Ensiferan Ear. Ill. 

The Cricket Ear as' .. .a Four-Input System. J. comp. Hlysiol. 

12;, 217-227 (1978) 

Leroy, Y.I Signaux acoustique, compartment et systematique de 

quelques especes de Gryllides (Orthopteres, Ensiferes). 

Bull. BioI. FR. Belg. lOO, 1-34 (1966) -
Lewis, D.:R.: The physiology of the tet tigoniid ear .IV A new hypothesis 

for acoustic orientation behaviour. J. exp. BioI. ~, 861-869 

(1974) 

Lens, D.B.I Sound and Vibration in Orthoptera. Sci. Prog. Oxf. 

in prep. 

Lens, D.B., Pye, J.D., Howse, P.E. I Sound reception in the bush

cricket Metrioptera brachyptera (L) (Orthoptera, Tettigonioidea) 

J. expo BioI. 2i, 241-251 (1971) 

Lottermoser. W •• Aufnahme und Analyse von Insektenlauten. Acustica 

~. 66-71 (1952) 

Marler. P •• Characteristics of some animal calls. Nature wnd • .!1§.. 

6-8 (1955) 
" Meister, F.J.I Uber eingage Besonderheiten der Schallusbreitung aut 

.. .. 
naturlich bewachsen Flachen. Frequenz ~. 211-217 (1959) 



164. 
It 

Meister. F.J., Ruhrberg. W.I Der Einfluss von Gruanlagen auf die 
It It 

Ausbreitung von Gerauschen. Larmbekampfung. 1, 5-11 (1959) 

Michelsen, A.: The Fbysiology of the Locust Ear. Ill. Acoustical 

properties of the intact ear. Z. vergl. Fbysiol. 21, 102-128 

(1971) 

Michelsen. A.I Soand Reception in different environments. In, Sensory 

,Ecology. Ed M.A. Ali. Plenum. J45-373 (1978) 

Michelsen. A., Nocke, H.I Biophysical aspects of sound communication 

in insects. Adv. Insect Fbysiol !Q. 247-296 (1974) 

M6iseff. A., Pollack, G.S., Hoy, R.R.: Steering resonses of crickets 

to sound and ultrasound I Mate attraction and predator avoidance. 

Proc. Hatl. Acad. Sci. USA 12, 4052-4156 (1978) 

" Nocke. H. Biophysik der Schallerzeugung ciurch die Vorderflugel der 

Grillen. Z. vergl. Fbysiol. ~, 272-314 (1971) 

Nocke. H.: Fbysiological Aspects of Sound Communication in Crickets 

(Gryllus campestr1s',L.). J. comp. Fbysiol. §Q. 141-162 (1972) 

Paton, J.A.(, Capranica. R.R., Dragsten. PoR., Webb, WoWol Fbysical 

basis for auditory frequency analysis in field crickets. 

(Gryllidae). J. comp. Fbysiol. ~, 221-240 (1977) 

Pielemeier. W.Ho "Supersonic insects" J. Acoust. Soc. Amer. 12.. 

337-3J8 (1946) 

Pierce. G.W 01 The songs of Insects. Ha,rvard Univ. Press cambridge 

Mass. (1948) 

Pollack. G.S., Hoy, R.R.I Temporal Pattern as a Cue for species-

specific Calling Song Recognition in crickets. Science 

204. 429-432 (1979) -
Popov. A.V.I Synaptic transformation in the auditory system of insects. 

Inl Sensory processes at the a~uronal and behavioural levels 

(ed. GoVo Gersuni). 301-321 N.Y. Acad. Press (1971) 



Popov. A.V., Shuvalov, V.F.: Spectrum, intensity and directional 

characteristics of the calling song emission in the cricket 

Gryllus campestris under natural conditions. (In Russian) 

Rev. Entomol. USSR 21, 258-279 (1974) 

Popov. A.V., Shuralov, V.F.: Phonotactic Behaviour of Crickets. 

J. comp. Fbysiol. !!2, 111-126 (1977) 

Popov. A.V. Shuvalov. V.F. Knjazev. A.N., Clar-Spasovskaya, N.~.: 

Communication calling songs of crickets (Orthoptera, Gryllidae) 

from south-western Tadjikistan. (In Rissian) Rev. Entomol. 

USSR 21, 258-279 (1974) 

Popov. A.V. Shuvalov, V.F., Markovich, A.M.: Spectrum of the calling, 

phonotaxis and the auditory system in the cricket Gryllus 

bimaculatus (In Russian) J. evol. biochim. Physiol. £. 
453-46O.(1975) 

Popov. A. V •• Markovich. A.M., Andjan, A.S.I Auditory interneurones 

in the prothoracic ganglion of the cricket. Gryllus bimaculatus 

DeGeer. I. The large ses-ental auditory neuron (LSAN). J. comp. 

Physiol. 126, 183-192 (1978) 

Pumphrey. R.J. Hearing in insects. Biol.Rev. !i, 107-132 (194O) .. 
Regen. J. Uber die Anlockung des Weibchens von Gryllus campestris 

.. .. 
L. durch telephonisch ubertragene Stridulationslaute des Mannchens • .. 
Ein Beitrag zux Frage der Orientierung bei den Insekten. Pflugers 

Arch. ges Physiol. !2i, 193-200 (1913) 

Rehbein. H.G: Auditory neuron in the ventral cord of the locust: 

morphological and functional properties. J. comp. Fbysiol • 
. 

