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Abstract

This thesis introduces two general classes of models for analyzing proportion response variable

when the response variable Y can take values between zero and one, inclusive of zero and/or

one. The models are inflated GAMLSS model and generalized Tobit GAMLSS model. The inflated

GAMLSS model extends the flexibility of beta inflated models by allowing the distribution on

(0,1) of the continuous component of the dependent variable to come from any explicit or

transformed (i.e. logit or truncated) distribution on (0,1) including highly skewed and/or kurtotic

or bimodal distributions. The second proposed general class of model is the generalized Tobit

GAMLSS model. The generalized Tobit GAMLSS model relaxes the underlying normal distribution

assumption of the latent variable in the Tobit model to a very general class of distribution on the

real line. The thesis also provides likelihood inference and diagnostic and model selection tools

for these classes of models. Applications of both the models are conducted using different sets

of data to check the robustness of the proposed models. The originality of the thesis starts from

chapter 4 and in particular chapter 5, 6 and 7 with applications of models in chapter 8, 9 and 10.



Table of contents

List of figures xii

List of tables xvi

Nomenclature xvii

1 Introduction 1

1.1 Background and introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 GAMLSS framework and proposed contributions . . . . . . . . . . . . . . . . 4

1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Review of models for proportion data on [0,1), (0,1] and [0,1] 8

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 PW fractional response regression . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Tobit model (Tobin, 1958) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Two limit Tobit model (Rosett and Nelson, 1975) . . . . . . . . . . . . . . . . 12

2.5 Censored gamma regression (Sigrist and Stahel, 2010) . . . . . . . . . . . . . 13

2.6 Inverse Gaussian regression (IGR) . . . . . . . . . . . . . . . . . . . . . . . . 14

2.7 Inverse Gaussian regression with beta transformation (IGR-BT) (Gupton and

Stein, 2005) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.8 Two-step approach (Gürtler and Hibbeln, 2013) . . . . . . . . . . . . . . . . . 15

2.9 Beta inflated model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16



Table of contents vii

2.9.1 Beta distribution inflated at 0 (BEINF0) . . . . . . . . . . . . . . . . . 16

2.9.2 Beta inflated distribution at 1 (BEINF1) . . . . . . . . . . . . . . . . . 18

2.9.3 Beta inflated distribution at 0 and 1, BEINF(µ,σ ,ν ,τ) . . . . . . . . . 20

3 Distributions on (0,1) 26

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.1 Beta distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.2 Arcsine distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.3 Kumarasawamy distribution . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.4 Generalised beta distribution . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.4.1 Generalised beta type 1 (GB1) . . . . . . . . . . . . . . . . 31

3.1.4.2 Generalised beta distribution type 3 (G3B) . . . . . . . . . . 32

3.1.5 Triangular Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.6 Simplex distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.7 Logit distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.7.1 Logit normal distribution . . . . . . . . . . . . . . . . . . . 36

3.1.7.2 Logit skew t type 3 distribution . . . . . . . . . . . . . . . . 38

3.1.8 Truncated distributions . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.8.1 Below truncation . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.8.2 Above truncation . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.8.3 Both truncation . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Bimodal skew symmetric normal (BSSN) distribution 45

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Bi-modal skew symmetric normal distribution and its logit transformation . . . 46

4.2.1 Maximum likelihood estimation of BSSN . . . . . . . . . . . . . . . . 48

4.3 R implementation of BSSN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3.0.1 Functions used in R implementation of BSSN . . . . . . . . 49

4.3.1 Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50



Table of contents viii

4.3.2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.3 Use of BSSN function . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 General inflated GAMLSS model on the unit interval 53

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 General distribution on (0,1) inflated at 0 and/or 1 . . . . . . . . . . . . . . . . 53

5.3 Model Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.4 Model components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.4.1 Population distribution fY (y|ψ) . . . . . . . . . . . . . . . . . . . . . 57

5.4.2 Link function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.4.3 The predictor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.4.3.1 Parametric terms . . . . . . . . . . . . . . . . . . . . . . . 59

5.4.3.2 Penalized splines term . . . . . . . . . . . . . . . . . . . . . 59

5.4.4 Model estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.4.5 Local estimation of smoothing parameter λ . . . . . . . . . . . . . . . 62

5.4.5.1 Local random effect model . . . . . . . . . . . . . . . . . . 62

5.4.5.2 Local generalized Akaike information criteron . . . . . . . . 63

5.4.5.3 Local generalised cross validation criteron . . . . . . . . . . 63

5.4.6 Model Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.4.6.1 Residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.4.6.2 Global goodness-of-fit measure . . . . . . . . . . . . . . . . 67

5.4.7 Inflated logit skew t distribution: An example of an inflated GAMLSS model 67

5.4.8 Inflated truncated skew power exponential: An example of an inflated

GAMLSS model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6 Generalized Tobit GAMLSS model 73

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.2 Tobit model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.3 Generalized Tobit model for 0 ≤ y ≤ 1 . . . . . . . . . . . . . . . . . . . . . . 75



Table of contents ix

6.3.1 Generalised Tobit model for 0 ≤ y < 1 and 0 < y ≤ 1 . . . . . . . . . . 76

6.4 Generalized Tobit GAMLSS model . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.4.1 Likelihood inference . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.4.2 Residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.5 Interval censored BSSN distribution: An example of the generalized Tobit

GAMLSS model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7 The GAMLSSinf package in R 83

7.1 Distributions on (0,1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.1.1 Explicit distributions on (0,1) . . . . . . . . . . . . . . . . . . . . . . 84

7.1.2 Logit distributions on (0,1) . . . . . . . . . . . . . . . . . . . . . . . 85

7.2 Truncated distributions on (0,1) . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.3 Generating inflated distributions on [0,1] . . . . . . . . . . . . . . . . . . . . . 87

7.4 Plotting inflated distributions on [0,1] . . . . . . . . . . . . . . . . . . . . . . 89

7.5 Fitting a distributions on [0,1] . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.5.1 The gamlssInf0to1() function . . . . . . . . . . . . . . . . . . . . . 93

7.5.2 Simulating data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.5.3 Fitting a distributions on [0,1) . . . . . . . . . . . . . . . . . . . . . . 97

7.5.4 Fitting a distributions on (0,1] . . . . . . . . . . . . . . . . . . . . . . 103

7.5.5 Fitting a distribution on [0,1] . . . . . . . . . . . . . . . . . . . . . . 107

8 Analysis of a proportion response variable on (0,1] 114

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8.2 Statistical methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8.2.1 LMS centile estimation method and extensions . . . . . . . . . . . . . 117

8.2.2 General model for centile estimation . . . . . . . . . . . . . . . . . . 118

8.2.3 Logit skew student t distribution (logitSST) . . . . . . . . . . . . . . . 119

8.2.4 LogitSST distribution inflated at 1 . . . . . . . . . . . . . . . . . . . . 120

8.2.5 Generalized Tobit model . . . . . . . . . . . . . . . . . . . . . . . . . 121



Table of contents x

8.3 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

8.3.1 Data and fitted models . . . . . . . . . . . . . . . . . . . . . . . . . . 122

8.3.2 Centile estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

8.3.3 Data analysis using two explanatory variables . . . . . . . . . . . . . . 127

8.3.4 Model checking using residual based diagnostics . . . . . . . . . . . . 136

8.3.4.1 Worm Plots . . . . . . . . . . . . . . . . . . . . . . . . . . 136

8.3.4.2 Z and Q statistics . . . . . . . . . . . . . . . . . . . . . . . 139

8.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

9 Application of proposed models to a response variable on [0,1) 147

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

9.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

9.3 Inflated at 0 GAMLSS model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

9.4 Generalised Tobit model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

9.5 Model selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

9.6 Residual based diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

9.6.1 Worm plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

9.7 Fitted centile curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

9.8 Fitted distributions of Y = (1−AMM) for different values of PA . . . . . . . . 159

9.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

10 Application on loss given default, a proportion response on [0,1] 164

10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

10.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

10.3 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

10.3.1 Logit distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

10.3.2 Logit distribution, inflated at 0 and 1 . . . . . . . . . . . . . . . . . . . 169

10.3.3 Inflated logit distribution with global adjustment . . . . . . . . . . . . 172

10.4 Generalized Tobit model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173



Table of contents xi

10.4.1 Inflated truncated censored model . . . . . . . . . . . . . . . . . . . . 174

10.4.2 Model selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

10.4.3 Residuals of the fitted model . . . . . . . . . . . . . . . . . . . . . . . 177

10.4.4 Fitted distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

10.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

11 Conclusion and Future developments 181

11.1 Originality of inflated GAMLSS model . . . . . . . . . . . . . . . . . . . . . . . 181

11.2 Important applications of inflated GAMLSS model . . . . . . . . . . . . . . . . . 182

11.3 Originality of the generalized Tobit GAMLSS model . . . . . . . . . . . . . . . . 183

11.4 Limitations and future developments . . . . . . . . . . . . . . . . . . . . . . . 184

11.4.1 Future developments . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

References 186

Appendix A R code for application on lung function data 193

Appendix B R code for the application on PASS scheme data 199

Appendix C R code for the application on LGD data [0,1] 203

Appendix D Box-Cox t distribution 207

Appendix E R code for bi modal skew symmetric normal distribution 208

Appendix F R code for Spirometric data analysis using two explanatory variables 216

Appendix G Help file for BSSN distribution in R 224



List of figures

2.1 Pdfs of BEINF0, BEINF1, BEINF and BE distribution. . . . . . . . . . . . . . 24

3.1 Pdfs of beta distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Pdfs of Kumaraswamy distribution. . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Pdfs of GB1 distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Pdfs of triangular distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 Pdfs of simplex distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.6 Pdfs of NO and logit-normal distribution. . . . . . . . . . . . . . . . . . . . . 37

3.7 Pdfs of SST and logitSST distribution. . . . . . . . . . . . . . . . . . . . . . . 39

3.8 Truncated pdfs of standard normal distribution. . . . . . . . . . . . . . . . . . 40

3.9 Truncated normal distribution below 0 and above 1 . . . . . . . . . . . . . . . 43

4.1 Shapes of the pdfs of BSSN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.1 Randomized quantile residual for inflated GAMLSS model. . . . . . . . . . . . 66

5.2 Pdfs of logitST3, logitST3Inf0, logitST3Inf1 and logitST3Inf0to1 distribution. . 69

6.1 Two sided version of Tobit model . . . . . . . . . . . . . . . . . . . . . . . . 75

6.2 Interval censored bimodal skew symmetric normal distribution . . . . . . . . . 81

7.1 A logit-t distribution: (a) with values µ = (−5,−1,0,1,5), σ = 1 and ν = 10,

(b) with values µ = 0, σ = (0.5,1,2,5) and ν = 10 and (c) with values µ = 0,

σ = 1 and ν = (1000,10,5,1). . . . . . . . . . . . . . . . . . . . . . . . . . . 86



List of figures xiii

7.2 A logit-SST distribution: (a) with values µ = 1, σ = 1, ν = 1, τ = 10. ξ0 = .1,

and ξ1 = .2 (b) with values µ =−1 σ = 2, ν = 1, τ = 10. ξ0 = .1, and ξ1 = .2

(c) with values µ = −1 σ = 2, ν = 1, τ = 10. ξ0 = .1, and ξ1 = .2 (d) with

values µ = 0 σ = 2, ν = 1, τ = 10. ξ0 = .1, and ξ1 = .2 (e) with values µ = 0

σ = 1, ν = 2, τ = 10. ξ0 = .1, and ξ1 = .2 (f) with values µ = 0 σ = 1, ν = 1,

τ = 3. ξ0 = .1, and ξ1 = .2 (g) with values µ = 0 σ = 1, ν = 2, τ = 3. ξ0 = .1,

and ξ1 = .2 (h) with values µ = 0 σ = 1, ν = 3, τ = 3. ξ0 = .1, and ξ1 = .2 . . 90

7.3 The (a) pdf (b) cdf (c) inverse cdf and (d) simulated data from an inflated

logitSST distribution with µ = 0, σ = 1, ν = .8, τ = 10. ξ0 = .1, and ξ1 = .2 . 92

7.4 Generated data using inflated beta distribution: with values µ = 0.3, σ = 0.3,

and ν = 0.15 for the distribution on [0,1), ν = 0.15 for the distribution on (0,1]

and ν = 0.1 and τ = 0.2 for the distribution on [0,1]. . . . . . . . . . . . . . . 97

7.5 Superimposed residuals from models t0 and g0. Because of the randomization

in the zero values of the response the lower part of the plot is not identical . . . 102

7.6 The fitted distribution using (a) gamlss() and (b) gamlssInf0to1() . . . . . 103

7.7 The fitted distribution using (a) gamlss() and (b) gamlssInf0to1() . . . . . 107

7.8 Superimposed residuals from models t01 and g01. Because of the randomiza-

tion the values differ when the response variable is at zero and one . . . . . . . 112

7.9 The fitted distribution using (a) gamlss() and (b) gamlssInf0to1() . . . . . 113

8.1 Frequency histogram and boxplot of observed variable Y (Y = FEV1/FVC) . . 123

8.2 Scatter plot with marginal histogram of observed variable Y (Y = FEV1/FVC)

against height . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

8.3 Centile curves for model a) LMS b) BEINF1 c) logitSSTInf1 d) Generalized

Tobit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8.4 Summary of Lung data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.5 Box plot of FEV1/FVC against age range . . . . . . . . . . . . . . . . . . . . 130

8.6 Box plot of FEV1/FVC against height range . . . . . . . . . . . . . . . . . . . 131

8.7 Scatter plot of FEV1/FVC against height and age . . . . . . . . . . . . . . . . 132



List of figures xiv

8.8 Residual plot for fitted model . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8.9 Centiles for height against age . . . . . . . . . . . . . . . . . . . . . . . . . . 135

8.10 Contour plot of the 5th centile of FEV1/FVC . . . . . . . . . . . . . . . . . . 136

8.11 Twin worm plot for LMS (dark points) and BEINF1 (light points) models. . . . 137

8.12 Twin worm plot for logitSSTInf1 (dark points) and Gen.Tobit (light points)

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

8.13 Z statistics for a) LMS b) BEINF1 c) logitSSTInf1 d) Generalised Tobit . . . . 141

8.14 Plot of the predicted pdf of Y for the logitSSTInf1 model for height, from top

left in rows 80, 100, 120, 140, 160, 180 (cm) . . . . . . . . . . . . . . . . . . . 143

8.15 Plot of the predicted pdf of Y for the BCCGorc model at height (80cm and 100cm)144

8.16 Plot of the predicted pdf of Y for the BCCGorc model at height (120cm and

140cm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

8.17 Plot of the predicted pdf of Y for the BCCGorc model at height (160cm and

180cm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

9.1 Scatter plot of average module mark as a proportion against proportion attendance149

9.2 Twin worm plot of logitST3Inf1 (light points) and BCTrc (dark points) . . . . . 156

9.3 Twin worm plot of Tobit model (light points) and BEINF1 (dark points . . . . . 157

9.4 Centile curves for model a) NOrc b) BEINF1 c) logitST3Inf1 d) Generalised

Tobit (BCTrc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

9.5 Predicted distribution for Y for the inflated logitST3 distribution for different

values of PA from top left in rows . . . . . . . . . . . . . . . . . . . . . . . . 160

9.6 Predicted value for attendance 10 % and 30 % . . . . . . . . . . . . . . . . . . 161

9.7 Predicted value for attendance 50 % and 70 % . . . . . . . . . . . . . . . . . . 162

9.8 Predicted value for attendance 80 % and 90 % . . . . . . . . . . . . . . . . . . 162

10.1 Summary of LGD data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

10.2 Distribution of observed SEVERITY . . . . . . . . . . . . . . . . . . . . . . . 168

10.3 PDF of lositBSSN and InflogitBSSN . . . . . . . . . . . . . . . . . . . . . . . 170

10.4 Worm plot of logitBSSNInf0to1 and BEINF . . . . . . . . . . . . . . . . . . . 177



List of figures xv

10.5 Worm plot of Tobit and GenTobit model . . . . . . . . . . . . . . . . . . . . . 178

10.6 Fitted distribution of the InflogitBSSN for six data cases . . . . . . . . . . . . 179



List of tables

8.1 Comparison of fitted models . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8.2 Comparison of fitted centile percentages . . . . . . . . . . . . . . . . . . . . . 126

8.3 Lung data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8.4 Number of subjects with age and height group with FEV1/FVC . . . . . . . . . 133

8.5 Chosen model for the parameters . . . . . . . . . . . . . . . . . . . . . . . . . 134

8.6 Q statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

8.7 Predicted parameter values using logitSSTInf1 . . . . . . . . . . . . . . . . . . 144

8.8 Predicted parameter values using BCCGorc . . . . . . . . . . . . . . . . . . . 145

9.1 Pass scheme data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

9.2 Relative quality of fitted models . . . . . . . . . . . . . . . . . . . . . . . . . 151

9.3 Fitted coefficient values (logitST3Inf1) . . . . . . . . . . . . . . . . . . . . . . 153

9.4 Fitted coefficient values (BCTrc) . . . . . . . . . . . . . . . . . . . . . . . . . 154

9.5 Fitted coefficient values (BEINF1) . . . . . . . . . . . . . . . . . . . . . . . . 154

9.6 Fitted coefficient values (NOrc) . . . . . . . . . . . . . . . . . . . . . . . . . . 155

9.7 Comparison of fitted centile percentages for Y = 1−AMM1 . . . . . . . . . . 159

9.8 Fitted parameter values for the logitST3Inf1 model for different values of

attendance(%) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

9.9 Fitted parameter values for the BCTrc model for different values of attendance . 162

10.1 Loss Given Default . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

10.2 In-sample model section criterion . . . . . . . . . . . . . . . . . . . . . . . . 175



List of tables xvii

10.3 k-fold cross validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

10.4 Cross validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

10.5 Corresponding values of the explanatory variables for fitted distributions . . . . 179



Chapter 1

Introduction

1.1 Background and introduction

Proportion data can be represented as percentage, fraction or ratio, Kieschnick and McCullough

(2003). It can be observed on the open interval (0,1), semi-open interval including 0 or 1 (i.e

[0,1), (0,1] respectively) or in closed form including 0 and 1 (i.e. [0,1]).1

The analysis of proportion data is a common phenomenon in many scientific fields. For example

medical research (Hunger et al. (2011), Galvis et al. (2014)), finance (Cook et al. (2008)),

econometrics (Papke and Wooldridge (1996), Ferrari and Cribari-Neto (2004)), operational

research (Hoff (2007)) and ecology(Girão et al. (2007), Warton and Hui (2011), Nishii and

Tanaka (2013), Baran and Nemoda (2016)).

In recent times modelling a proportion response variable has gained significant attention in the

finance literature, especially for modelling loss given default values which are often bounded

between 0 and 1 including 0 and 1. Researchers use various statistical methods for analysing

LGD values in the finance literature. For example Hu and Perraudin (2002), Siddiqi and Zhang

(2004), Gupton and Stein (2005), Bastos (2010), Qi and Zhao (2011), Yashkir and Yashkir

(2013) and Li et al. (2014).
1[0,1], where square bracket indicates including the end point.
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In the literature from various fields, different methods have been proposed to analyze proportion

data. One of the well known strategies is to transform proportion response variable and then run

ordinary least square regression using the transformed response variable; for example, the arcsine

square root transformation Warton and Hui (2011), logit transformation (log(y/(1− y)), inverse

Gaussian transformation, Hu and Perraudin (2002), inverse Gaussian with beta transformation,

Gupton and Stein (2005). Another popular approach beta regression has been established as a

powerful technique for modelling proportion response variable on the open interval (0,1). 2

Ospina and Ferrari (2012, 2010) proposed a distribution that is a mixture of a beta distribution

and a Bernoulli distribution for modelling a response variable observed on [0,1) or (0,1] and

termed it as a beta inflated model.

The censored normal distribution model (i.e. Tobit model) proposed by Tobin (1958) was

originally used to analyse the data observed on [0,∞). The two sided version of the Tobit model

by Rosett and Nelson (1975) is used to analyse the data observed on [0,1]. Sigrist and Stahel

(2010) propose a more complex censored gamma and two tiered gamma regression model ( i.e.

a generalization of Tobit model) to analyze a response variable observed on [0,1].

Details of some of the recent parametric models for a proportion response variable along with

transformed regression models are give in chapter 2.

This thesis focuses on modelling proportion response variable observed on the semi-closed

intervals [0,1) and (0,1] and the closed interval [0,1], where the square bracket indicates that

the end point is included. The proposed models generalize and extend two popular models (e.g.

beta inflated and Tobit) to analyze a bounded proportion response variable.

1.2 Research motivation

Modelling proportion data can lead to misleading results, especially if the specific nature

of the proportion data are not taken into account; Schmid et al. (2013). For example using
2Johnson et al. (1995), Kieschnick and McCullough (2003), Ferrari and Cribari-Neto (2004).
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OLS regression for a response variable on (0,1) may result in a biased and inefficient model. 3

Similarly beta regression (Gupta and Nadarajah (2004)) is widely used in literature for modelling

a response variable observed on the open interval, i.e. (0,1). However, the beta distribution may

not be appropriate for modelling variable observed on the semi closed or closed interval i.e.

[0,1), (0,1] or [0,1].

Moreover the survey of the published literature on modelling a proportion response variable by

Kieschnick and McCullough (2003) and very recent observation by Li et al. (2014) suggest that

there is no commonly accepted distributional models, nor any commonly accepted regression

model for the bounded response variable proposed in the literature. For example the quasi

likelihood method avoids the mean and variance specification error, however the model does

not assume a proper distribution for the dependent variable, Hoff (2007). Galvis et al. (2014)

pointed out that modelling a bounded proportion response variable using a logistic normal model

Aitchison (1982) suffers from an interpretation problem given that the expected value of the

response variable is not a simple logit function of the covariates. Li et al. (2014) criticize using

a transform regression for modelling a proportion response variable on [0,1], since it may lead

to biased estimates. The censored normal regression model (i.e. Tobit model) also has been

criticized for its restrictive distributional (Normal) assumption. Similarly in the beta inflated

model Ospina and Ferrari (2010), although the beta distribution can take different shapes, it only

has two parameters so its flexibility is limited.

This research is motivated by the diversity of the practice of modelling a proportion response

variable and questionable nature of some of these practices. The research focuses on modelling

distributional categories [0,1), (0,1] and [0,1] and the proposed models in this research are

motivated by the unique characteristics of those data types. The presence of skewness and

heteroskedasticity are the common characteristics of continuous and bounded data type, Galvis

et al. (2014). In order to address this issue, the proposed models can accommodate continuous

distributions including highly skewed and kurtotic distributions. To address the excess zeroes

3Kieschnick and McCullough (2003) stated that, such an approach contravenes two conditions. First the
conditional expectation must be nonlinear as it maps between 0 and 1. Second the variable must be heteroskedastic
since the variance will approach zero as the mean approaches either boundary point.
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and ones, in the proposed inflated GAMLSS model, the probability of the response variables

equalling zero or one is modelled independently of the distribution on (0,1), and in the proposed

generalized Tobit GAMLSS model, the probabilities that the response variable equals zero and one

are directly related to the distribution on (0,1). Another distinct characteristic of the proposed

models is that the models assume that all the parameters of the distribution of the response

variable can be related to explanatory variables.

1.3 GAMLSS framework and proposed contributions

The proposed inflated GAMLSS model and generalized Tobit GAMLSS models adapt the generalized

additive model for location, scale and shape (GAMLSS) model by Rigby and Stasinopoulos (2005)

to focus on modelling the dependent variable. Applications include modelling distributional

categories [0,1) (e.g. pass scheme data), (0,1] (e.g. lung function data) and [0,1] (e.g. loss

given default data) using the inflated GAMLSS model and generalized Tobit GAMLSS models. This

research applied to different data sets to check the robustness of the proposed models.

The proposed models are mixed continuous-discrete distributions, in particular a continuous

distribution on (0,1)with point probabilities at 0 and/or 1. In this context the GAMLSS framework

is used, where the response variable can have any distribution which may exhibit both positive

or negative skewness and high or low kurtosis.

GAMLSS models are semi parametric regression type model. The GAMLSS model requires a

parametric distribution assumption and is semi-parametric in the sense that, the parameters

of the response variable distribution are each modelled as a function of explanatory variables,

which may involve using non parametric smoothing functions.

In the proposed inflated GAMLSS model, the response variable is assumed to come from an

explicit distribution on (0,1) or a transformed (e.g. logit or truncated) distribution from (−∞,∞)

to (0,1). In the generalized Tobit model, the response variable is assumed to come from a

parametric censored distribution.
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In this thesis the author follows the R implementation of GAMLSS and expands the distribution

parameter vector θ to a maximum of six parameters (e.g. in the inflated GAMLSS model) and

denotes the parameters as ψ = (θ1,θ2,θ3,θ4,θ5,θ6) = (µ,σ ,ν ,τ,ξ0,ξ1), where µ and σ usu-

ally represent the location and scale parameters respectively and ν and τ usually denote shape

parameters and ξ0 and ξ1 are parameters from the point probabilities at 0 and 1 respectively. In

this research a four parameter bimodal distribution (bimodal skew symmetric normal distribu-

tion)4 is also implemented within the package gamlss.dist in R. In the case of the bimodal

skew symmetric normal distribution the parameter τ affects the bimodality of the distribution.

The inflated GAMLSS model comprises two components : the first component considers the

discrete part of the response variable distribution and the second component is a continuous

distribution on (0,1) which may consider the skewness and bimodality of the response variable.

The inflated GAMLSS model can fit the discrete and continuous components separately, whereas

in the generalized Tobit GAMLSS model the probabilities of the discrete end values depend on

the distribution on (0,1). In both the methods each of the parameters of the response variable

distribution can be modelled using explanatory variables.

1.4 Thesis outline

The thesis unfolds as follows. The thesis comprises eleven chapters and five appendices.

Chapter 2 provides a brief discussion of some of the commonly used approaches for modelling

a proportion response variable.

Chapter 3 describes a number of explicit and transformed distributions on the open interval

(0,1).

Chapter 4 presents a short introduction to the bimodal skew symmetric normal distribution and

its implementation within the package gamlss.dist in R.

4Hassan and El-Bassiouni (2016)
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Chapter 5 introduces the inflated GAMLSS model for the distributional categories [0,1), (0,1] and

[0,1]. Chapter 5 includes an analysis of likelihood inference and residuals of the inflated GAMLSS

model within GAMLSS framework.

Chapter 6 introduces the generalized Tobit GAMLSS model. Chapter 6 includes model definition,

analysis of likelihood inference and residuals.

Chapter 7 introduces gamlssinf packages in R for fitting the inflated GAMLSS model. The

package has been used for fitting real data in chapters 8, 9 and 10.

Chapter 8 presents an estimation of centile curve for the lung function data on (0,1] using

the proposed models, along with other popular centile estimation techniques. Chapter 8 also

highlights the comparison of model performance.

Chapter 9 shows an application of the proposed models to the PASS scheme data on [0,1).

Chapter 10 presents an application of proposed model to the loss given default data on [0,1].

Chapter 10 also shows the comparison of models performance using a cross validation technique.

Chapter 11 concludes the thesis suggesting future research opportunities in the area of modelling

proportion response variable.

Chapters 2 and 3 essentially review previous work, while chapters 4 to 11 provide the original

contributions of the thesis.

This thesis makes a number of original contributions to the area of modelling continuous and

bounded data by developing a class of univariate inflated GAMLSS models which extend the

flexibility of the beta inflated model (Hoff (2007), Ospina and Ferrari (2010), Cook et al. (2008)).

The inflated GAMLSS model is a mixed continuous-discrete distribution model which allows

modelling of any or all the parameters of a distribution ( up to four parameters for the continuous

component and two extra parameters for the discrete components) using explanatory terms (e.g.

linear and/or non-linear smoothing terms in explanatory variables).
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For example the inflated GAMLSS model extends the two parameter beta inflated model by

including two extra parameters in the continuous component for modelling the skewness and

kurtosis or bimodality. Unlike the beta inflated model this thesis offers a comprehensive

framework for the statistical analysis of the continuous data observed on the standard unit

interval (0,1) with point masses at 0 and/or 1.

The inflated GAMLSS model is a general class of regression model for modelling a continuous

proportion with discrete boundary values at zero and/or one. A method of estimating the

parameters of the inflated GAMLSS model is explained in chapter 5. This research also explains

the normalized randomized quantile residuals of the mixed continuous-discrete random variable

for the inflated GAMLSS model in chapter 5.

In addition to the inflated GAMLSS model, this thesis also develops a new class of model,

the generalized Tobit GAMLSS model, for the bounded proportion response variable. The

generalized Tobit GAMLSS model extends the Tobit model in terms of the number of parameters

and their flexibility. It includes two more parameters than the Tobit model to model the

conditional skewness and/or kurtosis and bimodality of the response variable. The generalized

Tobit GAMLSS model allows modelling all the parameters of the distribution of the latent variable

V using linear and/or smoothing terms in explanatory variables.

This thesis also describes the normalized randomized quantile residuals of the generalized

Tobit GAMLSS model to assess the overall adequacy of the model (see chapter 6). A method of

estimating the parameters of the model is also described and explained in chapter 6.

The generalized Tobit GAMLSS for a proportion response variable comprises three special cases:

censored below zero, censored above one and interval censored below 0 and above 1. Appli-

cations of the three sub-models of the generalized Tobit model together with popular models

currently in the literature are shown in chapters 8, 9 and 10. In all the cases generalized Tobit

GAMLSS model performed better than the other popular previous models.



Chapter 2

Review of models for proportion data on

[0,1), (0,1] and [0,1]

2.1 Introduction

In this chapter the research surveys the literature and synthesizes the various practices used in

prior literature for modelling distributional ranges [0,1), (0,1] and [0,1]. This chapter mainly

focuses on more recent techniques as well as some of the old frequently used techniques. The

chapter also composes a comprehensive review of the models investigated in previous literature.

