

Individual and group dynamic behaviour patterns in
bound spaces

Pawel Gasiorowski

School of Computing and Digital Media
London Metropolitan University

This dissertation is submitted for the degree of

Doctor of Philosophy

December 2017

I would like to dedicate this thesis to my loving parents …

Acknowledgements

After nearly four years of intense work, today I am writing the final section of my dissertation: a special note of

thanks. It was a long journey during which I have had developed in so many ways that I believe my thesis

would not had been complete if I did not reflect on people who have helped me through this period.

I would first like to thank my supervisors, Dr. Vassil Vassilev and Prof. Karim Ouazzane for their guidance,

support and patience thorough the duration of this programme. You were always willing to help me by pointing

me in the right direction when I encountered obstacles in my path. You have given me motivation to move

forward and taught me to never give up even in moments of doubt. In addition, I would like to give my thanks

to Dr. Romas Mikusauskas for sharing his knowledge from the area of 3D technologies and whole academic

board and staff at London Metropolitan University. This programme was the biggest challenge of my life so far

and it was an honour to take it on with such brilliant companions like you.

To my fellow PhD students, especially Majid Afzal, with whom I spent countless hours on exchanging

thoughts, brainstorming and experimenting with innovating technologies so that I could gain inspiration for

finding a solution to that little problem that was preventing me from progressing further.

I would like to give special thanks to CEO's of The Vinyl Factory Limited, Mark Wadhwa and Tim Robinson,

for their continuing faith in me and funding of this programme.

I would also like to thank my wonderful parents for their commitment in supporting me in difficult times and

always being there for me when I need it most. Finally, I would like to thank all my friends, who were

understanding enough to forgive my absences from various events due to my works on research. We were

able to have some great times that allowed me to think and talk about things other than just academic papers

for a change.

Thank you very much, everyone!

Pawel Gasiorowski

London, December 11, 2017.

Abstract

The behaviour analysis of individual and group dynamics in closed spaces is a subject of extensive research

in both academia and industry. However, despite recent technological advancements the problem of

implementing the existing methods for visual behaviour data analysis in production systems remains difficult

and the applications are available only in special cases in which the resourcing is not a problem. Most of the

approaches concentrate on direct extraction and classification of the visual features from the video footage for

recognising the dynamic behaviour directly from the source. The adoption of such an approach allows

recognising directly the elementary actions of moving objects, which is a difficult task on its own. The major

factor that impacts the performance of the methods for video analytics is the necessity to combine processing

of enormous volume of video data with complex analysis of this data using and computationally resource-

demanding analytical algorithms. This is not feasible for many applications, which must work in real time. In

this research, an alternative simulation-based approach for behaviour analysis has been adopted. It can

potentially reduce the requirements for extracting information from real video footage for the purpose of the

analysis of the dynamic behaviour. This can be achieved by combining only limited data extracted from the

original video footage with a symbolic data about the events registered on the scene, which is generated by

3D simulation synchronized with the original footage. Additionally, through incorporating some physical laws

and the logics of dynamic behaviour directly in the 3D model of the visual scene, this framework allows to

capture the behavioural patterns using simple syntactic pattern recognition methods. The extensive

experiments with the prototype implementation prove in a convincing manner that the 3D simulation generates

sufficiently rich data to allow analysing the dynamic behaviour in real-time with sufficient adequacy without the

need to use precise physical data, using only a limited data about the objects on the scene, their location and

dynamic characteristics. This research can have a wide applicability in different areas where the video

analytics is necessary, ranging from public safety and video surveillance to marketing research to computer

games and animation. Its limitations are linked to the dependence on some preliminary processing of the

video footage which is still less detailed and computationally demanding than the methods which use directly

the video frames of the original footage.

1

Table of Contents

1. Introduction ... 10

 1.1. Research problem .. 10

 1.2. Aim and objectives of the research ... 10

 1.3. Research methodology ... 11

 1.3.1. 3D modelling of the visual scene .. 12

 1.3.2. Event-driven simulation of agent behaviour .. 12

 1.3.3. Pattern recognition for classification of agent behaviour ... 12

 1.3.4. Experimental prototyping .. 12

 1.4. Scope of the research ... 13

 1.5. Structure of this report .. 13

2. Methods for visual modelling and analysis of human dynamic behaviour .. 15

 2.1. Visual Feature Extraction for Dynamic Behaviour Analysis .. 16

 2.2. Classification of Activities in Individual and Group Dynamics ... 25

 2.3. Simulation Models for Visual Scene Analysis ... 29

 2.3.1. Force-based models .. 32

 2.3.2. Agent-based models .. 33

 2.3.3. Event-based models .. 39

 2.4. Analysis of the patterns of human dynamic behaviour ... 44

 2.5. Review of the available 3D modelling tools and technologies ... 47

2.5.1. OpenGL ... 48

2.5.2. Second Life ... 48

2.5.3. JmonkeyEngine... 49

2.5.4. Ogre .. 50

2.5.5. Unity .. 50

2.5.6. Unreal Development Kit (UDK) ... 51

2.5.7. Cry Engine .. 52

2.5.8. 3DS Max ... 53

2.5.9. Maya ... 54

2

2.5.10. Blender .. 55

 2.6. Potential use of software engines for simulator implementation .. 55

 2.7. Research summary .. 57

3. Conceptual Framework for model-driven dynamic behaviour analysis ... 58

 3.1. Overview of the conceptual framework .. 59

 3.2. Simulation-based analysis of dynamic behaviour ... 60

 3.3. Ontology of the visual scene ... 63

 3.4. Ontology of the dynamic behaviour .. 65

 3.4.1. Actions .. 66

 3.4.2. Events ... 68

 3.4.3. States .. 69

 3.5. Language of Dynamic Behaviour ... 71

 3.6. Research hypothesis ... 72

4. 3D Simulator of individual and group dynamics in visual scenes .. 74

 4.1. Overview of the software implementation ... 74

 4.2. Software architecture .. 75

 4.3. Design considerations .. 77

 4.3.1. Simulation data ... 78

 4.3.2. Simulation loop ... 80

 4.3.3. Human body in motion ... 82

 4.3.4. Accounting the movements of the individual body limbs .. 84

 4.3.5. Employing body armature ... 87

 4.3.6. Animating individual movements ... 89

 4.3.7. Setting up the scene ... 92

 4.4. Implementation of the simulator ... 94

 4.4.1. Utilization of engine core libraries for critical functionality of the simulator .. 94

 4.4.2. Simulating movements ... 98

 4.4.3. Collision detection .. 99

 4.4.3.1. Implementation of agent’s “sight sense” for spatial reconnaissance .. 99

 4.4.3.2. Implementation of agent’s “ghost” for object detection ... 103

3

 4.4.3.3. Pairing and grouping of individuals .. 105

 4.5. The 3D Simulation as a basis for Event-driven Dynamic Behaviour Analysis ... 109

 4.6. Event Logger .. 112

 4.7. Summary .. 113

5. Experimental validation of the simulator .. 114

 5.1. Methodology of conducting the experiments .. 114

 5.2. Parameters of the dynamic behaviour and empirical optimisation of the pattern recognition 116

 5.3. Configuration of the simulator and algorithmic control of the execution .. 118

5.4. Experiment setup .. 122

 5.5. Test data for validation of the simulator .. 123

 5.6. Validation scenario ... 125

 5.7. Summary .. 138

6. Experimental analysis and evaluation of the patterns of individual and group dynamic behaviour 139

 6.1. Experimental setup and validation of the pattern analyser ... 139

6.2. Analysis of the speed of replaying the xml file at different frame rates on the pattern recognition process 152

 6.3. Influence of the events of skipping frames while replaying the video xml file on pattern recognition process 161

 6.4. Summary .. 170

7. Conclusion and recommendations for future work ... 171

 7.1. Reflection on development process and research .. 171

 7.2. Originality and contribution to the knowledge ... 172

 7.3. Recommendations for future development ... 174

References ... 175

Appendix .. 184

4

List of Figures

Figure 2-1. The reconstructed trajectory of a moving subject .. 17

Figure 2-2. The seven-sphere model adopted by Afzal et al. (2017) ... 18

Figure 2-3. Examples of simple movements along with their Motion History Images (MHI) .. 20

Figure 2-4. The expanded version of method developed by Bobick and Davis (2001) ... 21

Figure 2-5. More detailed flowchart of crowd density estimation ... 23

Figure 2-6. A 2D-to-3D matching framework for constructing 3D model from 2D image ... 24

Figure 2-7. The framework proposed by Sattler, Leibe and Kobbelt (2011) ... 24

Figure 2-8. Different stages of image processing that results in the extraction of human posture contour 25

Figure 2-9. Body joints representation along with their minimum and maximum angular variations 27

Figure 2-10. The angular variations of joints and their impact on classification of some of the poses 29

Figure 2-11. An agent-based PECS architecture .. 33

Figure 2-12. Decrease in social satisfaction of an agent studying alone over time represented as a graph 35

Figure 2-13. The internal state of an agent ... 35

Figure 2-14. The proposed framework of simulation model driven by real-time data and pattern recognition 37

Figure 2-15. Data assimilation process is reinforced with behaviour patterns information output (Rai and Hu, 2013) 38

Figure 2-16. The state transitions of behaviour patterns and their probabilities for Hidden Markov Model 39

Figure 2-17. The architecture of situation-based framework oriented on events occurring in the scene 40

Figure 2-18. The agents receives the information from the environment about events, states, sensors and behaviour

functions defining adequate actions... 41

Figure 2-19. The output of behaviour functions are composed and final result sampled in order to select final state 42

Figure 2-20. A visual tool for setting situations regions within the environment .. 43

Figure 2-21. Situation areas in a street environment ... 43

Figure 2-22. The method for behaviour pattern recognition of online users depends on data collected during browsing

sessions (Gao, 2010) .. 45

Figure 2-23. The location clusters built on a basis of individual’s location data collected by GPS sensors used in the

movement behaviour pattern recognition method proposed by Kelly, Smyth and Caufield (2013) 45

Figure 2-24. The framework developed by Saitou et al. (2006) is capable of establishing a relationship of the action

executed by a human and object and derive a dynamic behavioural pattern on that basis ... 47

Figure 2-25. jMonkeyEngine IDE iOS interface (jMonkeyEngine, 2016) ... 50

Figure 2-26. Unity engine interface with labels of the most crucial panels (Unity Game Engine, 2017) 51

5

Figure 2-27. Blueprints system allows one to visually script application logic without writing a code (Epic Games Inc.,

2017) ... 52

Figure 2-28. Flowgraph system in many ways is a Cry Engine counterpart of UDK Blueprints (Crytek Inc., 2017) 53

Figure 2-29. The interface of 3DS Max allows one to preview and manipulate visual scenes in real-time (Autodesk Inc.,

2017) ... 53

Figure 2-30. Maya software interface (Autodesk Inc., 2017) ... 54

Figure 2-31. Blender software interface (Blender Foundation, 2015) .. 55

Figure 2-32. jMonkeyEngine framework provides means of adding and removing behaviour on local and global levels 56

Figure 3-1. General workflow of the framework ... 60

Figure 3-2. Conceptual structure of Dynamic Behaviour Pattern Analyser .. 62

Figure 3-3. Top-level view at the ontology of visual scene combined with ontology of dynamic behaviour 70

Figure 4-1. Component Diagram of the Simulator ... 76

Figure 4-2. The simulator interface.. 77

Figure 4-3. The algorithm of the simulation loop ... 81

Figure 4-4. The cube is formed out of triangles made out of three points (vertices) connected using three line segments

(edges) .. 82

Figure 4-5. Structure of the representation of a body made out of primitive geometries representing the individual limbs . 86

Figure 4-6.a. The final result of modelling a humanoid agent in Blender ... 88

Figure 4-6.b. The armature of a human agent relative to the sculpted geometry .. 88

Figure 4-7. The armature combined with agent’s geometry in wireframe preview mode ... 89

Figure 4-8.a. Walk ... 90

Figure 4-8.b. Reach Out .. 90

Figure 4-8.c. Run ... 90

Figure 4-8.d. Punch ... 91

Figure 4-8.e. Kick .. 91

Figure 4-8.f. Pick Up. ... 91

Figure 4-9. Animated movements in jMonkeyEngine based on the information exported from Blender 92

Figure 4-10. The visual scene formed out of basic geometric shapes... 92

Figure 4-11. Two cubes made of different materials ... 93

Figure 4-12. The final version of a visual scene recreated in the graphics engine from the exported XML file generated by

Blender .. 94

Figure 4-13. An agent moving along curved path. ... 98

Figure 4-14. Schematic view of the sense of sight of an agent ... 100

Figure 4-15. Schematic view of ray casting used for detecting objects located in close proximity 102

6

Figure 4-16. Positioning of the centre of ghost sphere .. 103

Figure 4-17. Final body model equipped with bones armature, ray casting vision and spherical ghosts attached to the

limbs .. 105

Figure 4-18. Schematic view of two agents in the same group facing opposite directions .. 107

Figure 4-19. A group of three agents ... 109

Figure 4-20. Top-level loop cycle of the simulator ... 111

Figure 5-1. General scheme of the methodology for empirical assessment through visual observation and comparison . 115

Figure 5-2. The simulator console ... 115

Figure 5-3. The parameters panel of the simulator.. 116

Figure 5-4. Tuning the simulator by varying its parameters during experimentation ... 117

Figure 5-5. A hierarchy of parameters organised according to the points in time when they are used in the simulation loop

cycle .. 120

Figure 5-6. Gathering of a group of three agents .. 123

Figure 5-7. Validation of simulator on a basis of 001.xml .. 126

Figure 5-8. Validation of simulator on a basis of 002.xml .. 127

Figure 5-9. Validation of simulator on a basis of 003.xml .. 128

Figure 5-10. Validation of simulator on a basis of 004.xml .. 129

Figure 5-11. Validation of simulator on a basis of 005.xml .. 130

Figure 5-12. Validation of simulator on a basis of 006.xml .. 131

Figure 5-13. Validation of simulator on a basis of 007.xml .. 132

Figure 5-14. Validation of simulator on a basis of 008.xml .. 133

Figure 5-15. Validation of simulator on a basis of 009.xml .. 134

Figure 5-16. Validation of simulator on a basis of 010.xml .. 135

Figure 5-17. Validation of simulator on a basis of 011.xml .. 136

Figure 5-18. Validation of simulator on a basis of 012.xml .. 137

Figure 6-1. The errors calculated by the simulator during the recognition of “walking towards something” pattern from the

movie replayed at different frame rates ... 156

Figure 6-2. The errors calculated by the simulator during the recognition of “walking towards something (while agent is in a

group)” pattern from the movie replayed at different frame rates ... 156

Figure 6-3. The errors calculated by the simulator during the recognition of “walking away from something” pattern from

the movie replayed at different frame rates ... 157

Figure 6-4. The errors calculated by the simulator during the recognition of “walking along something (while agent is in a

group)” pattern from the movie replayed at different frame rates ... 157

7

Figure 6-5. The errors calculated by the simulator during the recognition of “climbing something up” pattern from the movie

replayed at different frame rates .. 158

Figure 6-6. The errors calculated by the simulator during the recognition of “forming a pair” pattern from the movie

replayed at different frame rates ... 158

Figure 6-7. The errors calculated by the simulator during the recognition of “forming a group” pattern from the movie

replayed at different frame rates ... 159

Figure 6-8. The errors calculated by the simulator during the recognition of “group moving towards something” pattern

from the movie replayed at different frame rates .. 159

Figure 6-9. The errors calculated by the simulator during the recognition of “leaving a group / group disbands” pattern from

the movie replayed at different frame rates .. 160

Figure 6-10. The errors calculated by the simulator during the recognition of “group moving along something” pattern from

the movie replayed at different frame rates .. 160

Figure 6-11. The errors calculated by simulator during the recognition of “walking towards something” pattern while

skipping certain amount of frames from the movie. ... 164

Figure 6-12. The errors calculated by simulator during the recognition of “walking towards something (while agent is in a

group)” pattern while skipping certain amount of frames from the movie. .. 165

Figure 6-13. The errors calculated by simulator during the recognition of “walking away from something” pattern while

skipping certain amount of frames from the movie. ... 165

Figure 6-14. The errors calculated by simulator during the recognition of “walking along something (while agent is in a

group)” pattern while skipping certain amount of frames from the movie. .. 166

Figure 6-15. The errors calculated by simulator during the recognition of “climbing something up” pattern while skipping

certain amount of frames from the movie. ... 166

Figure 6-16. The errors calculated by simulator during the recognition of “forming a pair” pattern while skipping certain

amount of frames from the movie. ... 167

Figure 6-17. The errors calculated by simulator during the recognition of “forming a group” pattern while skipping certain

amount of frames from the movie. ... 167

Figure 6-18. The errors calculated by simulator during the recognition of “group walking towards something” pattern while

skipping certain amount of frames from the movie. ... 168

Figure 6-19. The errors calculated by simulator during the recognition of “group walking along something” pattern while

skipping certain amount of frames from the movie. ... 168

Figure 6-20. The errors calculated by simulator during the recognition of “group walking along something” pattern while

skipping certain amount of frames from the movie. ... 169

8

List of Tables

Table 2-1. Table presenting the angular variation range for given poses on three axes (Maik et al., 2010) 28

Table 2-2. Results of the analytical evaluation of the framework proposed by Saitou et al. (2006) 47

Table 4-1. Movements which are used in the animation ... 90

Table 4-2. jMonkeyEngine library functions used in the implementation of simulator.. 95

Table 5-1. The video files used in the validation of the simulator, pattern analyser and experimentations 124

Table 6-1. Pattern Analyser validation experiments .. 141

Table 6-2. Summary of validation of patterns in different scenarios .. 151

Table 6-3. The results of replaying XML videos at different frame rates ... 152

Table 6-4. The results of skipping frames while replaying XML video file ... 161

9

10

Chapter 1

Introduction

Humans have developed a natural way of perceiving and interpreting our surroundings based on the

contextual knowledge that they possess. Our brains can easily recognise objects, their relationships and

behaviour on the basis of constant delivery of imagery data. We can process huge amounts of visual

information almost instantly and make conclusions about its meaning. To build a visual system that could

mimic the natural perception system of humans is a challenging task if one considers all the complexities that

come with it.

1.1. Research problem

The key research question which is addressed in this research is to determine whether it is possible to

construct efficient algorithms for online recognition, classification and characterisation of the agent behaviour

and to make inference about the behavioural patterns using limited information about the location and the

position of the body and its movements through the space of a visual scene, observed by virtual surveillance

cameras. This is necessary for the purpose of subsequent personalisation, statistical and demographic

analysis, planning of actions and navigation through the space in various software applications, which

incorporate 3D micro-world models. The performance bottleneck which limits the possibility to address this

problem in video analytics applications comes from the fact that the information which is contained in live

video feeds coming from video camera is too rich and contextually redundant, which makes the data analysis

extremely computationally demanding. By combining limited physical information that could potentially be

extracted from video signals with simulated data coming from a simulator of the visual scene one can reduce

the amount of physical information needed for the analysis of the dynamic behaviour. It is believed that using

model-driven approach based on 3D simulation the information generated by the simulation will be adequate

for the purpose of the analysis despite the fact that it will not be extracted from the original video. The

successful answer of this question will bring significant advantages to diverse areas where the dynamic

behaviour is important, such as e-business, safety and security monitoring, assistive technologies and

entertainment industry.

1.2. Aim and objectives of the research

The main aim of this research is to develop an object-centric and event-driven framework capable of analysing

the individual and group behaviour of human agents in real time. The analysis will be based on the structural

and spatio-temporal properties of recognised objects and their interaction with physical environment. In order

to reach this goal, a set of the following objectives has been established prior to the beginning of the research:

11

1. To investigate the current state of research in the area of visual analytics and to identify the main problems,

existing approaches and available methods for reporting typical behaviour within enclosed spaces over

limited period of time.

2. To study the underlying logic of 3D programming in order to specify a 3D model of a micro world consisting

of active physical agents surrounded with passive and active artefacts, capable of presenting and

influencing static and dynamic aspects of the individual and group behaviour.

3. To simulate the dynamics of the micro world in real time for a chosen application domain (i.e. evacuation of

buildings or large vessels in the case of safety alerts, preventing or recovering from incidents during public

gatherings, supermarket shopping sessions, computer games etc.).

4. To analyse the historical data from the simulation, derive patterns of dynamic behaviour of the agents in the

micro-world and develop a model of individual and group behaviour for the purpose of subsequent analysis

and control.

5. To develop classification method for behavioural patterns and pattern-matching algorithms using event-

driven approach. The main focus here will be on the development of a language processor capable of

analysing the events defining behavioural patterns.

6. To validate the developed framework using a test application in a chosen application domain and compare

it to other relevant research developments.

1.3. Research methodology

In order to build an appropriate level of awareness in the area of visual analytics as well as to construct a

computational model, which is based on a sound theory, we have adopted two complementary approaches,

which we applied at different stages of the research. The first, analytical approach, is focused on critical

review of the recent achievements in the field of visual analysis of human behaviour. It was carried out with

particular attention to the methods which can accommodate the conceptual solutions in constructive models.

During this stage we developed ideas, which allowed us to establish a logical link between the real world

environment and the virtual space of the modelled micro world. The constructive approach adopted in this

research is based on the theory of 3D visual simulation as well as on the techniques used in computer games.

The reason for this choice was the understanding that an adequate simulation of the visual scene for

analytical purposes can be achieved only by having a full control of the entire simulated world, which is the

case in game programming. The second reason for the choice of 3D simulation was the need to incorporate

means for analytical pre-processing of the simulated data for the purpose of the analysis, which is possible

only if the model of the visual scene has rich semantics, close enough to the ontology of the real physical

world.

12

1.3.1. 3D modelling of the visual scene

The limited micro-world of the agents has been modelled using concepts and programming techniques

derived from the area of 3D modelling and computer graphics. This approach closely resembles the physical

world observed by surveillance cameras. It allows to attribute additional information about spatial location and

motion, necessary for supporting possible dynamic changes in the graphical representation under the

circumstances in a most adequate way in comparison to 2D approaches which perform the visual analytics

directly using the visual frames of the video feed. In addition, the 3D approach allows to account the physical

laws and logical dependencies between the objects which govern the dynamics of the visual scene, which

allows to incorporate efficient method for preliminary processing of the visual information directly in the

graphic simulation, which leads to significant simplifications and analytical gains.

1.3.2. Event-driven simulation of the agent behaviour

The agent behaviour simulation is based on the classical computer games approach for modelling interactive

3D environments. Each agent is active within the bound space and its reactions to events are governed by the

input taken from the input data stream, the laws of physics and the logics of spatial dependencies on the

visual scene. For the purpose of this research it is assumed that the input data stream is externally generated

using separate modules, which are outside of the scope of this work.

1.3.3. Pattern recognition for classification of the agent behaviour

This is the main analytical part of the research which will be based on capturing the events occurring during

simulation, analysing them and inferring the corresponding behaviour based on recognition of the event

patterns. The simulator will log the events occurring at runtime in symbolic format, which will be then analysed

using syntactic methods for pattern recognition suitable for symbolic data logs.

1.3.4. Experimental prototyping

As an end result of the research, it is planned to produce an intelligent controller for dynamic behaviour

analysis in a form of a self-contained software application capable of constructing and representation of

behavioural patterns in suitable format for further use by other software applications which are part of the

overall video analytics framework developed at the Cyber Security Research centre of London Metropolitan

University. For the implementation of the prototype an open-source game engines have been selected. The

developed prototype has modular architecture organised around several design patterns. It inherits all

advantages of the component approach and object-oriented methodology for software engineering in general.

This allows an easy integration of the application with other applications, which require spatial modelling and

agent behaviour analysis and makes the video analytics more widely possible.

13

1.4. Scope of the research

The automatic recognition and evaluation of human behaviour is a challenging problem that requires studying

wide range of scientific topics. In our approach we will replace the live video signal feed with a combination of

a basic data extracted from it and simulated data approximating the missing data and sufficient for subsequent

analysis of the visually observed individual and group dynamic behaviour. Since it is important to be able to

use all relevant information from the images taken from video footage or similar medium for precise analysis,

the image-processing techniques are also reviewed but their detailed analysis is left out of the main scope of

this research. Instead, the focus is on developing algorithms capable of simulating objects that represent real

subjects in virtual scene and extracting, collecting and evaluating the relevant information.

The behavioural patterns have been defined purely linguistically, using a context-free grammar to make this

method more universal. Consequently, the output of the analyser is the classification of a pattern according to

the pattern syntax built directly into the grammar of the pattern language. This is approach is more flexible and

powerful solution as opposed to other pattern recognition approaches which typically match the live data

against static database of patterns defined statistically or graphically. However, the further contextual analysis

of the behaviour patterns may require additional processing of the simulation output log, which is beyond the

scope of this research.

1.5. Structure of this report

The entire material presented in this report has been organised in a systematic way that reflects the

constructive bottom-up development approach mentioned earlier. Each chapter is a foundation for the next

one and progressively describes the methods for behaviour’s modelling, simulation and analysis.

Chapter 2: Methods for visual modelling and analysis of human dynamic behaviour

In this chapter, different computational models of human behaviour have been reviewed and studied in the

context of the problem domain.

The nature of the existing research, the adopted methodologies and proposed solutions to the problems have

been presented in a cohesive manner so that the literature review is naturally structured from constructive

point of view.

Chapter 3: Conceptual Framework for model-driven dynamic behaviour analysis

The focus of this chapter is based on conceptualisation of the architecture of the entire framework for

simulated video analytics. It presents the model of a micro-world, which is used for the analysis of human

behaviour and the simulation-based event-driven approach adopted in this research in a systematic manner.

14

Chapter 4: 3D Simulator of individual and group dynamics in visual scenes

This chapter describes the implementation process of the software simulator, which is based on 3D graphics

mathematical theory and common software engineering practices in graphic programming.

Chapter 5: Experimental validation of the simulator

This chapter is dedicated to presenting the functionality of the simulator of dynamic behaviour patterns, its

evaluation and validation with a set of experiments.

Chapter 6: Experimental analysis and evaluation of the patterns of individual and group dynamic
behaviour

This chapter is dedicated to presenting the results of the pattern analysis and experimental evaluation of the

entire simulation-based event-driven framework developed in this research.

Chapter 7: Conclusions and recommendation for future work

This chapter summarises the entire research, claiming some original contributions and makes

recommendations for further exploration of the developed framework.

15

Chapter 2

Methods for visual modelling and analysis of
human dynamic behaviour

With the growth of computer technologies, recent years have seen an increasing interest in developing

computational models for analysing human behaviour. The model typically requires accounting of the set of

activities that can establish a pattern of dynamic behaviour and can be constructed through observation of the

visual scene. The Oxford Dictionary defines behaviour as “the way in which one acts or conducts oneself,

especially towards others” (Oxford Dictionary, 2015). In that sense, the behaviour may be considered as a set

of motions and actions exhibited by people that can be clearly visible. In addition, the Oxford Dictionary

defines a pattern as “a regular and intelligible form or sequence discernible in the way in which something
happens or is done” (Oxford Dictionary, 2015). Therefore, one may define a behaviour pattern as a regular
and intelligible sequence discernible in the way in which one acts or conducts oneself or towards others.

Visual modelling, simulation and analysis of dynamic behaviour are currently becoming an important direction

of research in video surveillance due to its importance for safety management, security and disasters

recovery. Many researchers try to address issues related to the range of complexities in derivation of

behaviour patterns from live video footage. The research in this area includes extraction of image features,

identification of shapes, detecting movements and modelling human behaviour for further analysis. The review

focuses on the following tasks:

x To learn the latest advancements of image processing and video analysis methods used specifically

for dynamic behaviour analysis. The main focus here was made on determining what kind of

information can be captured from the observed visual scene.

x To gain insight into the classification methods used for recognition of movements and actions related

to human behaviour. The main focus here was on learning what kind of actions and behaviours can

be recognised using the information extracted from visual scene. The classification of the movements

allows identifying the actions, which are the building blocks of the patterns to be recognized.

x To study modelling of human behaviour and associated formal theories for the purpose of simulation

and analysis. The investigation was oriented towards exploring methods that are used for modelling

human behaviour in simulated environments. The third review area was selected given the

importance of the models in the simulation.

16

x To explore frameworks, which utilise combination of methods for extraction, classification and

simulation of information, related to human behaviour. The focus here is made on existing software

systems that can evaluate human behaviour with the use of multiple different techniques. The

comparative analysis of the frameworks was chosen to obtain the knowledge of the current

technological achievement in video analytics software development.

2.1. Visual Feature Extraction for Dynamic Behaviour Analysis

The observation of the people in front of the camera is a first step in defining the dynamics of individuals and

groups within the boundaries of the visual scene. It usually deals with building descriptors of the visual

features based on the data extracted from the video footage. The methods of extracting information as well as

the data being extracted may vary, depending on the requirements of the analysis.

The first step is to account the properties of objects, then the activities carried out by those objects under

different circumstances and constraints. Numerous approaches found in the literature make an attempt to

address this complex problem (Gong and Xiang, 2011). They are classified into four categories: object-based,
part-based, pixel-based and event based.

The object-based approach exploits the idea that any given object can be explicitly described using several

attributes that can be extracted directly from observing the visual scene. They define objects’ appearance in a

certain location that can change over time (Gong and Xiang, 2011) and further divide this approach into

trajectory-based and template-based.

The trajectory-based approaches aim at reconstructing the movement history of an object or its constituent

parts based on the changes registered during the monitoring process (Abdul-Azim and Hemayed, 2015; Jiang

et al., 2012; Oikonomopoulos et al., 2007). Afzal et al. (2017) make an attempt of reconstructing the

trajectories in an incremental manner, which is suitable for processing in real time. The continuous video

stream is first being pre-processed and then each frame is separated in order to extract the location of an

object at a given time. In this case, the features of an object are narrowed down to spatial location, rotation,

the direction of movement and velocity.

17

Figure 2-1. The reconstructed trajectory of a moving subject; the moving subject’s volume is approximated

with a sphere (Afzal et al., 2017)

As observed by the authors, shape also plays an important role in tracking a moving object, since one cannot

simply assume that it will not change over time. The object may bend and twist during the movement and

therefore the physical structure needs to be accounted for. The solution to this problem lies in the introduction

of a bounding volume that either matches its silhouette or approximates it as shown in Figure 2-1. However,

the precise detection of the silhouette of a 3D object in a 2D imagery environment is not suitable for real-time

applications due to the complex computations that need to be carried out. As noted by Mulayim, Yilmaz and

Atalay (2003) it may also require a well-controlled environment where each property can be clearly defined

which is rarely available. A simpler shape in the form of a primitive geometry such as a sphere, which wraps

the identified object is more suitable from performance point of view.

Once the object shape is established, one needs to consider the constituent parts of that object. Afzal et al.

(2017) continues with an explanation on how the representation of the body of an object can be reduced to

interconnected spherical shapes, where each sphere corresponds to a body part (Figure 2-2). It is a valid

assumption because each part would then occupy certain space in a close proximity from the median point of

the body so that when the body moves its part will move in a coordinated manner.

18

Figure 2-2. The seven-sphere model adopted by Afzal et al. (2017). The model gives an approximation of the

volume occupied by the individual limbs of each agent

Similar models have already been developed and proven to work in trajectory tracking of individual objects,

with Microsoft Kinect line-based system being the most popular one (Biswas and Basu, 2011; Kar, 2010; Ren

et al. 2013). An important characteristic of these systems is that once a skeleton consisting of connected

nodes is initially captured in the visual scene, it becomes easier to track each individual object even in heavily

occluded areas. The positions of unobstructed parts of the body may provide a foundation for approximating

the location of the remaining parts with the assumption that they are within a reasonable proximity.

Many researchers have adopted the trajectory-based approach as a starting point in their behaviour analysis

(Anjum and Cavallaro, 2007; Shen et al., 2015; Azorín-López et al. 2013; Azorin-López et al. 2014; Chen,

2012), but as noted by Gong and Xiang (2011), the reconstruction of trajectory alone may not be enough to

successfully capture the behaviour. The major flaw of trajectory-based representation of human behaviour is

the fact that it is usually built on data that is too noisy and may come from cluttered environments where

tracking individual objects may not be feasible at all times. The authors outlined three main drawbacks from

using this method:

a) Computations of trajectories are being made on the assumption that shapes of the objects provide

high quality of details. Should the observed environment consists of great number of agents, the

algorithms for tracking may not extract sufficient information about the features of interest and

therefore provide inaccurate data as a result.

19

b) It may not be possible to continuously monitor each object's trajectory. This is true if one realises that

there will always be some obstacles in the visual scene. For instance, in the visual space of the shop

there might be a shelf that will cause occlusions.

c) The whole analysis of behaviour cannot be based solely on trajectories because it might not provide

sufficient contextual information in order to support more detailed analysis.

An alternative method of measuring and analysing the movements of objects is to use pre-defined templates.

In the template-based approach, an action is described by a sequence of historical images that is then

matched against template images of known movements. That is, a sequence of images comprises a single-

descriptor of a well-defined action. The most recent recorded motion in that sequence is indicated by more

intense values of the pixels in a corresponding region of an image. At the recognition stage, each pixel value

taken from a recorded historical image is being compared with the corresponding value stored within the

template image to determine whether a given action took place.

An exhaustive description of this method has been presented by Ahad et al. (2009). In his paper the author

highlights research of Bobick and Davis (2001) as a prime example of application of this method. Bobick and

Davis (2001) use two types of images: the ones that are used to determine in which visual region a motion

has occurred (motion-energy images, MEI) and the ones that record information on how the motion appeared

at a given pixel (motion-history images, MHI) as shown in Figure 2-3.

Their idea is then to compute and combine the occupancy of the pixels of those two historical images to

generate a vector-based image that can be used for segmentation and recognition. Bobick and Davis (2001)

indicate several issues with this approach. Firstly, there is a need of recording historical images in a well-

controlled environment. The presented experiments were mostly conducted in well-lit spaces with cameras

positioned orthogonally in front or at a specific angle relative to the actor. Secondly, the method may fail in a

scenario where two or more actors are being visible in the camera view due to the fact that separating their

contour may be very difficult. Thirdly, as previously noted by Akita (1984), it may cause a situation where

movements within the silhouette of a moving object may never be accounted for.

20

Figure 2-3. Examples of simple movements along with their motion history images (MHI) (Bobick and Davis,

2001)

An interesting expansion of this approach was presented by Weinland, Ronfard and Boyer (2006). They made

an attempt to introduce a third dimension in the historical images. It allowed them to store movements in a

form of a so-called motion-history volumes, or MHV (Figure 2-4). As stated in their paper, this enhanced

method carries multiple benefits, because in principle, more information about the motion carried out by the

observed object can be registered. However, it also imposes a major constraint on the setup where the world

has to be monitored by more than one camera simultaneously to generate MHV at specific times.

21

Figure 2-4. The expanded version of method developed by Bobick and Davis (2001) where motion-history

volumes (MHV) are constructed from images captured by four cameras (Weinland, Ronfard and Boyer, 2006)

Similar methods following the template-based approach can be found in works of many scientists attempting

to extract and reconstruct objects shapes (Demisse, Aouada and Ottersten, 2015), motions (Efros et al., 2003;

Hariyono and Jo, 2015; Lu and Little, 2006; Yhang, 2015), gestures (Shan et al., 2004) and even facial

expressions under occlusion (Rao et al., 2009). One of the biggest difficulties in all of them remains the

requirement to be able to implement an efficient method for extracting accurate data from cluttered

environments.

When the segmentation of an object becomes unreliable due to poor quality of the video footage and severe

occlusions and unwanted artefacts occur, a solution may be to limit it to a partial extraction of features only.

This can be still useful for capturing data on the object’s individual moving parts. There are two variations of

this method; a constellation model and non-constellation model. In the former, the object is represented by a

set of parts where each part contains some visual information and it is assumed that there exist some

geometric constraints linking the parts. In the latter, a spatial location of each part is disregarded to represent

a more relaxed structure of the object. Both variations share a common strategy - detecting local features and

their spatio-temporal changes rather than the whole objects in relation to the global world.

The algorithm presented by Chen and Hauptmann (2009) is based on the idea that every object is treated as

a collection of points of interest from its distinctive parts. The authors name three important steps in the

development of part-based representation: detecting points of interest carrying enough information for

successful recognition of an action, constructing a valid description of the detected points of interest and

building of a classifier for the actions. What is worth noting is that the part-based description of an action can

be done with the use of “bag-of-words” concept, where points of interest of a given image (or video frame) can

be formed as a cluster surrounding the contour of a silhouette (Onofri and Soda, 2012; Mukherjee, Biswas

and Mukherjee, 2011). Such a cluster can be then treated as a visual word that describes a local portion of an

image. This process in turn can result in the generation of a visual-word vocabulary, providing a description of

repeated patterns found in the image (Yang et al., 2015). In other words, if the clustering occurs in every

22

frame of the video footage in a sequence then it is possible to determine movement of a specific part of an

object.

Part-based approach can become quite useful for extracting certain features of an object from a cluttered

environment, but sometimes even then it may not be feasible. When surveillance scenario does not allow

accurate object segmentation and reliable tracking, it becomes more logical to disregard the identities of the

individual objects and perform the processing directly on the pixels. In its simplest form, this method

concentrates on the image analysis in a way that allows distinguishing between the foreground pixels and the

background pixels (Zhu, Mastorakis and Zhuang, 2015). This in turn allows creating a history of moving

foreground pixels over time without the need of detecting and tracking specific objects in the scene (Gong and

Xiang, 2003; Gong and Xiang 2006). It implies that movement of a group of pixels in the video sequence can

represent an object on the move, but it does not necessarily mean that an accurate labelling of an object

consisting of several moving parts can be made. This method has been proven to be more suitable for

tracking spatio-temporal changes of a single object motion in traffic environment using map of registered

vectors, called optical flow (Bhaskar, Yong and Jung, 2015; Xiang et al., 2016).

The representations of movements as an optical flow have also been useful for analysing crowds in high-

density areas where cluttering and occlusions are likely to appear. In the method presented by Rao et al.

(2013) there are five stages of the analysis (Figure 2-5). At the pre-processing stage, the frame images are

being processed from RGB to Grayscale. 2D Gaussian filter is then applied to reduce the overall noise while

preserving crucial information such as edges of shapes contours (Cabello et al., 2015; Nguyen and

Blumenstein, 2011; Khorbotly and Hassan, 2011). Similar procedure was carried out by the detection module

of Afsar, Cortez and Santos (2015) where background subtraction has been based on Gaussian mixture

filtering to determine pixel affiliation to either part of the background or object currently in motion. At the next

stage, the optical flow between every fifth frame obtained during this procedure is calculated. The process

finishes with application of spatial and temporal filtering to acquire spatio-temporal information about the

movements in a matrix form that can be then classified.

The experimental results are promising because they indicate the possibility to approximate reliably objects

locations, their directions of movement and velocity even in a highly congested environment. However, since

the authors use Horn-Shunck method that assumes the maintenance of certain level of brightness and low

object displacement between frames, the video frames need to be pre-processed additionally (Horn and

Schunck, 1981). There is a danger that this might quickly become a bottleneck in applications where

performance is of utmost importance.

Additionally to this, Hospedales, Gong and Xiang (2009) propose to divide the camera view into uniform size

cells and calculate the cardinal direction of optical flow in a given cell. This can be done by matching the

actual magnitude of the flow to a preset threshold for enhancing the robustness of the method. Similar

approaches utilising the concept of segmentation can be found in the literature on temporal (Mashtalir and

23

Mashtalir, 2016; Cernekova, Nikolaidis and Pitas, 2006) and spatial (Yu et al., 2015; Jia-Wen, 2015; Dorea,

Pardas and Marques, 2005) partitioning.

Contrary to the methods concentrating on extracting motion information about objects, there are attempts to

reconstruct the object-independent paths of events occurring in the visual scene (Tran and Yuan, 2011; Wang

and Ji, 2016; Nevatia, Zhao and Hongeng, 2003). In this approach, the main goal is to find reliable

descriptors of the events occurring in the visual scene rather than to reconstruct the objects themselves or

their trajectory. The relationship between the identified events can be computed and evaluated later on by

performing a clustering, for example. An example of this method can be found in the research of Xiang and

Gong (2006).

Figure 2-5. More detailed flowchart of crowd density estimation (Rao et al., 2013)

There are also methods that try to recover a 3D geometry from either 2D static images (Bao and Iwamoto,

2016; Sattler, Leibe and Kobbelt, 2011; Kim et al., 2015) or directly from the video frames (Zhao et al. 2010;

Chen et al., 2011; Zimmermann, Kim and Shahabi; Fitzgibbon and Zisserman, 1998). The framework

presented by Sattler, Leibe and Kobbelt (2011) consists of three modules (Figure 2-6). The first one is

responsible for associating each visible 2D feature with the visual word. The second module that performs

linear search of the potential matching features verifies the correspondences. The last module then utilises

2D-to-3D mapping to estimate the location of each point using the n-point estimation.

24

Figure 2-6. A 2D-to-3D matching framework for reconstructing 3D body from a 2D image (Sattler, Leibe and

Kobbelt, 2011)

The results show that fast and accurate reconstruction can be done by reducing the localisation of the points

of interest to a mean point. The mean point is calculated as an average Euclidean distance. The experimental

results of applying the 2D-to-3D framework confirm that 2D images of some bodies potentially can be

recreated automatically and represented in a Cartesian coordinate space as a 3D model with satisfactory

precision. The bottom-right corner of the picture on Figure 2-7 presents an original query image. The middle

part presents the reconstructed model and the top-left corner – the same reconstructed model from a different

angle.

Figure 2-7. The framework proposed by Sattler, Leibe and Kobbelt (2011) allows reconstructing entire

locations from recorded 2D images with high accuracy

There are more sophisticated methods for extracting and analysing imagery features related to motion in

video footage since their use is not limited to the area of visual analytics. Although a vast literature in

Computer Vision focuses on tracking spatio-temporal changes in a video feed for the purpose of analysing the

individual behaviour and crowd control, in Computer Graphics there can be also found attempts to model

dynamic behaviour and then to simulate them in various environments under specific conditions for other

purpose, like computer games or intelligent robots, to mention a few.

25

2.2. Classification of Activities in Individual and Group Dynamics

Classification in the most general case is a process of organising a flat set of data into a structure based on

finding common features. Classification in visual analytics targets the individuals and groups observed in the

visual scene. The main focus of this part of the literature review is made on recognition of their actions

because they are a fundamental construct of dynamic behaviour patterns. The classification process can help

one doing it.

Some researchers have developed a range of methods for human posture and action recognition through

classification (Maik et al.,2010; Cucchiara, Prati and Vezzani, 2005; Aloysius et al.,2004). In the application

presented by Hu and Wo (2010) one can find a two-step procedure for detecting and recognition of human

activity. Initially, the human features are extracted from a video with a template match method based on

estimating the edge gradient orientation (Figure 2-8). Hidden Markov model (HMM) is then used to do the

behaviour classification on the base of extracted features. The authors concentrate on extracting the positions

of the limbs such as knees and elbows because they provide critical information about human pose. They

claim that individual body parts can be detected according to the gradient orientation and their connections

can present human posture contour. The variation in limbs positions can therefore result in the recognition of a

different behaviour.

Figure 2-8. Different stages of image processing that result in the extraction of human posture contour (Hu

and Wo 2010)

The method has been proved to be efficient, but it is only capable of reporting simple activities carried out by

individuals, such as sitting or walking. This is satisfactory for simple visual analytics, where the work is

concentrated more on the process of extraction of visual features and establishing their meaning rather than

for analysis of their participation in more complex behaviour patterns.

26

Yordanova (2011) presented a better method that utilizes atomic action templates. In this approach, a typical

set of activities carried out by humans recorded in predefined templates is used to match the events occurring

in the visual scene. This allows determining what kind of situation is exhibited during particular dynamic

scenario. For example by recording the actions and their order of execution as templates it is possible to

reconstruct a totally ordered action plans. The extension of this approach adds classification hierarchy

consisting of three layers (Gong and Xiang, 2011). Each layer represents a bigger building block upon which

activities can be formed. At the bottom of this hierarchy are the so-called 'atomic' actions that correspond to

the smallest actions that human can carry out, such as 'moving a leg'. On the next level, there are actions

formed by a series of atomic actions that result in fulfilling particular purpose, such as 'walking'. At the top

level, a sequence of actions define 'activities' that in essence describe what a person is doing over a period of

time in particular space. For instance, moving upper limbs in a particular manner can constitute waving, which

in turn can result in a situation where someone greets another person.

Afsar, Cortez and Santos (2015) propose a two-step approach for recognising actions. Their algorithm uses a

HMM to recognise postures from previously detected human silhouettes. The method then proceeds with

transformation of human postures gathered in sequential frames into feature vectors that are finally quantised

into symbols. A database of posture symbols is being created as a result of this process, where each symbol

represents different action. The recognition occurs when the extracted feature vector is matched with a

symbol residing in the database. Although the experimental results have shown high accuracy in recognition

of sitting and walking under difficult weather conditions, certain limitations are clearly visible. First, the method

does not account other aspects of the actions such as their relationships with other detected objects, e.g.

sitting on the bench, walking down the stairs, etc. Secondly, there is no way of detecting a movement or the

viewing directions of the participants. Thirdly, the recognition algorithm takes posture silhouette as an input,

which implies that individual joints actions, such as waving a hand or kicking cannot be classified.

A different approach was used in the work of Maik et al. (2010). With the assumption that spatial information

of body joints can be estimated, the proposed method classifies the human poses by measuring the angles

between individual joints as shown in Figure 2-9. The body of a human is described as a collection of 23 joints

where each joint is described on three axes and constrained according to its anatomical degree of mobility.

The entire set of joints is further divided into three layers according to their level of contribution to pose

formation, which is purely logical since only limited number of limbs joints are used in the execution of most

human activities, like for example legs being used for walking.

27

Figure 2-9. Body joints representation along with their minimum and maximum angular variations (Maik et al.,

2010).

There are two types of joints in this model: major joints and minor joints. Major joints are the ones participating

in the genesis of poses, usually related to locomotion, such as arms and legs. The minor joints, such as neck

and spinal joints, typically contribute to the emergence of fine-grained interactive actions, but do not influence

the development of the poses.

Every joint being part of the body possesses minimum and maximum angular variations, so that a table of

their ranges can be created and used as a base for classification (Table 2-1). The pose is then classified

according to the variations of angular measurements of the joints in the three-level hierarchy. The poses

formed by major joints are being classified to the highest level of the hierarchy in the beginning of the

classification process. The interactive actions are being categorised at lower levels at a later stage. The

reason for this ordering is the fact that small angular changes of major joints may have a great impact on the

classification process because they may lead to erroneous results, e.g. walking might be confused with

jogging.

28

Table 2-1. Table presenting the angular variation range for given poses on three axes (Maik et al., 2010).

The use of classification in recognition of human poses and their association with potential activities shows

promising results in 2D setting. In one of their experiments the authors successfully proved also the

applicability of this approach in the case of 3D as shown in Figure 2-10.

29

(a) Walking

(b) Shaking hand

(c) Chatting

(d) Combined sitting

and shaking hand

(e) Sitting

(f) Running

(g) Interacting

(h) Sword fighting

(i) Threatening

Figure 2-10. The angular variations of joints and their impact on classification of different poses (Maik et al.,

2010).

2.3. Simulation Models for Visual Scene Analysis

Computer simulations are used in many different areas of science and industry to help the design,

construction and evaluation of systems that can be too complex to prototype. Simulations are executed in the

form of computer programs that are based on mathematical description or model of a real system

(Encyclopedia Britannica, 2017). The execution of a program produces data containing description of

mathematical dynamics representing the behaviour of the real system that can also be graphically visualized

in a form of computer-generated image frames recorded in animation sequence (Encyclopedia Britannica,

2017). Analysts test different case scenarios so that the most efficient systems fulfilling the original

requirements can be found using the data that is accumulated directly from the simulation. The simulation

approach is natural in computer games and animation but in visual analytics it is still in its infancy. Saboia and

Goldenstein (2011) indicated the importance of understanding the movements of individual participants in

30

crowds within closed spaces for the purpose of safety planning, evacuation coordination and potential

improvement of the layout of public spaces. Sung, Gleicher and Chenney (2004) also stated that high quality

behaviour simulations might be a core feature of educational and training applications. A comprehensive

evaluation of simulation accuracy of crowd models has been presented by Zhao, Cai and Turner (2015).

Depending on the requirements, there are broadly three different types of computer simulations: real-time
simulation (i.e. where the data is generated and simulated on the fly) (Bélanger, Venne and Paquin, 2010),

pre-processing (i.e. where the data is first processed by the program and next simulated, usually for

visualisation) (Hassan et al., 2011) and post-processing (i.e. where the data is processed after the simulation)

(Alexandre, David and Innocenti). In the context of dynamic behaviour analysis, scientists tend to focus on

constructing online simulations, where the actions and events are determined in real-time basing on some

well-defined criteria for emerging circumstances (Joselli, Silva and Clue, 2014; Musse and Thalmann, 2002;

Wang et al., 2011). An alternative approach was developed by Iuppa and Borst (2009). They suggest

analysing the information processes occurring within the simulator itself. Based on the simulation outputs, one

can establish what is required by a system that is being designed. By providing different inputs, it is possible

to define different models manifesting situations that can occur in real life. This approach is constructive and

efficient but it does not allow to control the adequacy of the simulation model to the external world and

because of this is less useful for analysing behaviour.

In order to build a computer simulation of the visual scene, one has to understand both the logical semantics

of the world, which is modelled, and the operational semantics of its changes, which is executed during

simulation. Sun and Wang (2008) present a method for developing a simulation. The simulator was first

cognised on three levels, namely philosophical, theoretical and technical levels, and then the appropriate

models were created. As a result, the simulator integrated them seamlessly into a world simulator, which

accounts all three aspects. In essence, the world needs to be investigated at least in terms of the structural

and dynamic features it exhibits so that the simulation can faithfully resemble its dynamics.

One could outline three broad categories of human behaviour models: force-based, agent-based and event-
based. Although the underlying theory behind each of them may be different, in case of 3D simulations it

revolves around vector calculus, matrix transforms and quaternions (Tebjan, 2011; Lengyel, 2016; Kowalczyk,

Niedzialomski and Obczynski, 2011; DeLoura, 2000; Lengyel, 2003; Sellers, Wright and Haemel, 2013). They

are absolutely sufficient to allow defining the location, translation, rotation and scaling of any spatial entity

within the coordinate system of the scene and dynamically modifying of its physical appearance and

behaviour in the viewport.

Navigation through the space plays a special role in visual simulations of dynamic behaviour due to the need

to control the locations analytically without breaking the physical laws. The main difficulty is to accurately plan

and generate the most probable trajectory for an entity residing in the virtual world while avoiding collisions.

Formulas for calculating the potential trajectory within the boundaries of the physical world are a hot topic for

many researchers in various areas of computer science, ranging from robotics (Bogdanovych, Bauer and

31

Simoff, 2009; Mlynek and Martinec, 2014; Zhang and Zhou, 2007) to computer games (Sasiadek and Duleba,

2000; Milam, Mushambi and Murray, 2000; Pelechano, Allbeck and Badler, 2007). Depending on the

implementation domain, there are different factors to be accounted, but what most of those models have in

common is that they are all based on the use of Cartesian coordinate or equivalent regardless the dimensions

of the virtual space which can be 1D, 2D or 3D.

In computer games it is also common to use path-finding algorithms, which are responsible for finding shortest

routes to the target (Software Developer's Journal, 2014; Lester, 2005; Wang and Lu, 2012; He, Wang and

Cao, 2012; Terzimehic et al., 2011). The famous algorithm of Dijkstra and A* are the most popular amongst

them. The idea of this approach is that the layout of virtual space is represented in the form of global

navigational mesh of location cells. Each cell of the mesh has an assigned weight value, which is used in the

calculation of the cost of movement to a neighbouring cell. The lower cost means that there is a higher chance

an agent will move to that cell in the next step. This method has been successfully implemented in many

projects, but it does not consider other variables that might have an impact on motion of dynamic entity, such

as mental or physical state of the agent. It can, however be used as part of the trajectory execution algorithm.

Simulations that do not use navigational system are possible. They are typically based solely on controlling

quantitative parameters, such as timing errors or virtual time (Sasiadek and Duleba, 2000). Zhang and Zhou

(2007) use matrix transformations to describe the position of a robot in 3D space, using the modified version

of D-H notation. However, the trajectories contain very useful information that can be used for reconstruction

and recognition of agent’s behaviour or intentions (Terzimehic et al., 2011). For this reason, one should

consider developing an agent model that would be complex enough to allow controlling realistic movement

patterns.

Simulations of human behaviour are typically very different for individuals and for crowds but what is common

in all of them is the presence of real world motions and activities carried out by agents. It is natural to assume

that whenever an individual is part of a bigger crowd, its motions will be more constrained. Depending on the

level of relationship between people, they will attempt to maintain an appropriate distance between others

(Kendra, 2016). On the other hand, when an open space is shared by a low number of individuals, their

movements will be more liberated. In such a situation, people will focus more on avoiding any physical

obstacles rather than circumvent others. As a consequence, the trajectories of individuals within the crowd are

easier to track. The abnormal behaviour that might emerge from, for instance, sudden changes in velocities of

movements can be easier to recognise. Regardless of the density of the crowd, when a three-dimensional

space is considered it is important to incorporate the laws of physics into it. This way the simulated micro-

world cannot only be physically more realistic, but also potentially more informative deliver for the analysis.

The individuals on the scene are considered being potentially grouped and special attention is made on their

participation in this research.

32

2.3.1. Force-based models

Several researchers dedicated their efforts to applying dynamic forces to simulate movements of individual

agents as part of a crowd (Ali and Shah, 2007; Ali and Shah, 2008; Mehran, Oyama and Shah, 2009; Wu,

Moore and Shah, 2010; Lin, Grimson and Fisher, 2010). In this approach, each agent is perceived as a

particle that is subjected to forces, such as physical, psychological (Helbing, Farkas and Viscek, 2000) or

social which force them to execute motions accordingly (Zhong et al., 2014). There are also models, which

account the dynamics of the density and velocity of the crowd itself. In such cases the modelling requires

more complex partial differential equations (Hughes, 2002; Huang, et al. 2009; AlGadhi and Mahmassani;

Treuille, Cooper and Popović, 2006).

Each of these models considers various aspects of crowds, but the main issue remains whether the crowd is

of homogeneous or heterogeneous nature. The homogenous crowd exhibits aggregated behaviour, where

single individual is part of the majority and moves coordinated with the flow. In heterogeneous crowd, each

agent acts independently, taking into consideration its current state and requirements for satisfying its

personal needs.

This leads to another question, namely if the simulation needs to be carried out either on microscopic or

macroscopic level. If one considers the crowd on microscopic level, most of the attention should be paid to the

responses of individual entities to the surrounding obstacles and events developed as a result of a kind of

chain reaction. Opposite to that, on macroscopic level there is a need to find a complementary relationship

between common goal of individuals who participate in the crowd and the overall features that control the flow

of the crowd, such as density and speed, for example.

The major flaw of force-based models is that in simulations of crowds of low density occupying large areas the

single agents may exhibit erratic movements, which is counterintuitive, i.e. a pedestrian moving in opposite

direction to his target destination location of the crowd (Saboia and Goldenstein, 2011). As a result, the

observed movements resemble more the movements of the sub-atomic particles rather than the humans.

Although there are ways to minimise the unusual movements of the agents by incorporating additional

concepts, such as cellular automata, which are able to obtain information about close-range neighbours (Guo

and Huang, 2008; Varas et al., 2007; Perez et al., 2002), or stochastic automata with movements based on

probabilistic theory (Muramatsu, Irie and Nagatani, 1999; Tajima and Nagatani, 2001), this approach is still

more focused on construction of the trajectories of the agents rather than on their activities and interaction

with the surrounding environment. Furthermore, it needs to be accounted that each agent possesses some

kind of emotional state and cognitive abilities to learn about the surroundings through which it can develop

knowledge and make decisions on its own.

33

2.3.2. Agent-based models

Several researchers made an attempt to sort out these problems by taking a completely different view of the

problem through accounting the full autonomy of the agents in the crowd (Hluchy et al., 2011; Rossmann,

Hempe and Tietjen, 2009; Ben et al., 2013; Qin and Wei, 2010; Sharma and Lohgaonkar, 2010; Li, Tang and

Simpson, 2004). In the agent-based simulation approach, each agent has an internal structure and state,

steering its behaviour. This introduces additional complexity in the overall model of the simulation, but at the

same time it enhances the realism of the exhibited behaviour, making the crowd more heterogeneous and the

agents more autonomous.

Some of the simulators, which follow this approach, have layered architecture, where the different layers

reflect the level of collaboration and allow an agent to make its own decisions within certain level of autonomy.

The highest level decisions are responsible for real-time active planning, i.e. capturing and processing the

available information and passing the outcomes of it to the middle level layer, which in turn calculates the

trajectory and/or action. The execution of the plan is usually done at the bottom layer.

This approach allows accounting higher level cognitive skills and is advantageous where there is a need to

consider emotional and social state as well. Urban and Schmidt (2001) propose the so-called PECS

architecture (Physis, Emotion, Cognition, Social Status), which can be used as a reference in designing of an

agent model best resembling humans appraisal and decision making processes. This framework was

originally developed for the purpose of simulating and analysing the behaviour of soldiers during military

operations. The agents are described with a set of personality attributes and internal processes that generate

behaviour based on their psychological and emotional states.

Figure 2-11. An agent-based PECS architecture (Urban and Schmidt, 2001)

34

The PECS architecture decomposes the overall complex model of the agent into several smaller,

interconnected component models (Figure 2-11). Each component possesses its own internal state that is

influenced by the inputs and the outputs of other components, depending on the requirements. The

Perception and Sensor components gather the information about agent surroundings. The collected data is

then passed onto the internal middle layer where it is processed according to the set of predefined rules by

the PECS components. The Physis component is concerned about agent appearance and physical changes

that might be a result of an action or passive events. The Cognition component is responsible for storing

agent’s information about the environment and its internal state on a basis of delivered data. The authors also

suggest introducing the concept of an agent losing part of the possessed knowledge due to natural human

factors such as memory loss. The Social Status component provides a set of attributes defining an agent

social affiliation within groups. This component influences each agent behaviour according to its social needs

and, as the name implies, social status. Since PECS model's assumption is that emotion play key role in the

emergence of agent behaviour, the Emotion component is responsible for generating emotional states and

processes that have an impact on the final action. The generated emotion is a result of cognitive appraisal and

information processing by other modules. An adequate action is selected by Behaviour and Actor
components on the basis of the outputs of middle layer’s components.

The structure of PECS architecture was designed primarily from the perspective of testing various cognitive

theories by introducing different extensions to the basic model. One of the suggested extensions is to

incorporate additional planning component that generates an agent's personal goal. The goal may be

represented by a certain state that needs to be reached in a series of actions in order for it to be fulfilled. The

planned strategy for achieving a given goal is dictated by accumulated data processed by the components in

the middle layer.

The behaviour of an agent with this structure is always determined using purely statistical data calculated by

its individual components which can lead conclusions which are purely formal but do not have proper

interpretation from psychological and social viewpoint. An example of this can be found in one of the

experiments of Urban and Schmidt (2001). In the simulation of students who want to prepare for an

examinations and revise, there is a rule dictating how much each of them has to learn in a group rather than in

solitude. But when studying in isolation the level of knowledge would increase or decrease according to the

personal capability, while the social satisfaction would diminish over time. The authors describe this

phenomenon with a differential equation (eq. 2-1).

SocAct ́: = -b * SocCap * SocNormal * SocMakeUp/100 * SocAct (eq. 2-1)

A differential equation describing the social satisfaction deterioration during student’s study in isolation

(Urban and Schmidt, 2001)

35

The authors also presented the decrease in social satisfaction of an agent studying alone over time in graphic

format (Figure 2-12).

Figure 2-12. Graphics of the decrease in social satisfaction of an agent studying alone over time (Urban and

Schmidt, 2001)

PECS was used as a template for development of a generic agent model described by Kvassay et al. (2012)

as shown in Figure 2-13. Each action is dependent on motives and internal state of an agent. The behaviour

patterns are defined as personal aims developed over time in a process of planning. The plans for achieving

goals are devised on the basis of the internal state and knowledge about the environment. At specific

intervals, the simulation algorithm selects the most suitable behaviour pattern according to the agent’s

strongest motive.

Figure 2-13. The internal state of an agent, its actions and motives are driven by the number of people within

a range with their actions, the events occurring and the social influences (Kvassay et al., 2012)

36

Kvassay et al. (2012) made an attempt of measuring the impact of collective aggressive behaviour of one

group of agents towards another (i.e. civilians vs. soldiers) that may result in escalation of dangerous

situations. The idea here is to determine the level of aggression of each agent based on the following:

x The influence of individual agent's needs and emotions on the group behaviour

x The process of diffusing of an already escalated situation with agent's self-preservation instincts

x The social influence of agents exhibiting leadership characteristics towards the rest of the agents in

the same group, i.e. one role model agent may persuade the others to fulfil specific group task

The internal attributes are adjusted according to the external factors (labelled as Arousal on Figure 2-14).

Actions of other agents and events occurring in the scene may influence the agent’s motives that

consequently are used to build a behaviour pattern. The author gives an example of an increased fear of an

agent caused by its observation of other agents under high stress and fear. Although the simulation model

adopts principles from psychology, the dynamics are built by probabilistic schemes, e.g. the "Fear" dynamics

is based on a formula that do not consider real world components such as current location of detected human

shape in a video. It is driven by existing “motives” and “states” that can be treated as artificially calculated from

pre-set data based on the empirical estimation of purely quantified psychological values.

The authors never considered the possibility of collecting the data from visual scenes observed by camera.

Although PECS architecture can be used as a guideline in conceptualisation of any agent-based simulation

frameworks, its drawbacks must be considered carefully before employing the model in visual analytics

context.

A different approach was taken by Rai and Hu (2013). A modular simulation framework consisting of an agent-

based model is driven by data collected from sensors in real-time. The two-layered architecture of the system

defines a clear separation of the responsibilities (Figure 2-14). Whereas the simulation model captures the

low-level dynamics of the real world, the behaviour detection layer is concerned with the recognition of a high-

level behaviour pattern.

The behaviour patterns are recognised using real-time data by a pattern detection module, which utilises the

Hidden Markov Model (HMM) method. In order for HMM to recognise the patterns, it is trained with a data

accumulated during the observation stage. At this stage the maximum likelihood of each state is estimated

and normalised so that the probability of particular real-world state occurrence can be estimated during the

simulation. The HMM parameters are calculated using the Baum-Welch learning algorithm (Baum et al.,1970).

37

Figure 2-14. Framework for simulation driven by real-time data with pattern recognition (Rai and Hu, 2013)

The data assimilation module is then used to combine the real time data with the recognised pattern to update

the state of the simulation. Various data assimilation methods are used to account the observed results in

order to improve the state estimation (Bouttier and Courtier, 1999). One such method is proposed by

Kawamoto (2010). A pedestrian motion is estimated on the basis of accounting the social forces. In this case

the micro-world is bound by the building. The state of the simulation model at any given time is defined by the

location, velocity and current destination of every agent within the building. The navigation of each individual

agent is projected onto the map of the building floor represented as a waypoint graph. Since the vertices of

the graph reside only at the intersections and corners of the corridors on the same floor, the movements of the

agents are limited to straight lines and do not cross the walls. The distance controls the collision avoidance

between agents. The optimal route is rescheduled each time an agent finds itself within a certain proximity to

another.

The standard process of data assimilation starts with the input of all states available at time step t-1into

simulation model at step t as presented in Figure 2-15. This process results in a generation of a set of new

states that are then used to create a set of new "observations". The generated observations are then

compared with "real" observation set. The results are normalised to estimate their significance and all states

are assigned correct "weights” for the use by the resampling algorithm. The output is the set of states used as

an input for the next time step t+1.

38

Figure 2-15. Data assimilation process is reinforced with behaviour patterns information output (Rai and Hu,

2013)

Rai and Hu (2013) enhanced this model by introducing the behaviour pattern detection module into the

process that provides an additional input about the patterns. At each time step, the HMM first identifies the

behaviour patterns of the system and provides them in the form of a set of states to the simulation module.

The simulation model then uses this information to model the selected behaviour pattern set. This in turn is

used in the sampling process that outputs more accurate results than the simulation without input from the

real-time data.

The method of Rai and Hu (2013) was applied to an office environment with a set of sensors deployed in

strategic locations such as doors. The sensors were able to register the occupancy of individuals in the

covered areas. However, due to technical limitations they were unable to identify individuals passing by

certain locations. Additionally, the sensors were prone to errors caused by highly congested parts of the office,

and the recognition of group movements was practically impossible. Because of these limitations, the

recognised behaviour patterns possess characteristics of a simple binary system with two actions only, like

“entering the conference room” and “leaving the conference room” as shown in the diagram in Figure 2-16.

The physical state and appearance of the individual agents in the space is therefore lost. However, if the

binary motion detecting sensors were replaced with cameras capturing the visual scene in more details, more

information would immediately become available. This would allow defining more complex behaviour patterns

exhibited by an agent such as "agent A is walking along a shelf" or "agent B picks up a bag from the floor".

High-level information like this is very difficult to obtain directly from the camera feed as commented by the

author.

39

Figure 2-16. The state transitions and their probabilities for Hidden Markov Model pattern recognition in an

office scenario (Rai and Hu, 2013)

2.3.3. Event-based models

In the event-based models, the actions are triggered by events and situations occurring in the world at given

moments of time (Xiang et al., 2016; Rao et al., 2013; Cabello et al., 2015). The event-oriented

characterisation of the actions can also be found in models that are used to formulate a theory of moving

objects (such as vehicles in simulations of car-accident scenarios), not only of people (Nguyen and

Blumenstein, 2011).

From conceptual and logical perspective, this approach complements agent-based methodology by adding

contextual and semantic information about the environment. Typically this is implemented in the form of a

separate layer in the overall architecture or at least an additional module, responsible for broadcasting the

updates when the situation changes.

The situation-based strategy was adopted by Sung, Gleicher and Chenney (2004) to address the issue of

controlling multiple agents in a crowd simultaneously. In this approach, the behaviour of each agent is driven

by events occurring in his local environment as well as by its internal state. The high level layer gives an agent

details about how it should act adequately to the situation it found it in. At a low-level layer the authors use a

scheme that calculates the probability of the possible state transitions. When the process finishes, the result is

40

sampled to move the simulation further along the most probable transition. The authors concentrate more on

the anonymous nature of the crowds and are not interested in tracking the individual actions of the separate

agents. Instead, in their solution the crowd is controlled by the events that occur in their environment. The

events have an impact on how the crowd moves, its direction of flow and so on.

The behaviour is perceived holistically as behaviour of the crowd rather than as behaviour of the individual

entities so it is impossible to infer more complex behaviours at a higher level of granularity. Each agent’s

contribution to the overall behaviour of the crowd is short-term and therefore its identity is not being

considered in a long-term evolution for exhibiting more complex behaviours.

Figure 2-17. The architecture of situation-based framework for behaviour analysis (Sung, Gleicher and

Chenney, 2004)

The situation-based approach determines which behaviour function is going to influence the action of an agent

at any given time as shown in Figure 2-17. The determinants may vary, but they can be narrowed down to

location of the individual agent, what an agent can sense within its local area or the density of the crowd.

When an agent enters the area covered by a certain "situation", its model is extended with a behaviour

function that allows executing an adequate action. Analogically, when an agent leaves the "situation" area the

ability to execute an action adequately to that situation is removed.

In this approach there are two types of situations: spatial and non-spatial. Once defined, spatial situations

remain static and cannot be moved, but they can be removed at run-time. The non-spatial situations are not

bound to any specific predefined areas, but rather to dynamic objects such as moving groups. This implies

that agents can be either added or removed from non-spatial situations by fulfilling certain conditions only at

run-time. There is also a difference in terms of how the two types of situations operate. A spatial situation

always adds behaviour components whenever an agent is within a close distance to it and removes them

41

when agent leaves the area as indicated in Figure 2-18. On the other hand, non-spatial situations affect

agent’s behaviour by assigning itself to its model. By doing so, the agent is under constant influence of the

situation that may move along with him. The authors claim that dynamically adding and removing behaviours

at run time can result in a more scalable framework.

Figure 2-18. The agent receives the information from the environment about events, states, sensors and

behaviour functions to select adequate actions (Sung, Gleicher and Chenney, 2004)

Virtual sensors attached to an agent upon entering “situation” area capture the events occurring in the scene.

The collected information is then stored in agent's internal data structure for further computations and

evaluation of behaviour functions. In the framework of Sung, Gleicher and Chenney (2004) there are four

types of sensors:

x Empty sensor responsible for detecting presence of agents in particular area of the scene.

x Proximity sensor, which is used for maintaining certain distance from a location in the scene.

x Signal sensor for checking particular signal status in the scene such as signalling lights at pedestrian

crossing.

x Agent sensor, which is used for checking the state of an agent behaviour including position and

orientation.

Since every agent is involved in several situations at the same time, its behaviour, especially movements,

might become erratic. For this reason, the authors introduced a rule-based system that cancels certain

behaviours under specific circumstances. For instance, in a situation where an agent is supposed to sit on a

bench, it must not suddenly turn around and walk away from it.

The authors also specified several default behaviour functions when the agent is outside every possible

situation to allow its free movement around the scene. These functions prevent collisions with obstacles in

42

agent’s way such as static objects or other dynamic agents and potentially plan its future destination target in

the form of a waypoint graph. The behaviour function evaluates the probability of the next state from a given

set of available states at the given time. This operation is performed for each behaviour function available to

the agent at a simulation step.

Figure 2-19. The output of behaviour functions are composed and final result is sampled in order to select the

next state (Sung, Gleicher and Chenney, 2004)

The result is then composed and normalised using sigmoid function, commonly found in Neural Networks

(Callan, 1998). The output value of such function is within the range [0,1]. The authors mention that

multiplication of the outputs allows the possibility of one state to cancel another. The sampling of the final

result (Figure 2-19) enables an agent to select an action with both high probability and low probability and

consequently to generate more random flow of the crowd.

Since the agent's behaviour is dependent on the location of the situations, one of the major requirements is to

have a possibility to specify their regions in the scene. The authors developed a tool that allows drawing the

desired area on top of the physical architecture of the scene (Figure 2-20). It has multi-layered structure where

each layer defines specific situation. The map of regions is then stored as a bitmap file that can be read during

initialisation of the simulation.

43

Figure 2-20. A visual tool for setting situation regions within the environment is shown on the left. On the right

figure the formation of non-spatial situations out of the group at run-time can be seen (Sung, Gleicher and

Chenney, 2004)

To simplify the description of the situations in the scene, one could also attach situations with appropriate

radius to successfully recognised static objects as simulator input. The non-spatial situations can also be

attached to the median point of the dynamic events, e.g. when a group of agents meet, their average distance

to each other can be calculated and treated as a centre point of the situation location. By doing so, the group

can be tracked as a singular entity while preserving the identity of each participant.

Figure 2-21. Situation areas in a street environment; each situation is labelled with a number for easy

monitoring and evaluation of case scenarios (Sung, Gleicher and Chenney, 2004)

44

One of the simulated scenarios using this framework is a street environment as shown in Figure 2-21. In the

visual scene, most of the situations occur at pedestrian crossings. There is a "crossing street" situation

defined at both unsigned (4) and signed (1) pedestrian crossings. The "traffic sign" situation (2) can occur at

signed pedestrian crossing because of the presence of traffic lights. One additional situation present in the

scene is "in-a-hurry" situation (3) that defines behaviour of crossing the street without reaching pedestrian

crossing first. At the beginning of the simulation, the agents are walking on pavements on both sides of the

street. When any of them reaches the "situation" area, it immediately responds to it. At pedestrian crossing

with lights the agents receive information about the light state through the sensor provided by the situation and

stand in a stationary position until the light changes to green. On the pedestrian crossing without lights the

agents simply cross the street without paying attention to any additional environmental conditions. When

agents found themselves in a "in-a-hurry" situation, a set of running activities are added to the set of possible

behaviour states so that an agent can cross the street in a hurry.

The authors identify several advantages of using their strategy. First, the design of an agent is broken down to

the design of local activities, which means there is no need of constructing complex internal model of the

agent. Second, once the actions are assigned to specific situations, the situations can be reused in any other

scenarios. Thirdly, the solution provides an efficient way of controlling agent’s behaviour because it is based

on delivering only partial information to the agent about the world at any given time.