110, 233-250 (1976) 

Rehbein. H.G., Kalmring, K., Romer. H.: Structure and function of acoustic 

neurons in the thoracic ventral nerve cord of Locusta migratoria 

(Acrididae). J o. comp. Physiol. 22" 263-280 (1974) 



I 

166. 

Rheinlaender, J.: Transmission of Acoustic Information at Three 

~euronal Levels in the Auditory System of Decticus verrucivorus 

(Tettigoniidae, Orthoptera) J. comp. Physiol. 2(, 1-53 (1975) 

Bh'einlaender, J.,;' Kalmr1ng, K.: Die afferente Horbahn in Bereich des 

Zentralnervensystems von Decticus verrucivorus (Tettigoniidae) 

J. comp= Fhysiol. §2, 361-410 (1973) 

~ Rheinlaender, J., Kalmring, K., Romer, H.: Akustiche Neuronen mi t 

T-"Struktur 1m Bauchmark van TEttigoniiden. J. comp Fhysiol. 

~ lZL 208-224 (1972) 

Rheinlaender, J. ,Kalmring, K., Popov, A. V ., Rehbein, H.: Brain 

Projections and Information Processing of Biologically 

Significant sounds by Two Large Ventral-Cord Neurons of 

Gryllus bimaculatus DeGeer (Orthoptera, Gryllidae). J. comp. 

Hlysiol. ll.Q., 251- 269 (1976) 

Roeder, K.D.: Acoustic interneuron responses compared in certain 

P~wk moths. J. Insect Fhysiol. ~, 1625-1631 (1975) 

Sales, G., Pye, J .D.: Ultrasonic communication by Animals. Chapman 

and Hall. London. (1974) .. 
Schwartzkopff, J. Untersuchungen uber die Arbeitsweise des Mittelhores 

It It 

and das Richtungs horen der singvogel unter Verwendung von 

Cochlea-Potentialen. Z. vergl. ··1'hysiol. 1±" 46-68 (1952) 

Shuvalov, V.F., Popov, A.V.: The reaction of the females of the 

domestic cricket Acheta domestica. to sound signals and its 

~ : change in ontogenesis. (In Russian) J. evol. biochim. Physiol. 

Z' 612-615 (1971) 
It 

Silver, S., Kalmring, K., Kuhne, R.: The responses of central acoustic 

and vibratory interneurones in bush-crickets and locusts to 

ultrasonic stimulation. Physiol. Entomol. 2, 427-435 (1980) 

Stout, J.F., Huber, F.: Responses of Central Auditory Neurons of female 

Crickets (Gryllus campestris L.) to the calling song of the male. 

Z. vergl. Fbysiol, ~, 302-313 (1972) 



Susa, N •• Katsuki. Y.: Central Mechanisms of Hearing in Insects. 

J. exp. Biol. J§.. 545-558 (196~ 

Suga, N •• Katsuki. Y.: fbarmacological studies of the aud~tory synapses 

in a grasshopper. J. exp. Biol. J§.. 759 770 (1961ij 

Young. D., Ball, E.: Structure and Development of the Auditory 

System in the Prothoracic leg of the Cricket, Teleogryllus 

commpdus (Walker). I. Adult Structure. Z. Zellforsch. 147, 

293-312 (1974) 

Zaretsky. M.D.: Specificity of the calling sound and short term changes 

in the phonotactic response by female crickets, Scapsipedus 

marginatus (Gryllidae). J. comp. fbysiol. ~, 153-172 (1972) 

Zaretsky. M.D.: The Neurophysiological and Behavioural Mechanism 

of the response to Intra-Specific Acoustical Signals in Crickets 

Ph. D. Thesis. University of California. (1972) 

Zaretsky, M.D., Eibl, E.: carrier frequency-sensitive primary neurons 

and their anatomical projection to the central nervous system. 

J. Insect fbysiol. ~, 87-95 (1978) 

Zeuner. F.E.: The prothoracic tracheal apparatus of Saltatoria 

(Orthoptera). Proc Roy. ent. Soc. Lond. 11, 11-21 (1936) 

Zhantiev. R.D., Dubrovin, N.N.: On the senstivity of tympanal organs 

of Katydids (Orthoptera, Tettigoniidae) to sounds of different 

frequencies. International Congress of Entomology. Vol. 11 

45-46 Nauka (1971) 

Zhantiev • R.D., Tschukanov. V.S.: Frequency characteristics of 

Tympanal Organs of the cricket Gryllus bimaculatus .deCeer. 

(Orthoptera. Gryllidae). Vestnik MGU VI ~. 3-8 (1972&) 

Zhantiev. R.D •• Tschukanov. V.S.: Reaction of the auditory system of 

Gryllus bimaculatus (Orthoptera Gryllidae) to intraspecific 

sound signals. Zool. J. (Moskow) ji. 983-993 (1972b) 



168. 

Zhantiev. R.D., Ka.linkina, I.D. Sound reaction of descendine; neurons 

in the a biom1na1 part of t!1e central ne=vous system of Orthoptera 

Nauch. Dokl. Vyss. Shkoly, BioI. Nauk. ~, 66-71 (1977) 



• 

Attention is drawn to the fact that the -" 
copyright of this thesis rests with- its a-uthor. 

, This copy of the thesis has . been supplied 
on condition that anyone who consults it is 
understood to recognise that its copyright rests 
with its author _ and that · no quotation from 
the thesis and no information derived from it 

-may be published without the author's prior 
• wrltten consent. ,. 