This research also investigates the performance of some of the methods described here.
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2.2 PW fractional response regression

Based on the quasi likelihood function, Wedderburn (1974) , Papke and Wooldridge (1996)

proposed a general method to model a continuous response variable on the interval 0 to 1 which

may include 0 and/or 1. The basic assumption of the model is as follows

µ = E(Y |x) = G(
K

∑
k=1

βkxk) (2.1)

where x = (x1,x2, .......,xK)
T is a vector of explanatory variables of length K,

β = (β1,β2, · · ·,βK)
T

is a vector of model parameters and G(t) is the inverse of the logit function (0 < G(t)< 1 for

all tεR) given by

G(t) =
1

1+ e−t (2.2)

A Bernoulli log likelihood function is used to estimate the β coefficients given by

l(β ) = ∑yi log µi +∑(1− yi) log(1−µi) (2.3)

where µi = G(ti) and ti = ∑
K
k=1 βkxik

Estimators of the β coefficients are consistent and asymptotically normally distributed regardless

of the distribution of the response variable Y.

Given the expectation value of Y estimated using fractional response regression, the effect of

the explanatory variable xm on the expected Y is given by

∂ µ

∂xm
=

βme(−∑βkxk)

(1+ e−(∑βkxk))2
(2.4)
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2.3 Tobit model (Tobin, 1958)

The Tobit model was first suggested by the pioneering work of Tobin (1958). Tobin (1958)

proposed a hybrid model of probit analysis and multiple regression to model a lower bounded

dependent variable. Many generalizations of the Tobit model, including estimations of those

generalisations, have been proposed in the literature. The applications of the Tobit model and its

various generalizations range over wide areas of economics, engineering and biometrics. The

Tobit model and its generalizations are classified in different ways in the literature.

Tobin (1958) analysed the relationship between household expenditure on durable goods against

household income. An important characteristics of the data were noted that there are several

observations where the expenditure is zero (i.e. no house expenditure on luxury goods). A

boundary constraint here can be expressed as Y ≥ L or Y = 0, where L is the lowest (non zero)

value of Y. Suppose a latent variable V is introduced , where V is assumed to be normally

distributed and L is the same for all the observations. Tobin solved the original problem in the

following way

Y =

 0 if V ≤ L

V if V > L

Assuming L = 0, then the Tobit model is defined in the following way.

Y =

 0 if V ≤ 0

V if V > 0

where V ∼ N(µ,σ2), The cumulative distribution function of Y is given by

FY (y) =

 P(V ≤ 0) if y = 0

FV (y) if y ≥ 0



2.3 Tobit model (Tobin, 1958) 11

and mixed continuous-discrete probability (density) function given by

fY (y) =

 P(V ≤ 0) if y = 0

fV (y) if y ≥ 0

More generally for n observations from the Tobit model,

Vi ∼ N(µi,σ
2
i )

independently for i = 1,2,3, · · ·,n, where

Yi =

 0 if Vi ≤ 0

Vi if Vi > 0

and clearly Vi is latent when Vi ≤ 0 Takeshi (1984). The cumulative distribution function of Yi at

0 is given by

FYi(0) = p(Vi ≤ 0)

= p(Zi ≤−µi

σi
) (2.5)

= p(Zi ≥
µi

σi
) (2.6)

= 1−Φ(
µi

σi
) (2.7)

where Zi ∼ N(0,1) independently for i = 1,2,3, · · ·,n and Φ(·) is the cumulative distribution

function of a standard normal variable. The probability density function of the Tobit model for

yi > 0 is given by

fYi(yi) =
1

σi
√

2π
e−

1
2

(
yi−µi

σi

)2

=
1
σi

φ

(
yi −µi

σi

)
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where φ(·) is the probability density function of a standard normal variable.

The likelihood function for y = (y1,y2, ··,yn)
T is given by

L = ∏
0

[
1−Φ

(
µi

σi

)]
∏

1
σ
−1
i φ

[
yi −µi

σi

]
(2.8)

where the first product is over values of yi = 0 and the second product is over values of yi > 0.

The resulting log likelihood function for y is given by

logL = ∑
0

log
[

1−Φ(
µi

σi
)

]
− n1

2
logσ

2
i −

1
2σ2

i
∑
1
(yi −µi)

2 (2.9)

where n1 is the number of non-zero values in y

2.4 Two limit Tobit model (Rosett and Nelson, 1975)

Rosett and Nelson (1975) extended the limited (i.e. bounded) dependent variable technique

developed by Tobin (1958) for both an upper limit and a lower limit. In the two limit Tobit

regression model, the dependent variable is bounded below L1 (e.g. L1 = 0) and above L2 (e.g.

L2 = 1) respectively. Let observed Y be a censored version of latent variable V. The observed

variable Y is determined by

Y =


L1 when V ≤ L1

L2 when V ≥ L2

V when L1 <V < L2
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Assuming L1 = 0 and L2 = 1, then the mixed continuous-discrete probability (density) function

of variable Y in the two sided Tobit model is defined by

fY (y|µ,σ) =


P[Y = 0] = Φ(−µ

σ
) if y = 0

σ−1φ(y−µ

σ
), if 0 < y < 1

P[Y = 1] = 1−Φ( (1−µ)
σ

) if y = 1

where, Φ(·) and φ(·) are the cdf and pdf of a standard normal distribution and µ = xT βββ .

2.5 Censored gamma regression (Sigrist and Stahel, 2010)

Sigrist and Stahel (2010) introduce the censored gamma regression model as a generalization

of the Tobit model. The model assumes that the underlying latent variable (V) of the model

follows a gamma distribution shifted by −ξ . The probability density function of the shifted

gamma distribution is given by

fV (y|µ,σ ,ξ ) =
1

(σ2µ)
1

σ2 Γ( 1
σ2 )

(y+ξ )
1

σ2 −1e
− (y+ξ )

σ2µ

for y >−ξ , where, µ > 0, σ > 0, ξ > 0. The mixed continuous-discrete probability (density)

function of Y is then given by

fY (y|µ,σ ,ξ ) =


P[Y = 0] = FV (0)

fV (y|µ,σ ,ξ ), if 0 < y < 1

P[Y = 1] = 1−FV (1)

FV (·) and fV (·) are the cdf and pdf of the latent variable V.
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2.6 Inverse Gaussian regression (IGR)

Hu and Perraudin (2002) and Qi and Zhao (2011) use the inverse Gaussian regression (IGR) to

model the response variable in the unit interval [0,1]. IGR includes transforming the response

variable from unit interval (0,1) to (−∞,∞) using the inverse Gaussian distribution function.

The pdf of the Inverse Gaussian distribution function is given by

fY (y|µ,σ) =

[
σ

2πy3

] 1
2

e
−σ(y−µ)2

2µ2y

for y > 0, where µ > 0 and σ > 0.

Using the transformed y variable on (−∞,∞), they then run ordinary least square regression.

The fitted value (ŷ) from ordinary least square regression is then transformed back from (−∞,∞)

to (0,1) using the Gaussian distribution function.

2.7 Inverse Gaussian regression with beta transformation (IGR-

BT) (Gupton and Stein, 2005)

Gupton and Stein (2005) use the inverse-Gaussian regression with beta transformation to model

the proportion response variable on [0,1]. The model assumes that the response variable Y

follow a beta distribution.

Y = Φ
−1[BE(y|a,b,min,max)]

where Φ−1 inverse of the normal cumulative distribution, a and b are the beta distribution

parameters and min is set to 0 and max is set to 1. With the lower bound min fixed to 0, the beta

distribution can be defined by

BE(y|a,b,min = 0,max) =
Γ(a+b)
Γ(a)Γ(b)

(
y

max
)a−1(1− y

max
)b−1(

1
max

)
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The shape parameters (a,b) of the beta distribution can be estimated in terms of mean (µ) and

standard deviation(σ ) by the following way,

a =
µ

max

[
µ(max−µ)

max ·σ
−1

]
b = a

[
max

µ
−1

]

The cdf of Y is calculated using estimated parameters of the beta distribution and transform

from (0,1) to (−∞,∞) using the inverse Gaussian distribution function (Φ−1). The next step of

the model is to run ordinary least square regression. The fitted value (ŷ) from OLS regression is

then transform back from (−∞,∞) to (0,1) using the Gaussian distribution function. In the final

step inverse beta regression is used to convert probabilities back from the unimodal Gaussian to

bimodal beta distribution.

Both the transformation regression models (i.e. IGR & IGR-BT) are not defined when response

variable y equals 0 or 1. Thus in transformation regression models, the Y variable on [0,1] needs

to convert to (0,1) by adding (to 0) and substracting (from 1) a small adjustment factor. However

transformation regression is very sensitive to the choice of adjustment factor, a very large or

small adjustment factor may leads to a poor model fit.

2.8 Two-step approach (Gürtler and Hibbeln, 2013)

Modelling data on the closed interval, Gürtler and Hibbeln (2013) used a two-step approach.

Step-1 includes an ordered logistic regression on the probability of Y falling into categories,

where Y = 0, Y = 1 or 0 < Y < 1. The steps are defined by

yi =


pi

0 = lo(π0 − xiβ ), if yi = 0

pi
0,1 = lo(π1 − xiβ )− lo(π0 − xiβ ), if 0 < yi < 1

pi
1 = 1− lo(π1 − xiβ ), if yi = 1

where lo(·) denotes logistic function and π0 and π1 are the cut point parameters to be estimated.
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In the second step the model considers ordinary least square (OLS) regression for response

variable on 0 < Y < 1. The predicted Y on 0 < Y < 1 from OLS is defined by

µ̂i = xiβ̂

The the ith value of Y (yi) is predict as

Ê(yi) = µ̂i × (1− p̂i
0 − p̂i

1)+ p̂i
1

Here Ê(yi) is a weighted average of the model output from step 1 and step 2. The two-step

normal model also suffers the interpretation problem given that the expected value of the

response variable is not a simple logit function of the covariates, (Galvis et al., 2014).

2.9 Beta inflated model

Ospina and Ferrari (2012, 2010) developed the beta inflated model. The parameterizations in

this section are used in the gamlss package.

2.9.1 Beta distribution inflated at 0 (BEINF0)

The beta inflated at 0 distribution for Y, denoted by Y ∼ BEINF0(µ,σ ,ν), is a mixture of

two components: a discrete value Y = 0 with probability p0 and a continuous component

on (0 < Y < 1) with beta distribution, BE(µ,σ). The mixed continuous-discrete probability

(density) function of Y ∼ BEINF0(µ,σ ,ν) generated by the mixture is given by

fY (y|µ,σ ,ν) =

 p0 if y = 0

(1− p0)
1

B(α,β )y
α−1(1− y)β−1 if 0 < y < 1

(2.10)

for 0 ≤ y < 1, where
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
α

β

p0

=


µ(1−σ2)

σ2

(1−µ)(1−σ2)
σ2

ν

(1+ν)


Hence the parameters µ , σ , and ν can be defined by the following


µ

σ

ν

=


α(α +β )−1

(α +β +1)−
1
2

p0(1− p0)
−1


where 0 < µ < 1, 0 < σ < 1 and ν > 0.

Let η = (η1,η2,η3) be the predictors of parameters θ = (µ,σ ,ν). The default link functions

in the GAMLSS software for the parameters are given by


log( µ

1−µ
)

log( σ

1−σ
)

logν

=


η1

η2

η3


where logν = log[p0/(1− p0)].

The mean and the variance function Ospina and Ferrari (2010) of Y ∼ BEINF0(µ,σ ,ν) are

given by the following equations

E(Y ) = µ

1+ν

V (Y ) = µσ2(1−µ)
1+ν

+ µ2ν

(1+ν)2

Let yT = (y1,y2, ....yn) be a random sample of independent response observations from a

distribution with probability (density) function fY (y|µ,σ ,ν) given by (2.10), where θ T =

(µ,σ ,ν) is a vector of parameters for the model BEINF0. Therefore the likelihood function for

θ T = (µ,σ ,ν) given y is
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L(θ) = ∏
0≤yi<1

fY (yi|µ,σ ,ν)

= ∏
yi=0

fY (0|ν) ∏
0<yi<1

fY (yi|µ,σ)

= ∏
yi=0

p0 ∏
0<yi<1

(1− p0)
1

B(α,β )
yα−1

i (1− yi)
β−1

= ∏
yi=0

ν

1+ν
∏

0<yi<1

1
1+ν

[
1

B(α,β )
yα−1

i (1− yi)
β−1

]
= [( ν

1+ν
)n0( 1

1+ν
)n1] ∏

0<yi<1
[

1
B(α,β )

yα−1
i (1− yi)

β−1]

where n0 and n1 are the number of zero and non-zero values of Y respectively, so n0 +n1 = n.

The likelihood function L(θ) of BEINF0 is factorises in two terms. The first term depends on

only one parameter ν and the second term depends only on the parameters µ and σ (through α

and β ). The log likelihood function for the BEINF0 is given by

l(θ) = log(L(θ))

= n0 log(p0)+n1 log(1− p0)+n1 log [B(α,β )]

+(α −1) ∑
0<yi<1

log(yi)+(β −1) ∑
0<yi<1

log(1− yi)

2.9.2 Beta inflated distribution at 1 (BEINF1)

If we consider a probability mass at 1 instead of 0 in equation (2.10) then the model is called

beta inflated at 1 (BEINF1). The BEINF1 model is a mixture of a discrete component (Y = 1)

with probability p1 and a continuous component (0 < Y < 1) with a beta distribution BE(µ,σ).

The probability (density) function of Y ∼ BEINF1(µ,σ ,ν) on (0,1] is given by

fY (y|µ,σ ,ν) =

 p1 if y = 1

(1− p1)
1

B(α,β )y
α−1(1− y)β−1 if 0 < y < 1

(2.11)
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for 0 ≤ y < 1, where


α

β

p1

=


µ(1−σ2)

σ2

(1−µ)(1−σ2)
σ2

ν

(1+ν)



Hence the parameters µ , σ , and ν can be defined by the following way


µ

σ

ν

=


α(α +β )−1

(α +β +1)−
1
2

p1(1− p1)
−1


where 0 < µ < 1, 0 < σ < 1 and ν > 0.

The default link functions of the parameters are given by


log( µ

1−µ
)

log( σ

1−σ
)

logν

=


η1

η2

η3


where logν = log(p1/(1− p1)

The mean and the variance of the BEINF1 model Ospina and Ferrari (2010) are obtained by the

following equations

E(y) = ν+µ

1+ν

V (y) = µσ2(1−µ)2

1+ν
+ (1−µ)(µ+ν)

(1+ν)

Let yT = (y1,y2, ....yn) be a random sample of observations from a distribution with probability

(density) function fY (y|µ,σ ,ν) given by (2.11), where θ T = (µ,σ ,ν) is a vector of parameters

for the model BEINF0. Therefore the likelihood function for θ T = (µ,σ ,ν) given y is
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L(θ) = ∏
0<yi≤1

fY (yi|µ,σ ,ν)

= ∏
yi=1

fY (1|ν) ∏
0<yi<1

fY (yi|µ,σ)

= ∏
yi=1

p1 ∏
0<yi<1

(1− p1)
1

B(α,β )
yα−1

i (1− yi)
β−1

= ∏
yi=1

ν

1+ν
∏

0<yi<1

1
1+ν

[
1

B(α,β )
yα−1

i (1− yi)
β−1

]
= [( ν

1+ν
)n1( 1

1+ν
)n2] ∏

0<yi<1
[

1
B(α,β )

yα−1
i (1− yi)

β−1]

where n1 and n2 are the number of one and non-one values of Y respectively, so n1 +n2 = n

The likelihood function of BEINF1 is factorises in two terms. The first term depends on

parameter ν and the second term depends on the parameters µ and σ . The log likelihood

function is obtained by

l(θ) = log(L(θ))

= n1 log(p1)+n2 log(1− p1)+n2 log [B(α,β )]

+(α −1) ∑
0<yi<1

log(yi)+(β −1) ∑
0<yi<1

log(1− yi)

2.9.3 Beta inflated distribution at 0 and 1, BEINF(µ,σ ,ν ,τ)

The beta inflated distribution is suitable for a fractional response variable on 0 ≤ Y ≤ 1 that

includes both zero and one.The beta inflated model is a mixture of a beta distribution and

Bernoulli distribution. The model include three components: a discrete value 0 with probability

p0, a discrete value 1 with probability p1 and a beta distribution BE (µ,σ) distribution on the

unit interval (0,1) with probability (1− p0 − p1).

Let Y be a random variable that assumes values in the closed interval [0,1]. The mixed

continuous-discrete probability (density) function of the beta inflated distribution, denoted by

BEINF (µ,σ ,ν ,τ), with respect to the measure generated by the mixture components is given

by
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fY (y) =


p0 if y = 0

(1− p0 − p1) fW (y) if 0 < y < 1

p1 if y = 1

(2.12)

for 0 ≤ y ≤ 1, where W ∼ BE(µ,σ) has a beta distribution with 0 < µ < 1 and 0 < σ < 1

and p0 = ν/(1+ ν + τ) and p1 = τ/(1+ ν + τ). Hence ν = p0/p2 and τ = p1/p2 where

p2 = 1− p0 − p1. Since 0 < p0 < 1, 0 < p1 < 1 and 0 < p0 + p1 < 1, hence ν > 0 and τ > 0.

Here fW (y) is given by

fW (y) =
1

B(α,β )
yα−1(1− y)β−1

for 0 < y < 1. where



α

β

p0

p1


=



µ(1−σ2)
σ2

(1−µ)(1−σ2)
σ2

ν

(1+ν+τ)

τ

(1+ν+τ)


Hence



µ

σ

ν

τ


=



α(1+β )−1

(α +β +1)−
1
2

p0
p2

p1
p2



The default link functions relating the parameters (µ,σ ,ν ,τ) to the predictors (η1,η2,η3,η4),

which may depend on explanatory variables, are
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

log( µ

1−µ
)

log( σ

1−σ
)

logν

logτ


=



η1

η2

η3

η4


where logν = log(p0/(p2) and logτ = log(p1/(p2)

The mean and the variance of the BEINF Ospina and Ferrari (2010) distribution are defined by

E(y) = τ+µ

1+ν+τ

V (y) = ν+τ

1+ν+τ

{
τ

(ν+τ)2 +
1

(1+ν+τ)

(
τ

ν+τ
−µ

)2
}
+ µ2σ2(1−µ)

1+ν+τ

The Beta inflated distribution BEINF (µ,σ ,ν ,τ) can be fitted explicitly in GAMLSS.

Model (2.12) is equivalent to a beta distribution BE(µ,σ) model for 0 < Y < 1, together with a

multinomial model with three levels, denoted MULT 3(ν ,τ), for recoded variable Y1 given by

Y1 =


0 if Y = 0

1 if Y = 1

2 if 0 < Y < 1

(2.13)

i.e.

p(Y1 = y1) =


p0 if y1 = 0

p1 if y1 = 1

(1− p0 − p1) if y1 = 2

(2.14)

where p0 = ν/(1+ν + τ) and p1 = τ/(1+ν + τ).



2.9 Beta inflated model 23

The log likelihood function for the BEINF model (2.12) is equal to the sum of the log likelihood

functions of the beta BE model and the multinomial MN3 model (2.14).

l(θ) = log(L(θ))

= n0 log(p1)+n1 log(p1)+n2 log(1− p0 − p1)+n2 log [B(α,β )]

+(α −1) ∑
0<yi<1

log(yi)+(β −1) ∑
0<yi<1

log(1− yi)

Where n0, n1 and n2 are the number of zero, one and non-zero-one values of Y, so n0+n1+n2 =

n.
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Fig. 2.1 Pdfs of BEINF0, BEINF1, BEINF and BE distribution.

Figure (2.1) presents BE, BEINF0, BEINF1 and BEINF distributions for different choices of µ ,

σ with fixed ν and τ . Note that for all µ and σ the BEINF0, BEINF1 and BEINF distributions

are, in general asymmetrical because of the probability mass at 0 and/or 1. Densities of inflated

beta distributions may be unimodal and uniantimodal and may have ’J’, inverted ’J’ and uniform

shapes. In this graph a vertical bar with a circle above represents a probability mass at 0 and/or
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1. BEINF0, BEINF1 and BEINF have same functional shape on the interval (0,1). However

they differ at mass point, being at 0 for BEINF0, being at 1 for BEINF1 and being at 0 and 1 for

BEINF.



Chapter 3

Distributions on (0,1)

3.1 Introduction

In this chapter we provide a review of some important explicit distributions on (0,1). The chapter

also includes transformed logit and truncated distributions on (0,1).

3.1.1 Beta distribution

The beta distribution is a family of continuous distributions defined on the bounded support on

the interval (0, 1). The beta distribution is a flexible two parameter distribution for a response

variable taking values in the restricted range (0,1) not including 0 and 1. For example Trenkler

(1996), Kieschnick and McCullough (2003) and Ferrari and Cribari-Neto (2004) have shown

practical implementation of beta distribution in their work. The beta distribution was originally

parameterised by two positive shape parameters and denoted here by BEo(a,b). The probability

density function is given by

fY (y|a,b) =
1

B(a,b)
ya−1(1− y)b−1 (3.1)
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for 0 < y < 1, a > 0 and b > 0 and B(a,b) is the beta function. Here the mean and variance

functions are given by E(Y ) = a
(a+b) and Var(Y ) = ab(a+b)−2(a+b+1)−1.

In the second parameterization of the beta distribution BE(µ,σ), the parameters µ and σ are

location and scale parameters relate to the mean and standard deviation of a random variable Y.

The beta distribution BE(µ,σ) with parameters µ and σ (0 < µ < 1,0 < σ < 1) has probability

density function (pdf), given by

fY (y|µ,σ) =
1

B(a,b)
ya−1(1− y)b−1 (3.2)

for 0 < y < 1, where a = µ

(
1−σ2

σ2

)
and b = (1−µ)

(
1−σ2

σ2

)
, a > 0 and b > 0. The relationship

between two sets of parameters (µ,σ) and (a,b) is given by,

µ =
a

a+b

σ = (a+b+1)−
1
2
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Fig. 3.1 Pdfs of beta distribution.

The mean and the variance function of Y are given by, E(Y ) = µ and V (Y ) = σ2µ(1−µ). In

the gamlss() package in R this parameterization is denoted by BE(µ,σ).

The pdf of the beta distribution has different shapes: unimodal (µ > 1,σ > 1), uniantimodal

(µ < 1,σ < 1), increasing (µ > 1,σ ≤ 1), decreasing (µ ≤ 1,σ > 1) or constant (µ = σ = 1)

depending on the values of µ and σ relative to 1, see Figure 3.1.
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3.1.2 Arcsine distribution

Arcsine distribution is a special case of beta distribution denoted by, Y ∼ BEo(1
2 ,

1
2). the

probability density function of the standard arcsine distribution is given by

fY (y) =
1{

Γ(1
2)
}2 y−

1
2 (1− y)−

1
2 (3.3)

for 0 < y < 1, since Γ(1
2) =

√
π , the probability density function is obtained by

fY (y) =
1

π
√

y(1− y)
(3.4)

for 0 < y < 1. The cumulative density function of the arcsine distribution is given by

FY (y) =
2
π

arcsine
√

y (3.5)

for 0 ≤ y ≤ 1, where arcsine function is the inverse of sine function, i.e. arcsine(x) = sin−1(x).

The distribution can be expanded to include any bounded support from p ≤ y ≤ q by the simple

transformation

FY (y) =
2
π

arcsine
(√

y− p
q− p

)
(3.6)

for p ≤ y ≤ q and therefore the probability density function of transformed random variable Y

is given by

fY (y) =
1

π

(√
y−p
q−y

) (3.7)

for p ≤ y ≤ q.
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3.1.3 Kumarasawamy distribution

Jones (2009) introduced a beta like distribution which he called the Kumarasawamy distribution

originally presented in the hydrological literature by Kumaraswamy (1980). The Kumarasawamy

distribution has two positive shape parameters α and β and has many of the same properties

that beta distribution has. The Kumarasawamy distribution is denoted by Y ∼ KU(α,β ) and the

density function is given by

fY (y|α,β ) = αβyα−1(1− yα)β−1 (3.8)

for 0< y< 1, where α > 0 and β > 0. Figure 3.2 shows plots of the Kumarasawamy distribution,

KU(α,β ), for different parameters α and β .
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Fig. 3.2 Pdfs of Kumaraswamy distribution.
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The cumulative distribution function of Kumarasawamy distribution for 0 < y < 1 is given by

FY (y) = 1− (1− yα)β (3.9)

3.1.4 Generalised beta distribution

McDonald and Xu (1995) introduced the five parameter generalised beta distribution of the

first kind denoted by Y ∼ GB(a,b,c, p,q) the probability density function is defined by the

probability density function

fY (y|a,b,c, p,q) =
|a|yap−1 (1− (1− c)(y/b)a)q−1

bapB(p,q)(1+ c(y/b)a)p+q (3.10)

for 0 < ya < ba/1− c and zero otherwise with 0 ≤ c ≤ 1 and b > 0, p > 0 and q > 0.

3.1.4.1 Generalised beta type 1 (GB1)

The generalised beta type 1 distribution (GB1) in the gamlss package is a reparameterisation

of the submodel with range 0 < y < 1 of the five parameter generalised beta, GB (a,b,c,p,q),

of McDonald and Xu (1995). GB1 has range 0 < y < 1, whereas the range of the generalised

beta of the first kind (McDonald and Xu, 1995) depends on the parameters. The generalised

beta type 1 distribution is denoted by GB1(µ,σ ,ν ,τ). GB1 is defined by assuming that Z has a

BE(µ,σ) distribution where

Z =
Y τ

ν +(1−ν)Y τ

where 0 < µ < 1, 0 < σ < 1, ν > 0 and τ > 0. Hence the probability density function of GB1,

denoted by Y ∼ GB1(µ,σ ,ν ,τ) is given by

fY (y|µ,σ ,ν ,τ) =
τνβ yτα−1(1− yτ)β−1

B(α,β )[ν +(1+ν)yτ ]α+β
(3.11)



3.1 Introduction 32

for 0 < y ≤ 1, GB1 is a reparameterised submodel of generalised beta of the first kind (GB) of

McDonald and Xu (1995) where

GB1(µ,σ ,ν ,τ) = GB
(

τ,ν
1
τ ,(1−ν),µ(σ−2 −1),(1−µ)(σ−2 −1)

)
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Fig. 3.3 Pdfs of GB1 distribution.

3.1.4.2 Generalised beta distribution type 3 (G3B)

The generalised beta distribution with three parameters, denoted by Y ∼ G3B(α1,α2,γ) was

developed by Libby and Novick (1982). The probability density function of G3B is given by,

fY (y|α1,α2,λ ) =
λ αyα−1(1− y)α2−1

B(α1,α2)[1− (1−λ )y]α1+α2
(3.12)
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. The generalised three parameter beta is a reparameterised submodel of GB1 given by

G3B(α1,α2,λ ) = GB1
(

α1(α1 +α2)
−1,(α1 +α2 −1)

−1
2 ,λ−1,1

)

3.1.5 Triangular Distribution

Johnson (1997) showed the use of the triangular distribution as a proxy of the beta distribution.

Like the beta distribution, the triangular distribution is a continuous distribution on the range

[a,b]. In its most general form the pdf of the triangular distribution is given by

fY (y) =


2(y−a)

(b−a)(c−a) for a ≤ y ≤ c

( 2(b−y)
(b−a)(b−c) for c < y ≤ b

(3.13)

. The cumulative distribution function of triangular distribution also obtained by

Fy(y) =


(y−a)2

(b−a)(c−a) for a ≤ y ≤ c

1− (b−y)2

(b−a)(b−c) for c ≤ y ≤ b
(3.14)

where c is the mode.
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Fig. 3.4 Pdfs of triangular distribution.

Setting a = 0 and b = 1 in the triangular distribution (3.13) gives a distribution with range

0 ≤ y ≤ 1, with probability density function

fY (y) =


2y
co

if 0 ≤ y ≤ co

2(1−y)
(1−co)

if co ≤ y ≤ 1
(3.15)

for 0 ≤ y ≤ 1, where 0 ≤ co ≤ 1. The mode of the transformed distribution is co =
(c−a)
(b−a) . If

co = 1
2 , the distribution of Y is called the symmetric triangular distribution. Like the beta

distribution, the triangular distribution can be symmetrical and positively or negatively skewed

but can not be other than unimodal, see Figure 3.4.

It is worth mentioning some other distributions which can be used to address the bounded

proportion data (e.g. Topp and Leone (1955), Vicari et al. (2008))
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3.1.6 Simplex distribution

Song et al. (2004) use the simplex distribution of Barndorff-Nielsen and Jørgensen (1991) to

model the marginal means of a longitudinal proportion response variable.
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Fig. 3.5 Pdfs of simplex distribution.

The probability density function of the simplex distribution is given by

fY (y|µ,σ2) =
[
2πσ

2 {y(1− y)}3
]− 1

2
exp

{
− 1

2σ2 d(y; µ)

}
(3.16)

for 0< y< 1, where, d(y; µ) = (y−µ)2

y(1−y)µ2(1−µ2)
, with location parameter 0< µ < 1 and dispersion

parameter σ2 > 0. The random variable Y follows a simplex distribution denoted by Y ∼

SIMPLEX(µ,σ2).
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3.1.7 Logit distributions

Any distribution on range −∞ < Z < ∞ can be transformed to a restrictive range 0 < Y < 1 by

using an inverse logit transformation Y = 1/(1+ e−Z). The distribution of Y is called a logit

distribution. If Z has a four parameter distribution denoted D in general, i.e. Z ∼ D(µ,σ ,ν ,τ),

then the distribution of Y is called a logit D distribution denoted Y ∼ logitD(µ,σ ,ν ,τ). If Z

has the pdf fZ(z) and Y has pdf fY (y), then

fY (y) = fZ(z)
∣∣∣∣dz
dy

∣∣∣∣= 1
y(1− y)

fZ(z) (3.17)

for 0 < y < 1, where z = log[y/(1− y)].