2.4. Analysis of the patterns of human dynamic behaviour

The automatic detection of human behaviour patterns is a hot topic among researchers due to its applicability

in a wide range of domains. There exist examples of works whose main focus is to develop an efficient

method for analysis and recognition of behavioural patterns. Fraud Detection in online banking, abnormal

behaviour after user authentication, detecting anomalies in online traffic to predict user intention or derivation

of individual movement behaviour patterns on a basis of spatio-temporal data obtained from GPS sensors or

similar are only few research directions. The system developed by BioCatch “distinguishes between a real

user and an impostor by recognizing normal user behaviour and fraudster behaviours, even when no profile
exists” (BioCatch, 2017). The solution concentrates on a range of problems related to the analysis of

information that is being entered by online users at different stages of sensitive private webpages browsing or

device interaction. The difference between the solution offered by BioCatch and common security practices

(e.g. entering passwords) is that the platform continuously analyses user's behaviour and his interactions with

the device to detect vulnerabilities at every point during the session. A biometric profile of individual user is

built as a result of this process that is subsequently used for recognizing cybersecurity threats such as

malware, remote access Trojans (RATs) or online bots activities. BioCatch technology conducts identification

of suspicious human behaviour patterns relying on data that is input by users directly to devices. Similar

methods can be found in models for identification and analysis of emerging user behavioural patterns during

interaction with multimedia social networks (Zhang et al., 2017), mobile phone use (Zhou, Xu and Huang,

2010) or general web browsing (Gao, 2010). The mutual characteristic of these models is that they depend on

the data that is explicitly generated by users during their interaction with the system. Such data is not

45

adequate for performing visual human dynamic behavioural patterns recognition since no spatio-temporal

information such as location or orientation is enclosed.

Figure 2-22. The method for behaviour pattern recognition of online users depends on data collected during

browsing sessions (Gao, 2010)

The study conducted by Kelly, Smyth and Caufield (2013) focuses on evaluating the hypothesis that

demographic and social information of an individual can be inferred from his location data. To that end a

global position system (GPS) technology embedded into mobile phones was used to examine the relation

between human location behaviour patterns and certain characteristics about the individual. The aim is to

build a dataset from location data signals received by sensors and subsequently use them to analyse the

individual movements between different geographic locations. Identification of geographical areas that an

individual visits on a daily basis can help understanding his routines. Kelly, Smyth and Caufield (2013) have

formulated their problem as a clustering problem where they built the map location clusters from individual's

location data (Figure 2-23).

Figure 2-23. The location clusters built on a basis of individual’s location data collected by GPS sensors used

in the movement behaviour pattern recognition method proposed by Kelly, Smyth and Caufield (2013)

46

The Hidden Markov Model (HMM) was then configured to represent the most usual movement behavioural

patterns of an individual. The most visited geographical areas are represented as a sequence of hidden states

while the dataset of location points is defined as a sequence of observations. The utilization of HMM results in

the computation of temporal entropy vectors of an individual taking into account his transitions from one global

location to another in order to describe his overall daily behavioural pattern. The results of conducted

experiments show that 17 different characteristics of individual can be successfully predicted with an average

accuracy of up to 85.5% with the proposed method. Similar models were developed for discovering higher

level behavioural patterns from individual and vehicle GPS trajectories (Qiu and Bandara, 2015; Wuang,

Huang and Shan, 2015; Vieira et al., 2015; Naji et al., 2017). Since the solutions depend on the data obtained

with GPS technology rather than visual information derived from video feed, they may not be suitable for

utilization in indoor spaces. GPS signals are carried at a frequency that do not easily penetrate solid objects

such as walls or roofs and require clear line of sight between the satellite and the sensor-equipped device to

pinpoint its accurate global position (Fredrick). However, GPS is not the only technology found in today’s

mobile phones that is being used by researchers to derive dynamic behavioural patterns. For instance, Shila

et al. (2016) propose user authentication method for mobile devices using human movement and location

patterns derived by machine learning techniques on the data collected from device sensors such as

accelerometer, gyroscope, magnetometer or Wi-Fi. The approach requires one to adopt a model that depends

on constant monitoring of the devices that individuals are using (e.g. with a bespoke application pre-installed

on the device) and reliability of the signals received by their sensors, i.e. the availability of the location data.

There have been attempts at recognition of dynamic behavioural patterns on a basis of visual data obtained

from the camera feed. As indicated by Saitou et al. (2006), many researchers propose various methods for

recognition of the scene and human activities separately. The authors suggest that activities carried out by

humans are closely related to objects in a context of a visual scene. This consideration has led them to the

development of a framework where complementary modules are capable of recognizing relationship between

actions and objects to formulate a social dynamic pattern. To this end, first the movements of human head

and hands are monitored by stereo vision. The extracted information on the position and orientation of limbs is

subsequently supplied to Dynamic Bayesian Network (DBN) in order to perform the classification of the

actions. In the final phase of the process novel conceptual models are used to refine the obtained data on the

relationship between dynamic activities and objects. The hierarchical model consists of functionality labels of

objects rather than their appearance. By doing so, the relationship between functional attributes and potential

human actions can be easily established on a given model.

The framework presented by Saitou et al. (2006) use two cameras simultaneously to obtain images and depth

maps in parallel. The depth map is used for tracking the skin contour and object silhouette from the video. The

visual features are extracted from the video frame images maps. The output of this operation consists of 3D

positions of human limbs so that adequate label makers can be placed on captured images. This results in

extraction of critical visual features that are next supplied to DBN in order to classify actions that are next used

in the hierarchical model to report a dynamic pattern. The pattern is reported on a basis of defined

47

relationships between dynamic actions and objects. The flow of the framework process is presented in Figure

2-24.

Figure 2-24. The framework developed by Saitou et al. (2006) is capable of establishing a relationship of the

action executed by a human and object and derive a dynamic behavioural pattern on that basis

The results of the conducted experiments are promising (Table 2-2), but the authors are considering head and

hand movements as the most crucial in the analysis of human action. The adopted model would have to be

expanded in order to recognize dynamic patterns related to locomotion around the visual scene such as

"walking along an object".

Table 2-2. Results of the analytical evaluation of the framework proposed by Saitou et al. (2006).

2.5. Review of the available 3D modelling tools and technologies

In order to successfully implement any simulation-based dynamic behaviour analytics approach the software

tools are of key importance. There currently exist multiple tools that can support the development of

48

application capable of simulating dynamic human behaviours simultaneously allowing their analysis on a basis

of spatial properties of objects. A review of the available 3D modelling tools suitable for this purpose is

presented in the next sub sections.

2.5.1. OpenGL

The Open Graphics Library (OpenGL) is an universal graphics library that is widely used in the industry for

development of 2D and 3D graphics in a wide range of application games and simulations. The API provides a

programmable rendering pipeline that is executed directly on Graphical Processing Unit (GPU). The library is

a “window-system and operating-system independent as well as network transparent” (Khronos Group, 2017).

The model developed by Zhang et al. (2016) is a prime example of OpenGL utilization for development of

three-dimensional human representation and virtual agent's behaviour characteristics. Their adopted

geometric model of human body was developed using 3Ds Max modelling software (see section 2.5.7). The

OpenGL graphics library was subsequently used to reproduce this model in a dynamic three-dimensional

environment. The API that is provided by the library can be used to access low-level features of the underlying

graphics hardware for rendering 3D graphics in real-time.

2.5.2. Second Life

Second Life is a free to use online application simulating a 3D-based virtual world in which one has the ability

to create his own character called avatar (or resident) and participate in its development (Rymaszewski et al.,

2006). The developer of Second Life, Linden Labs, provides a client application (viewer) for each of the major

operating systems, including Windows, Mac OS and Linux that allows connecting to one of its servers where

the virtual world is being hosted on. Among a variety of tools, the platform comprises of 3D modelling tool that

allows constructing own objects (primitives) and a sophisticated, state and event driven scripting language

called Linden Scripting Language (LSL). The LSL can be used for building custom functionalities for

manipulating spatial properties and dynamics of objects, controlling avatar behaviours and registering and

responding to events that may occur in the virtual world. The framework allows developing 3D simulations of

specific case scenarios that may help in the visualisation of dynamic behaviour of agents in a given

environment. Second Life is a great tool for creating immersive 3D worlds in which people can interact with

each other: talk, play, lead conferences, educational purposes or even conduct businesses. It is a

sophisticated 3D simulation tool but not good analytical tool. The LSL interface enables one to attach various

primitives to constituent parts of the avatar body (Rymaszewski et al., 2006), but the adopted agent model

does not consider spatial information of the limbs such as world location and orientation that could be used for

analysis of the patterns. To circumvent this problem, one could load poses animations with BVH files and use

them as a source for collecting data on location and rotation of various (Second Life Wiki). There are two

problems with such approach: the streamlined files would have to be pre-recorded with special hardware such

as previously mentioned Microsoft Kinect (Microsoft, 2015) that may not be available and the bottleneck that

may arise from parsing the complex structure of these files in relatively short amount of time. The application

does not incorporate a mechanism that would automatically perform the analysis of dynamic behaviour

49

patterns exhibited by agents. Such functionality would have to be programmed manually. Several technical

limitations of the framework have also been identified:

x A memory cap of total size 64 KB (including bytecode, stack and heap size) imposed on every LSL

script greatly limits the capabilities of the software. In this research, individual and group dynamic

patterns of agents are considered to be analysed simultaneously, which presumably will require more

resources for intense computations of data stored in the memory.

x LSL is greatly limited in terms of data structures support which are of great importance when it comes

to accumulating valuable dynamic information on agents participating in the simulation required for

performing subsequent pattern analysis

x Inability to include own libraries means that a separate pattern analyser module would have to be

implemented separately. The events registered during the simulation would have to be sent to a

separate server dealing with this process.

x As indicated by García-Zubia et al. (2010), Second Life platform was not developed with real software

development in mind and therefore, provides only limited interfaces that a programmer can utilize to

process input data from the user, namely a dialog window with a selection of answer-buttons (llDialog)

or text box where user can write characters (llTextBox). In order to streamline data about visual scene

coming from a different application, such as trajectory reconstruction module, one has to implement a

special interface that utilizes embedded browser provided by Second Life in an unconventional way

(García-Zubia et al., 2010).

x The configuration needs to be made on Linden Lab servers, which may significantly reduce control

over the implementation setup

2.5.3. JmonkeyEngine

JMonkeyEngine is an open source game engine written in Java based on OpenGL (Kusterer, 2013). It can be

used for the development of 3D applications that can be universally run on any platform equipped with Java

Virtual Machine (JVM). As of time of this writing, JVM is supported by major operating systems up to date

including Windows, Mac OS and Linux (jMonkeyEngine, 2016). Apart from Java native libraries, the engine

incorporates a wide array of libraries that provide the out-of-the-box capabilities for implementing a variety of

3D functionalities: physics (jBullet), networking (SpiderMonkey) and graphical user interface (Nifty GUI) to

name a few. In addition, the engine is distributed with BSD license and fully-fledged Integrated Development

Environment (IDE) (Figure 2-23) that has been built on top of NetBeans platform. Such configuration ensures

ease for handling code (e.g. debugging), manipulation of graphical and non-graphical assets (e.g. 3D meshes,

textures and XML files) within application folder structure or shaders creation (special low-level programs for

controlling stages of graphics rendering process executed on GPU (Khronos Group, 2017)).

50

Figure 2-25. jMonkeyEngine IDE iOS interface (jMonkeyEngine, 2016).

2.5.4. Ogre

Ogre is an open source, 3D graphics toolkit entirely written in C++ (Ogre3D, 2016). Rather than a fully

capable game engine, Ogre delivers means for developing one according to the requirements of the project.

With specially designed internal set of libraries, it removes problems associated with utilization of OpenGL and

Microsoft Direct3D functionalities (Navarro, Pradilla and Rios, 2012). The toolkit is distributed with MIT license

and has been used to develop applications for wide range of popular platforms such as Windows, Mac OS

and Linux.

2.5.5. Unity

Unity is a sophisticated, cross-platform game engine, which has been used for development of applications

with complex graphical requirements (Navarro, Pradilla and Rios, 2012). It is delivered with a set of tools

among whom one can find an visual editor for designing a 3D scene and IDE for development of the

application code. The engine supports three programming languages for development: C#, JavaScript and a

language for .Net called Boo (Boo-Lang). All of the languages can be used in parallel for the construction of

application architecture. Unity supports development of 3D games for several major platforms: Web, iOS,

Android, Windows, MacOS and Wii, Xbox360 and Playstation consoles (Unity Game Engine, 2017). Unity

engine has been built on top of state-of-art technologies in mind for an efficient and complex 3D projects

development. The render engine reduces workload for the graphic drivers by combining different geometries

into parallelizable units and provides great support for shaders creation. The engine fully supports the

OpenGL library, which means all applications can be optimized for mobile devices (Navarro, Pradilla and Rios,

51

2012). The physics engine is based on Nvidia’s PhysX (PhysX Technology, 2017) that allows one to introduce

the laws of physics into the virtual scene such as gravity, friction and so on.

Figure 2-26. Unity engine interface with labels of the most crucial panels (Unity Game Engine, 2017).

2.5.6. Unreal Development Kit (UDK)

The Unreal Development Kit (UDK) is one of the most advanced game engines available on the market that is

distributed under a non-commercial free user license and commercial profit share based license (Savage,

2015). UDK combines several tools for development of high quality 3D applications for a wide range of major

platforms used today: XboxOne, Playstation 4, Nintendo Switch, MacOS, Windows, Linux and iOS to name a

few. According to developer, the engine has been entirely designed and based on C++ for creating highly

optimized 3D applications (Epic Games Inc., 2017). Similar to Unity, the physics engine is based on the latest

implementations of Nvidia’s PhysX (PhysX Technology, 2017) that can be used to introduce physics into

virtual scenes.

The Sequencer, a tool for creating cinematics within games, can be used for visually directing various case

scenarios, which are a matter of interest for subsequent agent behaviour analysis. An interesting feature of

the engine is a unique visual scripting system called Blueprints that allows one to create a complete logic of

the application without manually writing code. Blueprints can be utilized to quickly prototype behaviours of

objects, mechanisms for controlling user input and visualizing the entire flow of the application at run-time

(Epic Games Inc., 2017). The other features of the engine include VFX and particle system, terrain editor,

52

multiplayer framework, AI module, material editor and recently developed solution for creating virtual reality

(VR) and augmented reality (AR) applications (Epic Games Inc., 2017).

Figure 2-27. Blueprints system allows one to visually script application logic without writing a code (Epic

Games Inc., 2017)

2.5.7. Cry Engine

The Cry Engine was developed and is maintained by Crytek Inc. (Crytek Inc., 2017). Next to UDK, Cry Engine

is a so-called next generation games engine providing a sophisticated IDE for development of high quality 3D

applications. It is distributed under “100% royalty free” license. The engine supports DirectX12, an array of

programming interfaces (API’s) developed by Microsoft to “handle tasks related to rendering 2D and 3D vector

graphics, rendering video and playing audio on the Windows Platform” (Parrish, 2016). The current version

supports several platforms including Windows, Xbox One, Playstation 4 and even VR hardware such as

Oculus Rift. The engine has several interesting features for specifying dynamic navigational data structures

that update according to spatio-temporal changes of the visual scene (Multi-Layer Navigation Mesh module),

controlling skeletal animations of agents and their movements (Parametric Skeletal Animation module) and

caching system that allows recording a complex 3D simulation and reducing its original file size up to 10%

(Crytek Inc., 2017). Cry Engine provides a Flowgraph visual scripting system that is similar in operation to

UDK Blueprints. Instead of developing application logic by writing a code, it allows one to develop it using an

intuitive visual interface as shown in Figure 2-28.

53

Figure 2-28. Flowgraph system in many ways is a Cry Engine counterpart of UDK Blueprints (Crytek Inc.,

2017)

2.5.8. 3DS Max

Figure 2-29. The interface of 3DS Max allows one to preview and manipulate visual scenes in real-time

(Autodesk Inc., 2017)

54

The 3DS Max is a software for 3D design, modelling and animation developed and maintained by Autodesk

Inc. (Autodesk Inc., 2017). With a set of comprehensive tools provided by the application one can create 3D

representational models of world objects, define their physical properties such as shapes, materials and

textures and generate procedural and key-framed animations. The interface allows to visually manipulate

objects and their properties in real-time. The 3DS Max was built with development of 3D assets in mind and

although it contains some interesting features such as crowd generation (Autodesk Inc., 2017), it does not

contain sufficient programming IDE that is essential for implementation of pattern recognition model. Autodesk

Inc. distributes software with a commercial or educational license only.

2.5.9. Maya

Maya is another 3D modelling software developed and maintained by Autodesk Inc. (Autodesk Inc., 2017).

According to its developer, “Maya 3D animation, modelling, simulation and rendering software provides an

integrated, powerful toolset that can be used for animation, environments, motion graphic, virtual reality and

character creation” (Autodesk Inc., 2017). In many ways it is similar to 3DS Max, but with a stronger emphasis

on more precise character modelling and animation (Autodesk Inc., 2017). Similarly to 3DS Max, Maya does

not provide a satisfactory IDE for the implementation of pattern recognition model and it is distributed with a

commercial or educational license only.

Figure 2-30. Maya software interface (Autodesk Inc., 2017)

55

2.5.10. Blender

Figure 2-31. Blender software interface (Blender Foundation, 2015)

Blender is the advanced, open-source 3D modelling and animation software that combines sophisticated tools

for development of visual scenes and objects. The software allows one to create 3D visual scenes, objects

and define their physical properties using an intuitive visual interface in real time (Figure 2-31). As with 3DS

Max and Maya, Blender contains essential tools for creating complex animations that may involve armature

development for agents. An interesting feature of Blender is that it has a built-in game engine, which not only

fully supports OpenGL features such as lighting or materials but also provides one with Python scripting API

interface for developing game logic and custom scripts. Unlike its counterparts, Blender is distributed with

GNU General Public License (GPL), which makes it free software.

2.6. Potential use of software engines for simulator implementation

In order to implement successfully any simulation-based dynamic behaviour analytics approach the software

tools are of key importance. After careful examination of the available options, a well-known game engine

jMonkeyEngine was selected (Kusterer, 2013; Reese and Johnson, 2015; Edén, 2014). Both the situation-

based strategy used in the architecture of Sung, Gleicher and Chenney (2004) and the agent-based approach

developed by Urban and Schmidt (2001) can be easily implemented using this engine. There are similarities

between conceptual ideas incorporated in the architecture of Sung, Gleicher and Chenney (2004), the

modular approach adopted in PECS system (Urban and Schmidt, 2001) and the internal core architecture of

the jMonkeyEngine framework (Kusterer, 2013). The functionalities provided by the libraries of

56

jMonkeyEngine are modular and allow coordinating the behaviour of the scene on local and global levels as

shown in Figure 2-32. The “app states” are used to maintain the global state of the simulation world whereas

“controls” are used to enhance agent’s abilities with actions necessary for building a specific behaviour.

The visual scene in jMonkeyEngine is described in a hierarchical data structure called scene graph, where

each element of the graph corresponds to an entity in the visual scene. In this framework the entities can be

also grouped in a parent-child hierarchy. Two types of classes control the behaviour. The so-called "app

states" are responsible for maintaining global state of the scene whereas "controls" enable one to encapsulate

specific dynamic behaviour of an entity in a class. Both can be added or removed at run-time. Each "control"

possesses its own update loop that updates the internal state of an agent according to its implemented logic

and control rules. The “app state” role is to update the main update loop and maintain the global state of the

scene, e.g. physics state that regulates the gravitational forces.

Figure 2-32. jMonkeyEngine framework provides means of adding and removing behaviour on both local

and global levels (Kusterer, 2013)

57

2.7. Research summary

The research conducted in several areas related to human behaviour analysis from visual data has raised the

awareness not only of the available methods with their advantages, but also of their limitations. This is

extremely important for the success of the entire research program for dynamic behaviour analysis from live

video footage because of its complexity and it requires well-informed choice. The aim of the extraction

methods is to successfully identify static and moving objects in the video footage taken by a physical camera,

which monitors different environments. The classification methods make an attempt to classify the identified

objects and movements in order to establish their meaning. The simulation models are needed for evaluating

different scenarios of human behaviour under specific conditions and according to pre-defined set of rules.

The literature contains some examples of combination of the above methods - either to make the analysis of

human behaviour more sufficient, more accurate, or both. However, none of the reviewed frameworks

considers incorporating of a full 3D simulation model driven by real world data that would be used for inferring

behaviour patterns of both individuals and groups in real time. The reviewed literature mostly concerns about

the methods for extraction and classification based on direct processing of the image frames obtained from

the video feed. Very rarely if ever they consider the logical relationships between static and dynamic entities of

the world, which is of paramount importance for any real-world application. It would be difficult to recognise,

for instance, a pattern of a "man walking along a shelf" in a shop scenario based on the methods discussed in

this chapter, because such a pattern would involve processing of too much information that needs to be done

in real-time: identification of the physical boundaries of the shelf, recognition of the walking activity, estimation

of the distances between different entities, involved, establishing the direction of movement for a limited period

of time, etc. This might be possible by visual data processing methods alone but this would require huge

computational power because of the volume of information which needs to be processed in real time and the

complexity of the images which contain many layers of information. The original problem can be simplified by

splitting the analysis into three steps – first selective extraction of the physical information which needs to be

analysed by focusing on the essential features which define the dynamic behaviour, then restructuring of the

extracted information and enriching it by organising it into a dynamic model of the video feed by 3D simulation

and finally recognition and classification of the dynamic patterns through algorithmic analysis of the observed

simulation. The model-driven analysis could simplify the analysis of the behaviour by replacing the analysis of

the original footage with analysis of the simulated dynamics because it can incorporate into the model physical

laws and logical dependencies which are not explicitly present in the original video footage and thus, to

provide essential information for supporting the analysis. In the next chapter, we will develop a

conceptualisation of a model-basic event-driven framework which adopts this model-based event-driven

approach.

58

Chapter 3

Conceptual framework for model-driven dynamic
behaviour analysis

Humans can interpret dynamic behaviour on the basis of visual observation and individual level of knowledge.

With the recent advances in technology it is possible to delegate the process of analysis to machines. The

benefit of this is that one can automate the understanding of human behaviour by the machines and, this way,

improve security and safety management, gain better business customer insight, further advance video

games programming, etc. However, performing such analysis in real time is a challenging task due to the

necessity to combine purely visual data processing with complex analytical data processing. Whereas the

processing of visual data can be done to a satisfactory level thanks to recent technological development, the

second one requires model-driven behaviour pattern analysis which makes the task much more difficult.

Human behaviour can be analysed from different perspectives:

x Dynamic behaviour is perceived directly from visual observation of physical movements and

gestures of individuals.

x Cognitive behaviour is inferred by analysing individual's goals, intentions and actions in pursuit of

reaching them.

x Psychological behaviour is assessed by monitoring the emotional state of individuals.

x Social behaviour is analysed on a basis of interrelations among individuals and their actions towards

each other.

The possibility of performing other types of analysis, namely cognitive, psychological and social, may be

considered in potential future work, but the focus of this research is the analysis of dynamic behaviour of

humans in restricted spaces.

Dynamic behaviour can be also scrutinised within the context of different research paradigms. Few label often

met in various areas are:

x Visual analysis of the individual movements as perceived by the observer

x Logical analysis of the events as recognised by the listener

x Statistical analysis of the group location and individual appearance as measured by the measurer,

etc.

59

In this research, the aim is to combine visual observation of individual and group dynamics through the eye of

a virtual video camera with logical analysis of the events on the visual scene as registered by various sensors,

excluding any statistical analysis of the group behaviour.

3.1. Overview of the conceptual framework

Dynamic human behaviour is manifested in the form of physical activities that allow the individuals to fulfil their

specific goals in their daily life. On a closer examination they can be fragmented into smaller actions, executed

in a specific and orderly manner. Let us consider a typical shopping mall scenario where an individual

purchases a product. The relevant information includes the topology of the building, the location of various

objects and individuals within the physical space at any moment of time and the dynamic movements of the

individuals through the space. This can be considered input data of our analysis. The activities may include

navigating through the layout of the mall, acquiring the product from inside a specific shop and leaving the

building through a designated exit. On a lower level of details it can be observed that the navigation consists

of simple movements, such as walking along a designated pathway, climbing stairs inside the building,

entering a shop through doors, walking towards a shelf, reaching out for a product, and so on. These

movements are the building blocks of the behaviour patterns through which the observer analyses human

behaviour. When an individual is walking towards a static object on the scene with minimal deviation from this

direction for a certain amount of time, this particular behaviour can be labelled as “an individual walking

towards a static object”. When a specific angular configuration of the limbs indicates that the individual’s arm

is stretching out, the pattern can be labelled as "reaching out for an object". In other words, the physical

movements of the individuals and the parts of their bodies can be used as a basis for formulating various

dynamic patterns of individual’s behaviour. So the output of our analysis is the patterns of behaviour.

Dynamic patterns always possess algorithmic nature. Following the order of actions and the events which

happen over the time it is possible to realise that they appear one after another in a strict sequence, that they

have been repeated a number of times, that some of them occur only in some occasion while some other

happen unconditionally, and so on. This in turn provides information about the emergence of new situations in

observed scene which can be described in terms of an abstract algorithm.

Another important characteristic of the dynamic patterns of behaviour is that they are relatively robust and do

not depend significantly on the precision of the data. For example, walking towards a door does not depend

on the speed of walking, neither on the precise distance to the door and the direction of movement can be

estimated with an relaxed interval of acceptable deviation. This means that behaviour patterns can be derived

from approximate perception of the world rather than from accurate footage. Sufficiently rich data suitable for

the purpose of the analysis can be generated by 3D simulation.

60

3.2 Simulation-based analysis of dynamic behaviour

In the simulator-based approach we adopt for the purpose of simulated video analytics the information can be

split into two parts - static information about the visual scene, which is a result of visual reconnaissance of the

scene obtained priory to the analysis, and dynamic information about the changes in the simulated scene. The

static information is a result of purely visual information processing and is considered external input. It is

loaded periodically as initialization data for the scene while the dynamic information can combine both

physical data, such as data about locations, positions and directions, and abstract data, such as synchronous

data about the trajectories of movements on the scene as well as asynchronous events, which may occur on

the scene at any time. Because the generated data is limited to only a few dynamic characteristics – absolute

and relative positions of whole bodies and parts in the 3D space, absolute and relative directions of individual

objects and groups of objects, it can be processed efficiently. In this paradigm the simulator uses minimal

physical data and combines it with data generated through simulation, which significantly reduces the

requirements in comparison with the use of physical data directly from video footage for analysing the

behaviour.

But the role of the simulator is not limited to approximating physical information with generated data. The

simulator can also enhance the information needed for analysis by establishing non-visual relationships

between static and dynamic objects, which depend on the physical laws and the dynamic events, occurring

during the simulation. Each event can be considered to have representation in a certain symbolic language,

which the simulator understands, so that it can pass it to the event analyser for further analysis. The

framework for analysis of the behaviour can be constructed as a linear workflow of several modules,

responsible for annotating the video signal with additional data at each stage of the analysis. The first module

will receive as an input the raw video signal from the physical camera observing the scene. The last module

will generate as an output the information, which can be used for decision-making. The framework as

sketched here is depicted on Figure 3-1.

Movie Frame
Processor 3D Simulator Event

Analyser
Notification
Generator

Visual Scene
Model

Behaviour
Model

Event
Logger

Pattern
Classifier

INPUT VIDEO
SIGNAL

OUTPUT
MESSAGES

Video Signal
Processor

Trajectory
Model

Trajectory
Tracker

Object
Extractor

CCTV
Camera

Object
Model

Frame
Stream

Trajectory
Stream

Event
Stream

Pattern
Stream

Dynamic Behavior Pattern Analyser

Figure 3-1. General workflow of the framework

61

The first module, Video Signal Processor extracts and processes data about the individual objects on the

scene according to a model suitable for the process of recognition. At this stage, the dimensions of the space

are estimated and the location, shape and texture of the objects are identified and measured. This information

forms the input to the second module, Movie Frame Processor, which is responsible for reconstructing the

trajectory of movements of the dynamic objects on the scene. It must take into account the object location,

viewing and walking directions of the moving objects, as well as their velocity and speed of movement. The

third module, 3D Simulator, maintains the state of the simulated world, constantly updating it using the

stream of reconstructed data about object trajectories and generates an event log which mixes the physical

events at its input with the logical events at its output. The Event Analyser performs the proper behaviour

pattern analysis, which is then fed into the last module of the framework, the Notification Generator. Its

output will be used for decision making outside of the framework in various area of applicability – safety

management, security control, customer insight, etc. This framework and the simulator as its central

component were first presented by Gasiorowski, Vassilev and Ouazzane (2016). Later on it was expanded

with the trajectory reconstruction (Afzal et al., 2016). Currently, several other research projects are dedicated

to the other components of the framework.

Critical feature of our approach is the replacement of the physical video information used for visual data

processing with logical symbolic information generated through simulation. The graphical data usually

contains an enormous amount of information that is often noisy and therefore unsuitable for real-time

processing since it requires a lot of filtering and additional pre-processing. The symbolic information can be

processed much quicker and with lot less demanding requirements. Furthermore, it is much easier to establish

a behaviour pattern from symbolic representation because the structure of the descriptors is much more

logical.

Second distinctive feature of the framework is the use of a pattern classifier, which would allow generating

meaningful messages depending on the situation their meaning in a situation. In most typical contexts the

behaviour patterns can be classified as dangerous, suspicious, or just normal. For instance, the behaviour of a

monitored individual can be classified as suspicious in different scenarios when he passes through the same

location several times without stopping, while turning head in the direction of one and the same static object:

x In a shopping case scenario, an individual might be scouting area to safely shoplift without being

noticed.

x In a bank scenario, an individual might be probing security measures put into place before potential

robbery.

x In a meeting scenario, an individual might be scanning for the appearance of another individual in a

specific place.

Suspicious behaviour typically requires specific actions which may involve some kind of probing, while a

pattern of behaviour perceived as potentially dangerous may require more drastic measures. For example,

when an individual who has been walking straight for a certain amount of time suddenly collapses on the floor

62

this might be a signal for the need of immediate assistance. In general, the classification of a pattern

contributes to the understanding of the situation within the scope of the visual scene, which is reported by the

notification generator.

The conceptual architecture of Dynamic Behaviour Pattern Analyser component of the framework is

depicted in Figure 3-2.

Figure 3-2. Conceptual structure of Dynamic Behaviour Pattern Analyser

The input of the simulator mixes three types of data: the static information about the visual scene, describing

the identified objects and their physical properties, the trajectories of dynamic objects as reconstructed at the

previous stage of video processing and asynchronous events that may be delivered along with the video

signal (i.e., data readings, warnings and alerts coming from various sensors monitoring the physical space of

the visual scene).

The asynchronous input events may be caused by physical changes in the visual scene as observed by the

camera, such as the appearance of new objects within its scope, disappearance of the tracked entities from

the observed space, changing the orientation of the camera, etc. The global state of the simulator is

periodically updated using the information received from other modules of the framework during video

processing but between the changes the simulated world is fully steered by the reconstructed trajectories of

object movements. Since the three-dimensional space is defined in Cartesian coordinate system, in our

framework the trajectories are assumed to provide information on location, velocity and rotation in standard

3D vector notation. To represent more complex movements of dynamic objects, such as twisting and

variations in object viewing, or changes of the walking and viewing directions, the trajectories must also

include description of the angular variations which can be based on the quaternion theory. The simulator may

also add to this input internal data, generated as a result of the simulation itself to comply with the physical

laws of the world.

63

While the trajectories provide sufficient basis for analysing the behaviour of single dynamic objects, additional

means has to be used for identifying, tracking and analysing the group dynamic behaviour of the same

individuals as part of the crowd. In our approach the individual objects will be grouped on the base of purely

logical links to each other, not statistically, which will allow to analyse the group behaviour logically exactly as

the analysis of the individual behaviour. This is another critical feature of our approach because the simulator

can perform analysis of crowded scenes on group (macro) and individual (micro) levels simultaneously, unlike

the approaches based on “crowd management” theory that focuses only on the groups but never on the

separate individuals in the groups.

3.3. Ontology of the visual scene

The purpose of the ontology of visual scenes is to provide an abstract representation of the information, which

can be used in the logical analysis of behaviour patterns. The ontology of the bound worlds is not a new thing

- it has been used in Computer Games (Zagal et al., 2007) and Robotics (IEEE Standard Ontologies for

Robotics and Automation, 2015). Both areas share certain commonalities considering the fact that in both

worlds the visual scene is observed from the point of view of an eye – be it the eye of the robot, or the eye of

the gamer. In Computer Games, the objects are part of the game world that can be managed or interacted

with by the players and their location is only logical. In Robotics, objects occupy a real physical location in

space that can be manipulated by robots.

The ontologies in principle define key concepts and relationships in a given domain. At the bottom of the

ontology are the individuals, who are objects residing in the world. The objects recognised in a video can be

described explicitly by their physical attributes (location, velocity, orientation etc.), by the way these attributes

can be altered and by the abilities to execute some form of dynamic actions they possess (Zagal et al., 2007).

There are static entities, which do not possess the ability to execute any action on their own and usually are

just part of the game world, without changing their physicality. On other side of the spectrum, there are

dynamic entities possessing the ability to perform an action in order to manipulate the properties of other

entities.

In Robotics, the ontologies contain also the “autonomous robot” object that is capable of adapting to changing

environmental and operational conditions and executing actions on their own without human intervention

(IEEE Standard Ontologies for Robotics and Automation, 2015). The autonomous individual captured in the

video footage may be considered as an individual capable of controlling its own movements and interaction

with other objects on its own, without the need of intervention from any other objects. Individuals naturally

form social groups in order to collaborate on achieving mutual goal. This is closely related to the definition of

“robot group” found in IEEE Standard Ontologies for Robotics and Automation (2015) where the term is

defined as “a group of robots organized to achieve at least one common goal”.

The Game Ontology Project (GOP) introduced by Zagal et al. (2007) for describing and analysing computer

games was built on ideas of Rosch et al. (2004), where the objects and relationships between them are

64

identified on the basis of visual perception and analysis of videogames. In this approach the ontology is built

without an insight of game designers knowledge, intentions or plans. Following this approach, from the review

of a video footage one can define the ontology of visual scenes that matches those that can be found in

Computer Games and Robotics. The main deviation of the approach adopted in this research is when one

starts considering the group formation. In the special case of a pair, when the group is made out of two

individuals only, the above approach is not entirely adequate because it allows representing only binary

relations in the groups (IEEE Standard Ontologies for Robotics and Automation, 2015). However, in many

applications an “observer” plays a vital role and ternary relationships are vital. For example, two individuals

who are talking to each other are also listening to each other while talking, but the third who is in the same

group maybe only listening to them without talking to any of them. This is especially important if we want to

formalize the concept of an “observer”, which is a natural candidate for accounting the presence of a camera

in the scene. Because of this in our ontology we will assume that the groups consist of three or more

members and we will consider the pairs as a separate entity on the scene.

The following concepts play a vital role in modelling and building our framework.

x Scene: delimits the boundaries of the space where all objects are situated. It provides the basis for

the coordinate system of the restricted world monitored by video camera.

x Object: an identified object that has physical location in space and time. There are three types of

objects that can be identified: Static Objects, Dynamic Objects and Individuals.

x Static Object: object that do not possess ability to execute any action and whose physical attributes

can be altered by dynamic objects or individuals only. This type of object remains static for most of the

time. Example: doors, shelves, stairs.

x Dynamic Object: object that possess the ability to change physical properties of objects due to

external factors or intervention or interaction of other objects at particular time. Example: shopping

trolley, product, envelope.

x Individual: an autonomous dynamic object that has some degree of control over its movements.

Individuals are capable of executing actions on their own without the need of intervention of other

objects that may lead to interaction with other individuals or objects. Example: human, animal, robot.

x Pair: two individuals that formed a relationship in which a certain degree of collaborative activities and

interrelation can be observed. The activities in such a relationship can only be perceived as

symmetric, anti-symmetric or general, without any further complexity. Example: Individual and another

individual walk together (symmetric relation); Individual talks to another individual (antisymmetric

relation); Individual likes the other individual (general type of relation)

x Group: an identified collection of three or more individuals exhibiting similar motions and potentially

some level of collaborative activities in order to achieve mutual goal. A group can be treated as a

single entity by aggregating all its participants’ activities. Example: All participants in a group are

moving in the same directions (“group moves towards stairs”); A participant in a group is throwing

an object (“group vandalises an objects”)

65

The above concepts provide some hints about what kind of activities and events can be expected to take

place in the observed scene. However, all of them can be static. The really vital clues about the behaviour are

the actions and events, which are essentially dynamic concepts.

3.4. Ontology of the dynamic behaviour

The patterns of behaviour are derived from observation and analysis of the dynamics of objects identified in

the visual scene. Assuming that we know only the global location of each individual and the position of their

limbs relative to the body at any moment of time we can define a number of actions, which can be executed

by that individual. Therefore the model of actions is a cornerstone in the theory of simulation.

The correlation between individual actions of the individuals and the events, which occur at the visual scene,

can be modelled using three alternative approaches:

1. The actions are considered as changing the world and the events are only triggering them. In this approach,

changes may or may not occur with the time because the world remains in the same state if no activities are

taking place. The changes are always caused by activities, while the events are relative to the time but

independent from the actions. This approach is suitable for modelling actions that are instantaneous and

triggered by events; the processes unlike them they have duration. It is commonly adopted in object-oriented

modelling paradigm because the objects remain in the same state if no external activities are affecting them.

This is the oldest approach widely employed in the early research in intelligent robots (IEEE Standard

Ontologies for Robotics and Automation, 2015). Similarity can be found also in the “Interface” conceptual

element of the game ontology (Zagal et al., 2007). The input device provides the players means of sending

signals to the game interface so that they can be turned into suitable actions. Whenever player causes an

event in the form of pressing a button, a corresponding action is executed on the screen. It may or may not

change the state of the game world (change attributes of the entities of the game world). Time in this case can

be completely disregarded as it does not influence the way events and actions occur. However, this approach

leads to representational issues related to the so called “frame problem” in AI (Shanahan and Witkowski,

2000).

2. The events are considered as changing the world; the actions are just collecting them. In this approach the

events are happening all the time, so the time is attributed to them. The state of the world in this case is

defined in terms of the history of events. The world in such a case may or may not change depending on the

events, not on the actions. The time measures the delay between events (frame update) but it does not initiate

the changes. To that end, the actions would have to be defined through events as well. This approach is

relatively new in Computer Science. It leads to more complex logics (Kowalski and Sergot, 1986). But the

effect of the events happening in the world according to this approach coincides with the effect of the actions,

which change it in accordance with the previous approach if there is only one observer in the world.

66

3. The world changes constantly with the time, the events and actions are just happening along the line. In this

approach the changes are caused by the time while the actions are no longer instantaneous and have

physical duration. It has been successfully used in AI planning (Allen, 1983). This approach would allow

proper treatment of parallel activities but may require additional synchronisation of the video signals and can

lead to very complicated implementation of the multi-threaded services, which typically run on a central server.

The approach that we will adopt to model our world follows closely the first approach as outlined above

because our working assumption is that we have only one camera and all information collected from it is

processed in a centralised manner. More complex approaches to the dynamic ontology may need to be

introduced later when multiple cameras are considered to monitor the same scene. In case of multiple

cameras, for example, the video signals need to be synchronised in order to be analysed. This could involve

synchronisation of frame rates, elimination of overlapping signals, reducing the delay of frame updates, etc. If,

for instance, the movements of one object are identified in one camera output but not in the other because of

the differences in frame rate, the discrepancies may occur between data coming from the two signals. This in

turn may result in erroneous analytical output. A good candidate for this is the ontology of actions and time

based on event structures (Kowalski and Sergot, 1986).

Any activity has a beginning and can be considered to be a one-off activity (instantaneous) or on-going activity

(process executing for a certain amount of time). The high-level compound activities are assembled out of

primitive ones in an event of receiving new information about the surroundings in a so-called “sense-plan-act”

cycle in robot control systems (Shanahan and Witkowski, 2000). The “frame problem” under this assumption

will be resolved naturally by the algorithm of the simulator.

During simulation the events may be registered with the simulator in two different ways – either externally,

upon arrival of new data from other modules of the framework, or internally, generated directly by the virtual

sensors attached to recognised objects in the scene itself. Our simulation follows the concept of “interface”

found in the ontology of computer games (Zagal et al., 2007), but in this case the player is substituted with

methods responsible for generation of the events within the simulated world. The asynchronous events

immediately cause change of the simulated scene e.g. the alarm goes off, somebody steps in and appears on

the scene, somebody leaves the scene, etc. The synchronous events are occurring as effects of some actions

- e.g. the door becomes open when the agent opens it; the flow of people leaves the room when the last

participant in the group leaves the room, etc. Once the individuals and groups are identified and placed in

different locations within the boundary of the virtual world the analysis can begin. In the remaining of this

section the main concepts of the dynamic ontology, which will be the basis of the analysis are introduced.

3.4.1. Actions

a) Action: identified action executed by an object that may lead to an interaction with another object,

potentially altering its physical attributes.

67

There are several different types of actions:

b) Dynamic Action: action executed by a dynamic object that may lead to alteration of physical

attributes of another objects.

Examples:

x Object falls down from the shelf (the ‘location’ attribute is changed)

x Object hits the wall (the ‘location’ and ‘velocity’ attributes are changed)

c) Active Action: action executed by an individual exhibiting some degree of interaction with another

object that may lead to alteration of its physical attributes.

Examples:

x Individual picks up a package from the floor

x Individual touches the door

x Individual kicks another individual

d) Passive Action: an action executed by an object under specific circumstances that may or may not

lead to alteration of physical attributes of other objects.

Examples:

x Object pushes a trolley forward

x Object pulls out a package from the bag

e) Group Action: action executed by a group of individuals that is a result of a joint effort, i.e.

aggregated action of the group participants. The group action may or may not lead to alteration of

physical attributes of another object.

Examples:

x Group moves towards the door

x Group climbs up the stairs

x Group moves along the corridor

f) Follow Up Action: action executed by a dynamic or static object following an event or another action

that may or may not lead to alteration of physical attributes of another object.

68

Examples:

x Individual pushes the trolley forward until the trolley collides with the shelf

x Individual pushes the button and the door opens

g) Reaction: an action executed by an individual in response to external cause such as an event, direct

or indirect action of another individual. Reaction may or may not lead to alteration of physical

attributes of another object.

Examples:

x Individual punches another individual who sustains an injury

x Individual falls down on the floor but quickly stands up

x Alarm goes off and an individual looks for the source of the sound

3.4.2. Events

a) Event: an identified condition occurring within visual scenes at a specified time that may or may not

naturally follow an action. The event primarily describes changes in the state of an object at particular

point in time. It may be classified as follows:

b) Asynchronous Event: event that occurs due to external stimuli that may or may not lead to alteration

of physical attributes of an object.

Examples:

x An alarm goes off

x The ceiling falls down on the floor

x A smoke appears in the air

c) Change Event: event that occurs when an object physical attributes are altered at particular moment

in time.

Examples:

x The door was shut by the warden

x The light went off
x The trolley has stopped

d) Cause Event: event that may potentially cause another event.

69

Examples:

x A customer entered through the door, he is inside the shop

x A trolley has appeared ahead, the path is blocked

e) Result Event: event occurring within a scene in the aftermath of an action that may or may not lead

to alteration of physical attributes of an object.

Examples:

x Individual punched another individual, who sustained an injury and fell down to the floor

x Individual picks up a package from another individual and the package changes its location
x Individual dropped down a bag which fell on the floor
x Individual kicked the door which has opened

f) Result Group Event: event occurring in the visual scene in the aftermath of an action that may or

may not lead to alteration of physical attributes of a group.

Examples:

x Individual walks away from the crowd, he is far away from it and he has left it

x Individual moves towards another individual, he is in close proximity to him, they finally meet
x The Blues moved towards the Gunners, The Blues arrived in close proximity to the Gunners,

The Blues clashed out with the Gunners

3.4.3. States

a) State: a description of an object contained using a collection of physical attributes related to its

spatial-temporal appearance on the scene.

Examples:

x Individual is moving along the shelf

x Individual remains on the floor

x The door is jammed

b) Configuration: a partial, spatial-temporal description of the scene that may include multiple object

states. The configuration is a result of the analysis of object’s behaviour captured during simulation

over a certain period of time.

70

Examples:

x One participant in the group is moving alongside the wall

x For the past 8 minutes object was laying on the floor

x From 14:23 to 14:43 the detective has been visiting the crime scene 3 times

x Currently 3 groups are involved in fights on the street

c) Situation: a global spatio-temporal description of the visual scene, which is a result of the analysis of

different configurations over certain period of time.

Examples:

x At present time the situation is normal
x During the last 5 minutes the situation has been looking suspicious

x Between 12:00 and 12:16 the situation became dangerous

More formal ontology model can be specified using formal languages such as DL (Description Logic). Figure

3-3 shows the top-level class view of the ontology modelled using Protégé.

Figure 3-3. Top-level view at the ontology of visual scene combined with the ontology of dynamic behaviour

71

3.5. Language of Dynamic Behaviour

For the purpose of analysing the dynamic behaviour a linguistic approach has been adopted in which the

patterns are described using symbolic expressions, generated by the simulator in the form of event logs. This

allows performing the analysis by means of purely syntactic data processing, which is very efficient. In

principle, all structural and dynamic patterns of individual and group behaviour can be described using a

context-free language. This implies that the patterns are independent on both the nature of the observed world

and the particular scenario of using them, which makes our approach generic. More thorough analysis of the

patterns can be performed after contextualisation of their appearance in specific situations, e.g. joining hands

by two people walking down a dark corridor have different meaning than in the situation when two people

meet on the street and reach out to shake hands.

Our language of dynamic behaviour describes what is happening in the visual scene as modelled in the

ontology but in purely linguistic terms. The language grammar has been constructed in such a way so that all

recognised objects, their states and actions as well as all registered events with their conditions and effects

can be described using simple production rules. The terminal symbols of the language have been chosen to

drive the parser further into the analysis whereas the non-terminal symbols have been chosen to correspond

directly to the classification categories. This allows using the parser as a classifier which significantly simplifies

the pattern analysis since the linguistic parsing directly performs the semantic classification.

The main categories defined in the language grammar correspond directly to the ontology as specified above

and include the following classifications:

x Object: expression, which describes an object found within the boundaries of the visual scene

observed by the camera.

x Action: expression describing physical movements of objects or their constituent parts.

x Event: expression describing an event observed on the scene as a result of an action or other event.

x State: expression for describing of the physical appearance of objects on the scene

x Configuration: expression describing partially the observed scene within the focus of the camera
x Situation: expression describing the global state of matter on the scene in high-level terms

To describe various specific use case scenarios non-terminal descriptors have also been added to the

language grammar. They are parts of the service-level descriptions, which target specific use-case scenarios,

and the overall maintainability of the framework.

a) Motion Action Descriptor: a more detailed description of an action executed by an individual or a

group of individuals that is directly related to the physics of movement.

Examples:

72

x Individual walks towards the fence

x Group moves along the building on the left

x Individual runs away from the van

b) Interactive Action Descriptor: a more detailed description of an action executed by individual or

group of individuals that is directly related to its interactive nature that may change the State of an

Object. These descriptors are usually part of a description of a more general activity and include

terms such as ‘touches’, ‘picks up’, ‘kicks’, ‘punches’ etc.

Examples:

x Individual touches the door handle

x Group forces a policemen to move aside

x Individual kicks another individual he is involved in fight with

The principle driving the construction of the language grammar must be to capture the reality on sufficient

level of granularity which reflect the appearance of all relevant elements at given time and a given space. The

control over the granularity is achieved entirely using classification of terminal and non-terminal symbols. The

so-called non-terminal descriptors are used only to give the expressions more specific meaning, preserving

the context-free nature of the language. The complete specification of the language grammar in Backus-Naur

form is provided in Appendix A.1.

3.6. Research hypothesis

The inference of behaviour directly from a video camera feed is a difficult task due to the complex nature of

visual data that needs to be processed. Format, resolution, frame rate of the received video, physical

capabilities and limitations of hardware, or ever changing environmental conditions such as illumination

variations or dynamic cluttering have an impact on the visual output that has to be analysed in real-time. The

main goal of this research is to construct an efficient framework for real-time analysis of dynamic behaviour of

individuals and groups of individuals moving in enclosed public spaces at walking speeds using limited

information extracted from live video feeds as a combination of minimal physical data and sufficient simulated

data generated in real-time alongside the video feed. The key to the success of this task is the implementation

of efficient algorithms for recognition of the patterns of individual and group dynamic behaviour using limited

data about the objects on the scene, their location within the 3D space of the scene with estimation of the

dimensions of their constituent parts and information about the direction of possible movement. The approach,

which is adopted in this research, is based on replacing the necessity for image processing of the entire video

stream with symbolic analysis of partial and approximate information generated by simulation. This approach

was originally presented in Gasiorowski, Vassilev and Ouazzane (2016) and is elaborated in two subsequent

articles prepared for publication.

73

In our hypothesis it is assumed that the object identification, the recognition of their physical properties and

the reconstruction of their trajectories of movement can be established prior to the analysis to propel the

simulation (Fig. 3-1). Two types of input data are required by the simulator to support the simulation cycle. The

first type is needed to perform the initial setup of the bound world when the simulation starts, e.g. sets the

physical properties of the scene and objects being part of it. This situation will be detected by the simulator

which will receive all its input data in a streamlined XML format. This happens relatively rarely when new

objects appear on the scene as a result of entering the focus of the video camera and it leads to re-

initialisation of the simulator loop. The other type of data is concerned with the incremental changes in the

visual scene that drive the continuous simulation. It may involve alteration of attributes of existing objects or

inclusion of new ones but will be executed within the current setup of the simulator loop.

Since the simulator is constructed using 3D programming techniques, it is anticipated that data will be

delivered to the simulator in a standard vector notation to describe the location, velocity, dimensions and

orientation of every object identified in the video stream. In order to represent more complex motions, the

input data can be extended to include twisting, bending, rotation, and so on. Such data can be also

represented in XML format. The theoretical foundations for such an extension will be discussed in details in

the next chapter.

The adopted approach also poses few uncertainties. There is a possibility that object's representation

discrepancies in video and simulation may become too great to reliably project the reality in three-dimensional

space. If, for instance, new objects are discovered in the visual scene, but their physical properties are

misinterpreted, this may lead to their appearance in wrong locations within the simulated world. That may lead

to the generation of inaccurate data which when analysed will produce wrong analytical results. The

contingency plan for situations like this contemplates minimising the errors by adjusting the parameters, which

govern the simulation.

74

Chapter 4

3D simulator of individual and group dynamics in
visual scenes

With the use of latest technological developments in the area of 3D graphics, an approximated appearance of

the visual scene and its dynamics has been constructed. It is assumed that the data originating in frames

captured by surveillance cameras can deliver sufficiently rich information to represent objects and their

movements within the boundaries of the monitored physical space. In order to achieve this goal, one can

assume that other modules of the framework can streamline the input data in standard mathematical notation

(see Appendix A1). The implementation of the simulator uses a combination of open-source software

packages.

x The Java-based jMonkeyEngine provides an adequate high-level tool for managing the simulator

and analyser. The engine is utilised for visualising the dynamic movements. It also incorporates a

logger, which is suitable for implementing the event capturing mechanisms.

x The low-level 3D graphics support is provided by OpenGL graphics library, on top of which

jMonkeyEngine is built.

x Blender software is used for offline modelling of the visual appearance and animation of various

objects and their dynamic behaviour. In this chapter, the development of the simulator application with

attention to demonstrating where it fits in the recognition of dynamic behaviours workflow is

presented.

4.1. Overview of the software implementation

The requirements for the simulator were set initially to meet the ontological model of visual scene presented in

Chapter 3. The focus was on the construction and implementation of a graphical model capable of providing

the operational semantics for the pattern language. Straight from the beginning a bottom-up approach has

been adopted, i.e. more sophisticated features were constructed out of critical, but often simplified methods.

The technological principles behind OpenCV are based on the 3D modelling which uses standard

mathematical theory so all graphical descriptions were implemented in relation to Cartesian coordinate

system. Brief summary of the vector calculus and analytical geometry on which 3D modelling is based are

presented in Appendix A1.

To avoid facing the complexity of modelling too early, few reasonable limitations were put into place:

75

a) The visual scene needs to fit within the boundaries of the area in which objects can be positioned.

b) The appearance of various objects on the scene is limited to abstract representations using simple 3D

geometries such as dots and spheres.

c) The location and direction vectors describe the position and orientation of an object within the scene

relative to the beginning of the coordinate system.

Initially, graphic models were constructed directly using the available graphics libraries in OpenCV. This

allowed building and testing the theory behind movements of objects without the need of elaborate modelling.

The process involved only simple geometric transformations for simulating movements, executed by the built-

in engine and employed only collision detection methods, controlled by jMonkeyEngine.

Once the first cut-off simulator was produced Blender software was introduced to further elaborate the 3D

models to achieve higher degree of resemblance to the real world. A specific advantage of this software is that

it allows visual manipulation of every part of the model in real-time (Blender Foundation, 2015). The final

outcome of the process of modelling using Blender was a 3D model in a universal file format (e.g., XML),

which can be read directly by the interfaces of graphics engines, including jMonkeyEngine.

Further enhancement of the simulation was implemented through considering the body parts and attaching

ghost controls to them. The ghost is a non-physical invisible geometry attached to physical one (Reese and

Johnson, 2015; Edén, 2014). It can be used to probe the space and report geometries that come into contact

with it. Ghost controls have been assigned to the overall shape of individual as well as to its constituent body

parts. The built-in ghost controls created the possibility to monitor the individuals at a lower level of granularity

while preserving the holistic approach to locomotion tracking. Following this strategy, additional information,

which can be used to analyse the group behaviour, has been produced.

4.2. Software architecture

The prototype is implemented after an object-oriented approach and consists of several subsystems as

depicted on the component diagram shown in Figure 4-1. The software architecture closely matches the

conceptual structure and workflow presented in Chapter 3 (Figure 3-2).

76

Figure 4-1. Component Diagram of the Simulator. The directed dashed lines indicate the direct data

dependencies between the components

The input data is processed by the Input Processor component, which configures all parameters of the

simulation, such as number of recognised objects, their locations and orientation, etc. The Object Loader
then initialises the visual scene and loads all required graphical models into the three-dimensional space of

the scene. The jMonkeyEngine component lies at the core of the simulator, as it is responsible for updating

the state of the visual scene from time to time and control the rendering. The changes are invoked by external
events, such as arrivals of new data and internal events, caused by the simulation itself. In addition, it

integrates the built-in engine for simulating physics of three-dimensional scene, synchronises the data flow

within the application and provides Graphical User Interface (GUI) for real time manipulation of parameters

and information display. It can be switched off if the simulator is used with other modules of the framework.

The task of the Event Generator is to evaluate the state of the simulation and to capture the events, which

may arise during the simulation. The logics of this component are largely based on the collision detection

techniques, such as ray casting and ghost controls. The events are processed by the corresponding

77

components, e.g. the Individual Event Generator produces events related to dynamic movement of an

individual that are next analysed by Individual Event Pattern Analyser being an integral part of Pattern
Analyser subsystem. The parsing results in classification of the pattern that corresponds to the observed

dynamic behaviour. The Logger component is responsible for formulating sentences following the grammar

rules of the pattern language, which is supported by the Grammar subcomponent.

The modular nature of the software architecture of the simulator itself makes it also possible to expand further

its functionality by simply introducing additional types of events without breaking the existing functionality.

4.3. Design considerations

The Simulator is a self-contained software application capable of simulating dynamic movements of

individuals within the three-dimensional space in real-time as illustrated in Figure 4-2. The simulator

possesses several critical features that are important for the subsequent analysis of behaviour. It allows

x To observe the changes occurring in a 3D scene visually.

x To adjust the simulation parameters interactively at runtime.

x To trace the events arising during unfolding of different case scenarios in a console panel.

x To save and load the simulation setup in configuration files.

x To generate log files in two distinct file formats (text and XML) which can be used for further analysis

through contextualisation or decision-making.

Figure 4-2 shows the three panes of the simulator – the visual output produced during simulation, the event

log generated by the Logger and the configuration parameters used by the simulator.

Figure 4-2. The simulator interface

78

The simulator was designed to be a central component of the model-driven dynamic behaviour analysis

framework (Figure 3-1) and as such it interacts with other modules of the framework. However, since it is

possible to generate input data interactively under the control of the keyboard, it can be used as a standalone

product as well. This is particularly useful for preparation of configuration files, since the tuning of the

parameters can be done in offline mode without impacting the production environment and the configuration

file can be automatically generated.

4.3.1. Simulation data

In order to function properly the application must be initialised using data, which sets the visual scene (world
data). The world data (a sample is shown on Listing 4-1) is parsed at runtime in the beginning of the

simulation loop and at its next review. The minimal data needed to setup the visual scene includes the

following:

a) Total number of recognised individuals in monitored area in a form of a real number.

b) Identifiers of any individual being under surveillance.

c) Physical location of the individuals in vector notation.

d) Viewing direction of individual in a form of a normalized vector.

<streamInput>
 <parameterSet class="WorldManagerState">
 <parameter>
 <name>numberOfAgents</name>
 <value>
 <actors number="3">
 <actor id="actor-ID0">
 <location>
 <vectorX>161.19113</vectorX>
 <vectorY>4.3999987</vectorY>
 <vectorZ>-0.8794838</vectorZ>
 </location>
 <viewDirection>
 <vectorX>-0.87773572</vectorX>
 <vectorY>0.0</vectorY>
 <vectorZ>0.48221964</vectorZ>
 </viewDirection>
 </actor>
 <actor id="actor-ID1">
 <location>
 <vectorX>121.19113</vectorX>
 <vectorY>4.3999987</vectorY>
 <vectorZ>21.8794838</vectorZ>
 </location>
 <viewDirection>
 <vectorX>-0.87773572</vectorX>
 …

Listing 4-1. An excerpt of streamlined XML file describing spatial properties of visual scene captured from

camera

79

During simulation the simulator constantly updates the current state of the visual scene using the incoming

data, which is streamlined from the keyboard generator or another module at a constant rate. To retain the

independence all input data of the simulator is in XML format. When simulator receives an input directly from

the keyboard, the physical properties of the scene and objects are being updated according to the

implemented rules at the next frame update. When an external module supplies data, the simulator is required

to first parse the received XML file and store the extracted tree-structured data in the memory before it can

update the visual scene. The simulator then updates the physical properties of the visual scene accounting

the current frame rate of the machine and elapsed timestamp (in seconds) extracted from the received data.

The frequency of the input coming from another module may vary and is subject to the performance of all

modules participating in the operation. It is assumed that at the very minimum the received XML file contains

data on the reconstructed trajectory for each recognized agent (Listing 4-2) defined in a file responsible for

setting the visual scene (Listing 4-1). The structure of the file describes recorded motion of monitored

individuals in vector notation. Each entry contains information about time at which the motion has been

registered in a form of a number in a sequence (counter attribute) and time (in seconds) elapsed since the

beginning of the recording (tpf attribute). These values are critical for satisfactory approximation of recorded

movements within the simulated visual scene.

a) Total number of recognised individuals in monitored area in a form of a real number. This number is

required to match the total number of agents parameter delivered in stream input XML file setting the

visual scene (Listing 4-1)

b) Identifiers of any individual being under surveillance. These identifiers need to match the total number

of agents parameter delivered previously in stream input XML file setting the visual scene (Listing 4-1)

c) Movement of an agent recorded at particular frame, specified by “counter” attribute.

d) Number of seconds that passed since the beginning of the monitoring of the individual specified by

“tpf” attribute.
e) Viewing direction of individual in a form of a unit vector at the time of recording the movement.

f) Walking direction of individual in a form of a unit vector at the time of recording the movement.

<video>
 <movementSet class="VideoState">
 <agents number="3">
 <agent id="agent-ID0">
 <movement counter="0" counterID="agent-ID0-0" frameRate="0.49727827" time="20-10-2017-10-
50-07" tpf="0.0" tpfSinceLast="2.0109465">
 <globalPosition>
 <vectorX>-78.60532</vectorX>
 <vectorY>4.3999987</vectorY>
 <vectorZ>-61.354675</vectorZ>
 </globalPosition>
 <walkDirection direction="">
 <vectorX>0.0</vectorX>
 <vectorY>0.0</vectorY>
 <vectorZ>0.0</vectorZ>
 </walkDirection>
 <viewDirection direction="none" directionValue="0.0">
 <vectorX>-0.87773573</vectorX>
 <vectorY>0.0</vectorY>
 <vectorZ>0.48221964</vectorZ>

80

 </viewDirection>
 </movement>
 <movement counter="1" counterID="agent-ID0-1" frameRate="1.9120132" time="20-10-2017-10-50-
07" tpf="2.0109465" tpfSinceLast="0.52300894">
 <globalPosition>
 <vectorX>-78.60532</vectorX>
 <vectorY>4.399999</vectorY>
 <vectorZ>-61.354675</vectorZ>
 </globalPosition>
 <walkDirection direction="">
 <vectorX>0.0</vectorX>
 <vectorY>0.0</vectorY>
 <vectorZ>0.0</vectorZ>
 </walkDirection>
 <viewDirection direction="none" directionValue="0.0">
 <vectorX>-0.87773573</vectorX>
 <vectorY>0.0</vectorY>
 <vectorZ>0.48221964</vectorZ>
 </viewDirection>
 </movement>
[…]

Listing 4-2. An excerpt of streamlined XML file describing the movement of agents delivered by another

module of the general framework

The detection of any modification of world data triggers an update of the global state of visual scene

automatically.

4.3.2. Simulation Loop

At the core of the simulation is the simulation loop, which reads the incoming information and adds the

response to an action or event on the scene.

81

Figure 4-3. The algorithm of the simulation loop.

The simulation loop is similar to the game loop used to drive many interactive games (Nystrom, 2014).

Through repetitive execution of the scanning algorithm of the simulator it periodically updates the global state

of the system. In case of 3D simulation like in our case, the simulator loop is responsible also for rendering 2D

images accordingly so that the scene may visually reflect the changes. A single execution of methods in this

block will be referenced as simulation cycle or simulation step. A simplified algorithm of the simulator cycle is

shown on Figure 4-3.

Rendering is a process in which geometrical forms of objects are being assembled out of set of points

(vertices) and graphics primitives that hold information on how those points need to be connected in order to

82

generate a shape in the image frame (Lengyel, 2003). An example of rendering of a simple box as 3D

graphics is presented in Figure 4-4.

Figure 4-4. The cube is formed out of triangles made out of three points (vertices) connected using three line

segments (edges)

The frequency of updates depends on multiple factors, such as technical specification of hardware, number

and complexity of the operations within each loop step and geometric data that needs to be re-rendered at

each loop step. Considering the latest technological advancements of graphics cards, central processing units

(CPU) and other hardware components, one can easily achieve fast rendering beyond the necessary for

subsequent analysis. To balance this, some delay to the updates has been introduced, so that simulation runs

at constant rate of 30 frames per second (FPS). The value of FPS has been chosen to meet the average

frame rates of industrial CCTV cameras (IPVM, 2015).

4.3.3. Human body in motion

Individuals play a central role in providing the operational semantics of pattern language due to their impact on

the dynamics of the entire visual scene. For the sake of clarity, in this section the individuals will be named

agents and a distinction between their conceptual, functional and analytical appearance on the scene will be

made. At the very basic level, the agents have been represented by their absolute position within the three-

dimensional scene in a similar way to how locations are described with latitude and longitude within Global

Positioning System (GPS) (Official U.S. Government, 2015). Starting with this, the individual descriptions have

been further expanded by specifying their orientation using a normalized vector. It is possible to add more

83

elements of the body dynamics (i.e., speed, acceleration, etc.). However, in this research the main interest is

in the geometric orientation of the individuals, which determine two important characteristics to be used to

analyse the pattern of behaviour, namely the direction of movement and the viewing direction at any given

moment.

Although these oversimplifications are acceptable at the start, they can cause difficulty in establishing the

precise physical occupation of visual space by each individual if retained. To mitigate this, a series of models

of the human body with increasing complexity have been developed. They were used for interpolating the

invisible parts of the bodies. All these models were based on the use of spheres as their volume remains

invariant to rotations, i.e. they can be oriented in three-dimensional scene without the need to change their

shape. Additionally, this geometry was selected not just for the simulator, but also for the entire framework

because the spheres could be easily positioned within the surrounding environment. Formula 4-1 provides the

analytical basis for calculating invisible parameters of 3D bodies such as depth and thickness on the basis of

estimation of 2D parameters.

�⃗� = [𝑢𝑥, 𝑢𝑦, 𝑢𝑧]

(𝑝𝑥 − 𝑢𝑥)2 + (𝑝𝑦 − 𝑢𝑦)2 + (𝑝𝑧 − 𝑢𝑧)2 − 𝑟2 = 0

where �⃗� is the absolute (or global) position vector of an agent, 𝑝 is a point lying on the

sphere surface and 𝑟 is the radius of the sphere.

Formula 4-1. Equation for abstract representation of a spherical agent

The movement of a sphere with constant velocity can be calculated using the vector representing the

orientation. If one considers the monitored area to be a flat surface without objects can change their positions

vertically e.g. stairs or steps, then one can calculate the locations with Formula 4-2.

�̂� = 1/∥ 𝑣 ∥ 𝑣 .

(𝑝𝑥 − (𝑢𝑥 + �̂�𝑥))2 + (𝑝𝑦 − (𝑢𝑦 + �̂�𝑦))2 + (𝑝𝑧 − (𝑢𝑧 + �̂�𝑧))2 − 𝑟2 = 0

where �̂� is the unit vector representing the orientation of the sphere.

Formula 4-2. Calculating movement of a sphere in 3D space accounting the viewing direction.

Given that only the direction that an agent is facing is required, a unit vector is used. The floor is represented

as a flat surface (a plane) so the values of 𝑢𝑦 and �̂�𝑦 will always be equal to 0. The viewing direction vector is

84

added to the global position vector of an agent recorded at previous frame. Performing this calculation in

relation to FPS, one can achieve smooth transition from one location to another ultimately simulating linear

movement of an agent.

With a sphere, one can calculate the position, orientation and approximate the overall volume of an agent.

However, considering anatomical structure of a human body, the observable movements are built out of more

atomic level of actions. When one perceives dynamic behaviour in a wider picture, it will quickly become clear

that legs and hands play a significant role in the genesis of human activities. An individual can gesticulate,

make poses and carry out daily activities with the use of the limbs according to the situations. To that end, an

extension of a single sphere model to a more advanced geometry is needed so that it could also incorporate

limbs as well.

Strategy adopted in this research is similar to hierarchical classification of actions outlined by Gong and Xiang

(2011) in which three layers are considered:

a) The atomic actions upon which actions an action is formed. For example, in a kicking movement

scenario, agent needs to "move right leg in front of the right leg".

b) Actions are sequences of atomic actions that fulfil a function or purpose, e.g. “picking up, walking” etc.

c) Activities are composed of sequences of actions over space and time, e.g. “an agent is moving
towards the door” or “an agent picks up an object from the floor”.

Therefore, for analysing more complex movements of the individuals one needs to account the graphical

model and movements of the limbs. Tracking individual body components would also allow to infer more

detailed information about events occurring on the scene and build up the knowledge on activities that invoke

them. For example, if an agent is stretching its arm in the direction of a shelf one can interpret this as “agent

reaches out for an object on a shelf”' which would not be possible without tracking the movement of the hand.

4.3.4. Accounting the movements of the individual body limbs

Initially, several spheres located at particular offsets from each other were used to model the body with limbs.

Few issues were quickly identified with this approach. Firstly, spheres were not only difficult to move in a

regular manner along with other parts of the body, but also hard to track at the time of movement. Secondly,

spheres had the tendency to overlap each other, which produced graphically confusing results.

In a second attempt, cubic geometries that would account better the extents of individual limbs in relation to

the body have been tried. Although it eliminated the overlapping, the volume of the geometric calculations

during rotations increased substantially. As a trade-off between the two extremes the decision has been made

85

to use cylindrical representation of the body parts. Cylinders can be rotated along their length without the risk

of complex geometric calculations as in the case of arm-twisting.

Geometric calculations provided by the graphic engine have been used to increase the efficiency of this

solution. In order to make an object visible in 3D scene jMonkeyEngine needs to be attached to a node being

part of the scene graph. The scene graph is simply a tree data structure consisting of nodes organised in an

ancestor-descendant hierarchy. The engine utilises this concept to ease the process of storing and keeping

track of the state of all objects on the scene. The nature of this data structure implies that the descendant

nodes inherit all transformations from their ancestors, i.e. when a transformation is applied to a parent node it

is also applied to all children nodes. The advantage of this assumption is that one can manipulate the physical

appearance of a great number of objects (spatial) belonging to a particular group (sub-tree) in parallel by

calculating the transformation of the group as represented by one of its member nodes only.

This allowed considering the limbs as a group and performing the geometric calculations for the entire group

in a very efficient way. We used the concept of a scene graph to assemble the agent's body out of several

geometries attached to a single tree node corresponding to the body). Because individual limbs have to be

positioned relative to the central node representing the entire body, one could treat it as an origin point of a

local coordinate system. All body parts are represented using nodes, which are attached to this central node

with different offsets for each limb, thus forming separate sub-trees in the tree of nodes representing the body

(Figure 4-5). Such configuration provides an efficient way to coordinate the movements of the limbs because

the individual transformations of the body parts are dependent on the transformation of the body as a whole

and can be calculated using the results of the calculation for the topmost node of the corresponding tree. This

principle is utilised in simulation of agent's movements such as walking where it is necessary to relocate all

body parts simultaneously.

The calculations in the case of using elliptic cylinders require taking into consideration both the radiuses and

the height of the cylinders (see Appendix A1). Positioning the base of a cylinder at the origin of the XY

Euclidean plane, where radius on the X-axis is 𝑟, radius on the Y-axis is 𝑠 and its height ℎ along Z-axis one

can calculate its lateral surface using Formula 4-3.

𝑥2 + 𝑚2𝑦2 = 𝑟2

0 ≤ 𝑧 ≤ ℎ

where 𝑚 = 𝑟 𝑠⁄ and is the ratio of the two radiuses. If the ratio is equal to 1, i.e. 𝑟 = 𝑠 then

𝑚 = 1 and the cylinder is a sphere.

Formula 4-3 Analytic description of elliptic cylinders in Cartesian coordinate space (Lengyel, 2003)

86

Legend

r: radius of the cylinder

o: offset from central node

h: height of the cylinder

Figure 4-5. Structure of the representation of a body made out of primitive geometries representing the

individual limbs

To construct a model, which corresponds to the structure presented in Figure 4-5, one has to calculate the

individual cylinders relative to the central node. This can be carried out by adding an appropriate offset vector

and then subtracting half of the cylinder height to correctly position its base (e.g., to avoid the situation when

the arm is above the torso). Note that 𝑧-component of �⃗� is equal to 0 which means that only an offset of limb

on XY Euclidean plane is considered.

𝑙 = [𝑙𝑥, 𝑙𝑦, 𝑙𝑧] �⃗� = [𝑢𝑥, 𝑢𝑦, 0]

(𝑙𝑥 + (𝑢𝑥 −
ℎ
2
))

2

+ 𝑚2 (𝑙𝑦 + (𝑢𝑦 −
ℎ
2
))

2

= 𝑟2

(𝑙𝑥 + (𝑢𝑥 −
ℎ
2
))

2

+ 𝑚2 (𝑙𝑦 + (𝑢𝑦 −
ℎ
2
))

2

− 𝑟2 = 0

where 𝑙 is a position of a central node of the model in regards to global coordinate system

of the scene, �⃗� is an offset vector, ℎ is the height (length of a limb) and 𝑟 is the radius of

cylinder.

Formula 4-4. Description of a cylindrical limb included in the agent model presented in Figure 4-5

87

The head positioning can be calculated similarly but using the equation about sphere instead (Formula 4-5).

𝑙 = [𝑙𝑥, 𝑙𝑦, 𝑙𝑧] �⃗� = [𝑢𝑥, 𝑢𝑦, 0]

(𝑝𝑥 − (𝑙𝑥 + 𝑢𝑥))2 + ((𝑝𝑦 − (𝑙𝑦 + 𝑢𝑦))2 + ((𝑝𝑧 − (𝑙𝑧 + 𝑢𝑧))2 = 𝑟2

(𝑝𝑥 − (𝑙𝑥 + 𝑢𝑥))2 + ((𝑝𝑦 − (𝑙𝑦 + 𝑢𝑦))2 + ((𝑝𝑧 − (𝑙𝑧 + 𝑢𝑧))2 − 𝑟2 = 0

Formula 4-5. Describing a position of a head in the agent model presented in Figure 4-5

Structuring the model in this manner allows us to track not only the global position of an agent but also the

movements of its limbs. This in turn creates the possibility to analyse the intentions of an individual through

considering more complex dynamic patterns of behaviour, which involve limbs. However, the use of cylinders

is inefficient due to the large number of linear transformations that needs to be executed in a relatively short

time. Furthermore, geometrical manipulation of cylinders does not provide sufficient data for prognosis of the

movement and thus is not very suitable for more fine analysis.

4.3.5. Employing body armature

The armature is a concept of building a skeleton of organic living beings consisting of a number of mutually

dependent bones defined by line segments (Blender Foundation, 2014). Armatures are used in many 3D

applications such as Blender modelling tool (Blender Foundation, 2015) and Microsoft Kinect (Microsoft,

2015) game engine because they provide an easier method for describing skeletal structure of humans and

simulating movements and motion capturing of limbs. Considering all advantages provided by the armatures,

they were adopted in the implementation of the simulator as a basis for the subsequent behaviour analysis.