For example if Z has a skew exponential power distribution Z ∼ SEP(µ,σ ,ν ,τ) on (−∞,∞),

Fernandez et al. (1995), then Y has a logitSEP distribution, Y ∼ logitSEP(µ,σ ,ν ,τ) on (0,1).

The logitSEP distribution is created using the gamlss function gen.Family, which allows

any gamlss distribution with range (−∞,∞), (e.g. SEP), to be transformed to a new gamlss

distribution, (e.g. logitSEP), with range (0,1). Alternatives to the skew exponential power

(SEP) distribution include the skew student t (SST ) distribution, see Wurtz et al. (2006),

reparameterized from Fernández and Steel (1998a) and the sinh-arcsinh (SHASHo) distribution,

see Jones and Pewsey (2009).

3.1.7.1 Logit normal distribution

The logit normal distribution emerges by assuming Z has a normal NO(µ,σ) distribution and

Y = 1
(1+e−Z)

. Then Y has a logit normal distribution denoted, Y ∼ logitNO(µ,σ) on (0,1). The

probability density function of a logit normal distribution is given by

fY (y) =
1

y(1− y)
fZ(z) (3.18)
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for 0< y< 1, where Z ∼N(0,1) and z= log( y
1−y), and fZ(z) = 1√

2π
exp

[
−1

2z2] for −∞< z<∞.

Therefore the pdf of the logit normal distribution logitNO(µ,σ), for Y is given by

fY (y) =
1

y(1− y)
1√
2π

exp

[
−1

2

{
log

(
y

1− y

)}2
]

(3.19)
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Fig. 3.6 Pdfs of NO and logit-normal distribution.
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Figure 3.6 shows the logit normal distribution can take various shapes depending on the pa-

rameters µ and σ . Note that changing µ to −µ reflects the distribution about a vertical axis at

y = 0.5. Aitchison and Begg (1976) indicate that the logit normal distribution is richer than and

can approximate any beta density.

3.1.7.2 Logit skew t type 3 distribution

The skew t type 3 distribution is a spliced-scale distribution denoted by Z ∼ ST 3(µ,σ ,ν ,τ) for

−∞ < Z < ∞ Fernández and Steel (1998a). The probability density function of distribution

ST 3(µ,σ ,ν ,τ) for Z is given by,

fZ(z|µ,σ ,ν ,τ) =
c
σ

{
1+

(z−µ)2

σ2τ

[
ν

2I(z < µ)+
1

ν2 I(z ≥ µ)

]}
(3.20)

for −∞ < z < ∞, where −∞ < µ < ∞ , σ > 0, ν > 0, τ > 0 and

c = 2ν/
[
σ(1+ν2)B(1

2 ,
τ

2)τ
1
2

]
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Fig. 3.7 Pdfs of SST and logitSST distribution.

The logit skew t type 3 distribution is an inverse logit transformation Y = 1/(1+ e−Z) of Z,

where Z is assumed to have a ST3 distribution and is denoted by Y ∼ logitST 3(µ,σ ,ν ,τ).

Hence the probability density function of distribution logitST3(µ,σ ,ν ,τ) for Y is given by,

fY (y|µ,σ ,ν ,τ) =
1

y(1− y)
fZ(z|µ,σ ,ν ,τ) (3.21)

for 0 < y < 1, where z = log[y/(1− y)] and fZ(z|µ,σ ,ν ,τ) is given by equation (3.20).
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Figure 3.7 shows on the left the pdf of the skew student t (SST) distribution on the real line and

on the right the logitSST distribution on (0, 1). In the pdf of the logit skew student t distribution,

it can be shown that the density at 0 is infinity, similarly density at 1 is infinity.

3.1.8 Truncated distributions

A truncated distribution can be obtained by restricting the range of the random variable Y.

Truncation of a distribution can be below, above or both. If the truncation is from below, the

mean of the truncated distribution is greater than the original distribution. In the case of the

above truncation the mean of the truncated distribution is less than the original distribution .
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Fig. 3.8 Truncated pdfs of standard normal distribution.
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3.1.8.1 Below truncation

If a continuous random variable Y has a density function fY (y). Let Tl and Tr be constants in the

range of Y, so that Tr > Tl . For left truncation (i.e.Y ≥ Tl), let Yl be the resulting left truncated

variable having pdf given by

fYl(y) =
fY (y)

1−FY (Tl)
(3.22)

The cdf for the left truncated distribution is given by

FYl(y) =
FY (y)−FY (Tl)

1−FY (Tl)
(3.23)

where fY (y) and FY (y) are the pdf and cdf of the original variable Y.

3.1.8.2 Above truncation

For above truncation (i.e.Y < Tr), let Yr be the resulting right truncated variable having proba-

bility density function given by

fYr(y) =
fY (y)

FY (Tr)
(3.24)

The cumulative distribution function for the right truncated distribution is given by

FYr(y) =
FY (y)
FY (Tr)

(3.25)

where fY (y) and FY (y) are the pdf and cdf of the original distribution.
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3.1.8.3 Both truncation

For both truncation (i.e.Tl ≤ Y ≤ Tr) let Ylr be the resulting two sided truncated variable having

the probability density function is given by

fYlr(y) =
fY (y)

FY (Tr)−FY (Tl)
(3.26)

with cumulative distribution function of the truncated distribution given by

FYlr(y) =
FY (y)−FY (Tl)

FY (Tr)−FY (Tl)
(3.27)
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Fig. 3.9 Truncated normal distribution below 0 and above 1

For example any distribution for a variable Z on range (−∞,∞) can provide a variable Y on a

truncated range (0,1) by truncating Z below 0 and above 1. The resulting probability density

function for Y is given by

fY (y) =
fZ(y)

FZ(1)−FZ(0)

for 0 < y < 1, where fZ and FZ are the probability density function and cumulative distribution

function of Z respectively. If Z has a four parameter distribution denoted D in general, i.e.

Z ∼ D(µ,σ ,ν ,τ), then Y has a truncated D distribution, denoted Y ∼ Dtr(µ,σ ,ν ,τ). For
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example if Z ∼ SEP(µ,σ ,ν ,τ) then Y ∼ SEPtr(µ,σ ,ν ,τ). The SEPtr distribution is created

using the GAMLSS function gen.trun() from the R package gamlss.trun, which allows any

gamlss distribution (e.g. SEP) to be converted into a truncated distribution.

Figure 3.9 shows the normal distribution and the truncated normal distribution on 0 to 1. Unlike

the beta or logit distributions, in the case of a truncated distribution the density of y at 0 and 1 is

finite, neither 0 nor infinity.



Chapter 4

Bimodal skew symmetric normal (BSSN)

distribution

4.1 Introduction

In this chapter a parsimonious bimodal distribution for a response variable with a range (−∞,∞)

will be described. The distribution is referred to as the bimodal skew symmetric normal

distribution (BSSN) 1. The BSSN distribution is used in research for its effectiveness in capturing

bimodality, skewness and excess kurtosis. The mean, variance, skewness, excess kurtosis

and likelihood estimation of the distribution are taken from Hassan and El-Bassiouni (2016).

This chapter outlines the inclusion of BSSN distribution in the gamlss.dist package in R

which allows fitting of the distribution (with any or all parameters modelled using explanatory

variables). This work is original to this thesis.

The objective then is to apply the gamlss function gen.Family() (as described in section 3.1.7)

in order to transform the BSSN distribution on (−∞,∞) to the logitBSSN distribution on (0,1),

creating a distribution on (0,1) which can be bimodal.

1Bimodal skew symmetric normal distribution by Hassan and El-Bassiouni (2016)
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4.2 Bi-modal skew symmetric normal distribution and its

logit transformation

This section, following Hassan and El-Bassiouni (2016), describes the bi-modal skew symmetric

normal distribution (BSSN). The parameterizations used in the R code in Appendix E is defined

as follows 2. Let Φ and φ are the cdf and pdf of normal random variable with mean (µ) and

standard deviation ( 1√
(2σ)

). Let α(y) be a linear function of y. The cumulative distribution

function of the bi-modal skew symmetric normal distribution is obtained by

FY (y|µ,σ ,ν ,τ) = Φ(y)−α(y) ·φ(y) (4.1)

where

α(y) = (y+µ −2ν)/(1+2σ [τ +(ν −µ)2])

Let Y be a random variable having a BSSN (µ,σ ,ν ,τ) distribution i.e.

Y ∼ BSSN(µ,σ ,ν ,τ)

Then the probability density function of the BSSN distribution is given by

fY (y|µ,σ ,ν ,τ) = c[τ +(y−ν)2]e−σ(y−µ)2
(4.2)

for −∞ < y < ∞, where c = 2σ
3
2/γ

√
π , γ = 1+ 2σθ , θ = τ + δ 2, δ = ν − µ . −∞ < µ < ∞

and −∞ < ν < ∞ are location parameters and σ > 0 and τ ≥ 0 denote the scale and bi-modality

parameters respectively.

2The distribution parameters (µ , σ , ν and τ) are equivalent to (µ , ψ , β and δ ) respectively in Hassan and
El-Bassiouni (2016)
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The following results are obtained form Hassan and El-Bassiouni (2016). The mean and variance

of the bi-modal skew symmetric normal distribution, BSSN(µ,σ ,ν ,τ), for Y are given by

E(Y ) = µ −2
δ

γ

Var(Y ) =
(3+8στ +4σ2θ 2)

2σγ2

Skewness (ζ ) of Y ∼ BSSN(µ,σ ,ν ,τ) is measure by

ζ =
4
√

2σ [3−2σ(δ 2 −3τ)]δ

(3+8στ +4σ2θ 2)
3
2

The BSSN distribution can be symmetric (ζ = 0), skewed to the right (ζ > 0 ) and skewed to

the left ( ζ < 0) and the excess kurtosis (K) is measured by

K=
3(5+64τθ 2σ3 +16θ 4σ4 +16σ(3δ 2 +2τ)+8σ2[δ 4 +9τ(2δ 2 + τ)]

(3+8στ +4σ2θ 2)2 −3

The BSSN distribution can be mesokurtic (K= 0), leptokurtic (K> 0) and platykurtic (K< 0).
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Fig. 4.1 Shapes of the pdfs of BSSN

4.2.1 Maximum likelihood estimation of BSSN

The loglikelihood function of the BSSN is given by

log(l) = log(c)+ log[τ +(y−ν)2]−σ(y−µ)2
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Following Hassan and El-Bassiouni (2016), the derivatives of the loglikelihood function of

distribution BSSN with respect to µ , σ , ν and τ are given by

∂ log(l)
∂ µ

=
4σδ

γ
+2σ(y−µ)

∂ log(l)
∂σ

=
3

2σ
− 2ρ

γ
− (y−µ)2

∂ log(l)
∂ν

=
−4σδ

γ
−2

y−ν

[τ +(y−ν)2]

∂ log(l)
∂τ

=
−2σ

γ
+

1
[τ +(y−ν)2]

4.3 R implementation of BSSN

The R code for implementing the BSSN distribution in the gamlss.dist package in R is given

in Appendix E and is original to this thesis.

4.3.0.1 Functions used in R implementation of BSSN

The following function given in Appendix E, were written to implement BSSN in gamlss.dist.

BSSN(mu.link = "identity", sigma.link = "log",

nu.link = "identity", tau.link = "log")

dBSSN(x, mu=1, sigma=0.1, nu=1, tau=0, log = FALSE)

pBSSN(q, mu=1, sigma=0.1, nu=1, tau=0, lower.tail = TRUE,

log.p = FALSE)

qBSSN(p, mu=1, sigma=0.1, nu=1, tau=0, lower.tail = TRUE,

log.p = FALSE)
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rBSSN(n, mu=1, sigma=0.1, nu=1, tau=0)

4.3.1 Arguments

mu.link Defines the mu.link, with identity link as the default for the mu parameter.

sigma.link Defines the sigma.link, with log link as the default for the sigma parameter.

nu.link Defines the nu.link, with identity link as the default for the nu parameter.

tau.link Defines the nu.link, with log link as the default for the nu parameter.

x, q vector of quantiles.

mu vector of mu parameter values.

sigma vector of scale parameter values.

nu vector of nu parameter values.

tau vector of tau parameter values.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P[X ≤ x],otherwise, P[X > x].

p vector of probabilities.

n number of observations. If length(n)> 1, the length is taken to be the number required.

. . . for extra arguments.

4.3.2 Functions

Five functions of the distribution are :
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dBSSN The pdf of the distribution, d function.

pBSSN The cdf of the distribution, p function.

qBSSN The inverse cdf (or quantile) of the distribution, q function.

rBSSN The random generating function of the distribution, r function.

BSSN The function for fitting the distribution.

4.3.3 Use of BSSN function

Figure 4.1 shows the various plots of the pdf of the BSSN distribution and demonstrates its

ability to accommodate various shapes in terms of skewness, kurtosis and bimodality. The

probability density plots of the BSSN distribution were achieved for the different parameter

values as below.

curve(dBSSN(x, mu=1, sigma=0.1, nu=1, tau=0),

-12, 12, ylab="f(x)", main="BSSN")

curve(dBSSN(x, mu=1, sigma=0.1, nu=1, tau=5),

-12, 12, ylab="f(x)", main="BSSN")

curve(dBSSN(x, mu=1, sigma=0.1, nu=1, tau=10),

-12, 12, ylab="f(x)", main="BSSN")

curve(dBSSN(x, mu=1, sigma=0.1, nu=1, tau=20),

-12, 12, ylab="f(x)", main="BSSN")

curve(dBSSN(x, mu=1, sigma=0.1, nu=0, tau=4),

-12, 12, ylab="f(x)", main="BSSN")

curve(dBSSN(x, mu=-1, sigma=0.1, nu=0, tau=3),

-12, 12, ylab="f(x)", main="BSSN")

curve(dBSSN(x, mu=1, sigma=0.1, nu=2, tau=0),

-12, 12, ylab="f(x)", main="BSSN")

curve(dBSSN(x, mu=-1, sigma=0.1, nu=-2, tau=0),
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-12, 12, ylab="f(x)", main="BSSN")

curve(dBSSN(x, mu=-1, sigma=0.1, nu=-3, tau=0.8),

-12, 12, ylab="f(x)", main="BSSN").



Chapter 5

General inflated GAMLSS model on the

unit interval

5.1 Introduction

This chapter introduces a mixed continuous-discrete distribution to model a proportion response

variable observed on [0,1), (0,1] or [0,1], where a closed bracket indicates the inclusion of the

end point in the interval range. The response variable distribution is modelled by combining

any distribution on (0,1) together with point probabilities at 0, 1 or both, depending upon the

range of the proportion response variable. Distributions on (0,1) were described in chapter 2 not

only allowing the mean and variance but also skewness and fat tail features of the proportion

response variable on (0,1) to be modelled.

5.2 General distribution on (0,1) inflated at 0 and/or 1

A distribution on the unit interval (0,1) inflated at 0 and 1 captures probability masses at 0 and

1. Distributions inflated at 0, or 1, or 0 and 1, are appropriate when the response variable Y

takes values from 0 to 1 including 0, i.e. range [0,1) or including 1, i.e. range (0,1], or including
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both 0 and 1, i.e. range [0,1], respectively. Hoff (2007) uses the unit inflated beta to model the

response variable on the interval (0,1]. Ospina and Ferrari (2010) introduce the beta inflated

distribution model for the response variable on the intervals [0,1), (0,1] and [0,1].

A general inflated model for a proportion response variable on [0,1] is a mixture of three

components: a discrete value 0 with probability p0, a discrete value 1 with probability p1, and

a continuous distribution on the unit interval (0,1) with probability (1− p0 − p1). The mixed

continuous-discrete probability (density) function (pdf) of Y is fY (y|θ ,ξ0,ξ1) given by

fY (y|θ ,ξ0,ξ1) =


p0 if y = 0

(1− p0 − p1) fW (y|θ) if 0 < y < 1

p1 if y = 1

(5.1)

for 0 ≤ y ≤ 1, where fW (y|θ) is any probability density function defined on (0,1), i.e. for

0 < y < 1, with parameters θ T = (θ1,θ2, ··,θp) and 0 < p0 < 1, 0 < p1 < 1 and 0 < p0+ p1 < 1

and where ξ0 =
p0
p2

, ξ1 =
p1
p2

, where p2 = 1− p0 − p1, so ξ0 > 0 and ξ1 > 0. Hence

 p0

p1

=

 ξ0
(1+ξ0+ξ1)

ξ1
(1+ξ0+ξ1)



Model (5.1) is equivalent to a distribution on (0,1) for 0 < Y < 1, together with a multinomial

model with three levels, MULT 3(ξ0,ξ1) for recoded variable Y1 given by

Y1 =


0 if Y = 0

1 if Y = 1

2 if 0 < Y < 1

(5.2)
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i.e.

p(Y1 = y1) =


p0 if y1 = 0

p1 if y1 = 1

(1− p0 − p1) if y1 = 2

(5.3)

The cumulative distribution function of Y (with pdf given by (5.1)) is given by

FY (y|θ ,ξ0,ξ1) =


p0, if y=0

p0 +(1− p0 − p1)FW (y|θ), if 0<y<1

1, if y=1

(5.4)

for 0 ≤ y ≤ 1.

Inflated distributions have the advantage of extra flexibility, in that the probilities of Y at 0 and 1

are modelled independently of the distribution on (0,1), but with the cost of introducing extra

parameters (ξ0,ξ1) into the model.

Note p0 and p1 in equation (5.1) represent probability masses at 0 and 1 respectively. If the

model (5.1) comprises only two components: a discrete value 0 and a continuous component on

(0,1), the model is called a zero-inflated model and the probability (density) function of Y is

fY (y|θ , p0) given by

fY (y|θ , p0) =

 p0 if y = 0

(1− p0) fW (y|θ) if 0 < y < 1
(5.5)

for 0 ≤ y < 1. If the model comprises only a discrete value 1 and a continuous component on

(0,1), the model is called a one-inflated model and the probability density function is fY (y|θ)

given by

fY (y|θ , p1) =

 (1− p1) fW (y|θ) if 0 < y < 1

p1 if y = 1
(5.6)
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5.3 Model Definition

Let Y T = (Y1,Y1, · · ·,Yn) be a vector of independent response observations, where Yi has proba-

bility (density) function

fYi(yi|ψ i) = fY (yi|θ i,ξi1,ξi2)

given by (5.1), where θ i = (θi1,θi2, ··,θip)
T , for i = 1,2, ·, ·,n and ψ i = (θ i,ξi1,ξi2) is the full

parameter vector for observation i.

Let gk(·) be a known monotonic link function (for k = 1,2,3, · · ·,K) relating parameter ψk to

explanatory variables through an additive model given by

gk(ψk) = ηk = Xkβk +
Jk

∑
j=1

s jk(x jk) (5.7)

where ψk and ηk are vectors of length n, e.g.

ψT
k = (ψ1k,ψ2k, · · ·,ψnk)

ηT
k = (η1k,η2k, · · ·,ηnk)

βk is a parameter vector of length Jk
′,

β T
k = (β1k,β2k, · · ·,βJk

′k)

Xk is a known design matrix of order n× Jk
′, x jk is a vector of length n and the function s jk is

a non-parametric additive function of the explanatory variable x jk, for j = 1,2, · · ·,Jk and k =

1,2, · · ·, p. The amount of smoothing allowed in any of the smoothing function s jk is determined

by a set of smoothing parameters λ jk for j = 1,2, · · ·,Jk and k = 1,2,3,4,5,6. Assuming that

fW (y|θ) has four parameters θ = (µ,σ ,ν ,τ) then equation (5.7) for the parameters ψT =

(µ,σ ,ν ,τ,ξ0,ξ1) is given by
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g1(µ) = η1 = X1β1 +
J1

∑
j=1

s j1(x j1) (5.8)

g2(σ) = η2 = X2β2 +
J2

∑
j=1

s j2(x j2)

g3(ν) = η3 = X3β3 +
J3

∑
j=1

s j3(x j3)

g4(τ) = η4 = X4β4 +
J4

∑
j=1

s j4(x j4)

g5(ξ0) = η5 = X5β5 +
J5

∑
j=1

s j5(x j5)

g6(ξ1) = η6 = X6β6 +
J6

∑
j=1

s j6(x j6)

5.4 Model components

The inflated GAMLSS model (5.1) comprises a mixed continuous-discrete distribution with

probability (density) function fY (y|ψ) = fY (y|θ ,ξ0,ξ1), predictor ηk including parametric terms

and smoothing terms, and link functions gk(·), for k = 1,2, · · ·,K.

5.4.1 Population distribution fY (y|ψ)

The population probability (density) function fY (y|ψ) in model (5.1) and (5.8) for a mixed

continuous-discrete distribution is given by (5.1). This includes the probability density function

fW (y|θ) of any explicit continuous distribution (e.g.beta) on (0,1) or transformed distribution

(e.g. logit or truncated) on (0,1), together with point probabilities at 0 and 1. The inflated

GAMLSS model (5.1) and (5.8) with mixed continuous-discrete distribution denoted Dmix, can

be presented by

Y ∼ Dmix {g1(µ) = t1,g2(σ) = t2,g3(ν) = t3,g4(τ) = t4,g5(ξ0) = t5,g6(ξ1) = t6}
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where Dmix is the mixed continuous-discrete distribution of the response variable, (µ,σ ,ν ,τ,ξ0,ξ1)

are the parameters of Dmix and (g1, ··,g6) are the link functions and (t1, ··, t6) are the model

formulae for the explanatory terms in the predictors (η1, ··,η6) respectively.

5.4.2 Link function

The model (5.1) and (5.8) assume link function gk(·) is strictly monotonic and twice differen-

tiable for k = 1,2, ··,6. The default link functions relate the parameters (µ,σ ,ν ,τ,ξ0,ξ1) to the

predictors (η1,η2,η3,η4,η5,η6), (which depend on explanatory variables) e.g.



µ

logσ

logν

logτ

log
(

p0
p2

)
= log(ξ0)

log
(

p1
p2

)
= log(ξ1)


=



η1

η2

η3

η4

η5

η6


Various different link functions may be used for a single distribution parameter ψ with range

0 < ψ < 1, e.g. logit link [η = log( ψ

1−ψ
)], probit link [η = Φ−1(ψ)], where Φ(·) denotes

the standard normal distribution function, complementary log-log link [η = log− log(1−ψ)],

log-log link [η = − log− log(ψ)], the symmetric Aranda-Ordaz link (Aranda-Ordaz, 1981)

[η = 2(ψ)φ−(1−ψ)φ

φ(ψ)φ+(1−ψ)φ ], the asymmetric Aranda-Ordaz transformation [η = log((1−ψ)−φ −1)/φ ],

where φ(·) denotes the normal density function, the Pregibon two parameter link (Pregibon,

1980) [ (ψ)a−b−1
a−b − (1−ψ)a+b−1

a+b ] and a generalization of logitlink (i.e. η = ψα−1
α

− (1−ψ)β−1
β

) for

0 < ψ < 1 proposed by Scallan et al. (1984). Also a genegalization of loglink (i.e. η = ψα−1

α
)

for ψ > 0 Scallan et al. (1984).
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5.4.3 The predictor

5.4.3.1 Parametric terms

In equation (5.7) the predictor ηk for k = 1,2, ··,K are usually consist of a parametric component

Xkβk and additive smooth components, (e.g. penalized splines), s jk(x jk) for j = 1,2, ··,Jk.

The parametric component can include linear, factor, interaction terms, polynomial, fractional

polynomial (Royston and Altman (1994) and piecewise polynomial (Smith (1979), Stasinopoulos

and Rigby (1992) terms for explanatory variables.

5.4.3.2 Penalized splines term

Penalized splines or P-splines are usually defined on equidistant knots with a B-spline basis,

de Boor (2001), and difference penalty applied directly to the B-splines parameters to control

function wiggliness, see Eilers and Marx (1996) and Wood (2001). As a rule of thumb for the

number of knots to be used in P-splines Ruppert et al. (2003) and Lang and Brezger (2004)

suggested a moderately large number of knots, i.e. 20−40. The default in gamlss is 20, but

it can be changed. For a P-spline representation in the class of GAMLSS models, each smooth

function is modelled as a regression spline function denoted by

s(x) = Zγ

where s is a penalised smooth function, Z is an n×q design matrix defined using B-splines basis

functions for the explanatory variable x and γ is a q×1 vector of B-splines parameters. The

parameters γ are estimated locally subject to a penalty term stated in matrix notation as

λγ
T Gγ = λγ

T DT
r Drγ

where λ is smoothing parameter, Dr is a (q− r) × q matrix giving the rth order difference of

the q dimension vector γ , e.g. D2 is given by
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D2 =



1 −2 1

1 −2 1

1 −2 1

· · ·

· · ·

· · ·

1 −2 1


and DT

2 D2 is a q×q matrix

DT
2 D2 =



1 −2 1

−2 5 −4 1

1 −4 6 −4 ·

1 −4 6 · ·

1 −4 · · 1

1 · · −4 1

· · 6 −4 1

· −4 5 −2

1 −2 1



The penalty is equivalent to assuming that Dkγ is normally distributed,

Dkγ ∼ Nq−k(0,λ−1Iq−k)
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5.4.4 Model estimation

A parametric inflated GAMLSS model (i.e. (5.1) and (5.8) with no smoothing terms) is fitted

by maximum likelihood estimation with respect to β = (β1,β2, ··,β6) based on a sample of n

independent observations. The log likelihood function for model (5.1) and (5.8) is lin f given by

lin f =
n

∑
i=1

log fY (yi|ψ i)

=
n

∑
i=1

(
(log p0i)(if yi = 0)+(log p1i)(if yi = 1)

+(log(1− p0i − p1i))(if 0 < yi < 1)+(log( fW (yi|θ)))

(if 0 < yi < 1)
)

Notice that the log likelihood function lin f (·) factorizes in two terms. The first of which depends

only on parameters (p0, p1) which depend on (ξ0,ξ1) and the second only on the parameters

of the continuous distribution θ = (µ,σ ,ν ,τ). Since the parameters are separable, Pace and

Salvan (1997), the maximum likelihood inference for the two sets of parameters (ξ0,ξ1) and

(µ,σ ,ν ,τ) can be performed separately.

The more general model with smooth functions is fitted by maximum penalized likelihood

estimation Rigby and Stasinopoulos (2005) with respect to β and γ for fixed λ . The penalized

log-likelihood function for model (5.1) and (5.8) is given by

lin f p = l − 1
2

6

∑
k=1

Jk

∑
j=1

λ jkγ
T
jkG jkγ jk (5.9)

where G jk and γ jk are matrices and vectors respectively. The first and second derivatives of

equation (5.9) are obtained to give the Newton-Raphson step for maximizing equation (5.9) with

respect to βk and γ jk for j = 1,2, · · ·,Jk and k = 1,2,3, · · ·,6). Each step of Newton-Raphson

algorithm is achieved by using a backfitting procedure which cycles through each of the linear

and smoothing parameters respectively.
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5.4.5 Local estimation of smoothing parameter λ

5.4.5.1 Local random effect model

Following Rigby and Stasinopoulos (2013), a smoothing parameter λ can be estimated using a

local internal random effect model expressed as

ε = Zγ + e

e ∼ N(0,σ2
e W−1)

γ ∼ N(0,σ2
b G−1)

where Z is a basis for smoothing, W is a diagonal matrix for iterative weights w, G is a known

matrix for the smoothing method used and σe , σb and γ are parameters to be estimated. The

smoothing parameter λ is obtained by

λ =
σ2

e

σ2
b

The parameters σ2
e , σ2

b and γ can be estimated using following algorithm (e.g. see Rigby and

Stasinopoulos (2013)). Given λ̂ , parameter γ can be estimated by using the penalized least

square procedure,

γ̂ = (ZTWZ + λ̂G)−1ZTWε

hence ε̂ = Zγ̂ and σ̂2
e and σ̂2

b can be obtained by

σ̂2
e =

(ε − ε̂)T (ε − ε̂)

n− tr(S)

and

σ̂2
e =

ˆγT γ̂

tr(S)
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where

S = Z(ZTWZ +λG)−1ZTW

so ε̂ = Sε . Therefore the smoothing parameter λ can be estimated by

λ̂ =
σ̂e

2

σ̂b
2

5.4.5.2 Local generalized Akaike information criteron

Following Stasinopoulos et al. (2015), an alternative method of estimating a smoothing parameter

λ is by minimizing a local generalised Akaike information criterion defined by

GAIC =
∥∥√w◦ (ε −Zγ̂)

∥∥2
+ k · tr(S)

for given k, where ◦ is the Hadamard element by element product operator [e.g. let y =

(y1,y2,y3)
T and x = (x1,x2,x3)

T then y◦ x = (y1x1,y2x2,y3x3)
T ], ∥ · ∥ is the Euclidean vector

length [i.e. ∥x∥= (∑x2
i )

1/2] and tr(S) is the trace of matrix S. GAIC is minimized with respect

to λ (which affect S and γ̂). Note that k = 2 gives a local AIC and k = log(n) gives a local SBC.