Key for developing of a good body armature is the available data, which captures individual body part

movements. The datasets of this kind aim to provide recording of ready-to-use motions commonly occurring in

natural settings, such as in the kitchen (De la Torre et al., 2008). There are several extensive datasets

developed using advanced technologies but they are pricy and cost-inefficient for the purpose of our

implementation. Instead of this, free databases of pre-recorded files capturing human motions (see Carnegie

Mellon (2015) and Hahne (2008)) have been used. Such files are typically presented in a special bvh format,

which contain information about position and rotation of individual bones during fixed intervals of movement as

shown in Listing 4-3.

HIERARCHY
ROOT Hips
{
 OFFSET 0.00000 0.00000 0.00000
 CHANNELS 6 Xposition Yposition Zposition Zrotation Yrotation Xrotation
 JOINT LHipJoint
 {

88

 OFFSET 0 0 0
 CHANNELS 3 Zrotation Yrotation Xrotation
 JOINT LeftUpLeg
 {
 OFFSET 1.36306 -1.79463 0.83929
 CHANNELS 3 Zrotation Yrotation Xrotation
 JOINT LeftLeg
 {
 OFFSET 2.44811 -6.72613 0.00000
 CHANNELS 3 Zrotation Yrotation Xrotation
 JOINT LeftFoot

[…]

Listing 4-3. An excerpt of a bvh file. The recorded dynamic action consists of information about participating

bone motions as well (Hahne, 2008)

One can graphically reconstruct an armature of an agent from data stored in bvh files since the description of

bones contains information about their offsets from parent bones. Additionally, the transformation of skeleton’s

bones can be presented as sequences of visual frames, thus forming skeleton animation that can in turn be

used for the subsequent analysis. At this stage Blender was adopted as an armature-modelling tool (Blender

Foundation, 2015). This software application combines a great amount of specialised accessories for creating

complex three-dimensional geometries. The geometry of an agent is based on the anatomical structure of

armatures used in animations of human motions in public databases (Hahne, 2008). By assigning an armature

to the geometry it is possible to alter spatial properties of vertices according to the movement of a bone that

they surround as shown in Figure 4-6.a and Figure 4-6.b. The final version of an agent’s geometry equipped

with an armature capable of manipulating its surface has been presented in Figure 4-7.

Figure 4-6.a. The final result of modelling a humanoid

agent in Blender

Figure 4-6.b. The armature of a human agent

relative to the sculpted geometry

89

Figure 4-7. The armature combined with agent’s geometry in wireframe preview mode

4.3.6. Animating individual movements

The algorithmic nature of dynamic patterns requires processing a very extensive set of movements

constituting the dynamic activity of an agent. Let us consider a scenario in which a person needs to pick up an

object from the floor. In order to exhibit such behaviour the person needs to bend or kneel down, stretch an

arm into the direction of the object and then return to the original position holding the object. In this scenario,

one can identify three key poses of the body, namely kneeling down, stretching an arm and standing up.

Between them one needs to simulate movements, which complete the motion. In order to simulate such

behaviour with armature one has to specify first the key frames, i.e. the starting and ending transition points of

the involved movements. The remaining frames in the set represent the intermediate positions of the body in

transition between the different poses.

For the purpose of the pattern analysis, a fixed range of movements (Table 4-1) has been adopted. Note that

the situations in which different movements occur have been classified into three categories depending on

their importance.

90

Table. 4-1. Movements which are used in the animation

The process of creating animations was conducted as follows (Figures 4-8a to 4-8d):

1) Identification of animations required by different case scenarios.

2) Recognition of the key poses that form the entire animation.

3) Manipulation of the individual bone location, rotation and scale to achieve desired pose in Blender.
4) Creating key frames in Blender at specific frames and encapsulating individual animations as a data

blocks.

5) Exporting entire 3D object model along with the stored data block animations to a format recognizable

by jMonkeyEngine.

Animation Type

Potential movements involved

Normal

Walk (Fig.4-8a), Look Left, Look Right, Look Up, Look Down, Idle, Reach Out (Fig.4-
8b)

Dangerous

Run (Fig.4-8c), Punch (Fig.4-8d), Kick (Fig.4-8e)

Suspicious

Run, Reach Right, Pick Up (Fig.4-8f), Drop Down, Head Shake

Figure 4-8a. Walk

Figure 4-8b. Reach Out

Figure 4-8c. Run

91

A sample file generated by Blender is shown on Listing 4-4. Figure 4-9 shows the actual animation produced

using jMonkeyEngine on the base of it.

[…]
<animations >
 <animation name="Walk" length="1.3333333333333333" >
 <tracks >
 <track bone="Hips" >
 <keyframes >
 <keyframe time="0.0" >
 <translate z="0.000000" x="0.000000" y="0.000000" />
 <rotate angle="0.224691" >
 <axis z="-0.087907" x="-0.770964" y="-0.630782" />
 </rotate>
 <scale z="1.000000" x="1.000000" y="1.000000" />
 </keyframe>
 <keyframe time="0.041666666666666664" >
 <translate z="0.000000" x="0.000000" y="0.000000" />
 <rotate angle="0.224691" >
 <axis z="-0.087907" x="-0.770964" y="-0.630782" />
 </rotate>
 <scale z="1.000000" x="1.000000" y="1.000000" />
 </keyframe>
 <keyframe time="0.08333333333333333" >
 <translate z="0.000000" x="0.000000" y="0.000000" />
 <rotate angle="0.224691" >
 <axis z="-0.087907" x="-0.770964" y="-0.630782" />

[…]

Listing 4-4. XML file of the model’s skeletal animations exported from Blender

Figure 4-8d. Punch

Figure 4-8e. Kick

Figure 4-8f. Pick Up

92

Figure 4-9. Animated movements in jMonkeyEngine based on the information exported from Blender

4.3.7. Setting up the scene

The initial construction of the visual scene in jMonkeyEngine can be made by using boxes as they can be

used as containers holding various objects of interest (see Figure 4-10).

Figure 4-10. The visual scene formed out of basic geometric shapes. The orange flat cube represents the

floor while the red one a wall

93

The floor can be made out of an appropriately scaled single box, which delimitation the entire visual scene.

The walls can be represented with vertically scaled boxes positioned at the edges of the floor. Other objects of

interest, such as shelves, can be located within the premises of the simulated scene.

The scale of the visual scene is measured in world units and it is the responsibility of the modeller to specify

the exact proportions. The monitored area is always a restricted space that comprises a section of a building

or ground area such as room, corridor, hall, pathway, etc. In such a case the most practical measure that can

be adopted for a world unit is centimetre, i.e. one world unit in visual scene is equivalent to one centimetre in

real world. In Figure 4-10, the floor is forty centimetres wide, forty centimetres long and one centimetre tick,

which means the overall size is 40x1x40 in world units (WU).

There are several different types of materials that define physical properties of objects. The two basic types

are unshaded and shaded materials as shown in Figure 4-11. The former does not require any light sources to

be visible, which means that it appears flat no matter from which angle they are being looked at. The latter,

however, requires additional illumination to be visible from different angles. The shading and coloration of

such objects may vary depending on the viewing angle. The simple geometries used for the implementation of

the visual scene shown in Figure 4-10 have been made of unshaded material.

Figure 4-11. Two cubes made of different materials. The blue cube is made of unshaded material while the

other is made of shaded one

94

Although different sources of light may influence the process of extracting features from live video feed, they

do not have an impact on the simulation of dynamic movements in three-dimensional space. In the analysis of

the behavioural patterns this research is mostly concerned about the dimensions, locations, orientations and

approximated physical appearance of objects identified in monitored area.

Figure 4-12. The final version of a visual scene recreated in the graphics engine from the exported XML file

generated by Blender

Since the simulator depends on the input data streamlined from other modules, the materials can be

interchangeably used solely for the purpose of aesthetic enhancement of the graphics. Therefore, the in-depth

study of mechanisms behind lighting, shading and materials in 3D graphics has been left out of the scope of

the research. When development process reached a more matured stage, high-level methods have been

used to increase the level of graphical details, but they do not affect the execution of simulation of

movements. As in the case of an agent mode, the final three-dimensional scene has been modelled with

Blender as shown in Figure 4-12.

The exported XML file contains the information of all vertices comprising the overall geometry of a closed

space. To preserve dimensions of the scene between different mediums and maintain the consistency, the

unit measurements were set to the default value of one meter.

4.4. Implementation of the simulator

4.4.1. Utilization of engine core libraries for critical functionality of the simulator

The implementation of physical properties of the visual scene, linear movements and collision detection

mechanisms relies on libraries provided with jMonkeyEngine (jMonkeyEngine, 2014). Table 4-2 summarizes

the libraries used in the implementation of the simulator.

95

Table 4-2. jMonkeyEngine library functions used for implementation of the simulator (jMonkeyEngine, 2014)
C

la
ss

 /
Li

br
ar

y

C
la

ss
 V

ec
to

r3
f

co
m.
jm

e3
.m

at
h.

Ve
ct

or
3f

C
la

ss
 M

at
rix

3f

co
m.
jm

e3
.m

at
h.

Ma
tr

ix
3f

C
la

ss
 Q

ua
te

rn
io

n
co
m.
jm

e3
.m

at
h.

Qu
at

er
ni
on

Fo
rm

ul
a

𝑣
=

[𝑣
𝑥
,𝑣

𝑦
,𝑣

𝑧]

(L
en

gy
el

, E
.,

20
03

)

 S
ee

 A
pp

en
di

x
fo

r m
or

e
de

ta
ils

𝑀
=

[𝑎
𝑖𝑗
]=

(𝑎 1
1

⋯
𝑎 1

𝑚

⋮
⋱

⋮
𝑎 𝑛

1
⋯

𝑎 𝑛
𝑚

)

(L
en

gy
el

, E
.,

20
03

)

S
ee

 A
pp

en
di

x
fo

r m
or

e
de

ta
ils

𝑞

=
𝑤

+
𝑥𝑖

+
𝑦𝑗

+
𝑧𝑘

(H
am

ilt
on

, 1
85

3)

𝑞
=

co
s(

𝛼 2)
+

𝑖(
𝑥

∗
si

n
(𝛼 2))

+
𝑗(

𝑦
∗

si
n

(𝛼 2))
+

𝑘
(𝑧

∗
si

n
(𝛼 2))

(B
ak

er
)

 S
ee

 A
pp

en
di

x
fo

r m
or

e
de

ta
ils

W
ha

t i
s

it
us

ed
 fo

r?

C
al

cu
la

tin
g

ob
je

ct
s

po
si

tio
ns

 in
 th

e
bo

un
da

rie
s

of
 v

is
ua

l s
ce

ne
, s

im
ul

at
in

g
th

ei
r d

yn
am

ic
 m

ov
em

en
t,

de
fin

in
g

sp
at

ia
l p

ro
pe

rti
es

 a
nd

 o
pe

ra
tio

ns
 re

la
te

d
to

 c
ol

lis
io

n
de

te
ct

io
n

m
ec

ha
ni

cs
.

A
 c

om
pa

ct
 m

at
he

m
at

ic
al

 c
on

st
ru

ct

us
ed

 fo
r e

nc
ap

su
la

tio
n

of
 th

re
e-

di
m

en
si

on
al

 tr
an

sf
or

m
at

io
ns

 o
f s

pa
tia

l
pr

op
er

tie
s

of
 o

bj
ec

ts
 v

is
ib

le
 in

 v
is

ua
l

sc
en

e.
 M

at
ric

es
 a

re
 a

 c
on

ve
ni

en
t w

ay

of
 s

to
rin

g
a

m
at

he
m

at
ic

al
 d

es
cr

ip
tio

n
of

tra

ns
fo

rm
at

io
n

th
at

 o
ne

 h
as

 to
 a

pp
ly

 to

an
 o

bj
ec

t i
n

vi
su

al
 s

ce
ne

 in
 o

rd
er

, f
or

in

st
an

ce
, t

o
si

m
ul

at
e

m
ov

em
en

t s
uc

h
as

 ro
ta

tio
n.

C
al

cu
la

tin
g

ob
je

ct
s

ro
ta

tio
ns

 in
 m

or
e

ef
fic

ie
nt

 m
an

ne
r t

ha
n

m
at

ric
es

 s
in

ce

qu
at

er
ni

on
s

re
qu

ire
 le

ss
 s

to
ra

ge
 s

pa
ce

,
fe

w
er

 a
rit

hm
et

ic
 o

pe
ra

tio
ns

 a
nd

 le
ss

m

em
or

y
fo

r c
om

pu
ta

tio
ns

.

Fu
nc

tio
n

in
 s

im
ul

at
io

n

Ve
ct

or
;

A
 m

at
he

m
at

ic
al

 c
on

st
ru

ct
 th

at

is
 o

f s
ig

ni
fic

an
t i

m
po

rta
nc

e
in

3D

 e
ng

in
es

 a
nd

 m
od

el
lin

g
to

ol
s

fo
r c

al
cu

la
tio

ns
 re

la
te

d
to

 th
re

e-
di

m
en

si
on

al
 s

pa
ce

.

M
at

rix
;

A
 m

at
he

m
at

ic
al

 c
on

st
ru

ct
 u

se
d

fo
r s

to
rin

g
an

d
ex

ec
ut

in
g

tra
ns

fo
rm

at
io

n
op

er
at

io
ns

 o
n

ob
je

ct
s

in
 3

D
 s

pa
ce

.
 Q
ua

te
rn

io
n;

A

 m
at

he
m

at
ic

al
 c

on
st

ru
ct

 th
at

is

 u
se

d
by

 3
D

 e
ng

in
es

 to
 d

ef
in

e
or

ie
nt

at
io

ns
 o

f o
bj

ec
ts

.

96

C

la
ss

 /
Li

br
ar

y

C
la

ss

Sp
he

re
C

ol
lis

io
nS

ha
pe

 co
m.
jm

e3
.b

ul
le

t.
co

l
li
si
on

.s
ha

pe
s.

Sp
he

r
eC
ol
li

si
on

Sh
ap

e

C
la

ss

B
et

te
rC

ha
ra

ct
er

Co
nt

r
ol

 co
m.
jm

e3
.b

ul
le

t.
co

n
tr
ol
.B

et
te

rC
ha

ra
ct

e
rC
on
tr

ol

C
la

ss
 R

ay

co
m.
jm

e3
.m

at
h.

Ra
y

Fo
rm

ul
a

(𝑝
𝑥

−
𝑐 𝑥

)2
+

(𝑝
𝑦

−
𝑐 𝑦

)2
+

(𝑝
𝑧
−

𝑐 𝑧
)2

=
𝑟2

(L
en

gy
el

, E
.,

20
03

)

 S
ee

 A
pp

en
di

x
fo

r m
or

e
de

ta
ils

𝑥(
𝑡)

=
𝑥 0

+
 𝑣

0𝑡

𝑣(
𝑡)

=
𝑥(

𝑡)
=

𝑑 𝑑𝑡
𝑥(

𝑡)

𝑣(
𝑡)

=
𝑣 0

+
𝑎 0

𝑡

𝑎(
𝑡)

=
𝑣(

𝑡)
=

𝑥(
𝑡)

=
𝑑2 𝑑𝑡

2
𝑥(

𝑡)

𝑑
=

∫
𝑣(

𝑡)
𝑑𝑡

𝑡 2 𝑡 1

𝑑
=

∫
(𝑣

0
+

𝑎 0
𝑡)

𝑑𝑡
=

𝑣 0
𝑡+

1 2
𝑎 0

𝑡2
𝑡 0

𝑥(
𝑡)

=
𝑥 0

+
 𝑣

0𝑡
+

1 2
𝑎 0

𝑡2

(L
en

gy
el

, E
.,

20
03

)

𝑅
(𝑥

)
=

𝑢
+

𝑥𝑣

(L
en

gy
el

, E
.,

20
03

)

W
ha

t i
s

it
us

ed
 fo

r?

A
pp

ro
xi

m
at

in
g

th
e

lo
gi

ca
l a

nd
 p

hy
si

ca
l

sh
ap

e
of

 o
bj

ec
ts

 a
nd

 th
ei

r p
ar

ts
 in

 th
e

vi
su

al

sc
en

e.
 E

xa
m

pl
e:

 s
ph

er
e

su
rro

un
di

ng
 a

ge
nt

ha

nd
,

sp
he

re
 s

ur
ro

un
di

ng
 a

 p
ac

ka
ge

, e
tc

.
C

al
cu

la
tin

g
di

st
an

ce
s

be
tw

ee
n

oc
cu

pa
nc

ie
s

of
 tw

o
or

 m
or

e
in

de
pe

nd
en

t o
bj

ec
ts

.

C
al

cu
la

tin
g

ag
en

t l
oc

at
io

n
at

 n
ex

t f
ra

m
e

in

re
sp

ec
t o

f t
im

e
an

d
on

 a
 b

as
is

 o
f v

ie
w

in
g

di
re

ct
io

n,
 w

al
ki

ng
 d

ire
ct

io
n

an
d

ve
lo

ci
ty

w

hi
le

 a
cc

ou
nt

in
g

th
e

ph
ys

ic
al

 p
ro

pe
rti

es
 o

f
so

lid
 o

bj
ec

ts
. T

he
 li

br
ar

y
eq

ui
ps

 a
ge

nt

ge
om

et
ry

 w
ith

 p
hy

si
ca

l p
ro

pe
rti

es
 a

nd

pe
rfo

rm
s

co
llis

io
n

de
te

ct
io

n
ch

ec
ks

 to

pr
ev

en
t i

t f
ro

m
 g

oi
ng

 th
ro

ug
h

so
lid

 o
bj

ec
ts

in

 v
is

ua
l s

ce
ne

. A
 p

rim
iti

ve
 g

eo
m

et
ry

 in
 a

fo

rm
 o

f p
in

k
sp

he
re

 (s
ee

 F
ig

ur
e

4-
17

) h
as

be

en
 s

el
ec

te
d

to
 re

pr
es

en
t a

n
ap

pr
ox

im
at

ed
 s

ha
pe

 o
f a

n
ag

en
t t

o
m

in
im

iz
e

th
e

nu
m

be
r o

f c
ol

lis
io

n
de

te
ct

io
n

ca
lc

ul
at

io
ns

 a
nd

 te
st

s.

C
al

cu
la

tin
g

a
lo

ca
tio

n
of

 a
 p

oi
nt

 in
 w

hi
ch

ra

y
in

te
rs

ec
ts

 a
 g

eo
m

et
ry

 re
pr

es
en

tin
g

an

ob
je

ct
 in

 v
is

ua
l s

ce
ne

. R
ay

 tr
ac

in
g

te
ch

ni
qu

e
is

 u
se

d
in

 s
im

ul
at

or
 to

 e
st

im
at

e
di

st
an

ce
 b

et
w

ee
n

tw
o

di
ffe

re
nt

 o
bj

ec
ts

 a
nd

de

te
rm

in
e

w
he

th
er

 th
ey

 a
re

 w
ith

in
 e

ac
h

ot
he

r l
in

e-
of

-s
ig

ht
, i

.e
. i

f n
o

ot
he

r p
hy

si
ca

l
ob

je
ct

s
lie

 b
et

w
ee

n
th

em
. I

nt
er

se
ct

io
ns

re

su
lt

in
 th

e
ge

ne
ra

tio
n

of
 lo

gi
ca

l e
ve

nt
s

th
at

 a
re

 e
ss

en
tia

l f
or

 a
cc

um
ul

at
in

g
ne

ce
ss

ar
y

da
ta

 fo
r d

yn
am

ic
 p

at
te

rn

re
co

gn
iti

on
. E

xa
m

pl
e:

 ra
ys

 c
as

te
d

to
w

ar
ds

le

ft
or

 ri
gh

t s
id

e
of

 a
n

ag
en

t t
o

de
te

rm
in

e
if

it
w

al
ks

 a
lo

ng
 o

bj
ec

t.

Fu
nc

tio
n

in
 s

im
ul

at
io

n

Sp
he

re
 G

eo
m

et
ry

;
A

pp
ro

xi
m

at
io

n
of

 o
bj

ec
t s

pa
tia

l
vo

lu
m

e
in

 v
is

ua
l s

ce
ne

; r
ef

er
 to

se

ct
io

n
5.

3.
3.

 fo
r j

us
tif

ic
at

io
n

of

se
le

ct
in

g
sp

he
re

 g
eo

m
et

ry
 fo

r
ap

pr
ox

im
at

io
n.

 A

ge
nt

 li
ne

ar
 m

ov
em

en
t;

S
im

ul
at

io
n

of
 e

ac
h

ag
en

t m
ov

em
en

t
w

ith
in

 th
e

bo
un

da
rie

s
of

 th
e

vi
su

al

sc
en

e
w

hi
le

 a
cc

ou
nt

in
g

th
e

la
w

s
of

ph

ys
ic

s.
 In

 th
e

cu
rr

en
t v

er
si

on
 a

co

ns
ta

nt
 v

el
oc

ity
 is

 ta
ke

n
in

to

ac
co

un
t w

he
n

si
m

ul
at

in
g

m
ov

em
en

ts

to
 re

du
ce

 th
e

ov
er

al
l c

om
pl

ex
ity

 o
f

th
e

im
pl

em
en

ta
tio

n
an

d
dy

na
m

ic

be
ha

vi
ou

ra
l p

at
te

rn
s.

R
ay

 C
as

tin
g;

D

et
er

m
in

at
io

n
of

 o
bj

ec
t l

oc
at

io
n

in

re
la

tio
n

to
 a

ge
nt

 p
os

iti
on

; c
ol

lis
io

n
de

te
ct

io
n

an
d

ge
ne

ra
tio

n
of

 e
ve

nt
s

us
ed

 fo
r r

ec
og

ni
tio

n
of

 d
yn

am
ic

pa

tte
rn

s

97

C
la

ss
 /

Li
br

ar
y

C
la

ss
 G

ho
st

C
on

tr
ol

co
m.
jm

e3
.b

ul
le

t.
co

nt
ro
l.

G
ho
st
Co

nt
ro

l

Fo
rm

ul
a

𝑡
=

−
(𝐴

∙𝐵
) −

√
(𝐴

∙𝐵
)2

−
𝐵

2 [
𝐴2

−
(𝑟

𝑝
+

𝑟 𝑞
)2

]

𝐵
2

(L
en

gy
el

, E
.,

20
03

)

 S
ee

 A
pp

en
di

x
 fo

r m
or

e
de

ta
ils

.

W
ha

t i
s

it
us

ed
 fo

r?

C
al

cu
la

tin
g

ob
je

ct
s

ap
pr

ox
im

at
ed

vo

lu
m

es
 a

nd
 p

os
iti

on
s

in
 th

e
bo

un
da

rie
s

of
 v

is
ua

l s
ce

ne
. G

ho
st

 c
on

tro
ls

 a
re

 a
ls

o
us

ed
 fo

r d
ef

in
in

g
sp

at
ia

l p
ro

pe
rti

es
 a

nd

op
er

at
io

ns
 re

la
te

d
to

 c
ol

lis
io

n
de

te
ct

io
n

m
ec

ha
ni

cs
.

Fu
nc

tio
n

in
 s

im
ul

at
io

n

G
ho

st
in

g;

D
et

er
m

in
at

io
n

of
 p

ro
xi

m
ity

 b
et

w
ee

n
ap

pr
ox

im
at

ed
 v

ol
um

es
 o

f t
w

o
in

de
pe

nd
en

t
ob

je
ct

s
 in

 th
e

vi
su

al
 s

ce
ne

; C
ol

lis
io

n
de

te
ct

io
n

an
d

ge
ne

ra
tio

n
of

 e
ve

nt
s

da
ta

us

ed
 fo

r r
ec

og
ni

tio
n

of
 d

yn
am

ic
 p

at
te

rn
s

98

4.4.2. Simulating movements

Movements play an essential role in reconstructing the object trajectories and as such are the cornerstone of

the simulation-based behaviour analysis. There are two different methods that have been adopted for

simulating movements in the 3D space of the visual scene. The first uses directly analytical data received from

other modules of the framework in XML format. The agent movement from one location to another is rendered

using current location and the orientation of individual in visual scene. The second method relies on skeleton

animations. The bone movement play two different roles in this case. Primarily they provide information about

the location of corresponding body parts and their rotation at particular time of the movement. This information

is critical for positioning the bounding boxes that are used for establishing relationships between body parts

and other objects in the scene. Bounding boxes are described in more details later in this chapter. The

secondary function is to visualise the movements.

The implementation of linear movements relies on libraries provided with jMonkeyEngine (see Table 4-2).

The position is determined on the base of current location, velocity and forward direction vector that may

rotate according to the changes of the viewing direction vector as shown in Figure 4-13.

Figure 4-13. An agent moving along curved path

The key components that dictate how agents change their location in three-dimensional space are:

x The walking direction. This is a normalized vector calculated in other modules of the framework that

is taken as input data. It describes in which direction the agent is about to move since the previous

move. The magnitude of this vector defines the speed at which an agent moves, but since only

constant velocity is considered at the time of this writing, a default constant value has been used in

the simulator.

99

x The viewing direction. This normalized vector is also calculated externally. It describes the current

orientation of the individual, which is important in many dynamic patterns and provides support for

calculating agent’s rotation in three-dimensional scene.

Depending on the purpose of the simulation, the trajectory information does not have to come from a live

camera feed. With the use of built-in physics in the engine one can also calculate the movements of an agent

using data coming straight from the keyboard. This would make the simulator an application that is self-

contained and fully independent on input data. For the purpose of this research, this approach has been

adopted. It proved to be fully adequate in testing and experimentation for the purpose of the subsequent

pattern analysis. When the simulator is part of a framework an additional adapter for feeding in the input data

into the simulator in real time will be necessary.

4.4.3. Collision detection

The analysis of dynamic behaviour is based on events occurring in the three-dimensional space during the

simulation. Most of the internal events can be interpreted as collisions between various objects on the scene.

The two commonly used in computer games collision detection techniques that allow registering an instance

when two different geometries share a mutual surface point have been adopted in the implementation. Ray
casting is a technique based on the concept of emitting a ray from a given point in space towards a specific

direction to determine if any object lies in its path (Reese and Johnson, 2015). It is particularly useful in

situations when it is required to determine if an object is within a certain distance from an agent. The other

technique, ghosting is based on the idea of surrounding more complex geometries with simpler ones in order

to reduce the number of operations required for detecting volumetric collisions with an object. The

responsibility of ghosts is only to report details of the event and not to influence physical attributes of the

objects.

4.4.3.1. Implementation of agent’s “sight sense” for spatial reconnaissance

The sight sense of an agent utilises ray casting technique for approximation of the vision field and probing

neighbouring areas for objects. Using the method presented by Edén (2014), rays are being rendered from

agent’s head geometry to emulate the central and peripheral vision of human sight sense (Figure 4-14).

100

Figure 4-14. Schematic view of the sense of sight of an agent; the rays are depicted with blue arrows

To accommodate situations in which an agent might change body position (e.g., while bending), the arc, which

emits the rays, is repositioned and orientated relative to the spine and the head with the use of a novel

formula presented in Formula 4-6. The method utilises the equation for rotating a vector around an arbitrary

axis defined by unit vector as presented in Formula 4-18. Such implementation avoids counterintuitive

behaviour of the detection mechanism e.g. head oriented at the floor does not prevent am agent from

detecting objects located in front of it. Each ‘sight’ ray origin point and direction are calculated in several steps

assuming that the following data is available at the time of calculation:

a) �⃗� ℎ - location of agent’s head in relation to the origin of global coordinate space specified in vector

notation.

b) �⃗� 𝑝 - location of agent’s central node (local origin point) in relation to the origin of global coordinate

space specified in vector notation.

c) 𝑣 𝑑𝑖𝑟 – a normalized viewing direction vector an agent.

d) 𝜃 – head orientation angle relative to Y axis.

e) 𝑝 𝑠– agent’s spine defined as a difference between head and central node, i.e. �⃗� ℎ − �⃗� 𝑝 (assuming the

vector is normalized).

Knowing the viewing direction vector of an individual 𝑣 𝑑𝑖𝑟, the spine vector 𝑝 𝑠, the head orientation angle 𝜃

and the angular distance between the rays expressed by angle 𝛿, one can calculate the orientation matrices

𝑅1, 𝑅2, 𝑅3, 𝑅4 where each matrix represents different stage of overall rotations that need to be made in order

to position the viewing direction relative to the orientation of agent’s head and body.

101

𝑅 1
=

[
(1

−
co

s9
0°

)𝑢
𝑥
2
+

co
s9

0°
(1

−
co

s9
0°

)𝑢
𝑥
𝑢 𝑦

−
si

n
90

°𝑢
𝑧

(1
−

co
s9

0°
)𝑢

𝑥
𝑢 𝑧

+
si

n
90

°𝑢
𝑦

(1
−

co
s9

0°
)𝑢

𝑥
𝑢 𝑦

+
si

n
90

°𝑢
𝑧

(1
−

co
s9

0°
)𝑢

𝑦
2
+

co
s9

0°
(1

−
co

s9
0°

)𝑢
𝑦
𝑢 𝑧

−
si

n
90

°𝑢
𝑥

(1
−

co
s9

0°
)𝑢

𝑥
𝑢 𝑧

−
si

n
90

°𝑢
𝑦

(1
−

co
s9

0°
)𝑢

𝑦
𝑢 𝑧

+
si

n
90

°𝑢
𝑥

(1
−

co
s9

0°
)𝑢

𝑧2
+

co
s9

0°
]

𝑅 2
=

 [
(1

−
co

s9
0°

)(
𝑅 1

𝑣 𝑑
𝑖𝑟

) 𝑥
2
+

co
s9

0°
(1

−
co

s9
0°

)(
𝑅 1

𝑣 𝑑
𝑖𝑟

) 𝑥
(𝑅

1𝑣
𝑑𝑖

𝑟)
𝑦

−
si

n
90

°(
𝑅 1

𝑣 𝑑
𝑖𝑟

) 𝑧
(1

−
co

s9
0°

)(
𝑅 1

𝑣 𝑑
𝑖𝑟

) 𝑥
(𝑅

1𝑣
𝑑𝑖

𝑟)
𝑧
+

si
n

90
°(

𝑅 1
𝑣 𝑑

𝑖𝑟
) 𝑦

(1
−

co
s9

0°
)(

𝑅 1
𝑣 𝑑

𝑖𝑟
) 𝑥

(𝑅
1𝑣

𝑑𝑖
𝑟)

𝑦
+

si
n

90
°(

𝑅 1
𝑣 𝑑

𝑖𝑟
) 𝑧

(1
−

co
s9

0°
)(

𝑅 1
𝑣 𝑑

𝑖𝑟
) 𝑦

2
+

co
s9

0°
(1

−
co

s9
0°

)(
𝑅 1

𝑣 𝑑
𝑖𝑟

) 𝑦
(𝑅

1𝑣
𝑑𝑖

𝑟)
𝑧
−

si
n

90
°(

𝑅 1
𝑣 𝑑

𝑖𝑟
) 𝑥

(1
−

co
s9

0°
)(

𝑅 1
𝑣 𝑑

𝑖𝑟
) 𝑥

(𝑅
1𝑣

𝑑𝑖
𝑟)

𝑧
−

si
n

90
°(

𝑅 1
𝑣 𝑑

𝑖𝑟
) 𝑦

(1
−

co
s9

0°
)(

𝑅 1
𝑣 𝑑

𝑖𝑟
) 𝑦

(𝑅
1𝑣

𝑑𝑖
𝑟)

𝑧
+

si
n

90
°(

𝑅 1
𝑣 𝑑

𝑖𝑟
) 𝑥

(1
−

co
s9

0°
)(

𝑅 1
𝑣 𝑑

𝑖𝑟
) 𝑧

2
+

co
s9

0°
]

𝑅 3
 =

[
(1

−
co

s𝜃
)𝑝

𝑠 𝑥
2
+

co
s𝜃

(1
−

co
s𝜃

)𝑝
𝑠 𝑥

𝑝 𝑠
𝑦

−
si

n
𝜃

𝑝 𝑠
𝑧

(1
−

co
s𝜃

)𝑝
𝑠 𝑥

𝑝 𝑠
𝑧
+

si
n

𝜃
𝑝 𝑠

𝑦

(1
−

co
s𝜃

)𝑝
𝑠 𝑥

𝑝 𝑠
𝑦

+
si

n
𝜃

𝑝 𝑠
𝑧

(1
−

co
s𝜃

)𝑝
𝑠 𝑦

2
+

co
s𝜃

(1
−

co
s𝜃

)𝑝
𝑠 𝑦

𝑝 𝑠
𝑧
−

si
n

𝜃
𝑝 𝑠

𝑥

(1
−

co
s𝜃

)𝑝
𝑠 𝑥

𝑝 𝑠
𝑧
−

si
n

𝜃
𝑝 𝑠

𝑦
(1

−
co

s𝜃
)𝑝

𝑠 𝑦
𝑝 𝑠

𝑧
+

si
n

𝜃
𝑝 𝑠

𝑥
(1

−
co

s𝜃
)𝑝

𝑠 𝑧
2
+

co
s𝜃

]

𝑅 4
=

[
(1

−
co

s𝛿
) 𝑝

𝑠 𝑥
2
+

co
s𝛿

(1
−

co
s𝛿

) 𝑝
𝑠 𝑥

𝑝 𝑠
𝑦

−
si

n
𝛿

𝑝 𝑠
𝑧

(1
−

co
s𝛿

) 𝑝
𝑠 𝑥

𝑝 𝑠
𝑧
+

si
n

𝛿
𝑝 𝑠

𝑦

(1
−

co
s𝛿

) 𝑝
𝑠 𝑥

𝑝 𝑠
𝑦

+
si

n
𝛿

𝑝 𝑠
𝑧

(1
−

co
s𝛿

) 𝑝
𝑠 𝑦

2
+

co
s𝛿

(1
−

co
s𝛿

) 𝑝
𝑠 𝑦

𝑝 𝑠
𝑧
−

si
n

𝛿
𝑝 𝑠

𝑥

(1
−

co
s𝛿

) 𝑝
𝑠 𝑥

𝑝 𝑠
𝑧
−

si
n

𝛿
𝑝 𝑠

𝑦
(1

−
co

s𝛿
) 𝑝

𝑠 𝑦
𝑝 𝑠

𝑧
+

si
n

𝛿
𝑝 𝑠

𝑥
(1

−
co

s𝛿
) 𝑝

𝑠 𝑧
2
+

co
s𝛿

]

 w
he

re

𝑢
=

[0
,1

,0
]

 Fo
rm

ul
a

4-
6.

 C
al

cu
la

tin
g

or
ie

nt
at

io
n

m
at

ric
es

. T
he

 fo
rm

ul
a

ta
ke

s
in

to
 c

on
si

de
ra

tio
n

th
e

cu
rre

nt
 o

rie
nt

at
io

n
of

 h
ea

d
an

d
sp

in
e

w
he

n
th

e
ra

y
is

 a

pa
rt

of
 a

ge
nt

's
 e

st
im

at
ed

 e
ye

si
gh

t.

102

Calculating the final ray direction vector is then

𝑟 𝑓𝑖𝑛𝑎𝑙 = 𝑅4(𝑅3(𝑅2𝑝 𝑠))

Substituting this vector into the general ray tracing equation yields

𝑅(𝑥) = �⃗� ℎ + 𝑥𝑟 𝑓𝑖𝑛𝑎𝑙

As reported by Gasiorowski, Vassilev and Ouazzane (2016) in the paper where general framework was first

presented, the above formulas allows approximation of the perceptual system of humans taking into account

the mechanisms of the peripheral vision, body and head positioning. Although useful for estimating the focus

of agent’s attention, it may be difficult to detect objects solely on that basis. For this reason, a set of additional

rays is being generated that are orthogonal to agent’s viewing direction vector (Figure 4-15).

Figure 4-15. Schematic view of ray casting used for detecting objects located in close proximity. The blue

rays indicate the sight sense while the red dashed rays depict the ray casting boundary

On the basis of the general Formula 4-6 one can calculate the additional side rays as follows

𝑟 𝑠𝑖𝑑𝑒 = 𝑅𝑠𝑖𝑑𝑒𝑣 𝑑𝑖𝑟

where

𝑅𝑠𝑖𝑑𝑒 = [
(1 − cos ±90°)𝑢𝑥

2 + cos±90° (1 − cos ±90°)𝑢𝑥𝑢𝑦 − sin ±90 °𝑢𝑧 (1 − cos ±90°)𝑢𝑥𝑢𝑧 + sin ±90 °𝑢𝑦

(1 − cos ±90°)𝑢𝑥𝑢𝑦 + sin±90 °𝑢𝑧 (1 − cos ±90°)𝑢𝑦
2 + cos±90° (1 − cos ±90°)𝑢𝑦𝑢𝑧 − sin ±90 °𝑢𝑥

(1 − cos ±90°)𝑢𝑥𝑢𝑧 − sin±90 °𝑢𝑦 (1 − cos ±90°)𝑢𝑦𝑢𝑧 + sin±90 °𝑢𝑥 (1 − cos ±90°)𝑢𝑧
2 + cos±90°

]

and 𝑢 = [0,1,0]

For vertical rays, i.e. rays casted up and down the head, one needs to know also the agent’s location:

𝑅(𝑥) = �⃗� 𝑝 + 𝑥�⃗�

where �⃗� 𝑝 is the central node point of individual (physical location of individual in world space) and �⃗� is either

[0,1,0] or [0, −1,0] depending on the direction one wishes to cast ray towards.

103

4.4.3.2. Implementation of agent’s “ghost” for object detection

The simulator utilises the “ghost” technique to detect potential collisions in situations when either the data from

ray casting is insufficient or there is a need to account not just the surface but also the volume of an object.

For example, considering the anatomical structure of human body it would be difficult to detect an object that

came into contact with a limb using ray casting since in such a case it is impossible to determine the exact

direction of the rays. The emission of multiple rays around each limb also would not provide efficient solution,

because the number of potential collisions would grow exponentially and this could quickly reduce the

computational capacity of the simulator.

In the real world, the individuals interact with surrounding objects by using their body parts, such as hands or

legs, represented by the bones in our model. The “ghosts” will simply encapsulate all dynamic and static

objects as shown in Figure 4-16. The centre of the sphere is set to coincide with the central point of the object

and the radius is set to cover completely its shape. Such non-physical spherical ghost geometries could

potentially lead to collisions, which can be detected by calculating the distances between the interacting

ghosts.

Figure 4-16. Positioning of the centre of ghost sphere

The simulator utilises this technique to report potential collisions between the body parts of individual and

previously identified objects in 3D scene. In order to follow the movement of individual limbs one first needs to

extract the location of the bones from the input stream. To set the ghost spheres at the correct locations one

also needs to translate their coordinates from the body model to the world space. For this purpose a

transformation matrix, which preserves the scale and orientation was constructed. So the transformation

matrix is a product of two matrices – the first one describes current spatial definition of a bone in model space,

104

and the second calculates the translation which positions the model space in world space coordinates

according to Formula 4-10 (see Figure 4.7).

𝑇 = [

1 0 0 u. x
0 1 0 u. y
0 0 1 u. z
0 0 0 1

]

𝑅 = [

1 0 0 0
0 cos γ −sin γ 0
0 sin γ cos γ 0
0 0 0 1

] [

cos β 0 sin β 0
0 1 0 0

−sin β 0 cos β 0
0 0 0 1

] [

cos α −sin α 0 0
sin α cos α 0 0

0 0 1 0
0 0 0 1

]

𝑆 = [

v. x 0 0 0
0 v. y 0 0
0 0 v. z 0
0 0 0 1

] 𝑝 = [

0
0
0
1

]

𝑜 = 𝑇(𝑅(𝑆𝑝))

Where,

𝑇 : translation matrix

�⃗� : vector defining an offset vector of a bone in relation to origin point in the world

space coordinate system

𝑅 : rotation matrix that is a product of three matrices defining current orientation of a

bone in relation to X-, Y- and Z-axis

γ : current rotation angle of a bone around X-axis

β : current rotation angle of a bone around Y-axis

α : current rotation angle of a bone around Z-axis

𝑆 : scale matrix

𝑣 : vector, whose components are defining the current scale of a bone along each axis

in a model space

𝑝 : a zero vector written in homogenous coordinates notation

𝑜 : a final position of a bone in world coordinates and a centre position point of a ghost

sphere surrounding it

Formula 4-7. Translating a bone from model space to world space

The above transformation has been implement in the simulator using the built-in functions of jMonkeyEngine
(jMonkeyEngine, 2014). The final result of this ghost-equipped model is shown on Figure 4-17. The red cubes

represent the bones and the red line segments depict the armature connecting them. The rays emitted from

105

the head are shown in blue and the ghost spheres surrounding the body and the limbs are highlighted with

yellow wireframes. As opposed to ghost spheres that are used to report only logical collisions, the pink sphere

is used by the engine to detect physical collisions between solid boundaries of the visual scene such as floors

and an agent in order to prevent from going through them.

Figure 4-17. Final body model equipped with bones armature, ray casting vision and spherical ghosts

attached to the limbs

4.4.3.3. Pairing and grouping of individuals

Critical feature of the approach adopted in this research is that the groups are treated as separate entities,

which can exhibit their own behaviour. The group behavioural patterns always involve at the very least two

different agents. In our ontology we made a further distinction between pairs and groups due to the need to

distinguish antisymmetric relations in pairs from asymmetric relations within groups. As a result, the groups

can be formed by individuals joining pairs or by merging two groups. Two agents participating in a pair may be

labelled as first and second for convenience, although these labels do not necessarily reflect the positions of

the same agents within groups. Similarly, two groups which merge into a group can be labelled as first and

second pair although this in no way determines the position of their members in the groups.

106

The characteristics of the group should depend on the characteristics of the participating individuals. The

simulator is able to derive the location of the groups automatically. By interpolation of the values of the

location points of all individual members one can determine the midpoint of the group (see Formula 4-8). The

basic calculations needed are already implemented by the built-in functions of jMonkeyEngine

(jMonkeyEngine, 2014). The code in Listing 4-4 presents only the Java method, which utilises Formula 4-8 in

the calculations. The agents belonging to a group are being registered in a data structure (array) in the order

they have joined the group.

𝐺𝑀 =

[

 ∑((1 – 𝑠) ∗ 𝑢𝑖. 𝑥) + (𝑠 ∗ 𝑢𝑖−1. 𝑥)

𝑛

𝑖=2

∑((1 – 𝑠) ∗ 𝑢𝑖. 𝑦) + (𝑠 ∗ 𝑢𝑖−1. 𝑦)
𝑛

𝑖=2

∑((1 – 𝑠) ∗ 𝑢𝑖. 𝑧) + (𝑠 ∗ 𝑢𝑖−1. 𝑧)
𝑛

𝑖=2]

Where,

𝐺𝑀: the midpoint of a Group. The location is represented in vector notation.

𝑛 : number of Group members

�⃗� 𝑖 : the location of a Group member

𝑠: the interpolation factor which value is 0 ≤ s ≤ 1. The factor specifies the linear

interpolation distance between the location of a group member �⃗� 𝑖 and a group member

�⃗� 𝑖−1. The group members are ordered in a data structure by the time they joined a group.

Formula 4-8. Calculating the midpoint of a Group.

 /**
 * Calculating the mid point of all agents in the group.
 * @param aAgents
 * @return
 */
 private Vector3f getGroupMidPointPosition(ArrayList<Spatial> aAgents) {
 Vector3f groupMidPointPosition = Vector3f.ZERO;
 for(int i=0;i<aAgents.size();i++) {
 if(i > 0) {
 Vector3f currPosition = aAgents.get(i).
 getWorldTranslation().clone();
 if(groupMidPointPosition.length() != 0) {
 groupMidPointPosition = FastMath.interpolateLinear(.5f,
 groupMidPointPosition,
 currPosition);
 } else {
 Vector3f prevPosition = aAgents.get(i-1).
 getWorldTranslation().clone();
 groupMidPointPosition = FastMath.interpolateLinear(.5f,
 prevPosition, currPosition);
 }
 }

107

 }
 return groupMidPointPosition;
 }

Listing 4-4. Implementation of the method for calculating midpoint location of a group in Java

Using the same idea one can also calculate the average viewing direction of the group on the basis of known

viewing direction vectors of its individual members. Some of the agents may “look” or even “walk” in

completely opposite directions than others, but they still remain members of the group due to their close

proximity (see Figure 4-18).

Figure 4-18. Schematic view of two agents in the same group facing opposite directions

To account this possibility, calculations of average viewing and walking directions of groups are based on

majority, i.e. most members, whose viewing directions are facing similar direction (Listing 4-5).

 /**
 * Calculates the average view direction of all agents in the group.
 * @param aAgents
 * @return
 */
 private Vector3f getGroupViewDirection(ArrayList<Spatial> aAgents) {
 Vector3f groupViewDirection = Vector3f.ZERO;
 for(int i=0;i<aAgents.size();i++) {
 if(i > 0) {
 Vector3f currViewDirection = aAgents.get(i).
 getControl(CharacterControl.class).
 getViewDirection().clone();
 if(groupViewDirection.length() != 0) {
 groupViewDirection = FastMath.interpolateLinear(.5f,
 groupViewDirection,
 currViewDirection);
 } else {

108

 Vector3f prevViewDirection = aAgents.get(i-1).

 getControl(CharacterControl.class).
 getViewDirection().clone();
 groupViewDirection = FastMath.
 interpolateLinear(.5f,
 prevViewDirection,
 currViewDirection);
 }
 }
 }

 // Adjusting the average view direction within the group
 ArrayList<String> ids = new ArrayList<String>();
 Vector3f finalGroupViewDirection = Vector3f.ZERO;
 for(int j=0;j<aAgents.size();j++) {
 Vector3f viewDirection = aAgents.get(j).
 getControl(CharacterControl.class).
 getViewDirection().clone();
 int isOpposite = SimMath.
 getVectorDirectionProximity(groupViewDirection,
 viewDirection);
 if(isOpposite == 1) {
 finalGroupViewDirection = FastMath.
 interpolateLinear(.5f,
 finalGroupViewDirection,
 viewDirection);
 ids.add(aAgents.get(j).
 getControl(CharacterControl.class).getID());
 }
 }

 return finalGroupViewDirection;
 }

Listing 4-5. Implementation of the method for calculating the average viewing and walking directions of a

group in Java

The central location of a group in combination with the average viewing direction provides sufficient means for

capturing group events in a similar manner as those of individual events. The advantage of this solution is that

one can capture the behavioural patterns of the groups and the individual agents in parallel (Figure 4-19).

109

Figure 4-19. A group of three agents

The midpoint of a group is represented by red cube stretched to cover all members of the group, while the

average viewing direction is depicted with a red line segment emitted from it.

4.5. The 3D Simulation as a Basis for Event-driven Dynamic Behaviour Analysis

The fundamental principle behind the simulation-based event-driven dynamic behaviour pattern analysis is to

simulate the physical conditions, under which the events are registered by the simulator for further analysis.

The ray casting and ghosting techniques have been adopted to support the detection of potential collisions

between the geometries of objects located within the space of visual scene, which can generate events by

simply accounting the laws of physics. In addition, a range of techniques for generating individual and group

events purely have been logically developed by accounting the proximity between the geometries.

Currently, the individual dynamic behavioural patterns are recognised using the following information:

a) The set of properties describing the agent a participating in a pattern at time 𝑡 when event e occurs.

b) The set of properties describing an object o participating in a pattern at time 𝑡 when event e occurs.

c) The location of the agent �⃗� 𝑡 defined in global coordinate space at the time 𝑡 when event e occurs.

d) The location of the object 𝑣 𝑡 defined in global coordinate space at the time 𝑡 when event e occurs.

e) The unit vector defining a walking direction from agent towards an object 𝑑𝑖𝑟⃗⃗⃗⃗⃗⃗ 𝑡 at the time 𝑡 when event

occurs.

f) The unit vector defining a viewing direction of an agent 𝑣𝑑𝑖𝑟⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 𝑡 at time 𝑡.

The application incorporates two different methods for deriving behavioural patterns during the simulation

which are executed simultaneously at each step of the simulation loop in order to detect potential occurrence:

110

x By analysing the entries in the event log for discovering patterns. The approach is inspired by

the architecture developed by Sung, Gleicher and Chenney (2004) in which the behaviour of an agent

in simulation is analysed and then selected on a basis of sampling of the output of various tracing

functions in a batch. Once the number of entries in the buffer reaches certain pre-defined size, the

events in the batch are analysed for recognising the potential pattern. In some cases only a few event

entries in the buffer suffice to recognise a pattern. More information on this method is presented in

section 2.3.3.

x By measuring the quantitative increments for estimating the critical distance to qualitative
changes. This method is based on using various quantitative estimations of qualitative changes, e.g.

calculating the angle between the viewing direction and the front of a Static Object, calculating the

distance between the ghosts of an object and a group of objects, etc. The calculated values in this

case are checked against pre-defined thresholds to determine the behaviour pattern. The approach is

inspired by the methodology presented by Maik et al. (2010) in which human poses are determined by

comparing measurements against minimum and maximum angular variations of the joints of the

human body. More information on this method is presented in section 2.2.

Both methods of analysis are parameterised, i.e. the criteria for recognising a pattern as well as the criteria for

capturing an event can be adjusted. The parameters can be configured prior to the simulation, but they can be

adjusted later on at runtime using a separate interface. This is possible because the algorithms for pattern

recognition are always invoked only during a single step of the game loop, while the thresholds are updated at

the beginning of the next cycle of the loop.

The process of analysis is presented in Figure 4-20. During the experimentation it was observed that without

appropriate timing mechanisms the event logging methods are executed too quickly, which breaks the

simulation into discrete fragments that are too small. To address this issue an additional synchronisation of

the simulation loop has been enforced to smoothen the flow.

111

Figure 4-20. Top-level

loop cycle of the

simulator

112

4.6. Event Logger

The major role of the simulation is to generate an informative log of events occurring within the visual scene

so that they can be analysed further by pattern matching techniques. The event logger has the architecture of

"observer" design pattern, with attached individual loggers to each object within the visual scene. The

individual observers log all events related to the observed objects. This allows further extension of the logging

module without changing the existing code of the simulator.

The simulator log will be parsed by the analyser for recognising and classification of the behaviour patterns

according to the grammar of the pattern language. The behaviour analysis can be continued solely based on

the logs, while the original video data can be used to increase the precision of the simulation. This approach

gives the opportunity to incorporate purely symbolic techniques for behaviour analysis.

In its current version, the simulator generates two types of log files with time-stamped entries describing all

captured events. The first is a text-based log file in which each line hints a frame of the movie that a given

pattern was recognized (Listing 4-6). The second one is an XML file, which contains more details about the

event, such as spatial properties of participating entities (Listing 4-7).

...
414 :: pair-349746 DISBANDS
415 :: agent-ID1 MOVES TOWARDS static-Counter_ID4
466 :: agent-ID1 MOVES AWAY FROM static-Counter_ID4
490 :: agent-ID1 and agent-ID2 FORMS A pair-321282
699 :: agent-ID0 and pair-321282 FORMS A group-321282
745 :: participant-agent-ID0 MOVES TOWARDS static-Bookshelf_ID2
747 :: group-321282 MOVES TOWARDS static-Bookshelf_ID2
756 :: participant-agent-ID0 MOVES TOWARDS static-Bookshelf_ID2
765 :: group-321282 MOVES TOWARDS static-Bookshelf_ID2
768 :: participant-agent-ID0 MOVES TOWARDS static-Bookshelf_ID2
780 :: participant-agent-ID0 MOVES TOWARDS static-Bookshelf_ID2
...

Listing 4-6. An excerpt of the text-based log file generated by simulator.

<entry id="event-2" timeStamp="25/02/2017 10:51:17" type="Event">
 <Event-initiator>Agent-ID2</Event-initiator>
 <group id="976693" type="group">
 <actor id="Agent-ID2">
 <location>
 <vectorX>82.19113</vectorX>
 <vectorY>4.3999987</vectorY>
 <vectorZ>50.879482</vectorZ>
 </location>
 <viewDirection>
 <vectorX>-0.87773573</vectorX>
 <vectorY>0.0</vectorY>
 <vectorZ>0.48221964</vectorZ>
 </viewDirection>

113

 </actor>
 <actor id="participant-Agent-ID1 in pair with pair-976693">
 <location>
 <vectorX>121.19113</vectorX>
 <vectorY>4.3999987</vectorY>
 <vectorZ>21.879484</vectorZ>
 </location>
 <viewDirection>
 <vectorX>-0.87773573</vectorX>
 <vectorY>0.0</vectorY>
 <vectorZ>0.48221964</vectorZ>
 </viewDirection>
 </actor>
 </group>
 <Result-Group-Event>Agent-ID2 JOINS group-976693</Result-Group-Event>
</entry>

Listing 4-7. An example of a single event entry extracted from the detailed XML log file generated by the

simulator

The more detailed XML file is suitable for additional processing by other modules of the visual analytics

framework and can be used independently by external applications.

4.7. Summary

In this chapter, the architecture of the software application capable of simulating three-dimensional closed

micro-worlds using partial information about the real world has been presented. The simulator allows utilising

the limited data extracted from live video in real time to approximate activities and events that may occur in

areas monitored by surveillance cameras. There are several advantages of this approach. Firstly, the

simulator reduces the complexity of data processing by eliminating the need of having precise data to derive

patterns of behaviour. Secondly, the control over the precision of the simulation can be maintained through

fine tuning a large number of parameters, such as frequency of updating the global state, frequency of

capturing the events, as well as by varying of the thresholds that dictate how dynamic patterns are being

recognised and logged. Lastly, the simulator can also visualise its input data in 3D so that one can

immediately validate the functionality and estimate the efficiency of the analysis through a simple observation.

Although the simulator has been developed especially for the purpose of dynamic behaviour analysis in video

surveillance, since it has been implemented as a standalone, self-contained and independent module it has

the potential for direct application in computer games where they need more sophisticated engines, capable of

simulating intelligent behaviour. By analysing gamer’s behaviour it is possible to respond to the actions more

accurately and in more versatile manner.

114

Chapter 5

Experimental validation of the simulator

In this chapter, the functionality of the simulator of dynamic behaviour patterns is presented, evaluated and

validated. The simulator has been initially verified through visual observation of the simulated agent's

movements invoked by keyboard-controlled input (Section 5.4 and Appendix A.3). Subsequently, the

simulation has been validated systematically using pre-recorded XML files containing data extracted from the

visual scene and stored in external XML files (Section 5.5 and Appendix A.8).

5.1. Methodology of conducting the experiments

As explained in the previous chapters, the simulator plays a dual role in the process of derivation of

behavioural patterns. Firstly, it synchronises the logical simulation with the incoming physical data through

constant updating of the global state of the simulated world. Secondly, it provides operational semantics of the

pattern language built according to the ontology of the visual scene (see Appendix A.5). Our experiments

show that the difference between the physical data input and the simulated data is so insignificant that it does

not make any impact on the algorithmic nature of the dynamic patterns of behaviour when the simulator is

properly configured. The empirical conclusion is that the dynamic patterns are relatively robust and do not
depend on the precision of data recorded by video camera. Second conclusion from the experimentation is

that the updates of the input data by varying the parameters of the simulator allow us to achieve satisfactory
precision without compromising the efficiency. The simulator is completely capable of approximating real data

at stable 30fps frame rate for small-sized groups. This proves successfully our hypothesis that we can replace

completely the real physical data with approximated simulation data and still be able to capture the essence of

dynamic behaviour of both individuals and groups on the visual scene.

The basis for our experimental methodology is the simultaneous maintenance of two independent outputs –

graphical output from the simulator, created by rendering the generated behaviour to the 3D animation

console, and symbolic output from the event logger, created by posting information about detected events

during the simulation in the event console. This allows us to compare the two outputs in order to verify the

functionality of the simulator, to validate the detected events, recognised patterns and classified behaviour as

well as to evaluate the quality and the performance of the application in general. According to this

methodology, the detected events must correspond to the observed events, the recognised patterns must

correspond to the observed patterns and the classified behaviour must correspond to the observed behaviour
in 3D visual scene. In other words, we perform validation, verification and overall evaluation of the quality by

simply visual observation and comparison (Figure 5-1). For example, if at the time of appearance of a

message on the event console stating that given agent walks towards specific static object we can observe

115

such activity through the simulation console we can validate the pattern and verify the functionality behind the

simulation by comparing the textual message with the graphical animation.

Figure 5-1. General scheme of the methodology for empirical assessment through visual observation and

comparison

The simulator has an intuitive interface, which allows to observe the agents movements and to follow the flow

of messages appearing on the event console in real-time (Figure 5-2).

Figure 5-2. The simulator console

116

5.2. Parameters of the dynamic behaviour patterns and empirical optimisation of the pattern
recognition

The pattern recognition has been experimented with different variations of the numerical parameters, which

govern the execution of event capturing operations. To determine whether each behaviour pattern can be

captured within an established amount of time with a given parameter we have performed a number of

interactive simulations using both keyboard controlled and file streamlined inputs. If a specific combination of

parameters does not produce satisfactory results after certain amount of time, it can be adjusted accordingly

through varying the value of the parameter. In order to eliminate the need of manual editing the configuration

file and restarting the simulation each time the parameters change, a separate Graphical User Interface (GUI)

has been produced. It allows to change the parameters in real-time by inserting desired values in appropriate

boxes located at the right-hand side of the console window (Figure 5-3).

Figure 5-3. The parameters panel of the simulator

To examine the influence of parameters and select their optimal values we can conduct as many simulations

as necessary before achieving satisfactory results. After sufficiently long experimentation the empirically

established optimal values for the parameters have been set as their default values. The entire process of

tuning the simulator has been depicted on the flowchart diagram in Figure 5-4.

117

Figure 5-4. Tuning the simulator by

varying its parameters during

experimentation.

118

5.3. Configuration of the simulator and algorithmic control of the execution

Every event capturing and pattern recognition operation is performed in a single step of the simulation loop.

They are synchronised and controlled by the simulator parameters which fall under four categories:

x Intervals. The frequency of capturing events controls the time for taking spatial measurements or

event sampling, i.e. the time that needs to pass from previous execution of the operation before the

next one can take place. The parameter is measured in seconds (1.0f = 1 second).

x Cool down periods. The minimum time period that needs to elapse before resuming the recording of

event sampling or taking spatial measurements, e.g. to register the event when an agent moves its

head left it is necessary to take continuous angular measurements and check them against the

predefined thresholds for a certain period of time. It is also important to prevent initiation of taking the

next sample before the current operation finishes. The parameter is measured in seconds (1.0f = 1

second).

x Distance thresholds. The parameters that usually define a range with minimum and maximum

values, e.g. in some cases the distance reached by an agent must fall within specific range in order to

trigger registration of the event or recognition of the pattern. This parameter can be measured in

different dimensions depending on the context - centimetres (1.0f = 1cm), decimetres (1.0f = 1dm),

angle degrees (1.0f = 1°) and in some cases also percentages (1.0f = 100%).

x Sampling sizes. The minimum number of events that needs to be recorded before the pattern

recognition can be conducted. The parameter represents the total size of the events batch and is

measured in integers (1 = size of the batch is 1).

The configuration file which sets the initialisation values of the parameters requires specifying of their name

and value and grouping them in parameter sets for data validation purpose by corresponding Java class

(Listing 6-1). The names of the parameters have been constructed specifically to hint at their role in the control

of the simulation.

<config>
 <parameterSet class="WorldAdvancedLoggerState">
 <parameter>
 <name>walkTowardsInterval</name>
 <value>0.10</value>
 </parameter>
 <parameter>
 <name>walkTowardsSamplingSize</name>
 <value>5</value>
 </parameter>
 <parameter>
 <name>walkTowardsDistanceTreshold</name>
 <value>80</value>
 </parameter>
…

119

 <parameterSet class="GroupsManagerState">
 <parameter>
 <name>groupFormSetInterval</name>
 <value>1.5</value>
 </parameter>
 <parameter>
 <name>groupFormProximityDistance</name>
 <value>50</value>
 </parameter>
 <parameter>
 <name>groupFormProximityLeavingDistance</name>
 <value>70</value>
 </parameter>
…

Listing 5-1. Excerpt of a configuration file with default parameter initialisation

At the beginning of the simulation cycle the simulator determines if each event capturing operation can be

executed. The elapsed time is checked against the interval parameters and cooling down period parameters.

During execution the simulator evaluates if the corresponding event has occurred under the conditions

specified using the threshold parameters set, e.g. whether an agent is within a specific range from a given

static object. When the pattern recognition depends on historical data recorded in the events batch, the

sampling size parameter is used to estimate if the number of accumulated events is sufficient to conduct their

analysis. Similar structure is developed for all operations related to the pattern recognition because only one

type of parameters is used at each step of the simulation cycle. The loop of the simulator picks up a suitable

parameter for checking by traversing the hierarchy of parameters shown in Figure 5-5.

120

Figure 5-5. A hierarchy of parameters organised according to the points in time when they are being used in

the simulation loop cycle

At the top of the hierarchy are the interval parameters and cool down period parameters that regulate the pace

of pattern recognition algorithm's execution. The time-per-frame (TPF) variable in each cycle provides

information about how much time has passed since the rendering of the previous frame. The value is used to

define the frequency of event capturing by keeping track of the elapsed time as described by Reese and

Johnson (2015) (Formula 5-1). Consequently, this parameter has an impact on how fast a given pattern can

be recognised

 time = 0
 for each simulation cycle
 if time < interval
 time = time + tpf
 else
 execute algorithm
 time = 0

Formula 5-1. Pseudo code of execution of an operation controlled by interval parameter (Reese and Johnson,

2015)

121

The conditions that need to be met in order to execute an operation are also controlled by parameters defining

thresholds. In most cases, they declare minimum and maximum distances that agent needs to reach in order

to trigger the analysis of the event in order to recognise a pattern (Formula 5-2). Most of the parameters of this

kind are located in the middle layer of the hierarchy, but in few cases, thresholds are used in sampling and

pattern recognition processes as well, i.e. when dynamic behavioural patterns are being analysed using

accumulated events stored in the events batch.

 time = 0
 for each simulation cycle
 if cool down period has passed
 if time < cool down period
 time = time + tpf
 else
 cool down period has passed
 time = 0

Formula 5-2. Pseudo code of execution of an operation controlled by cooling down period parameter (Reese

and Johnson, 2015)

The size of the event batch is controlled by the parameters in sampling size parameter category. Since the

sizes are always checked after certain conditions are met, immediately before triggering the execution of an

operation, these parameters are located at the bottom of the hierarchy. The pseudo code of the controlled

execution in such a case is presented in Formula 5-3.

initiate algorithm
 if conditions have been met against thresholds
 get event data
 if event data needs to be stored in event batch
 if events batch size >= sampling size
 derive a pattern from event samples
 else
 record event

Formula 5-3. Pseudo code of an operation for pattern recognition, which uses historical events registered in

the events batch which is controlled by threshold parameters

Controlling the execution of pattern recognition algorithms using parameters allows unifying the initialisation of

the simulator and the tuning of the algorithms for recognition themselves. In fact the parameter pane of the

simulator has been used for both purposes. Both types of parameters can be also amended at runtime without

stopping the simulation, which supports flexibility and greatly reduces the overall time for tuning and analysis.

122

5.4. Experiment setup

During simulation the simulator produces two different outputs – graphical output, visualized on the display of

the computer, and an in-memory event stream, stored for convenience locally as an XML file for verification

and testing purposes. The graphical output is convenient for testing and tuning of the entire analyser but in

production environment can be completely switched off to maximise the efficiency, which would substantially

reduce the computational requirements. The simulator works in three different modes, accepting different

types of input data:

x interactive mode, in which the simulator accepts input directly from the keyboard; this allows quick

visual validation and generation of test movies.

x batch mode, in which the simulator engine executes a pre-recorded XML file containing information

about the objects on the scene, their location and trajectories of movement; this can be used for more

thorough experimentation and analysis.

x stream processing mode in which the simulator accepts live XML-formatted stream of data about the

visual scene and generates an XML-formatted stream of patterns to be used for further processing in

enterprise applications.

The screen shots shown on the following figures illustrate the basic principles of visualisation. The topology of

the physical space is depicted in grey and is divided by straight lines. The agents modelled after the Blender

armature are shown in yellow, encapsulated in their ghost-capsule and emitting their rays which are shown in

blue. Key points of interest used for calculations during the simulation are shown in red.

The event stream produced by the simulator is used by the analyser to analyse the patterns of dynamic

behaviour and potentially to generate notifications which can be used for different purpose in different

scenarios. Appendix A.8 contains the XML file recorded during one of the simulation sessions and used for

validation of the simulator and the analyser.

123

Figure 5-6. Gathering of a group of three agents

5.5. Test data for validation of the simulator

By running several experiments we will estimate the accuracy of the simulator. For this purpose we will

compare the calculated movements of the agents on the scene and the information included in the XML video

supplied at the input. The set of movies was recorded at 30 frames-per-second rate (FPS) and stored in XML

formatted files which contain the spatio-temporal information about each agent participating in the scenario

(Table 5-1). The test cases have been selected on the basis of the number of agents participating in the

scenario, variety of movements exhibited by them (slow, fast, oscillating, erratic, etc.), and the reconstructed

trajectories of movement (e.g. agent moving around ground floor, agent climbing the stairs, etc.) Each entry in

the file represents a movie frame that encapsulates essential information for simulating agent movement

accordingly (see section 4.3.1 and Appendix A.8).

124

Table 5-1. The video files used in the validation of the simulator, pattern analyser and experimentations.

File Video
Length (in
frames)

Scenario

001.xml

281 frames

The video file contains footage of an agent moving towards a static-Counter_ID4 in a straight manner and subsequently
moving away from it.

002.xml

686 frames

The video file contains footage of a pair of agents walking next to each other around the visual scene. At one point the
members of a pair move away from each other and start walking in different directions, browsing the premises of the virtual
scene (building). They later meet up and form up a pair again.

003.xml

264 frames

The video file contains footage of movements of two agents whose viewing directions change slowly; one of the agents moves
towards and later along static-Bookshelf_ID2 while being in a pair

004.xml

856 frames

The video file contains footage of movements of two agents whose viewing directions change slowly; the agents are walking
around the visual scene; at one point the agents were in a pair, then moved away from each other and met up again and
formed a pair again.

005.xml

1128 frames

The video file contains footage of movements of two agents whose viewing directions change slowly; the agents are walking
around the visual scene; one of the agents climbs static-Stairs_ID1 at one point in the video

006.xml

808 frames

The video file contains footage of a pair waiting for a third member to join them. The third member (not being in a group or pair)
walks from a different room and moves towards a pair. The group consisting of three agents is formed at the end of the video
after an agent joins the pair.

007.xml

1479 frames

The video file contain footage of four agents walking around a visual scene (building). They are walking around in two different
rooms separated by the wall. At one point, the agents come together and meet up in one of the rooms to form a group
consisting of four members. The movie ends with a group members being orientated at each other (i.e. averagely directed at
the group center point).

125

008.xml

1466 frames

The video file contains footage of movements of three agents whose viewing directions change slowly; the agents form pairs,
groups while walking around the visual scene.

009.xml

875 frames

The video file contains a footage of a crowd consisting of nine agents walking around, forming pairs, groups and browsing the
premises of the visual scene. The visual scene is cluttered for the entire duration of the video.

010.xml

857 frames

The video file contains footage of erratic movements of an agent whose viewing direction rapidly changes.

011.xml

2186 frames

The video file contains footage of movements of three agents whose viewing directions change slowly; the agents form pairs,
groups while walking around the visual scene; at one point one of the agents climbs stairs, walks around the 1st floor and walks
down

012.xml

1583 frames

The video file contains footage of movements of two agents whose viewing directions change rapidly; the agents exhibit erratic
movements while walking around the visual scene; the agents form a pair, walk away from each other and meet up again later
on at the end of the video.

5.6. Validation scenario

The validation of the simulator is based on comparison of spatial values stored in the video file against the ones that are being simulated for particular frame,

i.e. calculating the difference between agent’s global position vector components stored for a given frame in the XML video file and the global position vector

calculated for that frame during the simulation (replaying). The difference is expressed in percentage values (eq. 5-1) and is calculated for every frame.

|𝛥𝑣 |
∑ 𝑣
2

∗ 100 = |𝑣1−𝑣2|
(𝑣1+𝑣2)

2

∗ 100 = Percentage Difference (eq. 5-1)

The following diagrams depict how the error (presented on vertical scale) fluctuated over the duration of the videos (measured in frames presented on

horizontal scale). The x, y and z components of a measured global position vectors have been written in a self-explanatory notation: the first part indicates

which agent has been monitored and the second part highlights the component (e.g. agent-ID0-vectorX). The case scenarios were replayed with 30 frames-

per-second rate.

126

Figure 5-7. Validation of simulator on a basis of 001.xml

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

1

1
0

1
9

2
8

3
7

4
6

5
5

6
4

7
3

8
2

9
1

1
0

0

1
0

9

1
1

8

1
2

7

1
3

6

1
4

5

1
5

4

1
6

3

1
7

2

1
8

1

1
9

0

1
9

9

2
0

8

2
1

7

2
2

6

2
3

5

2
4

4

2
5

3

2
6

2

2
7

1

2
8

0

Difference (%)

Frames

agent-ID0-vectorX

agent-ID0-vectorY

agent-ID0-vectorZ

127

Figure 5-8. Validation of simulator on a basis of 002.xml

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1

2
1

4
1

6
1

8
1

1
0

1

1
2

1

1
4

1

1
6

1

1
8

1

2
0

1

2
2

1

2
4

1

2
6

1

2
8

1

3
0

1

3
2

1

3
4

1

3
6

1

3
8

1

4
0

1

4
2

1

4
4

1

4
6

1

4
8

1

5
0

1

5
2

1

5
4

1

5
6

1

5
8

1

6
0

1

6
2

1

6
4

1

6
6

1

6
8

1

Difference (%)

Frames

agent-ID0-vectorX

agent-ID0-vectorY

agent-ID0-vectorZ

agent-ID1-vectorX

agent-ID1-vectorY

agent-ID1-vectorZ

128

Figure 5-9. Validation of simulator on a basis of 003.xml

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

1
2

1

1
2

9

1
3

7

1
4

5

1
5

3

1
6

1

1
6

9

1
7

7

1
8

5

1
9

3

2
0

1

2
0

9

2
1

7

2
2

5

2
3

3

2
4

1

2
4

9

2
5

7

Difference (%)

Frames

agent-ID0-vectorX

agent-ID0-vectorY

agent-ID0-vectorZ

agent-ID1-vectorX

agent-ID1-vectorY

agent-ID1-vectorZ

129

Figure 5-10. Validation of simulator on a basis of 004.xml

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

1

2
6

5
1

7
6

1
0

1

1
2

6

1
5

1

1
7

6

2
0

1

2
2

6

2
5

1

2
7

6

3
0

1

3
2

6

3
5

1

3
7

6

4
0

1

4
2

6

4
5

1

4
7

6

5
0

1

5
2

6

5
5

1

5
7

6

6
0

1

6
2

6

6
5

1

6
7

6

7
0

1

7
2

6

7
5

1

7
7

6

8
0

1

8
2

6

8
5

1

Difference (%)

Frames

agent-ID0-vectorX

agent-ID0-vectorY

agent-ID0-vectorZ

agent-ID1-vectorX

agent-ID1-vectorY

agent-ID1-vectorZ

130

Figure 5-11. Validation of simulator on a basis of 005.xml.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1

3
4

6
7

1
0

0

1
3

3

1
6

6

1
9

9

2
3

2

2
6

5

2
9

8

3
3

1

3
6

4

3
9

7

4
3

0

4
6

3

4
9

6

5
2

9

5
6

2

5
9

5

6
2

8

6
6

1

6
9

4

7
2

7

7
6

0

7
9

3

8
2

6

8
5

9

8
9

2

9
2

5

9
5

8

9
9

1

1
0

2
4

1
0

5
7

1
0

9
0

1
1

2
3

Difference (%)

Frames

agent-ID0-vectorX

agent-ID0-vectorY

agent-ID0-vectorZ

agent-ID1-vectorX

agent-ID1-vectorY

agent-ID1-vectorZ

131

Figure 5-12. Validation of simulator on a basis of 006.xml.

0

0.02

0.04

0.06

0.08

0.1

0.12

1

2
4

4
7

7
0

9
3

1
1

6

1
3

9

1
6

2

1
8

5

2
0

8

2
3

1

2
5

4

2
7

7

3
0

0

3
2

3

3
4

6

3
6

9

3
9

2

4
1

5

4
3

8

4
6

1

4
8

4

5
0

7

5
3

0

5
5

3

5
7

6

5
9

9

6
2

2

6
4

5

6
6

8

6
9

1

7
1

4

7
3

7

7
6

0

7
8

3

8
0

6

Difference (%)

Frames

agent-ID0-vectorX

agent-ID0-vectorY

agent-ID0-vectorZ

agent-ID1-vectorX

agent-ID1-vectorY

agent-ID1-vectorZ

agent-ID2-vectorX

agent-ID2-vectorY

agent-ID2-vectorZ

132

Figure 5-13. Validation of simulator on a basis of 007.xml.