The algorithm given in sections 5.4.4 and 5.4.5.2 are used in the GAMLSSinf function when the

additive term pb is used with method = GAIC and penalty k for fitting the P-spline, e.g.

gamlssinf(y~pb(x1, k=6, method=GAIC)+ pb(x2, k=6, method = GAIC))

5.4.5.3 Local generalised cross validation criteron

Following Stasinopoulos et al. (2015), an alternative method of estimating a smoothing parameter

λ is by minimizing a local generalised cross validation defined by

GCV =
n∥
√

w◦ (ε −Zγ̂)∥2

[n− tr(S)]2

with respect to λ .
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5.4.6 Model Diagnostics

5.4.6.1 Residuals

The normalized (randomized) quantile residuals are used to assess the overall adequacy of a

zero and one inflated GAMLSS model. The true normalized (randomized) residuals of a model, if

the model is correct, have a standard normal distribution, i.e. NO(0,1), and therefore mean zero,

variance one, skewness equal to zero and excess kurtosis equal to 0. This is true irrespective to

the underlying model distribution. In the GAMLSS framework the normalized quantile residuals

are used to check the adequacy of a GAMLSS fitted model. The fitted normalized (randomized)

quantile residual, Dunn and Smyth (1996), is a (randomised) version of Cox and Snell (1968),

and is given by

r̂i = Φ
−1(ûi) (5.10)

where Φ(·) is the cdf of standard normal distribution function and ui in equation (5.10) is defined

differently for continuous and discrete cases. Let yi be a continuous response variable then ui is

defined as

ui = F(yi|θi)

and

ûi = F(yi|θ̂i)

where F(yi|θi) is a cumulative distribution function. If the model is correctly specified ui has

the uniform random distribution between 0 and 1. Hence the normalized quantile residual (i.e.

z-score) for a continuous response variable is given by

r̂i = Φ
−1(ûi) = Φ

−1[F(yi|θ̂i)]·
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If yi is an observation from a discrete response variable, the uniform random variable ûi lies on

the interval

[û1, û2] = [F(y−1|θ̂),F(y|θ̂)]

Here ûi is selected randomly from the interval (û1, û2) and then transformed into the residual

(i.e.z-score), r̂ = Φ−1(û).

In the zero-inflated GAMLSS model, ûi is a uniform random value on (0, p̂0i) if yi = 0 and

ûi = FY (yi|p̂0i, µ̂i, σ̂i, ν̂i, τ̂i) if yi ∈ (0,1). On the other hand in the one-inflated model, ûi is a

uniform random value on [p̂1i,1), if yi = 1 and ûi = FY (yi|p̂1i, µ̂i, σ̂i, ν̂i, τ̂i) if yi ∈ (0,1). For the

zero and one inflated GAMLSS model, ûi is a uniform random value on,


(0, p̂0i) if yi = 0

(1− p̂i1,1) if yi = 1

ui = FY (yi|p̂0i, p̂1i, µ̂i, σ̂i, ν̂i, τ̂i) if 0 < yi < 1
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Fig. 5.1 Randomized quantile residual for inflated GAMLSS model.

A randomized procedure is conducted in order to produce a continuous residual. Note that

randomized quantile residuals can vary from one realization to another. In practice several

randomised set of residuals should be studied before a decision about the accuracy of the fitted

model is taken. Figure 5.1 shows the randomized quantile residuals for zero and one inflated

GAMLSS model.

A plot of the normalized (randomized) quantile residuals of a fitted model against the fitted

values of the µ parameter, against the index, and against an explanatory variable should not

show any detectable trends.
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5.4.6.2 Global goodness-of-fit measure

Global goodness-of-fit measure pseudo R2 can be used to check how model fits the data. The

pseudo R2 of Cox and Snell (1989)is defined by

R2 = 1−
(

L̂0

L̂1

) 2
n

where n is the sample size, L̂0 and L̂1 are the maximum likelihood function of the null model

and fitted model respectively.

5.4.7 Inflated logit skew t distribution: An example of an inflated GAMLSS

model

Here a specific example of the general distribution on (0,1) inflated at 0 and 1 (given in section

5.2) is considered

The inflated logit skew t type 3 (InflogitST3) distribution is suitable for a proportion response

variable on 0 ≤ Y ≤ 1 that includes both 0 and 1. The inflated logitST3 distribution is a mixture

of a logitST3 distribution for 0 < Y < 1 and a Bernoulli distribution for Y at 0 or 1. The

model includes three components: a discrete value 0 with probability p0, a discrete value 1 with

probability p1 and a logitST 3(µ,σ ,ν ,τ) distribution on the unit interval (0,1) with probability

(1− p0 − p1).

Let Z ∼ST3(µ,σ ,ν ,τ), let W = 1
1+e−Z ∼ logitST 3(µ,σ ,ν ,τ) therefore

fW (y) = fZ(z)|
dz
dy

|

where

z = log(
y

1− y
)

= log(y)− log(1− y)



5.4 Model components 68

and

dz
dy

=
1
y
+

1
1− y

=
1

y(1− y)

therefore

fW (y) =
1

y(1− y)
fZ(logit(y))

where Z ∼ ST 3(µ,σ ,ν ,τ). The mixed (continuous-discrete) probability (density) function of

Y ∼logitST3Inf0to1(µ,σ ,ν ,τ,ξ0,ξ1)

is given by

fY (y|µ,σ ,ν ,τ,ξ0,ξ1) =


p0 if y = 0

p1 if y = 1

(1− p0 − p1) fW (y|µ,σ ,ν ,τ) if 0 < y < 1

(5.11)

for 0 ≤ y ≤ 1, where 0 < p0 < 1, 0 < p1 < 1 and 0 < p0+ p1 < 1 and W ∼ logitST 3(µ,σ ,ν ,τ)

has a logitST 3 distribution with −∞ < µ < ∞ and σ > 0, ν > 0, τ > 0 with probability density

function given by

fW (y|µ,σ ,ν ,τ) = 1
yi(1−yi)

(
2ν

(σ2(1+ν2)B( 1
2

τ

2 )τ
1
2 )

)
{

1+ (zi−µ)2

σ2τ
[ν2I(zi < µ)+ 1

ν2 I(zi ≥ µ)]
}

where zi = logit(yi) = log[yi/(1− yi)], and B(·, ·) is the beta function and I(A) is an indicator

function, where I(A) = 1 if A is true and I(A) = 0 if A is false.
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Fig. 5.2 Pdfs of logitST3, logitST3Inf0, logitST3Inf1 and logitST3Inf0to1 distribution.

The parameters ξ0 and ξ1, are related to p0 and p1 by ξ0 = p0/p2, ξ1 = p1/p2, where p2 =

1− p0 − p1, so ξ0 > 0 and ξ1 > 0. Hence p0 = ξ0/(1+ξ0 +ξ1) and p1 = ξ1/(1+ξ0 +ξ1).

Figure 5.2 presents logitST3, logitST3 inflated at 0, logitST3 inflated at 1 and logitST3 inflated at

0 and 1 distributions for different choices of µ , σ , ν , τ ξ0 and ξ1. Note that logitST3 inflated at
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0, logitST3 inflated at 1 and logitST3 inflated at 0 and 1 distributions have same functional shape

on the interval (0,1). However they differ at the mass point(s), being at 0 for logitST3Inf0 (i.e.

inflated at 0), being at 1 for logitST3Inf1 (i.e. inflated at 1) and at 0 and 1 for logitST3Inf0to1

(i.e inflated at 0 and 1).

The default link functions (in the GAMLSS package) relate the parameters (µ,σ ,ν ,τ,ξ0,ξ1) to

the predictors (η1,η2,η3,η4,η5,η6), i.e.



µ

logσ

logν

logτ

log
(

p0
p2

)
= log(ξ0)

log
(

p1
p2

)
= log(ξ1)


=



η1

η2

η3

η4

η5

η6



The dependence of the predictors of the parameters (i.e. η1 to η6) on explanatory variables may

be linear, nonlinear, non-parametric smooth, regression trees or neural network models.

Model (5.11) can be fitted by fitting two models: a logitST3(µ,σ ,ν ,τ) distribution for 0<Y < 1,

together with a multinomial distribution with three levels, denoted by MN3(ξ0,ξ1) in the GAMLSS

package, for a recoded response factor Y1 given by (5.2) and (5.3), where ξ0 = p0/p2 and

ξ1 = p1/p2 and p2 = 1− p0 − p1 , giving ξ0 > 0 and ξ1 > 1. Alternatively model (5.11) can be

fitted more easily using a new function gamlssinf().

The log likelihood function for the logitST3Inf0to1 model (5.11) is equal to the sum of the

log likelihood functions of the logitST3 model for 0 < y < 1 and the multinomial MN3 model

(5.2 and (5.3). Here the likehood function factorises in two different terms; the first term depends

only on the ξ0 and ξ1 the second term depends on µ,σ ,ν and τ . Observed likelihood quantities

for inference about ξ0 and ξ0 only depend on the first term and inference about ξ0 and ξ1 can

take place separately from that about µ,σ ,ν , and τ as if the values of µ,σ ,ν , and τ were known,

Pace and Salvan (1997).
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Hence the parameter sets (µ,σ ,ν ,τ) and (ξ0,ξ1) are ‘information’ orthogonal. Fisher’s infor-

mation matrix for the inflated logitST3 distribution can be written as

K(θ) =



kξ0ξ0
kξ0ξ1

0 0 0 0

kξ1ξ0
kξ1ξ1

0 0 0 0

0 0 kµµ kµσ kµν kµτ

0 0 kσ µ kσσ kσν kστ

0 0 kνµ kνσ kνν kντ

0 0 kτµ kτσ kτν kττ



5.4.8 Inflated truncated skew power exponential: An example of an in-

flated GAMLSS model

Here a second specific example of the general distribution on (0,1) inflated at 0 and 1 (given

in section 5.2) is considered. Suppose a random variable Z has a distribution on (−∞,∞) with

pdf and cdf specified by fZ(·) and FZ(·) respectively. Let Ytr be a random variable representing

truncated version of the distribution over the interval [0,1]. The resulting probability density

function for Ytr is given by

fYtr(y) =


fZ(y)

FZ(1)−FZ(0)
, if 0 ≤ y ≤ 1

0, otherwise

If Z has a four parameter distribution denoted D in general, i.e. Z ∼ D(µ,σ ,ν ,τ), then Ytr has a

truncated D distribution, denoted Ytr ∼ Dtr(µ,σ ,ν ,τ).

For example if Z ∼ SEP(µ,σ ,ν ,τ) then Ytr ∼SEPtr(µ,σ ,ν ,τ). The SEPtr distribution is

created using the GAMLSS function gen.trun(), which allows any gamlss distribution (e.g. SEP)

to be converted into a truncated distribution. The truncated distribution SEPtr(µ,σ ,ν ,τ) on

(0,1) can be inflated with probabilities at 0 and 1. The resulting mixed continuous-discrete

probability (density) function of
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Y ∼ SEPtrInf0to1(µ,σ ,ν ,τ,ξ0,ξ1)

is given by

fY (y|µ,σ ,ν ,τ,ξ0,ξ1) =


p0, if y = 0
fZ(y|µ,σ ,ν ,τ)
FZ(1)−FZ(0)

, if 0 < y < 1

p1, ify = 1

for 0 ≤ y ≤ 1 and −∞ < µ < ∞, σ > 0, ν > 0, τ > 0 and 0 < p0 < 1, 0 < p1 < 1 and

0 < p0 + p1 < 1, where ξ0 = p0/p2, ξ1 = p1/p2 and p2 = 1− p0 − p1.



Chapter 6

Generalized Tobit GAMLSS model

6.1 Introduction

This chapter outlines a generalized Tobit GAMLSS model for a proportion response variable on

the interval [0,1), (0,1] or [0,1]. The Tobit model, Tobin (1958), and the two sided version of the

Tobit model, Rosett and Nelson (1975), were considered to establish the ideas of the new model.

The proposed model includes a flexible distribution assumption considering that the normal

distribution is not adequate for all data. The model primarily focuses on censoring below 0 or

above 1 or both. Each of the parameters of the assumed distribution can be modelled as linear,

P-splines, neural network or decision tree functions of explanatory variables.

6.2 Tobit model

The basic assumption of the standard Tobit model is that the dependent variable has a normal

distribution which is left censored to the semi closed interval [a,∞) (Tobin, 1958) or the closed

interval [a,b] for the two sided version (Rosett and Nelson, 1975) and is conditional on some

covariates x = (x1,x2, ·, ·, ·,xp) ∈ Rp. Here we consider the situation where a = 0 and b = 1.

Let observed variable Y be a censored version of latent variable V. The standard Tobit model
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originally proposed by Tobin (1958) can be defined in the following way

V ∼ NO(µ,σ)

and
Y = V if V > 0

= 0 if V ≤ 0
(6.1)

Two sided version of Tobit model (Rosett and Nelson, 1975) can be defined by

Y = 0 if V ≤ 0

= V if 0 <V < 1

= 1 if V ≥ 1

(6.2)

Furthermore the mean function (µ) of the latent variable V is modelled in the following way ,

µ = xT
β , β ∈ Rp

See Maddala (1983) and Takeshi (1984, 1985) for an explanation of the mean function and

associated details.
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Fig. 6.1 Two sided version of Tobit model

Maddala and Nelson (1975) and Arabmazar and Schmidt (1982) have shown that the Tobit

model is sensitive to distribution assumptions. It is clear that the underlying assumption of the

normal distribution for the latent variable V may not be adequate for all data sets. Here an

alternative approach is proposed to replace the normal distribution by a more flexible GAMLSS

distribution on the real line (R). Since the model is developed within the GAMLSS framework, the

model can easily accommodate all the GAMLSS features. The generalised Tobit GAMLSS model is

proposed for observed variable Y having range from 0 to 1 including 0 and (or) 1.

Figure 6.1 shows censored normal distribution on [0,1] which is obtained by censoring a normal

distribution on (−∞,∞) below 0 and above 1 to give point probabilities at 0 and 1.

6.3 Generalized Tobit model for 0 ≤ y ≤ 1

The proposed model is a generalization of the Tobit model specified in equation 6.2. Let

V ∼ D(θ) be a latent variable whose parameters are conditional on covariates x. The model

assumes that the latent variable V has a distribution on (−∞,∞) with probability density function
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fV (v|θ) and cumulative distribution function FV (v|θ). The observed variable Y then depends

on the latent variable as in equation (6.2).

The distribution of the observed (interval censored) variable Y is denoted by

Y ∼ Dic(θ)

where subscript ic indicates that the distribution D is interval censored to interval [0,1], i.e.

below 0 and above 1. The resulting mixed continuous-discrete probability (density) function of

Y is given by

fY (y|θ) =


FV (0), if y=0

fV (y|θ), if 0<y<1

1−FV (1), if y=1

(6.3)

for 0 ≤ y ≤ 1, where θ is the parameter vector. The cumulative distribution function of Y [with

pdf given by (6.3)] is given by (5.4), where p0 = FV (0) and p1 = 1−FV (1).

In the generalised Tobit models the probabilities of Y at 0 and 1 are directly related to the

distribution between 0 and 1 and so are less flexible, but the model is more concise (i.e.

parsimonious) in that it has less parameters. Also the Tobit model is usually not sensitive to

values of Y very close to 0 or 1.

6.3.1 Generalised Tobit model for 0 ≤ y < 1 and 0 < y ≤ 1

Two other general classes of models can be derived similar to model (6.3), when the response

variable is recorded on the interval [0,1) or (0,1]. A generalized Tobit model on (0,1] can be

obtained by censoring above 1 a flexible model response variable distribution on (0,∞) to give

its positive probability at 1. Censoring refers to the transformation of observations outside the

limiting interval to the border value, Hoff (2007). Here the values of Y in the model distribution

above 1 are transformed to 1.
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Let V ∼ D(θ) be a flexible uncensored distribution on (0,∞). Let Y ∼ Drc(θ
T ) be the corre-

sponding right censored distribution on (0,1], i,e censored above 1. Then

Y =V, if 0 <V < 1

= 1, if V ≥ 1

Hence the probability density function of Y is given by

fY (y|θ) =


fV (y|θ), if 0<y<1

1−FV (1), if y=1
(6.4)

for 0 < y ≤ 1. For the observed response variable on [0,1) a left censored distribution on (0,∞)

can be used by transforming dependent variable Y in (6.4) into (1−Y ).

6.4 Generalized Tobit GAMLSS model

The generalized Tobit GAMLSS model is implemented using the generalized additive model for

location, scale and shape (GAMLSS) framework by Rigby and Stasinopoulos (2005). For example

assume that an observation is right censored at 1, then its contribution to the log likelihood is

given by

log[1−F(1|θ)]

where F(1|θ) is the cdf at 1. Hence incorporation of censoring require computation of F(1|θ).

In order to extend the model to the GAMLSS regression case we relate the parameters of the

distribution of the latent variable V through link functions to the linear and smooth terms in

explanatory variables by

gk(θk) = ηk = Xkβk +
Jk

∑
j=1

s jk(x jk) (6.5)
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where gk(·) is a monotonic link function, θk is a parameter vector of length n and βk is a

parameter vector of length Jk
′, x jk is a explanatory variable vector of length n and s jk is a

unknown smooth function of the variable x jk, for J = 1,2, ··,Jk and k = 1,2, ··, p. Note that if no

censoring occurs the generalised Tobit model would be a general form of GAMLSS regression

model (Rigby and Stasinopoulos, 2005).

6.4.1 Likelihood inference

Let y = (y1,y2, · · ·,yn) be independent observations with range [0,1] from the model given by

(6.3) and (6.5) and θ T = (θ1,θ2, ·, ·, ·,θp) be a parameter vector. The likelihood function for the

observed y is given by

Lc =
n

∏
i=1

{
FY (yi)

I(yi=0) fY (yi)
I(0<yi<1)SY (yi)

I(yi=1)
}

(6.6)

where I(A) denotes indicator function equating 1 if A is true, otherwise 0. SY (yi) is a survival

function,which can be expressed as

SY (y|θ) = 1−FY (y|θ)

Therefore the log likelihood function (lc) is obtained by

lc =
n

∑
i=1

{I(yi = 0) logFY (yi|θi)+ I(0 < yi < 1) log fY (yi|θi)}

+ I(yi = 1) logSY (yi|θi)}

=
n

∑
i=1

{I(yi = 0) logFY (yi|θi)+ I(0 < yi < 1) log fY (yi|θi)}

+ I(yi = 1) log(1−FY (yi|θi))}

(6.7)

where θ i = (θi1,θi2, ··,θip)
T . Hence for fixed smoothing parameter λ jk, the fixed and random

effect parameters β and γ respectively are estimated by maximising a penalised likelihood
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function (lcp)

lcp = lc +
1
2

p

∑
k=1

Jk

∑
j=1

λ jkγ
T
jkG jkγ jk (6.8)

where lc is the log likelihood from equation (6.7) and G jk and γ jk are matrices and vectors

respectively defined in section 5.4.3.2. The maximum (penalised) likelihood estimation is

achieved through a Newton-Raphson, Fisher scoring or quasi Newton-Raphson algorithm.

6.4.2 Residuals

Randomized quantile residuals discussed in Chapter 3 are also appropriate for a censored

response variable. A fitted normalised (randomized) quantile residual (Dunn and Smyth, 1996)

for model (6.3) is given by

r̂i = Φ
−1[ûi]

where ûi = FV (yi|θ̂ i) if 0 < yi < 1 and ui is a random value from a uniform distribution given by

U(0, p0i), wherep0i = FV (0|θ̂ i), if yi = 0

U(1− p1i,1),wherep1i = 1−FV (1|θ̂ i), if yi = 1

and θ i = (θi1,θi2, ··,θip)
T for i= 1,2, ··,n. The true residual ri has a standard normal distribution

if the model is correct.

6.5 Interval censored BSSN distribution: An example of the

generalized Tobit GAMLSS model

Let latent variable V has a bi-modal skew symmetric normal distribution on (−∞,∞) denoted by

V ∼BSSN(µ,σ ,ν ,τ)

where the pdf of the BSSN distribution is given by
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fV (y|µ,σ ,ν ,τ) = c
[
τ +(y−ν)2]e−σ(y−µ)2

(6.9)

where

c =
2σ3/2

1+2σ(τ +(ν −µ)2)

where µ and ν are location parameters and σ and τ are scale and bimodality parameters

respectively with σ > 0 and τ > 0. For large τ distribution is close to normal N(µ,1/(2σ))

distribution. Variable Y is obtained by censoring V below 0 and above 1 as defined by equation

(6.2).

The resulting distribution of variable Y is denoted by

Y ∼BSSNic(µ,σ ,ν ,τ)

with mixed continuous-discrete probability(density) function given by

fY (y|µ,σ ,ν ,τ) =


FV (0|µ,σ ,ν ,τ), if y=0

fV (y|µ,σ ,ν ,τ), if 0<y<1

1−FV (1|µ,σ ,ν ,τ), if y=1

for 0 ≤ y ≤ 1.
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Fig. 6.2 Interval censored bimodal skew symmetric normal distribution

Figure 6.2 shows the pdf of the bimodal skew symmetric normal distribution censored below 0

and above 1.
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All four parameters (µ,σ ,ν ,τ) of the interval censored BSSN can be modelled in terms of

explanatory variables using suitable default link functions and can be given by

µ = η1 = XT
1 β1 +

J1

∑
j=1

s j1(x j1)

log(σ) = η2 = XT
2 β2 +

J2

∑
j=1

s j2(x j2)

ν = η3 = XT
3 β3 +

J3

∑
j=1

s j3(x j3)

log(τ) = η4 = XT
4 β4 +

J4

∑
j=1

s j4(x j4)

The s jk(x jk) functions are modelled here using P-splines (Eilers and Marx, 1996). The advantage

of inclusion of non-parametric P-spline terms is to identify non-linear relationships between

the response and each explanatory variable. Penalised B-splines are able to select the degree

of smoothing automatically using penalised maximum likelihood estimation. The selection of

degree of smoothing can be achieved by selecting the corresponding smoothing parameters λ

using either a local random effect model, a local generalized Akaike information criterion or a

local generalized cross validation criterion, see section 5.4.5.



Chapter 7

The GAMLSSinf package in R

The new R package gamlss.inf is designed to fit inflated distributions on the interval [0,1]

which were described in chapter 5. The gamlss package already provides the inflated beta

distribution, BEINF which allows the user to fit a beta distribution on (0,1) with extra point

probability at 0 and 1. The probability at the points 0 and 1 may depend on explanatory

variables. Since the beta distribution has 2 parameters, the inflated beta (with the addition of

the two mass points at 0 or/and 1) has a total of 4 parameters. In practice, and for complicated

data sets, the part of the response which lies on (0,1) may need more than 2 distribution

parameters to be captured correctly. The R package gamlss.dist provides through the function

gen.Family(...,type="logit") the facility of taking any distribution from (−∞,∞) and

mapping it into (0,1) using an inverse logit transformation. The new R package gamlss.inf

enhances this capability of the gamlss.dist package in that the distribution between (0,1) (up to

four parameters) can be inflated with probability at 0 and/or 1. The overall distribution can then

have up to six parameters. Let µ,σ ,ν ,τ represent the four parameters of the the distribution

defined on (0,1) and ξ 0 and ξ 1 be parameters related to the probability at 0 and 1 respectively.

Then the general inflated [0,1] model that the new package gamlss.inf can fit can be written

as:
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Y ind∼ D(µ,σ ,ν ,τ,ξ 0,ξ 1)

η1 = g1 (µ) = X1β 1 + s11(x11)+ . . .+ s1J1(x1J1)

η2 = g2 (σ) = X2β 2 + s21(x21)+ . . .+ s2J2(x2J2) (7.1)

η3 = g3 (ν) = X3β 3 + s31(x31)+ . . .+ s3J3(x3J3)

η4 = g4 (τ) = X4β 4 + s41(x41)+ . . .+ s4J4(x4J4)

η5 = g5 (ξ 0) = X5β 5 + s51(x51)+ . . .+ s5J5(x5J5)

η6 = g6 (ξ 1) = X6β 6 + s61(x61)+ . . .+ s6J6(x6J6)

where D(µ,σ ,ν ,τ,ξ 0,ξ 1) is a distribution of the response variable Y defined on [0,1] given

by (5.1) where θ = (µ,σ ,ν ,τ), Xk are the design matrices incorporating the linear additive

terms in the model, β k are the linear coefficient parameters and sk j(xk j) represent smoothing

functions for explanatory variables xk j, for k = 1,2,3,4,5,6 and j = 1, . . . ,Jk. Note that the

quantitative explanatory variables in the X’s can be the same or different for the ones defined in

the smoothers. The vectors η1, η2, η3, η4 η5 and η6 are called the predictors of the distribution

parameters µ , σ , ν , τ , ξ 0 and ξ 1 respectively.

7.1 Distributions on (0,1)

7.1.1 Explicit distributions on (0,1)

Within the gamlss.dist package there are currently three distributions defined on (0,1),

1. the beta distribution, BE, with two parameters,

2. the logit normal distribution, LOGITNO, with two parameters and

3. the generalised beta type 1 distribution, GB1, with four parameters.
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7.1.2 Logit distributions on (0,1)

In addition, as described in section 3.1.7, any continuous random variable say Z defined on

(−∞,∞) can be transformed by the inverse logit transformation Y = 1/(1+ exp(−Z)) to a

random variable Y defined on (0,1). For example if Z is a t-family distributed variable i.e.

Z ∼ TF(µ,σ ,ν), and the inverse logit transformation is applied, then Y ∼ logitTF(µ,σ ,ν), i.e.

a logit-t family distribution on (0,1).

The following is an example on how to take a gamlss.family distribution on (−∞,∞) and create

a corresponding logit distribution defined on (0,1). The gamlss function gen.Family() of the

gamlss.dist package generates the d (pdf), p (cdf), q (inverse cdf) and r (random generation)

functions of the distribution together with the function which can be used for fitting within

gamlss. Here first generate a logit-t distribution and and in Fig. 7.1 plot the distribution for

different values of µ , σ and ν . Note that µ , σ and ν are defined on the original t-distribution

ranges (−∞,∞) for µ and (0,∞) for σ and ν . This implies that 1/(1+ exp(−µ)) is not the

mean of the logit distribution but its median. Also σ and ν are related to the scale and shape of

the distribution. Next use gen.Family("TF", type="logit") to generate a logit-t distribution

and then plot the distribution (see Fig. 7.1) for different values of µ , σ and ν using the function

curve().

# generate the distribution
library(gamlss)
gen.Family("TF", type="logit")

## A logit family of distributions from TF has been generated
## and saved under the names:
## dlogitTF plogitTF qlogitTF rlogitTF logitTF

# different mu
curve(dlogitTF(x, mu=-5, sigma=1, nu=10), 0,1, ylim=c(0,3))
title("(a)")
curve(dlogitTF(x, mu=-1, sigma=1, nu=10), 0,1, add=TRUE, lty=2)
curve(dlogitTF(x, mu=0, sigma=1), 0,1, add=TRUE, lty=3)
curve(dlogitTF(x, mu=1, sigma=1), 0,1, add=T, lty=4)
curve(dlogitTF(x, mu=5, sigma=1), 0,1, add=T, lty=5)
# different sigma
curve(dlogitTF(x, mu=0, sigma=.5, nu=10), 0,1, ylim=c(0,3))
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title(("(b)"))
curve(dlogitTF(x, mu=0, sigma=1, nu=10), 0,1, add=TRUE, lty=2)
curve(dlogitTF(x, mu=0, sigma=2, nu=10), 0,1, add=TRUE, lty=3)
curve(dlogitTF(x, mu=1, sigma=5, nu=10 ), 0,1, add=T, lty=4)
# different nu
curve(dlogitTF(x, mu=0, sigma=1, nu=1000), 0,1, ylim=c(0,3))
title("(c)")
curve(dlogitTF(x, mu=0, sigma=1, nu=10), 0,1, add=TRUE, lty=2)
curve(dlogitTF(x, mu=0, sigma=2, nu=5), 0,1, add=TRUE, lty=3)
curve(dlogitTF(x, mu=0, sigma=2, nu=1), 0,1, add=TRUE, lty=4)
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Fig. 7.1 A logit-t distribution: (a) with values µ = (−5,−1,0,1,5), σ = 1 and ν = 10, (b)
with values µ = 0, σ = (0.5,1,2,5) and ν = 10 and (c) with values µ = 0, σ = 1 and ν =
(1000,10,5,1).
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Figure 7.1 shows the different shapes the distribution can take. Panel (a) shows for fixed σ = 1

and ν = 10 how the distribution changes for different values of µ = (−5,−1,0,1,5). Panel (b)

for fixed µ = 0 and ν = 10 varies σ = (0.5,1,2,5). Finally panel (c) fixes µ = 0 and σ = 1 and

varies ν = (1000,10,5,1).

7.2 Truncated distributions on (0,1)

As discussed in section 3.1.8 any distribution defined on the real line (−∞,∞) can be left

truncated at 0 and right truncated 1 to give a truncated distribution on (0,1) using the function

gen.trun() from the R package gamlss.trun.

7.3 Generating inflated distributions on [0,1]

Next it is shown how any gamlss.family distribution defined on (0,1) can be extended by

inflation to [0,1].

The function gen.Inf0to1() takes as an argument a gamlss.family distribution on (0,1) and

generates an inflated version of the distribution with point probabilities at 0 and/or 1. The

function has two arguments, family and type.of.Inflation. The first specifies a distribution

family on (0,1), while the second specifies the type of inflation. The options are i) "Zero",

"One" and "Zero&One".

The resulting mixed continuous-discrete probability (density) function (pdf) for option ”Zero&One”

is given by

fY (y|θ ,ξ0,ξ1) =


p0 if y = 0

(1− p0 − p1) fW (y|θ) if 0 < y < 1

p1 if y = 1

(7.2)
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for 0 ≤ y ≤ 1, where fW (y|θ) is any probability density function defined on (0,1), i.e. for

0 < y < 1, with parameters θ T = (θ1,θ2, ··,θp) and 0 < p0 < 1, 0 < p1 < 1 and 0 < p0+ p1 < 1

and where ξ0 =
p0
p2

, ξ1 =
p1
p2

, where p2 = 1− p0 − p1, so ξ0 > 0 and ξ1 > 0. Hence

 p0

p1

=

 ξ0
(1+ξ0+ξ1)

ξ1
(1+ξ0+ξ1)


However for option ”Zero” the pdf is

fY (y|θ ,ξ0) =

 ξ0 if y = 0

(1−ξ0) fW (y|θ) if 0 < y < 1
(7.3)

so in this case ξ0 = P(Y = 0).

Also for option ”One” the pdf is

fY (y|θ ,ξ1) =

 (1−ξ1) fW (y|θ) if 0 < y < 1

ξ1 if y = 1
(7.4)

so in this case ξ1 = P(Y = 1).

In the example below first take the skew t-family distribution, SST, and use the gen.Family()

function in the gamlss.dist package to generate the distribution logitSST defined on (0,1). By

using the function gen.Inf0to1() on the new generated logitSST distribution, an inflated

logitSST distribution, inflated at 0 and 1, is created.

library(gamlss.inf)
gen.Family(family="SST", type="logit")

## A logit family of distributions from SST has been generated
## and saved under the names:
## dlogitSST plogitSST qlogitSST rlogitSST logitSST

gen.Inf0to1(family="logitSST", type.of.Inflation="Zero&One")
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## A 0to1 inflated logitSST distribution has been generated
## and saved under the names:
## dlogitSSTInf0to1 plogitSSTInf0to1 qlogitSSTInf0to1 rlogitSSTInf0to1
## plotlogitSSTInf0to1

There are five function generated here:

dlogitSSTInf0to1 The pdf of the distribution, d function.

plogitSSTInf0to1 The cdf of the distribution, p function.

qlogitSSTInf0to1 The inverse cdf of the distribution, q function.

rlogitSSTInf0to1 The random generating function of the distribution, r function.

logitSSTInf0to1 The function for fitting the distribution and

plotlogitSSTInf0to1 The function for plotting the pdf of the distribution.

7.4 Plotting inflated distributions on [0,1]

The newly created plotlogitSSTInf0to1() function can be used to plot the pdf of the inflated

distribution (which is a mixed continuous-discrete distribution). Figure 7.2 shows the use of

the plotlogitSSTInf0to1() function. The function plots the inflated distribution function

including point probabilities at zero and one. Unfortunately in its present form only one plot is

allowed per figure. Figure 7.2 shows eight different realisations of the distribution for different

values of the parameters.

plotlogitSSTInf0to1(mu= 1, sigma=1, nu=1, tau=10, xi0=.1, xi1=.2);
plotlogitSSTInf0to1(mu=-1, sigma=1, nu=1, tau=10, xi0=.1, xi1=.2);
plotlogitSSTInf0to1(mu=-1, sigma=2, nu=1, tau=10, xi0=.1, xi1=.2);
plotlogitSSTInf0to1(mu=0, sigma=2, nu=1, tau=10, xi0=.1, xi1=.2);
plotlogitSSTInf0to1(mu=0, sigma=1, nu=10,tau=10, xi0=.1, xi1=.2);
plotlogitSSTInf0to1(mu=0, sigma=1, nu=1, tau=3, xi0=.1, xi1=.2);
plotlogitSSTInf0to1(mu=0, sigma=1, nu=2, tau=3, xi0=.5, xi1=.1);
plotlogitSSTInf0to1(mu=0, sigma=1, nu=.3,tau=100,xi0=.1, xi1=.5);
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Fig. 7.2 A logit-SST distribution: (a) with values µ = 1, σ = 1, ν = 1, τ = 10. ξ0 = .1, and
ξ1 = .2 (b) with values µ = −1 σ = 2, ν = 1, τ = 10. ξ0 = .1, and ξ1 = .2 (c) with values
µ =−1 σ = 2, ν = 1, τ = 10. ξ0 = .1, and ξ1 = .2 (d) with values µ = 0 σ = 2, ν = 1, τ = 10.
ξ0 = .1, and ξ1 = .2 (e) with values µ = 0 σ = 1, ν = 2, τ = 10. ξ0 = .1, and ξ1 = .2 (f) with
values µ = 0 σ = 1, ν = 1, τ = 3. ξ0 = .1, and ξ1 = .2 (g) with values µ = 0 σ = 1, ν = 2,
τ = 3. ξ0 = .1, and ξ1 = .2 (h) with values µ = 0 σ = 1, ν = 3, τ = 3. ξ0 = .1, and ξ1 = .2
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The standard plotting functions of R can also be used to plot the created mixed distribution as is

shown below. Figure 7.3 shows how the pdf, cdf, inverse cdf and randomisation functions can

be displayed for different values of the distribution parameters.

# plotting the pdf -------------------------------
curve(dlogitSSTInf0to1(x, mu=0, sigma=1, nu=.8, tau=10, xi0=.1, xi1=.2),

0.001,0.999, ylab="pdf", main="(a)")
# getting the probabilities
p0 <- dlogitSSTInf0to1(x=0, mu=0, sigma=1, nu=.8, tau=10, xi0=.1, xi1=.2)
p1 <- dlogitSSTInf0to1(x=1, mu=0, sigma=1, nu=.8, tau=10, xi0=.1, xi1=.2)
points(c(0,1), c(p0,p1), col="blue")
lines(c(0,1), c(p0,p1), col="blue", type="h")
# plotting the cdf -------------------------------
curve(plogitSSTInf0to1(x, mu=0, sigma=1, nu=.8, tau=10, xi0=.1, xi1=.2),

0.0001,0.999, ylim=c(0,1), ylab="cdf", main="(b)")
#points(c(0), c(p0), col="blue")
lines(c(0), c(p0), col="blue", type="h")
p1 <- plogitSSTInf0to1(q=.999, mu=0, sigma=1, nu=.8, tau=10, xi0=.1, xi1=.2)
lines(c(1,1),c(p1,1))
# plotting the inverse cdf -----------------------
curve(qlogitSSTInf0to1(x, mu=0, sigma=1, nu=.8, tau=10, xi0=.1, xi1=.2),

0.0001,0.999, ylim=c(0,1), ylab="inverse cdf", main="(c)")
# plottind simulated data
truehist(rlogitSSTInf0to1(1000,mu=0, sigma=1, nu=.8, tau=10, xi0=.1, xi1=.2),

main="(d)")
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rlogitSSTInf0to1(1000, mu = 0, sigma = 1, nu = 0.8, tau = 10, 
    xi0 = 0.1, xi1 = 0.2)

Fig. 7.3 The (a) pdf (b) cdf (c) inverse cdf and (d) simulated data from an inflated logitSST
distribution with µ = 0, σ = 1, ν = .8, τ = 10. ξ0 = .1, and ξ1 = .2

The next section demonstrates how to use the function gamlssInf0to1() to fit a model which

has a response variable on the interval [0,1].
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7.5 Fitting a distributions on [0,1]

7.5.1 The gamlssInf0to1() function

The main function for fitting a model with a response variable Y in the interval [0,1] is

gamlssInf0to1(). In an inflated distribution the parameters µ , σ , ν and τ are orthogonal

to the parameters ξ0 and ξ1 in the sense that the log-likelihood function can be factorised in two

components, one containing the µ , σ , ν and τ and another containing ξ0 and ξ1. This means

that the two sets of parameters can be estimated separately. The function gamlssInf0to1()

takes advantage of this separation and works as follows:

• It picks the argument family (see below) which defines a gamlss.family distribution

defined on (0,1)

• Depending on whether the range of the response variable Y is [0,1), (0,1] or [0,1], it

creates an appropriate binary or multinomial response variable and it fits an appropriate

GAMLSS model. For example

– for [0,1), (0,1] it fits a binary logistic model (using the gamlss.family BI)

– for [0,1] it fits a multinomial model (using the gamlss.family MN3)

• Fits a GAMLSS model to the data cases with Y inside (0,1) using the distribution defined

by family, by weighting out the observations with zero and/or one.

• Creates the (randomized) quantile residuals for the whole model

• Saves the output as an gamlssinf0to1 object which is a subclass of an gamlss object.

The idea is that the object gamlssinf0to1 should behave similar to a gamlss object. For this

purpose the following S3 methods are created.

1. fitted.gamlssinf0to1(),

2. coef.gamlssinf0to1(),
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3. print.gamlssinf0to1(),

4. deviance.gamlssinf0to1(),

5. vcov.gamlssinf0to1(),

6. summary.gamlssinf0to1(),

7. predict.gamlssinf0to1(),

8. formula.gamlssinf0to1.

The above methods are demonstrated in the next sections.

The function gamlssInf0to1() has the following arguments:

y the proportion response variable (including values at zero and/or one)

mu.formula a model formula for the µ parameter

sigma.formula a model formula for the σ parameter

nu.formula a model formula for the ν parameter

tau.formula a model formula for the τ parameter

xi0.formula a model formula for the ξ0 parameters which is related to the probability at zero

xi1.formula a model formula for the ξ1 parameters which is related to the probability at one

data a data frame containing the variables occurring in the formula.

family any gamlss() distribution family defined on (0,1)

weights a vector of weights as in gamlss()

trace logical, if TRUE information on model estimation will be printed during the fitting

... for extra arguments which can be passed to gamlss().
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Since the individual models fitted within the algorithm used in gamlssInf0to1() are GAMLSS

models, the parameter formulae above can take any linear or additive GAMLSS terms inclining

smoothers and random effects.

To demonstrate the use of the gamlssInf0to1() function simulated examples are used below.

In the examples there are no explanatory variables. That is, a response from different inflated

distributions on [0,1, (0,1] and [0,1] is simulated and then a distribution is fitted to the response

variable.

7.5.2 Simulating data

To compare the results obtained by the function gamlssInf0to1() to the ones obtained from

standard gamlss(), simulate data from the inflated beta distributions BEINF0, BEINF1, BEINF

which generate data on [0,1), (0,1] and [0,1] respectively.

library(gamlss) # loading gamlss package
library(gamlss.inf)
# creating data
set.seed(324)
y0 <- rBEINF0(1000, mu=.3, sigma=.3, nu=.15)# p0=0.13
y1 <- rBEINF1(1000, mu=.3, sigma=.3, nu=.15)# p1=0.13

y01 <- rBEINF(1000, mu=.3, sigma=.3, nu=0.1, tau=0.2) # p0=0.769, p1=0.1538

The mixed continuous-discrete probability (density) function of Y ∼ BEINF(µ,σ ,ν ,τ) is given

by

fY (y) =


p0 if y = 0

(1− p0 − p1) fW (y) if 0 < y < 1

p1 if y = 1

(7.5)

for 0 ≤ y ≤ 1, where W ∼ BE(µ,σ) has a beta distribution with 0 < µ < 1 and 0 < σ < 1

and p0 = ν/(1+ ν + τ) and p1 = τ/(1+ ν + τ). Hence ν = p0/p2 and τ = p1/p2 where

p2 = 1− p0 − p1. Since 0 < p0 < 1, 0 < p1 < 1 and 0 < p0 + p1 < 1, hence ν > 0 and τ > 0.
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Here fW (y) is given by

fW (y) =
1

B(α,β )
yα−1(1− y)β−1

for 0 < y < 1. where



α

β

p0

p1


=



µ(1−σ2)
σ2

(1−µ)(1−σ2)
σ2

ν

(1+ν+τ)

τ

(1+ν+τ)


Hence



µ

σ

ν

τ


=



α(1+β )−1

(α +β +1)−
1
2

p0
p2

p1
p2


For Y ∼ BEINF0(µ,σ ,ν) set τ = 0 in the above probability (density) function (7.5). For

Y ∼ BEINF1(µ,σ ,ν) set ν = 0 and the τ = ν in the above probability (density) function (7.5).

All three simulated examples come from a beta distribution with µ = 0.3 and σ = 0.3. For the

distribution on [0,1) the probability at zero is p0 =
ν

1+ν
= 0.15/(1+ .15) = 0.1304348. For the

distribution on (0,1] the probability at one is p1 =
ν

1+ν
= 0.15/(1+ .15) = 0.1304348. For the

distribution on [0,1] the probability at zero is p0 =
ν

1+ν+τ
= 0.1/(1+0.1+0.2) = 0.0769231

while the probability at one is p1 =
τ

1+ν+τ
= 0.2/(1+0.1+0.2) = 0.1538462. The proportions

of zeros and ones in the sample are 0.123 for [0,1), 0.127 for (0,1] and (0.07,0.167) for [0,1].

Next plot the three data sets using histdist().

library(MASS)
truehist(y0)
truehist(y1)
truehist(y01)



7.5 Fitting a distributions on [0,1] 97

0.0 0.2 0.4 0.6

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

y0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

y1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

y01

R code

on

page ??

Fig. 7.4 Generated data using inflated beta distribution: with values µ = 0.3, σ = 0.3, and
ν = 0.15 for the distribution on [0,1), ν = 0.15 for the distribution on (0,1] and ν = 0.1 and
τ = 0.2 for the distribution on [0,1].

7.5.3 Fitting a distributions on [0,1)

Below an inflated distribution at 0 is fitted using both gamlss() and gamlssInf0to1() func-

tions. Note that the family argument in gamlssInf0to1() takes a gamlss.family distribution

defined on (0,1). The trace=TRUE argument is used in gamlssInf0to1() to check the conver-

gence of the two different models fitted, one using the BI family and the other using the BE.

g0 <- gamlss(y0~1, family=BEINF0)

## GAMLSS-RS iteration 1: Global Deviance = -239.6607
## GAMLSS-RS iteration 2: Global Deviance = -307.2383
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## GAMLSS-RS iteration 3: Global Deviance = -307.6252
## GAMLSS-RS iteration 4: Global Deviance = -307.6258

library(gamlss.inf)
t0 <- gamlssInf0to1(y=y0, mu.formula=~1, family=BE, trace=TRUE)

## ***** The binomial model *****
## GAMLSS-RS iteration 1: Global Deviance = 745.7199
## GAMLSS-RS iteration 2: Global Deviance = 745.7199
## ***** The continuous distribution model *****
## GAMLSS-RS iteration 1: Global Deviance = -985.3807
## GAMLSS-RS iteration 2: Global Deviance = -1052.958
## GAMLSS-RS iteration 3: Global Deviance = -1053.345
## GAMLSS-RS iteration 4: Global Deviance = -1053.346
## The Final Global Deviance = -307.6258

AIC(g0,t0, k=0)

## df AIC
## t0 3 -307.6258
## g0 3 -307.6258

Note that the global deviance of the fitted t0 model, using gamlssInf0to1(), is obtained by

adding the individual deviances from the binomial and the beta model. The third fitted parameter

in both models, is related to the the probability at zero. The third parameter is called nu (i.e. ν)

in gamlss but xiφ (i.e. ξ0) in gamlssInf0to1(). The predictor η3 for the third parameter is the

same for both both model as shown below.

coef(g0, "nu")

## (Intercept)
## -1.964323

coef(t0, "xi0")

## (Intercept)
## -1.964323

The two fitted coefficients for predictor η3 are identical, but the fitted values for ν and ξ0 are not

the same because the parameterizations used for the zero inflated distribution are different for

gamlss using BEINF0 (see subsection 7.5.2) and for gamlssInf0to1 using BE (see section 7.3).

Next only the first element of the fitted values vector is displayed (since all values are identical

because we fit a constant model).
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fitted(t0, "xi0")[1]

## [1] 0.123

fitted(g0, "nu")[1]

## 1
## 0.1402509

The differences in the fitted values is due to the way the two models are fitted. gamlssInf0to1()

fits a binary distribution model with a logit link for the binomial distribution parameter. The

vector fitted(t0, "xi0") contains the fitted probabilities at zero. For example let β̂t =−1.964

be the coef(t0, "xi0") then 1/(1+ e−β̂t ) = π̂0 = 0.123. In gamlss, ν is fitted using a log

link. Let β̂g = −1.964 be the coef(g0, "nu") so eβ̂g = ν̂ = 0.1402509 the fitted value for

ν . In BEINF0 ν is defined as the odds ratio for example ν̂ = π̂0/(1− π̂0) which implies that

π̂0 = ν̂/(1+ ν̂). This can be confirmed by:

fitted(g0, "nu")[1]/(1+fitted(g0, "nu"))[1]

## 1
## 0.123

which is the fitted probability of observing zero. The summary() function makes it clear that

the two models use different link functions for the third parameters ν or ξ0.

summary(t0)

## *******************************************************************
## Family: "InfBE"
##
## Call: gamlssInf0to1(y = y0, mu.formula = ~1, family = BE, trace = TRUE)
##
##
## Fitting method: RS()
##
## -------------------------------------------------------------------
## Mu link function: logit
## Mu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.84294 0.02203 -38.26 <2e-16 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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##
## -------------------------------------------------------------------
## Sigma link function: logit
## Sigma Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.84659 0.02989 -28.32 <2e-16 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## -------------------------------------------------------------------
## xi0 link function: logit
## xi0 Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.96432 0.09628 -20.4 <2e-16 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## -------------------------------------------------------------------
## No. of observations in the fit: 1000
## Degrees of Freedom for the fit: 3
## Residual Deg. of Freedom: 997
## at cycle:
##
## Global Deviance: -307.6258
## AIC: -301.6258
## SBC: -286.9026
## *******************************************************************

summary(g0)

## ******************************************************************
## Family: c("BEINF0", "Beta Inflated zero")
##
## Call: gamlss(formula = y0 ~ 1, family = BEINF0)
##
## Fitting method: RS()
##
## ------------------------------------------------------------------
## Mu link function: logit
## Mu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.84294 0.02203 -38.26 <2e-16 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## ------------------------------------------------------------------
## Sigma link function: logit
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## Sigma Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.84659 0.02989 -28.32 <2e-16 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## ------------------------------------------------------------------
## Nu link function: log
## Nu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.96432 0.09628 -20.4 <2e-16 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## ------------------------------------------------------------------
## No. of observations in the fit: 1000
## Degrees of Freedom for the fit: 3
## Residual Deg. of Freedom: 997
## at cycle: 4
##
## Global Deviance: -307.6258
## AIC: -301.6258
## SBC: -286.9026
## ******************************************************************

The variance covariance matrix for the fitted g0 and t0 models can be obtained as follows.

vcov(t0)

## (Intercept) (Intercept) (Intercept)
## (Intercept) 0.0004854761 0.0001292291 0.000000000
## (Intercept) 0.0001292291 0.0008936886 0.000000000
## (Intercept) 0.0000000000 0.0000000000 0.009270331

vcov(g0)

## (Intercept) (Intercept) (Intercept)
## (Intercept) 0.0004854761 0.0001292291 0.000000000
## (Intercept) 0.0001292291 0.0008936886 0.000000000
## (Intercept) 0.0000000000 0.0000000000 0.009270331

Note that because of the partition of the likelihood function parameters µ and σ are orthogonal

to ν or ξ0.
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The residuals for the two models should be identical for the not zeros response. Due to the

randomization at discrete values (zero here) differences are expected when the response is zero.

This is demonstrated in the lower part of Figure 7.5 where the residuals are plotted against the

observation index.

plot(resid(t0), pch="+")
points(resid(g0), col="red")

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

++
+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+
++

+

+

+
+

+

+

+

++

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+
+

++

+

+

+

+
+

+

+

+

+

+

+
+

+

+

+

+

+
+
+
+

+

+

+
+

+
+
+

+

++
+
+
+
+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+
+

+

+

+
++
+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

++

+

+++

+

++
+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

++

+

++

+

+

+

+

++

+

+

+

+

+
+
+

++

+

+

+

+
+

+
+

+

+

+

+

+

+

+

+

+

+

++

+
+

+

+

+

+

+

++
+

+

+++
+

+

+

+
+

+

+

+

+

+

+

+

+
+

++

+

+

+

++
+

+

+

+

+

+

+

+

+

+
++

+

++

+

+

+

+

+

+

+
+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+
+

+
+

++

+

+

+
+

+

+

+
+

+

+

+

+
+

+

+
+

+

++

+

++

+

++
+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+
+

++

+
+

+

+
+

+

+

+
+
+

+

+
+
+

+

+

+

++

+
+

++
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+
++

+
+

+

+

+

+++

+

+

+

+

+

+

+
+

++

+
+
+

+

+

+

+

+

+

+

+

+

+
+
+

+
+

+
+

+

+

+

+

+

+

++

+

+
+

+

+

+

+

+

+

+

+

+
+

+

+
+

+

+

+
+

+

+

+

+
+

+
++

+
+

++
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

++
+

+
+

++

+

+

+

+

+

+

+
+

++

+

+

+

+

+

+
++

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

++
+

+
+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+
+

+

+

+
+

+

+

+
+
+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+
+

+

+
+
+

++

+

+

+
+

+

+

+

+

++

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

++
+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

++

+
+
+

+

+

+

+
+

+

+

+

+

+

+

+

+
++

+

+

++

+

+

+

+

+

+

+

+

++

++

+

+
+

+

+

+

+

+

+
+

+
+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

++
+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+
+

++
+

+

+

+

+

+

+

+++

+

+
+
+

+

+
+

+

+

+

++

+

+
+

+

+

+

+

+

+

+
+

+
+

+

+

+

+

+

+
+

+

+

+

+

+

++

+

+

+

+

+
++

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

0 200 400 600 800 1000

−
3

−
2

−
1

0
1

2
3

Index

re
si

d(
t0

)

Fig. 7.5 Superimposed residuals from models t0 and g0. Because of the randomization in the
zero values of the response the lower part of the plot is not identical

Next we will plot the fitted distribution in Figure 7.6. The standard BEINF0 distribution in

gamlss.dist has its own plotting function called plotBEINF0() which can be used here. For

the model fitted with gamlssInf0to1() such a function is created using the gen.Inf0to1()

function.

# generate the
gen.Inf0to1("BE", type="Zero")

## A 0 inflated BE distribution has been generated
## and saved under the names:
## dBEInf0 pBEInf0 qBEInf0 rBEInf0
## plotBEInf0
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plotBEINF0(mu=fitted(g0, "mu")[1], sigma=fitted(g0, "sigma")[1],
nu=fitted(g0, "nu")[1], main="(a)", ylab="density")

plotBEInf0(mu=fitted(t0, "mu")[1], sigma=fitted(t0, "sigma")[1],
xi0=fitted(t0, "xi0")[1]) ; title("(b)")

0 2 4 6 8 10

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

(a)

y

de
ns

ity

0 2 4 6 8 10

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

x

de
ns

ity

(b)

Fig. 7.6 The fitted distribution using (a) gamlss() and (b) gamlssInf0to1()

7.5.4 Fitting a distributions on (0,1]

Now the data inflated at 1 is analyzed.

g1 <- gamlss(y1~1, family=BEINF1)

## GAMLSS-RS iteration 1: Global Deviance = -264.3046
## GAMLSS-RS iteration 2: Global Deviance = -343.1028
## GAMLSS-RS iteration 3: Global Deviance = -343.6308
## GAMLSS-RS iteration 4: Global Deviance = -343.6318

t1 <- gamlssInf0to1(y=y1, mu.formula=~1, family=BE)
AIC(g1,t1, k=0)

## df AIC
## g1 3 -343.6318
## t1 3 -343.6318

The third fitted parameter in both models, is related to the probability at one. The third parameter

is called nu (i.e. ν) in gamlss but xi1 (i.e. ξ1) in gamlssInf0to1().
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coef(g1, "nu")

## (Intercept)
## -1.927748

coef(t1, "xi1")

## (Intercept)
## -1.927748

Again the two fitted coefficients are identical, but the fitted values for ν and ξ1 are different.

fitted(t1, "xi1")[1]

## [1] 0.127

fitted(g1, "nu")[1]

## 1
## 0.1454754

The vector fitted(t1, "xi1") contains the fitted probabilities at one. For example let β̂t1 be

the coef(t1, "xi1") then 1/(1+e−β̂t1) = p̂1 = 0.127. In gamlss, ν is fitted using the log link.

Let β̂g1 be the coef(g1, "nu") so eβ̂g1 = ν̂ = 0.1454754 the fitted values for ν . In BEINF1 ν

is defined as the odds ratio for example ν̂ = p̂1/(1− p̂1) which implies that p̂1 = ν̂/(1+ ν̂).

This can be confirmed by:

fitted(g1, "nu")[1]/(1+fitted(g1, "nu"))[1]

## 1
## 0.127

which is the fitted probability of observing one. The summary() function makes it clear that the

two models use different link functions for the third parameters ν or ξ1.

summary(t1)

## *******************************************************************
## Family: "InfBE"
##
## Call: gamlssInf0to1(y = y1, mu.formula = ~1, family = BE)
##
## Fitting method: RS()
##
## -------------------------------------------------------------------
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## Mu link function: logit
## Mu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.88074 0.02172 -40.54 <2e-16 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## -------------------------------------------------------------------
## Sigma link function: logit
## Sigma Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.88122 0.02987 -29.5 <2e-16 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## -------------------------------------------------------------------
## xi1 link function: logit
## xi1 Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.92775 0.09497 -20.3 <2e-16 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## -------------------------------------------------------------------
## No. of observations in the fit: 1000
## Degrees of Freedom for the fit: 3
## Residual Deg. of Freedom: 997
## at cycle:
##
## Global Deviance: -343.6318
## AIC: -337.6318
## SBC: -322.9085
## *******************************************************************

summary(g1)

## ******************************************************************
## Family: c("BEINF1", "Beta Inflated one")
##
## Call: gamlss(formula = y1 ~ 1, family = BEINF1)
##
## Fitting method: RS()
##
## ------------------------------------------------------------------
## Mu link function: logit
## Mu Coefficients:
## Estimate Std. Error t value Pr(>|t|)



7.5 Fitting a distributions on [0,1] 106

## (Intercept) -0.88074 0.02172 -40.54 <2e-16 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## ------------------------------------------------------------------
## Sigma link function: logit
## Sigma Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.88122 0.02987 -29.5 <2e-16 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## ------------------------------------------------------------------
## Nu link function: log
## Nu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.92775 0.09497 -20.3 <2e-16 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## ------------------------------------------------------------------
## No. of observations in the fit: 1000
## Degrees of Freedom for the fit: 3
## Residual Deg. of Freedom: 997
## at cycle: 4
##
## Global Deviance: -343.6318
## AIC: -337.6318
## SBC: -322.9085
## ******************************************************************

The variance covariance matrix for the fitted g1 and t1 models can be obtained as follows:

vcov(t1)

## (Intercept) (Intercept) (Intercept)
## (Intercept) 0.0004719565 0.0001297286 0.00000000
## (Intercept) 0.0001297286 0.0008923410 0.00000000
## (Intercept) 0.0000000000 0.0000000000 0.00901949

vcov(g1)

## (Intercept) (Intercept) (Intercept)
## (Intercept) 0.0004719565 0.0001297286 0.00000000
## (Intercept) 0.0001297286 0.0008923410 0.00000000
## (Intercept) 0.0000000000 0.0000000000 0.00901949
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The fitted distributions can be plotted as follows:

# generate the
gen.Inf0to1("BE", type="One")

## A 1 inflated BE distribution has been generated
## and saved under the names:
## dBEInf1 pBEInf1 qBEInf1 rBEInf1
## plotBEInf1

plotBEINF1(mu=fitted(g1, "mu")[1], sigma=fitted(g1, "sigma")[1],
nu=fitted(g1, "nu")[1], main="(a)", ylab="density")

plotBEInf1(mu=fitted(t1, "mu")[1], sigma=fitted(t1, "sigma")[1],
xi1=fitted(t1, "xi1")[1]) ; title("(b)")
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Fig. 7.7 The fitted distribution using (a) gamlss() and (b) gamlssInf0to1()

7.5.5 Fitting a distribution on [0,1]

Now an inflated distribution on 0 and 1 is fitted using both gamlss() and gamlssInf0to1()

functions.

g01 <- gamlss(y01~1, family=BEINF)

## GAMLSS-RS iteration 1: Global Deviance = 471.2145
## GAMLSS-RS iteration 2: Global Deviance = 401.5136
## GAMLSS-RS iteration 3: Global Deviance = 401.1247
## GAMLSS-RS iteration 4: Global Deviance = 401.1241
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t01 <- gamlssInf0to1(y=y01, mu.formula=~1, family=BE)
AIC(g01,t01, k=0)

## df AIC
## g01 4 401.1241
## t01 4 401.1241

Note that in gamlssInf0to() it was not needed to specify that the distribution was on [0,1] be-

cause the function detected whether there are zero and ones in the response and acts accordingly.

The third and fourth fitted parameters in both models are related to the probability at zero and

one. They are called ν and τ in gamlss but ξ0 and ξ1 in gamlssInf0to1().

coef(g01, "nu")

## (Intercept)
## -2.388763

coef(t01, "xi0")

## (Intercept)
## -2.388747

coef(g01, "tau")

## (Intercept)
## -1.519264

coef(t01, "xi1")

## (Intercept)
## -1.519263

The fitted coefficients are (almost) identical for ν and ξ0 and also for τ and ξ1. Now look at the

fitted values.

fitted(t01, "xi0")[1]

## 1
## 0.09174455

fitted(g01, "nu")[1]

## 1
## 0.09174314

fitted(t01, "xi1")[1]

## 1
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## 0.2188732

fitted(g01, "tau")[1]

## 1
## 0.2188729

Note that contrary to the models with only zero or only one in the response variable, the models

on [0,1] use the same parametrization as BEINF so the fitted values are identical. In fact here the

parameters are related to the probabilities at zero and ones as

ξ0 = ν =
p0

(1− p0 − p1)

and

ξ1 = τ =
p1

(1− p0 − p1)

so

p0 =
ξ0

(1+ξ0 +ξ1)
=

ν

(1+ν + τ)

and

p1 =
ξ1

(1+ξ0 +ξ1)
=

τ

(1+ν + τ)
.