0

0.2

0.4

0.6

0.8

1

1.2

1

4
1

8
1

1
2

1

1
6

1

2
0

1

2
4

1

2
8

1

3
2

1

3
6

1

4
0

1

4
4

1

4
8

1

5
2

1

5
6

1

6
0

1

6
4

1

6
8

1

7
2

1

7
6

1

8
0

1

8
4

1

8
8

1

9
2

1

9
6

1

1
0

0
1

1
0

4
1

1
0

8
1

1
1

2
1

1
1

6
1

1
2

0
1

1
2

4
1

1
2

8
1

1
3

2
1

1
3

6
1

1
4

0
1

1
4

4
1

Difference (%)

Frames

agent-ID0-vectorX

agent-ID0-vectorY

agent-ID0-vectorZ

agent-ID1-vectorX

agent-ID1-vectorY

agent-ID1-vectorZ

agent-ID2-vectorX

agent-ID2-vectorY

agent-ID2-vectorZ

133

Figure 5-14. Validation of simulator on a basis of 008.xml.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
4

2
8

3
1

2
4

1
6

5
2

0
6

2
4

7
2

8
8

3
2

9
3

7
0

4
1

1
4

5
2

4
9

3
5

3
4

5
7

5
6

1
6

6
5

7
6

9
8

7
3

9
7

8
0

8
2

1
8

6
2

9
0

3
9

4
4

9
8

5
1

0
2

6
1

0
6

7
1

1
0

8
1

1
4

9
1

1
9

0
1

2
3

1
1

2
7

2
1

3
1

3
1

3
5

4
1

3
9

5
1

4
3

6

Difference (%)

Frames

agent-ID0-vectorX

agent-ID0-vectorY

agent-ID0-vectorZ

agent-ID1-vectorX

agent-ID1-vectorY

agent-ID1-vectorZ

agent-ID2-vectorX

agent-ID2-vectorY

agent-ID2-vectorZ

134

Figure 5-15. Validation of simulator on a basis of 009.xml.

0

0.5

1

1.5

2

2.5

1

2
6

5
1

7
6

1
0

1

1
2

6

1
5

1

1
7

6

2
0

1

2
2

6

2
5

1

2
7

6

3
0

1

3
2

6

3
5

1

3
7

6

4
0

1

4
2

6

4
5

1

4
7

6

5
0

1

5
2

6

5
5

1

5
7

6

6
0

1

6
2

6

6
5

1

6
7

6

7
0

1

7
2

6

7
5

1

7
7

6

8
0

1

8
2

6

8
5

1

Difference (%)

Frames

agent-ID0-vectorX

agent-ID0-vectorY

agent-ID0-vectorZ

agent-ID1-vectorX

agent-ID1-vectorY

agent-ID1-vectorZ

agent-ID2-vectorX

agent-ID2-vectorY

agent-ID2-vectorZ

agent-ID3-vectorX

agent-ID3-vectorY

agent-ID3-vectorZ

agent-ID4-vectorX

agent-ID4-vectorY

agent-ID4-vectorZ

agent-ID5-vectorX

agent-ID5-vectorY

agent-ID5-vectorZ

agent-ID6-vectorX

agent-ID6-vectorY

agent-ID6-vectorZ

agent-ID7-vectorX

agent-ID7-vectorY

agent-ID7-vectorZ

agent-ID8-vectorX

agent-ID8-vectorY

agent-ID8-vectorZ

135

Figure 5-16. Validation of simulator on a basis of 010.xml.

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

1

2
7

5
3

7
9

1
0

5

1
3

1

1
5

7

1
8

3

2
0

9

2
3

5

2
6

1

2
8

7

3
1

3

3
3

9

3
6

5

3
9

1

4
1

7

4
4

3

4
6

9

4
9

5

5
2

1

5
4

7

5
7

3

5
9

9

6
2

5

6
5

1

6
7

7

7
0

3

7
2

9

7
5

5

7
8

1

8
0

7

8
3

3

Difference (%)

Frames

agent-ID0-vectorX

agent-ID0-vectorY

agent-ID0-vectorZ

136

Figure 5-17. Validation of simulator on a basis of 011.xml.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1
6

4
1

2
7

1
9

0
2

5
3

3
1

6
3

7
9

4
4

2
5

0
5

5
6

8
6

3
1

6
9

4
7

5
7

8
2

0
8

8
3

9
4

6
1

0
0

9
1

0
7

2
1

1
3

5
1

1
9

8
1

2
6

1
1

3
2

4
1

3
8

7
1

4
5

0
1

5
1

3
1

5
7

6
1

6
3

9
1

7
0

2
1

7
6

5
1

8
2

8
1

8
9

1
1

9
5

4
2

0
1

7
2

0
8

0
2

1
4

3

Difference (%)

Frames

agent-ID0-vectorX

agent-ID0-vectorY

agent-ID0-vectorZ

agent-ID1-vectorX

agent-ID1-vectorY

agent-ID1-vectorZ

agent-ID2-vectorX

agent-ID2-vectorY

agent-ID2-vectorZ

137

Figure 5-18. Validation of simulator on a basis of 012.xml.

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

1
4

5
8

9
1

3
3

1
7

7
2

2
1

2
6

5
3

0
9

3
5

3
3

9
7

4
4

1
4

8
5

5
2

9
5

7
3

6
1

7
6

6
1

7
0

5
7

4
9

7
9

3
8

3
7

8
8

1
9

2
5

9
6

9
1

0
1

3
1

0
5

7
1

1
0

1
1

1
4

5
1

1
8

9
1

2
3

3
1

2
7

7
1

3
2

1
1

3
6

5
1

4
0

9
1

4
5

3
1

4
9

7
1

5
4

1

Difference (%)

Frames

agent-ID0-vectorX

agent-ID0-vectorY

agent-ID0-vectorZ

agent-ID1-vectorX

agent-ID1-vectorY

agent-ID1-vectorZ

138

Analysis of the experimental results

The results show that errors in the calculation of global position vectors of agents at given frames remain

between 1% and 2% in most of the simulated scenarios. However, it was observed that error was maximum

when agent was climbing the stairs in the video 005.xml (1.42%; Figure 5-11), 009.xml (2.10%; Figure 5-15)

and 011.xml (1.24%; Figure 5-17). The minimum was observed when agents were walking on a flat surface

(floor) and is 0.01%. The sudden spikes in errors in Figures 5-12, 5-13, 5-14, 5-15 and 5-16 suggest that

when data for greater number of agents is delivered at the input, the simulator is capable of calculating their

global position vectors at every frame but the constituent components may appear slightly deviated from their

original recorded values in the XML video file. Such errors only appear when more than one agent participates

in a replayed case scenario, which leads to the conclusion that the cause is related to the amount of data that

needs to be parsed and extracted from the XML during the simulation. Although the errors increase in such

instances, the accuracy of the simulator remains on average between 98% and 99%, which is deemed

acceptable. Of course in all experiments the number of agents on the scene was limited to 10 due to the

limitation of the computational resource available (an Apple iMac with 16GB RAM). More precise analysis can

be done when an adequate server equipment is available since in a more realistic setting the simulation will

be executed on a more powerful server equipment.

5.7. Summary

In this chapter the behavioural patterns that can be inferred by analysing the log file of the simulator have

been presented in a systematic way. We have proven that by utilising 3D programming concepts it is possible

to generate events that can provide sufficiently rich data to analyse the patterns of dynamic behaviour. Since

these patterns are constructed only from body movements they are independent on the specific area of

application. The simulator has the capability of capturing events related to the dynamic behaviour of both

individuals and groups of individuals thanks to the logical rather than statistical relationships between

participating entities. The patterns can be further enriched by contextualisation, which is outside of the scope

of this research, but is planned for a separate research project within the current simulation-based event-

driven framework. In the next chapter, we will look closely at various parameters controlling the general flow of

simulations and will analyse the impact they have on the pattern recognition process.

139

Chapter 6

Experimental analysis and evaluation of the patterns
of individual and group dynamic behaviour

The process of simulation, event log generation and pattern analysis is controlled by a large number of

parameters. This chapter concludes our research with detailed description of these parameters and reporting

of the results of the extensive experiments we have conducted using the developed software. It is a result of a

large number of experimental simulations of different scenarios in which we have performed visual verification

of the simulation, validation of the recognised patterns and empirical estimation of the influence of their

parameters on the overall performance and quality of the analysis.

6.1. Experimental setup and validation of the pattern analyser

The validation and accuracy of the pattern analyser was made through replaying the pre-recorded case

scenarios stored in XML video files and analysis of the log that was produced as a result of the simulation. A

set of several different movies with various lengths where dynamic behaviours are presented in various

combinations and within diverse scenarios were recorded at 30 frames per second (Table 5-1). The movies

contain spatial information of participating agents, such as global position vectors, at given frames (see

section 4.3.1). The pattern analyser was configured to report exact movie frame at which the pattern has been

recognized. It was validated through the analysis of the vectors describing spatial properties of an agent and

changes of the components of these vectors over several frames prior to the video frame at which a pattern

has been recognized. The patterns are always being recognized on a basis of data contained in a sequence

of frames. The patterns that have been implemented in and that can be recognized by the simulator are the

following:

x “Somebody is walking towards something” – recognized when an individual agent moves towards a

static object located in the visual scene.

x “Somebody is walking way from something” – recognized when an individual agent moves away from

a static object located in the visual scene.

x “Somebody walks alongside something” – recognized when an individual agent moves alongside a

static object located in the visual scene.

x “Somebody climbs something” – recognized when an individual agent climbs a static object located in

the visual scene.

x “Somebody punches something / somebody” – recognized when an individual agent punches a static

object or other agent located in the visual scene.

140

x “Somebody kicks something / somebody” – recognized when an individual agent kicks a static object

or other agent located in the visual scene.

x “Something picks up / reaches out for / carry something” - recognized when an individual agent

interacts with a dynamic object located in the visual scene with hands limbs.

x “Somebody holds something over / places something on top of something” – recognized when an

individual agent holds a dynamic object over a static object located in the visual scene or places a

dynamic object on top of a static object located in the visual scene.

x “Somebody passes over something to somebody” – recognized when an individual agent carrying a

dynamic object passes it to another individual agent with hands limbs.

x “Somebody drops down something” – recognized when an individual agent drops down carried

dynamic object on the floor.

x “Somebody looks up / down right / left” – recognized when an individual agent orientates head in a

given direction.

x “Somebody and somebody form a Pair” – recognized when two individual agents are within close

proximity and form a pair.

x “Somebody joins a Group” and “Two Pairs / Groups merge” – recognized when an individual agent

joins already established group or two already established pairs or groups merge.

x “Somebody leaves a Group” and “Group disbands” – recognized when participant leaves the group or

when there is no more participants left in the group after agent departure.

x “Somebody makes a handshake with somebody” – recognized when an individual agent shakes

hands with other individual agent.

x “Group / Pair moves towards something” – recognized when a pair or group of agents move towards a

static object located in the visual scene.

x “Group / Pair moves away from something” – recognized when a pair or group of agents move away

from a static object located in the visual scene.

x “Group / Pair moves alongside something” – recognized when a pair or group of agents move

alongside a static object located in the visual scene.

x “Group / Pair climbs something” – recognized when a pair or group of agents climb a static object

located in the visual scene.

A more detailed description of the implemented patterns can be found in Appendix A.2. Table 6-1 summaries

the results of the validation for each selected pattern under optimal conditions, i.e. at the frame rate the video

was recorded (30 FPS) and without omitting any frames from the video during the simulation.

141

Table 6-1. Pattern Analyser validation experiments.

Pattern / Video Specification

Recorded Video XML File

Verbal Interpretation

Analyser Output in
Log File

Validation

Label: “Walking towards something”

Video File: 001.xml
Recording Frame Rate: 30fps
Replaying Frame Rate: 30fps
Video Duration: 281 Frames

Frame 0:
Counter_ID4 Global Position:
(141.60583, 4.3999634, 129.92328)
Agent-ID0 Global Position:
(161.19113, 4.3976526, 51.879482)
Agent-ID0 Viewing Direction:
(-0.87773573, 0.0, 0.48221964)

Frame 3:
Agent-ID0 Global Position:
(161.19113, 4.3976526, 51.879482)
Agent-ID0 Viewing Direction:
(-0.87773573, 0.0, 0.48221964)

Frame 23:
Agent-ID0 Global Position:
(154.18465, 4.3967037, 60.56711)
Agent-ID0 Viewing Direction:
(-0.48266762, 0.0, 0.87748957)

Frame 281:
Agent-ID0 Global Position:
(136.80289, 4.398989, 88.1191)
Agent-ID0 Viewing Direction:
(-0.09739578, 0.0, 0.9967296)

The global position of Agent-ID0 got
closer to global position of Counter_ID4 in
a sequence of 20 frames between Frame
3 and Frame 23 of the video; The
distance between Agent-ID0 and
Counter_ID4 decreased while the viewing
direction vector remained approximately
the same, directed at Counter_ID4.

23 :: agent-ID0
MOVES TOWARDS
static-Counter_ID4

The output of the analyser
corresponds to what is in
the input XML file and what
the simulator visualizes.

Label: “Walking towards something”
(while agent is in a group)

Video File: 003.xml
Recording Frame Rate: 30fps
Replaying Frame Rate: 30fps
Video Duration: 264 Frames

Frame 0:
Bookshelf_ID2 Global Position:
(191.95218, 4.4000015, -16.40506)
Bookshelf_ID2 Global (Volume Boundary
Point):
(191.95218, 4.4000015, 7.7467536)
Bookshelf_ID2 Global Position (Volume
Boundary Point):
(191.95218, 4.4000015, -40.556873)
 Agent-ID1 Global Position:
(161.19113, 4.3999987, 21.879484)
Agent-ID1 Viewing Direction:
(-0.87773573, 0.0, 0.48221964)

Frame 35:
Agent-ID1 Global Position:
(152.80832, 4.3964806, 24.350977)

The global position of Agent-ID1 got
closer to global position of Bookshelf_ID2
between Frame 35 and 45. While walking,
the viewing direction vector of Agent-ID1
was directed at Bookshelf_ID2 before
Agent-ID1 found himself next to it (this is
indicated by the x and z component of
viewing direction: -0.05518721 and -
0.999955 respectively).

45 :: participant-
agent-ID1 MOVES
TOWARDS static-
Bookshelf_ID2

The output of the analyser
corresponds to what is in
the input XML file and what
the simulator visualizes.

142

Agent-ID1 Viewing Direction:
(-0.05518721, 0.0, -0.999955)

Frame 45:
Agent-ID1 Global Position:
(152.57428, 4.389238, 20.110752)
Agent-ID1 Viewing Direction:
(-0.05518721, 0.0, -0.999955)

Frame 264:
Agent-ID1 Global Position:
(148.50789, 4.3999987, -53.56827)
Agent-ID1 Viewing Direction:
(-0.05518721, 0.0, -0.999955)

Label: “Walking away from
something”

Video File: 001.xml
Recording Frame Rate: 30fps
Replaying Frame Rate: 30fps
Video Duration: 281 Frames

Frame 0:
Counter_ID4 Global Position:
(141.60583, 4.3999634, 129.92328)
Agent-ID0 Global Position:
(161.19113, 4.3976526, 51.879482)
Agent-ID0 Viewing Direction:
(-0.87773573, 0.0, 0.48221964)

Frame 95:
Agent-ID0 Global Position:
(142.48766, 4.3979836, 86.538315)
Agent-ID0 Viewing Direction:
(-0.9498612, 0.0, 0.31736398)

Frame 105:
Agent-ID0 Global Position:
(138.66302, 4.3909364, 85.987625)
Agent-ID0 Viewing Direction:
(-0.7507819, 0.0, -0.6627846)

Frame 281:
Agent-ID0 Global Position:
(136.80289, 4.398989, 88.1191)
Agent-ID0 Viewing Direction:
(-0.09739578, 0.0, 0.9967296)

The global position of Agent-ID0 was
closer to global position of Counter_ID4 at
frame 95 and more distant at frame 105.
Furthermore there is a clear change in
viewing direction in a sequence of 10
frames between frame 95 and 105; The
components values (x, y, z) of viewing
direction vector indicate a change in the
orientation of an agent into opposite
direction in a sequence of 10 frames.

105 :: agent-ID0
MOVES AWAY
FROM static-
Counter_ID4

The output of the analyser
corresponds to what is in
the input XML file and what
the simulator visualizes.

143

Label: “Walking along something”
(while agent is in a group)

Video File: 003.xml
Recording Frame Rate: 30fps
Replaying Frame Rate: 30fps
Video Duration: 264 Frames

Frame 0:
Bookshelf_ID2 Global Position:
(191.95218, 4.4000015, -16.40506)
Bookshelf_ID2 Global Position (Volume
Boundary Point):
 (191.95218, 4.4000015, 7.7467536)
Bookshelf_ID2 Global Position (Volume
Boundary Point):
 (191.95218, 4.4000015, -40.556873)
Agent-ID1 Global Position:
(161.19113, 4.3999987, 21.879484)
Agent-ID1 Viewing Direction:
(-0.87773573, 0.0, 0.48221964)

Frame 120:
Agent-ID1 Global Position:
(150.91478, 4.3909535, -9.957732)
Agent-ID1 Viewing Direction:
(-0.05518721, 0.0, -0.999955)

Frame 133:
Agent-ID1 Global Position:
(150.6252, 4.3948503, -15.205059)
Agent-ID1 Viewing Direction:
(-0.05518721, 0.0, -0.999955)

Frame 264:
Agent-ID1 Global Position:
(148.50789, 4.3999987, -53.56827)
Agent-ID1 Viewing Direction:
(-0.05518721, 0.0, -0.999955)

The X, Y and Z components of a global
position of an Agent-ID1 indicate that he
is located closely next to Bookshelf-ID2
between frames 120 and 133 within a
distance defined by
walkAlongDistanceToObject parameter
(set to 60 at the time). The X and Z
component of a global position of an
Agent-ID-1 at frame 120 and 133 indicate
that he travelled along the space
occupied by the volume of the Bookshelf-
ID2, which pivot (central) point is located
at (191.95218, 4.4000015, -16.40506)
and the boundary starts at point
(191.95218, 4.4000015, 7.7467536) and
ends at point (191.95218, 4.4000015, -
40.556873); The analyser identified
Agent-ID1 as participant-agent-ID1
because at the time he was part of the
group (pair-535734).

133 :: participant-
agent-ID1 MOVES
ALONG static-
Bookshelf_ID2

The output of the analyser
corresponds to what is in
the input XML file and what
the simulator visualizes.

144

Label: “Climbing something up”

Video File: 005.xml
Recording Frame Rate: 30fps
Replaying Frame Rate: 30fps
Video Duration: 1128 Frames

Frame 0:
Stairs_ID1 Global Position:
(-114.16765, 4.1388817, -19.553867)
Stairs_ID1 Global Position (Volume
Boundary Point):
(-85.739976, 4.1388816, -23.555876)
Stairs_ID1 Global Position (Volume
Boundary Point):
(-142.57341, 4.1388816, -23.555876)
Agent-ID0 Global Position:
(-78.60532, 4.3999987, -61.354675)
Agent-ID0 Viewing Direction:
(-0.87773573, 0.0, 0.48221964)

Frame 127:
Agent-ID0 Global Position:
(-109.088104, 4.393914, -30.396585)
Agent-ID0 Viewing Direction:
(-0.33066198, 0.0, 0.94531393)

Frame 214:
Agent-ID0 Global Position:
(-116.956635, 20.517485, 0.6147314)
Agent-ID0 Viewing Direction:
(-0.22846565, 0.0, 0.9750688)

Frame 1128:
Agent-ID0 Global Position:
(-36.784275, 4.398902, -53.2181)
Agent-ID0 Viewing Direction:
(-0.9043657, 0.0, -0.4302044)

The global position of Agent-ID0 has
changed within a period of 87 frames
between frame 127 and 214. The global
position of Stairs_ID1 indicates that
Agent-ID0 climbed them up since his
global position was not only within the
boundaries of the Stairs_ID1 between
frames 127 and 214 but also the value of
y component of his global position
increased from 4.393914 to 20.517485.

214 :: agent-ID0
CLIMBS static-
Stairs_ID1 UP

The output of the analyser
corresponds to what is in
the input XML file and what
the simulator visualizes.

145

Label: “Forming a pair”

Video File: 004.xml
Recording Frame Rate: 30fps
Replaying Frame Rate: 30fps
Video Duration: 856 Frames

Frame 0:
Agent-ID0 Global Position:
(161.19113, 4.3999987, 51.879482)
Agent-ID0 Viewing Direction:
(-0.87773573, 0.0, 0.48221964)
Agent-ID1 Global Position:
(161.19113, 4.3999987, 21.879484)
Agent-ID1 Viewing Direction:
(-0.87773573, 0.0, 0.48221964)

Frame 430:
Agent-ID0 Global Position:
(149.63788, 4.396135, 63.178993)
Agent-ID0 Viewing Direction:
(-0.45466504, 0.0, -0.89232)
Agent-ID1 Global Position:
(126.57549, 4.3929315, 14.1280155)
Agent-ID1 Viewing Direction:
(0.46358812, 0.0, 0.8877161)

Frame 442:
Agent-ID0 Global Position:
(147.43553, 4.3983274, 58.85669)
Agent-ID0 Viewing Direction:
(-0.45466504, 0.0, -0.89232)
Agent-ID1 Global Position:
(128.82101, 4.393213, 18.427898)
Agent-ID1 Viewing Direction:
(0.46358812, 0.0, 0.8877161)

Frame 856:
Agent-ID0 Global Position:
(156.2939, 4.3999643, 92.23968)
Agent-ID0 Viewing Direction:
(0.4520256, 0.0, 0.8936589)
Agent-ID1 Global Position:
(107.31645, 4.3997803, -5.176361)
Agent-ID1 Viewing Direction:
(-0.36949524, 0.0, -0.9308196)

The global position of Agent-ID0 got
closer to global position of Agent-ID1 in a
sequence of 12 frames on X and Z axis.
The viewing direction vectors indicate that
Agent-ID0 and Agent-ID1 were walking
towards each other until they met and
formed a pair at frame 442 because they
found themselves within proximity defined
by groupFormProximityDistance
parameter (set to 50 at the time)

442 :: agent-ID0 and
agent-ID1 FORMS A
pair-931849

The output of the analyser
corresponds to what is in
the input XML file and what
the simulator visualizes.

146

Label: “Forming a group”

Video File: 006.xml
Recording Frame Rate: 30fps
Replaying Frame Rate: 30fps
Video Duration: 808 Frames

Frame 0:
Agent-ID0 Global Position:
(-78.60532, 4.3999987, -61.354675)
Agent-ID0 Viewing Direction:
(-0.87773573, 0.0, 0.48221964)
Agent-ID1 Global Position:
(161.19113, 4.3999987, 21.879484)
Agent-ID1 Viewing Direction:
(-0.87773573, 0.0, 0.48221964)
Agent-ID2 Global Position:
(94.19113, 4.3999987, 41.879482)
Agent-ID2 Viewing Direction:
(-0.87773573, 0.0, 0.48221964)

Frame 64:
Agent-ID0 Global Position:
(-60.42729, 4.398239, -47.536617)
Agent-ID0 Viewing Direction:
(0.91928446, 0.0, 0.39733076)
Agent-ID1 Global Position:
(136.5312, 4.3974657, 27.941086)
Agent-ID1 Viewing Direction:
(-0.9448742, 0.0, 0.33191645)
Agent-ID2 Global Position:
(94.19113, 4.399998, 41.879482)
Agent-ID2 Viewing Direction:
(-0.87773573, 0.0, 0.48221964)

Frame 76:
Agent-ID0 Global Position:
(-60.42729, 4.398239, -47.536617)
Agent-ID0 Viewing Direction:
(0.91928446, 0.0, 0.39733076)
Agent-ID1 Global Position:
(133.07945, 4.3968735, 29.153582)
Agent-ID1 Viewing Direction:
(-0.9448742, 0.0, 0.33191645)
Agent-ID2 Global Position:
(94.19113, 4.399998, 41.879482)
Agent-ID2 Viewing Direction:
(-0.87773573, 0.0, 0.48221964)

Frame 654:
Agent-ID0 Global Position:
(97.49183, 4.393773, -0.43898976)
Agent-ID0 Viewing Direction:
(0.41836187, 0.0, 0.90990615)
Agent-ID1 Global Position:
(138.1249, 4.399999, 28.664574)
Agent-ID1 Viewing Direction:

The global position of Agent-ID1 got
closer to global position of Agent-ID2 in a
sequence of 12 frames on X and Z axis
between frame 64 and frame 76. The
viewing direction vectors indicate that
Agent-ID1 was walking towards Agent-
ID2 until they met and formed a pair at
frame 76 while Agent-ID0 remained far
away from both of them. In a sequence of
12 frames, between frames 654 and 663,
Agent-ID0 was walking towards Agent-
ID1 and Agent-ID2 until he joined them
(as indicated by continuous change in x
and z components values of Agent-ID0
global position). A previously formed pair
by Agent-ID1 and Agent-ID2 was
transformed into a group with the same ID
because the global position of Agent-ID0
got closer to global position of both –
Agent-ID1 and Agent-ID2.

76 :: agent-ID1 and
agent-ID2 FORMS A
pair-82920

663 :: agent-ID0 and
pair-82920 FORMS
A group-82920

The output of the analyser
corresponds to what is in
the input XML file and what
the simulator visualizes.

147

(-0.9908853, 0.0, 0.14526859)
Agent-ID2 Global Position:
(109.63152, 4.399998, 41.971382)
Agent-ID2 Viewing Direction:
(-0.51210994, 0.0,-0.86063784)

Frame 663:
Agent-ID0 Global Position:
(99.0117, 4.398138, 2.8666258)
Agent-ID0 Viewing Direction:
(0.41836187, 0.0, 0.90990615)
Agent-ID1 Global Position:
(138.1249, 4.399999, 28.664574)
Agent-ID1 Viewing Direction:
(-0.9908853, 0.0, 0.14526859)
Agent-ID2 Global Position:
(109.63152, 4.399998, 41.971382)
Agent-ID2 Viewing Direction:
 (-0.51210994, 0.0, -0.86063784)

Frame 808:
Agent-ID0 Global Position:
(106.53381, 4.3981676, 19.226778)
Agent-ID0 Viewing Direction:
(0.41836187, 0.0, 0.90990615)
Agent-ID1 Global Position:
(138.1249, 4.399999, 28.664574)
Agent-ID1 Viewing Direction:
(-0.9908853, 0.0, 0.14526859)
Agent-ID2 Global Position:
(109.63152, 4.399998, 41.971382)
Agent-ID2 Viewing Direction:
(-0.51210994, 0.0, -0.86063784)

Label: “Group moving towards
something”

Video File: 008.xml
Recording Frame Rate: 30fps
Replaying Frame Rate: 30fps
Video Duration: 1466 Frames

Frame 0:
Bookshelf_ID2 Global Position:
(191.95218, 4.4000015, -16.40506)
Bookshelf_ID2 Global (Volume Boundary
Point):
(191.95218, 4.4000015, 7.7467536)
Bookshelf_ID2 Global Position (Volume
Boundary Point):
(191.95218, 4.4000015, -40.556873)
Agent-ID0 Global Position:
(-78.60532, 4.3999987, -61.354675)
Agent-ID0 Viewing Direction:
(-0.87773573, 0.0, 0.48221964)
Agent-ID1 Global Position:
(161.19113, 4.3999987, 21.879484)
Agent-ID1 Viewing Direction:

Agent-ID0, Agent-ID1 and Agent-ID2
formed a group at frame 699. In a
sequence of 20 frames between frame
727 and 747, the global position of Agent-
ID0 and Agent-ID1 got closer to global
position of Bookshelf_ID2 while Agent-
ID2, although he remained in the same
global position, his viewing direction
vector changed direction and was
directed at Bookshelf_ID2 at frame 747.
In addition, the viewing direction vectors
of all members in a group were mutually
and approximately directed at
Bookshelf_ID2 at frame 747.

699 :: agent-ID0 and
pair-321282 FORMS
A group-321282

745 :: participant-
agent-ID0 MOVES
TOWARDS static-
Bookshelf_ID2

747 :: group-321282
MOVES TOWARDS
static-
Bookshelf_ID2

The output of the analyser
corresponds to what is in
the input XML file and what
the simulator visualizes.

148

(-0.87773573, 0.0, 0.48221964)
Agent-ID2 Global Position:
(94.19113, 4.3999987, 41.879482)
Agent-ID2 Viewing Direction:
(-0.87773573, 0.0, 0.48221964)

Frame 727:
Agent-ID0 Global Position:
(119.801155, 4.3943334, -7.2493052)
Agent-ID0 Viewing Direction:
(0.89841163, 0.0, 0.44250482)
Agent-ID1 Global Position:
(150.96687, 4.3999996, 41.70991)
Agent-ID1 Viewing Direction:
(0.42690766, 0.0, -0.90592736)
Agent-ID2 Global Position:
(132.19481, 4.3997817, 27.882788)
Agent-ID2 Viewing Direction:
(0.9811067, 0.0, -0.20096081)

Frame 747:
Agent-ID0 Global Position:
(127.71792, 4.398066, -7.731458)
Agent-ID0 Viewing Direction:
(0.98695326, 0.0, -0.98695326)
Agent-ID1 Global Position:
(161.19113, 4.3999987, 21.879484)
Agent-ID1 Viewing Direction:
(-0.87773573, 0.0, 0.48221964)
Agent-ID2 Global Position:
(132.19481, 4.3997817, 27.882788)
Agent-ID2 Viewing Direction:
(0.59290737, 0.0, -0.80710375)

Frame 1466:
Agent-ID0 Global Position:
(152.01909, 4.399999, -16.2053)
Agent-ID0 Viewing Direction:
(0.9920849, 0.0, 0.13682014)
Agent-ID1 Global Position:
(171.03581, 4.399999, 12.165615)
Agent-ID1 Viewing Direction:
 (-0.9451574, 0.0, -0.33110297)
Agent-ID2 Global Position:
(126.99999, 4.399996, 30.33306)
Agent-ID2 Viewing Direction:
(-0.41366825, 0.0, 0.91204894)

149

Label: “Group moving along
something”

Video File: 008.xml
Recording Frame Rate: 30fps
Replaying Frame Rate: 30fps
Video Duration: 1466 Frames

Frame 0:
Bookshelf_ID2 Global Position:
(191.95218, 4.4000015, -16.40506)
Bookshelf_ID2 Global (Volume Boundary
Point):
(191.95218, 4.4000015, 7.7467536)
Bookshelf_ID2 Global Position (Volume
Boundary Point):
(191.95218, 4.4000015, -40.556873)
Agent-ID0 Global Position:
(-78.60532, 4.3999987, -61.354675)
Agent-ID0 Viewing Direction:
(-0.87773573, 0.0, 0.48221964)
Agent-ID1 Global Position:
(161.19113, 4.3999987, 21.879484)
Agent-ID1 Viewing Direction:
(-0.87773573, 0.0, 0.48221964)
Agent-ID2 Global Position:
(94.19113, 4.3999987, 41.879482)
Agent-ID2 Viewing Direction:
(-0.87773573, 0.0, 0.48221964)

Frame 1000:
Agent-ID0 Global Position:
(154.01247, 4.3956547, -31.826445)
Agent-ID0 Viewing Direction:
(-0.27433953, 0.0, -0.96316725)
Agent-ID1 Global Position:
(148.03925, 4.3954268, 8.053694)
Agent-ID1 Viewing Direction:
(-0.65464604, 0.0, -0.7578869)
Agent-ID2 Global Position:
(133.065, 4.398327, 2.7674255)
Agent-ID2 Viewing Direction:
(-0.978954, 0.0, -0.21119836)

Frame 1013:
Agent-ID0 Global Position:
(152.5729, 4.392029, -36.88059)
Agent-ID0 Viewing Direction:
(-0.27433953, 0.0, -0.96316725)
Agent-ID1 Global Position:
(148.42871, 4.392576, 3.6613858)
Agent-ID1 Viewing Direction:
(0.5183277, 0.0, -0.8569069)
Agent-ID2 Global Position:
(132.23915, 4.3984885, 2.25052)
Agent-ID2 Viewing Direction:
(-0.978954, 0.0, -0.21119836)

Agent-ID0, Agent-ID1 and Agent-ID2
formed a group at frame 699. While
moving around the visual scene, in a
sequence of 13 frames, between frame
1000 and 1013, all members of the group-
321282 travelled along Bookshelf_ID2 (as
indicated by their global position and the
boundary points of the Bookshelf_ID2).
The viewing direction vector of Agent-ID0,
Agent-ID1 and Agent-ID2 hints the
approximate mutual direction of
movement of the whole group.

699 :: agent-ID0 and
pair-321282 FORMS
A group-321282

[...]

1013 :: group-
321282 MOVES
ALONG static-
Bookshelf_ID2

The output of the analyser
corresponds to what is in
the input XML file and what
the simulator visualizes.

150

Frame 1466:
Agent-ID0 Global Position:
(152.01909, 4.399999, -16.2053)
Agent-ID0 Viewing Direction:
(0.9920849, 0.0, 0.13682014)
Agent-ID1 Global Position:
(171.03581, 4.399999, 12.165615)
Agent-ID1 Viewing Direction:
 (-0.9451574, 0.0, -0.33110297)
Agent-ID2 Global Position:
(126.99999, 4.399996, 30.33306)
Agent-ID2 Viewing Direction:
(-0.41366825, 0.0, 0.91204894)

Label: “Leaving a group / Group
disbands”

Video File: 004.xml
Recording Frame Rate: 30fps
Replaying Frame Rate: 30fps
Video Duration: 856 Frames

Frame 0:
Agent-ID0 Global Position:
(161.19113, 4.3999987, 51.879482)
Agent-ID0 Viewing Direction:
(-0.87773573, 0.0, 0.48221964)
Agent-ID1 Global Position:
(161.19113, 4.3999987, 21.879484)
Agent-ID1 Viewing Direction:
(-0.87773573, 0.0, 0.48221964)

Frame 211:
Agent-ID0 Global Position:
(161.06638, 4.392574, 77.39287)
Agent-ID0 Viewing Direction:
 (-0.2552031, 0.0, 0.9684146)
Agent-ID1 Global Position:
(131.9717, 4.3967886, -4.8048387)
Agent-ID1 Viewing Direction:
 (-0.5527537, 0.0, -0.835116)

Frame 856:
Agent-ID0 Global Position:
(156.2939, 4.3999643, 92.23968)
Agent-ID0 Viewing Direction:
(0.4520256, 0.0, 0.8936589)
Agent-ID1 Global Position:
(107.31645, 4.3997803, -5.176361)
Agent-ID1 Viewing Direction:
(-0.36949524, 0.0, -0.9308196)

The distance between global position of
Agent-ID0 and global position of Agent-
ID1 (who were in a group “pair-843069”)
exceeded the proximity threshold
parameter for a leaving distance
(groupFormProximityLeavingDistance
set to 70 at the time) at frame 211 and it
is reflected in the XML Video File.

0 :: agent-ID0 and
agent-ID1 FORMS A
pair-843069

211 :: pair-843069
DISBANDS

The output of the analyser
corresponds to what is in
the input XML file and what
the simulator visualizes.

151

Every pattern included in table 6-1 has been tested in a similar manner in different scenarios recorded in XML files. The summary of the results of this

experiment are presented in Table 6-2. The movies were replayed at their original frame rate (30 FPS). The “N/A” label in the table indicates that no such

pattern was recorded in the movie so pattern analyser was not able to register it. The numbers highlight the frame of the video at which the pattern has been

recognized. The “Match” indicates that the spatial information encapsulated in the video file corresponds to what has been output.

Table 6-2. Summary of the pattern validation in different scenarios.

File 001.xml 002.xml 003.xml 004.xml 005.xml 006.xml 007.xml 008.xml 009.xml 010.xml 011.xml 012.xml
“Walking towards

something”

23 frame

Match

468 frame

Match

N/A 243 frame

Match

6 Frame

Match

4 frame

Match

17 frame

Match

44 frame

Match

373 frame

Match

75 frame

Match

56 frame

Match

874 frame

Match

“Walking towards

something” (while agent is in

a group)

N/A 144 frame

Match

45 frame

Match

191 frame

Match

N/A 337 frame

Match

N/A 804 frame

Match

105 frame

Match

N/A 922 frame

Match

583 frame

Match

“Walking away from

something”

105 frame

Match

330 frame

Match

N/A 493 frame

Match

763 frame

Match

N/A 61 frame

Match

115 frame

Match

260 frame

Match

567 frame

Match

157 frame

Match

921 frame

Match

“Walking along something”

(while agent is in a group)
N/A N/A 133 frame

Match

148 frame

Match

N/A 35 frame

Match

N/A 939 frame

Match

23 frame

Match

N/A 850 frame

Match

501 frame

Match

“Climbing something up” N/A N/A N/A N/A 214 frame

Match

N/A N/A N/A 338 frame

Match

N/A 282 frame

Match

N/A

“Forming a pair” N/A 9 frame

Match

1 frame

Match

697 frame

Match

N/A 72 frame

Match

128 frame

Match

102 frame

Match

555 frame

Match

N/A 1274

frame

Match

1130

frame

Match

“Forming a group” N/A N/A N/A N/A N/A 663 frame

Match

223 frame

Match

699 frame

Match

89 frame

Match

N/A 1795

frame

Match

N/A

“Group moving towards

something”

N/A N/A N/A N/A N/A N/A N/A 747 frame

Match

477 frame

Match

N/A N/A 368 frame

Match

“Group moving along

something”
N/A 213 frame

Match

91 frame

Match

N/A N/A N/A N/A 1013

frame

Match

545 frame

Match

N/A N/A 105 frame

Match

“Leaving a group / Group

disbands”
N/A 233 frame

Match

160 frame

Match

211 frame

Match

N/A N/A 256 frame

Match

414 frame

Match

480 frame

Match

N/A 2004

frame

Match

809 frame

Match

152

6.2. Analysis of the speed of replaying the xml file at different frame rates on the pattern recognition process

The movies were replayed at different frame rates in order to determine how this factor influence the operation of the dynamic pattern analyser. The tests

have been conducted to check if any of the patterns would become unaccounted for depending on the frame rate movies have been played at. These tests

also helped establishing whether fluctuations in frame rate values have direct impact on the pattern recognition process carried out by pattern analyser.

Frame rates may be related to computational power of the machine the application is run at. Lower frame rates are expected during the operation of simulator

on machines with less computational resources.

Table 6-3. The results of replaying XML videos at different frame rates.

Pattern / Video
Specification

Replaying fps
rate

Recognized?

Time difference

Pattern recognition log (movie frame)

Label: “Walking towards
something”
Pattern Recognized at
Frame
(replaying at 30fps): 23

Video File: 001.xml
Recording Frame Rate:
30fps
Video Duration: 281 Frames

5fps yes 10.56% 18 :: agent-ID0 MOVES TOWARDS static-Counter_ID4

10fps yes 3.38% 21 :: agent-ID0 MOVES TOWARDS static-Counter_ID4

15fps yes 0.93% 23 :: agent-ID0 MOVES TOWARDS static-Counter_ID4

20fps yes 0.95% 25 :: agent-ID0 MOVES TOWARDS static-Counter_ID4

25fps yes 0.96% 28 :: agent-ID0 MOVES TOWARDS static-Counter_ID4

30fps yes 0.44% 23 :: agent-ID0 MOVES TOWARDS static-Counter_ID4

60fps yes 4.63% 23 :: agent-ID0 MOVES TOWARDS static-Counter_ID4

Label: “Walking towards
something” (while agent is in
a group)
Pattern Recognized at
Frame
(replaying at 30fps): 45

Video File: 003.xml
Recording Frame Rate:
30fps
Video Duration: 264 Frames

5fps yes 16.91% 35 :: participant-agent-ID1 MOVES TOWARDS static-Bookshelf_ID2

10fps yes 7.03% 39 :: participant-agent-ID1 MOVES TOWARDS static-Bookshelf_ID2

15fps yes 4.35% 53 :: participant-agent-ID1 MOVES TOWARDS static-Bookshelf_ID2

20fps yes 1.08% 47 :: participant-agent-ID1 MOVES TOWARDS static-Bookshelf_ID2

25fps yes 0.27% 47 :: participant-agent-ID1 MOVES TOWARDS static-Bookshelf_ID2

30fps yes 0.39% 45 :: participant-agent-ID1 MOVES TOWARDS static-Bookshelf_ID2

153

60fps yes 1.64% 57 :: participant-agent-ID1 MOVES TOWARDS static-Bookshelf_ID2

Label: “Walking away from
something”
Pattern Recognized at
Frame
(replaying at 30fps): 105

Video File: 001.xml
Recording Frame Rate:
30fps
Video Duration: 281 Frames

5fps yes 27.92% 104 :: agent-ID0 MOVES AWAY FROM static-Counter_ID4

10fps yes 16.32% 105 :: agent-ID0 MOVES AWAY FROM static-Counter_ID4

15fps yes 10.64% 136 :: agent-ID0 MOVES AWAY FROM static-Counter_ID4

20fps yes 6.05% 148 :: agent-ID0 MOVES AWAY FROM static-Counter_ID4

25fps yes 2.87% 168 :: agent-ID0 MOVES AWAY FROM static-Counter_ID4

30fps yes 0.31% 105 :: agent-ID0 MOVES AWAY FROM static-Counter_ID4

60fps yes 0.14% 173 :: agent-ID0 MOVES AWAY FROM static-Counter_ID4

Label: “Walking along
something” (while agent is in
a group)
Pattern Recognized at
Frame
(replaying at 30fps): 133

Video File: 003.xml
Recording Frame Rate:
30fps
Video Duration: 264 Frames

5fps yes 28.75% 135 :: participant-agent-ID1 MOVES ALONG static-Bookshelf_ID2

10fps yes 16.92% 134 :: participant-agent-ID1 MOVES ALONG static-Bookshelf_ID2

15fps yes 9.83% 135 :: participant-agent-ID1 MOVES ALONG static-Bookshelf_ID2

20fps yes 5.57% 147 :: participant-agent-ID1 MOVES ALONG static-Bookshelf_ID2

25fps yes 2.25% 139 :: participant-agent-ID1 MOVES ALONG static-Bookshelf_ID2

30fps yes 0.27% 133 :: participant-agent-ID1 MOVES ALONG static-Bookshelf_ID2

60fps yes 0.16% 152 :: participant-agent-ID1 MOVES ALONG static-Bookshelf_ID2

Label: “Climbing something
up”
Pattern Recognized at
Frame
(replaying at 30fps): 214

Video File: 005.xml
Recording Frame Rate:
30fps
Video Duration: 1128
Frames

5fps yes 30.04% 178 :: agent-ID0 CLIMBS static-Stairs_ID1 UP

10fps yes 18.74% 194 :: agent-ID0 CLIMBS static-Stairs_ID1 UP

15fps yes 11.57% 210 :: agent-ID0 CLIMBS static-Stairs_ID1 UP

20fps yes 6.44% 211 :: agent-ID0 CLIMBS static-Stairs_ID1 UP

25fps yes 2.91% 225 :: agent-ID0 CLIMBS static-Stairs_ID1 UP

30fps yes 0.22% 214 :: agent-ID0 CLIMBS static-Stairs_ID1 UP

60fps yes 0.08% 229 :: agent-ID0 CLIMBS static-Stairs_ID1 UP

154

Label: “Forming a pair”
Pattern Recognized at
Frame
(replaying at 30fps): 442

Video File: 004.xml
Recording Frame Rate:
30fps
Video Duration: 856 Frames

5fps yes 33.35% 441 :: agent-ID0 and agent-ID1 FORMS A pair-784540

10fps yes 22.15% 450 :: agent-ID0 and agent-ID1 FORMS A pair-220853

15fps yes 14% 445 :: agent-ID0 and agent-ID1 FORMS A pair-225276

20fps yes 8.25% 463 :: agent-ID0 and agent-ID1 FORMS A pair-463337

25fps yes 3.67% 457 :: agent-ID0 and agent-ID1 FORMS A pair-174722

30fps yes 0.13% 442 :: agent-ID0 and agent-ID1 FORMS A pair-931849

60fps yes 0.09% 437 :: agent-ID0 and agent-ID1 FORMS A pair-422328

Label: “Forming a group”
Pattern Recognized at
Frame
(replaying at 30fps): 663

Video File: 006.xml
Recording Frame Rate:
30fps
Video Duration: 808 Frames

5fps yes 34.01% 641 :: agent-ID0 and pair-967058 FORMS A group-967058

10fps yes 22.9% 643 :: agent-ID0 and pair-381274 FORMS A group-381274

15fps yes 14.81% 650 :: agent-ID0 and pair-869367 FORMS A group-869367

20fps yes 8.63% 647 :: agent-ID0 and pair-193866 FORMS A group-193866

25fps yes 3.88% 654 :: agent-ID0 and pair-790242 FORMS A group-790242

30fps yes 0.72% 663 :: agent-ID0 and pair-82920 FORMS A group-82920

60fps yes 0.52% 674 :: agent-ID0 and pair-284956 FORMS A group-284956

Label: “Group moving
towards something”
Pattern Recognized at
Frame
(replaying at 30fps): 747

Video File: 008.xml
Recording Frame Rate:
30fps
Video Duration: 1466
Frames

5fps yes 34.24% 741 :: group-265393 MOVES TOWARDS static-Bookshelf_ID2

10fps yes 23.15% 743 :: group-115637 MOVES TOWARDS static-Bookshelf_ID2

15fps yes 15.01% 744 :: group-613447 MOVES TOWARDS static-Bookshelf_ID2

20fps yes 8.77% 740 :: group-954204 MOVES TOWARDS static-Bookshelf_ID2

25fps yes 4.84% 762 :: group-237177 MOVES TOWARDS static-Bookshelf_ID2

30fps yes 4.5% 747 :: group-321282 MOVES TOWARDS static-Bookshelf_ID2

60fps yes 4.91% 761 :: group-336909 MOVES TOWARDS static-Bookshelf_ID2

Label: “Group moving along 5fps yes 34.63% 1013 :: group-265393 MOVES ALONG static-Bookshelf_ID2

155

something”
Pattern Recognized at
Frame
(replaying at 30fps): 1013

Video File: 008.xml
Recording Frame Rate:
30fps
Video Duration: 1466
Frames

10fps yes 23.62% 1013 :: group-115637 MOVES ALONG static-Bookshelf_ID2

15fps yes 15.43% 1013 :: group-613447 MOVES ALONG static-Bookshelf_ID2

20fps yes 9.09% 1016 :: group-954204 MOVES ALONG static-Bookshelf_ID2

25fps yes 6.06% 1013 :: group-237177 MOVES ALONG static-Bookshelf_ID2

30fps yes 5.81% 1013 :: group-321282 MOVES ALONG static-Bookshelf_ID2

60fps yes 6.07% 1013 :: group-336909 MOVES ALONG static-Bookshelf_ID2

Label: “Leaving a group /
Group disbands”
Pattern Recognized at
Frame
(replaying at 30fps): 211

Video File: 004.xml
Recording Frame Rate:
30fps
Video Duration: 856 Frames

5fps yes 30.55% 189 :: pair-932176 DISBANDS

10fps yes 18.88% 189 :: pair-73227 DISBANDS

15fps yes 11.71% 205 :: pair-206910 DISBANDS

20fps yes 6.63% 214 :: pair-532756 DISBANDS

25fps yes 2.95% 223 :: pair-883997 DISBANDS

30fps yes 0.25% 211 :: pair-843069 DISBANDS

60fps yes 0.14% 207 :: pair-51170 DISBANDS

156

Figure 6-1. The errors calculated by simulator during the recognition of “walking towards something” pattern from the movie replayed at different frame rates.

Figure 6-2. The errors calculated by simulator during the recognition of “walking towards something (while agent is in a group)” pattern from the movie

replayed at different frame rates.

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

60 30 25 20 15 10 5

Difference (%)

Frame Rate

Walking Towards Something

001xml

0.00%

5.00%

10.00%

15.00%

20.00%

60 30 25 20 15 10 5

Difference (%)

Frame Rate

Walking Towards Something (while agent is in a
group)

003.xml

157

Figure 6-3. The errors calculated by simulator during the recognition of “walking away from something” pattern from the movie replayed at different frame

rates.

Figure 6-4. The errors calculated by simulator during the recognition of “walking along something (while agent is in a group)” pattern from the movie replayed

at different frame rates.

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

60 30 25 20 15 10 5

Difference (%)

Frame Rate

Walking Away From Something

001xml

0.00%

10.00%

20.00%

30.00%

40.00%

60 30 25 20 15 10 5

Difference (%)

Frame Rate

Walking Along Something (while agent is in a
group)

003.xml

158

Figure 6-5. The errors calculated by simulator during the recognition of “climbing something up” pattern from the movie replayed at different frame rates.

Figure 6-6. The errors calculated by simulator during the recognition of “forming a pair” pattern from the movie replayed at different frame rates.

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

60 30 25 20 15 10 5

Difference (%)

Frame Rate

Climbing Something Up

005.xml

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

60 30 25 20 15 10 5

Difference (%)

Frame Rate

Forming a Pair

004.xml

159

Figure 6-7. The errors calculated by simulator during the recognition of “forming a group” pattern from the movie replayed at different frame rates.

Figure 6-8. The errors calculated by simulator during the recognition of “group moving towards something” pattern from the movie replayed at different frame

rates.

0.00%

10.00%

20.00%

30.00%

40.00%

60 30 25 20 15 10 5

Difference (%)

Frame Rate

Forming a Group

006.xml

0.00%

10.00%

20.00%

30.00%

40.00%

60 30 25 20 15 10 5

Difference (%)

Frame Rate

Group Moving Towards Something

008.xml

160

Figure 6-9. The errors calculated by simulator during the recognition of “leaving a group / group disbands” pattern from the movie replayed at different frame

rates.

Figure 6-10. The errors calculated by simulator during the recognition of “group moving along something” pattern from the movie replayed at different frame

rates.

0.00%

10.00%

20.00%

30.00%

40.00%

60 30 25 20 15 10 5

Difference (%)

Frame Rate

Leaving a Group / Group Disbands

008.xml

0.00%

10.00%

20.00%

30.00%

40.00%

60 30 25 20 15 10 5

Difference (%)

Frame Rate

Group Moving Along Something

008.xml

161

Analysis of the experimental results

The results show that although the patterns were always recognized, they were reported with bigger delays when movies were replayed at lower frame rates

than recorded. The error expressed in time difference (in percentage) between the time stamp recorded in the video xml file at the frame, at which the pattern

was recognized and simulation clock time shows how much delay was made in reporting a pattern while playing a movie at given frame rate. The closer score

to 0% the more instantaneous recognition of the pattern is. From Table 6-3 and Figures 6-2 – 6-10, one can observe that errors linearly increase as the frame

rate drops.

6.3. Influence of the events of skipping frames while replaying the video xml file on pattern recognition process

The movies were replayed with skipped frames in order to determine how this factor influence the operation of the dynamic pattern analyser. The tests have

been conducted to check if any of the patterns would become unaccounted for depending on the percentage of frames being dropped from the video file

during the simulation. The percentage values in “Skipped frames (%)” column in Table 6-4 indicate how many frames were dropped from every 1 sec of the

movie. The "Time Difference" column show how much was the delay in reporting the pattern. Dropped frames may be related to computational power of the

machine the application is run at or the incorrect output generated by external module suppling the simulator with information about visual scene.

Table 6-4. The results of skipping frames while replaying XML video file.

Pattern / Video Specification

Skipped frames (%)

Recognized?

Time difference

Pattern recognition log (movie frame)

Label: “Walking towards
something”
Pattern Recognized at Frame
(replaying at 30fps without
skipping frames): 23

Video File: 001.xml
Recording Frame Rate: 30fps
Replaying Frame Rate: 30fps
Video Duration: 281 Frames

50% yes 0.22% 30 :: agent-ID0 MOVES TOWARDS static-Counter_ID4

66% yes 0.38% 33 :: agent-ID0 MOVES TOWARDS static-Counter_ID4

76% yes 0.50% 29 :: agent-ID0 MOVES TOWARDS static-Counter_ID4

83% yes 0.41% 35 :: agent-ID0 MOVES TOWARDS static-Counter_ID4

90% yes 0.41% 40 :: agent-ID0 MOVES TOWARDS static-Counter_ID4

162

Label: “Walking towards
something” (while agent is in a
group)
Pattern Recognized at Frame
(replaying at 30fps without
skipping frames): 45

Video File: 003.xml
Recording Frame Rate: 30fps
Replaying Frame Rate: 30fps
Video Duration: 264 Frames

50% yes 0.45% 56 :: participant-agent-ID1 MOVES TOWARDS static-Bookshelf_ID2

66% yes 1.82% 45 :: participant-agent-ID1 MOVES TOWARDS static-Bookshelf_ID2

76% yes 8.37% 54 :: participant-agent-ID1 MOVES TOWARDS static-Bookshelf_ID2

83% yes 7.59% 62 :: participant-agent-ID1 MOVES TOWARDS static-Bookshelf_ID2

90% yes 9.4% 61 :: participant-agent-ID1 MOVES TOWARDS static-Bookshelf_ID2

Label: “Walking away from
something”
Pattern Recognized at Frame
(replaying at 30fps without
skipping frames): 105

Video File: 001.xml
Recording Frame Rate: 30fps
Replaying Frame Rate: 30fps
Video Duration: 281 Frames

50% yes 0.26% 138 :: agent-ID0 MOVES AWAY FROM static-Counter_ID4

66% yes 0.38% 144 :: agent-ID0 MOVES AWAY FROM static-Counter_ID4

76% yes 0.42% 138 :: agent-ID0 MOVES AWAY FROM static-Counter_ID4

83% yes 0.35% 144 :: agent-ID0 MOVES AWAY FROM static-Counter_ID4

90% yes 0.37% 150 :: agent-ID0 MOVES AWAY FROM static-Counter_ID4

Label: “Walking along something”
(while agent is in a group)
Pattern Recognized at Frame
(replaying at 30fps without
skipping frames): 133

Video File: 003.xml
Recording Frame Rate: 30fps
Replaying Frame Rate: 30fps
Video Duration: 264 Frames

50% yes 0.07% 76 :: participant-agent-ID1 MOVES ALONG static-Bookshelf_ID2

66% yes 3.37% 79 :: participant-agent-ID1 MOVES ALONG static-Bookshelf_ID2

76% yes 1.47% 83 :: participant-agent-ID1 MOVES ALONG static-Bookshelf_ID2

83% yes 2.34% 78 :: participant-agent-ID1 MOVES ALONG static-Bookshelf_ID2

90% yes 4.48% 76 :: participant-agent-ID1 MOVES ALONG static-Bookshelf_ID2

Label: “Climbing something up”
Pattern Recognized at Frame
(replaying at 30fps without
skipping frames): 214

Video File: 005.xml
Recording Frame Rate: 30fps
Replaying Frame Rate: 30fps
Video Duration: 1128 Frames

50% yes 0.30% 239 :: agent-ID0 CLIMBS static-Stairs_ID1 UP

66% yes 0.29% 239 :: agent-ID0 CLIMBS static-Stairs_ID1 UP

76% yes 0.22% 240 :: agent-ID0 CLIMBS static-Stairs_ID1 UP

83% yes 0.23% 240 :: agent-ID0 CLIMBS static-Stairs_ID1 UP

163

90% yes 0.27% 246 :: agent-ID0 CLIMBS static-Stairs_ID1 UP

Label: “Forming a pair”
Pattern Recognized at Frame
(replaying at 30fps without
skipping frames): 442

Video File: 004.xml
Recording Frame Rate: 30fps
Replaying Frame Rate: 30fps
Video Duration: 856 Frames

50%

yes 0.12% 441 :: agent-ID0 and agent-ID1 FORMS A pair-784540

66% yes 0.21% 439 :: agent-ID0 and agent-ID1 FORMS A pair-272499

76% yes 0.13% 442 :: agent-ID0 and agent-ID1 FORMS A pair-248187

83% yes 0.11% 440 :: agent-ID0 and agent-ID1 FORMS A pair-411900

90% yes 0.14% 485 :: agent-ID0 and agent-ID1 FORMS A pair-327859

Label: “Forming a group”
Pattern Recognized at Frame
(replaying at 30fps without
skipping frames): 663

Video File: 006.xml
Recording Frame Rate: 30fps
Replaying Frame Rate: 30fps
Video Duration: 808 Frames

50%

yes 2.94% 666 :: agent-ID0 and pair-553430 FORMS A group-553430

66% yes 0.13% 669 :: agent-ID0 and pair-423484 FORMS A group-423484

76% yes 1.05% 642 :: agent-ID0 and pair-829015 FORMS A group-829015

83% yes 0.91% 647 :: agent-ID0 and pair-193252 FORMS A group-193252

90% yes 0.17% 671 :: agent-ID0 and pair-78999 FORMS A group-78999

Label: “Group moving towards
something”
Pattern Recognized at Frame
(replaying at 30fps without
skipping frames): 747

Video File: 008.xml
Recording Frame Rate: 30fps
Replaying Frame Rate: 30fps
Video Duration: 1466 Frames

50% yes 0.07% 767 :: group-980969 MOVES TOWARDS static-Bookshelf_ID2

66% yes 0.09% 758 :: group-931738 MOVES TOWARDS static-Bookshelf_ID2

76% yes 0.06% 751 :: group-813781 MOVES TOWARDS static-Bookshelf_ID2

83% yes 0.07% 768 :: group-250335 MOVES TOWARDS static-Bookshelf_ID2

90% yes 0.06% 760 :: group-993611 MOVES TOWARDS static-Bookshelf_ID2

Label: “Group moving along
something”
Pattern Recognized at Frame
(replaying at 30fps without
skipping frames): 1013

Video File: 008.xml

50%

yes 0.12% 1253 :: group-980969 MOVES ALONG static-Bookshelf_ID2

66% yes 0.07% 1256 :: group-931738 MOVES ALONG static-Bookshelf_ID2

76% yes 0.04% 1256 :: group-813781 MOVES ALONG static-Bookshelf_ID2

164

Recording Frame Rate: 30fps
Replaying Frame Rate: 30fps
Video Duration: 1466 Frames

83% yes 0.04% 1232 :: participant-agent-ID1 MOVES ALONG static-Bookshelf_ID2

90% yes 0.04% 1257 :: group-993611 MOVES ALONG static-Bookshelf_ID2

Label: “Leaving a group / Group
disbands”
Pattern Recognized at Frame
(replaying at 30fps without
skipping frames): 211

Video File: 004.xml
Recording Frame Rate: 30fps
Replaying Frame Rate: 30fps
Video Duration: 856 Frames

50%

yes 0.25% 211 :: pair-60931 DISBANDS

66% yes 0.43% 209 :: pair-937323 DISBANDS

76%

yes 0.28% 209 :: pair-502407 DISBANDS

83% yes 0.22% 210 :: pair-5668 DISBANDS

90% yes 0.30% 209 :: pair-378774 DISBANDS

Figure 6-11. The errors calculated by simulator during the recognition of “walking towards something” pattern while skipping certain amount of frames from

the movie.

0.00%

0.10%

0.20%

0.30%

0.40%

0.50%

0.60%

50% 66% 76% 83% 90%

Difference (%)

Skipped Frames per 1 sec (%)

Walking towards something

001.xml

165

Figure 6-12. The errors calculated by simulator during the recognition of “walking towards something (while agent is in a group)” pattern while skipping

certain amount of frames from the movie.

Figure 6-13. The errors calculated by simulator during the recognition of “walking away from something” pattern while skipping certain amount of frames from

the movie.

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

50% 66% 76% 83% 90%

Difference (%)

Skipped Frames per 1 sec (%)

Walking towards something (while agent is in
a group)

003.xml

0.00%

0.10%

0.20%

0.30%

0.40%

0.50%

50% 66% 76% 83% 90%

Difference (%)

Skipped Frames per 1 sec (%)

Walking away from something

001.xml

166

Figure 6-14. The errors calculated by simulator during the recognition of “walking along something (while agent is in a group)” pattern while skipping certain

amount of frames from the movie.

Figure 6-15. The errors calculated by simulator during the recognition of “climbing something up” pattern while skipping certain amount of frames from the

movie.

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

50% 66% 76% 83% 90%

Difference (%)

Skipped Frames per 1 sec (%)

Walking along something (while agent is in a
group)

003.xml

0.00%

0.10%

0.20%

0.30%

0.40%

50% 66% 76% 83% 90%

Difference (%)

Skipped Frames per 1 sec (%)

Climbing something up

005.xml

167

Figure 6-16. The errors calculated by simulator during the recognition of “forming a pair” pattern while skipping certain amount of frames from the movie.

Figure 6-17. The errors calculated by simulator during the recognition of “forming a group” pattern while skipping certain amount of frames from the movie.

0.00%

0.05%

0.10%

0.15%

0.20%

0.25%

50% 66% 76% 83% 90%

Difference (%)

Skipped Frames per 1 sec (%)

Forming a Pair

004.xml

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

50% 66% 76% 83% 90%

Difference (%)

Skipped Frames per 1 sec (%)

Forming a Group

006.xml

168

Figure 6-18. The errors calculated by simulator during the recognition of “group walking towards something” pattern while skipping certain amount of frames

from the movie.

Figure 6-19. The errors calculated by simulator during the recognition of “group walking along something” pattern while skipping certain amount of frames

from the movie.

0.00%

0.02%

0.04%

0.06%

0.08%

0.10%

50% 66% 76% 83% 90%

Difference (%)

Skipped Frames per 1 sec (%)

Group moving towards something

008.xml

0.00%

0.02%

0.04%

0.06%

0.08%

0.10%

0.12%

0.14%

50% 66% 76% 83% 90%

Difference (%)

Skipped Frames per 1 sec (%)

Group moving along something

008.xml

169

Figure 6-20. The errors calculated by simulator during the recognition of “leaving a group / group disbands” pattern while skipping certain amount of frames

from the movie.

Analysis of the experimental results

The pattern recognition process relies on events captured during the simulation. These experiments were conducted to determine how pattern analyser

module handles the recognition process in case when several frames from the video are not being processed during the simulation. The results show that

the pattern analyser is still being supplied with sufficient information to successfully recognize a pattern in situations when simulator is not being able to

process a certain percentage of frames from the video. The errors in this set of experiments are fluctuating between 0% and 10% as clearly indicated in

"Time difference" column of Table 6-4 (Figures 6-11 – 6-20) and are not linear as in case of experiments carried out with replaying videos at different frame

rates (section 6.2). This is due to the fact that each pattern emerges as a result of the execution of an algorithm following different logic. In some cases, the

0.00%

0.05%

0.10%

0.15%

0.20%

0.25%

0.30%

0.35%

0.40%

0.45%

0.50%

50% 66% 76% 83% 90%

Difference (%)

Skipped Frames per 1 sec (%)

Leaving a group / Group disbands

004.xml

170

algorithms require fewer data to be processed in order to recognize a pattern (e.g. “walking towards

something” pattern) and they are much faster. In other scenarios, the algorithms require to process more

information before the pattern can be successfully recognized (e.g. “walking towards something while being in

a group” pattern).

6.4. Summary

In this chapter the methodology for experimental analysis of the results of interactive simulation of different

scenarios for event-driven individual and group dynamic behaviour pattern recognition was presented using

the developed software. There are three series of the experiments. First one is based on comparing the

expected results with the observed behaviour through reading the input and monitoring the visual output of the

simulator. The second one is based on analysis of the output of the pattern analyser against data enclosed in

external video files in order to validate the functionality of the pattern analyser module. This has been done in

a way so that the relation between different video spatial values and log entries could have been established.

The third series of experiments focused on replaying different case scenarios stored in external files under

different conditions: different frame rates and skipping certain percentage of frames. Considering the

computational power of different machines and possibility of partial data loss before delivery as a simulator

input, the experiments have been conducted in a systematic and pragmatic way to determine how these two

factors influence the operation of the pattern analyser.

Two separate consoles have been implemented and used to monitor the runtime behaviour of the software

application. In order to facilitate the analysis a large number of configurable parameters, which control the

execution have been implemented. They allow one to optimize the performance and improve the quality of the

overall process of behaviour analysis at runtime. A separate parameter configuration console has been

implemented to automate this process. We systematically applied the above methodology to validate the most

important patterns of individual and group dynamic behaviour. The results are fully satisfactory and proved

unanimously the initial hypothesis of this research.

171

Chapter 7

Conclusion and recommendations for future work

7.1. Reflection on the research

Dynamic behaviour analysis of individuals and groups is an area of extensive research in both research

community and industry due to its wide applicability to various areas such as video surveillance and security,

accidents and safety management, business customer insight and video games programming. The literature

provides countless examples of presenting and tackling the complexity of this challenging task but the

problem still remains difficult. Two main factors impact the real-time performance of the video analysis: the

enormous volume of visual data, which has to be processed in real-time, and the need to combine video data

processing with complex analytic symbolic data processing. Most researchers in the field concentrate on

direct visual processing of image frames recorded by surveillance cameras and are mostly concerned with

identification of single actions of humans executed in laboratory environments on the basis of statistical data.

Such approach in combination with the latest technological advancement may address some of the issues of

extracting critical visual features from image frames, but when it comes to more complex activities this soon

becomes an overwhelming task. Our research hypothesis was that by combining partial information extracted

from videos with simulated information generated by 3D simulation we can make this analysis feasible.

In the beginning of our research we had certain anticipation about the potential outcomes but we were not

absolutely certain we can prove it feasible. The goal we formulated was to create a framework which includes

two separate but tightly coupled components – 3D simulator and behaviour pattern analyser, combining two

very different areas of modelling – graphical modelling and logical modelling. However, since the input data

we assumed is limited to general spatial information and dynamic characterisation, i.e. locations and viewing

directions of individuals, there was a concern that it might not be sufficient to simulate the scene dynamics

adequately and the two outputs will diverge. There was also a risk that the simulation could lead to generation

of noisy data, unsuitable for the purpose of pattern analysis.

Although our approach is still dependent on some data extracted through image processing methods, this

information is minimal and therefore the framework reduces the need of performing complex data processing

of the original video footage. Our simulator can be also enhanced to utilise more visual information, which

would increase the accuracy of simulation and would allow the analyser to lower the granularity of recognised

patterns and as a result, to analyse the behaviour beyond the simple dynamics based on physical movements

only.

As the development progressed and reached more mature stages, we became more confident that our initial

assumptions were correct. We managed to control effectively the event capturing process that has direct

172

impact on the recognition of patterns in real-time and as a result we succeeded in pursuing our goal. Through

extensive experimentations in the end of the research we were able to prove that is it possible to derive many

useful behavioural patterns by combining very limited physical data and generated through simulation artificial

data.

7.2. Originality and contributions to the knowledge

As a result of this research we have successfully implemented a prototype of a software tool for model-driven

individual and group dynamic behaviour analysis based on 3D simulation and obtained some very

encouraging experimental results which prove the applicability of the framework to areas where the video

analytics is limited to dynamic behaviour. They can be summarized as follows:

1) A self-contained, standalone software framework for analysis of dynamic patterns of visual
behaviour with the potential of applicability in other areas such as video games programming,
video surveillance and security, accidents and safety management, business customer insight,
and user experience enhancement. In our approach we are replacing the video signal from video

footage with streamlined information extracted from it and combine it with simulated data propelled by

minimal information about the visual scene. This has a number of advantages over standard image

processing techniques: we can reduce the requirements for processing of large volume of video data in

real time, we can define behavioural patterns on different level of granularity and we can combine visual

features extracted from the image frames with symbolic data processing to conduct analysis which is fit for

purpose. As a side effect of the research, we have created a modular engine for video analytics that can

be utilised as a separate software module pluggable into various systems, enhancing their ability to

analyse the behaviour, such as game engines, intelligent cameras, robot planning systems, etc. The final

source of the simulator contains approximately 15,000 lines of programming code which can be used as a

Java library. The potential applicability of the framework is supported by its modular structure, which

allows processing the information flow in standard XML format, as well as a separate configuration file

allowing easy configuration. The simulator can be used in conjunction with visual pattern recognition

modules capable of producing the minimal information required for further analysis of the visual scene,

such as object identification, description and classification, location, directions and trajectories of

movements. The framework was presented first during the World Congress in Computer Science in June

2016 in Las Vegas, USA - see Gasiorowski, Vassilev and Ouazzane (2016).

2) An ontology of a visual scene. During the analytical phase of our research as a necessary step towards

formulating the patterns of behaviour we developed a basic ontology of the visual scene, which can be

used as a starting point for many applications which require representation of 3D visual information. Our

ontology define key concepts, relations and visual appearance as well as an event-driven model of a

constraint dynamic world which can be easily adopted in the conceptualisation and construction of various

systems for analysis of visual scene. Especially interesting, we believe, is our analysis of the group

behaviour on the basis of the behaviour of individual members of the group. The concepts of pairing and

grouping we defined are based on the logical analysis of the group behaviour as social gathering of

173

individuals rather than statistical formation with spatial distribution in the physical space. This theoretical

stance lays down the ground for automation of the analysis of social behaviour, which could be the next

step in video analytics. For the first time our approach to group dynamics was reported during the World

Congress in Computer Science in 2016 in Las Vegas, USA – see Gasiorowski, Vassilev & Ouazzane

(2016). Further extension of this ontology is currently under development by other members of the Video

Analytics research group at the Cyber Security Research Centre of London Metropolitan University and

will be published in the future.

3) A method for simulation of dynamic behaviour based on combination of ray casting and ghosting
techniques. During our work on the simulator we implemented a useful method for logical analysis by

attaching bounding spheres to individual agent’s limbs. By using the ray casting techniques commonly

used in computer games we were able to establish meaningful relationships with other objects on the

scene and thus, to avoid collisions and logical inconsistencies in the simulation. Instead of analysing such

features on the base of extracted information from the video stream, our method is capable of recognising

dynamic patterns of the individuals on the basis of simulation events. This approach allows achieving

higher degree of precision in the simulation and higher level of independence of the agent’s behaviour. It

was introduced first in the publication Gasiorowski, Vassilev & Ouazzane (2016) and is presented in

details in an article currently awaiting publication in IEEE Transactions on Visual Simulation –

Gasiorowski, Vassilev & Ouazzane (forthcoming).

4) Algorithms for approximation of dynamic data about movements suitable for behaviour pattern
analysis. During our work on the simulator we have implemented two original algorithms, which may be

useful in different contexts. The first algorithm estimates the sight sense of an agent with regards to its

spine and head orientation (Formula 4-6 in chapter 4). The algorithm uses information on current head

location, bottom parts of its back and calculates a vector representing the approximation of a spine and

viewing direction. This algorithm can be used to smoothen the behaviour of game agents in video games

and other simulated environments. The experimental analysis reported in Chapter 5 shows that this

algorithm is robust and efficient so that it can be used in real time. The algorithm is described in our

forthcoming publication Gasiorowski, Vassilev & Ouazzane (forthcoming). The second original algorithm

determines which agent is leaving a group and when purely on the basis of the distance to the other

members. It is a part of the recognition method of the "Somebody leaves a Group" pattern in chapter 6

(See Formula A.2-1 in Table. A.2-14; A.2.) The algorithm was intensively tested in various scenarios and

proved to work in almost 100% of the cases with an absolute adequacy and perfectly acceptable

accuracy. Both algorithms are programmed as a self-contained and entirely reusable library, so that they

can be easily imported and used in applications which account the position of the individuals within the

group and the parts of their body, respectively.

174

7.3. Recommendations for future development

The framework we have implemented can be enhanced in several directions that can increase the accuracy of

the recognition and the usability of the software in other projects. In this section we indicate the identified room

for improvement and present a few suggestions about potential future work.

1) Introduction of physical shapes. Currently the objects are entirely bound to a logical capsule, which

is used for performing fast and efficient calculations of locations and directions. Furthermore, we are

artificially adding approximation of objects shapes to allow capturing events and processing of the

simulated data rather than real data. These limitations could be lifted up if we introduce more realistic

physical shapes of the objects to account their real dimensions with higher precision.

2) Accounting the spatial boundaries of the visual scene. Currently the methods for recognising the

patterns on the basis of event capturing do not account designating boundaries of space such as

walls and ceilings. The prototype implementation considers only the floor as a physical boundary to

support discovering of patterns which involve climbing on top/jumping from other objects or walking

upstairs/downstairs. Considering the ceilings and the walls would allow recognition of more fine

grained patterns of dynamic behaviour which involve traversing of partitioned spaces, such as

continuing walking along a corridor after leaving a room, or changing the floor of a building.

3) Implementation of a separate adaptor of dynamic movements. The current implementation

depends on the input of the trajectories through interactive navigation controlled from the keyboard or

loaded from a file. As it is at the moment the simulator updates the location and orientation of all

agents on the scene by editing an external file located in the application. In order to automate this

process it is essential to perform the updates and streamline the reconstructed trajectories directly in

the simulator's memory rather than in a file. For this purpose a separate adapter can be developed.

Such architecture would also allow interpolation of the values of different registered locations while

accounting the viewing directions and relative position of the limbs even in situations when input

signal temporarily cease to be delivered.

4) Advanced utilisation of the agent's sight sense. The implemented method for estimation of the

sight range can be used for recognising situations when the agent focuses on a particular object. This

requires timing the attention of an agent and detecting possible collision between rays and other

objects in the scene. Such a possibility would allow more fine grained analysis of the behaviour

beyond the analysis based only on physical movements.

5) Consideration of multiple and potentially moving cameras. As a future analysis we can consider

multiple cameras distributed within the boundaries of physical space being under surveillance. It is an

obvious candidate for extending the framework, but would require changing of some of the underlying

mathematical theory behind the 3D simulation to accommodate the relativity of the different viewing

points. It would also require additional synchronisation of the analysis performed at different places.

175

References

Abdul-Azim, H.A., Hemayed, E.E., 2015. Human action recognition using trajectory-based representation. Egyptian

Informatics Journal 16, 187–198. doi:10.1016/j.eij.2015.05.002
Afsar, P., Cortez, P., Santos, H., 2015. Automatic Human Action Recognition from Video Using Hidden Markov Model, in:

2015 IEEE 18th International Conference on Computational Science and Engineering (CSE). Presented at the 2015
IEEE 18th International Conference on Computational Science and Engineering (CSE), pp. 105–109.
doi:10.1109/CSE.2015.41

Afzal, M.M., Ouazzane, K., Vassilev, V., Patel, Y., 2016. Incremental Reconstruction of Moving Object Trajectory.
Presented at the VISUAL 2016, The First International Conference on Applications and Systems of Visual Paradigms,
pp. 24–29.

Afzal, M.M., Ouazzane, K., Vassilev, V., Patel, Y., 2017. Incremental Reconstruction of Moving Object Trajectory. The
First International Conference on Applications and Systems of Visual Paradigms 24–29.

Ahad, M.A.R., Tan, J.K., Kim, H., Ishikawa, S., 2009. Human activity analysis: Concentrating on Motion History Image and
its variants, in: ICCAS-SICE, 2009. Presented at the ICCAS-SICE, 2009, pp. 5401–5406.

Akita, K., 1984. Image sequence analysis of real world human motion. Pattern Recognition, Knowledge Based Image
Analysis 17, 73–83. doi:10.1016/0031-3203(84)90036-0

Alexandre, M.U.Z., David, R.C., INNOCENTI, E., n.d. Y. A post-processed 3D visualization tool for forest fire simulations.
st International ICST Confer-ence on Simulation Tools and Techniques for Communication, Network and System.,
Network and System.

AlGadhi, Saad AH, and H. Mahmassani. "Simulation of crowd behaviour and movement: fundamental relations and
application." Transportation Research Record 1320.1320 (1991): 260-268.

Ali, S., Shah, M., 2007. A Lagrangian Particle Dynamics Approach for Crowd Flow Segmentation and Stability Analysis, in:
IEEE Conference on Computer Vision and Pattern Recognition, 2007. CVPR ’07. Presented at the IEEE Conference
on Computer Vision and Pattern Recognition, 2007. CVPR ’07, pp. 1–6. doi:10.1109/CVPR.2007.382977

Ali, S., Shah, M., 2008. Floor Fields for Tracking in High Density Crowd Scenes, in: Forsyth, D., Torr, P., Zisserman, A.
(Eds.), Computer Vision – ECCV 2008, Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 1–14.

Allen, J.F., 1983, “Maintaining knowledge about temporal intervals”, Communications of the ACM, 26(11): 832–843.
Aloysius, L.H.W., Dong, G., Zhiyong, H., Tan, T., 2004. Human posture recognition in video sequence using pseudo 2-D

hidden Markov models, in: Control, Automation, Robotics and Vision Conference, 2004. ICARCV 2004 8th. Presented
at the Control, Automation, Robotics and Vision Conference, 2004. ICARCV 2004 8th, p. 712–716 Vol. 1.
doi:10.1109/ICARCV.2004.1468915

Anjum, N., Cavallaro, A., 2007. Single camera calibration for trajectory-based behaviour analysis, in: IEEE Conference on
Advanced Video and Signal Based Surveillance, 2007. AVSS 2007. Presented at the IEEE Conference on Advanced
Video and Signal Based Surveillance, 2007. AVSS 2007, pp. 147–152. doi:10.1109/AVSS.2007.4425301

Autodesk, 3D Design, Engineering & Entertainment Software, 2017. [Online]. Available at: https://www.autodesk.co.uk/
[Accessed 3 Nov 2017].

Azorín-López, J., Saval-Calvo, M., Fuster-Guilló, A., García-Rodríguez, J., 2013. Human behaviour recognition based on
trajectory analysis using neural networks, in: The 2013 International Joint Conference on Neural Networks (IJCNN).
Presented at the The 2013 International Joint Conference on Neural Networks (IJCNN), pp. 1–7.
doi:10.1109/IJCNN.2013.6706724

Azorin-López, J., Saval-Calvo, M., Fuster-Guilló, A., Oliver-Albert, A., 2014. A predictive model for recognizing human
behaviour based on trajectory representation, in: 2014 International Joint Conference on Neural Networks (IJCNN).
Presented at the 2014 International Joint Conference on Neural Networks (IJCNN), pp. 1494–1501.
doi:10.1109/IJCNN.2014.6889883

Baker, M.J., n.d. Maths - Quaternion Functions [Online] Available at:
http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/functions/index.htm [Accessed 20 Oct
2015].

Baker, M.J., n.d. Transformations using Quaternions. Available at:
http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/transforms/ [Accessed 21 Dec 2015].

Bao, R., Iwamoto, K., 2016. Fast 2D-to-3D matching with camera pose voting for 3D object identification, in: 2016 IEEE
International Conference on Image Processing (ICIP). Presented at the 2016 IEEE International Conference on Image
Processing (ICIP), pp. 664–668. doi:10.1109/ICIP.2016.7532440

Baum, L. E., Petrie, T., Soules, G. and Weiss, N., 1970. A maximization technique occurring in the statistical analysis of
probabilistic functions of markov chains. The Annals of Mathematical Statistics, vol. 41, no. 1, pp. 164–171.

Bélanger, J., Venne, P., Paquin, J.N., 2010. The What, Where and Why of Real-Time Simulation. Planet RT.

176

Ben, X., Huang, X., Zhuang, Z., Yan, R., Xu, S., 2013. Agent-based approach for crowded pedestrian evacuation
simulation. IET Intelligent Transport Systems 7, 56–67. doi:10.1049/iet-its.2011.0236

Bhaskar, P.K., Yong, S.P., Jung, L.T., 2015. Enhanced and effective parallel optical flow method for vehicle detection and
tracking, in: 2015 International Symposium on Mathematical Sciences and Computing Research (iSMSC). Presented
at the 2015 International Symposium on Mathematical Sciences and Computing Research (iSMSC), pp. 138–143.
doi:10.1109/ISMSC.2015.7594042

Biswas, K.K., Basu, S.K., 2011. Gesture recognition using Microsoft Kinect, in: 2011 5th International Conference on
Automation, Robotics and Applications (ICARA). Presented at the 2011 5th International Conference on Automation,
Robotics and Applications (ICARA), pp. 100–103. doi:10.1109/ICARA.2011.6144864

Blender Foundation, 2015. [Online]. Blender Software. Available at: https://www.blender.org/ [Accessed 5 Nov 2015].
Blender Foundation, 2014. Introduction — Blender Manual [Online] Available at:

https://docs.blender.org/manual/en/dev/rigging/armatures/introduction.html [Accessed 25 Sep 2014].
Bobick, A.F., Davis, J.W., 2001. The recognition of human movement using temporal templates. IEEE Transactions on

Pattern Analysis and Machine Intelligence 23, 257–267. doi:10.1109/34.910878
Bogdanovych, A., Bauer, M., Simoff, S., 2009. Recognizing Customers’ Mood in 3D Shopping Malls Based on the

Trajectories of Their Avatars, in: Filipe, J., Cordeiro, J. (Eds.), Enterprise Information Systems, Lecture Notes in
Business Information Processing. Springer Berlin Heidelberg, pp. 745–757.

Bouttier, F. and Courtier, P., 1999. Data assimilation concepts and methods, Meteorological Training Course Lecture
Series, ECMWF, 1999, pp. 75.

Cabello, F., León, J., Iano, Y., Arthur, R., 2015. Implementation of a fixed-point 2D Gaussian Filter for Image Processing
based on FPGA, in: Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), 2015.
Presented at the Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), 2015, pp. 28–
33. doi:10.1109/SPA.2015.7365108

Callan, D.R., 1998. The Essence of Neural Networks, 01 edition. ed. Prentice Hall, Harlow.
Carnegie Mellon, 2015. Motion Capture Database [Online]. Available at: http://mocap.cs.cmu.edu [Accessed 11 Apr 2015].
Cernekova, Z., Nikolaidis, N., Pitas, I., 2006. Temporal Video Segmentation by Graph Partitioning, in: 2006 IEEE

International Conference on Acoustics Speech and Signal Processing Proceedings. Presented at the 2006 IEEE
International Conference on Acoustics Speech and Signal Processing Proceedings, pp. II–II.
doi:10.1109/ICASSP.2006.1660316

Cewe A., Kobierowska J., Nahorska H., Pancer I., 2015 Tablice matematyczne [Mathematical tables]. Wydawnictwo
Podkowa, Gdansk, Poland.

Chen, H.T., Chou, C.L., Tsai, W.J., Lee, S.Y., 2011. 3D ball trajectory reconstruction from single-camera sports video for
free viewpoint virtual replay, in: 2011 IEEE Visual Communications and Image Processing (VCIP). Presented at the
2011 IEEE Visual Communications and Image Processing (VCIP), pp. 1–4. doi:10.1109/VCIP.2011.6115930

Chen, M.Y. and Hauptmann, A., 2009. Mosift: Recognizing human actions in surveillance videos.
Chen, Z., 2012. Mining individual behaviour pattern based on significant locations and spatial trajectories, in: 2012 IEEE

International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops).
Presented at the 2012 IEEE International Conference on Pervasive Computing and Communications Workshops
(PERCOM Workshops), pp. 540–541. doi:10.1109/PerComW.2012.6197563

Crytek Inc., Cry Engine, 2017. [Online]. Available at: http://www.crytek.com/ [Accessed 3 Nov 2017]
Cucchiara, R., Prati, A., Vezzani, R., 2005. Posture classification in a multi-camera indoor environment, in: IEEE

International Conference on Image Processing 2005. Presented at the IEEE International Conference on Image
Processing 2005, p. I-725-8. doi:10.1109/ICIP.2005.1529853

De la Torre, F., Hodgins, J., Bargteil, A., Martin, X., Macey, J., Collado, A., Beltran, P., Robotics Institute Carnegie Mellon
University Pittsburgh, Pennsylvania 15213, 2008. Guide to the Carnegie Mellon University Multimodal Activity (CMU-
MMAC)Database. [Online]. Available at: http://www.cs.cmu.edu/~ftorre/cmu-mad.pdf [Accessed 22 Feb 2015].

Deloura, DeLoura, M., 2000. Game Programming Gems, Har/Cdr edition. ed. Charles River Media, Boston, Mass.
Demisse, G.G., Aouada, D., Ottersten, B., 2015. Template-based statistical shape modelling on deformation space, in:

2015 IEEE International Conference on Image Processing (ICIP). Presented at the 2015 IEEE International
Conference on Image Processing (ICIP), pp. 4386–4390. doi:10.1109/ICIP.2015.7351635

Dorea, C.C., Pardas, M., Marques, F., 2005. A motion-based binary partition tree approach to video object segmentation,
in: IEEE International Conference on Image Processing 2005. Presented at the IEEE International Conference on
Image Processing 2005, p. II-430-3. doi:10.1109/ICIP.2005.1530084

Edén, R., 2014. jMonkeyEngine 3.0 Cookbook. Packt Publishing.
Efros, A.A., Berg, A.C., Mori, G., Malik, J., 2003. Recognizing action at a distance, in: Ninth IEEE International Conference

on Computer Vision, 2003. Proceedings. Presented at the Ninth IEEE International Conference on Computer Vision,
2003. Proceedings, pp. 726–733 vol.2. doi:10.1109/ICCV.2003.1238420

177

Encyclopedia Britannica, 2017. Computer Simulation. [Online]. Available at:
https://www.britannica.com/technology/computer-simulation [Accessed 23 Sep 2017].

Epic Games Inc., Unreal Engine, 2017. [Online]. Available at: https://www.unrealengine.com/ [Accessed 3 Nov 2017]
Fitzgibbon, A., Zisserman, A., 1998. Automatic 3D model acquisition and generation of new images from video

sequences, in: Signal Processing Conference (EUSIPCO 1998), 9th European. Presented at the Signal Processing
Conference (EUSIPCO 1998), 9th European, pp. 1–8.

Fredrick, H., n.d. Why Doesn’t GPS Work Inside a Building? [Online]. Available at:
https://itstillworks.com/doesnt-gps-work-inside-building-18659.html [Accessed 4 Nov 2017].

Gao, W.H., 2010. Research on client behavior pattern recognition system based on Web log mining, in: 2010 International
Conference on Machine Learning and Cybernetics. Presented at the 2010 International Conference on Machine
Learning and Cybernetics, pp. 466–470. doi:10.1109/ICMLC.2010.5581016

García-Zubia, J., Irurzun, J., Angulo, I., Hernández, U., Castro, M., Sancristobal, E., Orduña, P., Ruiz-de-Garibay, J.,
2010. SecondLab: A remote laboratory under Second Life, in: IEEE EDUCON 2010 Conference. Presented at the
IEEE EDUCON 2010 Conference, pp. 351–356. doi:10.1109/EDUCON.2010.5492556

Gasiorowski, P., Vassilev, V. and Ouazzane, K., 2016, January. Simulation-based Visual Analysis of Individual and Group
Dynamic Behaviour. In Proceedings of the International Conference on Image Processing, Computer Vision, and
Pattern Recognition (IPCV) (p. 303). The Steering Committee of The World Congress in Computer Science, Computer
Engineering and Applied Computing (WorldComp).

Gasiorowski, P., Vassilev, V. and Ouazzane, K., forthcoming, Model-based Event-driven Simulation of Individual and
Group Dynamic Behavior in Bound Spaces, IEEE Transaction of Visual Simulation (to be published).

Gong, S. and Xiang, T., 2003. Scene Events Recognition Without Tracking. Acta Automatica Sinica, 29(3), pp.321-321.
Gong, S., Xiang, T., 2011. Visual analysis of behaviour from pixels to semantics. Springer, London; New York.
Guo, R.Y., Huang, H.J., 2008. A mobile lattice gas model for simulating pedestrian evacuation. Physica A: Statistical

Mechanics and its Applications 387, 580–586. doi:10.1016/j.physa.2007.10.001
Hahne, B., 2008. Motion Capture - cgspeed [Online] Available at:

https://sites.google.com/a/cgspeed.com/cgspeed/motion-capture [Accessed 11 Apr 2015].
Hamilton, W.R., 1853. Lectures on quaternions: containing a systematic statement of a new mathematical method, of

which the principles were communicated in 1843 to the Royal Irish academy, and which has since formed the subject
of successive courses of lectures, delivered in 1848 and subsequent years, in the halls of Trinity college, Dublin.
Hodges and Smith, Dublin.

Hariyono, J., Jo, K.H., 2015. Pedestrian action recognition using motion type classification, in: 2015 IEEE 2nd International
Conference on Cybernetics (CYBCONF). Presented at the 2015 IEEE 2nd International Conference on Cybernetics
(CYBCONF), pp. 129–132. doi:10.1109/CYBConf.2015.7175919

Hassan, M., RajKumar, R., Isa, D., Arelhi, R., 2011. Kalman Filter as a pre-processing technique to improve the support
vector machine, in: 2011 IEEE Conference on Sustainable Utilization and Development in Engineering and Technology
(STUDENT). Presented at the 2011 IEEE Conference on Sustainable Utilization and Development in Engineering and
Technology (STUDENT), pp. 107–112. doi:10.1109/STUDENT.2011.6089335

He, X., Wang, Y., Cao, Y., 2012. Researching on AI path-finding algorithm in the game development, in: 2012
International Symposium on Instrumentation Measurement, Sensor Network and Automation (IMSNA). Presented at
the 2012 International Symposium on Instrumentation Measurement, Sensor Network and Automation (IMSNA), pp.
484–486. doi:10.1109/MSNA.2012.6324627

Helbing, D., Farkas I., and Vicsek, T., 2000. Simulating dynamical features of escape panic. Nature, vol. 407, no. 6803,
pp. 487-490. [Online]. Available at: http://dx.doi.org/10.1038/35035023 [Accessed 2 Apr 2014].

Hluchy, L., Kvassay, M., Dlugolinský, S., Schneider, B., Bracker, H., Kryza, B., Kitowski, J., 2011. Handling internal
complexity in highly realistic agent-based models of human behaviour, in: 2011 6th IEEE International Symposium on
Applied Computational Intelligence and Informatics (SACI). Presented at the 2011 6th IEEE International Symposium
on Applied Computational Intelligence and Informatics (SACI), pp. 11–16. doi:10.1109/SACI.2011.5873089

Horn, B.K. and Schunck, B.G., 1981. Determining optical flow. Artificial intelligence, 17(1-3), pp.185-203.
Hospedales, T., Gong, S. and Xiang, T., 2009, September. A markov clustering topic model for mining behaviour in video.

In 2009 IEEE 12th International Conference on Computer Vision (pp. 1165-1172). IEEE.
Hu, C.-H., Wo, S.-L., 2010. An efficient method of human behaviour recognition in smart environments, in: 2010

International Conference on Computer Application and System Modeling (ICCASM). Presented at the 2010
International Conference on Computer Application and System Modeling (ICCASM), pp. V12–690–V12–693.
doi:10.1109/ICCASM.2010.5622464

Huang, L., Wong, S.C., Zhang, M., Shu, C.-W., Lam, W.H.K., 2009. Revisiting Hughes’ dynamic continuum model for
pedestrian flow and the development of an efficient solution algorithm. Transportation Research Part B: Methodological
43, 127–141. doi:10.1016/j.trb.2008.06.003

178

Hughes, R.L., 2002. A continuum theory for the flow of pedestrians. Transportation Research Part B: Methodological 36,
507–535. doi:10.1016/S0191-2615(01)00015-7

IEEE Standard Ontologies for Robotics and Automation, 2015. . IEEE Std 1872-2015 1–60.
doi:10.1109/IEEESTD.2015.7084073

IPVM – ipvideomarket, 2015. Average Frame Rate Video Surveillance 2011 [Online]. Available at:
https://ipvm.com/reports/recording-frame-rate--whats-actually-being-used [Accessed 2 Oct 2015].

Iuppa, N., Borst, T., 2009. End-to-End Game Development: Creating Independent Serious Games and Simulations from
Start to Finish, 1 edition. ed. Focal Press, Cambridge, England.

Jiang, Y.-G., Dai, Q., Xue, X., Liu, W., Ngo, C.-W., 2012. Trajectory-Based Modeling of Human Actions with Motion
Reference Points, in: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (Eds.), Computer Vision – ECCV
2012, Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 425–438. doi:10.1007/978-3-642-33715-
4_31

Jia-Wen, Z., 2015. A Novel Sports Video Background Segmentation Algorithm Based on Graph Partition, in: 2015 8th
International Conference on Intelligent Computation Technology and Automation (ICICTA). Presented at the 2015 8th
International Conference on Intelligent Computation Technology and Automation (ICICTA), pp. 65–68.
doi:10.1109/ICICTA.2015.25

jMonkeyEngine, 2014. GitHub Repository - GitHub. [Online]. Available at:
https://github.com/jMonkeyEngine/jmonkeyengine [Accessed 17 Mar 2014].

Joselli, M., Silva, J.R. d, Clua, E., 2014. An Architecture for Real Time Crowd Simulation Using Multiple GPUs, in: 2014
Brazilian Symposium on Computer Games and Digital Entertainment. Presented at the 2014 Brazilian Symposium on
Computer Games and Digital Entertainment, pp. 1–10. doi:10.1109/SBGAMES.2014.13

Kar, A., 2010. Skeletal tracking using microsoft kinect. Methodology, 1, pp.1-11.
Kawamoto, K., 2010. A data assimilation method for estimating the parameters of a social force model for pedestrian

motion analysis, in: World Automation Congress (WAC), 2010. Presented at the World Automation Congress (WAC),
2010, pp. 1–5.

Kelly, D., Smyth, B., Caulfield, B., 2013. Uncovering Measurements of Social and Demographic Behavior From
Smartphone Location Data. IEEE Transactions on Human-Machine Systems 43, 188–198.
doi:10.1109/TSMC.2013.2238926

Kendra, C., 2016, Understanding Body Language [Online]. Available at:
http://psychology.about.com/od/nonverbalcommunication/ss/understanding-body-language_8.htm [Accessed 11 Nov
2016].

Khorbotly, S., Hassan, F., 2011. A modified approximation of 2D Gaussian smoothing filters for fixed-point platforms, in:
2011 IEEE 43rd Southeastern Symposium on System Theory. Presented at the 2011 IEEE 43rd Southeastern
Symposium on System Theory, pp. 151–159. doi:10.1109/SSST.2011.5753797

Khronos Group Inc., 2017. The Industry’s Foundation for High Performance Graphics [Online]. Available at:
https://www.khronos.org/opengl [Accessed at: 3 Nov 2017]

Kim, H., Jung, K., Oh, T., Myung, H., 2015. Image-based localization using image database and local 3D maps, in: 2015
12th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI). Presented at the 2015 12th
International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), pp. 32–33.
doi:10.1109/URAI.2015.7358922

Kowalczyk R., Niedzialomski K., Obczynski C., 2011. Matematyka dla studentów i kandydatów na wyższe uczelnie
[Mathematics for students and candidates for higher education]. Wydawnictwo Naukowe PWN, Warsaw, Poland.

Kowalski R., Sergot M. (1986). A Logic-based Calculus of Events. New Generation Computing 4: 67–95
Kusterer, R., 2013. jMonkeyEngine 3.0 Beginner’s Guide. Packt Publishing, Birmingham, U.K.
Kvassay, M., Hluchý, L., Schneider, B., Bracker, H., 2012. Towards causal analysis of data from human behaviour

simulations, in: 2012 4th IEEE International Symposium on Logistics and Industrial Informatics. Presented at the 2012
4th IEEE International Symposium on Logistics and Industrial Informatics, pp. 41–46. doi:10.1109/LINDI.2012.6319507

Lengyel, E., 2003. Mathematics for 3D Game Programming and Computer Graphics, 2nd Revised edition edition. ed.
Charles River Media, Hingham, Mass.

Lengyel, E., 2016. Foundations of Game Engine Development, Volume 1: Mathematics, 1 edition. ed. Terathon Software
LLC.

Lepetit, V. and Fua, P., 2005. Monocular model-based 3D tracking of rigid objects. Now Publishers Inc.
Lester P., 2005, A* Pathfinding for Beginners [Online]. Available at: http://www.policyalmanac.org/games/aStarTutorial.htm

[Accessed 16 Apr 2014].
Li, H., Tang, W., Simpson, D., 2004. Behaviour based motion simulation for fire evacuation procedures, in: Theory and

Practice of Computer Graphics, 2004. Proceedings. Presented at the Theory and Practice of Computer Graphics,
2004. Proceedings, pp. 112–118. doi:10.1109/TPCG.2004.1314460

179

Lin, D., Grimson, E., Fisher, J., 2010. Modeling and estimating persistent motion with geometric flows, in: 2010 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). Presented at the 2010 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 1–8. doi:10.1109/CVPR.2010.5539848

Lu, W.-L., Little, J.J., 2006. Simultaneous Tracking and Action Recognition using the PCA-HOG Descriptor, in: The 3rd
Canadian Conference on Computer and Robot Vision (CRV’06). Presented at the The 3rd Canadian Conference on
Computer and Robot Vision (CRV’06), pp. 6–6. doi:10.1109/CRV.2006.66

Maik, V., Paik, D.T., Lim, J., Park, K., Paik, J., 2010. Hierarchical pose classification based on human physiology for
behaviour analysis. IET Computer Vision 4, 12–24. doi:10.1049/iet-cvi.2008.0086

Mashtalir, S., Mashtalir, V., 2016. Sequential temporal video segmentation via spatial image partitions, in: 2016 IEEE First
International Conference on Data Stream Mining Processing (DSMP). Presented at the 2016 IEEE First International
Conference on Data Stream Mining Processing (DSMP), pp. 239–242. doi:10.1109/DSMP.2016.7583549

Mehran, R., Oyama, A., Shah, M., 2009. Abnormal crowd behaviour detection using social force model, in: IEEE
Conference on Computer Vision and Pattern Recognition, 2009. CVPR 2009. Presented at the IEEE Conference on
Computer Vision and Pattern Recognition, 2009. CVPR 2009, pp. 935–942. doi:10.1109/CVPR.2009.5206641

Microsoft, 2015. Kinect - Windows App Development [Online] Available at: https://developer.microsoft.com/en-
us/windows/kinect [Accessed 7 Apr 2015].

Milam, M.B., Mushambi, K., Murray, R.M., 2000. A new computational approach to real-time trajectory generation for
constrained mechanical systems, in: Proceedings of the 39th IEEE Conference on Decision and Control, 2000.
Presented at the Proceedings of the 39th IEEE Conference on Decision and Control, 2000, pp. 845–851 vol.1.
doi:10.1109/CDC.2000.912875

Mizerski W., Sadowski W., Garbarczyk A., Tokarska B., Mazur K., 2014. Tablice matematyczne [Mathematical tables].
Grupa Wydawnicza Adamantan s.c., Warsaw, Poland.

Mlynek, J., Martinec, T., 2014. Mathematical model of composite manufacture and calculation of robot trajectory, in: 2014
16th International Conference on Mechatronics - Mechatronika (ME). Presented at the 2014 16th International
Conference on Mechatronics - Mechatronika (ME), pp. 345–351. doi:10.1109/MECHATRONIKA.2014.7018282

Mukherjee, S., Biswas, S.K., Mukherjee, D.P., 2011. Recognizing Human Action at a Distance in Video by Key Poses.
IEEE Transactions on Circuits and Systems for Video Technology 21, 1228–1241. doi:10.1109/TCSVT.2011.2135290

Mulayim, A.Y., Yilmaz, U., Atalay, V., 2003. Silhouette-based 3-D model reconstruction from multiple images. IEEE
Transactions on Systems, Man and Cybernetics, Part B (Cybernetics) 33, 582–591. doi:10.1109/TSMCB.2003.814303

Muramatsu, M., Irie, T., Nagatani, T., 1999. Jamming transition in pedestrian counter flow. Physica A: Statistical
Mechanics and its Applications 267, 487–498. doi:10.1016/S0378-4371(99)00018-7

Musse, S.R., Thalmann, D., 2002. Hierarchical model for real time simulation of virtual human crowds, in: 5th IEEE EMBS
International Summer School on Biomedical Imaging, 2002. Presented at the 5th IEEE EMBS International Summer
School on Biomedical Imaging, 2002, p. 13 pp.-. doi:10.1109/SSBI.2002.1233994

Naji, H.A.H., Wu, C., Zhang, H., Li, L., 2017. Towards understanding the impact of human mobility patterns on taxi drivers’
income based on GPS data: A case study in Wuhan #x2014; China, in: 2017 4th International Conference on
Transportation Information and Safety (ICTIS). Presented at the 2017 4th International Conference on Transportation
Information and Safety (ICTIS), pp. 1152–1160. doi:10.1109/ICTIS.2017.8047916

Navarro, A., Pradilla J.V., Rios O., 2012. Open Source 3D Game Engines for Serious Games Modeling, Modeling and
Simulation in Engineering, Prof. Catalin Alexandru (Ed.), ISBN: 978-953-51- 0012-6, InTech. [Online]. Available at:
http://www.intechopen.com/books/modeling-and-simulation-in- engineering/open-source-3d-game-engines-for-serious-
games-modeling [Accessed 2 Nov 2017]

Nevatia, R., Zhao, T., Hongeng, S., 2003. Hierarchical Language-based Representation of Events in Video Streams, in:
Conference on Computer Vision and Pattern Recognition Workshop, 2003. CVPRW ’03. Presented at the Conference
on Computer Vision and Pattern Recognition Workshop, 2003. CVPRW ’03, pp. 39–39.
doi:10.1109/CVPRW.2003.10038

Nguyen, V., Blumenstein, M., 2011. An Application of the 2D Gaussian Filter for Enhancing Feature Extraction in Off-line
Signature Verification, in: 2011 International Conference on Document Analysis and Recognition. Presented at the
2011 International Conference on Document Analysis and Recognition, pp. 339–343. doi:10.1109/ICDAR.2011.76

Nystrom, R., 2014. Game Programming Patterns. Genever Benning.
Official U.S. government, n.d. GPS.gov: GPS Overview [Online]. Available at: http://www.gps.gov/systems/gps/ [Accessed

17 Aug 2015].
Torus Knot Software Ltd, Ogre3D, 2016. [Online]. Available at: https://www.ogre3d.org/ [Accessed 3 Nov 2017]
Oikonomopoulos, A., Patras, I., Pantic, M., Paragios, N., 2007. Trajectory-Based Representation of Human Actions, in:

Huang, T.S., Nijholt, A., Pantic, M., Pentland, A. (Eds.), Artifical Intelligence for Human Computing, Lecture Notes in
Computer Science. Springer Berlin Heidelberg, pp. 133–154. doi:10.1007/978-3-540-72348-6_7

180

Onofri, L., Soda, P., 2012. Combining video subsequences for human action recognition, in: 2012 21st International
Conference on Pattern Recognition (ICPR). Presented at the 2012 21st International Conference on Pattern
Recognition (ICPR), pp. 597–600.

Oosten, J. van, 2012. “Understanding Quaternions. 3D Game Engine Programming.” [Online]. Available at:
http://mathworld.wolfram.com/PolarCoordinates.html [Accessed 19 Oct 2015].

OptiTrack, n.d. OptiTrack [Online]. Available at: https://www.optitrack.com/ [Accessed 8 Apr 2015].
Oxford Dictionary, 2015. Behaviour - definition of Behaviour in English [Online]. Available at:

https://en.oxforddictionaries.com/definition/behaviour [Accessed 3 Jan 2015].
Oxford Dictionary, 2015. Pattern - definition of Behaviour in English [Online]. Available at:

https://en.oxforddictionaries.com/definition/behaviour [Accessed 3 Jan 2015].
Parrish, K., 2016. DirectX 12: what is it, and why it matters to PC gamers. Tech Radar. [Online]. Available at:

http://www.techradar.com/news/gaming/directx-12-what-is-it-and-why-it-matters-to-pc-gamers-1318636 [Accessed 2
Nov 2017].

Pelechano, N., Allbeck, J.M., Badler, N.I., 2007. Controlling Individual Agents in High-density Crowd Simulation, in:
Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’07. Eurographics
Association, Aire-la-Ville, Switzerland, Switzerland, pp. 99–108.

Perez, G.J., Tapang, G., Lim, M., Saloma, C., 2002. Streaming, disruptive interference and power-law behaviour in the
exit dynamics of confined pedestrians. Physica A: Statistical Mechanics and its Applications 312, 609–618.
doi:10.1016/S0378-4371(02)00987-1

PhysX Technology, 2017. [Online]. NVIDIA GeFORCE. Available at:
https://www.geforce.com/hardware/technology/physx/technology [Accessed 17 Nov 2017].

Qin, Q., Wei, J., 2010. An agent-based approach for crowd dynamics simulation, in: 2010 IEEE International Conference
on Intelligent Computing and Intelligent Systems (ICIS). Presented at the 2010 IEEE International Conference on
Intelligent Computing and Intelligent Systems (ICIS), pp. 78–82. doi:10.1109/ICICISYS.2010.5658843

Qiu, W., Bandara, A., 2015. GPS Trace Mining for Discovering Behaviour Patterns, in: 2015 International Conference on
Intelligent Environments. Presented at the 2015 International Conference on Intelligent Environments, pp. 65–72.
doi:10.1109/IE.2015.17

Rai, S., Hu, X., 2013. Behaviour Pattern Detection for Data Assimilation in Agent-Based Simulation of Smart
Environments, in: 2013 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent
Technologies (IAT). Presented at the 2013 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI)
and Intelligent Agent Technologies (IAT), pp. 171–178. doi:10.1109/WI-IAT.2013.106

Rao, A.S., Gubbi, J., Marusic, S., Stanley, P., Palaniswami, M., 2013. Crowd density estimation based on optical flow and
hierarchical clustering, in: 2013 International Conference on Advances in Computing, Communications and Informatics
(ICACCI). Presented at the 2013 International Conference on Advances in Computing, Communications and
Informatics (ICACCI), pp. 494–499. doi:10.1109/ICACCI.2013.6637221

Rao, K.S., Fernandes, S.L., Haniben, P., Prajna, Pratheek, Devadiga, R.V., Kottary, S., Surakshitha, T.P., 2015. A review
on various state of art technique to recognize occluded face images, in: 2015 2nd International Conference on
Electronics and Communication Systems (ICECS). Presented at the 2015 2nd International Conference on Electronics
and Communication Systems (ICECS), pp. 595–601. doi:10.1109/ECS.2015.7124977

Reese, R., Johnson, J., 2015. jMonkeyEngine 3.0 Game Development: A Practical Guide. P8Tech.
Ren, Z., Yuan, J., Meng, J., Zhang, Z., 2013. Robust Part-Based Hand Gesture Recognition Using Kinect Sensor. IEEE

Transactions on Multimedia 15, 1110–1120. doi:10.1109/TMM.2013.2246148
Rosch, E., Mervis, C., Gray, W., Johnson, D. and Boyes-Braem, P., 2004. Basic objects in natural categories. Cognitive

psychology: Key readings, 448.
Rossmann, J., Hempe, N., Tietjen, P., 2009. A flexible model for real-time crowd simulation, in: IEEE International

Conference on Systems, Man and Cybernetics, 2009. SMC 2009. Presented at the IEEE International Conference on
Systems, Man and Cybernetics, 2009. SMC 2009, pp. 2085–2090. doi:10.1109/ICSMC.2009.5346308

Rymaszewski, M., Au, W.J., Wallace, M., Winters, C., Ondrejka, C., Batstone-Cunningham, B., Rosedale, P., 2006.
Second Life: The Official Guide, Pap/Cdr edition. ed. Sybex, San Francisco, Calif. : Chichester ; Hoboken, N.J.

Saboia, P., Goldenstein, S., 2011. Crowd Simulation: Improving Pedestrians’ Dynamics by the Application of Lattice-Gas
Concepts to the Social Force Model, in: 2011 24th SIBGRAPI Conference on Graphics, Patterns and Images
(Sibgrapi). Presented at the 2011 24th SIBGRAPI Conference on Graphics, Patterns and Images (Sibgrapi), pp. 41–
47. doi:10.1109/SIBGRAPI.2011.11

Saitou, M., Kojima, A., Kitahashi, T., Fukunaga, K., 2006. A Dynamic Recognition of Human Actions and Related Objects,
in: First International Conference on Innovative Computing, Information and Control - Volume I (ICICIC’06). Presented
at the First International Conference on Innovative Computing, Information and Control - Volume I (ICICIC’06), pp.
306–309. https://doi.org/10.1109/ICICIC.2006.5

181

Sasiadek, J. Z. and Duleba, I., 2000. 3D Local Trajectory Planner for UAV, In: Journal of Intelligent and Robotic Systems,
29, 191-21

Sattler, T., Leibe, B., Kobbelt, L., 2011. Fast image-based localization using direct 2D-to-3D matching, in: 2011
International Conference on Computer Vision. Presented at the 2011 International Conference on Computer Vision,
pp. 667–674. doi:10.1109/ICCV.2011.6126302

Savage P., 2015. Unreal Engine 4 is now free. [Online]. PC Gamer. Available at: http://www.pcgamer.com/unreal-engine-
4-is-now-free/ [Accessed 3 Nov 2017]

Second Life Wiki, n.d. [Online]. Available at: http://wiki.secondlife.com/wiki/Main_Page [Accessed 3 Nov 2017].
Sellers, G., Wright, R.S., Haemel, N., 2013. OpenGL Superbible: Comprehensive Tutorial and Reference, 6 edition. ed.

Addison Wesley, Upper Saddle River, NJ.
Shan, C., Wei, Y., Qiu, X., Tan, T., 2004. Gesture recognition using temporal template based trajectories, in: Proceedings

of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004. Presented at the Proceedings of the
17th International Conference on Pattern Recognition, 2004. ICPR 2004, p. 954–957 Vol.3.
doi:10.1109/ICPR.2004.1334687

Shanahan, M., Witkowski, M., 2000. High-Level Robot Control through Logic, in: Castelfranchi, C., Lespérance, Y. (Eds.),
Intelligent Agents VII Agent Theories Architectures and Languages, Lecture Notes in Computer Science. Springer
Berlin Heidelberg, pp. 104–121. doi:10.1007/3-540-44631-1_8

Sharma, S., Lohgaonkar, S., 2010. Simulation of agent behaviour in a goal finding application, in: IEEE SoutheastCon
2010 (SoutheastCon), Proceedings of the. Presented at the IEEE SoutheastCon 2010 (SoutheastCon), Proceedings of
the, pp. 424–427. doi:10.1109/SECON.2010.5453811

Shen, C., Xie, R., Zhang, L., Song, L., 2015. Small group people behaviour analysis based on temporal recursive
trajectory identification, in: 2015 IEEE International Conference on Multimedia Expo Workshops (ICMEW). Presented
at the 2015 IEEE International Conference on Multimedia Expo Workshops (ICMEW), pp. 1–6.
doi:10.1109/ICMEW.2015.7169864

Shila, D.M., Srivastava, K., O’Neill, P., Reddy, K., Sritapan, V., 2016. A multi-faceted approach to user authentication for
mobile devices #x2014; Using human movement, usage, and location patterns, in: 2016 IEEE Symposium on
Technologies for Homeland Security (HST). Presented at the 2016 IEEE Symposium on Technologies for Homeland
Security (HST), pp. 1–6. doi:10.1109/THS.2016.7568944

Smith, R.T., Minton, R.B., 2001. Calculus, 2nd Ed edition. ed. McGraw-Hill Education, Boston.
Software Developer's Journal, n.d., Artificial Intelligence in Games - CodeProject [Online]. Available at:

http://www.codeproject.com/Articles/14840/Artificial-Intelligence-in-Games [Accessed 16 Apr 2014].
Stover, C. and Weisstein, E. W., 2016. "Euclidean Space." [Online] Available at:

http://mathworld.wolfram.com/EuclideanSpace.html [Accessed 24 May 2016].
Sun, M., Wang, J., 2008. Methodology of simulation science and technology, in: Asia Simulation Conference - 7th

International Conference on System Simulation and Scientific Computing, 2008. ICSC 2008. Presented at the Asia
Simulation Conference - 7th International Conference on System Simulation and Scientific Computing, 2008. ICSC
2008, pp. 989–994. doi:10.1109/ASC-ICSC.2008.4675509

Sung, M., Gleicher, M. and Chenney, S. (2004), Scalable behaviours for crowd simulation. Computer Graphics Forum, 23:
519–528. doi: 10.1111/j.1467-8659.2004.00783.x

Tajima, Y., Nagatani, T., 2001. Scaling behaviour of crowd flow outside a hall. Physica A: Statistical Mechanics and its
Applications 292, 545–554. doi:10.1016/S0378-4371(00)00630-0

Tebjan, H., 2011, 3d Vector Mathematics [Online]. Available at: http://vvvv.org/documentation/3d-vector-mathematics
[Accessed 15 Apr 2014].

Terzimehic, T., Silajdzic, S., Vajnberger, V., Velagic, J., Osmic, N., 2011. Path finding simulator for mobile robot
navigation, in: 2011 XXIII International Symposium on Information, Communication and Automation Technologies
(ICAT). Presented at the 2011 XXIII International Symposium on Information, Communication and Automation
Technologies (ICAT), pp. 1–6. doi:10.1109/ICAT.2011.6102086

Tran, D., Yuan, J., 2011. Optimal spatio-temporal path discovery for video event detection, in: 2011 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). Presented at the 2011 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 3321–3328. doi:10.1109/CVPR.2011.5995416

Treuille, A., Cooper, S., Popović, Z., 2006. Continuum Crowds, in: ACM SIGGRAPH 2006 Papers, SIGGRAPH ’06. ACM,
New York, NY, USA, pp. 1160–1168. doi:10.1145/1179352.1142008

Urban, C. and Schmidt, B., 2001. PECS–Agent-Based Modelling of Human Behaviour. In Emotional and Intelligent–The
Tangled Knot of Social Cognition, AAAI Fall Symposium Series, North Falmouth, MA. www. or. unipassau.
de/5/publik/urban/CUrban01. pdf.

Varas, A., Cornejo, M.D., Mainemer, D., Toledo, B., Rogan, J., Muñoz, V., Valdivia, J.A., 2007. Cellular automaton model
for evacuation process with obstacles. Physica A: Statistical Mechanics and its Applications 382, 631–642.
doi:10.1016/j.physa.2007.04.006

182

Vieira, M.R., Barbosa, L., Kormáksson, M., Zadrozny, B., 2015. USapiens: A System for Urban Trajectory Data Analytics,
in: 2015 16th IEEE International Conference on Mobile Data Management. Presented at the 2015 16th IEEE
International Conference on Mobile Data Management, pp. 255–262. doi:10.1109/MDM.2015.35

Wang, C., Li, C., Liu, Y., Cui, J., Zhang, T., 2011. Behaviour-Based Simulation of Real-Time Crowd Evacuation, in: 2011
12th International Conference on Computer-Aided Design and Computer Graphics (CAD/Graphics). Presented at the
2011 12th International Conference on Computer-Aided Design and Computer Graphics (CAD/Graphics), pp. 456–
461. doi:10.1109/CAD/Graphics.2011.62

Wang, M., Lu, H., 2012. Research on Algorithm of Intelligent 3D Path Finding in Game Development, in: 2012
International Conference on Industrial Control and Electronics Engineering (ICICEE). Presented at the 2012
International Conference on Industrial Control and Electronics Engineering (ICICEE), pp. 1738–1742.
doi:10.1109/ICICEE.2012.460

Wang, X., Ji, Q., 2016. Hierarchical Context Modeling for Video Event Recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence PP, 1–1. doi:10.1109/TPAMI.2016.2616308

Wang, Y., Huang, C., Shan, J., 2015. An initial study on college students’ daily activities using GPS trajectories, in: 2015
23rd International Conference on Geoinformatics. Presented at the 2015 23rd International Conference on
Geoinformatics, pp. 1–6. doi:10.1109/GEOINFORMATICS.2015.7378686

Weinland, D., Ronfard, R. and Boyer, E., 2006. Free viewpoint action recognition using motion history volumes. Computer
vision and image understanding, 104(2), pp.249-257.

Weisstein, E. W., 2016. "Coordinates." [Online] Available at: Available at: http://mathworld.wolfram.com/Coordinates.html
[Accessed 25 May 2016].

Weisstein, E. W., 2016. "Distance." [Online] Available at: Available at: http://mathworld.wolfram.com/Distance.html
[Accessed 22 May 2016].

Weisstein, E. W., 2016. "Euclidean Plane." [Online] Available at: http://mathworld.wolfram.com/EuclideanPlane.html
[Accessed 24 May 2016].

Weisstein, E. W., 2016. "Euler's Rotation Theorem." [Online] Available at:
http://mathworld.wolfram.com/EulersRotationTheorem.html [Accessed 11 Mar 2015].

Weisstein, E. W., 2016."Perpendicular Vector." [Online] Available at:
http://mathworld.wolfram.com/PerpendicularVector.html [Accessed 8 Sep 2015].

Weisstein, E. W., 2016. “Argand Diagram” [Online]. Available at: http://mathworld.wolfram.com/ArgandDiagram.html
[Accessed 14 Apr 2014].

Weisstein, E. W., 2016. “Complex Number” [Online]. Available at: http://mathworld.wolfram.com/ComplexNumber.html
[Accessed 22 Aug 2015].

Weisstein, E. W., 2016. “Euler Angles.” [Online]. Available at: http://mathworld.wolfram.com/EulerAngles.html [Accessed
16 Jun 2016].

Weisstein, E. W., 2016. “Normal Vector” [Online]. Available at: http://mathworld.wolfram.com/NormalVector.html
[Accessed 12 Aug 2014].

Weisstein, E. W., 2016. “Plane” [Online]. Available at: http://mathworld.wolfram.com/Plane.html [Accessed 16 Apr 2016].
Weisstein, E. W., 2016. “Polar Coordinates” [Online]. Available at: http://mathworld.wolfram.com/PolarCoordinates.html

[Accessed 26 May 2016].
Weisstein, E. W., 2016. “Quaternion” [Online]. Available at: http://mathworld.wolfram.com/Quaternion.html [Accessed 14

Apr 2014].
Weisstein, E. W., 2016. “Sphere” [Online]. Available at: http://mathworld.wolfram.com/Sphere.html [Accessed 8 Jul 2016].
Weisstein, E. W., 2016. “Trigonometry” [Online]. Available at: http://mathworld.wolfram.com/Trigonometry.html [Accessed

26 May 2016].
Weisstein, E. W., 2016. “Vector Space” [Online] Available at: http://mathworld.wolfram.com/VectorSpace.html [Accessed

24 May 2016].
Williams, A., Barrus, S., Morley, R.K., Shirley, P., 2005. An Efficient and Robust Ray-Box Intersection Algorithm. Journal

of Graphics Tools 10, 49–54. doi:10.1080/2151237X.2005.10129188
Wu, S., Moore, B.E., Shah, M., 2010. Chaotic invariants of Lagrangian particle trajectories for anomaly detection in

crowded scenes, in: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Presented at the
2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2054–2060.
doi:10.1109/CVPR.2010.5539882

Xiang, T. and Gong, S., 2006. Beyond tracking: Modelling activity and understanding behaviour. International Journal of
Computer Vision, 67(1), pp.21-51.

Xiang, T. and Gong, S., 2006. Model selection for unsupervised learning of visual context. International Journal of
Computer Vision, 69(2), pp.181-201.

Xiang, X., Bao, W., Tang, H., Li, J., Wei, Y., 2016. Vehicle detection and tracking for gas station surveillance based on
AdaBoosting and optical flow, in: 2016 12th World Congress on Intelligent Control and Automation (WCICA).

183

Presented at the 2016 12th World Congress on Intelligent Control and Automation (WCICA), pp. 818–821.
doi:10.1109/WCICA.2016.7578324

Yang, J., Jiang, Y.G., Hauptmann, A.G. and Ngo, C.W., 2007, September. Evaluating bag-of-visual-words representations
in scene classification. In Proceedings of the international workshop on Workshop on multimedia information retrieval
(pp. 197-206). ACM.

Yordanova, K., 2011. Modelling Human Behaviour Using Partial Order Planning Based on Atomic Action Templates, in:
2011 7th International Conference on Intelligent Environments (IE). Presented at the 2011 7th International
Conference on Intelligent Environments (IE), pp. 338–341. doi:10.1109/IE.2011.27

Yu, C.P., Le, H., Zelinsky, G., Samaras, D., 2015. Efficient Video Segmentation Using Parametric Graph Partitioning, in:
2015 IEEE International Conference on Computer Vision (ICCV). Presented at the 2015 IEEE International Conference
on Computer Vision (ICCV), pp. 3155–3163. doi:10.1109/ICCV.2015.361

Zagal, J.P., Mateas, M., Fernández-Vara, C., Hochhalter, B. and Lichti, N., 2007. Towards an ontolqgical language for
game analysis. Worlds in Play: International Perspectives on Digital Games Research, 21, p.21.

Zhang, D., 2015. Recognizing human actions via silhouette image analysis, in: The 27th Chinese Control and Decision
Conference (2015 CCDC). Presented at the The 27th Chinese Control and Decision Conference (2015 CCDC), pp.
5870–5874. doi:10.1109/CCDC.2015.7161859

Zhang, L., Zhou, C., 2007. Robot Optimal Trajectory Planning Based on Geodesics, in: IEEE International Conference on
Control and Automation, 2007. ICCA 2007. Presented at the IEEE International Conference on Control and
Automation, 2007. ICCA 2007, pp. 2433–2436. doi:10.1109/ICCA.2007.4376799

Zhang, Z., Sun, R., Wang, X., Zhao, C., 2017. A Situational Analytic Method for User Behavior Pattern in Multimedia
Social Networks. IEEE Transactions on Big Data PP, 1–1. doi:10.1109/TBDATA.2017.2657623

Zhao, M., Cai, W., Turner, S.J., 2015. Evaluation of Crowd Models in Low Density Scenarios Using Real-World Crowd
Data, in: 2015 IEEE/ACM 19th International Symposium on Distributed Simulation and Real Time Applications (DS-
RT). Presented at the 2015 IEEE/ACM 19th International Symposium on Distributed Simulation and Real Time
Applications (DS-RT), pp. 1–9. doi:10.1109/DS-RT.2015.25

Zhao, Z., Chen, M., Yang, L., Fan, Z., Ma, L., 2010. 2D to 3D video conversion based on interframe pixel matching, in:
The 2nd International Conference on Information Science and Engineering. Presented at the The 2nd International
Conference on Information Science and Engineering, pp. 3380–3383. doi:10.1109/ICISE.2010.5691623

Zhong, J., Luo, L., Cai, W., Lees, M., 2014. EA-based evacuation planning using agent-based crowd simulation, in:
Simulation Conference (WSC), 2014 Winter. Presented at the Simulation Conference (WSC), 2014 Winter, pp. 395–
406. doi:10.1109/WSC.2014.7019906

Zhou, C., Xu, Z., Huang, B., 2010. Activity Recognition from Call Detail Record: Relation Between Mobile Behavior Pattern
and Social Attribute Using Hierarchical Conditional Random Fields, in: Green Computing and Communications
(GreenCom), 2010 IEEE/ACM Int’l Conference on Int’l Conference on Cyber, Physical and Social Computing
(CPSCom). Presented at the Green Computing and Communications (GreenCom), 2010 IEEE/ACM Int’l Conference
on Int’l Conference on Cyber, Physical and Social Computing (CPSCom), pp. 605–611. doi:10.1109/GreenCom-
CPSCom.2010.141

Zhu, H., Mastorakis, N.E., Zhuang, X.D., 2015. A Method of Effective Background Estimation for Video Sequences with
Dense Moving Objects, in: 2015 Second International Conference on Mathematics and Computers in Sciences and in
Industry (MCSI). Presented at the 2015 Second International Conference on Mathematics and Computers in Sciences
and in Industry (MCSI), pp. 99–104. doi:10.1109/MCSI.2015.13

Zimmermann, R., Kim, S.H., Shahabi, C., n.d. Active Key Frame Selection for 3d Model Reconstruction from
Crowdsourced Geo-Tagged Videos.

184

Appendix
A.1. Theoretical foundation of 3D graphical modelling

The operational semantics of dynamic patterns defined in a language require implementation. While the

language is focused on formal description of what is happening in the scene (events), it does not provide

details about spatial existence of individuals and objects identified in the scene. To that end, the language

does not describe how visible changes that are the motor of dynamic patterns occur. Adequate theory

allowing modelling the visual appearance of objects and their movements is required. A natural candidate tool

for this task is mathematics from the area of analytical geometry. The elementary vector calculus and related

areas are the main vehicle of developing a plausible graphical model of visual scene. In this appendix only the

fundamentals upon which theory behind implementation of a simulator are presented.

Analytical geometry for modelling the visual appearance of the world and its dynamics

Figure A.1-1. A vector defined in three-dimensional Cartesian coordinate system

The visual scene can be perceived as a space in which one can observe the existence of objects, individuals

and evolution of movements. The space is defined as Euclidean (or Cartesian) 𝑛-space of all 𝑛-tuples of real

numbers (𝑥1, 𝑥2, … 𝑥𝑛) where the totality of this space is denoted by ℝ𝑛, i.e. 𝑥𝑛 ∈ ℝ𝑛 (Stover and Weisstein,

2016). Every 𝑛-tuple is called a point (or vector because Euclidean space can be also considered a vector
space). “A vector space 𝕍 is a set that is closed under finite vector addition and scalar multiplication”

(Weisstein, 2016). The Euclidean space ℝ𝑛 has a dimension of 𝑛 and since the visual scene is considered to

185

be three-dimensional it can be denoted by ℝ3. The ℝ3 space also encompasses Euclidean plane, which is a

two-dimensional Euclidean space denoted by ℝ2 (Weisstein, 2016). We will express vectors in a form of

distances (i.e. coordinates) measured along three perpendicular axes, also called Cartesian coordinates

(Weisstein, 2016) as shown in Figure A.1-1. A dashed bounding box visually illustrates the location, length

and direction of the vector.

Vectors

Vectors are used to represent points in space, directions, locations of objects and their orientations (Lengyel,

2003). In this and following chapters, for the sake of clarity, a point is a vector that represents a point in three-

dimensional space and a direction vector or simply vector is a vector that represents a direction in three-

dimensional space. Points can be written as ordered 3-tuples (triplets) of coordinates (or components) in

round brackets, e.g. 𝐴(𝑥, 𝑦, 𝑧) and vectors can be written as ordered triplets of coordinates in square brackets

with an arrow accent, e.g. �⃗� = [𝑥, 𝑦, 𝑧]. In this appendix, points and vectors are represented using one of these

notations. Vectors are represented in a form of a directed line segment in coordinate system (Figure A.1-1).

The central point is located at the origin 𝑂, which always lies at coordinate (0,0,0) and where all three axes X,

Y and Z intersect. In order to move from one location to another one has to specify the beginning and the end

of a directed line segment. For example, if one wants to move from point 𝐴 located at the origin 𝑂 (0,0,0) to

point 𝐵 located at coordinate (5,5,2) then it can be done so by writing �⃗� = [0 ≫ 5, 0 ≫ 5, 0 ≫ 2]. This provides

one with not only the distance between those two points but also the direction in which the movement should

be made which in this case is 5 units right on X axis, 5 units up on Y axis and 2 units towards the screen on Z

axis.

One can add and subtract vectors as well as multiply them by a scalar. If one assumes that �⃗� = [𝑢𝑥, 𝑢𝑦, 𝑢𝑧]

and 𝑣 = [𝑣𝑥, 𝑣𝑦, 𝑣𝑧] are two vectors and 𝑎 is a real number then these operations can be performed with eq.A-

1, eq.A-2 and eq.A-3.

�⃗� + 𝑣 = [𝑢𝑥 + 𝑣𝑥, 𝑢𝑦 + 𝑣𝑦, 𝑢𝑧 + 𝑣𝑧] (eq. A-1)

�⃗� − 𝑣 = [𝑢𝑥 − 𝑣𝑥, 𝑢𝑦 − 𝑣𝑦, 𝑢𝑧 − 𝑣𝑧] (eq. A-2)

𝑎�⃗� = [𝑎𝑢𝑥, 𝑎𝑢𝑦, 𝑎𝑢𝑧] (eq. A-3)

Vectors possess a set of arithmetic operations properties (Lengyel, 2003). For any given vectors �⃗� , 𝑣 and �⃗⃗�

and two real numbers (scalars) 𝑎 and 𝑏 then the following can be expressed:

1) �⃗� + 𝑣 = 𝑣 + �⃗�

2) (�⃗� + 𝑣) + �⃗⃗� = �⃗� + (𝑣 + �⃗⃗�)

3) 𝑎(𝑏𝑣) = (𝑎𝑏)𝑣

4) (𝑎 + 𝑏)𝑣 = 𝑎𝑣 + 𝑏𝑣

5) 𝑎(�⃗� + 𝑣) = 𝑎�⃗� + 𝑎𝑣

186

6) 1 ∗ 𝑣 = 𝑣

7) 0 ∗ 𝑣 = 0⃗

Where, 0⃗ is a zero vector defined as [0,0,0].

A vector, which starts at point 𝐴(𝑥1, 𝑦1, 𝑧1) and finishes at point 𝐵(𝑥2, 𝑦2, 𝑧2) can be calculated by subtracting

their respective component values (see eq.A-4).

[𝑥2 − 𝑥1, 𝑦2 − 𝑦1, 𝑧2 − 𝑧1] (eq. A-4)

It is also referred to as a bound vector and is written as 𝐴𝐵⃗⃗⃗⃗ ⃗. If the beginning point of a vector is unknown then

it is positioned at the origin of a coordinate system and finished at a point dictated by this vector. Such a

vector is then called a free vector. Generally, if two points 𝐴(𝑥1, 𝑦1, 𝑧1) and 𝐵(𝑥2, 𝑦2, 𝑧2) are the initial point and

terminal point of a vector respectively, then one can calculate that vector position and direction in 3D space

(see eq.A-5).

𝐴𝐵⃗⃗⃗⃗ ⃗ = [𝑥2 − 𝑥1, 𝑦2 − 𝑦1, 𝑧2 − 𝑧1] (eq. A-5)

Wherein, there exists some equality between initial and terminal points of a vector (see eq.A-6, eq.A-7).

𝐴𝐴⃗⃗⃗⃗ ⃗ = 0⃗ (eq. A-6)

𝐵𝐴⃗⃗⃗⃗ ⃗ = −𝐴𝐵⃗⃗⃗⃗ ⃗ (eq. A-7)

A free vector [𝑣𝑥, 𝑣𝑦, 𝑣𝑧] becomes a bound vector if one knows the location of its initial point 𝐴(𝑥1, 𝑦1, 𝑧1). The

terminal point of this vector will then have coordinates at 𝐵(𝑥1 + 𝑣𝑥, 𝑦1 + 𝑣𝑦, 𝑧1 + 𝑣𝑧). For example, the free

vector �⃗� = [1,2,3] can be a bound vector of two free vectors if 𝐴(1,1,1) and 𝐵(2,3,4) are known. This is

because when one subtracts their components the resulting vector will be equal to �⃗� : 𝐴𝐵⃗⃗⃗⃗ ⃗ = [2 − 1,3 − 1,4 −

1] = [1,2,3] = �⃗� .

The midpoint of a vector 𝐴𝐵⃗⃗⃗⃗ ⃗, where 𝐴(𝑥1, 𝑦1, 𝑧1) is the initial point and 𝐵(𝑥2, 𝑦2, 𝑧2) is the terminal point, is a

point 𝑆(𝑥𝑠, 𝑦𝑠, 𝑧𝑠), whose components can be calculated with eq.A-8.

𝑥𝑠 = (𝑥1 + 𝑥2) 2⁄ 𝑦𝑠 = (𝑦1 + 𝑦2) 2⁄ 𝑧𝑠 = (𝑧1 + 𝑧2) 2⁄ (eq. A-8)

On the basis of Pythagoras theorem, one can calculate the magnitude (or length) of a vector �⃗� = [𝑢𝑥, 𝑢𝑦, 𝑢𝑧]

denoted by |�⃗� | (see eq. A-9) (Lengyel, 2003). However, ∥ �⃗� ∥ notation will be used in the following sections to

distinguish the magnitude of a vector from absolute value. The magnitude of a vector in a context of visual

scene is used to measure spatial distances between different objects and individuals.

187

∥ u⃗ ∥= √𝑢𝑥
2 + 𝑢𝑦

2 + 𝑢𝑧
2

(eq. A-9)

One can use eq. A-9 to calculate the distance between two points 𝐴(𝑥1, 𝑦1, 𝑧1) and 𝐵(𝑥2, 𝑦2, 𝑧2) (see eq. A-10)

(Weisstein, 2016).

 ∥ 𝐴𝐵⃗⃗⃗⃗ ⃗ ∥= √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 + (𝑧2 − 𝑧1)2 (eq. A-10)

A vector 𝑣 that has at least one nonzero component can be normalized. The process of normalization can be

useful in calculations that require only a direction of a vector and are not concerned about its magnitude. A

normalized vector is often called unit vector and it is calculated by dividing its components by its magnitude,

i.e. 𝑣𝑛⃗⃗⃗⃗ = 1/∥ 𝑣 ∥ 𝑣 .

Occasionally, vectors are described with standard basis vectors notation for convenience and geometric

analysis. Since a visual scene defined in three-dimensional space is considered, the standard basis 𝑉3

consists of three unit vectors, where each lies on one of the coordinate axes (see eq. A-11) (Smith and

Minton, 2001).

𝑖 = [1,0,0] 𝑗 = [0,1,0] �⃗� = [0,0,1]

Where, ∥ 𝑖 ∥=∥ 𝑗 ∥=∥ �⃗� ∥= 1

(eq. A-11)

For any vector 𝑣 ∈ 𝑉3, one can write it in a standard basis (see eq. A-12) (Smith and Minton, 2001).

 𝑣 = [𝑣𝑥, 𝑣𝑦, 𝑣𝑧] = 𝑣𝑥𝑖 + 𝑣𝑦𝑗 + 𝑣𝑧𝑘 (eq. A-12)

Matrices

In 3D graphics, matrices, next to vectors, are of a fundamental significance. Matrices are used for performing

transformations of vectors from one coordinate space to another (Lengyel, 2003). Up to this moment, the

presented vector calculus was used to define attributes of vectors such as position and direction in three-

dimensional space described in a coordinate system 𝐶 consisting of three coordinate axes and origin. In this

system, a vector is written as a triplet of components where each component specifies how many units it

needs to navigate along each axis from the origin point to reach its final point.

However, in 3D graphics it is often necessary to translate a set of vertices in three-dimensional space to a

different coordinate space (e.g. in order to appropriately display a three-dimensional space in a two-

dimensional space of a display screen). Considering another coordinate system 𝐶′, “in which the components

188

of vectors [𝑥′, 𝑦′, 𝑧′] can be expressed as linear functions of coordinates [𝑥, 𝑦, 𝑧]”, one can perform a linear

transformation from coordinate system 𝐶 to coordinate system 𝐶′ with (see eq. A-13) (Lengyel, 2003).

𝑥′(𝑥, 𝑦, 𝑧) = 𝑢1𝑥 + 𝑣1𝑦 + 𝑤1𝑧 + 𝑡1⃗⃗⃗

𝑦′(𝑥, 𝑦, 𝑧) = 𝑢2𝑥 + 𝑣2𝑦 + 𝑤2𝑧 + 𝑡2⃗⃗ ⃗

𝑧′(𝑥, 𝑦, 𝑧) = 𝑢3𝑥 + 𝑣3𝑦 + 𝑤3𝑧 + 𝑡3⃗⃗ ⃗

Where,

𝑥′, 𝑦′, 𝑧′ are coordinates of a vector in a new coordinate system 𝐶′,

𝑡 is a vector which represents the translation from the origin of 𝐶 to the origin of 𝐶′.

�⃗� , 𝑣 and �⃗⃗� vectors represent how the orientation of the coordinate axes is changed when

transforming from 𝐶 to 𝐶′.

(eq. A-13)

The linear transformation (i.e. linear equation) in eq. A-13 can be represented in a more compact way in a

form of a matrix (see eq. A-14) (Lengyel, 2003).

[
𝑥′

𝑦′

𝑧′
] = [

𝑢1 𝑣1 𝑤1
𝑢2 𝑣2 𝑤2
𝑢3 𝑣3 𝑤3

] [
𝑥
𝑦
𝑧
] + [

𝑡1⃗⃗⃗
𝑡2⃗⃗ ⃗
𝑡3⃗⃗ ⃗

]

(eq. A-14)

Therefore a matrix, in a context of visual scene, encapsulates information about visual dynamic changes that

can be applied to objects in that visual scene. The matrices provide indication about the level of impact that a

given transformation will have on object upon its application. This means that a matrix is a convenient

mathematical instrument for describing movements and changes of physical properties of individuals and

objects in a visual scene.

Matrix is the arrangement of numbers (elements) into a two-dimensional array of 𝑛 rows and 𝑚 columns

(𝑛 × 𝑚). Their general representation has a form presented in eq. A-15.

𝑀 = [𝑎𝑖𝑗] = (
𝑎11 ⋯ 𝑎1𝑚
⋮ ⋱ ⋮

𝑎𝑛1 ⋯ 𝑎𝑛𝑚

)

Where,

𝑖 = 1,… , 𝑛

𝑗 = 1,… ,𝑚

(eq. A-15)

189

The element residing at position(𝑖, 𝑗) in that array is called an entry in the matrix (Lengyel, 2003). As with

vectors, matrices possess similar set of arithmetic operations properties (Lengyel, 2003). For any given

matrices 𝑛 × 𝑚 𝐹, 𝐺 and 𝐻 and any two scalars 𝑎 and 𝑏 the following can be expressed;

1) 𝐹 + 𝐺 = 𝐺 + 𝐹

2) (𝐹 + 𝐺) + 𝐻 = 𝐹 + (𝐺 + 𝐻)

3) 𝑎(𝑏𝐹) = (𝑎𝑏)𝐹

4) 𝑎(𝐹 + 𝐺) = 𝑎𝐹 + 𝑎𝐺

5) (𝑎 + 𝑏)𝐹 = 𝑎𝐹 + 𝑏𝐹

There are cases of matrices that can be characterised when they satisfy certain conditions. The most

important characteristics of matrices and their properties are as follow:

1) A matrix, which number of columns is equal to the number of rows (i.e. 𝑛 = 𝑚) is called a square
matrix (Lengyel, 2003).

2) The values of entries in a matrix satisfying a condition 𝑖 = 𝑗 are called main diagonal entries (Lengyel,

2003).

3) The transpose of an 𝑛 × 𝑚 matrix 𝑀 (which is denoted by 𝑀𝑇) is an 𝑚 × 𝑛 matrix for which entry (𝑖, 𝑗)

is equal to 𝑀𝑗𝑖, i.e. 𝑀𝑖𝑗
𝑇 = 𝑀𝑗𝑖 (Lengyel, 2003).

4) A matrix 𝑛 × 𝑚 is called the identity matrix (which is denoted as 𝐼) when 𝑀𝐼 = 𝐼𝑀 = 𝑀 for any matrix

𝑀 (Lengyel, 2003).

5) A 𝑛 × 𝑚 matrix 𝑀 is invertible if there exists a matrix (which is denoted by 𝑀−1), such that 𝑀𝑀−1 =

𝑀−1𝑀 = 𝐼. The matrix 𝑀−1 is then called the inverse of a matrix 𝑀 (Lengyel, 2003).

Vectors can be perceived as a special type of matrix because they can be represented in a form of matrices

that have one-column and 𝑛-rows, i.e. 𝑛 × 1 (sometimes called column vectors (Lengyel, 2003)) or matrices

that have one-row and 𝑚-columns, i.e. 1 × 𝑚. Since only 3D vectors are considered in this research, they

have matrix forms presented in eq. A-16.

�⃗� = [
𝑢𝑥
𝑢𝑦
𝑢𝑧

] �⃗� 𝑇 = [𝑢𝑥𝑢𝑦𝑢𝑧]

Where, �⃗� 𝑇 is a transpose of vector �⃗� .

(eq. A-16)

The most relevant arithmetic operations on matrices and vectors have been summarised in Table A-1.

190

Table A.1-1. Matrix operations for transformations

Operation Equation and generic example Comments

Multiplying a
matrix

by scalar

𝛼𝑀 = [𝛼𝑎𝑖𝑗]

2 [
𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

] = [
2𝑎11 2𝑎12 2𝑎13
2𝑎21 2𝑎22 2𝑎23
2𝑎31 2𝑎32 2𝑎33

]

- 𝑀 is any type of matrix

- 𝛼 is a scalar

Adding two
matrices

(𝑀 + 𝑁)𝑖𝑗 = 𝑀𝑖𝑗 + 𝑀𝑁𝑖𝑗

[
𝑎11 𝑎12
𝑎21 𝑎22

] + [𝑏11 𝑏12
𝑏21 𝑏22

] = [𝑎11 + 𝑏11 𝑎12 + 𝑏12
𝑎21 + 𝑏21 𝑎22 + 𝑏22

]

- condition: the number
of rows and columns in
matrix 𝑀 is equal to
corresponding number
of rows and columns in
matrix 𝑁

- the operation results in
a matrix, which number
of rows and columns is
equal to the number of
rows and columns in
matrix 𝑀 and 𝑁 (before
the operation)

Multiplying a
matrix by a

matrix

(𝑀𝑁)𝑖𝑘 = ∑𝑚𝑖𝑗𝑛𝑗𝑘

𝑙

𝑗=1

[
𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23

] [
𝑏11 𝑏12
𝑏21 𝑏22
𝑏31 𝑏32

] =

= [𝑎11𝑏11 + 𝑎12𝑏21 + 𝑎13𝑏31 𝑎11𝑏12 + 𝑎12𝑏22 + 𝑎13𝑏32
𝑎21𝑏11 + 𝑎22𝑏21 + 𝑎23𝑏31 𝑎11𝑏12 + 𝑎12𝑏22 + 𝑎13𝑏32

]

- condition: the number
of columns in matrix 𝑀
is equal to the number
of rows in matrix 𝑁

- the operation results in
a matrix, which number
of rows is equal to
number of rows in
matrix 𝑀 and number of
columns equal to
number of columns of 𝑁

Multiplying
vector

by a matrix

�⃗� 𝑀 = [𝑢1… 𝑢𝑛] [
𝑎11 ⋯ 𝑎1𝑚
⋮ ⋱ ⋮

𝑎𝑛1 ⋯ 𝑎𝑛𝑚

] =

= [
𝑎11𝑢1 + 𝑎12𝑢2 + ⋯ + 𝑎1𝑛𝑢𝑛

⋮ ⋮ ⋮
𝑎𝑚1𝑢1 + 𝑎𝑚2𝑢2 + ⋯ + 𝑎𝑚𝑛𝑢𝑛

]

𝑣 𝑁 = [𝑣1𝑣2𝑣3] [
𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

] = [
𝑎11𝑣1 + 𝑎12𝑣2 + 𝑎13𝑣3
𝑎21𝑣1 + 𝑎22𝑣2 + 𝑎23𝑣3
𝑎31𝑣1 + 𝑎32𝑣2 + 𝑎33𝑣3

]

- �⃗� is a vector called
constant vector
(Lengyel, 2003)

- 𝑣 is a 3D constant
vector

- 𝑀 is a matrix called
coefficient matrix
(Lengyel, 2003)

- 𝑁 is a 3x3 coefficient
matrix

The elementary transformation matrices that are commonly used in 3D graphics are the scaling matrix, the

translation matrix and the rotation matrix.

191

Scaling Transformation

In order to scale a vector �⃗� by a factor 𝑎 in three-dimensional space, one can perform the operation with the

use of a scaling matrix (see eq. A-17).

�⃗� ′ = [
𝑎 0 0
0 𝑎 0
0 0 𝑎

] [𝑢𝑥𝑢𝑦𝑢𝑧] = [
𝑎𝑢𝑥
𝑎𝑢𝑦
𝑎𝑢𝑧

]

Where, �⃗� ′ is the result vector of the transformation.

(eq. A-17)

When one scales a vector by the same exact amount along three axes X, Y and Z, it is called a uniform scale.
A uniform scale is always applied when main diagonal entries of the matrix are the same (see eq. A-17).

Analogically, when diagonal entries are different, i.e. when one scales a vector by different amounts along

three axes X, Y and Z then it is called a non-uniform scale (see eq. A-18).

�⃗� ′ = [
𝑎 0 0
0 𝑏 0
0 0 𝑐

] [𝑢𝑥𝑢𝑦𝑢𝑧] = [
𝑎𝑢𝑥
𝑏𝑢𝑦
𝑐𝑢𝑧

]

Where, �⃗� ′ is the result vector of the transformation.

(eq. A-18)

Scaling is a convenient method of adjusting the size of the graphical world and all its elements. For instance, it

might be necessary to change the proportions of objects in a three-dimensional space so that they correspond

to their natural sizes relative to graphical world and its boundaries.

Translation Transformations

In order to translate a point 𝐴 from one coordinate space 𝐶 to another coordinate space 𝐶′ there is a need to

perform an operation similar to the one shown in eq. A-19.

𝐴′ = 𝑀𝐴 + 𝑡

Where, 𝐴′ is a point after the translation, 𝑀 is some 3x3 matrix and 𝑡 is a vector that translates

origin point of coordinate space 𝐶 to the origin point of coordinate space 𝐶′.

(eq. A-19)

As noted by Lengyel (2003), in order to perform, for example, two translation operations such as the ones

shown in eq.A-19, one would have to keep track of not only matrix components but also translation vector

components at each stage of the procedure (see eq.A-20).

192

 𝐴′ = 𝑀2(𝑀1𝐴 + 𝑡 1) + 𝑡 2 = (𝑀2𝑀1)𝐴 + 𝑀2𝑡 1 + 𝑡 2 (eq. A-20)

This can produce several complexities and overheads if one considers greater number of translations to be

performed in a relatively short amount of time, e.g. if there is a need to perform multiple translation operations

in order to simulate movement of objects or individuals in a visual scene. To overcome this problem and

represent this type of transformation in a more compact mathematical structure, one needs to extend vectors

to homogenous coordinates, i.e. add the fourth component (often called the 𝑤-coordinate), to the existing

three and setting its value to one (see eq.A-21) (Lengyel, 2003).