This can be verified by:

# probability for y=0
fitted(g01, "nu")[1]/(1+fitted(g01, "nu")+fitted(g01, "tau"))[1]

## 1
## 0.07000002

fitted(t01, "xi0")[1]/(1+fitted(t01, "xi0")+fitted(t01, "xi1"))[1]

## 1
## 0.070001

# probability for y=1
fitted(g01, "tau")[1]/(1+fitted(g01, "nu")+fitted(g01, "tau"))[1]

## 1
## 0.167

fitted(t01, "xi1")[1]/(1+fitted(t01, "xi0")+fitted(t01, "xi1"))[1]



7.5 Fitting a distributions on [0,1] 110

## 1
## 0.167

The summary() produces the same results for both models, so only t01 is represented here.

summary(t01)

## *******************************************************************
## Family: "InfBE"
##
## Call: gamlssInf0to1(y = y01, mu.formula = ~1, family = BE)
##
## Fitting method: RS()
##
## -------------------------------------------------------------------
## Mu link function: logit
## Mu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.8484 0.0226 -37.54 <2e-16 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## -------------------------------------------------------------------
## Sigma link function: logit
## Sigma Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.91148 0.03182 -28.64 <2e-16 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## -------------------------------------------------------------------
## xi0 link function: log
## xi0 Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.3887 0.1249 -19.13 <2e-16 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## -------------------------------------------------------------------
## xi1 link function: log
## xi1 Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.51926 0.08543 -17.78 <2e-16 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
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## -------------------------------------------------------------------
## No. of observations in the fit: 1000
## Degrees of Freedom for the fit: 4
## Residual Deg. of Freedom: 996
## at cycle:
##
## Global Deviance: 401.1241
## AIC: 409.1241
## SBC: 428.7551
## *******************************************************************

The variance covariance matrix for the fitted g01 and t01 models is for all practical purposes

identical.

vcov(t01)

## (Intercept) (Intercept) (Intercept) (Intercept)
## (Intercept) 0.0005107378 0.0001350223 0.000000000 0.000000000
## (Intercept) 0.0001350223 0.0010125764 0.000000000 0.000000000
## (Intercept) 0.0000000000 0.0000000000 0.015596125 0.001310618
## (Intercept) 0.0000000000 0.0000000000 0.001310618 0.007298641

vcov(g01)

## (Intercept) (Intercept) (Intercept) (Intercept)
## (Intercept) 5.107378e-04 1.350223e-04 -6.286964e-16 -3.501124e-15
## (Intercept) 1.350223e-04 1.012576e-03 -4.714802e-15 -2.625608e-14
## (Intercept) -6.286964e-16 -4.714802e-15 1.559632e-02 1.310616e-03
## (Intercept) -3.501124e-15 -2.625608e-14 1.310616e-03 7.298640e-03

Because of the randomization at zero and one, the residuals differ when the response variable is

at those values, as is shown in Figure 7.8 where the residuals are plotted against the observation

index.

plot(resid(t01), pch="+")
points(resid(g01), col="red")
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Fig. 7.8 Superimposed residuals from models t01 and g01. Because of the randomization the
values differ when the response variable is at zero and one

The fitted distributions are plotted next.

# generate
gen.Inf0to1("BE", type="Zero&One")

## A 0to1 inflated BE distribution has been generated
## and saved under the names:
## dBEInf0to1 pBEInf0to1 qBEInf0to1 rBEInf0to1
## plotBEInf0to1

plotBEINF(mu=fitted(g01, "mu")[1], sigma=fitted(g01, "sigma")[1],
nu=fitted(g01, "nu")[1], tau=fitted(g01, "tau")[1],
main="(a)", ylab="density")

plotBEInf0to1(mu=fitted(t01, "mu")[1], sigma=fitted(t01, "sigma")[1],
xi0=fitted(t01, "xi0")[1], xi1=fitted(t01, "xi1")[1])

title("(b)")



7.5 Fitting a distributions on [0,1] 113

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

(a)

x

de
ns

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

x

de
ns

ity

(b)

Fig. 7.9 The fitted distribution using (a) gamlss() and (b) gamlssInf0to1()



Chapter 8

Analysis of a proportion response variable

on (0,1]

8.1 Introduction

This chapter follows the work of Hossain et al. (2016a). The purpose here is to provide flexible

modelling approaches for centile curve estimation for a continuous proportion response variable

measured on the interval from zero to one, i.e. intervals (0,1), [0,1), (0,1] or [0,1], where the

square bracket indicates that the end point is included, while the curved bracket indicates that

the end point is excluded. This chapter will focus on a response variable Y on (0,1]. Extensions

are available for Y on [0,1) and [0,1] by following the approaches taken in chapters 9 and 10

respectively.

Specifically in this chapter two innovations are developed for modelling a proportion response

variable Y on the interval (0,1] including 1. The first is the development of a model employing

a logit skew Student t (logitSST) distribution inflated at 1. The second innovation is the

introduction of a generalized Tobit model [based on a flexible distribution on (0,∞), censored

above 1], which allows modelling on the interval (0,1]. The inflated logitSST and generalized

Tobit models can also be extended to model a proportion response variable on the intervals [0,1)
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or [0,1]. The models are fitted to a lung function response variable using the gamlss packages

(version 4.3.6) in R, Stasinopoulos and Rigby (2007) based on the GAMLSS model, (Rigby and

Stasinopoulos, 2005).

Various alternative methods are used in the literature to model a proportion response variable,

for example ordinary least squares (OLS) regression using a transformed response variable,

e.g using the arcsine square root transformation, i.e. sin−1(
√

Y ), or the logit transformation,

i.e. log [Y/(1−Y )]. However OLS regression for modelling a proportion response variable has

been questioned because of the potential mismatch of its underlying assumptions even after data

transformation, Schmid et al. (2011). Warton and Hui (2011) argued that the logit transformation

worked better than the arcsine transformation when analysing proportion data. Aitchison (1982)

also proposed a logit transformation to a normal distribution to model compositional data

in the form of proportions. The transformed normal distribution model also suffers from an

interpretation problem, since the expected value of Y is not a simple transformation of the

expected value of the logit transformed response. A logit transformation also used by Dawson

et al. (2010) where they modified the LMS method to deal with the truncated response variable.

Given its relatively flexible nature, the beta distribution has been used widely in the statistical

literature to model proportion data. For example Trenkler (1996), Kieschnick and McCullough

(2003) and Ferrari and Cribari-Neto (2004) have shown the practical implementation of the beta

distribution in their work. The beta distribution is a family of continuous distributions defined

on the open interval (0,1) not including 0 or 1. The probability density function (pd f ) fY (y) of

the beta distribution was originally parameterised by two positive shape parameters α and β , i.e.

fY (y) = yα−1(1− y)β−1/B(α,β ) for 0 < y < 1, where B(α,β ) is the beta function. The pdf of

the beta distribution has different shapes: unimodal (α > 1,β > 1), uniantimodal or U shaped

(α < 1,β < 1), increasing (α > 1,β ≤ 1), decreasing (α ≤ 1,β > 1) or constant (α = β = 1)

depending on the values of α and β relative to 1.

However the beta distribution is limited to modelling data on the open interval (0,1), not

including 0 or 1. To model data with a significant number of zeros and/or ones a mixed
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continuous-discrete distribution could be used. Kieschnick and McCullough (2003), Hoff

(2007), Cook et al. (2008) and Ospina and Ferrari (2010) present empirical examples of the

implementation of the beta inflated model as a mixed continuous-discrete distribution to model

proportion data on the intervals [0,1), (0,1] or [0,1]. The beta inflated distribution comprises a

beta distribution on (0,1) together with the point probabilities at 0 and/or 1. Galvis et al. (2014)

use a Bayesian approach to augment probabilities of zeroes and ones with the beta density for

modelling proportion data. Hoff (2007) compares four different approaches for modelling (0,1]

data, i.e Tobit regression, OLS regression, the Papke-Wooldbridge (PW) model and the unit

inflated beta model. Hoff’s results suggest that the beta model performed worse than the other

models. Ospina and Ferrari (2010) conclude that the complexity of interpretation of parameters

and the assumed normality of the latent variable do not allow the Tobit model to be as flexible

as the beta inflated distribution to model a response variable on the unit interval [0,1] . However

Ospina and Ferrari (2010) do not claim that the beta inflated model always provides a better fit

than the Tobit model. More recently Li et al. (2014) compare different models for a proportion

response variable Y on [0,1] although their focus is on using the fitted mean of Y for prediction

purposes rather than estimating centiles of Y.

The rest of the chapter proceeds as follows. Section 8.2 describes the statistical methodology

implemented in this chapter. In particular, subsection 8.2.1 includes a brief description of

centile estimation using the LMS method and its extensions. Subsection 8.2.2 provides a

general model for centile estimation, while subsections 8.2.3 and 8.2.4 provide the logit skew

Student t (logitSST ) and inflated logitSST distributions, appropriate for centile estimation for a

response variable Y on the intervals (0,1) and (0,1], respectively. Subsection 8.2.5 describes

the generalized Tobit model for Y on (0,1]. Section 8.3 applies the methodologies proposed in

section 8.2 to the lung function data. Conclusions are given in section 8.4.
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8.2 Statistical methodology

8.2.1 LMS centile estimation method and extensions

The estimation of different centiles of a response variable at each level of one (or more)

explanatory variables, is a major statistical problem in many applied human sciences, for

example the WHO growth curves, WHO (2006, 2007). A statistical approach widely used for

creating growth centile references for individuals from a population is the λ ,µ and σ (LMS)

method of Cole and Green (1992) and its extensions in Rigby and Stasinopoulos (2004, 2006).

Note that subsequently we will use the notation ν rather than λ to refer to the third parameter of

the model.

The main assumption of the LMS method, Cole and Green (1992), is that the response variable

Y > 0 is defined by a transformation

Z =


1

σν

[
(Y

µ
)ν −1

]
if ν ̸= 0

1
σ

log
(

Y
µ

)
if ν = 0

(8.1)

where Z is assumed to have truncated standard normal distribution. The truncated part comes

from the fact that since Y > 0, Z has to satisfy the condition −1/σν < Z < ∞ if ν > 0 and

−∞ < Z <−1/σν if ν < 0. The LMS method uses the power transformation (Y/µ)ν to correct

for skewness. The resulting distribution for Y (called the Box-Cox, Cole and Green, BCCG,

distribution within the gamlss package, Stasinopoulos and Rigby (2007), in R, R Core Team

(2014)) has three parameters, approximate median µ , approximate coefficient of variation σ and

skewness parameter ν (where ν < 1 and ν > 1 correspond to positive and negative skewness,

respectively).

However the BCCG distribution does not handle kurtosis. For modelling kurtosis Rigby and

Stasinopoulos (2004, 2006) extended the BCCG distribution by introducing the four parameter

BCPE and BCT distributions. For the BCPE distribution the transformed random variable Z
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in (8.1) follows a truncated power exponential distribution, while for the BCT distribution Z

follows a truncated t distribution.

8.2.2 General model for centile estimation

Let us assume that Y is the response variable, V is a single explanatory variable and θ =

(θ1,θ2, · · ·,θp) is a vector of p distribution parameters, then a general model for creating centiles

for Y conditional on the value v of V is:

Y ∼ D(θ)

gk(θk) = sk(x) k = 1, . . . ., p

x = vξ

(8.2)

where D is the assumed distribution, gk and sk are link and smooth functions respectively

for k = 1,2, ...., p and ξ is a power parameter applied to v to accommodate rapid growth of

Y for low or high values of v. Here D represents any distribution. Letting D represent the

BCCG, BCPE and BCT distributions gives respectively the LMS, LMSP and LMST methods of

centile estimation, see Cole and Green (1992), Rigby and Stasinopoulos (2004) and Rigby and

Stasinopoulos (2006) respectively. For example, the LMST method is given by

Y ∼ BCT (µ,σ ,ν ,τ)

g1(µ) = s1(x)

g2(σ) = s2(x)

g3(ν) = s3(x)

g4(τ) = s4(x)

x = vξ .

(8.3)
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The default link functions for the BCT distribution in the gamlss package are g1(µ) = µ

(identity link), g2(σ) = logσ , g3(ν) = ν and g4(τ) = logτ . Note that the BCCG distribution

only has three parameters µ , σ and ν . [In the gamlss package, the notation BCCGo, BCTo and

BCPEo refers to the BCCG, BCT and BCPE distributions respectively, except that the default

link function for µ is g1(µ) = log µ .] The BCCG, BCPE and BCT distributions are suitable for

modelling a response variable Y > 0. However they may not provide adequate models for Y on

the unit interval (0,1). Also they do not allow the value Y = 0. Next we investigate different

distributions D appropriate for a response variable on (0,1) and (0,1]. Extensions to response

variables on [0,1) and [0,1] are available by following the approaches taken in chapter 9 and 10

respectively.

8.2.3 Logit skew student t distribution (logitSST)

The idea of the proposed model is to replace the beta distribution on (0,1) with any distribution

on the range (−∞,∞) transformed to the range (0,1). Any distribution on the range −∞< Z <∞

can be transformed to a restrictive range 0 < Y < 1 by using an inverse logit transformation

Y = 1/(1+ e−Z).

The reason for the proposed model is that the beta distribution often provides a poor fit to a

proportion response variable on (0,1) in real data sets. The inverse logit transformation of the

skew student t (SST ) distribution, called the logitSST distribution, is introduced to provide an

improved model on the interval (0,1). Note that if Z ∼ SST (µ,σ ,ν ,τ) for −∞ < Z < ∞, then

Y = 1/(1+ e−Z) ∼ logitSST (µ,σ ,ν ,τ) for 0 < Y < 1 . Details of the skew student t (SST )

distribution are given in Wurtz et al. (2006), reparameterized from Fernández and Steel (1998a)

. The logitSST distribution is created using the gamlss function gen.Family(), which allows

any gamlss distribution with range (−∞,∞), (e.g. SST), to be transformed to a new gamlss

distribution, (e.g. logitSST), with range (0,1).



8.2 Statistical methodology 120

8.2.4 LogitSST distribution inflated at 1

The logitSST distribution inflated at 1 is a mixture of two components: a discrete value 1 with

probability p1 and a logitSST (µ,σ ,ν ,τ) distribution on the unit interval (0,1) with probability

(1 − p1). The resulting mixed continuous-discrete probability (density) function for Y ∼

logitSST In f 1(µ,σ ,ν ,τ, p1) is given by

fY (y|µ,σ ,ν ,τ, p1) =

 (1− p1) fW (y|µ,σ ,ν ,τ) if 0 < y < 1

p1 if y = 1
(8.4)

for 0 < y ≤ 1, where W ∼ logitSST (µ,σ ,ν ,τ) has a logitSST distribution, where −∞ < µ < ∞

, σ > 0, ν > 0, τ > 0 and 0 < p1 < 1, subsequently called the inflated logitSST distribution.

The default link functions relate the parameters (µ,σ ,ν ,τ, p1) to smooth functions of x, i.e.

µ = s1(x)

logσ = s2(x)

logν = s3(x)

logτ = s4(x)

log
(

p1

1− p1

)
= s5(x).

The inflated logitSST distribution defined by (8.4) can be fitted by fitting two models: a logitSST

(µ,σ ,ν ,τ) distribution model for 0 < Y < 1, together with a binary model for recoded variable

Y1 given by

Y1 =

 0 if 0 < Y < 1

1 if Y = 1
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i.e.

p(Y1 = y1) =

 (1− p1) if y1 = 0

p1 if y1 = 1

Alternatively the inflated logitSST distribution (8.4) can be fitted using the new package in R

called gamlss.inf described in chapter 7. The inflated logit distributions (e.g. logitSST In f 1)

have the advantage of extra flexibility, in that the probability of Y equal 1 is modelled inde-

pendently of the distribution on (0,1), (e.g. logitSST ), but at the cost of introducing an extra

parameter (p1) into the model. Note that the logit transformation is sensitive to values of Y very

close to 0 and 1.

8.2.5 Generalized Tobit model

The original Tobit model of a response variable Y on [0,1] assumes that the response follows a

normal distribution censored below 0 and above 1, Tobin (1958).

Here we assume the response variable Y is recorded on (0,1]. The generalised Tobit model

on (0,1] requires data censoring above 1 of a flexible model response variable distribution on

(0,∞) for its positive probability at 1. Censoring refers to the transformation of observations

outside the limiting interval to the border value, Hoff (2007). Here the values of Y in the model

distribution above 1 are transformed to 1.

Let V ∼ D(µ,σ ,ν ,τ) be a flexible uncensored distribution on (0,∞). Let Y ∼ Drc(µ,σ ,ν ,τ)

be the corresponding right censored distribution on (0,1], i,e censored above 1. Then

Y =

 V if 0 <V < 1

1 if V ≥ 1
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Hence the mixed continuous-discrete probability (density) function of Y is given by

fY (y) =

 fV (y) if 0 < y < 1

P(V ≥ 1) if y = 1
(8.5)

for 0 < y ≤ 1. Note that Y is treated as having a proper mixed continuous- discrete (generalised

Tobit) distribution Drc on (0,1] with a point probability at 1. In principle D can be any distribution

on (0,∞). In the analysis in section 8.3 we use the three parameter BCCGo distribution for D

with its default link functions. In the generalised Tobit model the probability of Y equal 1 is

directly related to the distribution between 0 and 1 and so is less flexible, but the model is more

concise (i.e. parsimonious) in that it has one less distribution parameter than if P(Y = 1) were

modelled independently. Also the generalised Tobit model is not sensitive to values of Y very

close to 1.

8.3 Data Analysis

8.3.1 Data and fitted models

Here 3164 male observations of lung function, previously analysed by Stanojevic et al. (2009),

are modelled. Lung data set has been privately collected from Stanojevic et al. (2009).The

response variable is Y = FEV1/FVC and the explanatory variable is x = log(height). The

response variable Y is a ratio of forced expiratory volume in 1 second (FEV1) to forced vital

capacity (FVC). Spirometric lung function Y is an established index for diagnosing airway

obstruction, e.g. Quanjer et al. (2010). Figure (8.1) shows the histogram and box plot of response

variable Y.
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Fig. 8.1 Frequency histogram and boxplot of observed variable Y (Y = FEV1/FVC)

Figure 8.2 shows a scatter plot of the response variable against height with marginal histogram.

The marginal histogram of the ratio depicts that the response lies on the interval (0,1) including

1 and shows an excess number of ones.
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Fig. 8.2 Scatter plot with marginal histogram of observed variable Y (Y = FEV1/FVC) against
height

A log transformation of height is used following Cole et al. (2009) and Quanjer et al. (2012).

The resulting centiles transform back height variable automatically by centiles plot function

centiles() to create centiles in the Figure 8.3. Centile curves for Y against x = log(height) are

achieved by using five methods: LMS (BCCGo with x = log(height)) so no power parameter ξ

was estimated in equation (8.2), BEINF1 (beta inflated at 1), the original Tobit model and two

new methods proposed in this chapter, the generalised Tobit model (BCCGorc, i.e, BCCGo right

censored at 1) and the logitSSTin f 1 (logitSST inflated at 1) models. The methods were applied

using the gamlss package version 4.3−2 in R, Stasinopoulos and Rigby (2007). For the inflated

logitSST model a new package was developed called gamlss.inf described in chapter 7. The

smoothing method P-splines, Eilers and Marx (1996), was used for fitting each smooth function



8.3 Data Analysis 125

sk(x) in each of the 5 models. The P-splines method is a combination of B-splines regression

and quadratic penalties imposed on the estimated coefficients. The degrees of freedom used for

smoothing was estimated locally using a local generalised Akaike Information Criterion, Akaike

(1983), with penalty k = 6 for each degree of freedom in the smooth function.

The penalty k = 6 was chosen as a compromise between a low value of k (eg. k = 2 for the

Akaike information criterion, AIC) which can lead to overfitting (i.e. undersmoothing) resulting

in erratic fitted centile curves, and a high value of k (eg. k = log(n) = 8.06 for the Schwartz

Bayesian criterion, SBC) which can lead to underfitting (i.e. oversmoothing) resulting in biased

centile curves, leading to significant Z and Q residual test statistics. The R commands used in

the analysis are given in Appendix A.

Table 8.1 Comparison of fitted models

Method Parameters df Deviance AIC GAIC (k=6) SBC

BEINF1 3 6.0 210 222 246 258

Tobit 2 7.0 118 132 160 175

GenTobit 3 9.0 29 47 82 101

logitSSTInf1 5 14.3 0 29 86 115

Table 8.1 summarises the number of distribution parameters and the total degrees of freedom

(d f ) used for four of the models. Also given are the values of the global deviance (Deviance),

Akaike information criteron (AIC), Generalised AIC (GAIC) with penalty k = 6, and Schwarz

Bayesian criteron (SBC) for the four fitted models (where 6390.7 was added to all the values to

make the comparison of values clearer). The LMS (BCCGo) model could not be included in

the comparison in Table 8.1 because it does not have a point probability at Y = 1. From Table

8.1, the inflated logitSST model is best as judged by AIC (as it has the lowest value), while the

generalised Tobit model is best as judged by SBC. Using criterion GAIC with k = 6, the inflated

logitSST and generalised Tobit models are almost equally good. The BEINF1 and standard

Tobit models perform much worse.
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8.3.2 Centile estimation

Figure 8.3 shows centile curves constructed using four different fitted models: LMS (BCCGo),

BEINF1, inflated logitSST and generalised Tobit (BCCGo, right censored at 1). The fitted

(2,10,25,50,75,90,98)% centile curves show that the BEINF1 and generalised tobit models

constructed the most smooth curves, while the LMS model constructed the least smooth curves

of the four models. Note that, unlike the other three models, the upper centile curves for the

LMS model can reach above 1, since for the LMS model the response variable is not bounded

by 1.

Table 8.2 Comparison of fitted centile percentages

Nominal Centile % LMS BEINF1 logitSSTInf1 GenTobit

2 1.74 1.33 1.93 2.02

10 9.96 8.31 10.02 9.26

25 27.12 25.16 24.59 24.62

Table 8.2 shows the sample percentages at or below the (2,10,25)% centile curve for the fitted

models against the nominal percentiles. [Percentages above 25% were not given since for at least

one model these centile curves reach 1 and hence the sample percentage at or below the centile

curve provides a distorted overestimate of the correspondent model centile curve percentage.]

Among the four models given, the inflated logitSST model generally performs best. The beta

inflated model performs much worse than the other models because its sample percentages

below each centile curve are far from the nominal centile percentages.
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(b) BEINF1
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(c) Inf. logitSST
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Fig. 8.3 Centile curves for model a) LMS b) BEINF1 c) logitSSTInf1 d) Generalized Tobit

8.3.3 Data analysis using two explanatory variables

The total number of subjects included in the study is 3164. This analysis finds centiles of a

response variable dependent on two explanatory variables. The response variable is forced
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expiratory volume in 1 second to forced vital capacity and the explanatory variables are height

and age. Table 8.3 of descriptive statistics includes the number of observations (N), mean,

standard deviation and minimum and maximum values of variables fev1/fvc, age and height.

Table 8.3 Lung data

Statistic N Mean St.Dev. Min Max

fev1fvc 3,164 0.885 0.085 0.431 1.000

age 3,164 13.557 15.239 2.500 80.000

ht 3,164 135.952 28.506 87.000 206.500

Figure 8.4 shows the scatter plot matrix of lung data with histogram, kernel density and absolute

correlation of variables fev1/fvc, age and hight.
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Fig. 8.4 Summary of Lung data.

The subjects age range is between 2.5 to 80 years; 59.73 % were aged 2.5 to 10 years and 25.22

% were aged between 11 to 20 and only 15.4% were aged above 20 years. Box plot in Figure

8.5 shows the ratio of FEV1/FVC against different age ranges.
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Fig. 8.5 Box plot of FEV1/FVC against age range

Another explanatory variable height of subjects lies between 80 cm to 206.5 cm. 41.18% of the

subjects are 101cm to 120cm tall, 55.27% subjects have height between 121cm to 195cm and

only one subject is 206.5cm tall. Box plot in Figure 8.6 shows the ratio of FEV1/FVC against

different age ranges.
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Fig. 8.6 Box plot of FEV1/FVC against height range

Scatter plot in Figure 8.7 shows the distribution of spirometric index (FEV1/FVC) against two

quantitative explanatory variables age and height.
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3−D Scatterplot for height, age and fev1/fvc
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Fig. 8.7 Scatter plot of FEV1/FVC against height and age

It is generally accepted that the spirometric index (FEV1/FVC) decreases from childhood to old

age (Quanjer et al., 1989). Table 8.4 shows the numbers of subjects by age group with data on

the ratio of forced expiratory volume in 1 second(FEV1) to forced vital capacity (FEV1/FVC).
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Table 8.4 Number of subjects with age and height group with FEV1/FVC

Age (years) FEV1/FVC Height(cm) FEV1/FVC

2−10 0.93 80−100 0.95

11−20 0.85 101−120 0.94

21−30 0.82 121−140 0.89

31−40 0.81 141−160 0.85

41−50 0.79 161−180 0.82

51−60 0.78 181−200 0.81

61−70 0.74 > 200 0.72

71−80 0.72

stepGAICAll.A() function is then used to search for a suitable model for FEV1/FVC using

the inflated logit skew student t distribution at 1. A local GAIC with k = 6 is used to choose

the effective degrees of freedom for smoothing in the smoothing function pb. A global penalty

k = 6 also used to select terms in the stepGAICAll.A() procedure. The reason for using k = 6

is to compromise between higher value (i.e. k = log(n)) and a lower value (k = 2) value of k. A

lower value of k (i.e.k = 2) would result less smooth centiles but a better fit to the data, while a

higher value of k would result in even smoother centiles but a worse fit to the data. Table 8.5

shows the chosen models for the parameters.
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Table 8.5 Chosen model for the parameters

Parameters chosen models

µ ga(∼ s(log(height), log(age)))

σ pb(log(age),method = ”GAIC”,k = 6)

ν pb(log(age),method = ”GAIC”,k = 6)

τ pb(log(age),method = ”GAIC”,k = 6)

ξ1 pb(log(age),method = ”GAIC”,k = 6)

+ pb(log(height),method = ”GAIC”,k = 6)

Figure 8.8 shows the residuals of the fitted model against fitted value and index along with Q-Q

plot and density plot of the quantile residuals.
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Fig. 8.8 Residual plot for fitted model
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Now a model is fit for the height against age. The purpose of this is to find lower and upper

centile limit (i.e. 1% and 99.9%) of height against age. Figure 8.9 shows the centiles (0.1, 0.4, 2,

10, 25, 50, 75, 90, 98, 99.6, 99.9)% for height against age for a fitted model (height against age).
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Fig. 8.9 Centiles for height against age

Contour plot of the 5th centile of FEV1/FVC against height and age constructed in figure 8.10.

Figure 8.10 shows that 5% centile value of FEV1/FVC is higher for younger and shorter people

and lower for older and taller people.
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Fig. 8.10 Contour plot of the 5th centile of FEV1/FVC

8.3.4 Model checking using residual based diagnostics

The residuals used in GAMLSS are normalized (randomized) quantile residuals, Dunn and

Smyth (1996) also called z-scores. In this paper two residual based diagnostic tools, the worm

plot and Z and Q statistics, are used to check the adequacy of each model.

8.3.4.1 Worm Plots

van Buuren and Fredriks (2001) introduced the worm plot, which consists of de-trended Q-Q

residual plots. The explanatory variable is split into (non-overlapping) intervals (with equal

numbers of observations) and a detrended Q-Q plot of the residuals is obtained for residuals

in each interval. The shape of the worm plot indicates how the observed response variable
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distribution differs from assumed underlying model distribution within each interval of the

explanatory variable. In this spirometry data example we need to check whether the model fits

well within different intervals of height.
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Fig. 8.11 Twin worm plot for LMS (dark points) and BEINF1 (light points) models.

In Figure 8.11 worm plots of the LMS and BEINF1 models are shown in 16 intervals of

height with equal number of observations. The 16 height intervals are given in Figure 8.12 and

correspond to the 16 worm plots from the bottom left plot to the top right plot in rows in Figures

for generalized Tobit model (BCCGrc) and logitSSTInf1. For an adequate model, 95% of the

points in each plot should lie between the elliptical 95% pointwise confidence band curves.

For interpretation of the worm plot see van Buuren and Fredriks (2001) and Stasinopoulos and

Rigby (2007). The shapes of the worm plots can indicate the type of model failure, see Rigby

and Stasinopoulos (2004). Different shapes of the worm plot, i.e. a vertical shift, a slope, a

parabola or a S shape, indicate differences (i.e. misfits) in the mean, variance, skewness and

excess kurtosis of the residuals respectively from their assumed values 0,1,0 and 0 for a standard

normal distribution.
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A worm plot with vertical shift above (or below) the horizontal origin line indicates that the

fitted model location is too low (or too high) respectively (within the corresponding interval of

height). A worm plot with a positive (or negative) slope indicates that the fitted model scale

is too low (or too high) respectively. A worm plot with a parabola U-shape (inverted U-shape)

indicates that the fitted model distribution skewness is too low (or too high) i.e. too left skewed

( or too right skewed) respectively. A worm plot with an S-shape with left bend down (or left

bend up) indicates that the fitted model distribution kurtosis is too low (or too high) so the tails

are too light (or too heavy) respectively.

Inadequacies in the fitted model described above may be reduced (or eliminated) by increasing

the flexibility of the fitted model e.g., by reducing the local penalty k (for each smoothing curve

degree of freedom used in the model). The worm plots in Figure 8.11 show that the LMS and

beta inflated (BEINF1) models fit badly in most height intervals.
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Fig. 8.12 Twin worm plot for logitSSTInf1 (dark points) and Gen.Tobit (light points) models.

The worm plots of the two proposed models, the inflated logitSST and generalised Tobit

models are shown in Figure 8.12. Based on the worm plots the proposed inflated lositSST and
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generalised Tobit models fit well to the data, since approximately 95% of the points of the worm

plots lie between the two elliptic 95% pointwise confidence band curves.

8.3.4.2 Z and Q statistics

Another residual based diagnostic tool, Z and Q statistics, is used in this section. Z and Q

statistics are useful to test the standard normality of the residuals. If the model is correct the true

residuals have a standard normal distribution. The Zg j statistics for j = 1,2,3,4 test whether the

mean, variance, skewness and excess kurtosis of the residuals are the standard normal values

of 0,1,0 and 0 respectively within each explanatory variable interval group g = 1,2,3.....G,

Royston and Wright (2000). The test statistics for skewness and kurtosis are given by D’agostino

et al. (1990).