 �⃗� = [𝑥, 𝑦, 𝑧, 𝑤] = [𝑥, 𝑦, 𝑧, 1] (eq. A-21)

Since the multiplication operation of two matrices requires that the number of columns in multiplier matrix has

to be equal to the number of rows in the multiplicand matrix (Table A-1), there is a need to extend 3x3 matrix

to 4x4 matrix. The 4x4 matrix 𝐹 that is used for translation transformation contains 3x3 matrix 𝑀 and 3D

translation vector 𝑡 from eq. A-20 so that it has a form shown in eq. A-22.

 𝐹 = [𝑀 𝑡
0 1

] =

[

 𝑀11 𝑀12 𝑀13 𝑡 𝑥
𝑀21 𝑀22 𝑀23 𝑡 𝑦
𝑀31 𝑀32 𝑀33 𝑡 𝑧
0 0 0 1]

(eq. A-22)

Multiplication of a 4D vector �⃗� (see eq. A-21) by 4x4 matrix 𝐹 constructed in eq. A-22 results in a vector,

whose components 𝑥, 𝑦 and 𝑧 are transformed in exactly the same way as in eq. A-19 leaving coordinate 𝑤

set to 1. The advantage of this approach is that one can eliminate convoluted expressions (see eq.A-20) and

enclose several translation transformations in a single mathematical structure. The multiplication of two types

of transforms defined in 4x4 matrix 𝑀1 and 4x4 matrix 𝑀2 results in a matrix 𝐹 that is equivalent to both, i.e.

𝐹 = 𝑀1𝑀2 (Lengyel, 2003).

In section 4.1 a distinction between a point and a vector was made for multiple reasons. One of them is that a

direction of a vector should remain the same even after the translation transformation (Lengyel, 2003). To

achieve this, one has to extend a vector to homogenous coordinates and set its 𝑤-coordinate to 0. By doing

so, one can force 4x4 matrix 𝐹 to disregard its fourth column and apply only its upper left 3x3 part to a vector,

leaving its direction intact (Lengyel, 2003).

If one considers the difference between two 4D homogeneous coordinates points 𝐴(𝑥1, 𝑦1, 𝑧1, 1) and

𝐵(𝑥2, 𝑦2, 𝑧2, 1), the resulting direction vector �⃗� will have its 𝑤-coordinate set to 0 (see eq. A-23).

𝐴𝐵⃗⃗⃗⃗ ⃗ = [𝑥2 − 𝑥1, 𝑦2 − 𝑦1, 𝑧2 − 𝑧1, 1 − 1] = [𝑥′, 𝑦′, 𝑧′, 0] = �⃗�

Where, 𝑥′, 𝑦′, 𝑧′ are the components of a new 4D vector �⃗� after the subtraction.

(eq. A-23)

193

The value of vector �⃗� in eq. A-23 means that if one wants to translate a vector representing a point in three-

dimensional space, there is a need to set its 𝑤-coordinate to 1 during multiplication operation. On the other

hand, if one wants to translate a vector representing a direction in three-dimensional space without the risk of

changing its direction, then there is a need to set its 𝑤-coordinate to 0 during multiplication operation.

Translation is the most fundamental operation that is used in the development of graphical world and its

dynamic aspects. It allows positioning objects within world boundaries, dynamically move these objects from

one location to another, correctly present three-dimensional space on a two-dimensional display screen, etc.

Orthogonal Matrices

3x3 matrices used for transformations in 3D graphics are orthogonal if and only if their inverse is equal to their

transpose (𝑀−1 = 𝑀𝑇) (Lengyel, 2003). Orthogonal matrices have the property of preserving magnitudes and

angles during transformations of vectors. In case of visual scene, it means preserving the physical

appearance of individuals and objects after their transformation in a coordinate system, e.g. the execution of

dynamics of their movement does not result in deformation of their physical graphical appearance. In order for

a matrix 𝑀 to preserve a magnitude of a vector �⃗� it must satisfy the condition presented in eq. A-24.

∥ 𝑀�⃗� ∥=∥ �⃗� ∥ (eq. A-24)

A matrix 𝑀, which preserves magnitudes and angles between vectors �⃗� and 𝑣 has been presented in eq.A-25

(Lengyel, 2003).

 (𝑀�⃗�) ∙ (𝑀𝑣) = �⃗� ∙ 𝑣 (eq. A-25)
The concept of an angle between vectors and its calculations in coordinate system has been presented in

more details in section 4.1.4.

Analytical geometry allows one to calculate positions, sizes and establishing the boundaries of the world and

its objects while algebra provides means to calculate a variety of transformations of those properties.

However, those two branches of mathematics do not provide a simple method for performing calculations,

which involve angular measurements. For example, it would be difficult to calculate orientations of individuals,

i.e. a direction they are facing at any given point in time without measuring an angle between their last

orientation and the current one. Hence it is necessary to introduce a mathematical apparatus that provides a

convenient method for describing and calculating angles in three-dimensional space.

Trigonometry as a complementary tool for developing graphical model of the world

“The study of angles and of the angular relationships of planar and three-dimensional figures is known as
trigonometry” (Weisstein, 2016). The concepts from the area of trigonometry are used to describe various

194

angular measurements in three-dimensional space in further sections. A great repository of trigonometry can

be found in many mathematical text-books (Kowalczyk, Niedzialomski and Obczynski, 2011; Weisstein, 2016;

Cewe et al., 2015). The focus of this section and all its sub-sections is made on presenting only crucial

relationships between trigonometry and definitions of angles in three-dimensional space.

Trigonometric Pythagoras theorem

There exists an important relation between sine and cosine functions, which is shown in Figure A.1-2. From

any given angle one can calculate the coordinates of a point lying on a circle’s circumference. Such

coordinates are called polar coordinates (Weisstein, 2016). This property can be utilised, for instance, for

approximation of individual’s focus in visual scene or finding correlation between objects by calculating their

coordinates in situations where an angle is known only.

Figure A.1-2. The relation between sine and cosine functions for any given angle t (Kowalczyk, Niedzialomski

and Obczynski, 2011)

For the point 𝑃(𝑥, 𝑦) that lies on a circle's circumference, from the definition of those functions we have

cos 𝑡 = 𝑥 and sin 𝑡 = 𝑦. When one inputs these values into an equation for the length of a circle radius, eq. A-

26 yields.

 (cos 𝑡)2 + (sin 𝑡)2 = 1 (eq. A-26)

The values presented in eq. A-27 are for all arguments from the range of [0,2𝜋];

 tan 𝑡 = sin 𝑡
cos 𝑡

 cot 𝑡 = cos 𝑡
sin 𝑡

 tan 𝑡 ∗ cot 𝑡 = 1 (eq. A-27)

195

Utilisation of trigonometry in descriptions of three-dimensional world

Trigonometry provides a convenient mathematical method for describing, measuring and calculating angles

on two-dimensional plane. Calculations, which involve angles, provide the ability to specify multiple angular

characteristics of objects and their dynamics in three-dimensional space, e.g. one can calculate a rotation of

an object with respect to coordinate system about any of the three axes X, Y or Z ultimately defining its

orientation.

However, since trigonometry only deals with angles described in two-dimensional planes its concepts need to

be extended to three-dimensional spaces in which visual scene is defined.

Figure A.1-3. Euler Angles (Weisstein, 2016)

According to Euler’s rotation theorem, “any arbitrary rotation can be described by only three parameters”

(Weisstein, 2016). In regards to visual scene, it means that any rotation in three-dimensional space can be

described using three angles about all three axes X, Y, Z. Concepts of trigonometry that allow calculating

angles defined on two-dimensional planes are fundamental components of calculating an arbitrary angle

defined in three-dimensional space as it can be clearly shown in Figure A.1-3.

Trigonometry in crucial vector, matrices and quaternion calculations

196

Figure A.1-4. “An angle between two non-zero vectors �⃗� and 𝑣 is a convex angle, whose one arm has a
direction of vector �⃗� and a second arm has a direction of vector 𝑣 ” (Cewe et al., 2015)

An angle between two vectors, like the one shown in Figure A.1-4 is denoted by 𝜃 = ∠(�⃗� , 𝑣) in further

sections.

Dot product

The dot (or scalar) product of two non-zero vectors �⃗� = [𝑢𝑥, 𝑢𝑦, 𝑢𝑧] and 𝑣 = [𝑣𝑥, 𝑣𝑦, 𝑣𝑧] is a real number. The

equation, which needs to be satisfied by a dot product of two vectors, is presented in eq. A-28 (Lengyel,

2003).

�⃗� ∙ 𝑣 =∥ �⃗� ∥∥ 𝑣 ∥ cos(∠(�⃗� , 𝑣))

Where, ∠(�⃗� , 𝑣) is an angle between vectors �⃗� and 𝑣 . If one of the vectors in that equation is

equal to 0 then �⃗� ∙ 𝑣 = 0.

(eq. A-28)

The dot product can also be calculated with an alternative equation presented in eq.A-29 (Lengyel, 2003).

 �⃗� ∙ 𝑣 = ∑ 𝑢𝑖
3
𝑖=1 𝑣𝑖 (eq. A-29)

Having two non-zero vectors, it is possible to calculate cos(∠(�⃗� , 𝑣). A cosine of an angle between two vectors

can be derived from eq. A-28 as shown in eq. A-30.

197

cos(∠(�⃗� , 𝑣)) =
�⃗� ∙ 𝑣

∥ �⃗� ∥∥ 𝑣 ∥
=

𝑢𝑥𝑣𝑥 + 𝑢𝑦𝑣𝑦 + 𝑢𝑧𝑣𝑧

√𝑢𝑥
2 + 𝑢𝑦

2 + 𝑢𝑧
2 ∗ √𝑣𝑥

2 + 𝑣𝑦
2 + 𝑣𝑧

2

(eq. A-30)

There are few properties of the scalar products. For any given vectors �⃗� , 𝑢1⃗⃗⃗⃗ , 𝑢2⃗⃗⃗⃗ , 𝑣 and any real numbers 𝑎 and

𝑏 the following laws can be expressed:

1) �⃗� ⋅ �⃗� ≥ 0 𝑎𝑛𝑑 (�⃗� ⋅ �⃗� = 0 ⟺ �⃗� = 0⃗)

2) ∥ �⃗� ∥2= �⃗� ⋅ �⃗�

3) �⃗� ⋅ 𝑣 = 𝑣 ⋅ �⃗�

4) (𝑢1⃗⃗⃗⃗ + 𝑢2⃗⃗⃗⃗) ⋅ 𝑣 = 𝑢1⃗⃗⃗⃗ ⋅ 𝑣 + 𝑢2⃗⃗⃗⃗ ⋅ 𝑣

5) (𝑎�⃗�) ⋅ (𝑏𝑣) = 𝑎𝑏(�⃗� ⋅ 𝑣)

In a two-dimensional plane, a vector is perpendicular (or orthogonal) to any given vector when one is rotated

90° counter clockwise and the other rotated 90° clockwise forming a right angle between them as shown in

Figure A.1-5 (Weisstein, 2016).

Figure A.1-5. The perpendicularity (or orthogonality) of two vectors in a two-dimensional plane (Weisstein,

2016)

In three-dimensional space, there are infinite numbers of vectors perpendicular to any given vector (Weisstein,

2016). When one of the corresponding components of two 3D vectors are equal (e.g. 𝑣 𝑧 = �⃗� 𝑧 = 1), then one

can state that they are perpendicular on a two-dimensional plane defined in three-dimensional space. The

perpendicularity of two vectors is denoted as �⃗� ⊥ 𝑣 (“�⃗� is perpendicular to 𝑣 ”) in further sections.

One can determine the difference in two vectors’ directions by evaluating the value of their dot product. If the

dot product of two vectors is positive then they are pointing in similar direction and when it is negative they are

pointing in almost opposite directions. In addition, there exists formula for determining when two non-zero

vectors are perpendicular to each other. �⃗� = [𝑢𝑥, 𝑢𝑦, 𝑢𝑧] and 𝑣 = [𝑣𝑥, 𝑣𝑦, 𝑣𝑧] are perpendicular, if and only if

their dot product is equal to 0, i.e. 𝑢 ⋅ 𝑣 = 0 (see eq. A-31) (Lengyel, 2003).. This is due to the fact that cosine

function at an angle 90° is equal to zero (Kowalczyk, Niedzialomski and Obczynski, 2011).

198

 �⃗� ⊥ 𝑣 ⇔ 𝑢 ⋅ 𝑣 = 0 ⇔ 𝑢𝑥𝑣𝑥 + 𝑢𝑦𝑣𝑦 + 𝑢𝑧𝑣𝑧 = 0 (eq. A-31)

The dot product is an essential component of pattern recognition algorithms (see Chapter 5). With the use of

dot product it is possible to determine the average direction of individual's movement or aggregated flow

motion of group of individuals.

Cross product

“Two non-zero vectors are parallel, when each of these vectors is a multiple of a second by a real number
different than zero” (Cewe et al., 2015). The parallelism of two vectors is denoted by �⃗� ∥ 𝑣 (“�⃗� is parallel to 𝑣 ”)
in further sections.

In order to check whether two vectors are parallel to each other one has to calculate a determinant (see eq.A-

32). Two vectors are parallel, when their determinant is equal to 0.

𝑑𝑒𝑡(�⃗� , 𝑣) = 𝑢𝑥𝑣𝑦 − 𝑢𝑦𝑣𝑥

Where, if

�⃗� ∥ 𝑣 ⇔ 𝑑𝑒𝑡(�⃗� , 𝑣) = 0

then two vectors are parallel to each other.

(eq. A-32)

However, eq. A-32 only applies to two-dimensional space. In three-dimensional space, to check whether two

vectors are parallel to each other one can use the magnitude of their cross product. The cross product of two

vectors is a vector that is perpendicular to both of them and can be calculated with eq. A-33 (Lengyel, 2003)

while the determinant (the magnitude of the cross product) can be calculated with eq. A-34 (Mizerski et al.,

2014). The determinant can be used to check whether two vectors are parallel by checking its value against 0.

�⃗� × 𝑣 = [𝑢𝑦𝑣𝑧 − 𝑢𝑧𝑣𝑦, 𝑢𝑧𝑣𝑥 − 𝑢𝑥𝑣𝑧, 𝑢𝑥𝑣𝑦 − 𝑢𝑦𝑣𝑥] (eq. A-33)

∥ �⃗� × 𝑣 ∥=∥ �⃗� ∥∥ 𝑣 ∥ sin(∠(�⃗� , 𝑣))

Where, if

�⃗� ∥ 𝑣 ⇔ ∥ �⃗� × 𝑣 ∥ = 0

then two vectors are parallel to each other.

(eq. A-34)

Eq.A-34 states that when angle ∠(�⃗� , 𝑣) is 0° or 180° its 𝑠𝑖𝑛 value is equal to 0 (Kowalczyk, Niedzialomski and

Obczynski, 2011). In such a case, when this value is put back to the equation it will always result in a zero

vector 0⃗ , whose magnitude is 0.

199

As it was mentioned before, cross product of two vectors is a vector perpendicular to both of them. However,

on a closer examination it can be noticed that both different cases satisfy this condition as shown in Figure

A.1-6.

Figure A.1-6. Two different cases of a cross product satisfying its perpendicularity condition

The direction of the cross product of two vectors complies with the right-hand rule. The right hand rule states

“if you align the fingers of your right hand along the positive 𝑥-axis and then curl them toward the positive 𝑦-
axis, your thumb will point in the direction of the positive 𝑧-axis.” (Smith and Minton, 2001). Following this rule,

the positive 𝑧-axis (thumb) dictates the direction of a cross product of two vectors in three-dimensional space.

Cross product is usually used for finding the normal vector of an object surface at particular point when two

distinct vectors defining that surface are known. “The normal vector, often simply called the "normal" to a

surface is a vector which is perpendicular to the surface at a given point. When normals are considered on
closed surfaces, the inward-pointing normal (pointing towards the interior of the surface) and outward-pointing
normal are usually distinguished” (Weisstein, 2016).

200

Figure A.1-7. Normal vector (Weisstein, 2016).

Rotations matrices

With the use of trigonometry it is possible to construct matrices that would provide means for rotating vectors

about given axis of Cartesian coordinate system. In addition to a set of matrices presented in Table A-1, there

are three matrices corresponding to rotation about individual axis (Lengyel, 2003). Eq. A-35 presents rotation

about an X, Y and Z axis in three dimensions.

𝑅𝑥(𝛾) = [
1 0 0
0 cos 𝛾 −sin 𝛾
0 sin 𝛾 cos 𝛾

]

𝑅𝑦(𝛽) = [
cos 𝛽 0 sin 𝛽

0 1 0
−sin 𝛽 0 cos 𝛽

]

𝑅𝑧(𝛼) = [
cos 𝛼 −sin 𝛼 0
sin 𝛼 cos 𝛼 0

0 0 1
]

(eq. A-35)

In order to rotate a vector �⃗� about, for instance, X-axis one has to multiply it by a rotation matrix 𝑅𝑥(𝛾) (see

eq. A-35). The rotation around X-axis of a vector �⃗� is presented in eq. A-36.

201

�⃗� ′ = [
1 0 0
0 cos 𝛾 −sin 𝛾
0 sin 𝛾 cos 𝛾

] [
𝑢𝑥
𝑢𝑦
𝑢𝑧

]

Where, �⃗� ′ is the vector after the rotation.

(eq. A-36)

Two subsequent rotations can be calculated using two separate multiplications of the vectors by rotation

matrices. However, these two operations are equivalent for calculating a single rotation through multiplying

vectors by one matrix, which is the product of the two. Following this logic, one can calculate a rotation around

every axis by making a product out of three rotation matrices (see eq. A-35) and then multiplying this product

by a vector. Rotating vector �⃗� about every axis in three-dimensional space with one matrix operation is

demonstrated in eq. A-37.

𝑅(𝛼, 𝛽, 𝛾) = 𝑅𝑧(𝛼)𝑅𝑦(𝛽)𝑅𝑥(𝛾) =

= [
cos𝛼 cos𝛽 cos𝛼 sin 𝛽 sin 𝛾 − sin 𝛼 cos 𝛾 cos 𝛼 sin 𝛽 cos 𝛾 + sin 𝛼 sin 𝛾
sin 𝛼 cos 𝛽 sin 𝛼 sin 𝛽 sin 𝛾 + cos 𝛼 cos 𝛾 sin 𝛼 sin 𝛽 cos 𝛾 − cos 𝛼 sin 𝛾

−sin 𝛽 cos 𝛽 sin 𝛾 cos 𝛽 cos 𝛾
]

�⃗� ′ = [
cos 𝛼 cos 𝛽 cos 𝛼 sin 𝛽 sin 𝛾 − sin 𝛼 cos 𝛾 cos 𝛼 sin 𝛽 cos 𝛾 + sin 𝛼 sin 𝛾
sin 𝛼 cos𝛽 sin 𝛼 sin 𝛽 sin 𝛾 + cos 𝛼 cos 𝛾 sin 𝛼 sin 𝛽 cos 𝛾 − cos𝛼 sin 𝛾

−sin 𝛽 cos 𝛽 sin 𝛾 cos 𝛽 cos 𝛾
] [

𝑢𝑥
𝑢𝑦
𝑢𝑧

]

Where, �⃗� ′ is the vector after the rotation.

(eq. A-37)

The order of the multiplication of matrices has the impact on the final position and orientation of the vector as

it is presented in eq. A-38.

𝑅(𝛾, 𝛽, 𝛼) = 𝑅𝑥(𝛾)𝑅𝑦(𝛽)𝑅𝑧(𝛼) =

= [
cos 𝛽 cos 𝛼 − cos 𝛽 sin 𝛼 sin 𝛽

cos 𝛾 sin 𝛼 + sin 𝛾 sin 𝛽 cos 𝛼 cos 𝛾 cos 𝛼 − sin 𝛾 sin 𝛽 sin 𝛾 −sin 𝛾 cos 𝛽
sin 𝛾 sin 𝛼 − cos 𝛾 sin 𝛽 cos 𝛼 sin 𝛾 cos 𝛼 + cos 𝛾 sin 𝛽 sin 𝛼 cos 𝛾 cos 𝛽

]

(eq. A-38)

In addition to general rotation matrices, there exists a method for constructing a matrix, which allows rotation

around any arbitrary axis specified by unit vector (see eq. A-39) (Lengyel, 2003). This matrix proved to be

useful during the development of supportive constructs for the approximation of viewing direction angle of

individuals in relation to their body parts positions and orientations.

202

𝑅𝑎 = [
(1 − cos 𝛼)𝑢𝑥

2 + cos 𝛼 (1 − cos 𝛼)𝑢𝑥𝑢𝑦 − sin 𝛼 𝑢𝑧 (1 − cos𝛼)𝑢𝑥𝑢𝑧 + sin 𝛼 𝑢𝑦

(1 − cos𝛼)𝑢𝑥𝑢𝑦 + sin 𝛼 𝑢𝑧 (1 − cos 𝛼)𝑢𝑦
2 + cos 𝛼 (1 − cos𝛼)𝑢𝑦𝑢𝑧 − sin 𝛼 𝑢𝑥

(1 − cos𝛼)𝑢𝑥𝑢𝑧 − sin 𝛼 𝑢𝑦 (1 − cos 𝛼)𝑢𝑦𝑢𝑧 + sin 𝛼 𝑢𝑥 (1 − cos𝛼)𝑢𝑧
2 + cos 𝛼

]

Where, 𝑢 is a unit vector defining an axis of rotation and 𝛼 is an angle of rotation.

(eq. A-39)

Quaternions

Quaternions offer an alternative mathematical way of describing rotations in three-dimensional space. There is

a one-to-one correspondence between quaternions and their matrix counterparts, but as noted by Lengyel

(2003), quaternions have several crucial advantages:

a) Quaternions are faster to compute by machines because they require less storage space.

b) Quaternions allow storing and applying multiple separate rotations as a single mathematical entity that

requires less computational operations.

c) Quaternions, as well as rotation matrices, prevent the occurrence of Gimbal Lock – a phenomenon of

losing one degree of freedom in three-gimbal mechanism that occurs when two axes in that

mechanism are set into parallel configuration decreasing the rotation about a third axis (Lepetit and

Fua, 2005).

d) Quaternions can produce smoother and more realistic movement animations by interpolating between

their values.

Quaternions are an extension of complex numbers (Weisstein, 2016). Complex numbers are written in

algebraic form 𝑧 = 𝑎 + 𝑏𝑖 where 𝑎 and 𝑏 are real numbers and 𝑖 is an imaginary number equal to the square

root of −1 (√−1) (Weisstein, 2016). In real number systems there is no such real number whose square is

equal to −1 and therefore imaginary number is written as 𝑖2 = −1. Complex numbers can be graphically

interpreted on a complex plane also known as Argand Diagram as shown in Figure A.1-8 (Weisstein, 2016). It

is important to indicate that the diagram shown in Figure A.1-8 cannot be interpreted similarly as two-

dimensional Cartesian coordinate system. The purpose of Argand Diagram is to depict the real part of the

complex number along a horizontal axis (Re) and its imaginary number part along vertical axis (Im).

203

Figure A.1-8. Geometric interpretation of a complex number (Mizerski et al., 2014)

In Figure A.1-8 it can be seen that a vector whose initial point lies at the origin (0) of complex plane is directed

at complex number (𝑎 + 𝑏𝑖). The length of this vector is called modulus of a complex number (i.e. labelled as 𝑝

in the diagram) and the angle between this vector and real number axis is called the argument of a complex

number (i.e. labelled as 𝜃 in the diagram) (Weisstein, 2016). Figure A.1-8 shows that one can apply the

Pythagorean theorem to write complex number in a trigonometric form as shown in eq. A-40 (Mizerski et al.,

2014). The modulus 𝑝 is usually written as an absolute value |𝑧|.

𝑧 = 𝑝(cos 𝜃 + 𝑖 sin 𝜃)

Where, 𝑝 = √𝑎2 + 𝑏2, 𝑎 = 𝑝 cos 𝜃 and 𝑏 = 𝑝 sin 𝜃

(eq. A-40)

In order to write a general form of a quaternion, one needs to extend the concept on a complex number and

complex plane into three dimensions by adding two imaginary numbers into its basic algebraic form (see eq.A-

41).

𝑞 = 𝑤 + 𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘

Where, 𝑤, 𝑥, 𝑖, 𝑤 ∈ ℝ and, according to Hamilton (1853), imaginary components 𝑖, 𝑗, 𝑘 follow the

rules

(eq. A-41)

204

1) 𝑖2 = 𝑗2 = 𝑘2 = −1

2) 𝑖𝑗 = −𝑗𝑖 = 𝑘

3) 𝑗𝑘 = −𝑘𝑗 = 𝑖

4) 𝑘𝑖 = −𝑖𝑘 = 𝑗

As noted by Oosten (2012), there exists a relationship between the rules formed by Hamilton (1853) and cross

products of unit vectors defining a standard basis of a Cartesian coordinates space such that shown in eq. A-

42.

𝑖 = [1,0,0] 𝑗 = [0,1,0] �⃗� = [0,0,1]

𝑖 × 𝑗 = �⃗�

𝑗 × 𝑖 = −�⃗�

𝑗 × �⃗� = 𝑖

�⃗� × 𝑗 = −𝑖

�⃗� × 𝑖 = 𝑗

𝑖 × �⃗� = −𝑗

(eq. A-42)

In his works, as indicated by Oosten (2012), Hamilton (1853) noticed that imaginary numbers 𝑖, 𝑗, 𝑘 can be

used to represent three unit vectors 𝑖 , 𝑗 , �⃗� of Cartesian coordinate system that follow the same rules, i.e.:

𝑖2 = 𝑗2 = 𝑘2 = −1. Following this principle, vectors can be written in extended homogenous coordinates in a

quaternion form in which one can identify a scalar and vector parts such that 𝑞𝑣 = 𝑣𝑤 + 𝑣𝑥𝑖 + 𝑣𝑦𝑗 + 𝑣𝑧𝑘.

Therefore, quaternions can be considered as generalisation of vectors.

A quaternion can also be specified in scalar-vector form (see eq. A-43).

𝑞 = 𝑠 + 𝑣

Where, 𝑠 is a scalar that is equal to 𝑤 element and 𝑣 is a vector containing 𝑥, 𝑦 and 𝑧

components.

(eq. A-43)

Quaternions can be expressed more intuitively with a formula, which utilises trigonometric values of an angle.

Quaternion corresponding to rotation around the unit axis X, Y and Z is shown in eq. A-44 (Baker).

𝑞 = cos (
𝛼
2
) + 𝑖 (𝑥 ∗ sin (

𝛼
2
)) + 𝑗 (𝑦 ∗ sin (

𝛼
2
)) + 𝑘 (𝑧 ∗ sin (

𝛼
2
))

Where, 𝛼 is a rotation angle and 𝑥, 𝑦 and 𝑧 elements correspond to axis about which the rotation

is to be calculated.

(eq. A-44)

205

Quaternions can be also represented in a form of a 3x3 matrix (see eq.A-45) (Lengyel, 2003).

𝑅𝑞 = [
1 − 2𝑦2 − 2𝑧2 2𝑥𝑦 − 2𝑤𝑧 2𝑥𝑧 + 2𝑤𝑦

2𝑥𝑦 + 2𝑤𝑧 1 − 2𝑥2 − 2𝑧2 2𝑦𝑧 − 2𝑤𝑥
2𝑥𝑧 − 2𝑤𝑦 2𝑦𝑧 + 2𝑤𝑥 1 − 2𝑥2 − 2𝑦2

]
(eq. A-45)

Quaternions, as well as any other complex numbers, have conjugates. A conjugate of a quaternion is the

same quaternion with the same lengths but inversed signs of imaginary numbers. A conjugate of a quaternion

𝑞 = 𝑤 + 𝑣 = 𝑤 + 𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘 is presented in eq. A-46.

�̅� = 𝑤 − 𝑣 = 𝑤 − 𝑥𝑖 − 𝑦𝑗 − 𝑧𝑘 (eq. A-46)

A conjugate of a quaternion has several useful properties that can be used in calculations (Baker):

a) They allow changing the order of multiplicands (see eq.A-47).

�̅�𝑥�̅�𝑦 = (𝑞𝑦𝑞𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅ (eq. A-47)

b) Multiplication of a quaternion by its conjugate results in a real number, which in turn allows finding the

multiplicative inverse, i.e. one can easily find a rotation in a reversed direction to the rotation

represented by a quaternion (see eq.A-48).

𝑞�̅� = 𝑤2 + 𝑥2 + 𝑦2 + 𝑧2 = ∥ 𝑞 ∥2 (eq. A-48)

c) They are used in a formula for rotation transformation of a vector in 3D space (see eq.A-49).

𝑣′ = 𝑞 ∗ 𝑣 ∗ �̅�

Where, 𝑣′ (a vector after the rotation operation) and 𝑣 (a vector before the rotation operation) are

vectors in three-dimensional space dictated by imaginary numbers in quaternion 𝑞 (i.e. 𝑖, 𝑗, 𝑘).

 (eq. A-49)

To rotate a vector using this formula, it has to be first converted to a quaternion itself. The crucial operations

using quaternions and vectors are presented in Table A-2.

206

Table A.1-2. Quaternions operations for transformations relevant to definition of dynamic behaviour in 3D

space

Operation Equation and example Comments

Multiplication
of quaternions

1. Method – using linear algebra

𝑞1 = 𝑤1 + 𝑥1𝑖 + 𝑦1𝑗 + 𝑧1𝑘
𝑞2 = 𝑤2 + 𝑥2𝑖 + 𝑦2𝑗 + 𝑧2𝑘

𝑞1𝑞2 = (𝑤1𝑤2 − 𝑥1𝑥2 − 𝑦1𝑦2 − 𝑧1𝑧2) +

+ (𝑤1𝑥2 + 𝑥1𝑤2 − 𝑦1𝑧2 − 𝑧1𝑦2)𝑖 +
+ (𝑤1𝑦2 − 𝑥1𝑧2 − 𝑦1𝑤2 + 𝑧1𝑥2)𝑗 +
+ (𝑤1𝑧2 + 𝑥1𝑦2 − 𝑦1𝑥2 + 𝑧1𝑤2)𝑘

2. Method – using scalar-vector form

𝑞1 = 𝑠1 + 𝑣1⃗⃗⃗⃗
𝑞2 = 𝑠2 + 𝑣2⃗⃗⃗⃗

𝑞1𝑞2 = 𝑠1𝑠2 − 𝑣1⃗⃗⃗⃗ ⋅ 𝑣2⃗⃗⃗⃗ + 𝑠1𝑣2⃗⃗⃗⃗ + 𝑠2𝑣1⃗⃗⃗⃗ + 𝑣1⃗⃗⃗⃗ × 𝑣2⃗⃗⃗⃗

- multiplication of
quaternions is not
commutative

- operation allows to
combine two distinct
rotations

Quaternion
normalization

𝑞 = 𝑤 + 𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘

𝑞𝑛 =
𝑤 + 𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘

√𝑤2 + 𝑥2 + 𝑦2 + 𝑧2

- condition:

𝑤2 + 𝑥2 + 𝑦2 + 𝑧2 = 1

- normalized quaternions
are useful when only
pure rotations are
required without any kind
of undesired distortions
such as expansions or
contractions

- 𝑞𝑛: is a normalized
quaternion

Table A.1-2 cont. Quaternions operations for transformations relevant to definition of dynamic behaviour in

3D space

Operation Equation and example Comments

1. Method – using the equation with a conjugate (Baker)

𝑣′ = 𝑞 ∗ 𝑣 ∗ �̅�

- An example of a
rotation of a 90°
about Z axis.

207

3D rotation
of a vector

using a
quaternion

𝑞 = cos (
90
2

) + 𝑖 (0 ∗ sin (
90
2

)) + 𝑗 (0 ∗ sin (
90
2

)) + 𝑘 (1 ∗ sin (
90
2

)) =

= 0.7071 + 𝑖0 + 𝑗0 + 𝑘0.7071

𝑞𝑣 = 0 + 𝑖1 + 𝑗0 + 𝑘0

𝑣′ = (0.7071 + 𝑘0.7071) ∗ (𝑖1) ∗ (0.7071 − 𝑘0.7071) =

= (𝑖0.7071 + (𝑘 ∗ 𝑖)0.7071) ∗ (0.7071 − 𝑘0.7071) =

= (𝑖0.7071 + 𝑗0.7071) ∗ (0.7071 − 𝑘0.7071) =

= 𝑖0.5 + 𝑗0.5 + 𝑗0.5 − 𝑖0.5 = 𝑗

2. Method – using the matrix representation (Baker)

𝑞 = cos (
90
2

) + 𝑖 (0 ∗ sin (
90
2

)) + 𝑗 (0 ∗ sin (
90
2

)) + 𝑘 (1 ∗ sin (
90
2

)) =

= 0.7071 + 𝑖0 + 𝑗0 + 𝑘0.7071

𝑅𝑞 = [
1 − 2𝑦2 − 2𝑧2 2𝑥𝑦 − 2𝑤𝑧 2𝑥𝑧 + 2𝑤𝑦

2𝑥𝑦 + 2𝑤𝑧 1 − 2𝑥2 − 2𝑧2 2𝑦𝑧 − 2𝑤𝑥
2𝑥𝑧 − 2𝑤𝑦 2𝑦𝑧 + 2𝑤𝑥 1 − 2𝑥2 − 2𝑦2

] =

= [
0 −1 0
1 0 0
0 0 0

]

𝑣′ = [
0 −1 0
1 0 0
0 0 0

] [
1
0
0
] = [

0
1
0
]

- 𝑞𝑣: the
quaternion
representation of
a vector [1,0,0]

- 𝑣′: the
quaternion
representation of
a vector [0,1,0]
after the rotation
transformation

- An example of a
rotation of a 90°
around Z axis
using alternative
method utilising
matrix
representation of
quaternion.

- 𝑗 converts to
vector [0,1,0] at
the end of
operation

Quaternion
values:

- 𝑤 = 0.7071
- 𝑥 = 0
- 𝑦 = 0
- 𝑧 = 0.7071

Mathematical theories behind 3D geometries and processes used in the development of a graphical
model

Objects in three-dimensional space are made out of vertices (points), lines (edges) and faces (planar

surfaces). In their simplest case, they can form basic shapes that can be used for abstract representation of

recognised individuals and objects in a visual scene. Due to the fact these shapes possess simplistic structure

they can be utilised as a physical approximation of a more complex geometric shapes, ultimately reducing

overall computational cost of their processing before displaying them on display screen.

Primitive geometries

Triangle geometry

A triangle surface is usually the atomic geometry that is drawn during the display process. Triangle is relatively

simple, always planar (it can never be non-planar), can be used as a component of more complex polygonal

208

shapes and is computed at a relatively fast speed. A triangle can be described with three vertices and a

normal vector determining which direction it is orientated at. Knowing three positions of vector points that

make a triangle (𝑝0⃗⃗⃗⃗ , 𝑝1⃗⃗ ⃗, 𝑝2⃗⃗⃗⃗), the triangle normal vector �⃗� can be calculated with eq. A-50 (Lengyel, 2003).

�⃗� = (𝑝1⃗⃗ ⃗ − 𝑝0⃗⃗⃗⃗) × (𝑝2⃗⃗⃗⃗ − 𝑝0⃗⃗⃗⃗) (eq. A-50)

Plane geometry

Figure A.1-9. Plane geometry in 3D space (Weisstein, 2016)

A plane can be defined in three-dimensional space as a non-zero normal vector �⃗� that goes through any point

(e.g. 𝑝0). Equation for calculating a plane surface in three-dimensional space is presented in eq. A-51

(Weisstein, 2016).

�⃗� ∙ (𝑝 − 𝑝0) = 0

(eq. A-51)

209

Where,

𝑝 ∈ 𝑆 𝑝 = [𝑥, 𝑦, 𝑧]

�⃗� = [𝑎, 𝑏, 𝑐] 𝑝0 = [𝑥0, 𝑦0, 𝑧0]

and 𝑆 is a set of points whose difference with point 𝑝0 is always perpendicular to the normal

vector �⃗� (Figure A.1-9).

The components of eq. A-52 are used to formulate a general plane equation (see eq. A-52) (Lengyel, 2003).

𝑎𝑥 + 𝑏𝑦 + 𝑧𝑐 + 𝑑 = 0
Where,

𝑑 ≡ −𝑎𝑥0 − 𝑏𝑦0 − 𝑐𝑧0

�⃗� = [𝑎, 𝑏, 𝑐] 𝑝0 = [𝑥0, 𝑦0, 𝑧0]

(eq. A-52)

From the general equation of a plane (see eq. A-52) one can derive three components of any point that lies on

the plane where normal vector can go through that plane (see eq. A-53) (Weisstein, 2016). The exemplary

normal vector is highlighted with red �⃗� vector in Figure A.1-9. One can also calculate the distance of a plane

from the origin point of a Cartesian coordinate system with eq. A-54 (Weisstein, 2016).

 𝑥 = − 𝑑
𝑎
 𝑦 = − 𝑑

𝑏
 𝑧 = − 𝑑

𝑐
 (eq. A-53)

 𝐷 = 𝑑
√𝑎2+𝑏2+𝑐2 (eq. A-54)

Planes can be used to visually represent the natural boundaries of visual scene in three-dimensional space

such as walls, floors and ceilings.

Box geometry

210

Figure A.1-10. Bounds of the box are defined with points specifying their minimum and maximum values

along each axis in three-dimensional space.

As described by Lengyel (2003), a box in three-dimensional space is defined with six individual sides. Each

side has minimum and maximum values that represent the extents of the box (see eq. A-55). Figure A.1-10

presents the minimum and maximum points of a box aligned along three axes X, Y and Z.

𝑥 = 0 and 𝑥 = 𝑟𝑥 𝑦 = 0 and 𝑦 = 𝑟𝑦 𝑧 = 0 and 𝑧 = 𝑟𝑧

Where, 𝑟𝑥, 𝑟𝑦 and 𝑟𝑧 components constitute the dimensions of the box.

(eq. A-55)

211

Sphere geometry

“A sphere is defined as the set of all points in three-dimensional Euclidean space ℝ3 that are located at a
distance 𝑟 (the "radius") from a given point (the "center")” (Weisstein, 2016).

One can mathematically describe a sphere of a radius 𝑟 in three-dimensional space positioned at the origin of

a Cartesian coordinate system with eq. A-56 (Lengyel, 2003).

𝑥2 + 𝑦2 + 𝑧2 = 𝑟2

Where, 𝑥, 𝑦 and 𝑧 are the components of any point located at a fixed distance 𝑟 from the centre

of the sphere.

 (eq. A-56)

Substituting these components with a centre vector point of a sphere, one receives the equation presented in

eq. A-57.

(𝑝𝑥 − 𝑐𝑥)2 + (𝑝𝑦 − 𝑐𝑦)2 + (𝑝𝑧 − 𝑐𝑧)2 = 𝑟2

Where, 𝑝 is any vector point being part of the sphere, 𝑐 is the center (pivot) vector point of the

sphere and 𝑟 is the sphere’s radius.

(eq. A-57)

Cylinder geometry

The lateral surface of an elliptical cylinder can be calculated on a basis of its radius and height. Positioning the

base of a cylinder at origin of the XZ Euclidean plane in Cartesian coordinate system, whose radius on the X-

axis is 𝑟, radius on the Z-axis is 𝑠 and its height is ℎ is defined along Y-axis (Figure A.1-11), one can describe

the lateral surface of this cylinder with eq. A-58 (Lengyel, 2003).

𝑥2 + 𝑚2𝑧2 = 𝑟2

0 ≤ 𝑦 ≤ ℎ

Where, 𝑚 = 𝑟 𝑠⁄ and is the ratio of two radiuses. If the ratio is equal to 1, i.e. 𝑟 = 𝑠 then 𝑚 = 1

and cylinder is circular.

(eq. A-58)

212

Figure A.1-11. Object space of an elliptical cylinder (Lengyel, 2003)

Ray Tracing

Ray tracing is a technique that determines when geometry comes into contact with a directed line (ray). A ray

has its origin point, direction, but not a terminal point. The ray is emitted from a fixed origin point (emission
point), towards a specific direction (emission direction) in three-dimensional space for the purpose of

recognising geometries positioned in that direction as shown in Figure A.1-12. The directed line arrow in the

diagram (Figure A.1-12) only represents the direction of the ray since it does not have a terminal point. In

most practical cases, ray intersects geometry at two points: at the inlet intersection point and at the outlet
intersection point. The duration of emission may vary in accordance to the requirements of graphical model of

visual scene. It can last a certain amount of time or it can be instantaneous, i.e. ray can be emitted at one

particular moment of time and cease its operation right afterwards.

Ray tracing technique has many uses in computer graphics ranging from collision detection and visibility tests

to line-of-sights measures. This is a central method used in a simulation for detecting physical as well as non-

physical (logical) collisions. The registry of such a collision is considered as an “event” contributing to the

evolution of a dynamic pattern.

213

Figure A.1-12. Ray tracing technique

The importance of a collision event always means the relationship between one object and another at any

given point in time. This relationship is registered with the use of a ray when it intersects the geometry, i.e.

when ray and geometry’s surface share a common point. Directed line (ray) equation used for finding

intersection points with geometry surfaces is presented in eq. A-59.

𝑅(𝑥) = �⃗� + 𝑥𝑣

Where, �⃗� is the initial point of the line and 𝑣 is the vector (usually normalized) dictating the

direction of the line.

(eq. A-59)

As profoundly described by Lengyel (2003), to find whether a ray defined by eq. A-59 intersects a geometry

surface in three-dimensional space, one needs to find roots of a degree 𝑛 polynomial in 𝑥. 𝑥 is a scalar that

provides a solution for finding any point lying on the line within a specific distance from ray’s origin point.

There are different degrees of polynomials that correspond to the level of complexity of the structure of three-

dimensional geometry.

214

Table A.1-3. Solutions to degree one polynomial based on a table presented by Mizerski et al. (2014)

Equation

𝑎𝑥 + 𝑏 = 0

Conditional
values

a ≠ 0

a = 0, b ≠ 0

a = 0, b = 0

Polynomial
solutions

𝑥 = −
𝑏
2

𝑥 ∈ ∅

𝑥 ∈ ℝ

Rays and
surface

intersection

1 solution found; ray
intersects planar surface at
one point

No solution found; ray does
not intersect a planar surface

Infinite number of
solutions found; ray
covers entire length
of planar surface. In
practice it is a very
rare case but needs
to be accounted for.

In this research the attention is focused on polynomials of degrees of one and two. They correspond to planar

surfaces (planes potentially representing floors) and quadratic surfaces (spheres, cubes or cylinders depicting

simplified geometric structures of static and dynamic objects) respectively. The degree of polynomials and

their maximum number of real roots directly correspond to the maximum number of intersections that can be

made by a ray with a given geometry surface. As it was stated by Lengyel (2003), one can easily find a

solution for planar surfaces since the degree of their polynomials is one. This means that a ray, unless it

covers the entire length of a planar surface, can intersect a plane at only one point as summarised in Table A-

3.

Higher degree polynomials are possible but have been left out of the scope of this research because higher

accuracy collision detection and more complex geometries require much greater computational memory

usage that slows down the real-time performance as it was explained by Lengyel (2003).

The quadratic polynomial has a general form presented in eq. A-60.

 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 (eq. A-60)

Real roots of polynomial are calculated with (eq. A-61).

215

𝑥 =
−𝑏 ± √△

2𝑎

Where, △= 𝑏2 − 4ac

(eq. A-61)

By calculating the discriminant (△) of the polynomial, one can find out how many real roots it has and

therefore determine whether a ray intersects a given object defined in three-dimensional space. It is important

to note, that quantity given by △ does not reveal the exact point of intersection, but only the information

whether a ray intersects an object or not. All possible results that △ can provide have been summarised in

Table A-4.

In order to detect an intersection of a ray with a particular geometry, the strategy is to substitute ray equation

into elements of that geometry surface equation. Figure A.1-13 illustrates different intersections of a ray with

the sphere geometry based on the result of △. By doing so, one can determine points that lie on a ray and

objects surface simultaneously, i.e. where the rays intersect the surface. The polynomial roots equations allow

calculating the scalar component 𝑥 of the ray equation defined in eq. A-59.

Table A.1-4. Determining number of intersections based on the value of discriminant

Equation

𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0

Discriminant
value

a ≠ 0, △> 0

a ≠ 0, △= 0

a ≠ 0, △< 0

Polynomial
roots

𝑥1 =
−𝑏 − √△

2𝑎

𝑥2 =
−𝑏 + √△

2𝑎

𝑥1 = 𝑥2 = −
𝑏
2𝑎

𝑥 ∈ ∅

Rays and
surface

intersection

2 real roots; ray intersects object’s
surface at two different points:
entry point where ray intersects
object’s surface for the first time
and exit point where ray intersects
the same object’s surface for last
time

1 real root; ray is
tangent to object
surface. In practice it is
a very rare case but
needs to be accounted
for.

No real roots; ray does
not intersect an object.

216

Figure A.1-13. Estimating the intersection between rays and a sphere based on the value of discriminant

Ray intersection with a plane geometry

In order to find at which point a ray specified by the equation eq. A-59 intersects a plane defined with the

equation eq.A-51 one needs to substitute point 𝑝 that lies on the plane with a ray equation as shown in eq.A-

65.

 �⃗� ∙ (�⃗� + 𝑥𝑣 − 𝑝0) = 0 (eq. A-65)

To find the point at which the intersection occurs, eq. A-65 needs to be transformed so that 𝑥 can be solved.

By expanding the expression in the bracket in eq. A-65 yields the equation presented in eq. A-66.

 �⃗� ∙ (�⃗� − 𝑝0) + �⃗� ∙ 𝑥 ∗ 𝑣 = 0 (eq. A-66)

Leaving 𝑥 on the left hand side in eq. A-66 results in eq. A-67.

 𝑥 = −
�⃗� ∙ (�⃗� − 𝑝0)

�⃗� ∙ 𝑣
=

�⃗� ∙ (𝑝0 − �⃗�)
�⃗� ∙ 𝑣

(eq. A-67)

Substituting the value of 𝑥 obtained in eq. A-67 in a ray equation (see eq. A-59) produces the exact point of

intersection.

Ray intersection with a box geometry

A box in a space is described with six plane equations corresponding to its sides (see eq. A-55). To simplify

the illustration of a ray intersecting a box, the technique developed by Williams et al. (2005) is followed with

217

the assumption that the box is aligned with each of the axis of Cartesian coordinate system. An alternative

method for solving this problem is presented by Lengyel (2003) and is discussed later in this section.

Boxes aligned with the axis are often used as bounding boxes and are called "axis-aligned bounding boxes"

(AABB). Analogically, when a box is not aligned along the axis of Cartesian coordinate system it is called

"oriented bounding box" (OBB).

According to Williams et al. (2005), a box in space can be defined with a set of straight lines delimiting its

boundaries. Therefore, bounds can be defined using straight-line analytical equation for each axis (see eq. A-

68).

𝑦 = 𝑚𝑥 + 𝑏

where 𝑚 is the slope, which dictates the orientation of the line and 𝑏 is a point, where the line

intersects the Y-axis.

(eq. A-68)

Since the line defined by eq. A-68 is parallel to X-axis then 𝑚 = 0. When AABB is considered, two points

designating the minimum and maximum bounds of the box are required to describe a side on a given axis

plane, i.e. the same principle applies when one needs to define the bounds along X-, Y- and Z- axis (Figure

A.1-10).

Once one describes a box with their respective minimum and maximum values along each axis with a line

equation, a point where a ray intersects a plane delimited by those values needs to be found. One can do this

by substituting ray parametric equation into a line equation defining particular boundary. For instance, if 𝐵𝑥0 is

the line equation for the 𝑥 element of the box’s minimum value boundary and 𝑝 = 𝑢 + 𝑡𝑣 is a ray parametric

equation then one can find where ray intersects this line using eq. A-69.

𝐵𝑥0 = 𝑢𝑥 + 𝑡𝑣𝑥

Where, solving for 𝑡 is then made by 𝑡𝑥0 = (𝐵𝑥0 − 𝑢𝑥) 𝑣𝑥⁄

(eq. A-69)

𝑡𝑥0 was used on the left hand side of the equation eq. A-69 because one is required to do it for each

boundary line. One needs to apply the same principle for 𝑦 and 𝑧 elements respectively so that six values

where ray intersects each of the lines parallel to their corresponding axis can be revealed.

To calculate ray intersection values with each of the lines one has to solve six equations presented in eq. A-

70.

𝑡𝑥0 = (𝐵𝑥0 − 𝑢𝑥) 𝑣𝑥⁄

(eq. A-70)

218

𝑡𝑥1 = (𝐵𝑥1 − 𝑢𝑥) 𝑣𝑥⁄

𝑡𝑦0 = (𝐵𝑦0 − 𝑢𝑦) 𝑣𝑦⁄

𝑡𝑦1 = (𝐵𝑦1 − 𝑢𝑦) 𝑣𝑦⁄

𝑡𝑧0 = (𝐵𝑧0 − 𝑢𝑧) 𝑣𝑧⁄

𝑡𝑧1 = (𝐵𝑧1 − 𝑢𝑧) 𝑣𝑧⁄

Once these values are calculated, one knows where ray intersects planes specified by each side-line.

However, there is still a need to find which of these values fall within the boundaries of a box, i.e. position

where ray intersects a box’s side described on a given axis plane. For each side there are minimum and

maximum values where the ray may intersect a box. If the conditions in eq. A-71 are satisfied then one can

find the minimum value where ray intersects a particular side of the box by comparing these values and

selecting the value for which 𝑡 is the greatest as shown in eq. A-72.

 𝑡𝑥0 = (𝐵𝑥0 − 𝑢𝑥) 𝑣𝑥⁄ and 𝑡𝑦0 = (𝐵𝑦0 − 𝑢𝑦) 𝑣𝑦⁄ (eq. A-71)

 𝑡𝑥0 > 𝑡𝑦0 ⇒ 𝑡𝑚𝑖𝑛 = 𝑡𝑥0 or 𝑡𝑦0 > 𝑡𝑥0 ⇒ 𝑡𝑚𝑖𝑛 = 𝑡𝑦0

Where, 𝑡𝑚𝑖𝑛 is the minimum value parameter for ray where it intersects this side of the box.

(eq. A-72)

Finding the maximum value where a ray intersects this side of the box follows the same principle with the

exception that the lowest value has to be selected. If the conditions in eq. A-73 are satisfied then one can find

the maximum value where ray intersects a particular side of the box by comparing these values and selecting

the value for which 𝑡 is the lowest as shown in eq. A-74.

 𝑡𝑥1 = (𝐵𝑥1 − 𝑢𝑥) 𝑣𝑥⁄ and 𝑡𝑦1 = (𝐵𝑦1 − 𝑢𝑦) 𝑣𝑦⁄ (eq. A-73)

 𝑡𝑥1 < 𝑡𝑦1 ⇒ 𝑡𝑚𝑎𝑥 = 𝑡𝑥1 or 𝑡𝑦1 < 𝑡𝑥1 ⇒ 𝑡𝑚𝑎𝑥 = 𝑡𝑦1

Where, 𝑡𝑚𝑎𝑥 is the maximum value parameter for ray where it intersects this side of box.

(eq. A-74)

The possibility of a ray not intersecting a box on this side can be confirmed with the conditionals specified in

eq. A-75.

 𝑡𝑥0 > 𝑡𝑦1 or 𝑡𝑦0 > 𝑡𝑥1 (eq. A-75)

219

When 𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥 are known, one can expand the technique to include 𝑧 element and therefore, cover the

three-dimensional case of a box (see eq. A-76). The process follows the same principles described in eq. A-

72.

If

𝑡𝑧0 = (𝐵𝑧0 − 𝑢𝑧) 𝑣𝑧⁄ and 𝑡𝑧1 = (𝐵𝑧1 − 𝑢𝑧) 𝑣𝑧⁄

Then

𝑡𝑧0 > 𝑡𝑚𝑖𝑛 ⇒ 𝑡𝑚𝑖𝑛 = 𝑡𝑧0 or 𝑡𝑧1 < 𝑡𝑚𝑎𝑥 ⇒ 𝑡𝑚𝑎𝑥 = 𝑡𝑧1

(eq. A-76)

However, if at this stage of the process one of the following conditions specified in eq. A-77 is satisfied then

no intersection occurs. Otherwise, if all tests are passed at the end of the process then an intersection has

been found.

 𝑡𝑚𝑖𝑛 > 𝑡𝑧1 or 𝑡𝑚𝑎𝑥 < 𝑡𝑧0 (eq. A-77)

Alternative approach of solving the problem of finding a point, at which ray intersects a box has been

presented by Lengyel (2003). With the assumption that three planes defining a box are oriented away from

ray’s direction at the time of intersection, it is possible to determine which of them needs to be tested by

investigating individual components of ray’s direction vector. If a box is specified with six plane equations (see

eq. A-55), one can perform several checks of a ray defined by the equation 𝑝 = 𝑢 + 𝑡𝑣 in a following way:

x If 𝑣𝑥 = 0 then a ray does not intersect either a plane 𝑥 = 0 or 𝑥 = 𝑟𝑥 because of the fact that ∥ 𝑥 .

x If 𝑣𝑥 > 0 then no intersection test with the plane 𝑥 = 𝑟𝑥 needs to be conducted because it is an inner

side of the box from ray’s point of view.

x Analogically, if 𝑣𝑥 < 0 then no intersection test with the plane 𝑥 = 0 needs to be conducted for the

similar reason.

x The same analysis is conducted on y- and z- elements of 𝑣.

Once the point of intersection of a given plane is found, the next step involves its examination to determine

whether it falls within the boundaries of a given face of the box. In order to do that, one has to find 𝑡 in ray

equation 𝑝 (𝑡) = 𝑢 + 𝑡𝑣 by substituting a box side dimension and rearranging the terms. For instance, to find a

point where ray intersects plane 𝑥 = 𝑟𝑥 one has to find 𝑡 with the equation eq. A-78.

 𝑡 = 𝑟𝑥−𝑢𝑥
𝑣𝑥

 (eq. A-78)

In order to state that a ray intersects a box at this face, the conditions specified in eq. A-79 needs to be

fulfilled.

220

0 ≤ 𝑝(𝑡)𝑦 ≤ 𝑟𝑦

0 ≤ 𝑝(𝑡)𝑧 ≤ 𝑟𝑧

(eq. A-79)

If both conditions in (eq.A-79) are satisfied, then a successful intersection has been found. No further tests

need to be conducted since the closest point of contact has been determined. Otherwise, if any of these

conditions are not satisfied, then no intersection occurred.

Ray intersection with a sphere geometry

To describe a sphere in three-dimensional space, all points defining its structural shape must fulfil the

conditional equation presented in eq.A-80 (Lengyel, 2003).

(𝑝𝑥 − 𝑐𝑥)2 + (𝑝𝑦 − 𝑐𝑦)2 + (𝑝𝑧 − 𝑐𝑧)2 = 𝑟2

Where, 𝑝 is any point being part of the sphere, 𝑐 is the center (pivot) point of the sphere and 𝑟 is

the sphere’s radius.

(eq. A-80)

By using the ray equation in eq. A-59, the components of the sphere can be written as shown in eq. A-81.

𝑝𝑥 = 𝑢𝑥 + 𝑥𝑣𝑥

𝑝𝑦 = 𝑢𝑦 + 𝑥𝑣𝑦

𝑝𝑧 = 𝑢𝑧 + 𝑥𝑣𝑧

 (eq. A-81)

The components from eq. A-81 can be then used in the main sphere as shown in eq. A-82 and described by

Lengyel (2003).

 ((𝑢𝑥 + 𝑥𝑣𝑥) − 𝑐𝑥)2 + ((𝑢𝑦 + 𝑥𝑣𝑦) − 𝑐𝑦)2 + ((𝑢𝑧 + 𝑥𝑣𝑧) − 𝑐𝑧)2 = 𝑟2 (eq. A-82)

By expanding the squared elements and writing them in a standard quadratic equation yield eq. A-83.

(𝑣𝑥
2 + 𝑣𝑦

2 + 𝑣𝑧
2)𝑥2 + 2 (𝑣𝑥(𝑢𝑥 − 𝑐𝑥) + 𝑣𝑦(𝑢𝑦 − 𝑐𝑦) + 𝑣𝑧(𝑢𝑧 − 𝑐𝑧)) 𝑥 + (𝑢𝑥 − 𝑐𝑥)2 + (𝑢𝑦 − 𝑐𝑦)2 +

+ (𝑢𝑧 − 𝑐𝑧)2 − 𝑟2 = 0

(eq. A-83)

The equation eq. A-83 is equal to the general quadratic polynomial form of eq. A-60, whose components are

defined with eq. A-84 (Lengyel, 2003).

𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0

(eq. A-84)

221

Where,

a = 𝑣𝑥
2 + 𝑣𝑦

2 + 𝑣𝑧
2

𝑏 = 2 (𝑣𝑥(𝑢𝑥 − 𝑐𝑥) + 𝑣𝑦(𝑢𝑦 − 𝑐𝑦) + 𝑣𝑧(𝑢𝑧 − 𝑐𝑧))

𝑐 = (𝑢𝑥 − 𝑐𝑥)2 + (𝑢𝑦 − 𝑐𝑦)2 + (𝑢𝑧 − 𝑐𝑧)2 − 𝑟2

which can be written in a shorthand notation;

a = ∥ 𝑣 ∥2

𝑏 = 2𝑣 ∙ (�⃗� − 𝑐)

𝑐 =∥ �⃗� − 𝑐 ∥2− 𝑟2

The values of a, b and c in eq. A-84 determine the value of the discriminant and reveals how many real

solutions the quadratic equation has for 𝑥. Therefore if △ is less than 0 it is immediately known that a ray does

not intersect the sphere’s surface. Whereas, If △ is equal or greater than 0 then a ray intersects at least one of

the points of the sphere surface.

Ray intersection with a cylinder geometry

In order to detect a collision between cylinder and ray, one has to substitute the components of the cylinder

equation (see eq.A-58) with a ray equation (see eq.A-59) as shown in eq.A-85 (Lengyel, 2003).

 (𝑢𝑥 + 𝑥𝑣𝑥)2 + 𝑚2(𝑢𝑦 + 𝑥𝑣𝑦)2 = 𝑟2 (eq. A-85)

By expanding the squared elements of eq. A-85 and writing them in a standard quadratic equation one

receives and equation presented in eq. A-86.

 (𝑣𝑥
2 + 𝑚2𝑣𝑦

2)𝑥2 + 2(𝑢𝑥𝑣𝑥 + 𝑚2𝑢𝑦𝑣𝑦)𝑥 + 𝑢𝑥
2 + 𝑚2𝑢𝑦

2 − 𝑟2 = 0 (eq. A-86)

The value of a discriminant reveals if the intersection occurred. Solving eq. A-86 gives an indication of how

many real solutions the quadratic equation has for 𝑥. As a consequence, one can calculate the exact points of

intersection by incorporating the x value into the ray equation. However, as explained by Lengyel (2003), in

case of cylinders it is important that the points of intersection satisfy 0 ≤ 𝑦 ≤ ℎ condition.

Collision of two spheres

In order to mathematically describe a collision between two spheres in three-dimensional space, an example

presented by Lengyel (2003) is followed. With the assumption that two spheres are moving at a constant

linear velocity over a certain period of time, beginning at time 𝑡 = 0 and finishing at time 𝑡 = 1, it is possible to

222

represent the initial and ending positions of first and second sphere centre points. The definition of velocity

vectors representing the velocity of first and second sphere centre point is presented in eq. A-87.

𝑣 𝑝 = 𝑝 2 − 𝑝 1

𝑣 𝑞 = 𝑞 2 − 𝑞 1

Where,

𝑣 𝑝, 𝑣 𝑞 : velocity of first and second sphere

𝑝 1, 𝑝 2 : initial and ending position of first sphere centre point

𝑞 1, 𝑞 2 : initial and ending position of second sphere centre point

(eq. A-87)

To calculate the position of first and second sphere centre points at time 𝑡, one has to add their respective

velocities calculated with eq. A-87 multiplied by time factor as shown in eq. A-88 (Lengyel, 2003).

𝑝 𝑡 = 𝑝 1 + 𝑡𝑣 𝑝

𝑞 𝑡 = 𝑞 1 + 𝑡𝑣 𝑞

Where,

𝑝 𝑡, 𝑞 𝑡 : position of first and second sphere center point at time 𝑡

𝑝 1, 𝑞 1 : initial position of first and second sphere center point

𝑡 : time factor where 𝑡 ∈ [0,1)

𝑣 𝑝, 𝑣 𝑞 : velocity of first and second sphere (see eq. A-87)

(eq. A-88)

One has to determine whether the distance 𝑑 between the center points of both spheres at time 𝑡 ∈ [0,1) is

ever equal to the sum of their radii as shown in eq. A-89.

𝑑 = 𝑟𝑝 + 𝑟𝑞

Where,

𝑟𝑝, 𝑟𝑞 : radius of the first and second sphere

𝑑 : distance between first sphere center point and second sphere center point

(eq. A-89)

When the condition in eq. A-89 is fulfilled, the spheres are tangent to each other at time 𝑡 and therefore collide

with each other. The squared distance 𝑑 between 𝑝 𝑡 and 𝑞 𝑡 is given by eq. A-90.

223

 𝑑2 = ‖𝑝 𝑡 − 𝑞 𝑡‖2 (eq. A-90)

Substituting the values in eq. A-90 produces the equation shown in eq. A-91.

 𝑑2 = ‖𝑝 1 + 𝑡𝑣 𝑝 − 𝑞 1 − 𝑡𝑣 𝑞‖
2 (eq. A-91)

To utilise eq. A-91 in a convenient manner, it is rewritten in exactly the same way as described by Lengyel

(2003). First, two additional helper values are defined as shown in eq. A-92 and substituted into the equation

eq. A-93.

 𝐴 = 𝑝 1 − 𝑞 1

 𝐵 = 𝑣 𝑝 − 𝑣 𝑞

(eq. A-92)

 𝑑2 = ‖𝐴 + 𝑡𝐵‖2 = 𝐴2 + 2𝑡(𝐴 ∙ 𝐵) + 𝑡2𝐵2 (eq. A-93)

If one uses the quadratic formula to solve for 𝑡 in eq. A-93, the formulas shown in eq. A-94 are produced. The

squared values in the equation (e.g. 𝐴2) represent a dot product between the same vector (i.e. 𝐴 ∙ 𝐴).

𝑡1 =
−(𝐴 ∙ 𝐵) − √(𝐴 ∙ 𝐵)2 − 𝐵2(𝐴2 − 𝑑2)

𝐵2

𝑡2 =
−(𝐴 ∙ 𝐵) + √(𝐴 ∙ 𝐵)2 − 𝐵2(𝐴2 − 𝑑2)

𝐵2

(eq. A-94)

Time 𝑡1 outputs time when two spheres are tangent while still approaching each other. Time 𝑡2 is an instant

when spheres are tangent but moving away from each other. Assuming that two spheres are not already

intersecting with each other in the beginning, one has to only calculate the time when spheres are first tangent

to each other, i.e. when they first collide. This is done by substituting squared distance value with the sum of

the radii of the two spheres as shown in eq. A-95. If the calculated value of 𝑡 is not within range of [0,1), then

no collision occurred during the scrutinised time period.

𝑡 =
−(𝐴 ∙ 𝐵) − √(𝐴 ∙ 𝐵)2 − 𝐵2[𝐴2 − (𝑟𝑝 + 𝑟𝑞)2]

𝐵2

(eq. A-95)

In this appendix section, the fundamental formal theories behind graphical model of visual appearance of the

scene and dynamic movements have been presented in an organised manner. At the very basic level, the

linear algebra and vector calculus provide convenient mathematical constructs to describe spatial state of

objects and dynamics occurring in the scene.

224

Trigonometry is a suitable area of mathematics providing convenient tools for measuring angles between

various objects in three-dimensional space. In combination with vectors calculus, one can conveniently

formulate calculations that involve angles between vectors defined in three-dimensional space, assess

angular offsets between different objects, estimate the average orientation of individuals etc.

Matrices allow enclosing dynamic transformations, such as movements and rotations of objects, in a compact

mathematical structure. Matrices not only provide a method of transforming objects in three-dimensional

space, but also a structure that can be used for the analysis of dynamics observed in visual scene. The

significance of matrices lies in the way they can be utilised to improve transformation calculations efficiency

and speeds. Since they allow encapsulating several transformations in one matrix, the number of operations

can be significantly reduced and therefore decrease computational cost.

Quaternions are often used in three-dimensional graphics programming because of their advantages over

matrices: they occupy less storage space; require fewer arithmetic calculations to perform a transformation;

reduce a chance of phenomenon occurrence called Gimbal Lock; are more easily interpolated between their

values.

Ray tracing is a technique commonly used in 3D graphics programming to detect and recognise geometries

lying in path of a ray. When a point being part of a specific object’s surface also lies on a ray, the collision is

successfully registered.

A.2. Patterns of Individual and Group Dynamic Behaviour

Two types of parameters of the patterns have been highlighted:

x Blue parameters are the parameters calculated during the simulation. These parameters utilise various

techniques embedded in the simulator as described in the previous chapter

x Red parameters are the parameters, which are read from a configuration file prior to the beginning of the

simulation. These parameters are adjustable during the simulation using a separate interface which will be

presented in the next chapter.

225

Patterns of individual dynamic behaviour

Table. A.2-1. “Somebody is walking towards something” behavioural pattern

Input

Primitive Operations

Parameters of the pattern

- Individual: ID, location, view
direction, walking direction

- Static Object: ID, location

- Walking straight

- Calculating distance between
Agent and Static Object

- Calculating average walking
direction

- Agent data: location, walking direction
- Static Object data: location, orientation
(towards agent)
- walking towards distance threshold:
used for determining if Agent is within a
specific radius from Static Object
- sampling size: the number of events
that needs to be collected for pattern
evaluation
- walking towards interval: how
frequently events are being captured for
this pattern
- overall direction proximity
coefficient: used for calculating the
threshold against which the overall
direction proximity value is checked
against. The coefficient is restricted to the
range of [0,1].
- overall direction proximity: the
calculated sum of dot products stored in
events batch
- distance: between Agent location and
Static Object location

Description

‖𝑣 𝑡 − �⃗� 𝑡‖ ≤ 𝑡𝑑

∑(𝑣 𝑖 − �⃗� 𝑖) ∙
𝑛

𝑖=1

𝑣𝑑𝑖𝑟⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 𝑖 ≥ 𝑛 − (𝑛𝐶)

Condition for registering event data for the pattern analysis

The events constituting a pattern of “walking towards” are registered when individual is located within a predefined
distance threshold 𝑡𝑑 from an object. In situations when several objects are located within this threshold, the closest
one is selected.

𝑣 𝑡 : the location of a nearby object in a world space at the time 𝑡 that is involved in the event
�⃗� 𝑡 : the location of agent in a world space at the time 𝑡 when event occurred
𝑡𝑑 : distance threshold where 𝑡𝑑 ∈ ℕ ∶ 𝑡𝑑 ∈ [1, 𝑁]

Criterion for recognising a pattern from accumulated events

𝑣 𝑖 : the location of an object in a world space recorded in entry 𝑖 in events batch
�⃗� 𝑖 : the location of an agent in a world space recorded in entry 𝑖 in events batch
𝑣𝑑𝑖𝑟⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 𝑡 : unit vector defining a walking direction of an agent recorded in entry 𝑖 in events batch
𝑛 : total number of registered events where 𝑛 > 0
𝐶 : threshold coefficient where 𝐶 ∈ ℕ ∶ 0 < 𝐶 ≤ 1

Algorithm structure (in pseudo code)

226

Table. A.2-2. “Somebody is walking away from something” behavioural pattern

if events batch exists
 if distance ≤ walking towards distance threshold
 if events batch size ≥ sampling size
 for each event in events batch
 calculate dot product of direction vector and view direction vector
 add dot product value to overall direction proximity

 if overall direction proximity ≥ (events batch size * 1.0) - overall direction
proximity coefficient * (events batch size * 1.0)
 register a pattern
 clear events batch
 else
 select the closest static object
 if static object ID is equal to static object ID stored in last event in events
batch
 record static object and agent data
 add event to events batch
 else
 clear events batch

Output Message: “Agent ID moves towards Static Object ID”

Sources

Algorithm: Simulation.states / WorldAdvancedLogger.java
Event data bean: Simulation.beans / EventBean.java

Input

Primitive Operations

Parameters of the pattern

- Individual: ID, location, view
direction, walking direction

- Static Object: ID, location

- Walking straight

- Calculating distance between
Agent and Static Object

- Agent data: location, walking direction
- Static Object data: location, orientation
(towards agent)
- walking away distance threshold:
used for determining if Agent is outside a
specific radius of Static Object
- sampling size: the number of events
that needs to be collected for pattern
evaluation
- walking away interval: how frequently
events are being captured for this pattern
- distance: between Agent location and
Static Object location

Description

‖𝑣 𝑡 − �⃗� 𝑡‖ ≤ 𝑡𝑑

Condition for registering event data for the pattern analysis

The events constituting a pattern of “walking away” are registered when individual is located within a predefined
distance threshold 𝑡𝑑 from an object. In situations when several objects are located within this threshold, the closest
one is selected.

227

Table. A.2-3. “Somebody walks alongside something” behavioural pattern

(𝑣 0 − �⃗� 0) ∙ 𝑣𝑑𝑖𝑟⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 0 > 0 𝐚𝐧𝐝 (𝑣 𝑛 − �⃗� 𝑛) ∙ 𝑣𝑑𝑖𝑟⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 𝑛 < 0

𝑣 𝑡 : the location of an object in a world space at the time 𝑡 that is involved in the event
�⃗� 𝑡 : the location of agent in a world space at the time 𝑡 when event occurred
𝑡𝑑 : distance threshold where 𝑡𝑑 ∈ ℕ ∶ 𝑡𝑑 ∈ [1, 𝑁]

Criterion for recognising a pattern from accumulated events

𝑣 0 , 𝑣 𝑛: the location of an object in a world space recorded in first and last entry in events batch
�⃗� 0, �⃗� 𝑛: the location of an agent in a world space recorded in first and last entry in events batch
𝑣𝑑𝑖𝑟⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 0, 𝑣𝑑𝑖𝑟⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 𝑛: the walking direction of an agent recorded in first and last entry in events batch

Algorithm structure (in pseudo code)

if events batch exists
 if distance ≤ walking away distance threshold
 if events batch size ≥ sampling size
 if (dot product of first entry direction vector and first entry view direction
vector > 0) and (dot product of last entry direction vector and last entry view direction
vector < 0)
 register a pattern
 clear events batch
 else
 select the closest static object
 if static object ID is equal to static object ID stored in last event in events
batch
 record static object and agent data
 add event to events batch
 else
 clear events batch

Output Message: “Agent ID moves away from Static Object ID”

Sources

Algorithm: Simulation.states / WorldAdvancedLogger.java
Event data bean: Simulation.beans / EventBean.java

Input

Primitive Operations

Parameters of the pattern

- Individual: ID, location, view
direction, walking direction

- Static Object: ID, location,
dimensions, shape

- Walking straight

- Determining if a Static Object is
by Agent’s left / right side

- Agent data: ID, location, walking
direction
- Static Object data: ID, location, surface
dimensions and shape
- walking alongside ray’s length limit:
used for delimiting ray’s length and
consequently defining a maximum
distance at which collision may be
detected
- sampling size: the number of events
that needs to be collected for pattern
evaluation
- walking alongside interval: how
frequently events are being captured for
this pattern

228

Description

𝑟(𝑥) = �⃗� 𝑝 + 𝑥(𝑅𝑠𝑖𝑑𝑒𝑣 𝑑𝑖𝑟)

𝑝1 ∙ �⃗� 1 + (−𝑝0 ∙ �⃗� 1) > 0

𝐸0 ∩ 𝐸𝑛 ≠ ∅ 𝐚𝐧𝐝 |𝐸0|= |𝐸𝑛| 𝐚𝐧𝐝 𝐸0 = 𝐸𝑛

𝐸0 = 𝐸𝑛 ↔ ∀𝑒[𝑒 ∈ 𝐸0 ↔ 𝑒 ∈ 𝐸𝑛]

Details of ray emission

𝑟(𝑥) : point laying on the ray surface located at 𝑥 distance from its emission point
�⃗� 𝑝 : the location of a central node of an agent defined in global coordinates
𝑅𝑠𝑖𝑑𝑒: a rotation matrix declared in section 4.4.2.1., i.e. rotation about Y-axis 90°
𝑣 𝑑𝑖𝑟 : a normalized walking direction of an agent

Condition for registering event data for the pattern analysis

The events constituting a pattern of “walking alongside” are registered when a ray of a specified length intersects an
object located to the left or right of the Agent.

𝑝1 : point of intersection with an object geometry’s triangle
�⃗� 1: a normalized normal vector of additional triangle constructed during the operation
𝑝0 : point from which the ray has been emitted, e.g. agent’s location

Criterion for recognising a pattern from accumulated events

𝐸0 , 𝐸𝑛: the set of qualitative and comparable data recorded in first and last entry in events batch: side of an agent
which is probed by ray and static object ID
|𝐸0|, |𝐸𝑛|: the cardinality of event data set recorded in first and last entry in events batch

Algorithm structure (in pseudo code)

if events batch exists
 cast ray towards agent side
 if ray intersects object within walking alongside ray’s length limit
 if events batch size ≥ sampling size
 for each event in events batch
 if side in event is the same as in previous event
 continue
 else
 clear events batch
 break

 if side is the same in all events in events batch
 if static object ID is the same in first and last event entry in events
batch
 register a pattern
 clear events batch
 else
 select the closest intersected static object
 if static object ID is equal to static object ID stored in last event in
events batch
 record static object and agent data
 add event to events batch
 else
 clear events batch

Output Message: “Agent ID moves alongside Static Object ID”

229

Table. A.2-4. “Somebody climbs something” behavioural pattern

Sources

Algorithm: Simulation.states / WorldAdvancedLogger.java
Event data bean: Simulation.beans / RayEventBean.java

Input

Primitive Operations

Parameters of the pattern

- Individual: ID, location, view
direction, walking direction

- Static Object: ID, location,
dimensions, shape

- Walking straight

- Determining if Agent is above or
below Static Object

- Agent data: ID, location, walking
direction
- Static Object data: ID, location, surface
dimensions and shape
- climbing ray’s length limit: used for
delimiting ray’s length and consequently
defining a maximum distance at which
collision may be detected
- sampling size: the number of events
that needs to be collected for pattern
evaluation
- climbing interval: how frequently
events are being captured for this pattern

Description

𝑟(𝑥) = �⃗� 𝑝 + 𝑥𝑣

𝑝1 ∙ �⃗� 1 + (−𝑝0 ∙ �⃗� 1) > 0

𝐸0 ∩ 𝐸𝑛 ≠ ∅ 𝐚𝐧𝐝 |𝐸0|= |𝐸𝑛| 𝐚𝐧𝐝 𝐸0 = 𝐸𝑛 𝐚𝐧𝐝 �⃗� 0𝑦 < �⃗� 𝑛𝑦

𝐸0 ∩ 𝐸𝑛 ≠ ∅ 𝐚𝐧𝐝 |𝐸0|= |𝐸𝑛| 𝐚𝐧𝐝 𝐸0 = 𝐸𝑛 𝐚𝐧𝐝 �⃗� 0𝑦 > �⃗� 𝑛𝑦

Details of ray emission

𝑟(𝑥) : point laying on the ray surface located at 𝑥 distance from its emission point
�⃗� 𝑝 : the location of a central node of an agent defined in global coordinates
𝑣 : a direction vector [0,1,0] for “up” and [0,-1,0] for “down”

Condition for registering event data for the pattern analysis

The events constituting a pattern of “climbing something” are registered when a ray of a specified length intersects
an object located above or below an Agent.

𝑝1 : point of intersection with an object geometry’s triangle
�⃗� 1: a normalized normal vector of additional triangle constructed during the operation
𝑝0 : point from which the ray has been emitted, e.g. agent’s location

Criterion for recognising a pattern from accumulated events

Determination of whether an Agent climbs something up or down is dependent on the values of 𝑦-component of an
Agent’s location vector recorded in first and last entry in events batch.

Climbing up:

Climbing down:

𝐸0 , 𝐸𝑛: the set of qualitative and comparable data recorded in first and last entry in events batch: side of an agent
which is probed by ray and static object ID
|𝐸0|, |𝐸𝑛|: the cardinality of event data set recorded in first and last entry in events batch

230

𝐸0 = 𝐸𝑛 ↔ ∀𝑒[𝑒 ∈ 𝐸0 ↔ 𝑒 ∈ 𝐸𝑛]
�⃗� 0, �⃗� 𝑛: the location of an agent in a world space recorded in first and last entry in events batch

Algorithm structure (in pseudo code)

if events batch exists
 cast ray towards agent side
 if ray intersects object within climbing ray’s length limit
 if events batch size ≥ sampling size
 for each event in events batch
 if side in event is the same as in previous event
 continue
 else
 clear events batch
 break

 if side is the same in all events in events batch
 if Y-component of agent location in first event entry < Y-component of
agent location in last event entry
 register climbing up pattern
 else if Y-component of agent location in first event entry > Y-component
of agent location in last event entry
 register climbing down pattern
 clear events batch
 else
 select the closest intersected static object
 if static object ID is equal to static object ID stored in last event in
events batch
 record static object and agent data
 add event to events batch
 else
 clear events batch

Output Message: “Agent ID climbs up/down Static Object ID”

Sources

Algorithm: Simulation.states / WorldAdvancedLogger.java
Event data bean: Simulation.beans / RayEventBean.java

231

Table. A.2-5. “Somebody punches something / somebody” behavioural pattern

Input

Primitive Operations

Parameters of the pattern

- Individual: ID, location, limbs
IDs (hands, lower arms, chest),
limbs locations (hands, lower
arms, chest)

- Static Object: ID, location,
dimensions, shape

- Determining whether Agent
stretches out an arm

- Determining whether Agent
punches Static Object / other
Agent with a hand

- Agent data: ID, location, walking
direction, limbs IDs, limbs locations
- Static Object data: ID, location, surface
dimensions and shape
- minimum distance between hand
and lower arm threshold: minimum
distance between hand and low arm that
needs to be reached
- minimum distance between hand
and chest threshold: minimum
distance between hand and chest that
needs to be reached
- minimum distance between lower
arm and chest threshold: minimum
distance between low arm and chest that
needs to be reached
- punching interval: how frequently
distances between limbs are being
measured and collision detection tests
carried out for this pattern
- distance between hand and low arm:
distance between hand and low arm
limbs locations
- distance between hand and chest:
distance between hand and chest limbs
locations
- distance between low arm and chest:
distance between low arm and chest
limbs locations

Description

232

𝑡 ≥ 0 𝐚𝐧𝐝 𝑡 < 1

𝑡 =
−(𝐴 ∙ 𝐵) − √(𝐴 ∙ 𝐵)2 − 𝐵2[𝐴2 − (𝑟𝑃 + 𝑟𝑄)2]

𝐵2

|𝐺1 ∩ 𝐺2| > 0 𝐚𝐧𝐝 ‖�⃗� 𝑐ℎ − �⃗� ℎ‖ ≥ 𝑡𝑑𝑐ℎℎ 𝐚𝐧𝐝 ‖�⃗� 𝑒 − �⃗� ℎ‖ ≥ 𝑡𝑑𝑒ℎ 𝐚𝐧𝐝 ‖�⃗� 𝑐ℎ − �⃗� 𝑒‖ ≥ 𝑡𝑑𝑐ℎ𝑒

Condition for triggering event for the pattern analysis

A single event constituting a pattern of “punching something or somebody” is registered when a ghost sphere
geometry surrounding a hand collides with a ghost sphere geometry surrounding Static Object or other Agent.

where

𝐴 : 𝑃1 − 𝑄1 where 𝑃1 and 𝑄1 are initial centre position points of two ghost spheres
𝐵 : difference of two velocity vectors calculated by (𝑃2 − 𝑃1) − (𝑄2 − 𝑄1) where 𝑃1 and 𝑄1 are initial centre position
points and 𝑃2 and 𝑄2 are final centre position points of two ghost spheres
𝑟𝑃 , 𝑟𝑄: radii of the two spheres

Criterion for recognising a pattern

To capture a pattern when an Agent punches a Static Object or other Agent, the ghost sphere surrounding Agent's
hand bone needs to collide with ghost sphere surrounding Static Object or other Agent. Furthermore, three
distances between limbs need to be reached specified minimum thresholds.

|𝐺1 ∩ 𝐺2|: cardinality of a set resulting from intersection of two sets of points constituting ghost spheres surfaces
surrounding Agent hand limb and other Agent or Static Object
�⃗� 𝑐ℎ : location of Agent’s chest limb
�⃗� ℎ : location of Agent’s hand limb
�⃗� 𝑒: location of Agent’s elbow / lower arm limb
𝑡𝑑𝑐ℎℎ: minimum distance between hand and chest threshold
𝑡𝑑𝑒ℎ: minimum distance between elbow / lower arm and hand threshold
𝑡𝑑𝑐ℎ𝑒: minimum distance between elbow / lower arm and chest threshold

Algorithm structure (in pseudo code)

if hand ghost sphere collides with other object ghost sphere
 if distance between hand and lower arm ≥ minimum distance between hand and lower arm
threshold
 if distance between hand and chest ≥ minimum distance between hand and chest threshold
 if distance between lower arm and chest ≥ minimum distance between lower arm and
chest threshold
 register pattern

Output Message: “Agent ID punches Agent ID / Static Object ID”

Sources

Algorithm: Simulation.states / WorldAdvancedLogger.java

233

Table. A.2-6. “Somebody kicks something / somebody” behavioural pattern

Input

Primitive Operations

Parameters of the pattern

- Individual: ID, location, limbs
IDs (feet, lower leg, chest), limbs
locations (feet, lower leg, chest)

- Static Object: ID, location,
dimensions, shape

- Determining whether Agent
stretches out a leg

- Determining whether Agent kicks
Static Object / other Agent with a
foot

- Agent data: ID, location, walking
direction, limbs IDs, limbs locations
- Static Object data: ID, location, surface
dimensions and shape
- minimum distance between foot and
lower leg threshold: minimum distance
between foot and lower leg that needs to
be reached
- minimum distance between foot and
chest threshold: minimum distance
between foot and chest that needs to be
reached
- minimum distance between lower
leg and chest threshold: minimum
distance between lower leg and chest
that needs to be reached
- kicking interval: how frequently
distances between limbs are being
measured and collision detection tests
carried out for this pattern
- distance between foot and lower leg:
distance between foot and lower leg
limbs locations
- distance between foot and chest:
distance between foot and chest limbs
locations
- distance between lower leg and
chest: distance between lower leg and
chest limbs locations

Description

234

𝑡 ≥ 0 𝐚𝐧𝐝 𝑡 < 1

𝑡 =
−(𝐴 ∙ 𝐵) − √(𝐴 ∙ 𝐵)2 − 𝐵2[𝐴2 − (𝑟𝑃 + 𝑟𝑄)2]

𝐵2

|𝐺1 ∩ 𝐺2| > 0 𝐚𝐧𝐝 ‖�⃗� 𝑐ℎ − �⃗� 𝑓‖ ≥ 𝑡𝑑𝑐ℎ𝑓 𝐚𝐧𝐝 ‖�⃗� 𝑙 − �⃗� 𝑓‖ ≥ 𝑡𝑑𝑙𝑓 𝐚𝐧𝐝 ‖�⃗� 𝑐ℎ − �⃗� 𝑙‖ ≥ 𝑡𝑑𝑐ℎ𝑙

Condition for triggering event for the pattern analysis

A single event constituting a pattern of “punching something or somebody” is registered when a ghost sphere
geometry surrounding a hand collides with a ghost sphere geometry surrounding Static Object or other Agent.

where

𝐴 : 𝑃1 − 𝑄1 where 𝑃1 and 𝑄1 are initial centre position points of two ghost spheres
𝐵 : difference of two velocity vectors calculated by (𝑃2 − 𝑃1) − (𝑄2 − 𝑄1) where 𝑃1 and 𝑄1 are initial centre position
points and 𝑃2 and 𝑄2 are final centre position points of two ghost spheres
𝑟𝑃 , 𝑟𝑄: radii of the two spheres

Criterion for recognising a pattern

To capture a pattern when an Agent kicks a Static Object or other Agent, the ghost sphere surrounding Agent's foot
bone needs to collide with ghost sphere surrounding Static Object or other Agent. Furthermore, three distances
between limbs need to be reached specified minimum thresholds.

|𝐺1 ∩ 𝐺2|: cardinality of a set resulting from intersection of two sets of points constituting ghost spheres surfaces
surrounding Agent foot limb and other Agent or Static Object
�⃗� 𝑐ℎ : location of Agent’s chest limb
�⃗� 𝑓 : location of Agent’s foot limb
�⃗� 𝑙: location of Agent’s lower leg
𝑡𝑑𝑐ℎ𝑓: minimum distance between foot and chest threshold
𝑡𝑑𝑙𝑓: minimum distance between lower leg and foot threshold
𝑡𝑑𝑐ℎ𝑙: minimum distance between lower leg and chest threshold

Algorithm structure (in pseudo code)

if foot ghost sphere collides with other object ghost sphere
 if distance between foot and lower leg ≥ minimum distance between foot and lower leg
threshold
 if distance between foot and chest ≥ minimum distance between foot and chest threshold
 if distance between lower leg and chest ≥ minimum distance between lower leg and
chest threshold
 register pattern

Output Message: “Agent ID kicks Agent ID / Static Object ID”

Sources

Algorithm: Simulation.states / WorldAdvancedLogger.java

235

Table. A.2-7. “Somebody picks up / reaches out for / carry something” behavioural pattern

Input

Primitive Operations

Parameters of the pattern

- Individual: ID, location, limbs
IDs (hands, lower arms, chest),
limbs locations (hands, lower
arms, chest)

- Dynamic Object: ID, location,
dimensions, shape

- Determining whether Agent
stretches out an arm

- Determining whether Agent
already carry Dynamic Object in
hand

- Determining whether Agent picks
up Dynamic Object from the floor
or higher levels, potentially a
Static Object such as shelf

- Agent data: ID, location, walking
direction, limbs IDs, limbs locations
- Dynamic Object data: ID, location,
surface dimensions and shape
- minimum distance between hand
and lower arm threshold: minimum
distance between hand and low arm that
needs to be reached
- minimum distance between hand
and chest threshold: minimum
distance between hand and chest that
needs to be reached
- minimum distance between lower
arm and chest threshold: minimum
distance between low arm and chest that
needs to be reached
- pick up interval: how frequently
distances between limbs are being
measured and collision detection tests
carried out for this pattern
- distance between hand and lower
arm: distance between hand and lower
arm limbs locations
- distance between hand and chest:
distance between hand and chest limbs
locations
- distance between lower arm and
chest: distance between lower arm and
chest limbs locations

Description

236

𝑡 ≥ 0 𝐚𝐧𝐝 𝑡 < 1

𝑡 =
−(𝐴 ∙ 𝐵) − √(𝐴 ∙ 𝐵)2 − 𝐵2[𝐴2 − (𝑟𝑃 + 𝑟𝑄)2]

𝐵2

𝑒 ∉ 𝑂 𝐚𝐧𝐝 |𝐺1 ∩ 𝐺2| > 0 𝐚𝐧𝐝 ‖�⃗� 𝑐ℎ − �⃗� ℎ‖ ≥ 𝑡𝑑𝑐ℎℎ 𝐚𝐧𝐝
‖�⃗� 𝑒 − �⃗� ℎ‖ ≥ 𝑡𝑑𝑒ℎ 𝐚𝐧𝐝 ‖�⃗� 𝑐ℎ − �⃗� 𝑒‖ ≥ 𝑡𝑑𝑐ℎ𝑒

Condition for triggering event for the pattern analysis

A single event that triggers the pattern evaluation of “picking something up” is registered when a ghost sphere
geometry surrounding a hand collides with a ghost sphere geometry surrounding Dynamic Object.

where

𝐴 : 𝑃1 − 𝑄1 where 𝑃1 and 𝑄1 are initial centre position points of two ghost spheres
𝐵 : difference of two velocity vectors calculated by (𝑃2 − 𝑃1) − (𝑄2 − 𝑄1) where 𝑃1 and 𝑄1 are initial centre position
points and 𝑃2 and 𝑄2 are final centre position points of two ghost spheres
𝑟𝑃 , 𝑟𝑄: radii of the two spheres

Criterion for recognising a pattern

To capture a pattern when an Agent picks up a Dynamic Object, the ghost sphere surrounding Agent's hand bone
needs to collide with ghost sphere surrounding Dynamic Object. The Dynamic Object ID cannot be registered as
currently carried by an Agent, but if it is, it means that an Agent already carry it. Furthermore, if three distances
between limbs reach specified minimum thresholds, one can conclude that Agent stretches out an arm to reach a
Dynamic Object from higher levels, such as Static Object (shelf, counter etc.).

Reach out for:

Pick something up: 𝑒 ∉ 𝑂 𝐚𝐧𝐝 |𝐺1 ∩ 𝐺2|

Carry something up: 𝑒 ∈ 𝑂 𝐚𝐧𝐝 |𝐺1 ∩ 𝐺2|

𝑒 : Dynamic Object currently being picked up by an Agent, i.e. Dynamic Object ghost sphere with whom an Agent
hand ghost sphere collided with
𝑂 : a set of Dynamic Objects currently in possession of an Agent
|𝐺1 ∩ 𝐺2|: cardinality of a set resulting from intersection of two sets of points constituting ghost spheres surfaces
surrounding Agent hand limb and Dynamic Object
�⃗� 𝑐ℎ : location of Agent’s chest limb
�⃗� ℎ : location of Agent’s hand limb
�⃗� 𝑒: location of Agent’s elbow / lower arm limb
𝑡𝑑𝑐ℎℎ: minimum distance between hand and chest threshold
𝑡𝑑𝑒ℎ: minimum distance between elbow / lower arm and hand threshold
𝑡𝑑𝑐ℎ𝑒: minimum distance between elbow / lower arm and chest threshold

Algorithm structure (in pseudo code)

if hand ghost sphere collides with static object ghost sphere
 if dynamic object ID is not in set of objects already carried by Agent
 if distance between hand and lower arm ≥ minimum distance between hand and lower arm
threshold
 if distance between hand and chest ≥ minimum distance between hand and chest
threshold
 if distance between lower arm and chest ≥ minimum distance between lower arm and
chest threshold
 register reaches out for something pattern
 else
 register picks something up pattern

237

Table. A.2-8. “Somebody holds something over / places something on top of something” behavioural pattern

 add dynamic object ID to set of objects already carried by Agent
 else
 register dynamic object ID is carried by Agent pattern

Output Message: “Agent ID picks up / reaches out for / carry Dynamic Object ID”
Note: the message when “Agent carries a Dynamic Object ID” is suppressed in current implementation for the
purpose of reducing the noise in log file.

Sources

Algorithm: Simulation.states / WorldAdvancedLogger.java

Input

Primitive Operations

Parameters of the pattern

- Individual: ID, location, view
direction, walking direction

- Dynamic Object: ID, location,
dimensions, shape

- Static Object: ID, location,
dimensions, shape

- Determining whether Agent
already carry Dynamic Object in
hand

- Determining whether Agent
holds Dynamic Object over a
Static Object

- Determining whether Agent puts
a Dynamic Object on top of Static
Object

- Agent data: ID, location
- Dynamic Object data: ID, location,
surface dimensions and shape
- Static Object data: ID, location, surface
dimensions and shape
- placing interval: how frequently
collision detection tests are carried out for
this pattern
- carrying time sampling size: the
minimum number of timestamps that
needs to be recorded for “put something
on top of something” pattern evaluation
- carrying interval: how frequently
timestamps are being recorded for “put
something on top of something” pattern
evaluation
- timestamp time value threshold:
maximum time interval that timestamp
needs to be recorded from current time
for “put something on top of something”
pattern evaluation
- time passed from previous
recording: time interval passed from
previous recording of time stamp

Description

238

𝑟(𝑥) = �⃗� 𝑝 + 𝑥𝑣

𝑝1 ∙ �⃗� 1 + (−𝑝0 ∙ �⃗� 1) > 0

𝑡 ≥ 0 𝐚𝐧𝐝 𝑡 < 1

𝑡 =
−(𝐴 ∙ 𝐵) − √(𝐴 ∙ 𝐵)2 − 𝐵2[𝐴2 − (𝑟𝑃 + 𝑟𝑄)2]

𝐵2

𝑒 ∈ 𝑂 𝐚𝐧𝐝 𝑥 ∉ ∅

𝑒𝑡 ∈ 𝑇 𝐚𝐧𝐝 Δ𝑡 ≤ 𝑡𝑑 𝐚𝐧𝐝 |𝐺1 ∩ 𝐺2| > 0

Details of ray emission

𝑟(𝑥) : point laying on the ray surface located at 𝑥 distance from its emission point
�⃗� 𝑝 : the location of a Dynamic Object currently carried by Agent defined in global coordinates
𝑣 : a direction vector pointing down [0,-1,0]

Condition for triggering event for the pattern analysis

A single event that triggers the pattern evaluation of “holding something over something” is registered when a ray
casted downwards from a Dynamic Object currently carried by an Agent intersects a Static Object. A single event
that triggers the pattern evaluation of “put something on top of something” is registered when a ghost sphere
surrounding Dynamic Object that was carried by an Agent collides with a ghost sphere surrounding a Static Object.

Ray casting collision detection:

𝑝1 : point of intersection with an object geometry’s triangle
�⃗� 1: a normalized normal vector of additional triangle constructed during the operation
𝑝0 : point from which the ray has been emitted, i.e. Dynamic Object carried by Agent
Ghost spheres collision detection:

where

𝐴 : 𝑃1 − 𝑄1 where 𝑃1 and 𝑄1 are initial centre position points of two ghost spheres
𝐵 : difference of two velocity vectors calculated by (𝑃2 − 𝑃1) − (𝑄2 − 𝑄1) where 𝑃1 and 𝑄1 are initial centre position
points and 𝑃2 and 𝑄2 are final centre position points of two ghost spheres
𝑟𝑃 , 𝑟𝑄: radii of the two spheres

Criterion for recognising a pattern

To capture a pattern when “Agent holds a Dynamic Object over a Static Object”, it needs to be in possession of an
Agent and the ray casted downwards from that Dynamic Object needs to intersect a Static Object. To capture a
pattern when “Agent puts a Dynamic Object on top of a Static Object”, the following conditions need to be met:

x the Dynamic Object had to be in possession of an Agent. We do this by recording and evaluating
timestamps when Agent carries a Dynamic Object and when Dynamic Object ghost sphere collides with
Static Object ghost sphere.

x ghost sphere surrounding a Dynamic Object needs to collide with a Static Object

Holding over:

Put on:

𝑒 ∈ 𝑂 : Dynamic Object currently in possession of an Agent
𝑥 : the collision point detected by a ray casted downwards from Dynamic Object
𝑥 ∉ ∅ : the collision points detected by a ray casted downwards from Dynamic Object
𝑒𝑡 : Dynamic Object data that was in possession of an Agent recorded at time 𝑡 as a timestamp
𝑒𝑡 ∈ 𝑇 : a set of all timestamps 𝑇 to which 𝑒𝑡 belongs to
|𝐺1 ∩ 𝐺2| : cardinality of a set resulting from intersection of two sets of points constituting ghost spheres surfaces
surrounding Dynamic Object and Static Object
Δ𝑡 : a difference between current time value and time value recorded in timestamp 𝑒𝑡.
𝑡𝑑 : maximum time threshold value

239

Algorithm structure (in pseudo code)

if dynamic object ID is in set of objects already carried by Agent
 cast ray downwards from carried dynamic object
 if ray intersects static object
 register hold something over something pattern

 if dynamic object ghost sphere collides with static object ghost sphere
 if timestamps batch size ≥ carrying time sampling size
 for each timestamp in timestamps batch
 if (current time value - timestamp time value) ≤ timestamp time value
threshold
 register put something on something pattern

 if time passed from previous recording < carrying interval
 if timestamps batch size ≥ carrying time sampling size
 clear timestamps batch

 record dynamic object and timestamp data
 add timestamp to set of timestamps

Output Message: “Agent ID holds Dynamic Object ID over / puts Dynamic Object ID on Static Object ID”

Sources

Algorithm: Simulation.states / WorldAdvancedLogger.java
Timestamp data bean: Simulation.beans / CarriedObjectBean.java

240

Table. A.2-9. “Somebody passes over something to somebody” behavioural pattern

Input

Primitive Operations

Parameters of the pattern

- Individual: ID, location, limbs
IDs (hands), limbs locations
(hands)

- Dynamic Object: ID, location,
dimensions, shape

- Determining whether Agent
already carry Dynamic Object in
hand

- Agent data: ID, location, walking
direction, limbs IDs, limbs locations
- Dynamic Object data: ID, location,
surface dimensions and shape
- pass over interval: how frequently
collision detection tests are carried out for
this pattern
- minimum distance between hands
threshold: minimum distance between
two Agent’s hands limbs
- maximum distance between hands
threshold: maximum distance between
two Agent’s hands limbs
- minimum distance between Agent
hand and Dynamic Object threshold:
minimum distance between Agent hand
limb and Dynamic Object
- distance between hands: distance
between hand limb of first Agent and
hand limb of second Agent
- distance between first Agent hand
limb and Dynamic Object: distance
between hand limb of first Agent and
Dynamic Object
- distance between second Agent
hand limb and Dynamic Object:
distance between hand limb of second
Agent and Dynamic Object

Description

241

𝑡 ≥ 0 𝐚𝐧𝐝 𝑡 < 1

𝑡 =
−(𝐴 ∙ 𝐵) − √(𝐴 ∙ 𝐵)2 − 𝐵2[𝐴2 − (𝑟𝑃 + 𝑟𝑄)2]

𝐵2

𝑒 ∈ 𝑂1 𝐚𝐧𝐝 𝑒 ∉ 𝑂2𝐚𝐧𝐝 |𝐺1 ∩ 𝐺2| > 0 𝐚𝐧𝐝

‖�⃗� ℎ1 − 𝑣 ‖ ≥ 𝑡𝑑𝑚𝑖𝑛 𝐚𝐧𝐝 ‖�⃗� ℎ2 − 𝑣 ‖ ≥ 𝑡𝑑𝑚𝑖𝑛

Condition for triggering event for the pattern analysis

A single event that triggers the pattern evaluation of “passing something over to another Agent” is registered when
ghost sphere surrounding a Dynamic Object currently carried by an Agent collides with a ghost sphere surrounding
a hand limb of another Agent.

where

𝐴 : 𝑃1 − 𝑄1 where 𝑃1 and 𝑄1 are initial centre position points of two ghost spheres
𝐵 : difference of two velocity vectors calculated by (𝑃2 − 𝑃1) − (𝑄2 − 𝑄1) where 𝑃1 and 𝑄1 are initial centre position
points and 𝑃2 and 𝑄2 are final centre position points of two ghost spheres
𝑟𝑃 , 𝑟𝑄: radii of the two spheres

Criterion for recognising a pattern

To capture a pattern when “Agent passes Dynamic Object over to another Agent”, the following conditions need to
be met:

- the Dynamic Object needs to be in possession of an Agent.
- ghost sphere surrounding carried Dynamic Object needs to collide with ghost sphere surrounding another

Agent’s hand limb
- the distances between hand limbs need to fall within certain thresholds
- the distances between hand limbs and Dynamic Object need to fall within certain thresholds

‖�⃗� ℎ1 − �⃗� ℎ2‖ ≥ ℎ𝑡𝑑𝑚𝑖𝑛 𝐚𝐧𝐝 ‖�⃗� ℎ1 − �⃗� ℎ2‖ ≤ ℎ𝑡𝑑𝑚𝑎𝑥 𝐚𝐧𝐝

𝑒 ∈ 𝑂1 : Dynamic Object currently in possession of first Agent
𝑒 ∉ 𝑂2 : Dynamic Object cannot currently be in a possession of second Agent
|𝐺1 ∩ 𝐺2| : cardinality of a set resulting from intersection of two sets of points constituting ghost spheres surfaces
surrounding Dynamic Object and hand limb of second Agent
�⃗� ℎ1, �⃗� ℎ2 : location of a hand limb of first and second Agent
𝑣 : location of a Dynamic Object
ℎ𝑡𝑑𝑚𝑖𝑛, ℎ𝑡𝑑𝑚𝑎𝑥 : minimum and maximum distance thresholds between hands
𝑡𝑑𝑚𝑖𝑛: minimum distance threshold between hands and Dynamic Object

Algorithm structure (in pseudo code)

if dynamic object ID is in set of objects already carried by first Agent
 if dynamic object ghost sphere collides with second Agent hand limb ghost sphere
 if dynamic object ID is not in set of objects already carried by second Agent
 if distance between hands ≥ minimum distance between hands threshold
 if distance between hands ≤ maximum distance between hands threshold
 if distance between first Agent hand and dynamic object location ≥
minimum distance between Agent hand and Dynamic Object threshold
 if distance between second Agent hand and dynamic object location ≥
minimum distance between Agent hand and Dynamic Object threshold
 register pattern
 remove dynamic object ID from set of objects already carried by
first Agent
 add dynamic object ID to set of objects already carried by second
Agent

242

Table. A.2-10. “Somebody drops down something” behavioural pattern

Output Message: “Agent ID passes Dynamic Object ID over to Agent ID”

Sources

Algorithm: Simulation.states / WorldAdvancedLogger.java

Input

Primitive Operations

Parameters of the pattern

- Individual: ID, location, limbs
IDs (hands), limbs locations
(hands)

- Dynamic Object: ID, location,
dimensions, shape

- Determining whether Agent
already carry Dynamic Object in
hand

- Determining how far is the
carried Dynamic Object from
Agent hand limb

- Agent data: ID, location, walking
direction, limbs IDs, limbs locations
- Dynamic Object data: ID, location,
surface dimensions and shape
- minimum distance between hand and
Dynamic Object threshold: minimum
distance between Agent’s hand and
carried Dynamic Object at which pattern
can be captured
- distance between Agent hand limb
and Dynamic Object: distance between
hand limb of Agent and Dynamic Object

Description

𝑒 ∈ 𝑂 𝐚𝐧𝐝 ‖�⃗� ℎ − 𝑣 ‖ ≥ ℎ𝑡𝑑𝑚𝑖𝑛

Criterion for recognising a pattern

To capture a pattern when “Agent drops down a Dynamic Object”, the following conditions need to be met:

- the Dynamic Object needs to be in possession of an Agent.
- Dynamic Object needs to be within certain distance from Agent’s hand limb

𝑒 ∈ 𝑂 : Dynamic Object currently in possession of Agent
�⃗� ℎ : location of Agent hand limb
𝑣 : location of carried Dynamic Object
ℎ𝑡𝑑𝑚𝑖𝑛 : minimum distance threshold between hand and Dynamic Object

Algorithm structure (in pseudo code)

if dynamic object ID is in set of objects already carried by Agent
 if distance between hand and dynamic object ≥ minimum distance between Agent hand and
Dynamic Object threshold
 register pattern
 remove dynamic object ID from set of objects already carried by Agent

Output Message: “Agent ID drops down Dynamic Object ID”

Sources

243

Table. A.2-11. “Somebody looks up / down / right / left” behavioural pattern

Algorithm: Simulation.states / WorldAdvancedLogger.java

Input

Primitive Operations

Parameters of the pattern

- Individual: ID, location, view
direction, walking direction

- Agent looks up / down / left
/right

- Agent data: ID, view direction
- minimum angle between viewing
direction and Y-axis for looking up
threshold: minimum angle between viewing
direction and Y-axis for registering “looks up”
pattern
- maximum angle between viewing
direction and Y-axis for looking up
threshold: maximum angle between viewing
direction and Y-axis for registering “looks up”
pattern
- minimum angle between viewing
direction and Y-axis for looking down
threshold: minimum angle between viewing
direction and Y-axis for registering “looks
down” pattern
- maximum angle between viewing
direction and Y-axis for looking down
threshold: maximum angle between viewing
direction and Y-axis for registering “looks
down” pattern
- minimum angle between viewing
direction and X-axis for looking left
threshold: minimum angle between viewing
direction and X-axis for registering “looks
left” pattern
- maximum angle between viewing
direction and X-axis for looking left
threshold: maximum angle between viewing
direction and X-axis for registering “looks
left” pattern
- minimum angle between viewing
direction and X-axis for looking right
threshold: minimum angle between viewing
direction and X-axis for registering “looks
right” pattern
- maximum angle between viewing
direction and X-axis for looking right
threshold: maximum angle between viewing
direction and X-axis for registering “looks
right” pattern

Description

∡(𝑣 , �⃗�) ≥ 𝑡𝑑𝑚𝑖𝑛 𝐚𝐧𝐝 ∡(𝑣 , �⃗�) ≤ 𝑡𝑑𝑚𝑎𝑥

Criterion for recognising a pattern

To capture a pattern when “Agent looks up / down / left / right”, the angle between viewing direction vector and Y-
axis (up / down) or X-axis (left / right) need to fall within certain thresholds, e.g.:

Look up:

�⃗� : unit vector defining a standard basis of Y-axis of a local Cartesian coordinates space of an agent [0,1,0]
𝑣 : unit vector defining a viewing direction of an Agent

244

Patterns of group dynamic behaviour

Table. A.2-12. “Somebody and somebody form a Pair” behavioural pattern

∡(𝑣 , �⃗�) ≥ 𝑡𝑑𝑚𝑖𝑛 𝐚𝐧𝐝 ∡(𝑣 , �⃗�) ≤ 𝑡𝑑𝑚𝑎𝑥

∡(𝑣 , �⃗�): angle between two unit vectors
𝑡𝑑𝑚𝑖𝑛, 𝑡𝑑𝑚𝑎𝑥 : minimum and maximum distance thresholds between viewing direction and Y-axis for capturing
“looking up” pattern

Look left:

�⃗� : unit vector defining a standard basis of X-axis of a local Cartesian coordinates space of an agent [1,0,0]
𝑣 : unit vector defining a viewing direction of an Agent
∡(𝑣 , �⃗�): angle between two unit vectors
𝑡𝑑𝑚𝑖𝑛, 𝑡𝑑𝑚𝑎𝑥 : minimum and maximum distance thresholds between viewing direction and X-axis for capturing
“looking left” pattern

Algorithm structure (in pseudo code)

if angle between viewing direction and standard basis axis unit vector ≥ minimum angle
between viewing direction and standard basis axis unit vector for pattern threshold
 if angle between viewing direction and standard basis axis unit vector ≤ maximum angle
between viewing direction and standard basis axis unit vector for pattern threshold
 register pattern

Note: generic algorithm structure

Output Message: “Agent ID looks up / down / right / left”

Sources

Algorithm: Simulation.states / WorldAdvancedLogger.java

Input

Primitive Operations

Parameters of the pattern

- Individual: ID, location

- Estimating distance between one
Agent and another Agent

- Determine if Agent is a member
of a Pair / Group

- Agent data: ID, location
- group formation interval: how
frequently distances between Agents are
checked for this pattern
- minimum distance between Agents
to form a Pair threshold: minimum
distance between Agents to form a Pair
- distance between Agents: distance
between two Agents

Description

245

Table. A.2-13. “Somebody joins a Group” behavioural pattern and “Two Pairs / Groups merge” behavioural
pattern.

𝑒1 ∉ 𝐺 𝐚𝐧𝐝 𝑒2 ∉ 𝐺 𝐚𝐧𝐝 ‖�⃗� 1 − �⃗� 2 ‖ ≤ 𝑡𝑑𝑚𝑖𝑛

Criterion for recognising a pattern

To capture a pattern when “Agent and another Agent forms a Pair”, neither of the Agents can already be a member
of a Pair / Group. Furthermore, they need to find themselves within a close distance to each other that falls within a
certain threshold.

𝑒1 ∉ 𝐺, 𝑒2 ∉ 𝐺: first and second Agent does not belong to any Pair / Group
�⃗� 1, �⃗� 2 : location of first and second Agent defined in global coordinate space
𝑡𝑑𝑚𝑖𝑛 : minimum distance threshold between two Agents that needs to be reached in order to form a Pair

Algorithm structure (in pseudo code)

if distance between Agents ≤ minimum distance between Agents to form a Group threshold
 if first Agent is not already in a Pair or Group
 if second Agent is not already in a Pair or Group
 register pattern
 form Pair
 add first and second Agent to Pair

Output Message: “Agent ID and Agent ID form a Pair ID”

Sources: Algorithm: Simulation.states / GroupsManagerState.java

Input

Primitive Operations

Parameters of the pattern

- Individual: ID, location

- Estimating distance between one
Agent and another Agent

- Determine if Agent is a member
of a Pair / Group

- Agent data: ID, location
- group formation interval: how
frequently distances between Agents are
checked for this pattern
- minimum distance between Agents
to join a Group threshold: minimum
distance between Agents to join a Pair /
Group or for two different Pairs / Groups
to merge
- distance between Agents: distance
between two Agents

Description

246

𝑒1 ∉ 𝐺 𝐚𝐧𝐝 𝑒2 ∈ 𝐺 𝐚𝐧𝐝 ‖�⃗� 1 − �⃗� 2 ‖ ≤ 𝑡𝑑𝑚𝑖𝑛

𝑒1 ∈ 𝐺1 𝐚𝐧𝐝 𝑒2 ∈ 𝐺2 𝐚𝐧𝐝 |𝐺1| = 2 𝐚𝐧𝐝
 |𝐺2| = 2 𝐚𝐧𝐝 ‖�⃗� 1 − �⃗� 2 ‖ ≤ 𝑡𝑑𝑚𝑖𝑛

𝑒1 ∈ 𝐺1 𝐚𝐧𝐝 𝑒2 ∈ 𝐺2 𝐚𝐧𝐝 |𝐺1| > 2 𝐚𝐧𝐝
 |𝐺2| > 2 𝐚𝐧𝐝 ‖�⃗� 1 − �⃗� 2 ‖ ≤ 𝑡𝑑𝑚𝑖𝑛

Criterion for recognising a pattern

To capture a pattern when “Agent joins a Pair / Group”, an Agent cannot be already a member of a Pair or Group
and needs to be within a certain distance from an Agent who is a member of a Pair or Group. To capture a pattern
when “Pair / Group merges with Pair / Group”, both Agents need to be members of two different Pairs / Groups and
be within a certain distance from each other.

Joining a Pair / Group:

Merging of two Pairs:

Merging of two Groups:

𝑒1, 𝑒2 : two different Agents being elements of Group sets
𝑒1 ∉ 𝐺, 𝑒2 ∈ 𝐺: first and second Agent does not belong to any Pair / Group
𝐺1, 𝐺2: two different Group sets consisting of member Agents
�⃗� 1, �⃗� 2 : location of first and second Agent defined in global coordinate space
𝑡𝑑𝑚𝑖𝑛 : minimum distance threshold between two Agents that needs to be reached in order for Agent to join a Pair /
Group or two different Pairs / Groups to merge

Algorithm structure (in pseudo code)

if distance between Agents ≤ minimum distance between Agents to join a Group threshold
 if first Agent is not already in a Pair or Group
 if second Agent is already in a Group
 register first Agent joins second Agent Group pattern
 add first Agent to second Agent Group
 else if first Agent is already in a Pair or Group
 if second Agent is already in a Different Pair or Group
 register first Agent Group merges with second Agent Group pattern
 create new Group
 add first Agent Group members and second Agent Group members to new Group

Output Message: “Agent ID joins a Pair ID / Group ID”, “Pair ID / Group ID merged with Pair ID / Group ID”

Sources: Algorithm: Simulation.states / GroupsManagerState.java

247

Table. A.2-14. “Somebody leaves a Group” behavioural pattern and “Group disbands” behavioural pattern.

Input

Primitive Operations

Parameters of the pattern

- Individual: ID, location

- Estimating distance between one
Agent and another Agent

- Determine if Agent is a member
of a Pair / Group

- Agent data: ID, location
- group formation interval: how
frequently distances between Agents are
checked for this pattern
- minimum distance between Agents
to leave a Group threshold: minimum
distance between Agents that needs to
be reached for an Agent to leave a Group
- distance between Agents: distance
between two Agents

Description

d1 = ∑‖𝑢𝑒⃗⃗⃗⃗ 1 − 𝑢𝑒⃗⃗⃗⃗ 𝑖 ‖
𝑛

𝑖=1

 d2 = ∑‖𝑢𝑒⃗⃗⃗⃗ 2 − 𝑢𝑒⃗⃗⃗⃗ 𝑖 ‖
𝑛

𝑖=1

𝑒1 ∈ 𝐺1 𝐚𝐧𝐝 𝑒2 ∈ 𝐺1 𝐚𝐧𝐝 |𝐺1| > 2 𝐚𝐧𝐝 ‖�⃗� 1 − �⃗� 2 ‖ > 𝑡𝑑𝑚𝑖𝑛

Criterion for recognising a pattern

To capture a pattern when “Agent leaves a Group”, an Agent needs to be a member of a Group and find itself within
a certain minimum distance from one of the members of the Group.

Since it is difficult to determine which of two Agents is leaving the Group on a basis of a distance between them, the
developed, original yet simple approach presented in Formula A.2-1 is used. When the distance between two
members of the Group reaches a certain threshold, one can calculate the distances between each of them and the
rest of the group members. The sum of all distances is then compared against each other in order to determine
which of two Agents is farther away from the rest of the Group members.

where

𝑛: number of members of a Group
𝑢𝑒⃗⃗⃗⃗ 1, 𝑢𝑒⃗⃗⃗⃗ 2: location of first and second Agent being members of the same Group defined in global coordinate space for
whom ‖𝑢𝑒⃗⃗⃗⃗ 1 − 𝑢𝑒⃗⃗⃗⃗ 2 ‖ > 𝑡𝑑𝑚𝑖𝑛 condition was registered.
𝑢𝑒⃗⃗⃗⃗ 𝑖: location of a member of a Group

𝑢𝑒⃗⃗⃗⃗ 1 ≠ 𝑢𝑒⃗⃗⃗⃗ 𝑖 𝐚𝐧𝐝 𝑢𝑒⃗⃗⃗⃗ 1 ≠ 𝑢𝑒⃗⃗⃗⃗ 2 for d1
𝑢𝑒⃗⃗⃗⃗ 2 ≠ 𝑢𝑒⃗⃗⃗⃗ 𝑖 𝐚𝐧𝐝 𝑢𝑒⃗⃗⃗⃗ 2 ≠ 𝑢𝑒⃗⃗⃗⃗ 1 for d2

First Agent leaves the group if and only if d1 > d2
Second Agent leaves the group if and only if d2 > d1

Formula A.2-1. Original equation for determining which of two Group members is leaving the Group based on their
overall distance to other members of the Group.

𝑒1, 𝑒2 : two different Agents being elements of a Group set
𝐺1: a Group set containing all member Agents data
�⃗� 1, �⃗� 2 : location of first and second Agent being members of Group set 𝐺1 defined in global coordinate space whose
distance is greater than minimum distance threshold ‖�⃗� 1 − �⃗� 2 ‖ > 𝑡𝑑𝑚𝑖𝑛
𝑡𝑑𝑚𝑖𝑛 : minimum distance threshold between two member Agents that needs to be reached in order for Agent to
leave a Group

Algorithm structure (in pseudo code)

248

Table. A.2-15. “Somebody makes handshake with somebody” behavioural pattern

if distance between Agents > minimum distance between Agents to leave a Group threshold
 if first Agent is already in Group
 if second Agent is already in the same Group
 if first Agent overall distance to other members of Group > second Agent overall
distance to other members of Group
 register first Agent leaves Group pattern
 remove first Agent from Group
 else if second Agent overall distance to other members of Group > first Agent
overall distance to other members of Group
 register second Agent leaves Group pattern
 remove second Agent from Group

 if Group size = 2
 change Group type to Pair
 else if Group size = 1
 register Group disbands pattern
 remove Group

Output Message: “Agent ID leaves a Group ID”, “Group ID disbands”

Sources: Algorithm: Simulation.states / GroupsManagerState.java

Input

Primitive Operations

Parameters of the pattern

- Individual: ID, location, limbs
IDs (hands), limbs locations
(hands)

- Determining if two Agents are in
a Group or Pair

- Determining if two Agents hands
are close to each other for a
period of time

- Agent data: ID, location, walking
direction, limbs IDs, limbs locations
- handshake gesture interval: how
frequently collision detection tests are
carried out for this pattern
- minimum distance between hands
threshold: minimum distance between
two Agent’s hands limbs
- sampling size: the number of events
that needs to be collected for pattern
evaluation
- distance between first Agent hand
limb and second Agent hand limb:
distance between hand limb of first Agent
and hand limb of second Agent

Description

249

𝑡 ≥ 0 𝐚𝐧𝐝 𝑡 < 1 𝐚𝐧𝐝 ‖�⃗� 1 − �⃗� 2 ‖ > 𝑡𝑑𝑚𝑖𝑛

𝑡 =
−(𝐴 ∙ 𝐵) − √(𝐴 ∙ 𝐵)2 − 𝐵2[𝐴2 − (𝑟𝑃 + 𝑟𝑄)2]

𝐵2

𝐸10 = 𝐸20 𝐚𝐧𝐝 𝐸1𝑛 = 𝐸2𝑛 𝐚𝐧𝐝
|𝐺10 ∩ 𝐺20| < 0 𝐚𝐧𝐝 |𝐺1n ∩ 𝐺2n| < 0

Condition for triggering event for the pattern analysis

The events constituting a pattern of “Agent making a handshake with other Agent ” are registered when ghost
spheres surrounding each other hands collide. The minimum distance threshold between hands has been
introduced in this case as a control measure for capturing events.

where

𝐴 : 𝑃1 − 𝑄1 where 𝑃1 and 𝑄1 are initial centre position points of two ghost spheres
𝐵 : difference of two velocity vectors calculated by (𝑃2 − 𝑃1) − (𝑄2 − 𝑄1) where 𝑃1 and 𝑄1 are initial centre position
points and 𝑃2 and 𝑄2 are final centre position points of two ghost spheres
𝑟𝑃 , 𝑟𝑄: radii of the two spheres
�⃗� 1, �⃗� 2: distance between two ghost spheres at the time of collision
𝑡𝑑𝑚𝑖𝑛: minimum distance threshold between a hand limb of first and second Agent participating in the genesis of
behavioural pattern

Criterion for recognising a pattern

𝐸10, 𝐸20, 𝐸1𝑛, 𝐸2𝑛 : The set of qualitative and comparable data recorded in first and last entry in events batch
identifying first and second Agent involved in the genesis of behavioural pattern.
|𝐺10 ∩ 𝐺20|, |𝐺1n ∩ 𝐺2n| : The cardinality of a set resulting from intersection of two sets of points constituting ghost
spheres surfaces surrounding hand limb of first Agent and hand limb of second Agent recorded in first and last entry
in events batch.

Algorithm structure (in pseudo code)

if events batch exists
 if first Agent hand limb ghost sphere collides with second Agent hand limb ghost sphere
 if distance between hands ≥ minimum distance between hands threshold
 if events batch size ≥ sampling size
 for each event in events batch
 if first Agent ID in event is the same as in previous event
 if second Agent ID in event is the same as in previous event
 continue
 else
 clear events batch
 break
 else
 clear events batch
 break

 if first Agent ID in first event entry is the same as in last event entry
 if second Agent ID in first event entry is the same as in last event
entry
 register pattern
 clear events batch
 else
 record agent data
 add event to events batch

Output Message: “Agent ID makes handshake with Agent ID”

250

Table. A.2-16. “Group / Pair moves towards something” behavioural pattern

Sources

Algorithm: Simulation.states / GroupsLoggerState.java
Event data bean: Simulation.beans / GestureEventBean.java

Input

Primitive Operations

Parameters of the pattern

- Individual: ID, location, view
direction, walking direction

- Static Object: ID, location

- Group walking straight

- Determining distance between
Group or Pair and Static Object

- Determining average viewing
direction

- Determining average walking
direction

- Group data: location (midpoint),
average viewing direction, average
walking direction
- Static Object data: location, orientation
(towards agent)
- walking towards distance threshold:
used for determining if Agent is within a
specific radius from Static Object
- sampling size: the number of events
that needs to be collected for pattern
evaluation
- walking towards interval: how
frequently events are being captured for
this pattern
- overall direction proximity
coefficient: used for calculating the
threshold against which the overall
direction proximity value is checked
against. The coefficient is restricted to the
range of [0,1].
- overall direction proximity: the
calculated sum of dot products stored in
events batch
- distance: between Group midpoint
location and Static Object location

Description

‖𝑣 𝑡 − 𝐺𝑀𝑡‖ ≤ 𝑡𝑑

∑(𝑣 𝑖 − 𝐺𝑀𝑖) ∙
𝑛

𝑖=1

𝐺𝑑𝑖𝑟⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑖 ≥ 𝑛 − (𝑛𝐶)

Condition for registering event data for the pattern analysis

The events constituting a pattern of “Group / Pair walking towards” are registered when midpoint of a Group or Pair
is located within a predefined distance threshold 𝑡𝑑 from an object. In situations when several objects are located
within this threshold, the closest one is selected.

𝑣 𝑡 : the location of a nearby object in a world space at the time 𝑡 that is involved in the event
𝐺𝑀𝑡 : the location of a Group or Pair in a world space at the time 𝑡 when event occurred
𝑡𝑑 : distance threshold where 𝑡𝑑 ∈ ℕ ∶ 𝑡𝑑 ∈ [1, 𝑁]

Criterion for recognising a pattern from accumulated events

𝑣 𝑖 : the location of an object in a world space recorded in entry 𝑖 in events batch
𝐺𝑀𝑖 : the midpoint location of a Group or Pair in a world space recorded in entry 𝑖 in events batch
𝐺𝑑𝑖𝑟⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑡 : unit vector defining average viewing direction of a Group or Pair recorded in entry 𝑖 in events batch
𝑛 : total number of registered events where 𝑛 > 0

251

Table. A.2-17. “Group / Pair moves away from something” behavioural pattern

𝐶 : threshold coefficient where 𝐶 ∈ ℕ ∶ 0 < 𝐶 ≤ 1

Algorithm structure (in pseudo code)

if events batch exists
 if distance ≤ walking towards distance threshold
 if events batch size ≥ sampling size
 for each event in events batch
 calculate dot product of direction vector and Group or Pair view direction
vector
 add dot product value to overall direction proximity

 if overall direction proximity ≥ (events batch size * 1.0) - overall direction
proximity coefficient * (events batch size * 1.0)
 register a pattern
 clear events batch
 else
 select the closest static object
 if static object ID is equal to static object ID stored in last event in events
batch
 record static object and Group or Pair data
 add event to events batch
 else
 clear events batch

Output Message: “Group ID / Pair ID moves towards Static Object ID”

Sources

Algorithm: Simulation.states / GroupsLoggerState.java
Event data bean: Simulation.beans / GroupEventBean.java

Input

Primitive Operations

Parameters of the pattern

- Individual: ID, location, view
direction, walking direction

- Static Object: ID, location

- Group walking straight

- Determining distance between
Group or Pair and Static Object

- Determining average viewing
direction

- Determining average walking
direction

- Group data: location (midpoint),
average viewing direction, average
walking direction
- Static Object data: location, orientation
(towards agent)
- walking away distance threshold:
used for determining if Agent is outside a
specific radius of Static Object
- sampling size: the number of events
that needs to be collected for pattern
evaluation
- walking away interval: how frequently
events are being captured for this pattern
- distance: between Group midpoint
location and Static Object location

Description

252

‖𝑣 𝑡 − 𝐺𝑀𝑡‖ ≤ 𝑡𝑑

(𝑣 0 − 𝐺𝑀0) ∙ 𝐺𝑑𝑖𝑟⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗0 > 0 𝐚𝐧𝐝 (𝑣 𝑛 − 𝐺𝑀𝑛) ∙ 𝐺𝑑𝑖𝑟⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑛 < 0

Condition for registering event data for the pattern analysis

The events constituting a pattern of “Group / Pair walking away” are registered when midpoint of a Group or Pair is
located within a predefined distance threshold 𝑡𝑑 from an object. In situations when several objects are located
within this threshold, the closest one is selected.

𝑣 𝑡 : the location of a nearby object in a world space at the time 𝑡 that is involved in the event
𝐺𝑀𝑡 : the location of a Group or Pair in a world space at the time 𝑡 when event occurred
𝑡𝑑 : distance threshold where 𝑡𝑑 ∈ ℕ ∶ 𝑡𝑑 ∈ [1, 𝑁]

Criterion for recognising a pattern from accumulated events

𝑣 0 , 𝑣 𝑛: the location of an object in a world space recorded in first and last entry in events batch
𝐺𝑀0, 𝐺𝑀𝑛𝑛: the midpoint location of a Group or Pair in a world space recorded in first and last entry in events batch
𝐺𝑑𝑖𝑟⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗0, 𝐺𝑑𝑖𝑟⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑛: the walking direction of a Group or Pair recorded in first and last entry in events batch

Algorithm structure (in pseudo code)

if events batch exists
 if distance ≤ walking away distance threshold
 if events batch size ≥ sampling size
 if (dot product of first entry direction vector and first entry Group or Pair
view direction vector > 0) and (dot product of last entry direction vector and last entry
Group or Pair view direction vector < 0)
 register a pattern
 clear events batch
 else
 select the closest static object
 if static object ID is equal to static object ID stored in last event in events
batch
 record static object and Group or Pair data
 add event to events batch
 else
 clear events batch

Output Message: “ Group ID / Pair ID moves away from Static Object ID”

Sources

Algorithm: Simulation.states / GroupsLoggerState.java
Event data bean: Simulation.beans / GroupEventBean.java

253

Table. A.2-18. “Group / Pair moves alongside something” behavioural pattern

Input

Primitive Operations

Parameters of the pattern

- Individual: ID, location, view
direction, walking direction

- Static Object: ID, location,
dimensions, shape

- Group walking straight

- Determining if a Static Object is
by Group’s left / right side

- Group data: location (midpoint),
average viewing direction, average
walking direction
- Static Object data: ID, location, surface
dimensions and shape
- walking alongside ray’s length limit:
used for delimiting ray’s length and
consequently defining a maximum
distance at which collision may be
detected
- sampling size: the number of events
that needs to be collected for pattern
evaluation
- walking alongside interval: how
frequently events are being captured for
this pattern

Description

𝑟(𝑥) = 𝐺𝑀 + 𝑥(𝑅𝑠𝑖𝑑𝑒𝐺𝑑𝑖𝑟⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗)

𝑝1 ∙ �⃗� 1 + (−𝐺𝑀 ∙ �⃗� 1) > 0

𝐸0 ∩ 𝐸𝑛 ≠ ∅ 𝐚𝐧𝐝 |𝐸0|= |𝐸𝑛| 𝐚𝐧𝐝 𝐸0 = 𝐸𝑛

𝐸0 = 𝐸𝑛 ↔ ∀𝑒[𝑒 ∈ 𝐸0 ↔ 𝑒 ∈ 𝐸𝑛]

Details of ray emission

𝑟(𝑥) : point laying on the ray surface located at 𝑥 distance from its emission point
𝐺𝑀 : the location of a midpoint of a Group defined in global coordinates
𝑅𝑠𝑖𝑑𝑒: a rotation matrix declared in section 4.4.2.1., i.e. rotation about Y-axis 90°
𝐺𝑑𝑖𝑟⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗ : a normalized average viewing direction of a Group or Pair

Condition for registering event data for the pattern analysis

The events constituting a pattern of “Group / Pair walking alongside” are registered when a ray of a specified length
intersects an object located to the left or right of the Group.

𝑝1 : point of intersection with an object geometry’s triangle
�⃗� 1: a normalized normal vector of additional triangle constructed during the operation
𝐺𝑀 : point from which the ray has been emitted, e.g. midpoint of a Group

Criterion for recognising a pattern from accumulated events

𝐸0 , 𝐸𝑛: the set of qualitative and comparable data recorded in first and last entry in events batch: side of a Group
which is probed by ray and Static Object ID
|𝐸0|, |𝐸𝑛|: the cardinality of event data set recorded in first and last entry in events batch

Algorithm structure (in pseudo code)

254

Table. A.2-19. “Group / Pair climbs something” behavioural pattern

if events batch exists
 cast ray towards group side
 if ray intersects object within walking alongside ray’s length limit
 if events batch size ≥ sampling size
 for each event in events batch
 if side in event is the same as in previous event
 continue
 else
 clear events batch
 break

 if side is the same in all events in events batch
 if static object ID is the same in first and last event entry in events
batch
 register a pattern
 clear events batch
 else
 select the closest intersected static object
 if static object ID is equal to static object ID stored in last event in
events batch
 record static object and Group or Pair data
 add event to events batch
 else
 clear events batch

Output Message: “Group ID / Pair ID moves alongside Static Object ID”

Sources

Algorithm: Simulation.states / GroupsLoggerState.java
Event data bean: Simulation.beans / GroupRayEventBean.java

Input

Primitive Operations

Parameters of the pattern

- Individual: ID, location, view
direction, walking direction

- Static Object: ID, location,
dimensions, shape

- Group walking straight

- Determining if Group or Pair is
above or below Static Object

- Group data: location (midpoint),
average viewing direction, average
walking direction
- Static Object data: ID, location, surface
dimensions and shape
- climbing ray’s length limit: used for
delimiting ray’s length and consequently
defining a maximum distance at which
collision may be detected
- sampling size: the number of events
that needs to be collected for pattern
evaluation
- climbing interval: how frequently
events are being captured for this pattern

Description

255

𝑟(𝑥) = 𝐺𝑀 + 𝑥𝑣

𝑝1 ∙ �⃗� 1 + (−𝐺𝑀 ∙ �⃗� 1) > 0

𝐸0 ∩ 𝐸𝑛 ≠ ∅ 𝐚𝐧𝐝 |𝐸0|= |𝐸𝑛| 𝐚𝐧𝐝 𝐸0 = 𝐸𝑛 𝐚𝐧𝐝 𝐺𝑀0𝑦
< 𝐺𝑀𝑛𝑦

𝐸0 ∩ 𝐸𝑛 ≠ ∅ 𝐚𝐧𝐝 |𝐸0|= |𝐸𝑛| 𝐚𝐧𝐝 𝐸0 = 𝐸𝑛 𝐚𝐧𝐝 𝐺𝑀0𝑦
> 𝐺𝑀𝑛𝑦

𝐸0 = 𝐸𝑛 ↔ ∀𝑒[𝑒 ∈ 𝐸0 ↔ 𝑒 ∈ 𝐸𝑛]

Details of ray emission

𝑟(𝑥) : point laying on the ray surface located at 𝑥 distance from its emission point
𝐺𝑀 : the location of a midpoint of a Group defined in global coordinates
𝑣 : a direction vector [0,1,0] for “up” and [0,-1,0] for “down”

Condition for registering event data for the pattern analysis

The events constituting a pattern of “Group / Pair climbing something” are registered when a ray of a specified
length intersects an object located above or below a Group.

𝑝1 : point of intersection with an object geometry’s triangle
�⃗� 1: a normalized normal vector of additional triangle constructed during the operation
𝐺𝑀 : point from which the ray has been emitted, e.g. midpoint of a Group

Criterion for recognising a pattern from accumulated events

Determination of whether a Group / Pair climbs something up or down is dependent on the values of 𝑦-component
of Group’s midpoint location vector recorded in first and last entry in events batch.

Climbing up:

Climbing down:

𝐸0 , 𝐸𝑛: the set of qualitative and comparable data recorded in first and last entry in events batch: side of an agent
which is probed by ray and static object ID
|𝐸0|, |𝐸𝑛|: the cardinality of event data set recorded in first and last entry in events batch

𝐺𝑀0, 𝐺𝑀𝑛: the location of a midpoint of a Group in a world space recorded in first and last entry in events batch

Algorithm structure (in pseudo code)

if events batch exists
 cast ray towards group side
 if ray intersects object within climbing ray’s length limit
 if events batch size ≥ sampling size
 for each event in events batch
 if side in event is the same as in previous event
 continue
 else
 clear events batch
 break

 if side is the same in all events in events batch
 if Y-component of Group or Pair midpoint location in first event entry <
Y-component of group midpoint location in last event entry
 register climbing up pattern
 else if Y-component of Group or Pair midpoint location in first event
entry > Y-component of group midpoint location in last event entry
 register climbing down pattern
 clear events batch
 else
 select the closest intersected static object
 if static object ID is equal to static object ID stored in last event in
events batch

256

 record static object and Group or Pair data
 add event to events batch
 else
 clear events batch

Output Message: “Group ID / Pair ID climbs up/down Static Object ID”

Sources

Algorithm: Simulation.states / GroupsLoggerState.java
Event data bean: Simulation.beans / GroupRayEventBean.java

257

258

A.3. Experimental validation of the dynamic patterns recognition

The validation of behavioural patterns is made through comparing the expected outputs against their visual

appearance in the console. When the message generated in the event console finally matches the expected

observed behaviour in the 3D scene, it passes the overall evaluation. The default values of the parameters

were selected after empirical optimisation (see Appendix A.4). All of them are estimated at standard 30 FPS

frame rate of the video signal.

Table A.3-1. “Somebody is walking towards something” pattern validation

Validation Initial data

No. Agents 1
Agent ID agent-ID0
Location [161.19113, 4.3999987, -

0.8794838]
Viewing Direction [-0.87773572, 0,

0.48221964]
Expected output
agent-ID0 MOVES TOWARDS static-
Bookshelf_ID2
Output
agent-ID0 MOVES TOWARDS static-
Bookshelf_ID2
Observed behaviour

- agent-ID0 walks towards a static-Bookshelf_ID2
- the flow of messages for this pattern has ceased
when agent-ID0 moved away from Bookshelf_ID2

Result analysis

The simulation was conducted with default
parameters settings for this pattern (Appendix A) for
validation. The message in the console appeared
after agent-ID0 was continuously walking towards
static-Bookshelf_ID2 for 1 second according to time
stamps recorded in the log file:

14/03/2017 10:08:50 :: 1st registration of pattern
14/03/2017 10:08:51 :: 2nd registration of pattern

Validation status

The recognition method reported the discovery of
the pattern according to the projected outcome at
adequate time during the simulation.

259

Table A.3-2. “Somebody is walking away from something” pattern validation

Validation Initial data

No. Agents 1
Agent ID agent-ID0
Location [161.19113, 4.3999987, -

0.8794838]
Viewing Direction [-0.87773572, 0,

0.48221964]
Expected output
agent-ID0 MOVES AWAY FROM static-
Bookshelf_ID2
Output
agent-ID0 MOVES AWAY FROM static-
Bookshelf_ID2
Observed behaviour

- agent-ID0 walks away from a static-Bookshelf_ID2
- the message appeared when agent-ID0 was
moving towards and along static-Bookshelf_ID2
and then moved away from it

Result analysis

The simulation was conducted with default
parameters settings for this pattern (Appendix A) for
validation. The message in the console appeared
after agent-ID0 was continuously walking towards
static-Bookshelf_ID2 for 1 second, alongside it for 1
second and moved away from it according to time
stamps recorded in the log file:

14/03/2017 10:08:51 :: moved towards
14/03/2017 10:08:52 :: moved towards
14/03/2017 10:08:53 :: moved alongside
14/03/2017 10:08:53 :: 1st registration of the pattern

Validation status

The recognition method reported the discovery of
the pattern according to the projected outcome at
adequate time during the simulation.

260

Table A.3-3. “Somebody is walking alongside something” pattern validation

Validation Initial data

No. Agents 1
Agent ID agent-ID0
Location [161.19113, 4.3999987, -

0.8794838]
Viewing Direction [-0.87773572, 0,

0.48221964]
Expected output
agent-ID0 MOVES ALONG static-
Bookshelf_ID2
Output
agent-ID0 MOVES ALONG static-
Bookshelf_ID2
Observed behaviour

- agent-ID0 walks alongside static-Bookshelf_ID2
- the message appeared when agent-ID0 was
moving towards and along static-Bookshelf_ID2
and then moved away from it

Result analysis

The simulation was conducted with default
parameters settings for this pattern (Appendix A) for
validation. The message in the console appeared
after agent-ID0 was continuously walking alongside
static-Bookshelf_ID2 for 1 second according to time
stamps recorded in the log file:
14/03/2017 10:09:11 :: 1st registration of the pattern
14/03/2017 10:09:12 :: 2nd registration of the pattern

Validation status

The recognition method reported the discovery of
the pattern according to the projected outcome at
adequate time during the simulation.

261

Table A.3-4. “Somebody climbs something up” pattern validation

Validation Initial data

No. Agents 1
Agent ID agent-ID0
Location [161.19113, 4.3999987, -

0.8794838]
Viewing Direction [-0.87773572, 0,

0.48221964]
Expected output
agent-ID0 CLIMBS static-Stairs_ID1 UP
Output
agent-ID0 CLIMBS static-Stairs_ID1 UP

Observed behaviour

- agent-ID0 is on the stairs (static-Stairs_ID1) and
climbs them up
- the message appeared when agent-ID0 was
above static-Stairs_ID1 and climbing them upwards
to reach upper level

Result analysis

The simulation was conducted with default
parameters settings for this pattern (Appendix A) for
validation. The message in the console appeared
after agent-ID0 was continuously climbing static-
Stairs_ID1 upwards for 2 seconds according to time
stamps recorded in the log file:
15/03/2017 10:48:41 :: 1st registration of the pattern
15/03/2017 10:48:43 :: 2nd registration of the pattern

Validation status

The recognition method reported the discovery of
the pattern according to the projected outcome at
adequate time during the simulation.

262

Table A.3-5. “Somebody climbs something down” pattern validation

Validation Initial data

No. Agents 1
Agent ID agent-ID0
Location [161.19113, 4.3999987, -

0.8794838]
Viewing Direction [-0.87773572, 0,

0.48221964]
Expected output
agent-ID0 CLIMBS static-Stairs_ID1 DOWN
Output
agent-ID0 CLIMBS static-Stairs_ID1 DOWN

Observed behaviour

- agent-ID0 is on the stairs (static-Stairs_ID1) and
climbs them down
- the message appeared when agent-ID0 was
above static-Stairs_ID1 and climbing them
downwards to reach lower level

Result analysis

The simulation was conducted with default
parameters settings for this pattern (Appendix A) for
validation. The message in the console appeared
after agent-ID0 was continuously climbing static-
Stairs_ID1 downwards for 3 seconds according to
time stamps recorded in the log file:
15/03/2017 10:48:59 :: 1st registration of the pattern
15/03/2017 10:49:02 :: 2nd registration of the pattern

Validation status

The recognition method reported the discovery of
the pattern according to the projected outcome at
adequate time during the simulation.

263

Table A.3-6. “Somebody holds something over something” pattern validation

Validation Initial data

No. Agents 1
Agent ID agent-ID0
Location [161.19113, 4.3999987, -

0.8794838]
Viewing Direction [-0.87773572, 0,

0.48221964]
Expected output
agent-ID0 HOLDS dynamic-Bag_ID0 OVER
static-Stairs_ID1
Output
agent-ID0 HOLDS dynamic-Bag_ID0 OVER
static-Stairs_ID1
Observed behaviour

- agent-ID0 is on the stairs (static-Stairs_ID1) while
holding a bag (dynamic-Bag_ID0) in right hand
- the message appeared when agent-ID0 was
holding dynamic-Bag_ID0 in right hand while
standing on static-Stairs_ID1

Result analysis

The simulation was conducted with default
parameters settings for this pattern (Appendix A) for
validation. The message in the console appeared
after agent-ID0 was holding a dynamic-Bag_ID0 in
right hand while standing on (being above) static-
Stairs_ID1 for 1 second according to time stamps
recorded in the log file:
15/03/2017 12:08:03 :: 1st registration of the pattern
15/03/2017 12:08:04 :: 2nd registration of the pattern

Validation status

The recognition method reported the discovery of
the pattern according to the projected outcome at
adequate time during the simulation.

264

Table A.3-7. “Somebody puts something on something” pattern validation

Validation Initial data

No. Agents 1
Agent ID agent-ID0
Location [161.19113, 4.3999987,

-0.8794838]
Viewing Direction [-0.87773572, 0,

0.48221964]
Expected output
agent-ID0 PUTS dynamic-Bag_ID0 ON static-
Counter_ID4
Output
agent-ID0 PUTS dynamic-Bag_ID0 ON static-
Counter_ID4
Observed behaviour

- agent-ID0 puts down a bag (dynamic-Bag_ID0) at
the counter (static-Counter_ID4)
- the message appeared when agent-ID0 was
holding dynamic-Bag_ID0 in right hand, hold it over
a counter (static-Counter_ID4) and then put it on
top of it

Result analysis

The simulation was conducted with default
parameters settings for this pattern (Appendix A) for
validation. The message in the console appeared
after agent-ID0 was holding a dynamic-Bag_ID0 in
right hand, holding it over a counter (static-
Counter_ID4) and put it on top of it. The message
displayed only at the time when agent-ID0 dropped
down the item on top of the counter.

Validation status

The recognition method reported the discovery of
the pattern according to the projected outcome at
adequate time during the simulation.

265

Table A.3-8. “Somebody picks up something” pattern validation

Validation Initial data

No. Agents 1
Agent ID agent-ID0
Location [161.19113, 4.3999987, -

0.8794838]
Viewing Direction [-0.87773572, 0,

0.48221964]
Expected output
agent-ID0 PICKS UP dynamic-Bag_ID0
Output
agent-ID0 PICKS UP dynamic-Bag_ID0

Observed behaviour

- agent-ID0 picks up a bag (dynamic-Bag_ID0) from
the floor
- the message appeared when agent-ID0 bent over
a bag (dynamic-Bag_ID0) and picked it up from the
floor.

Result analysis

The simulation was conducted with default
parameters settings for this pattern (Appendix A) for
validation. The message appeared in the console
right hand of agent-ID0 came into contact with a
bag (dynamic-Bag_ID0) lying on the floor.

Validation status

The recognition method reported the discovery of
the pattern according to the projected outcome at
adequate time during the simulation.

266

Table A.3-9. “Somebody punches somebody” pattern validation

Validation Initial data

No. Agents 2
Agent ID agent-ID0, agent-ID1
Location agent-ID0: [161.19113,

4.3999987, -0.8794838]
agent-ID1:
[121.19113, 4.3999987,
21.8794838]

Viewing
Direction

agent-ID0:
[-0.87773572, 0,
0.48221964]
agent-ID1: [-0.87773572,
0, 0.48221964]

Expected output
participant-agent-ID0 PUNCHES
participant-agent-ID1
Output
participant-agent-ID0 PUNCHES
participant-agent-ID1

Observed behaviour

- agent-ID0 punches agent-ID1
- several messages appeared when agent-ID0 has reached out his right hand in the direction of agent-ID1

Result analysis

The simulation was conducted with default parameters settings for this pattern (Appendix A) for validation. Several
messages appeared in the console when right hand of agent-ID0 came into contact with agent-ID1 body. No messages
were generated when right hand was simply touching agent-ID1 body. No considerable time gaps between messages
were found in the log:
15/03/2017 13:34:00 :: 1st registration of the message
15/03/2017 13:34:00 :: 2nd registration of the message

Validation status

The recognition method reported the discovery of the pattern according to the projected outcome at adequate time
during the simulation.

267

Table A.3-10. “Somebody kicks somebody” pattern validation

Validation Initial data

No. Agents 2
Agent ID agent-ID0, agent-ID1
Location agent-ID0: [161.19113,

4.3999987, -0.8794838]
agent-ID1:
[121.19113, 4.3999987,
21.8794838]

Viewing
Direction

agent-ID0:
[-0.87773572, 0,
0.48221964]
agent-ID1: [-
0.87773572, 0,
0.48221964]

Expected output
participant-agent-ID0 KICKS participant-
agent-ID1
Output
participant-agent-ID0 KICKS participant-
agent-ID1

Observed behaviour

- agent-ID0 kicks agent-ID1
- several messages appeared when agent-ID0 has reached out his right leg in the direction of agent-ID1

Result analysis

The simulation was conducted with default parameters settings for this pattern (Appendix A) for validation. Several
messages appeared in the console when right leg of agent-ID0 came into contact with agent-ID1 body. No messages
were generated when right leg was simply touching agent-ID1 body. No considerable time gaps between messages
were found in the log:

15/03/2017 13:54:04 :: 1st registration of the message
15/03/2017 13:54:04 :: 2nd registration of the message

Validation status

The recognition method reported the discovery of the pattern according to the projected outcome at adequate time
during the simulation.

268

Table A.3-11. “Somebody drops down something” pattern validation

Validation Initial data

No. Agents 1
Agent ID agent-ID0
Location [161.19113,

4.3999987, -
0.8794838]

Viewing Direction [-0.87773572, 0,
0.48221964]

Expected output
agent-ID0 DROPS DOWN dynamic-Bag_ID0
Output
agent-ID0 DROPS DOWN dynamic-Bag_ID0

Observed behaviour

- agent-ID0 drops down a bag (dynamic-Bag_ID0)
on the floor
- the message appeared when agent-ID0 dropped a
bag (dynamic-Bag_ID0) on the floor.

Result analysis

The simulation was conducted with default
parameters settings for this pattern (Appendix A) for
validation. The message appeared in the console
when a distance between right hand and a bag
carried by agent-ID0 was clearly visible.

Validation status

The recognition method reported the discovery of
the pattern according to the projected outcome at
adequate time during the simulation.

269

Table A.3-12. “Somebody passes something over to somebody” pattern validation

Validation Initial data

No. Agents 2
Agent ID agent-ID0, agent-ID1
Location agent-ID0: [161.19113,

4.3999987, -0.8794838]
agent-ID1:
[121.19113, 4.3999987,
21.8794838]

Viewing
Direction

agent-ID0:
[-0.87773572, 0,
0.48221964]
agent-ID1: [-
0.87773572, 0,
0.48221964]

Expected output
participant-agent-ID0 in pair with pair-
50438 HANDS OVER dynamic-Bag_ID0 TO
participant-agent-ID1 in pair with pair-
50438
Output
participant-agent-ID0 in pair with pair-
50438 HANDS OVER dynamic-Bag_ID0 TO
participant-agent-ID1 in pair with pair-
50438

Observed behaviour

- agent-ID0 passed bag (dynamic-Bag_ID0) to agent-ID1
- a message appeared when agent-ID0 handed over a bag to agent-ID1

Result analysis

The simulation was conducted with default parameters settings for this pattern (Appendix A) for validation. The message
appeared in the console when a close distance between agent-ID0 right hand, a bag and agent-ID1 right hand was
registered, i.e. when a bag came into contact with both hands of agents.