Royston and Wright (2000) also computed Q-statistics by

Q j =
G

∑
g=1

Z2
g j (8.6)

The test statistics Q1,Q2,Q3 and Q4 provide global test statistics, combining all G groups, that

the mean, variance, skewness and excess kurtosis of the residuals are correct (i.e, 0,1,0 and 0

respectively), see Royston and Wright (2000) and Rigby and Stasinopoulos (2004). Royston

and Wright (2000) suggest an approximate Chi square distribution with adjusted degrees of

freedom G−d fµ , G− [d fσ +1]/2 and G−d fν for Q1, Q2 and Q3 respectively, if the model is

correct. Rigby and Stasinopoulos (2004) suggest adjusted degrees of freedom G−d fτ for the

Q4 statistic. If any of the Q-statistics is significant this provides an indication that the model

may be inadequate.

The value of squared Zg j helps to identify which height group is causing the Q j statistic to be

significant. If the model is correct Zg j should be approximately normally distributed. Hence

a rough guide for the Zg j value to be significant at the 5% significance level is Zg j > 1.96
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or Zg j <−1.96 indicating that the model may be inadequate within the corresponding height

interval.

Figure 8.13 shows the visual display of the Zg j statistics for g = 1,2,3....16 and j = 1,2,3,4

for each of the four models. The corresponding intervals of height for the 16 groups are given

on the left of each plot. The larger the circles, the larger the value of |Zg j|. The radius of the

circle is proportional to |Zg j|. A square within the circle indicates that |Zg j|> 1.96 indicating

a misfit of the model to the response variable within the corresponding interval of height. In

colour, red indicates Zg j > 0 and blue indicates Zg j < 0.
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 (b) BEINF1
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(c) Inf.logitSST
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(d) Gen.Tobit

Fig. 8.13 Z statistics for a) LMS b) BEINF1 c) logitSSTInf1 d) Generalised Tobit

Hence Figure 8.13 shows the presence of many misfits in the LMS and beta inflated models.

Four misfits were found in the inflated logitSST model and one in the generalised Tobit model.

Analysis of the residuals using Z statistics is also consistent with the diagnostic tools used earlier

in this paper. The corresponding Q-statistics, i.e. Q j for j = 1,2,3,4 given by (8.6), for each of

the four models are given in Table 3. This indicates that the generalised Tobit model provides an
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adequate fit (i.e. no significant Q statistics), while the other three models provide inadequate fits.

Note that the local penalty k = 6 was used for each of the smoothing degrees of freedom. When

the penalty was increased to k = logn = 8.06, for the SBC criterion, then the generalized Tobit

model became inadequate, while if the penalty was decreased to k = 2, for the AIC criterion,

then its centile curves became erratic.

Table 8.6 Q statistics

Method Q1 (p-val) Q2 (p-val) Q3 (p-val) Q4 (p-val)

LMS 14.01(0.258) 16.8 (0.300) 24.41 (0.013) 839.6 (0.000)

BEINF1 42.5 (0.000) 26.6(0.026) 55.5 (0.000) 63.8(0.000)

GenTobit 11.3 (0.498) 12.9 (0.550) 13.9 (0.457) 20.8 (0.185)

logitSSTInf1 15.9 (0.151) 19.6 (0.163) 14.2 (0.426) 21.2 (0.060)

It can be concluded that the generalized Tobit model (with k = 6) performed well compared to

other models. It has smooth centile curves and provides a good fit to the data.

Next the fitted (or predicted) mixed continuous-discrete probability (density) function of Y =

FEV 1/FVC is plotted for for six new values of height (80, 100, 120, 140, 160, 180) cms,

first for the logitSSTinf1 model in Figure 8.14 with corresponding fitted parameter values

given in Table 8.7, and second for the generalized Tobit (BCCGorc) model in Figures 8.15 to

8.17 with corresponding fitted parameters values given in Table 8.8. Note that from Table 8.7

P(Y = 1) = ξ1, while from Table 8.8 P(Y = 1) = P(V ≥ 1) where V ∼ BCCGo(µ,σ ,ν).
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Fig. 8.14 Plot of the predicted pdf of Y for the logitSSTInf1 model for height, from top left in
rows 80, 100, 120, 140, 160, 180 (cm)
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Table 8.7 Predicted parameter values using logitSSTInf1

Height µ σ ν τ ξ1

80 3.59 1.61 1.91 82894.18 0.99

100 3.23 1.25 1.78 1701.88 0.83

120 2.96 1.03 1.69 85.34 0.37

140 2.52 0.88 1.62 9.31 0.09

160 2.01 0.76 1.56 3.67 0.02

180 1.74 0.68 1.51 3.71 0.006
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Fig. 8.15 Plot of the predicted pdf of Y for the BCCGorc model at height (80cm and 100cm)
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Fig. 8.16 Plot of the predicted pdf of Y for the BCCGorc model at height (120cm and 140cm)
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Fig. 8.17 Plot of the predicted pdf of Y for the BCCGorc model at height (160cm and 180cm)

Table 8.8 Predicted parameter values using BCCGorc

Height (cm) µ̂ σ̂ ν̂

80 1.09 0.06 4.74

100 1.02 0.06 4.06

120 0.97 0.07 3.53

140 0.92 0.07 3.09

160 0.87 0.08 2.73

180 0.84 0.08 2.42

8.4 Conclusion

This chapter proposed the inflated logit skew student t (i.e. inflated logitSST ) distribution and a

generalized Tobit model as mixed continuous-discrete distributions to model a response variable

recorded on the unit interval (0,1], including 1. The main purpose of this chapter is to offer two

models for centile estimation as viable alternatives to the LMS and beta inflated models. The

chapter focuses on a response variable recorded on the interval (0,1]. Extension to the interval

[0,1) can be achieved simply by analysing a new response variable (1−Y ), which is on the

interval (0,1] instead of Y . Extension to the interval [0,1] can be achieved by inflating a flexible
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distribution on (0,1), e.g. the logitSST distribution, at both 0 and 1, or by censoring a flexible

distribution on (−∞,∞), e.g. the SST distribution, below 0 and above 1 for the generalized Tobit

model.

An empirical application to real data has been presented modelling a lung function response

variable on the interval (0,1]. This chapter uses the Akaike information Criterion (AIC),

Akaike (1974), and Schwarz Bayesian Criterion (SBC), Schwarz (1978), to compare the relative

performance of the models. The model with lowest AIC or SBC is ranked as best model. Worm

plots and Z statistics were used to the check the adequacy of each of the models. The LMS,

beta inflated and Tobit models were clearly inadequate at fitting the response variable, while the

generalized Tobit (i.e, BCCGo right censored at 1) and inflated logitSST models provided better

fits. From the empirical example it can be concluded that generalized Tobit and the inflated

logitSST models can provide better fits than the LMS, beta inflated and Tobit models and can

provide powerful tools for modelling proportion data.



Chapter 9

Application of proposed models to a

response variable on [0,1)

9.1 Introduction

In this chapter an application of the proposed models to response variable observations on [0,1)

is given. For the sake of comparison two proposed models: inflated GAMLSS and generalized

Tobit GAMLSS models, together with the beta inflated at 0 model and standard Tobit model are

fitted. In addition to the application, model adequacy is checked by investigating the residuals

of each fitted model.

9.2 Data

A peer assisted student success data set consisting of a total of 1679 observations is analysed.

Here the proportion of attendance (PA) is the explanatory variable and the average module

mark (AMM) is the response variable. Note that the observed variable AMM is converted to

a proportion, AMM1 = AMM/100, which has a number of zeroes but no values at one, i.e.
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0 ≤ AMM1 < 1. Table 9.1 of descriptive statistics includes the number of observations (N),

mean, standard deviation and minimum and maximum values of variables AMM and PA.

Table 9.1 Pass scheme data

Statistic N Mean St. Dev. Min Max

AMM 1,669 44.445 24.368 0.000 90.500

PA 1,669 0.253 0.290 0.000 1.000

Using the variables, the proposed models are fitted together with the beta inflated at 0 model and

standard Tobit model. Figure 9.1 shows the scattter plot with marginal histogram of the variable

average module mark as a proportion (AMM1) against proportion attendance (PA). Pass scheme

data set used in chapter 9 has been privately collected from the PASS Scheme Project, Center

for Professional and Educational Development (CPED),LMU.
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Fig. 9.1 Scatter plot of average module mark as a proportion against proportion attendance

9.3 Inflated at 0 GAMLSS model

The GAMLSS model inflated at zero is a special case of the general inflated GAMLSS model

described in chapter 5. The model use here is the inflated logit skew t (type 3) distribution which

is a mixture of two components: a discrete component zero (Y = 0) with probability p0 and

a continuous component (0 < Y < 1) with a logitST3(µ,σ ,ν ,τ) distribution with probability

(1− p0). The observed variable Y then follows an inflated logit skew t (type 3) distribution

Y ∼InflogitST3(µ,σ ,ν ,τ, p0)
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with mixed continuous-discrete probability (density) function is given by

fY (y|µ,σ ,ν ,τ, p0) =


p0, if y = 0

(1− p0) fW (y|µ,σ ,ν ,τ), if 0 < y < 1

for 0 ≤ y < 1 and 0 < p0 < 1, where fW (y|µ,σ ,ν ,τ) is a logit skew t (type 3) pdf with

−∞ < µ < ∞, σ > 0, ν > 0, τ > 0 . For ease of interpretation parameter p0 used.

9.4 Generalised Tobit model

Since 0≤AMM1< 1, AMM1 is transformed to Y = 1−AMM1, so 0<Y ≤ 1, then a generalized

Tobit model for Y can be obtained by right censoring at 1 a variable V with any distribution

with range 0 <V < ∞.

For example let V have a Box-Cox t distribution, Rigby and Stasinopoulos (2006), denoted by

V ∼BCT(µ,σ ,ν ,τ)

for 0 <V < ∞. Let

Y =


V, if 0 <V < 1

1, if V ≥ 1

Then Y has a right censored Box-Cox t distribution denoted

Y ∼BCTrc(µ,σ ,ν ,τ)

with pdf is given by

fY (y|µ,σ ,ν ,τ) =


fV (y|µ,σ ,ν ,τ), if 0<y<1

1−FV (1), if y=1

for 0 < y ≤ 1.
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9.5 Model selection

In this section the generalized Akaike information criterion GAIC (Akaike, 1983) is used to

compare different non nested inflated and generalized Tobit GAMLSS models. The main advantage

of using GAIC is that it allows different penalties to be tried to penalize over fitting models. For

the sake of comparison GAIC is assessed by adding to the fitted global deviance (GD) a fixed

penalty k for each effective degree of freedom used in the model, i.e, GAIC = GD+ k ∗d f . The

fitted global deviance is obtained by GD = 2l ˆ(θ) where θ̂ = (θ̂1, θ̂2, θ̂3, θ̂4) = (µ̂, σ̂ , ν̂ , τ̂) where

the maximised log likelihood function is given by l(θ̂) = ∑
n
i=1 l(yi|θ̂ i) where θ i = (µi,σi,νi,τi)

and l(yi|θ̂ i) is the fitted log likelihood function for observation yi.

Two special cases of GAIC are the Akaike information Criteron (AIC) Akaike (1974), Schwartz

Baysian Criteron (SBC) Schwarz (1978). The special cases of GAIC are given by, GAIC =AIC,

if k = 2, while GAIC = SBC, if k = log(n). AIC is considered a more generous approach

(potentially leading to overfitting), while SBC is a more restrictive approach (potentially leading

to underfitting). In this example both approaches have been used for a more robust decision.

Finding an optimal value of k is another important aspect of model selection. A selection of

different value of k, eg k = 2,2.5,3.5,4 could be used for robustness of the model selection,

(Rigby and Stasinopoulos, 2006). Kim and Gu (2004) suggested a penalty value 2.8, whereas

Rigby and Stasinopoulos (2006), suggested a range 2.5 < k <= 3 worked well for their data set.

In this chapter in addition to AIC (i.e. k = 2) and SBC (i.e.k = log(n) = log(1679) = 7.4), a

penalty value k = 6 is used as a compromise between AIC and SBC. Table 9.2 summarises the

Table 9.2 Relative quality of fitted models

Models AIC SBC GAIC(k=6)

logitST3Inf1 0 56.93 42.01
BCTrc 1.3 45.01 33.56

Tobit (Norc) 442.10 485.23 473.92
BEINF1 100.86 135.73 126.59

values of AIC, SBC and GAIC(k=6) of the fitted models, each value having 292.27 substracted
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for clarity of presentation. The models fitted to Y = 1−AMM1 are the inflated logit skew t

(type 3) (i.e. logitST3Inf1 distribution), the generalized Tobit right censored BCT (BCTrc),

the Tobit right censored normal (NOrc) and the beta inflated at 1 (BEINF1). Among the four

models (i.e. BEINF1, Tobit (NOrc), gen.Tobit (BCTrc) and InflogitST3), the generalized Tobit

(BCTrc) model and inflated logit skew student t (type 3) distribution models have lower AIC,

SBC and GAIC values. From Table 9.2, the logitST3Inf1 model is best as judged by AIC (as

it has the lowest value), while the generalised Tobit model (BCTrc) is best as judged by SBC.

Using criterion GAIC with k = 6, the inflated logitSST and generalised Tobit models are almost

equally good. The BEINF1 and standard Tobit models perform much worse.

9.6 Residual based diagnostics

A model may suffer misspecification. Moreover the presence of outliers in the data set may

impair the model accuracy (Ospina and Ferrari, 2012). With this in view a residual analysis of

the fitted model is used to check the model adequacy. In this chapter residual based diagnostic

tools (e.g.worm plot) will be used to check the adequacy of each fitted model.

9.6.1 Worm plot

van Buuren and Fredriks (2001) introduced the worm plot which consists of de-trended Q-Q

plots. The shape of the worm plot indicates how the observed response variable distribution

differ from the assumed distribution.

A further diagnostic of residuals is obtained by analysing the coefficients of parameters in a

cubic function fitted to each individual worm plot, van Buuren and Fredriks (2001). The four

columns of coefficients are the fitted constant, linear, quadratic and cubic coefficients denoted

by β̂0, β̂1, β̂2 and β̂3. These shape coefficients can be used for quantitative assessment of the

model fit. β̂0 provides a measure of the difference between the theoretical and empirical mean
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of the residuals. β̂1, β̂2 and β̂3 provide a measure of the difference between the theoretical and

empirical variation, skewness and kurtosis of the residuals respectively. van Buuren and Fredriks

(2001) provide threshold values β̂0, β̂1, β̂2 and β̂3 of 0.10, 0.10, 0.05 and 0.03 respectively. If

the absolute value of β̂0, β̂1, β̂2 or β̂3 exceeds the corresponding threshold value, this will be

termed as misfit.

Table 9.3 Fitted coefficient values (logitST3Inf1)

PA-group β̂0 β̂1 β̂2 β̂3

[1] -0.12 0.04 0.01 -0.02

[2] -0.40 0.29∗ -0.16 -0.09

[3] 0.07 0.27∗ -0.06 -0.04

[4] -0.13 0.17∗ 0.06 -0.03

[5] 0.09 0.07 0.01 -0.02

[6] 0.07 -0.19 0.01 0.02

[7] 0.13∗ -0.16 0.05 0.01

[8] 0.00 -0.14 0.02 0.02

[9] 0.21∗ -0.14 -0.03 0.015

∗ misfit
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Table 9.4 Fitted coefficient values (BCTrc)

PA-group β̂0 β̂1 β̂2 β̂3

[1] 0.06 -0.05 -0.01 -0.00

[2] 0.34∗ 0.03 -0.01 -0.10

[3] -0.11 0.18∗ 0.02 -0.03

[4] 0.087 0.11 -0.05 -0.02

[5] -0.10 0.08 -0.03 -0.03

[6] -0.05 -0.19 -0.02 0.03

[7] -0.10 -0.09 -0.05 -0.00

[8] 0.09 -0.02 0.04 0.03

[9] -0.00 0.06 0.03 -0.02

∗ misfit

Table 9.5 Fitted coefficient values (BEINF1)

PA-group β̂0 β̂1 β̂2 β̂3

[1] 0.06 -0.01 -0.06 -0.02

[2] -0.22 0.15∗ -0.09 -0.10

[3] 0.17∗ 0.16∗ -0.08 -0.05

[4] -0.05 0.15∗ 0.01 -0.05

[5] 0.13∗ 0.07 -0.01 -0.05

[6] 0.13∗ -0.15 -0.08 0.02

[7] 0.16∗ -0.14 -0.05 0.01

[8] -0.06 0.00 -0.05 -0.01

[9] 0.10 0.00 -0.07 -0.02

∗ misfit
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Table 9.6 Fitted coefficient values (NOrc)

PA-group β̂0 β̂1 β̂2 β̂3

[1] -0.12 0.01 0.14∗ -0.02

[2] 0.27∗ 0.48∗ 0.19∗ -0.15

[3] -0.20 0.14∗ 0.16∗ -0.05

[4] -0.04 0.13∗ 0.13∗ -0.04

[5] -0.21 0.06 0.15∗ -0.03

[6] -0.24 -0.11 0.18∗ 0.02

[7] -0.29 -0.15 0.17∗ 0.04

[8] -0.05 -0.03 0.20∗ 0.01

[9] -0.19 -0.14 0.19∗ 0.02

∗ misfit

Tables 9.3, 9.4, 9.5 and 9.6 present the β shape coefficient values of the four fitted models

inflated logitST3, BCTrc, BEINF0 and NOrc respectively. The inflated logit skew student t (type

3) distribution and generalized Tobit (BCTrc) models show less misfits than the beta inflated

and Tobit model. However BCTrc shows the least misfits with one misfit in β̂0 (PA group 2) and

one misfit in β̂1 (PA group 3). The BEINF1 and Tobit models show many misfits as their fitted

model’s (absolute) coefficient values exceed the threshold values.

The twin worm plot of the proposed logitST3 inflated at 1 and generalized Tobit models is given

in Figure 9.2. In the figure the points generally lie close to the horizontal line and are mostly

between the 95% confidence interval curves given by the elliptic curves, providing evidence of

the adequacy of the proposed models.
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Fig. 9.2 Twin worm plot of logitST3Inf1 (light points) and BCTrc (dark points)

Figure 9.3 shows the twin worm plot of the fitted beta inflated at 0 and standard Tobit model.

The residuals are shown in Figure 9.3 in nine non-overlapping intervals. In many intervals

a higher percentage of the points than 5% lie outside the region between two elliptic curves,

indicating that the fitted distribution of the model is inadequate to explain the response variable.
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Fig. 9.3 Twin worm plot of Tobit model (light points) and BEINF1 (dark points

9.7 Fitted centile curves

Figure 9.4 shows the centile curves constructed using Tobit model, beta inflated at 1, Inflated logit

skew student t type 3 and generalized Tobit (BCTrc) models. The fitted (2,10,25,50,75,90,98)%

centile curves show that the BEINF1, logitST3Inf1 and generalized Tobit (BCTrc) models con-

structed the most smooth curves, while Tobit model constructed the least smooth curves.



9.7 Fitted centile curves 158

0.0 0.2 0.4 0.6 0.8 1.0

0
.2

0
.4

0
.6

0
.8

1
.0

Attendance

A
M

M
(a) Tobit (NOrc)

0.0 0.2 0.4 0.6 0.8 1.0

0
.2

0
.4

0
.6

0
.8

1
.0

 Attendance

A
M

M

(b) BEINF1

0.0 0.2 0.4 0.6 0.8 1.0

0
.2

0
.4

0
.6

0
.8

1
.0

 Attendance

A
M

M

(c) logitST3Inf1

0.0 0.2 0.4 0.6 0.8 1.0

0
.2

0
.4

0
.6

0
.8

1
.0

 Attendance

A
M

M

(d) Gen.Tobit (BCTrc)

Fig. 9.4 Centile curves for model a) NOrc b) BEINF1 c) logitST3Inf1 d) Generalised Tobit
(BCTrc)
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Table (9.7) shows the comparison between fitted centile percentages at or below the (2,10,25)%

and nominal percentages. 1 Among the four models the genralized Tobit (BCTrc) and inflated

logit skew student t distribution type 3 at 1 (logitST3Inf1) models perform best.

Table 9.7 Comparison of fitted centile percentages for Y = 1−AMM1

Nominal Centile % NOrc BEINF0 GenTobit (BCTrc) logitST3Inf1

2 0 0.42 2.27 2.21

10 5.27 8.39 9.82 9.58

25 27.92 26.54 24.20 24.20

9.8 Fitted distributions of Y =(1−AMM) for different values

of PA

The fitted (i.e. predicted) distribution of Y = 1−AMM1 was plotted in Figure 9.5 for five values

of the explanatory variable PA (10%, 30%, 50%, 70%, 80% and 90%) using the fitted inflated

logitST3 model. Predicted values of the parameters are also given in the Table 9.8.

1Percentages above 25% were not given since for at least one model these centile curves reach 1 and hence
the sample percentage at or below the centile curve provides a distorted overestimate of the correspondent model
centile curve percentage.
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Fig. 9.5 Predicted distribution for Y for the inflated logitST3 distribution for different values of
PA from top left in rows
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Table 9.8 Fitted parameter values for the logitST3Inf1 model for different values of atten-
dance(%)

Attendance µ σ ν τ ξ1

10% -0.41 0.77 1.43 8.77 0.15

30% -0.43 0.70 1.39 8.26 0.10

50% -0.45 0.64 1.35 7.79 0.063

70% -0.47 0.58 1.31 7.34 0.041

80% -0.48 0.55 1.29 7.13 0.03

90% -0.49 0.53 1.27 6.92 0.027

Fitted (predicted) distribution of Y = 1−AMM1 for generalized Tobit model are given in Figures

9.6, 9.7 and 9.8 and corresponding values are given in Table 9.9. Note that from Table 9.8

P(Y = 1) = ξ1, while from Table 9.9 P(Y = 1) = P(V ≥ 1) where V ∼ BCT (µ,σ ,ν ,τ).
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Fig. 9.6 Predicted value for attendance 10 % and 30 %
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Fig. 9.8 Predicted value for attendance 80 % and 90 %

Table 9.9 Fitted parameter values for the BCTrc model for different values of attendance

Attendance µ σ ν τ

10% 0.53 0.49 -0.39 5.40

30% 0.50 0.43 -0.34 4.98

50% 0.47 0.38 -0.28 4.59

70% 0.44 0.33 -0.23 4.23

80% 0.43 0.31 -0.20 4.07

90% 0.42 0.29 -0.17 3.91
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9.9 Conclusion

Methods for handling a proportion response variable on [0,1) were investigated. The inflated

GAMLSS model and generalized Tobit model were developed. The class of models widen the

flexibility of the beta inflated and Tobit models. The models were developed within the GAMLSS

framework which allows them to adopt all the GAMLSS features i.e. a flexible distribution and

models for all the distribution parameters using explanatory variables. Application to the real

data set also supports with evidence that the proposed models fit better than the beta inflated at 0

and Tobit models.



Chapter 10

Application on loss given default, a

proportion response on [0,1]

10.1 Introduction

Loss given default (LGD) is a proportion of a credit exposure that is lost if the obligor defaults

on a loan. Response variable LGD contains values between 0 and 1 including both 0 and

1, where 0 means that the balance is fully recovered while 1 means total loss of exposure at

default. This chapter addresses two alternative semi parametric approaches for modelling loss

given default, which is measured on the interval [0,1]. The class of models are very flexible

and can accommodate skewness and bimodal characteristics of LGD data. The dependence

of the predictors of each of the parameters (of the proposed model distribution for LGD) on

explanatory variables can be additive P- splines, regression trees or neural network models. The

proposed models are applied to a loss given default data set and compared with current popular

models.

Loss given default is the key variable for a bank’s minimum regulatory capital requirement

based on the Basel II framework. Therefore modelling LGD is pivotal for financial regulators

and retailers. However modelling LGD poses substantial challenges due to the bounded nature
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of LGD data and its unusual distribution, (see Bellotti and Crook (2012)). LGD values often lie

on the interval [0,1] and the distribution tends to be bimodal with modes close to the end values.

Previous approaches for modelling (the distribution of) LGD on [0,1] include ordinary least

squares, e.g. Qi and Yang (2009), fractional response regression (FRR), Papke and Wooldridge

(1996), transformation models, e.g. Qi and Zhao (2011) and Li et al. (2014), the inflated beta

model, Ospina and Ferrari (2010), a two step approach combining an ordinal logistic regression

model and normal error model, Li et al. (2014), and Tobit models obtained by censoring a

normal distribution or one or two shifted gamma distributions Li et al. (2014). In a very recent

paper Hossain et al. (2016a,b) proposed inflated logitSST and generalized Tobit models for the

proportion response variable on the intervals (0,1] and [0,1] respectively.

The purpose of this chapter is to provide two flexible modelling approaches for a proportion

response variable measured on the interval from 0 to 1, including both 0 and 1, i.e. range

[0,1], following Hossain et al. (2016a,b). In the first approach a flexible distribution for Z

with range (−∞,∞) is transformed to Y with range (0,1), using an inverse logit transformation,

Y = 1/(1+ e−Z), which is then inflated by including point probabilities for Y at 0 and 1. The

second approach is a generalized Tobit model, in which a flexible distribution for Z on (−∞,∞)

is censored below 0 and above 1 to provide range 0 ≤ Y ≤ 1 with probabilities at 0 and 1.

In practice, for each of the two modelling approaches, any available distribution on (−∞,∞)

within the gamlss package, Stasinopoulos and Rigby (2007), can be used for Z, for example

the flexible four parameter skew exponential power (SEP), skew student t (SST ), sinh arc-sinh

(SHASHo) or bi-modal skew symmetric normal (BSSN) distribution, Hasan and El-Bassiouni

(2016). In the gamlss package the dependence of the predictors of each of the parameters

of the proposed model distributions for Y on explanatory variables can be linear, non-linear,

non-parametric smooth functions, regression trees or neural network models. Note that Qi

and Zhao (2011) and Li et al. (2014) found that regression tree and neural network models

outperformed linear parametric models.
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10.2 Data

Loss Given Default (LGD) is the proportion of the exposure lost following a default. It is also

called the severity of loss.

LGD = Severity = 1−RecoveryRate

Table 10.1 of descriptive statistics includes the number of observations (N), mean, standard devia-

tion and minimum and maximum values of variables SEVERITY, ORIGIN_YR, DEFAULT_YR,

MOB and hrate.

Table 10.1 Loss Given Default

Statistic N Mean St. Dev. Min Max

SEVERITY 7,713 0.256 0.347 0.000 1.000

ORIGIN_YR 7,713 2,000.098 2.703 1,994 2,006

DEFAULT_YR 7,713 2,003.449 2.291 2,000 2,007

MOB 7,713 44.068 31.228 0 269

hrate 7,713 0.407 0.079 0.290 0.554

Figure 10.1 shows the scatter plot matrix of LGD data with histogram, kernel density and

absolute correlation of variables SEVERITY, ORIGIN_YR, DEFAULT_YR, MOB and hrate.
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Fig. 10.1 Summary of LGD data.

The range of LGD is bounded on [0,1]. The LGD value also tends to follow a bi-modal

distribution.
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Fig. 10.2 Distribution of observed SEVERITY

The motivating data example is the LGD values collected from one of the leading banks in the

USA. The data frame comprises 7713 small business loan defaults between 2000 and 2007.

In this analysis the response variable SEVERITY (LGD) is modelled using four covariates:

Month-on-Books (MOB), hazard rate (hrate), year of origin (ORIGIN_YR) and year of default

(DEFAULT_YR). The four explanatory variables are treated as quantitative variables. Variable

MOB was transformed to

sMOB =
√
(MOB)

Square root transformation is used to reduce the skewness of the covariate Month on Book value

(MOB). Figure 10.2 shows a scatter plot of SEVERITY against explanatory variable sMOB, the

square root of month on book, with a marginal histogram of the response variable SEVERITY

(i.e., loss given default) .
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10.3 Models

10.3.1 Logit distribution

Any distribution on range −∞ < Z < ∞ can be transformed to a restrictive range 0 < Y < 1 by

using an inverse logit transformation Y = 1/(1+e−Z). The distribution of Y is called a logit dis-

tribution. If Z has a four parameter distribution denoted D is general, i.e. Z ∼ D(µ,σ ,ν ,τ), then

the distribution of Y is called a logit D distribution denoted Y ∼ logitD(µ,σ ,ν ,τ). For example

if Z has a bi-modal skew symmetric normal distribution Z ∼ BSSN(µ,σ ,ν ,τ) on (−∞,∞), then

Y has a logitBSSN distribution, Y ∼ logitBSSN(µ,σ ,ν ,τ) on (0,1). The probability density

function fY (y) of Y is given by

fY (y) = fZ(z)
∣∣∣∣dz
dy

∣∣∣∣= 1
y(1− y)

fZ(z) (10.1)

where z = log[y/(1− y)]

The logitBSSN distribution is created using the function gen.Family() in gamlss which allows

any gamlss distribution with range (−∞,∞), (e.g. BSSN), to be transformed to a new gamlss

distribution, (e.g. logitBSSN), with range (0,1).