Validation status

The recognition method reported the discovery of the pattern according to the projected outcome at adequate time
during the simulation.

270

Table A.3-13. “Somebody looks left / right / up / down” pattern validation

Validation Initial data

No. Agents 1

Agent ID agent-ID0
Location [161.19113, 4.3999987, -

0.8794838]
Viewing
Direction

[-0.87773572, 0,
0.48221964]

Expected output
agent-ID0 LOOKS DOWN
agent-ID0 LOOKS UP
agent-ID0 LOOKS LEFT
agent-ID0 LOOKS RIGHT

Output
agent-ID0 LOOKS DOWN
agent-ID0 LOOKS UP
agent-ID0 LOOKS LEFT
agent-ID0 LOOKS RIGHT

Observed behaviour

- agent-ID0 looked left / right / up / down
- a message appeared when agent-ID0 turned its head left / right / up / down

Result analysis

The simulation was conducted with default parameters settings for this pattern (Appendix A) for validation. The message
that appeared in the console corresponds directly to the direction towards which agent-ID0 turned its head. The
validation was made for all four directions, i.e. left, right, up, down. The pattern was discovered after 2 seconds
according to time stamps recorded in the log file:

15/03/2017 10:47:12 :: agent starts turning its head left
15/03/2017 10:47:14 :: 1st registration of the pattern

Validation status

The recognition method reported the discovery of the pattern according to the projected outcome at adequate time
during the simulation.

271

Table A.3-14. “Somebody makes handshake with somebody” pattern validation

Validation Initial data

No. Agents 2

Agent ID agent-ID0, agent-ID1

Location

agent-ID0: [161.19113,
4.3999987, -0.8794838]
agent-ID1:
[121.19113, 4.3999987,
21.8794838]

Viewing
Direction

agent-ID0:
[-0.87773572, 0,
0.48221964]
agent-ID1:
[-0.87773572, 0,
0.48221964]

Expected output
participant-agent-ID0 in pair with pair-
<ID> MAKES HANDSHAKE WITH participant-
agent-ID1 in pair with pair-<ID>

Output
participant-agent-ID0 in pair with pair-
563235 MAKES HANDSHAKE WITH participant-
agent-ID1 in pair with pair-563235

Observed behaviour

- agent-ID0 and agent-ID1 made a handshake
- a message appeared when right hand of agent-ID0 and right hand of agent-ID1 came into contact and hold together
for a brief moment

Result analysis

The simulation was conducted with default parameters settings for this pattern (Appendix A) for validation. The message
appeared in the console when right hands of both agents were hold together for a brief moment. The pattern was
recognised after 4 seconds that elapsed from raising hands and holding them for a brief moment according to time
stamps registered in the log file:

15/03/2017 18:57:26 :: agents start raising their hands towards each other
15/03/2017 18:57:30 :: 1st recognition of the pattern

Validation status

The recognition method reported the discovery of the pattern according to the projected outcome at adequate time
during the simulation.

272

Table A.3-15. “Somebody and somebody forms a pair” pattern validation

Validation Initial data

No. Agents 2

Agent ID agent-ID0, agent-ID1

Location

agent-ID0: [161.19113,
4.3999987, -0.8794838]
agent-ID1:
[121.19113, 4.3999987,
21.8794838]

Viewing
Direction

agent-ID0:
[-0.87773572, 0,
0.48221964]
agent-ID1:
[-0.87773572, 0,
0.48221964]

Expected output
agent-ID0 and agent-ID1 FORMS A pair-
<ID>

Output
agent-ID0 and agent-ID1 FORMS A pair-
170942

Observed behaviour

- agent-ID1 approached agent-ID0 and found itself within its close proximity
- a message appeared when agent-ID1 approached agent-ID0

Result analysis

The simulation was conducted with default parameters settings for this pattern (Appendix A) for validation. The message
appeared in the console when agent-ID1 approached agent-ID0 and found itself within its close proximity.

Validation status

The recognition method reported the discovery of the pattern according to the projected outcome at adequate time
during the simulation.

273

Table A.3-16. “Group / Pair moves towards something” pattern validation

Validation Initial data

No. Agents 2

Agent ID agent-ID0, agent-ID1

Location

agent-ID0: [161.19113,
4.3999987, -0.8794838]
agent-ID1:
[121.19113, 4.3999987,
21.8794838]

Viewing
Direction

agent-ID0:
[-0.87773572, 0,
0.48221964]
agent-ID1:
[-0.87773572, 0,
0.48221964]

Expected output
Pair-<ID> MOVES TOWARDS static-
Stairs_ID1

Output
Pair-563235 MOVES TOWARDS static-
Stairs_ID1

Observed behaviour

- both agents (agent-ID0 and agent-ID1) who formed a pair have been continuously walking towards stairs
- a message appeared when both agents continuously been walking towards stairs

Result analysis

The simulation was conducted with default parameters settings for this pattern (Appendix A) for validation. The message
appeared in the console after pair-563235 and all its members (agent-ID0 and agent-ID1) was continuously walking
towards static-Stairs_ID1 according to time stamps recorded in the log file:

15/03/2017 18:56:33 :: 1st registration of pattern
15/03/2017 18:56:34 :: 2nd registration of pattern

Validation status

The recognition method reported the discovery of the pattern according to the projected outcome at adequate time
during the simulation.

274

Table A.3-17. “Group / Pair moves away from something” pattern validation

Validation Initial data

No. Agents 2

Agent ID agent-ID0, agent-ID1

Location

agent-ID0: [161.19113,
4.3999987, -0.8794838]
agent-ID1:
[121.19113, 4.3999987,
21.8794838]

Viewing
Direction

agent-ID0:
[-0.87773572, 0,
0.48221964]
agent-ID1:
[-0.87773572, 0,
0.48221964]

Expected output
Pair-<ID> MOVES AWAY FROM static-
Bookshelf_ID2

Output
Pair-563235 MOVES AWAY FROM static-
Bookshelf_ID2

Observed behaviour

- both agents (agent-ID0 and agent-ID1) who formed a pair have moved away from Bookshelf_ID2
- a message appeared when both agents started to move away from the bookshelf

Result analysis

The simulation was conducted with default parameters settings for this pattern (Appendix A) for validation. The message
appeared in the console after pair-563235 and all its members (agent-ID0 and agent-ID1) was continuously walking
towards static-Bookshelf_ID2 for 1 second, alongside it for 1 second and moved away from it according to time stamps
recorded in the log file:

14/03/2017 20:08:35 :: pair moved towards
14/03/2017 20:08:36 :: pair moved towards
14/03/2017 20:08:37 :: pair moved alongside
14/03/2017 20:08:38 :: 1st registration of the pattern

Validation status

The recognition method reported the discovery of the pattern according to the projected outcome at adequate time
during the simulation.

275

Table A.3-18. “Group / Pair moves alongside something” pattern validation

Validation Initial data

No. Agents 2

Agent ID agent-ID0, agent-ID1

Location

agent-ID0: [161.19113,
4.3999987, -0.8794838]
agent-ID1:
[121.19113, 4.3999987,
21.8794838]

Viewing
Direction

agent-ID0:
[-0.87773572, 0,
0.48221964]
agent-ID1:
[-0.87773572, 0,
0.48221964]

Expected output
Pair-<ID> MOVES ALONG static-
Bookshelf_ID2

Output
Pair-266777 MOVES ALONG static-
Bookshelf_ID2

Observed behaviour

- both agents (agent-ID0 and agent-ID1) who formed a pair are walking alongside Bookshelf_ID2
- a message appeared when both agents were moving alongside bookshelf

Result analysis

The simulation was conducted with default parameters settings for this pattern (Appendix A) for validation. The message
appeared in the console after pair-266777 and all its members (agent-ID0 and agent-ID1) was continuously walking
alongside static-Bookshelf_ID2 for 1 second according to time stamps recorded in the log file:

14/03/2017 20:51:24 :: 1st registration of the pattern
14/03/2017 20:51:25 :: 2nd registration of the pattern

Validation status

The recognition method reported the discovery of the pattern according to the projected outcome at adequate time
during the simulation.

276

Table A.3-19 “Group / Pair climbs something up” pattern validation

Validation Initial data

No. Agents 2

Agent ID agent-ID0, agent-ID1

Location

agent-ID0: [161.19113,
4.3999987, -0.8794838]
agent-ID1:
[121.19113, 4.3999987,
21.8794838]

Viewing
Direction

agent-ID0:
[-0.87773572, 0,
0.48221964]
agent-ID1:
[-0.87773572, 0,
0.48221964]

Expected output
Pair-<ID> CLIMBS static-Stairs_ID1 UP

Output
Pair-563235 CLIMBS static-Stairs_ID1 UP

Observed behaviour

- both agents (agent-ID0 and agent-ID1) who formed a pair are on the stairs (static-Stairs_ID1) and climbing them up
- a message appeared when both agents were above static-Stairs_ID1 and climbing them upwards to reach upper level

Result analysis

The simulation was conducted with default parameters settings for this pattern (Appendix A) for validation. The message
appeared in the console after pair-563235 and all its members (agent-ID0 and agent-ID1) was continuously climbing up
stairs for 1 second according to time stamps recorded in the log file:

14/03/2017 22:11:12 :: 1st registration of the pattern
14/03/2017 22:11:13 :: 2nd registration of the pattern

Validation status

The recognition method reported the discovery of the pattern according to the projected outcome at adequate time
during the simulation.

277

Table A.3-20. “Group / Pair climbs something down” pattern validation

Validation Initial data

No. Agents 2

Agent ID agent-ID0, agent-ID1

Location

agent-ID0: [161.19113,
4.3999987, -0.8794838]
agent-ID1:
[121.19113, 4.3999987,
21.8794838]

Viewing
Direction

agent-ID0:
[-0.87773572, 0,
0.48221964]
agent-ID1:
[-0.87773572, 0,
0.48221964]

Expected output
Pair-<ID> CLIMBS static-Stairs_ID1 DOWN

Output
Pair-563235 CLIMBS static-Stairs_ID1
DOWN

Observed behaviour

- both agents (agent-ID0 and agent-ID1) who formed a pair are on the stairs (static-Stairs_ID1) and climbing them up
- a message appeared when both agents were above static-Stairs_ID1 and climbing them downwards to reach lower
level

Result analysis

The simulation was conducted with default parameters settings for this pattern (Appendix A) for validation. The message
appeared in the console after pair-563235 and all its members (agent-ID0 and agent-ID1) was continuously climbing
static-Stairs_ID1 downwards for 3 seconds according to time stamps recorded in the log file:

14/03/2017 23:39:22 :: 1st registration of the pattern
14/03/2017 23:39:25 :: 2nd registration of the pattern

Validation status

The recognition method reported the discovery of the pattern according to the projected outcome at adequate time
during the simulation.

278

Table A.3-21. “Somebody joins a Pair and form a Group” pattern validation

Validation Initial data

No. Agents 3

Agent ID agent-ID0, agent-
ID1,agent-ID2

Location

agent-ID0: [161.19113,
4.3999987, -0.8794838]
agent-ID1:
[121.19113, 4.3999987,
21.8794838]
agent-ID2:
[82.19113, 4.3999987,
50.8794838]

Viewing
Direction

agent-ID0:
[-0.87773572, 0,
0.48221964]
agent-ID1:
[-0.87773572, 0,
0.48221964]
agent-ID2:
[-0.85773572, 0,
0.28221964]

Expected output
agent-ID0 and pair-<ID> FORMS A group-
<ID>

Output
agent-ID0 and pair-396129 FORMS A group-
396129

Observed behaviour

- agent-ID0 approached a pair formed out of two other agents (agent-ID1 and agent-ID2) and joined them
- a message appeared when agent-ID0 find itself within close proximity to a pair of agents

Result analysis

The simulation was conducted with default parameters settings for this pattern (Appendix A) for validation. The message
appeared in the console when agent-ID0 approached a pair-396129 formed out of two agents (agent-ID1 and agent-
ID2) and was within a close proximity to both of them. The pair-396129 was then renamed to a group-396129.

Validation status

The recognition method reported the discovery of the pattern according to the projected outcome at adequate time
during the simulation.

279

Table A.3-22. “Somebody leaves a Group” pattern validation

Validation Initial data

No. Agents 3

Agent ID agent-ID0, agent-
ID1,agent-ID2

Location

agent-ID0: [161.19113,
4.3999987, -0.8794838]
agent-ID1:
[121.19113, 4.3999987,
21.8794838]
agent-ID2:
[82.19113, 4.3999987,
50.8794838]

Viewing
Direction

agent-ID0:
[-0.87773572, 0,
0.48221964]
agent-ID1:
[-0.87773572, 0,
0.48221964]
agent-ID2:
[-0.85773572, 0,
0.28221964]

Expected output
participant-agent-ID1 in group group-
<ID> left group-<ID>

Output
participant-agent-ID1 in group group-
396129 left group-396129

Observed behaviour

- agent-ID1 has walked away from the group
- a message appeared when agent-ID1 find itself within greater distance from other members of the group

Result analysis

The simulation was conducted with default parameters settings for this pattern (Appendix A) for validation. The message
appeared in the console when agent-ID1 walked away from a group-396129 and found itself within greater distance
from other members (agent-ID0 and agent-ID2).

Validation status

The recognition method reported the discovery of the pattern according to the projected outcome at adequate time
during the simulation.

280

A.4. Performance analysis of the analyser

Experimentations were conducted from the point of view of accuracy and speed of reporting dynamic

behavioural patterns from events occurring in three-dimensional space. We performed the evaluation of

parameters influence on capturing events and patterns by measuring the discrepancies between console

messages and our observations of dynamic movements in three-dimensional simulation. The methods related

to the process are executed in a simulation loop.

Table A.4-1. Analysis of experimental results in simulating the pattern “Somebody is walking towards
something”

Log file output
18/03/2017 12:25:19 :: agent-ID0 MOVES TOWARDS static-Door_ID3
Range of parameters Type Range (min, max)
walkTowardsInterval seconds 0.2s 10s
walkTowardsSamplingSize size number 2 90
walkTowardsDistanceTreshold centimetres 10cm 200cm
walkTowardsOverallDirectionProximityTreshold percentage 0.001 1.0
Impact of the parameter variation

- The simulation was initiated with default parameter values.
- It was observed that by increasing time intervals for collecting samples, the time required for

pattern recognition has extended, despite setting small event batch size (sampling size). The
same observation was made when events batch size was set to bigger values while time
intervals were small.

- The distance threshold did not have an impact on the speed of reporting a pattern, but the
increased values had made it difficult to visually distinguish objects that agent was actually
moving towards to. It was caused by the fact that agent was too far away from the object. On
the other hand, very small values had caused a situation where pattern was only registered
when agent was in very close proximity of an object.

- The distance direction proximity threshold had not have a real impact on the pattern capturing.
However, when this parameter was set to low values (floating-point number with three decimal
places), the pattern was not registered at all.

Optimal configuration found
walkTowardsInterval 0.2s
walkTowardsSamplingSize 2
walkTowardsDistanceTreshold 70cm
walkTowardsOverallDirectionProximityTreshold 0.9
Discussion

The optimal parameters were selected on a basis of the speed of reporting a pattern and low
discrepancies between log entries and agent's movements. It was noted that by setting time intervals
and sampling sizes to low values it is possible to recognise a pattern almost instantly according to
timestamps recorded in the log. The distance threshold set to greater values can help identifying a
pattern when agent is within greater distance to the object. However, it may cause visually vague results
as it can become difficult to verify if agent is indeed walking towards an object.

281

Table A.4-2. Analysis of experimental results in simulating the pattern “Somebody is walking away from
something”

Log file output
18/03/2017 13:56:46 :: agent-ID0 MOVES AWAY FROM static-Bookshelf_ID2
Range of parameters Type Range (min, max)
walkAwayInterval seconds 0.2s 2s
walkAwaySamplingSize size number 4 80
walkAwayDistanceTreshold centimetres 20cm 90cm
Impact of the parameter variation

- The simulation was initiated with default parameter values.
- It was observed that by increasing time intervals for collecting samples, the pattern was more

difficult to capture. When the interval was set to more than 2 seconds, the pattern was not
being recognised at all. The same observation was made when events batch size was set to
bigger values.

- The distance threshold did not have an impact on the speed of reporting a pattern. However,
very low values resulted in lack of recognising a pattern. It was caused by the fact that events
were recorded for a very short period of time and only when agent was in a very close
proximity to an object. On the other hand, large values had caused a situation where pattern
was registered when agent was relatively far away from the object.

Optimal configuration found
walkTowardsInterval 0.5s
walkTowardsSamplingSize 4
walkTowardsDistanceTreshold 60cm
Discussion

The optimal parameters were selected on a basis of the speed of reporting a pattern and low
discrepancies between log entries and agent's movements. It was noted that by setting time intervals,
sampling sizes and distance thresholds to moderate values it is possible to recognise a pattern within 1-
2 seconds according to timestamps recorded in the log. The distance threshold set to bigger values can
help to identify a pattern when agent is within greater distance to the object. However, it may cause
visually vague results as it can become difficult to verify if agent is walking away from a given object.
The experimental results indicate that lower distances are preferable in scenes with higher
volumes of identified static objects, e.g. narrow corridors with multiple shopping shelves. On the
other hand, higher distance thresholds are more suitable to recognise this pattern in bigger scenes with
less static objects.

282

Table A.4-3. Analysis of experimental results in simulating the pattern “Somebody is walking alongside
something”

Log file output
18/03/2017 14:22:06 :: agent-ID0 MOVES ALONG static-Bookshelf_ID2
Range of parameters Type Range (min, max)
walkAlongInterval seconds 0.05s 6s
walkAlongSamplingSize size number 10 50
walkAlongDistanceToObject centimetres 20cm 200cm
Impact of the parameter variation

- The simulation was initiated with default parameter values.
- It was observed that by increasing time intervals for collecting samples, the time required for

pattern recognition has extended, despite setting small event batch size (sampling size). The
same observation was made when events batch size was set to bigger values while time
intervals were small.

- The distance threshold did not have an impact on the speed of reporting a pattern, but the
increased values caused registration of the pattern when agent was far away from the object.
On the other hand, very small values had caused a situation where pattern was only registered
when agent was in very close proximity of an object.

Optimal configuration found
walkAlongInterval 0.2s
walkAlongSamplingSize 2
walkAlongDistanceToObject 70cm
Discussion

The optimal parameters were selected on a basis of the speed of reporting a pattern and low
discrepancies between log entries and agent's movements. It was noted that by setting time intervals
and sampling sizes to low values it is possible to recognise a pattern almost instantly according to
timestamps recorded in the log. The distance threshold set to bigger values can help to identify a
pattern when agent is within greater distance to the object. However, this implies that greater
distance thresholds may produce more noisy data in the log if a scene has greater number of
identified static objects on relatively small area. In such case, increasing sampling size and
collection intervals may reduce the number of entries. Higher distance thresholds are more suitable
to recognise this pattern in more open spaces with less static objects.

283

Table A.4-4. Analysis of experimental results in simulating the pattern “Somebody climbs something”

Log file output
18/03/2017 16:21:07 :: agent-ID0 CLIMBS static-Stairs_ID1 UP
Range of parameters Type Range (min, max)
climbInterval seconds 0.15s 2s
climbSamplingSize size number 2 10
Impact of the parameter variation

- The simulation was initiated with default parameter values.
- It was observed that by increasing time intervals for collecting samples, the time required for

pattern recognition has extended, despite setting small event batch size (sampling size). The
same observation was made when events batch size was set to bigger values while time
intervals were small.

Optimal configuration found
climbInterval 0.5s
climbSamplingSize 3
Discussion

The optimal parameters were selected on a basis of the speed of reporting a pattern and low
discrepancies between log entries and agent's movements. It was noted that by setting time intervals
and sampling sizes to low values it is possible to recognise a pattern within 3-4 seconds according to
timestamps recorded in the log. During the experimentation it was observed that lower values of
both parameters would be preferable in scenes in which stairs possess smaller number of steps.
This is due to the fact that higher values may prevent capturing a sufficient number of events to execute
a sampling procedure in order to successfully recognise a pattern in time. However, higher values are
more suitable for scenes in which stairs possess greater number of steps as they prevent
generating unnecessarily big number of entries in the log file and consequently reducing overall
noise of produced analytic data.

284

Table A.4-5. Analysis of experimental results in simulating the pattern “Somebody holds something over /
places something on top of something”

Log file output
18/03/2017 16:51:34 :: agent-ID0 HOLDS dynamic-Bag_ID0 OVER static-Counter_ID4
18/03/2017 16:55:18 :: agent-ID0 PUTS dynamic-Bag_ID0 ON static-Counter_ID4
Range of parameters Type Range (min, max)
carryInterval seconds 0.1s 10s
carrySamplingSize size number 2 20
Impact of the parameter variation

- The simulation was initiated with default parameter values.
- It was observed that by increasing time intervals for collecting samples, the time required for

pattern recognition has extended, despite setting small event batch size (sampling size). The
same observation was made when events batch size was set to bigger values while time
intervals were small.

Optimal configuration found
carryInterval 0.1s
carrySamplingSize 2
Discussion

The optimal parameters were selected on a basis of the speed of reporting a pattern and low
discrepancies between log entries and agent's movements. It was noted that by setting time intervals
and sampling sizes to low values it is possible to recognise a pattern almost instantly according to
timestamps recorded in the log. During the experimentation it was observed that lower values of
both parameters are more suitable for detecting a pattern in situations when agent is stretching
an arm and holding object over another one. Higher values are suitable for recognising a pattern
in situations when agent holds an item in hand while standing on top of a static object. In such
case agent does not have to stretch an arm in order to hold an item over another one. In case of placing
an item on top of a static object (static-Counter_ID4), the pattern was not recognised when higher
values were set for both parameters or there was big discrepancy between their extremes, e.g. higher
value set for one parameter and lower for the other.

285

Table A.4-6. Analysis of experimental results in simulating the pattern “Somebody picks up / reaches out
for something”

Log file output
18/03/2017 17:21:43 :: agent-ID0 PICKS UP dynamic-Bag_ID0
18/03/2017 17:26:01 :: agent-ID0 REACHES OUT FOR dynamic-Parcel_ID1
Range of parameters Type Range (min, max)
pickUpInterval seconds 0.1s 10s
reachOutHandDistanceToRightLowArmMin decimetres 3dm 20dm
reachOutHandDistanceToCenterPivotMin decimetres 4dm 20dm
reachOutRightLowArmDistanceToCenterPivotMin decimetres 5dm 20dm
Impact of the parameter variation

- The simulation was initiated with default parameter values.
- It was observed that by increasing time intervals, the pattern was more difficult to capture.

When the interval was set to more than 2 seconds, the pattern was not being recognised at all.
- The distances between different body parts had to be directly proportional to their lengths at

the time when agent was reaching out for an object situated on top of a static object (static-
Bookshelf_ID2) in order to capture the pattern. Increasing distances between limbs resulted in
pattern detection failure.

Optimal configuration found
pickUpInterval 0.1s
reachOutHandDistanceToRightLowArmMin 5dm
reachOutHandDistanceToCenterPivotMin 6dm
reachOutRightLowArmDistanceToCenterPivotMin 6dm
Discussion

The optimal parameters were selected on a basis of the speed of reporting a pattern and low
discrepancies between log entries and agent's movements. It was observed that by setting a time
interval to lower values it was possible to detect a pattern when agent hand limb came into contact with
dynamic object. During the experimentation it was observed that lower values of distances between
limbs allowed the discovery of a pattern when agent reached out for a dynamic object situated on top of
the static object by stretching its arm whereas higher values prevented it. Very small distance
thresholds in combination with low time intervals caused the generation of huge amount of
repetitive entries in the log. The distance values had no real impact on detecting a pattern when agent
was picking up a dynamic object from the floor.

286

Table A.4-7. Analysis of experimental results in simulating the pattern “Somebody punches something /
somebody”

Log file output
18/03/2017 18:34:13 :: agent-ID0 PUNCHES static-Bookshelf_ID2
Range of parameters Type Range (min, max)
limbsInterval seconds 0.1s 2s
limbPunchHandDistanceToRightLowArmMin decimetres 4dm 30dm
limbPunchHandDistanceToCenterPivotMin decimetres 6dm 30dm
limbPunchHandRightLowArmDistanceToCenterPivotMin decimetres 6dm 30dm
Impact of the parameter variation

- The simulation was initiated with default parameter values.
- It was observed that by increasing time intervals, the pattern was more difficult to capture.

When the interval was set to more than 2 seconds, the pattern was not being recognised at all.
- The distances between different body parts had to be directly proportional to their lengths at

the time when agent was punching static object (static-Bookshelf_ID2) in order to capture the
pattern. Increasing distances between limbs resulted in pattern detection failure.

Optimal configuration found
limbsInterval 0.4s
limbPunchHandDistanceToRightLowArmMin 4dm
limbPunchHandDistanceToCenterPivotMin 6dm
limbPunchHandRightLowArmDistanceToCenterPivotMin 6dm
Discussion

The optimal parameters were selected on a basis of the speed of reporting a pattern and low
discrepancies between log entries and agent's movements. It was observed that by setting a time
interval to lower values it was possible to detect a pattern when agent arm was stretched and its hand
came into contact with a static object. During the experimentation it was observed that moderate values
of distances between limbs allowed the discovery of a pattern when agent was punching a static object
whereas higher values prevented it. Lower time intervals caused the generation of huge amount of
repetitive entries in the log.

287

Table A.4-8. Analysis of experimental results in simulating the pattern “Somebody kicks something /
somebody”

Log file output
18/03/2017 19:19:07 :: agent-ID0 KICKS static-Bookshelf_ID2
Range of parameters Type Range (min, max)
limbsInterval seconds 0.1s 1s
limbKickLegDistanceToRightLowLegMin decimetres 2dm 10dm
limbKickLegDistanceToLeftFootLegMin decimetres 4dm 18dm
limbKickLegDistanceToCenterPivotMin decimetres 4dm 18dm
limbKickLegRightLowLegDistanceToCenterPivotMin decimetres 4dm 8dm
Impact of the parameter variation

- The simulation was initiated with default parameter values.
- It was observed that by increasing time intervals, the pattern was more difficult to capture.

When the interval was set to more than 1 second, the pattern was not being recognised at all.
- The distances between different body parts had to be directly proportional to their lengths at

the time when agent was kicking static object (static-Bookshelf_ID2) in order to capture the
pattern. Increasing distances between limbs resulted in pattern detection failure.

Optimal configuration found
limbsInterval 0.6s
limbKickLegDistanceToRightLowLegMin 3dm
limbKickLegDistanceToLeftFootLegMin 6dm
limbKickLegDistanceToCenterPivotMin 6dm
limbKickLegRightLowLegDistanceToCenterPivotMin 6dm
Discussion

The optimal parameters were selected on a basis of the speed of reporting a pattern and low
discrepancies between log entries and agent's movements. It was observed that by setting a time
interval to lower values it was possible to detect a pattern when agent leg was stretched and its right
foot came into contact with a static object. During the experimentation it was observed that moderate
values of distances between limbs allowed the discovery of a pattern when agent was kicking a static
object whereas higher values prevented it. Lower time intervals caused the generation of huge
amount of repetitive entries in the log.

288

Table A.4-9. Analysis of experimental results in simulating the pattern “Somebody drops down something”

Log file output
18/03/2017 19:41:14 :: agent-ID0 DROPS DOWN dynamic-Parcel_ID1
Range of parameters Type Range (min, max)
dropDownCoolDownInterval seconds 0.1s 4s
dropDownDistanceFromObjectMin decimetres 1dm 5dm
Impact of the parameter variation

- The simulation was initiated with default parameter values.
- It was observed that by increasing cool down interval, the pattern was captured with a certain

delay. When the cool down interval was set to more than 4 seconds, the dynamic object was
already on the floor.

- The distance between dynamic object (dynamic-Parcel_ID1) and agent right hand had to be
set at least below 5dm, otherwise the pattern failed to be detected.

Optimal configuration found
dropDownCoolDownInterval 1.5s
dropDownDistanceFromObjectMin 2.5dm
Discussion

The optimal parameters were selected on a basis of the speed of reporting a pattern and low
discrepancies between log entries and agent's movements. It was observed that by setting a cool down
period to lower values it was possible to detect a pattern when agent had dropped carried dynamic
object. During the experimentation it was observed that setting lower distances between a hand holding
an object and dropped dynamic object had led to pattern recognition failure. This implies that distance
between hand and a dropped object cannot be greater than a distance from hand to the floor if
agent remains in stationary position. It was also observed that greater cool down periods in
combination with greater distances (but not exceeding the distance between hand and a floor)
may cause a delay in reporting a pattern, i.e. an agent may be able to walk away from the
dropped object before pattern can be recognised.

289

Table A.4-10. Analysis of experimental results in simulating the pattern “Somebody looks left / right / up /
down”

Log file output
18/03/2017 20:21:50 :: agent-ID0 LOOKS DOWN
18/03/2017 20:27:07 :: agent-ID0 LOOKS UP
18/03/2017 20:28:42 :: agent-ID0 LOOKS RIGHT
18/03/2017 20:29:06 :: agent-ID0 LOOKS LEFT
Range of parameters Type Range (min, max)
headMoveInterval seconds 0.02s 0.2s
headMoveCoolDownInterval degrees 0.02s 1s
headMoveLeftMin degrees 30° 46°
headMoveLeftMax degrees 37° 60°
headMoveRightMin degrees 90° 130°
headMoveRightMax degrees 125° 150°
headMoveUpMin degrees 50° 66°
headMoveUpMax degrees 67° 70°
headMoveDownMin degrees 100° 123°
headMoveDownMax degrees 114° 130°
Impact of the parameter variation

- The simulation was initiated with default parameter values.
- It was observed that by increasing time interval, the pattern was more difficult to capture. When

the interval was set to more than 0.5 seconds, the pattern was not being recognised at all. The
same observation was made with an increased cool down periods.

- It was noted that the minimum value of angular threshold for detecting particular movement of
the head had to always be lower than its maximum value in order to recognise a pattern.

- The difference between minimum and maximum values had always been within roughly 20-25
degrees on average in order to recognise a pattern.

Optimal configuration found
headMoveInterval 0.1s
headMoveCoolDownInterval 1s
headMoveLeftMin 40°
headMoveLeftMax 60°
headMoveRightMin 100°
headMoveRightMax 130°
headMoveUpMin 50°
headMoveUpMax 67°
headMoveDownMin 100°
headMoveDownMax 114°
Discussion

The optimal parameters were selected on a basis of the speed of reporting a pattern and low
discrepancies between log entries and agent's movements. It was observed that increasing the time
interval as well as cool down period resulted in lack of recognising a pattern. During the experimentation
it was observed that minimum values had to be always lower than the maximum ones in order to define
adequate angular threshold range within which the head movement (rotation) could had been
recognised, otherwise the pattern was not recognised at all. It was noted that setting minimum value
to 90 degrees for when “somebody looks right” had caused uncontrolled registration of entries
in the log for this pattern even when agent was not turning its head at all. This indicates that
setting lower values for defining angular thresholds could potentially cause erroneous output of
analytic data.

290

Table A.4-11. Analysis of experimental results in simulating the pattern “Somebody passes over something
to somebody”

Log file output
18/03/2017 21:43:31 :: participant-agent-ID0 in pair with pair-108048 HANDS OVER
dynamic-Parcel_ID1 TO participant-agent-ID1 in pair with pair-108048
Range of parameters Type Range (min, max)
passOverInterval seconds 0.20s 1s
passOverCoolDownInterval seconds 0.2s 1.5s
passOverLimbsDistanceMinLimit decimetres 1dm 6dm
passOverLimbsDistanceMaxLimit decimetres 2dm 12dm
Impact of the parameter variation

- The simulation was initiated with default parameter values.
- It was observed that by increasing time intervals, the pattern was more difficult to capture.

When the interval was set to more than 1 second, the pattern was not being recognised at all.
The same observation was made with an increased cool down periods.

- The distances between each agent right hands at the time of passing the dynamic object could
not had been less than 1dm and more than 11dm in order to capture the pattern. Increasing
minimum and maximum distance values between limbs resulted in pattern detection failure.

-
Optimal configuration found
passOverInterval 0.3s
passOverCoolDownInterval 0.6s
passOverLimbsDistanceMinLimit 1dm
passOverLimbsDistanceMaxLimit 5dm
Discussion

The optimal parameters were selected on a basis of the speed of reporting a pattern and low
discrepancies between log entries and agent's movements. It was observed that by increasing time
intervals and cool down periods it was difficult to capture a pattern. When cool down period was set
below 1 second, but twice the amount of time set for time interval, the pattern had been captured
almost every time agents handed over the object between each other. During the experimentation
it was observed that the difference between minimum and maximum distance values between hands
could not be greater than 10dm in order for a pattern to be recognised.

291

Table A.4-12. Analysis of experimental results in simulating the pattern “Somebody and somebody form a
Pair / Somebody joins a Group”

Log file output
19/03/2017 11:42:43 :: agent-ID0 and agent-ID1 FORMS A pair-865450
19/03/2017 11:52:35 :: participant-agent-ID0 in group group-662444 left group-
662444
19/03/2017 11:52:37 :: agent-ID0 and pair-662444 FORMS A group-662444
Range of parameters Type Range (min, max)
groupFormSetInterval seconds 0.20s 6s
groupFormProximityDistance centimetres 50cm 200cm
Impact of the parameter variation

- The simulation was initiated with default parameter values.
- It was observed that by increasing time intervals, the pattern was being recognised with a

delay. When the interval was set to more than 6 seconds, the pattern was recognised long
after agent approached the other.

- Setting greater distance threshold had caused reporting a pattern even when agents were too
far away from each other. It was difficult to verify whether two agents actually formed a group
from the visual state of the simulation at the time of pattern recognition in such case.

Optimal configuration found
groupFormSetInterval 0.20s
groupFormProximityDistance 75cm
Discussion

The optimal parameters were selected on a basis of the speed of reporting a pattern and low
discrepancies between log entries and agent's movements. It was observed that greater values in time
intervals had caused a delay in reporting a pattern despite setting greater distance thresholds. On the
contrary, setting lower time intervals had caused almost immediate registration of the pattern when
agent found itself within a specified distance from other agent. The same observations were made
during simulation of one agent joining a pair and forming a group. During the experimentation it was
also noted that when a leaving distance threshold was smaller than group proximity distance
threshold, two patterns had been interchangeably reported in the console in a relatively short
amount of time: "Somebody and somebody form a Pair” and “Pair disbands" (i.e. "Somebody
leaves a Group").

292

Table A.4-13. Analysis of experimental results in simulating the pattern “Somebody leaves a Group”

Log file output
19/03/2017 11:52:35 :: participant-agent-ID0 in group group-662444 left group-
662444

Range of parameters Type Range (min, max)
groupFormSetInterval seconds 0.20s 30s
groupFormProximityLeavingDistance centimetres 50cm 200cm
Impact of the parameter variation

- The simulation was initiated with default parameter values.
- It was observed that by increasing time intervals, the pattern was being recognised with a

delay. When the interval was set to more than 30 seconds, the pattern was recognised long
after agent has left the group.

- Setting greater distance threshold had caused reporting a pattern even when agent was far
away from the group. It was difficult to verify at what point the agent actually had left until it was
within a greater distance from the group.

Optimal configuration found
groupFormSetInterval 0.20s
groupFormProximityLeavingDistance 100cm
Discussion

The optimal parameters were selected on a basis of the speed of reporting a pattern and low
discrepancies between log entries and agent's movements. It was observed that greater values in time
intervals had caused a delay in reporting a pattern despite setting lower distance thresholds. On the
contrary, setting lower time intervals had caused almost immediate registration of the pattern when
agent found itself away from specified distance from the group. During the experimentation it was
also noted that when a leaving distance threshold was smaller than group proximity distance
threshold, two patterns had been interchangeably reported in the console in a relatively short
amount of time: "Somebody and somebody form a Pair” and “Pair disbands" (i.e. "Somebody
leaves a Group").

293

Table A.4-14. Analysis of experimental results in simulating the pattern “Somebody makes handshake with
somebody”

Log file output
19/03/2017 12:18:11 :: participant-agent-ID1 in pair with pair-662444 MAKES
HANDSHAKE WITH participant-agent-ID0 in pair with pair-662444
Range of parameters Type Range (min, max)
groupGesturesInterval seconds 0.1s 2s
groupGesturesSamplingSize size number 3 20
groupGesturesHandShakeLimbsProximity decimetres 4dm 10dm
Impact of the parameter variation

- The simulation was initiated with default parameter values.
- It was observed that by increasing time intervals for collecting samples, the pattern was more

difficult to capture. When the interval was set to more than 2 seconds, the pattern was not
being recognised at all. The same observation was made when events batch size was set to
larger values.

- The distance threshold did not have an impact on the speed of reporting a pattern. However,
greater values resulted in lack of recognising a pattern. It was caused by the fact that events
could not have been captured for the events sampling procedure. On the other hand, lower
values contributed to quick recognition of the pattern.

Optimal configuration found
groupGesturesInterval 0.4s
groupGesturesSamplingSize 3
groupGesturesHandShakeLimbsProximity 4dm
Discussion

The optimal parameters were selected on a basis of the speed of reporting a pattern and low
discrepancies between log entries and agent's movements. It was noted that by setting time intervals,
sampling sizes and distance thresholds to lower values it is possible to recognise a pattern within 3-4
seconds according to timestamps recorded in the log. The threshold, defining minimum distance
between agent’s hands, set to bigger values prevented recognising a pattern. The experimental
results indicate that events batch size cannot be set to greater values as it prevents recognising a
pattern without a delay, despite setting lower values for time intervals. The same observations were
made when batch size was set to lower values and time intervals to greater ones.

294

Table A.4-15. Analysis of experimental results in simulating the pattern “Group / Pair moves towards
something”

Log file output
19/03/2017 12:35:28 :: pair-662444 MOVES TOWARDS static-Bookshelf_ID2
Range of parameters Type Range (min,

max)
groupWalkTowardsInterval seconds 0.2s 10s
groupWalkTowardsSamplingSize size number 2 90
groupWalkTowardsDistanceTreshold centimetres 10cm 200cm
groupWalkTowardsOverallDirectionProximityTreshold percentage 0.001 1.0
groupClosestDistanceTreshold centimetres 10cm 200cm
Impact of the parameter variation

- The simulation was initiated with default parameter values.
- The simulation was conducted with the same parameter variations as in case of

experimentation with individual pattern, i.e. “Somebody is walking towards something”.
- It was observed that by increasing time intervals for collecting samples, the time required for

pattern recognition has extended, despite setting small event batch size (sampling size). The
same observation was made when events batch size was set to bigger values while time
intervals were small.

- The distance threshold did not have an impact on the speed of reporting a pattern, but the
increased values had made it difficult to visually distinguish objects that a pair was actually
moving towards to. It was caused by the fact that both agents (pair) were too far away from the
object. On the other hand, very small values had caused a situation where pattern was only
registered when agent was in very close proximity of an object. The threshold responsible for
selecting the closest object had not have a greater impact on the recognition of the pattern due
to presence of only few identified static objects located too far away from each other within the
scene.

- The distance direction proximity threshold had not have a real impact on the pattern capturing.
However, when this parameter was set to low values (floating-point number with three decimal
places), the pattern was not registered at all.

Optimal configuration found
groupWalkTowardsInterval 0.2s
groupWalkTowardsSamplingSize 2
groupWalkTowardsDistanceTreshold 70cm
groupWalkTowardsOverallDirectionProximityTreshold 0.9
groupClosestDistanceTreshold 60cm
Discussion

The optimal parameters were selected on a basis of the speed of reporting a pattern and low
discrepancies between log entries and pair movements. It was noted that by setting time intervals and
sampling sizes to low values it is possible to recognise a pattern almost instantly according to
timestamps recorded in the log. The distance threshold set to greater values can help identifying a
pattern when a pair or group is within greater distance to the object. However, it may cause visually
vague results as it can become difficult to verify if a pair or group is indeed walking towards an object.
The experimental results of this pattern are similar to the experimental results of simulating
individual pattern, i.e. “Somebody is walking towards something”.

295

Table A.4-16. Analysis of experimental results in simulating the pattern “Group / Pair moves away from
something”

Log file output
19/03/2017 13:03:45 :: pair-308010 MOVES AWAY FROM static-Bookshelf_ID2
Range of parameters Type Range (min, max)
groupWalkAwayInterval seconds 0.2s 2s
groupWalkAwaySamplingSize size number 4 80
groupWalkAwayDistanceTreshold centimetres 20cm 90cm
groupClosestDistanceTreshold centimetres 20cm 90cm
Impact of the parameter variation

- The simulation was initiated with default parameter values.
- The simulation was conducted with the same parameter variations as in case of

experimentation with individual pattern, i.e. “Somebody is walking away from something”.
- It was observed that by increasing time intervals for collecting samples, the pattern was more

difficult to capture. When the interval was set to more than 2 seconds, the pattern was not
being recognised at all. The same observation was made when events batch size was set to
bigger values.

- The distance threshold did not have an impact on the speed of reporting a pattern. However,
very low values resulted in lack of recognising a pattern. It was caused by the fact that events
were recorded for a very short period of time and only when a pair was in a very close
proximity to an object. On the other hand, large values had caused a situation where pattern
was registered when agent was relatively far away from the object.

- The threshold responsible for selecting the closest object had not have a greater impact on the
recognition of the pattern due to presence of only few identified static objects located too far
away from each other within the scene.

Optimal configuration found
groupWalkAwayInterval 0.5s
groupWalkAwaySamplingSize 4
groupWalkAwayDistanceTreshold 60cm
groupClosestDistanceTreshold 50cm
Discussion

The optimal parameters were selected on a basis of the speed of reporting a pattern and low
discrepancies between log entries and pair movements. It was noted that by setting time intervals,
sampling sizes and distance thresholds to moderate values it is possible to recognise a pattern within 2-
3 seconds according to timestamps recorded in the log. The distance threshold set to bigger values can
help to identify a pattern when agent is within greater distance to the object. However, it may cause
visually vague results as it can become difficult to verify if pair is walking away from a given object. The
experimental results are similar to simulation results of this pattern in case of individual agent.
They indicate that lower distances are preferable in scenes with higher volumes of identified static
objects, e.g. narrow corridors with multiple shopping shelves. On the other hand, higher distance
thresholds are more suitable to recognise this pattern in bigger scenes with less static objects.

296

Table A.4-17. Analysis of experimental results in simulating the pattern “Group / Pair moves alongside
something”

Log file output
19/03/2017 13:08:42 :: pair-308010 MOVES ALONG static-Bookshelf_ID2
Range of parameters Type Range (min, max)
groupWalkAlongInterval seconds 0.05s 6s
groupWalkAlongSamplingSize size number 10 50
groupWalkAlongDistanceToObject centimetres 20cm 200cm
groupClosestDistanceTreshold centimetres 20cm 200cm
Impact of the parameter variation

- The simulation was initiated with default parameter values.
- The simulation was conducted with the same parameter variations as in case of

experimentation with individual pattern, i.e. “Somebody is walking alongside something”.
- It was observed that by increasing time intervals for collecting samples, the time required for

pattern recognition has extended, despite setting small event batch size (sampling size). The
same observation was made when events batch size was set to bigger values while time
intervals were small.

- The distance threshold did not have an impact on the speed of reporting a pattern, but the
increased values caused registration of the pattern when agent was far away from the object.
On the other hand, very small values had caused a situation where pattern was only registered
when agent was in very close proximity of an object.

- The threshold responsible for selecting the closest object had not have a greater impact on the
recognition of the pattern due to presence of only few identified static objects located too far
away from each other within the scene.

Optimal configuration found
groupWalkAlongInterval 0.2s
groupWalkAlongSamplingSize 2
groupWalkAlongDistanceToObject 70cm
groupClosestDistanceTreshold 60cm
Discussion

The optimal parameters were selected on a basis of the speed of reporting a pattern and low
discrepancies between log entries and pair movements. It was noted that by setting time intervals and
sampling sizes to low values it is possible to recognise a pattern almost instantly according to
timestamps recorded in the log. The distance threshold set to bigger values can help to identify a
pattern when agent is within greater distance to the object. Similarly to simulation of pattern in case
of individual agent, this implies that greater distance thresholds may produce more noisy data in
the log if a scene has greater number of identified static objects on relatively small area. In such
case, increasing sampling size and collection intervals may reduce the number of entries. Higher
distance thresholds are more suitable to recognise this pattern in more open spaces with less static
objects.

297

Table A.4-18. Analysis of experimental results in simulating the pattern “Group / Pair climbs something”

Log file output
19/03/2017 13:29:47 :: pair-185408 CLIMBS static-Stairs_ID1 UP
19/03/2017 13:30:00 :: pair-185408 CLIMBS static-Stairs_ID1 DOWN
Range of parameters Type Range (min, max)
groupClimbInterval seconds 0.05s 6s
groupClimbSamplingSize size number 10 50
groupClosestDistanceTreshold centimetres 10cm 10cm
Impact of the parameter variation

- The simulation was initiated with default parameter values.
- The simulation was conducted with the same parameter variations as in case of

experimentation with individual pattern, i.e. “Somebody climbs something”.
- It was observed that by increasing time intervals for collecting samples, the time required for

pattern recognition has extended, despite setting small event batch size (sampling size). The
same observation was made when events batch size was set to bigger values while time
intervals were small.

- The threshold responsible for selecting the closest object had not have a greater impact on the
recognition of the pattern. It is caused by the fact that the incorporation of this parameter into
event capturing method for this pattern was made on a basis of reusing the existing code.
Hence it does not influence the process of pattern recognition in any way.

Optimal configuration found
groupClimbInterval 0.5s
groupClimbSamplingSize 3
groupClosestDistanceTreshold 10cm
Discussion

The optimal parameters were selected on a basis of the speed of reporting a pattern and low
discrepancies between log entries and pair movements. It was noted that by setting time intervals and
sampling sizes to low values it is possible to recognise a pattern within 2-3 seconds according to
timestamps recorded in the log. During the experimentation it was observed that lower values of
both parameters would be preferable in scenes in which stairs possess smaller number of steps.
This is due to the fact that higher values may prevent capturing a sufficient number of events to execute
a sampling procedure in order to successfully recognise a pattern in time. However, higher values are
more suitable for scenes in which stairs possess greater number of steps as they prevent
generating unnecessarily big number of entries in the log file and consequently reducing overall
noise of produced analytic data. The experimental results of this pattern are similar to the
experimental results of simulating individual pattern, i.e. “Somebody climbs something”.

298

A.5. Behavioural Pattern Language Grammar in EBNF notation

Object ::= Static-Object | Dynamic-Object | Actor
Static-Object ::= ‘static-‘ Identifier
Dynamic-Object ::= ‘dynamic-‘ Identifier

Actor ::= ‘actor-‘ Identifier
Participant ::= ‘participant-‘ Actor ‘in group’ Group

 | ‘participant-‘ Actor ‘in pair with’ Pair

Group ::= ‘group-‘ Identifier
Pair ::= ‘pair-‘ Identifier

Action ::= Active-Action | Dynamic-Action | Passive-Action | Group-Action

Active-Action ::= (Actor | Participant) Motion-Action

 | (Actor | Participant) Interactive-Action
 | (Actor | Participant) (FALLS DOWN | STANDS UP)
 | (Actor | Participant) LOOKS (Vertical-Direction | Horizontal-Direction)

Dynamic-Action ::= (Static-Object | Dynamic-Object) Passive-Action-Descriptor Object

Passive-Action ::= Static-Object Passive-Action-Descriptor Object

Group-Action ::= (Group | Pair) Motion-Action
 | (Group | Pair) Interactive-Action

System-Action ::= System-Action-Descriptor System-Unit-Descriptor

Motion-Action ::= Motion-Action-Descriptor Relative-Motion-Descriptor Object
 | Motion-Action-Descriptor (Vector-Direction | Vertical-Direction)
 | CLIMBS Static-Object Vertical-Direction
 | CLIMBS ON Static-Object
 | TURNS Horizontal-Direction

Interactive-Action ::= (Interactive-Action-Descriptor | Passive-Action-Descriptor) (Static-Object | Dynamic-Object)

Motion-Action-Descriptor ::= MOVES | WALKS | RUNS
Relative-Motion-Descriptor ::= ALONG | TOWARDS | AWAY FROM
Passive-Action-Descriptor ::= PUSHES | PULLS | KNOCKS DOWN | PICKS UP

 | DROPS DOWN

Interactive-Action-Descriptor ::= | REACHES OUT FOR | LOOKS AT

 | KICKS | PUNCHES | THROWS | HITS | HEADBUTTS

System-Action-Descriptor ::= CALL | SEND | REQUEST | RECEIVE
System-Unit-Descriptor ::= STAFF | POLICE | FIRE BRIGADE | BOMB SQUAD

Follow-Up-Action ::= Dynamic-Object Interactive-Action-Descriptor Object ‘following’ (Action | Event)

Reaction ::= (Actor | Participant) Interactive-Action ‘in response to’ (Action | Event)

Direction ::= Vector-Direction | Vertical-Direction | Horizontal-Direction
Vector-Direction ::= FORWARDS | BACKWARDS
Vertical-Direction ::= UP | DOWN
Horizontal-Direction ::= LEFT | RIGHT

Event ::= Asynchronous-Event | Change-Event | Cause-Event | Sequence-Event
 | Change-Event | Result-Group-Event

Asynchronous-Event ::= Static-Object Asynchronous-Event-Descriptor

Change-Event ::= (Static-Object | Dynamic-Object) ‘has’ Change-Event-Descriptor

Result-Event ::= (Active-Action | Group-Action) ‘results in’ Change-Event

299

Cause-Event ::= Event ‘causes’ Event

Sequence-Event ::= Event ‘follows’ Event

Result-Group-Event ::= Actor ‘and’ Actor ‘formed a’ Pair

 | Actor ‘and’ Pair ‘formed a’ Group
 | Pair ‘and’ Group ‘formed a’ Group
 | Actor ‘joined’ Group

 | Participant ‘left’ Group
 | Group ‘merged with’ Group
 | (Pair | Group) ‘disbands’

Asynchronous-Event-Descriptor ::= GOES OFF | FALLS DOWN | APPEARS

 | DISAPPEARS | TURNS ON | TURNS OFF | OPENS |
 | CLOSES | BLOCKS | UNBLOCKS

Change-Event-Descriptor ::= OPENED | CLOSED | MOVED | TURNED ON
 | TURNED OFF | FELL DOWN

State ::= (Actor | Participant | Pair | Group) ‘is’ State-Actor-Descriptor
 | (Static-Object | Dynamic-Object) (‘is’ | ‘are’) State-Object-Descriptor

Configuration ::= State

 | State ; Configuration
 | ‘at current time’ (Actor | Participant | Pair | Group) ‘is’ State-Actor-Descriptor

 | ‘at current time’ (Static-Object | Dynamic-Object) ‘is’ State-Object-Descriptor
 | ‘for the past’ digit (‘minutes’ | ‘hour’) (Actor | Participant | Pair | Group) ‘was’ (State-Motion-
Descriptor | State-Actor-Descriptor)
 | ‘for the past’ digit (‘minutes’ | ‘hour’) (Static-Object | Dynamic-Object) ‘was’ (State-Motion-
Descriptor | State-Object-Descriptor)
 | ‘from’ Time-Descriptor ‘to’ Time-Descriptor (Actor | Participant | Pair | Group) ‘was’ (State-Motion-
Descriptor | State-Actor-Descriptor)
 | ‘from’ Time-Descriptor ‘to’ Time-Descriptor (Static-Object | Dynamic-Object) ‘was’ (State-Motion-
Descriptor | State-Object-Descriptor)

Situation ::= ‘at current time the situation is’ Situation-Descriptor
 | ‘for the past’ digit (‘minutes’ | ‘hours’) ‘the situation was’ Situation-Descriptor

 | ‘from’ Time-Descriptor ‘to’ Time-Descriptor ‘the situation was’ Situation-Descriptor

State-Motion-Descriptor ::= STILL | MOVING | FALLING | FLYING

State-Actor-Descriptor ::= ‘acting’ (VIOLENTLY | HARMFULLY | ERRATICALLY

 | SUSPICIOUSLY | RISKY | UNCONCIOUSLY | NORMALLY)
 | LAYING ON THE (FLOOR | Static-Object)

State-Object-Descriptor ::= OPEN | CLOSED | BLOCKED
 | UNBLOCKED | ON | OFF

 | LAYING ON THE (FLOOR | Static-Object)

Situation-Descriptor ::= NORMAL | SUSPICIOUS | HAZARDOUS | DANGEROUS

Time-Descriptor ::= ‘[‘ digit ‘:’ digit ‘]’

Expressions ::= Action | Action ; Expression
 | Event | Event ; Expression
 | Configuration | Configuration ; Expression
 | Situation | Situation ; Expression
 | ‘if’ … ‘else’ …

300

A.6. XML schema of the configuration file

<xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="config">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="parameterSet" maxOccurs="unbounded" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="parameter" maxOccurs="unbounded" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element type="xs:string" name="name"/>
 <xs:element type="xs:float" name="value"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute type="xs:string" name="class" use="optional"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

A.7. XML schema of the streamlined data files

<xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="streamInput">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="parameterSet">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="parameter">
 <xs:complexType>
 <xs:sequence>
 <xs:element type="xs:string" name="name"/>
 <xs:element name="value">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="agents">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="agent" maxOccurs="unbounded" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="location">
 <xs:complexType>
 <xs:sequence>
 <xs:element type="xs:float" name="vectorX"/>
 <xs:element type="xs:float" name="vectorY"/>
 <xs:element type="xs:float" name="vectorZ"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="viewDirection">
 <xs:complexType>
 <xs:sequence>

301

 <xs:element type="xs:float" name="vectorX"/>
 <xs:element type="xs:float" name="vectorY"/>
 <xs:element type="xs:float" name="vectorZ"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute type="xs:string" name="id" use="optional"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute type="xs:byte" name="number"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute type="xs:string" name="class"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

302

A.8. A detailed list of default parameters used by the simulator.

D

ef
au

lt
Va

lu
e

0.
10

5 80

0.
3

0.
15

15

80

0.
05

10

10
0

0.
1

15

0.
9

10

0.
25

12

9 6

U
ni

t o
f

m
ea

su
re

m
en

t

se
co

nd
s

si
ze

 n
um

be
r

ce
nt

im
et

re
s

pe
rc

en
ta

ge

se
co

nd
s

si
ze

 n
um

be
r

ce
nt

im
et

re
s

se
co

nd
s

si
ze

 n
um

be
r

ce
nt

im
et

re
s

se
co

nd
s

si
ze

 n
um

be
r

se
co

nd
s

si
ze

 n
um

be
r

se
co

nd
s

de
ci

m
et

re
s

de
ci

m
et

re
s

de
ci

m
et

re
s

Va
lu

e
Ty

pe

Fl
oa

tin
g-

po
in

t

In
te

ge
r

Fl
oa

tin
g-

po
in

t

Fl
oa

tin
g-

po
in

t

Fl
oa

tin
g-

po
in

t

In
te

ge
r

Fl
oa

tin
g-

po
in

t

Fl
oa

tin
g-

po
in

t

In
te

ge
r

Fl
oa

tin
g-

po
in

t

Fl
oa

tin
g-

po
in

t

In
te

ge
r

Fl
oa

tin
g-

po
in

t

In
te

ge
r

Fl
oa

tin
g-

po
in

t

Fl
oa

tin
g-

po
in

t

Fl
oa

tin
g-

po
in

t

Fl
oa

tin
g-

po
in

t

Pa
ra

m
et

er
 n

am
e

w
al

kT
ow

ar
ds

In
te

rv
al

w
al

kT
ow

ar
ds

Sa
m

pl
in

gS
iz

e

w
al

kT
ow

ar
ds

D
is

ta
nc

eT
re

sh
ol

d

w
al

kT
ow

ar
ds

O
ve

ra
llD

ire
ct

io
nP

ro
xi

m
ity

Tr
es

ho
ld

w
al

kA
w

ay
In

te
rv

al

w
al

kA
w

ay
S

am
pl

in
gS

iz
e

w
al

kA
w

ay
D

is
ta

nc
eT

re
sh

ol
d

w
al

kA
lo

ng
In

te
rv

al

w
al

kA
lo

ng
S

am
pl

in
gS

iz
e

w
al

kA
lo

ng
D

is
ta

nc
eT

oO
bj

ec
t

cl
im

bI
nt

er
va

l

cl
im

bS
am

pl
in

gS
iz

e

ca
rr

yI
nt

er
va

l

ca
rr

yS
am

pl
in

gS
iz

e

pi
ck

U
pI

nt
er

va
l

re
ac

hO
ut

H
an

dD
is

ta
nc

eT
oR

ig
ht

Lo
w

A
rm

M
in

re
ac

hO
ut

H
an

dD
is

ta
nc

eT
oC

en
te

rP
iv

ot
M

in

re
ac

hO
ut

R
ig

ht
Lo

w
A

rm
D

is
ta

nc
eT

oC
en

te
rP

iv
ot

M
in

Pa
tte

rn
 n

am
e

 “S
om

eb
od

y
is

 w
al

ki
ng

to

w
ar

ds
 s

om
et

hi
ng

”

“S
om

eb
od

y
is

 w
al

ki
ng

 a

w
ay

 fr
om

 s
om

et
hi

ng
”

“S
om

eb
od

y
w

al
ks

al

on
gs

id
e

so
m

et
hi

ng
”

“S
om

eb
od

y
cl

im
bs

so

m
et

hi
ng

”

“S
om

eb
od

y
ho

ld
s

so
m

et
hi

ng
 o

ve
r /

 p
la

ce
s

so
m

et
hi

ng
 o

n
to

p
of

so

m
et

hi
ng

”

“S
om

eb
od

y
pi

ck
s

up
 /

re
ac

he
s

ou
t f

or
 /

ca
rry

so

m
et

hi
ng

”

303

D
ef

au
lt

Va
lu

e

0.
2

5.
2

10

9 0.
2

8 12

12
.5

10

0.
25

1.
5

1 11

1.
5

5 0.
02

0.
8

46

52

U
ni

t o
f

m
ea

su
re

m
en

t

se
co

nd
s

de
ci

m
et

re
s

de
ci

m
et

re
s

de
ci

m
et

re
s

se
co

nd
s

de
ci

m
et

re
s

de
ci

m
et

re
s

de
ci

m
et

re
s

de
ci

m
et

re
s

se
co

nd
s

se
co

nd
s

de
ci

m
et

re
s

de
ci

m
et

re
s

se
co

nd
s

de
ci

m
et

re
s

se
co

nd
s

se
co

nd
s

de
ci

m
et

re
s

de
ci

m
et

re
s

Va
lu

e
Ty

pe

Fl
oa

tin
g-

po
in

t

Fl
oa

tin
g-

po
in

t

Fl
oa

tin
g-

po
in

t

Fl
oa

tin
g-

po
in

t

Fl
oa

tin
g-

po
in

t

Fl
oa

tin
g-

po
in

t

Fl
oa

tin
g-

po
in

t

Fl
oa

tin
g-

po
in

t

Fl
oa

tin
g-

po
in

t

Fl
oa

tin
g-

po
in

t

Fl
oa

tin
g-

po
in

t

Fl
oa

tin
g-

po
in

t

Fl
oa

tin
g-

po
in

t

Fl
oa

tin
g-

po
in

t

Fl
oa

tin
g-

po
in

t

Fl
oa

tin
g-

po
in

t

Fl
oa

tin
g-

po
in

t

Fl
oa

tin
g-

po
in

t

Fl
oa

tin
g-

po
in

t

Pa
ra

m
et

er
 n

am
e

lim
bs

In
te

rv
al

lim
bP

un
ch

H
an

dD
is

ta
nc

eT
oR

ig
ht

Lo
w

A
rm

M
in

lim
bP

un
ch

H
an

dD
is

ta
nc

eT
oC

en
te

rP
iv

ot
M

in

lim
bP

un
ch

H
an

dR
ig

ht
Lo

w
A

rm
D

is
ta

nc
eT

oC
en

te
rP

iv
ot

M
in

lim
bs

In
te

rv
al

lim
bK

ic
kL

eg
D

is
ta

nc
eT

oR
ig

ht
Lo

w
Le

gM
in

lim
bK

ic
kL

eg
D

is
ta

nc
eT

oL
ef

tF
oo

tL
eg

M
in

lim
bK

ic
kL

eg
D

is
ta

nc
eT

oC
en

te
rP

iv
ot

M
in

lim
bK

ic
kL

eg
R

ig
ht

Lo
w

Le
gD

is
ta

nc
eT

oC
en

te
rP

iv
ot

M
in

pa
ss

O
ve

rIn
te

rv
al

pa
ss

O
ve

rC
oo

lD
ow

nI
nt

er
va

l

pa
ss

O
ve

rL
im

bs
D

is
ta

nc
eM

in
Li

m
it

pa
ss

O
ve

rL
im

bs
D

is
ta

nc
eM

ax
Li

m
it

dr
op

D
ow

nC
oo

lD
ow

nI
nt

er
va

l

dr
op

D
ow

nD
is

ta
nc

eF
ro

m
O

bj
ec

tM
in

he
ad

M
ov

eI
nt

er
va

l

he
ad

M
ov

eC
oo

lD
ow

nI
nt

er
va

l

he
ad

M
ov

eL
ef

tM
in

he
ad

M
ov

eL
ef

tM
ax

Pa
tte

rn
 n

am
e

 “S
om

eb
od

y
pu

nc
he

s
so

m
et

hi
ng

 /
so

m
eb

od
y”

 “S
om

eb
od

y
ki

ck
s

so
m

et
hi

ng
 /

so
m

eb
od

y”

 “S
om

eb
od

y
pa

ss
es

 o
ve

r s
om

et
hi

ng

to
 s

om
eb

od
y”

“S
om

eb
od

y
dr

op
s

do
w

n
so

m
et

hi
ng

”

 “S
om

eb
od

y
lo

ok
s

le
ft”

304

D
ef

au
lt

Va
lu

e

0.
02

0.
8

13
0

13
2

0.
02

0.
8

66

67

0.
02

0.
8

12
3

12
5

1.
5

50

1.
5

50

1.
5

70

U
ni

t o
f

m
ea

su
re

m
en

t

se
co

nd
s

se
co

nd
s

an
gl

e
de

gr
ee

s

an
gl

e
de

gr
ee

s

se
co

nd
s

se
co

nd
s

an
gl

e
de

gr
ee

s

an
gl

e
de

gr
ee

s

se
co

nd
s

se
co

nd
s

an
gl

e
de

gr
ee

s

an
gl

e
de

gr
ee

s

se
co

nd
s

ce
nt

im
et

re
s

se
co

nd
s

ce
nt

im
et

re
s

se
co

nd
s

ce
nt

im
et

re
s

Va
lu

e
Ty

pe

Fl
oa

tin
g-

po
in

t

Fl
oa

tin
g-

po
in

t

Fl
oa

tin
g-

po
in

t

Fl
oa

tin
g-

po
in

t

Fl
oa

tin
g-

po
in

t

Fl
oa

tin
g-

po
in

t

Fl
oa

tin
g-

po
in

t

Fl
oa

tin
g-

po
in

t
Fl

oa
tin

g-
po

in
t

Fl
oa

tin
g-

po
in

t

Fl
oa

tin
g-

po
in

t

Fl
oa

tin
g-

po
in

t

Fl
oa

tin
g-

po
in

t

Fl
oa

tin
g-

po
in

t

Fl
oa

tin
g-

po
in

t

Fl
oa

tin
g-

po
in

t

Fl
oa

tin
g-

po
in

t

Fl
oa

tin
g-

po
in

t

Fl
oa

tin
g-

po
in

t

Pa
ra

m
et

er
 n

am
e

he
ad

M
ov

eI
nt

er
va

l

he
ad

M
ov

eC
oo

lD
ow

nI
nt

er
va

l

he
ad

M
ov

eR
ig

ht
M

in

he
ad

M
ov

eR
ig

ht
M

ax

he
ad

M
ov

eI
nt

er
va

l

he
ad

M
ov

eC
oo

lD
ow

nI
nt

er
va

l

he
ad

M
ov

eU
pM

in

he
ad

M
ov

eU
pM

ax

 he
ad

M
ov

eI
nt

er
va

l

he
ad

M
ov

eC
oo

lD
ow

nI
nt

er
va

l

he
ad

M
ov

eD
ow

nM
in

he
ad

M
ov

eD
ow

nM
ax

gr
ou

pF
or

m
S

et
In

te
rv

al

gr
ou

pF
or

m
P

ro
xi

m
ity

D
is

ta
nc

e

gr
ou

pF
or

m
S

et
In

te
rv

al

gr
ou

pF
or

m
P

ro
xi

m
ity

D
is

ta
nc

e

gr
ou

pF
or

m
S

et
In

te
rv

al

gr
ou

pF
or

m
P

ro
xi

m
ity

Le
av

in
gD

is
ta

nc
e

Pa
tte

rn
 n

am
e

 “S
om

eb
od

y
lo

ok
s

rig
ht

”

 “S
om

eb
od

y
lo

ok
s

up
”

 “S
om

eb
od

y
lo

ok
s

do
w

n”

“S
om

eb
od

y
an

d
so

m
eb

od
y

fo
rm

 a
 P

ai
r”

“S
om

eb
od

y
jo

in
s

a
G

ro
up

”

“S
om

eb
od

y
le

av
es

 a
 G

ro
up

”

305

D
ef

au
lt

Va
lu

e

0.
1

10

5 0.
1

5 80

0.
3

80

0.
15

15

80

80

0.
05

10

10
0

 80

0.
1

8 80

U
ni

t o
f

m
ea

su
re

m
en

t

se
co

nd
s

si
ze

 n
um

be
r

de
ci

m
et

re
s

se
co

nd
s

si
ze

 n
um

be
r

ce
nt

im
et

re
s

pe
rc

en
ta

ge

ce
nt

im
et

re
s

se
co

nd
s

si
ze

 n
um

be
r

ce
nt

im
et

re
s

ce
nt

im
et

re
s

se
co

nd
s

si
ze

 n
um

be
r

ce
nt

im
et

re
s

ce
nt

im
et

re
s

se
co

nd
s

si
ze

 n
um

be
r

ce
nt

im
et

re
s

Va
lu

e
Ty

pe

Fl
oa

tin
g-

po
in

t

In
te

ge
r

Fl
oa

tin
g-

po
in

t

Fl
oa

tin
g-

po
in

t

In
te

ge
r

Fl
oa

tin
g-

po
in

t

Fl
oa

tin
g-

po
in

t

Fl
oa

tin
g-

po
in

t

Fl
oa

tin
g-

po
in

t

In
te

ge
r

Fl
oa

tin
g-

po
in

t

Fl
oa

tin
g-

po
in

t

Fl
oa

tin
g-

po
in

t

In
te

ge
r

Fl
oa

tin
g-

po
in

t

Fl
oa

tin
g-

po
in

t

Fl
oa

tin
g-

po
in

t

In
te

ge
r

Fl
oa

tin
g-

po
in

t

Pa
ra

m
et

er
 n

am
e

gr
ou

pG
es

tu
re

sI
nt

er
va

l

gr
ou

pG
es

tu
re

sS
am

pl
in

gS
iz

e

gr
ou

pG
es

tu
re

sH
an

dS
ha

ke
Li

m
bs

P
ro

xi
m

ity

gr
ou

pW
al

kT
ow

ar
ds

In
te

rv
al

gr
ou

pW
al

kT
ow

ar
ds

S
am

pl
in

gS
iz

e

gr
ou

pW
al

kT
ow

ar
ds

D
is

ta
nc

eT
re

sh
ol

d

gr
ou

pW
al

kT
ow

ar
ds

O
ve

ra
llD

ire
ct

io
nP

ro
xi

m
ity

Tr
es

ho
ld

gr
ou

pC
lo

se
st

D
is

ta
nc

eT
re

sh
ol

d

gr
ou

pW
al

kA
w

ay
In

te
rv

al

gr
ou

pW
al

kA
w

ay
S

am
pl

in
gS

iz
e

gr
ou

pW
al

kA
w

ay
D

is
ta

nc
eT

re
sh

ol
d

 gr
ou

pC
lo

se
st

D
is

ta
nc

eT
re

sh
ol

d

gr
ou

pW
al

kA
lo

ng
In

te
rv

al

gr
ou

pW
al

kA
lo

ng
S

am
pl

in
gS

iz
e

gr
ou

pW
al

kA
lo

ng
D

is
ta

nc
eT

oO
bj

ec
t

 gr
ou

pC
lo

se
st

D
is

ta
nc

eT
re

sh
ol

d

gr
ou

pC
lim

bI
nt

er
va

l

gr
ou

pC
lim

bS
am

pl
in

gS
iz

e

gr
ou

pC
lo

se
st

D
is

ta
nc

eT
re

sh
ol

d

Pa
tte

rn
 n

am
e

 “S
om

eb
od

y
m

ak
es

 h
an

ds
ha

ke
 w

ith

so
m

eb
od

y”

 “G
ro

up
 /

Pa
ir

m
ov

es
 to

w
ar

ds

so
m

et
hi

ng
”

 “G
ro

up
 /

Pa
ir

m
ov

es
 a

w
ay

 fr
om

so

m
et

hi
ng

”

 “G
ro

up
 /

Pa
ir

m
ov

es
 a

lo
ng

si
de

so

m
et

hi
ng

”

“G
ro

up
 /

Pa
ir

cl
im

bs

so
m

et
hi

ng
”

306

A.9 Sample XML data file generated in interactive mode

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<video>

 <movementSet class="VideoState">

 <agents number="1">

 <agent id="agent-ID0">

 <movement counter="1" counterID="agent-ID0-1" frameRate="0.5066449" time="15-10-2017-15-

11-52" tpf="0.0" tpfSinceLast="1.973769">

 <globalPosition>

 <vectorX>161.19113</vectorX>

 <vectorY>4.3999987</vectorY>

 <vectorZ>51.879482</vectorZ>

 </globalPosition>

 <walkDirection direction="">

 <vectorX>0.0</vectorX>

 <vectorY>0.0</vectorY>

 <vectorZ>0.0</vectorZ>

 </walkDirection>

 <viewDirection direction="none" directionValue="0.0">

 <vectorX>-0.87773573</vectorX>

 <vectorY>0.0</vectorY>

 <vectorZ>0.48221964</vectorZ>

 </viewDirection>

 </movement>

 <movement counter="2" counterID="agent-ID0-2" frameRate="2.146515" time="15-10-2017-15-11-

52" tpf="1.973769" tpfSinceLast="0.46587142">

 <globalPosition>

 <vectorX>161.19113</vectorX>

 <vectorY>4.3951845</vectorY>

 <vectorZ>51.879482</vectorZ>

 </globalPosition>

 <walkDirection direction="">

 <vectorX>0.0</vectorX>

 <vectorY>0.0</vectorY>

 <vectorZ>0.0</vectorZ>

 </walkDirection>

 <viewDirection direction="none" directionValue="0.0">

 <vectorX>-0.87773573</vectorX>

 <vectorY>0.0</vectorY>

 <vectorZ>0.48221964</vectorZ>

 </viewDirection>

 </movement>

 […]

307

 <movement counter="280" counterID="agent-ID0-280" frameRate="30.299955" time="15-10-2017-15-

11-54" tpf="12.3829565" tpfSinceLast="0.03300335">

 <globalPosition>

 <vectorX>136.80289</vectorX>

 <vectorY>4.398747</vectorY>

 <vectorZ>88.1191</vectorZ>

 </globalPosition>

 <walkDirection direction="forward">

 <vectorX>0.0</vectorX>

 <vectorY>0.0</vectorY>

 <vectorZ>0.0</vectorZ>

 </walkDirection>

 <viewDirection direction="none" directionValue="-3.1415927">

 <vectorX>-0.09739578</vectorX>

 <vectorY>0.0</vectorY>

 <vectorZ>0.9967296</vectorZ>

 </viewDirection>

 </movement>

 <movement counter="281" counterID="agent-ID0-281" frameRate="30.20945" time="15-10-2017-15-

11-54" tpf="12.41596" tpfSinceLast="0.033102226">

 <globalPosition>

 <vectorX>136.80289</vectorX>

 <vectorY>4.398989</vectorY>

 <vectorZ>88.1191</vectorZ>

 </globalPosition>

 <walkDirection direction="forward">

 <vectorX>0.0</vectorX>

 <vectorY>0.0</vectorY>

 <vectorZ>0.0</vectorZ>

 </walkDirection>

 <viewDirection direction="none" directionValue="-3.1415927">

 <vectorX>-0.09739578</vectorX>

 <vectorY>0.0</vectorY>

 <vectorZ>0.9967296</vectorZ>

 </viewDirection>

 </movement>

 </agent>

 </agents>

 </movementSet>

</video>