10.3.2 Logit distribution, inflated at 0 and 1

An inflated logit distribution is suitable for a proportion response variable on 0 ≤ Y ≤ 1, that

includes both 0 and 1. An inflated logit distribution is a mixture of a logit distribution for 0<Y <

1 and a Bernoulli distribution for Y at 0 or 1. The model includes three components: a discrete

value 0 with probability p0, a discrete value 1 with probability p1 and a logit distribution on the

unit interval (0,1) with probability (1− p0− p1). For a general four parameter logit distribution,

logitD(µ,σ ,ν ,τ), then the inflated logit distribution is denoted Y ∼ In f logitD(µ,σ ,ν ,τ,ξ0,ξ1)
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with mixed (continuous-discrete) probability (density) function given by

fY (y|µ,σ ,ν ,τ,ξ0,ξ1) =


p0 if y = 0

p1 if y = 1

(1− p0 − p1) fW (y|µ,σ ,ν ,τ) if 0 < y < 1

(10.2)

for 0 ≤ y ≤ 1, where W ∼ logitD(µ,σ ,ν ,τ) has a logitD distribution, where 0 < p0 < 1, 0 <

p1 < 1 and 0 < p0 + p1 < 1. The parameters ξ0 and ξ1, are related to p0 and p1 by ξ0 = p0/p2,

ξ1 = p1/p2, where p2 = 1− p0 − p1, so ξ0 > 0 and ξ1 > 0. Hence p0 = ξ0/(1+ ξ0 + ξ1)

and p1 = ξ1/(1+ ξ0 + ξ1). For example if W ∼ logitBSSN(µ,σ ,ν ,τ) then Y has a inflated

logitBSSN distribution Y ∼ In f logitBSSN(µ,σ ,ν ,τ,ξ0,ξ1) with −∞ < µ < ∞ and σ > 0,

ν > 0, τ > 0, ξ0 > 0, and ξ1 > 0.
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Fig. 10.3 PDF of lositBSSN and InflogitBSSN

For Y ∼ In f logitBSSN(µ,σ ,ν ,τ,ξ0,ξ1) default link functions relate the parameters (µ,σ ,ν ,τ,ξ0,ξ1)

to the predictors (η1,η2,η3,η4,η5,η6), i.e.
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µ = η1

logσ = η2

logν = η3

logτ = η4

log(p0/p2) = log(ξ0) = η5

log(p1/p2) = log(ξ1) = η6.

The dependence of the predictors of the parameters (i.e. η1 to η6) on explanatory variables may

be linear, nonlinear, non-parametric smooth, regression trees or neural network models.

Model (10.2) can be fitted by fitting two models: a logitD(µ,σ ,ν ,τ) distribution for 0 <Y < 1,

together with a multinomial distribution with three levels, denoted by MN3(ξ0,ξ1) in the

gamlss.dist package, for a response factor Y1 given by:

Y1 =


0 if Y = 0

1 if Y = 1

2 if 0 < Y < 1

(10.3)

i.e.

p(Y1 = y1) =


p0 if y1 = 0

p1 if y1 = 1

1− p0 − p1 if y1 = 2

(10.4)

where ξ0 = p0/p2 and ξ1 = p1/p2 and p2 = 1− p0− p1 , giving ξ0 > 0 and ξ1 > 1 Alternatively

model (10.2) can be fitted more easily using a new function gamlssInf0to1() in the new

package gamlss.inf described in chapter 7. The log likelihood function for the In f logitD

model (10.2) is equal to the sum of the log likelihood functions of the logitD model and

the multinomial (MN3) model (10.4). Hence the parameter sets (µ,σ ,ν ,τ) and (ξ0,ξ1) are

‘information’ orthogonal.
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The inflated logit distributions (i.e. In f logitD) have the advantage of extra flexibility, in that

the probabilities of Y at 0 and 1 are modelled independently of the distribution on (0,1), (i.e.

logitD), but with the cost of introducing extra parameters (ξ0,ξ1) into the model.

10.3.3 Inflated logit distribution with global adjustment

Note that the logit transformation is sensitive to response variable Y values very close to 0 or 1.

To avoid this problem it may be necessary for values of Y close to 0 or 1 to be adjusted. The

typical local adjustment approach is applied only to the boundary Y values of 0 or 1, which

are adjusted to c and 1− c respectively, for a small value c, prior to fitting the transformed

regression ( e.g. Qi and Zhao (2011) and Altman and Kalotay (2014). Qi and Zhao (2011) has

pointed out that the result of transformation regression are very sensitive to the value of the

adjustment factor c.

Li et al. (2014) propose an alternative global adjustment approach specifically to adjust all Y

values from [0,1] to variable Y ′ with values in range (c,1− c) prior to fitting the transformation

regression. The global adjustment is achieved through the following equation Y ′ = c+(1−2c)Y ,

where c is a predetermined adjustment factor. Li et al. (2014) conducted an investigation of c

values ranging from 10−11 to 0.45 and found optimal value of c = 0.1 for their Y variable.

However our investigation shows that the global adjustment proposed by Li et al. (2014) failed

to take account of the mode close to 0 and 1 of the Y variable and consequently led to poor

model performance. To resolve this issue an alternative adjustment is made to the values close

to 1 prior to fitting the inflated logit model given by Y ′ = Y ( if Y ≤ 1− c)+1( if Y > 1− c),

where c is a predetermined adjustment factor. An ad hoc approach is taken to selecting c by

investigating the QQ plot of the residuals from the fitted inflated model with different values

of the adjustment factor c. The residual plot was found to improve dramatically as the c value

increases and a value of c = 0.1 was selected, which is consistent with the results found by Li

et al. (2014).
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10.4 Generalized Tobit model

The original Tobit model for a response variable Y on [0,1] assumes that the response follows a

normal distribution censored below 0 and above 1, Tobin (1958).

The generalised Tobit model on [0,1] requires censoring below 0 and above 1 of a flexible

model distribution on (−∞,∞) for its positive probabilities at 0 and 1. Censoring refers to the

transformation of observations outside the limiting interval to the border values, Hoff (2007).

Here the values in the model distribution below 0 and above 1 are transformed to 0 and 1

respectively.

Let Z ∼ D(µ,σ ,ν ,τ) be a flexible uncensored distribution on (−∞,∞). Let Y ∼ Dic(µ,σ ,ν ,τ)

be the corresponding distribution left censored below 0 and right censored above 1 (called

interval censoring, ic) with resulting range [0,1]. Then

Y =


0 if Z ≤ 0

Z if 0 ≤ Z ≤ 1

1 if Z ≥ 1.

Hence the (mixed continuous-discrete) probability (density) function of Y is given by

fY (y) =


P(Z ≤ 0) if y = 0

fZ(y) if 0 < y < 1

P(Z ≥ 1) if y = 1

(10.5)

for 0 ≤ y ≤ 1. In principle D can be any distribution on (−∞,∞), for example the four parameter

SEP, SST or SHASHo distribution. Interval censoring is achieved using gamlss function

gen.cens() in the gamlss package gamlss.cens.

In the generalised Tobit models the probabilities of Y at 0 and 1 are directly related to the

distribution between 0 and 1 and so are less flexible, but the model is more concise (i.e.

parsimonious) in that it has two less parameters. Also the Tobit model is not so sensitive to

values of Y very close to 0 or 1.
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10.4.1 Inflated truncated censored model

The model assumes that Y has a distribution (truncated below 0 and right censored above 1)

inflated at 0, defined by Y ∼ In f Dtrrc(µ,σ ,ν ,τ) with probability density function defined by

fY (y|µ,σ ,ν ,τ, p0) =


p0 if y = 0

(1− p0) fW (y|µ,σ ,ν ,τ) if 0 < y < 1

(1− p0)P(W > 1) if y = 1

(10.6)

where W ∼ Dtr(µ,σ ,ν ,τ) has a distribution D(µ,σ ,ν ,τ) which is left truncated below 0, and

Dtrrc(µ,σ ,ν ,τ) is a left truncated right censored distribution.

10.4.2 Model selection

For each model fitted each distribution parameter was modelled additively using P-splines for

sMOB and hrate and factors for ORIGINY R and DEFAULTY R. Table 10.2 shows the models

together with the degrees of freedom (df) used in the model and their fitted global deviance

(GD), Akaike information criteron (AIC), Akaike (1974), and Schwarz Bayesian Criteron (SBC),

Schwarz (1978), and generalized AIC (GAIC) with penalty k = 4 for each parameter in the

model, where -12556 was substracted from each value of global deviance, AIC, SBC and GAIC

in the table to make the comparison clearer. The logitBSSNInf0to1 model is identified as the

best model, based on having the lowest values of AIC, SBC and GAIC(k = 4).
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Table 10.2 In-sample model section criterion

Models df GD AIC SBC GAIC (k=4)

logitBSSNInf0to1 146 0 292 1306 579

BEINF 104 5754 5962 6684 6170

Tobit (NOic) 87 18277 18452 19059 18626

GenTobit (BSSNic) 83 18337 18504 19082 18670

As an alternative method of model selection, 10-fold cross validation results for each of the

models were obtained. The typical choice of k is 5 or 10 in k-fold cross validation Friedman

et al. (2001). 10-fold cross validation primarily relies on randomly partitioning of the data (i.e.

n cases) into 10 sub samples of approximately equal size (n/10). Each subsample successively

plays the role of validation sample. Table 10.3 shows each of the 10 folds using (10−1) = 9

folds for training and the remaining one for validation.
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Table 10.3 k-fold cross validation

k Y µ̂ σ̂ ν̂ τ̂

k = 1 y11 ˆµ11 ˆσ11 ˆν11 ˆτ11

y12 ˆµ12 ˆσ12 ˆν12 ˆτ12

· · · · ·

· · · · ·

· · · · ·

y1n ˆµ1n ˆσ1n ˆν1n ˆτ1n

k = 2 y21 ˆµ21 ˆσ21 ˆν21 ˆτ21

· · · · ·

y2n ˆµ2n ˆσ2n ˆν2n ˆτ2n

· · · · · ·

· · · · · ·

k = 10 y1k ˆµ1k ˆσ1k ˆν1k ˆτ1k

· · · · ·

· · · · ·

ynk ˆµnk ˆσnk ˆνnk ˆτnk

Therefore the cross validation (CV) global deviance is defined by the following equation,

CV =−2
10

∑
k=1

nk

∑
i=1

log fY (yki|µ̂ki, σ̂ki, ν̂ki, τ̂ki)

where nk is the sample size of the kth subsample for k = 1,2, ··,10)
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Table 10.4 Cross validation

Models Terms CV(Deviance)

logitBSSN pb() -18446.07

logitBSSN linear -17831.23

logitSST linear -16175.82

BE linear -12374.06

Table 10.4 shows the cross validated (CV) global deviance for the different models fitted to

SEVERITY values between 0 and 1. According to Table 10.4, the inflated logitBSSN model

(logitBSSNInf0to1) is selected, as it has the smallest cross validated global deviance.

10.4.3 Residuals of the fitted model

Figure 10.4 and 10.5 show the worm plots of the fitted logitBSSNInf0to1, BEINF, Tobit and

genralized Tobit (BSSNic) models respectively. Based on the worm plots the proposed inflated

logitBSSN model fits much better than all the other models for the loss given default data set.
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Fig. 10.4 Worm plot of logitBSSNInf0to1 and BEINF
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Fig. 10.5 Worm plot of Tobit and GenTobit model

10.4.4 Fitted distribution

Figure 10.6 shows the fitted distribution of Y for the fitted logitBSSNInf0to1 model using six

data cases (i.e. 100, 500, 1000, 2000, 3000, 5000). The corresponding values of explanatory

variables are given in Table 10.5
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Fig. 10.6 Fitted distribution of the InflogitBSSN for six data cases

Table 10.5 Corresponding values of the explanatory variables for fitted distributions

sMOB hrate ORIGINY R DEFAULTY R

1 9.746794 0.454601 2000 2007

2 7.81025 0.357487 2001 2006

3 8.124038 0.309862 2000 2005

4 5 0.443965 1998 2000

5 8.062258 0.300251 2000 2005

6 10.86278 0.334559 1994 2000
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10.5 Conclusion

This chapter proposes an inflated logit distribution and a generalized type I Tobit model for loss

given default (LGD). Both models use the four parameter bi-modal skew symmetric normal

(BSSN) distribution (used in order to model the bimodality of the distribution of LGD). Flexible

nonparametric P-splines were used to model the parameters of the distribution of the response

variable using covariates. The dependence of each of the parameters of the two proposed models

on explanatory variable can be replaced with linear, regression trees or neural network models.

The proposed inflated logit GAMLSS model was compared with the beta inflated model. Based on

the AIC and SBC criterion, the study concluded that the inflated logitBSSN provided the best fit

to the loss given default data.



Chapter 11

Conclusion and Future developments

The thesis investigated methods for handling a proportion response variable and presents new

classes of models for a bounded proportion. The proposed models primarily address the bounded

nature, skewness and bimodality of the proportion dependent variable. The proposed inflated

GAMLSS and generalized Tobit GAMLSS model are discussed in 5 and 6 respectively. The proposed

inflated GAMLSS model can be fitted using new package gamlssinf in R. The generalized Tobit

GAMLSS model can be fitted using the package gamlss.cens. The proposed models can be

applied to data from a variety of disciplines. This chapter outlines the main contributions of

the thesis in modelling a proportion response variable and proposes some directions for future

developments.

11.1 Originality of inflated GAMLSS model

This thesis makes a number of original contributions to the area of modelling continuous and

bounded data by developing a class of univariate inflated GAMLSS models which extend the

flexibility of the beta inflated model by (Hoff (2007), Ospina and Ferrari (2010), Cook et al.

(2008)).
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The inflated GAMLSS model is a mixed continuous-discrete distribution model which allows

modelling of any or all the parameters of a distribution ( up to four parameters for the continuous

component and two extra parameters for the discrete components) using explanatory terms (e.g.

linear and/or non-linear smoothing terms in explanatory variables).

For example the inflated GAMLSS model extends the beta inflated model by including two extra

parameters in the continuous component for modelling the skewness and kurtosis or bimodality.

Unlike the beta inflated model this thesis offers a comprehensive framework for the statistical

analysis of the continuous data observed on the standard unit interval (0,1) with point masses at

0 and/or 1.

The inflated GAMLSS model is a general class of regression model for modelling a continuous

proportion with discrete boundary values at zero and/or one. A method of estimating the

parameters of the inflated GAMLSS model is explained in chapter 5. This research also explained

the randomized quantile residuals of the mixed continuous-discrete random variable for the

inflated GAMLSS model in chapter 5.

11.2 Important applications of inflated GAMLSS model

The inflated GAMLSS model allows the use of a flexible explicit or transformed (e.g. logit or

truncated) distribution on (0,1) for the response variable including highly skew and/or kurtotic

distributions, for example the explicit distribution on (0,1) GB1(µ,σ ,ν ,τ) of McDonald and

Xu (1995), logit or truncated version of the power exponential distribution of Nelson (1991),

Johnson’s SU of Johnson et al. (1994), the sinh-arcsinh of Jones and Pewsey (2009), the skewed

t family Fernandez and Steel (1998b) and bimodal skew symmetric normal of Hassan and

El-Bassiouni (2016) distributions.

The use of flexible explicit or transformed (i.e. logit or truncated) distributions on (0,1) together

with a binomial or multinomial model allows fitting of the inflated GAMLSS model using penalised
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likelihood estimation algorithm discussed in chapter 5 and uses of variety of diagnostic tools for

model checking and selection (see for example chapters 8, 9 and 10).

The inflated GAMLSS model also expands the centile estimation techniques by allowing a more

flexible model for the data containing ones and zeroes.

In chapter 8 an inflated GAMLSS at 1 model was used to model a response variable (spirometric

lung function on (0,1]) using an explanatory variable . Two other cases of inflated GAMLSS model

(inflated GAMLSS at 0 and inflated GAMLSS at 0 and 1) are used to analyse the response variable

in two different data sets, i.e. PASS scheme data with a response variable on [0,1) and loss

given default data set with a response variable on [0,1] respectively. Using three different data

sets helps justify the usefulness of the model. In all the three cases, the inflated GAMLSS model

outperformed other previous models.

11.3 Originality of the generalized Tobit GAMLSS model

In addition to the inflated GAMLSS model, this thesis also developed a new class of model,

the generalized Tobit GAMLSS model, for the bounded proportion response variable.The

generalized Tobit GAMLSS model allows modelling all the parameters of the distribution of

the latent variable V using linear or non-linear terms and/or smoothing terms in explanatory

variables.

The genralized Tobit GAMLSS model extends the Tobit model in terms of the number of parameters

and their flexibility. The generalized Tobit GAMLSS model includes two more parameters than the

Tobit model to model the conditional skewness and/or kurtosis and bimodality of the response

variable.

This thesis also describes the randomized quantile residuals of the generalized Tobit GAMLSS

model to assess the overall adequacy of the model (see chapter 6). A method of estimating the

parameters of the model is also described and explained in chapter 6.
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The generalized Tobit GAMLSS for a proportion response variable comprises three special cases:

censored below zero, censored above one and interval censored below 0 and above 1. Applica-

tions of the three sub-models of generalized Tobit model together with popular models currently

in the literature are shown in chapters 8, 9 and 10 respectively. In all the cases generalized Tobit

GAMLSS model performed better than the other popular previous models.

11.4 Limitations and future developments

The inflated logit distributions have the advantage of extra flexibility, in that the probability of Y

equals 0 or 1 is modelled independently of the distribution (0,1) but at the cost of introducing

extra parameters. Note that logit transformation is very sensitive to values close to 0 and 1.

In the generalized Tobit GAMLSS model, the probability of Y equals 0 or 1 is directly related to

the distribution between 0 and 1 and so is less flexible but the model is more concise, because

it has two less distribution parameters than the inflated GAMLSS model. The generalized Tobit

GAMLSS model was not adequate in modelling a response variable containing a large number of

values close to 0 and 1 (in the loss given default data example in chapter 10).

11.4.1 Future developments

Further work includes a model consisting of censoring above one (as introduced in the general-

ized Tobit GAMLSS model) and additional zeroes (as addressed in inflated GAMLSS model).

The distribution of the response variable can also be extended to a general distribution on (0,∞),

which is left shifted and interval censored to [0,1]. The inflated GAMLSS model and generalized

Tobit GAMLSS models can be extended to include spatial terms in the model for a bounded

proportion response variable.

The comparison of the inflated GAMLSS model and generalized Tobit GAMLSS model with different

additive terms (e.g. neural network, decision tree) is also unexplored.
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The above is important further work that has been considered by the author, but due to the time

constraint, all those important directions have been proposed for future development of the

inflated GAMLSS and the generalized Tobit GAMLSS models.
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Appendix A

R code for application on lung function

data

library(gamlss) # loading gamlss package
#------------------------------------------------------------------
# files needed
source(’Inf0to1-11-5-15.R’) # the inflated distribution functions

# gamlss.Inf0to1
source(’qstats-TEST.R’) # a modified verion of Q.stats

source(’centTobit.R’) # a modified version of centiles
source("wptwimT.R") # a modified version of the wptwim()
source("rqres1.R") # a modified version of rqres()

#Data
alldata<-read.table("fev1fvc_all_best.txt", header=T, na.strings="NA")
dim(alldata)
# select out just the males

d1m<-subset(alldata,sex==1)
dim(d1m)
d2m<-na.omit(d1m)
dim(d2m)
#> dim(d2m)
#[1] 3164
d2m$f <- d2m$fev1fvc
d2m$lht<- log(d2m$ht)
k1<- 6
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# The response variable is d2m$f

# FITTING THE MODELS
--------------------------------------------------------

LMS
--------------------------------------------------------
m1 <- gamlss(f~ pb(lht,method = "GAIC",k=k1),

sigma.formula=~pb(lht,method="GAIC", k=k1),
nu.formula=~pb(lht,method="GAIC", k=k1),
family = BCCGo,data = d2m,n.cyc=100)

#m1<- rqres1(m1, setseed=351, save.resid=TRUE)

#-------------------------------------------------------------------------------
Beta Inflated

#-------------------------------------------------------------------------------
m2 <- gamlss( f ~ pb(lht,method= "GAIC", k=k1),

sigma.formula=~pb(lht,method= "GAIC", k=k1),
nu.formula=~pb(lht,method= "GAIC", k=k1),
data=d2m, family=BEINF1)

# this will recalculate the residuals with set seed for comparisons
m2<- rqres1(m2, setseed=351, save.resid=TRUE)
#----------------------------------------------------------------
# logitSST
#-------------------------------------------------------------------------------
gen.Family("SST", "logit")
# choosing the smoothing parameters with GAIC and penalty 6
m3 <- gamlssInf0to1( y=f,mu.formula=~ pb(lht, method="GAIC", k=k1),

sigma.formula=~pb(lht,method="GAIC", k=k1),
nu.formula=~pb(lht,method="GAIC", k=k1),
tau.formula=~pb(lht,method="GAIC", k=k1),
xi1.formula=~pb(lht,method="GAIC", k=k1),
data=d2m, family=logitSST,
trace = T, setseed=351,
gd.tol=100)

# choosing the smoothing parameters with GAIC and penalty 2
m31 <- gamlssInf0to1( y=f,mu.formula=~ pb(lht, method="GAIC", k=2),

sigma.formula=~pb(lht,method="GAIC", k=2),
nu.formula=~pb(lht,method="GAIC", k=2),
tau.formula=~pb(lht,method="GAIC", k=2),
xi1.formula=~pb(lht,method="GAIC", k=2),
data=d2m, family=logitSST,
trace = T, setseed=351,
gd.tol=100)

# choosing the smoothing parameters with GAIC and penalty 8.059592
m32 <- gamlssInf0to1( y=f,mu.formula=~ pb(lht, method="GAIC", k=log(3164)),

sigma.formula=~pb(lht,method="GAIC", k=log(3164)),
nu.formula=~pb(lht,method="GAIC", k=log(3164)),
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tau.formula=~pb(lht,method="GAIC", k=log(3164)),
xi1.formula=~pb(lht,method="GAIC", k=log(3164)),
data=d2m, family=logitSST,
trace = T, setseed=351,
gd.tol=100)

# TOBIT type model
#------------------------------------------------

library(survival)
# creating the Y variable
d2m$fs<- Surv(d2m$f, d2m$f!=1, type="right")
# creating the distribution
library(gamlss.cens)
gen.cens("BCCGo", type="right")
gen.cens("NO", type="right")
# fitting the model
# choosing the smoothing parameters with GAIC and penalty 6
m4 <- gamlss( fs ~ pb(lht,method="GAIC", k=k1),

sigma.formula=~pb(lht,method="GAIC", k=k1),
data=d2m, family=NOrc)

m4<- rqres1(m4, setseed=351, save.resid=TRUE)

m5 <- gamlss( fs ~ pb(lht,method="GAIC", k=k1),
sigma.formula=~pb(lht,method="GAIC", k=k1),
nu.formula=~pb(lht,method="GAIC", k=k1),
data=d2m, family=BCCGorc)

m5<- rqres1(m5, setseed=351, save.resid=TRUE)
# choosing the smoothing parameters with GAIC and penalty 2
m51 <- gamlss( fs ~ pb(lht,method="GAIC", k=2),

sigma.formula=~pb(lht,method="GAIC", k=2),
nu.formula=~pb(lht,method="GAIC", k=2),
data=d2m, family=BCCGorc)

# choosing the smoothing parameters with GAIC and penalty 8.059592
m52 <- gamlss( fs ~ pb(lht,method="GAIC", k=log(3164)),

sigma.formula=~pb(lht,method="GAIC", k=log(3164)),
nu.formula=~pb(lht,method="GAIC", k=log(3164)),
data=d2m, family=BCCGorc)

m52<- rqres1(m52, setseed=351, save.resid=TRUE)

#---------------------------------------------------
Centile curves

---------------------------------------------------
centiles(m1,xvar= d2m$ht, cent=c(2,10,25,50,75,90,98),
ylab="FEV1/FVC", xlab=" height",ylim = range(d2m$f),
legend=F, main="(a) LMS")
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centiles(m2,xvar= d2m$ht, cent=c(2,10,25,50,75,90,98),
ylab="FEV1/FVC", xlab=" height",ylim = range(d2m$f),
legend=F,main="(b) BEINF1")

centiles.Inf0to1(m3,xvar= d2m$ht, cent=c(2,10,25,50,75,90,98),
ylab="FEV1/FVC", xlab=" height",ylim = range(d2m$f),
legend=F,main="(c) Inf. logitSST")

centiles.T(m5,xvar= d2m$ht, cent=c(2,10,25,50,75,90,98),
ylab="FEV1/FVC", xlab=" height", ylim = range(d2m$f),
legend=F,main="(d) Gen. Tobit")

centiles.Inf0to1(m3,xvar= d2m$ht, cent=c(2,10,25,50,75,90,98),
ylab="FEV1/FVC", xlab=" height",ylim = range(d2m$f),
legend=F, main=" Inf. logitSST")

centiles.T(m5,xvar= d2m$ht, cent=c(2,10,25,50,75,90,98),
ylab="FEV1/FVC", xlab=" height", ylim = range(d2m$f),
legend=F,main=" Gen. Tobit")

#-------------------------------------------------
# GAIC (comparing models)
#--------------------------------------------------
GAIC(m1,m2,m3,m4,k=6)
#-------------------------------------------------
# Q-stat
#-------------------------------------------------
qstat.m1<- Q.stats(m1,xcut.points= NULL,n.inter=16,

xvar=d2m$ht, digits.xvar=3), title (" (a) LMS")
qstat.m2<- Q.stats(m2,xcut.points= NULL,n.inter=16,

xvar=d2m$ht,digits.xvar=3),title (" (b) BEINF1")
qstat.m3<- Q.stats(m3,xcut.points= NULL,n.inter=16,

xvar=d2m$ht,digits.xvar=3),title("(c) Inf.logitSST")
qstat.m5<- Q.stats(m5,xcut.points= NULL,n.inter=16,

xvar=d2m$ht,digits.xvar=3)
title("(d) Gen.Tobit")

-------------------------------------------------------
Twin worm plot
-------------------------------------------------------
wp.twinT(m1, m2, xvar= d2m$lht, xvar.column=2,

n.inter=16, show.given= FALSE ,ylim.worm = 1,
cex = .5, col1= "black", col2 = "grey",
warning= FALSE, pch=21)

wp.twinT(m3, m5, xvar= d2m$lht, xvar.column=2,
n.inter=16, show.given= FALSE ,ylim.worm = 1,
cex = .5, col1= "black", col2 = "grey",
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warning= FALSE, pch=21)
----------------------------------------------------------
Fitted (prediced)distribution of d2m$f
---------------------------------------------------------
########## logitSSTInf1###############

# inflogitSST
#logit model
d3m<- subset(d2m, d2m$f!=1)
# fitting continuous part of the model for prediction
m3logit <- gamlss(f~ pb(lht, method="GAIC", k=k1),

sigma.formula=~pb(lht,method="GAIC", k=k1),
nu.formula=~pb(lht,method="GAIC", k=k1),
tau.formula=~pb(lht,method="GAIC", k=k1),
data=d3m, family=logitSST,trace = T,
setseed=351, gd.tol=100)

newd2m3<-data.frame(lht=c(4.094345,4.382027,4.60517,4.787492,
4.941642,5.075174))

pm3logit<-predictAll(m3logit, newdata=newd2m3, use.weights=TRUE)

# BI model & Prediction (fitting binary model for discrete part)
d2m$f0<- ifelse(d2m$f==1, 1 && d2m$f!=1, 0)
m3BI <- gamlss(f0~ pb(lht, method="GAIC", k=k1),sigma.formula=~pb(lht,

method="GAIC", k=k1),data=d2m, family=BI)
pm3BI<-predictAll(m3BI, newdata=newd2m3, use.weights=TRUE)

# Generating inflated logit distribution
gen.Inf0to1(family = "logitSST", type.of.Inflation = "One")
x11(width = 6, height = 8, pointsize = 12)

op<-par(mfrow=c(3,2))
plotlogitSSTInf1(mu=3.248380, sigma=1.2483134, nu= 1.352479,

tau=1491.913581, xi1=0.965443806)
plotlogitSSTInf1(mu=2.958775, sigma=1.0265913, nu= 1.508604,

tau=80.938310, xi1=0.753542382)
plotlogitSSTInf1(mu=2.520048, sigma=0.8749899, nu= 1.802432,

tau=9.352586, xi1= 0.351104068)
plotlogitSSTInf1(mu=2.017535, sigma=0.7643921, nu= 1.693014,

tau=3.712501, xi1=0.095667080)
plotlogitSSTInf1(mu=1.739814 , sigma=0.6799430, nu= 1.402725,

tau=3.717171, xi1=0.019854368)
plotlogitSSTInf1(mu=1.541542 , sigma=0.6132293, nu= 1.457597,

tau=4.542058, xi1=0.004406673)
par(op)
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#############gen.Tobit model############################
m5all2<-predictAll(m5,newdata=newd2m3,use.weights=TRUE)



Appendix B

R code for the application on PASS

scheme data

library(gamlss) # loading gamlss package
library(gamlssinf) # loading gamlssinf package
x<-read.table("C:/Users/user/Desktop/Pass scheme.csv", header=TRUE, sep=",")
x$AMM1<-x$AMM/100
x$AMM2<-(1-x$AMM1)# transform Y variable
#------------------------------------------------------------------------

Inflated logit ST3 at 0
#---------------------------------------------------------------------

mST3 <- gamlssInf0to1( y=AMM2,mu.formula=~ pb(PA, method="GAIC", k=k1),
sigma.formula=~pb(PA,method="GAIC", k=k1),
nu.formula=~pb(PA,method="GAIC", k=k1),
tau.formula=~pb(PA,method="GAIC", k=k1),
xi1.formula=~pb(PA,method="GAIC", k=k1),
data=x, family=logitST3,trace = T,gd.tol=100)

############### BEINF1 ###################
mBEINF <- gamlss(AMM2~ pb(PA, method="GAIC", k=k1),

sigma.formula=~pb(PA,method="GAIC", k=k1),
nu.formula=~pb(PA,method="GAIC", k=k1),
family=BEINF1,data=pass,trace = T,gd.tol=100)

#--------------------------------------------------
Generalized Tobit GAMLSS model (censored at 0)

#--------------------------------------------------
library(survival)
library(gamlss.cens)
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x$AMM2<-(1-x$AMM1)
#creating Surv object
x$AMM3<- Surv(x$AMM2, x$AMM2!=1, type="right")

# Generating right censored distribution

gen.cens("BCT", type="right")
#------------------------- Tobit model------------
mNorc<-gamlss( pass$AMM3 ~ pb(pass$PA,method="GAIC", k=6),

sigma.formula=~pb(pass$PA,method="GAIC", k=6),
data=pass, family=NOrc)

#-----------------------------------------------------------
#BCTrc
m3 <- gamlss( x$AMM3 ~ pb(x$PA,method="GAIC", k=6),

sigma.formula=~pb(x$PA,method="GAIC", k=6),
nu.formula=~pb(x$PA,method="GAIC", k=6),
tau.formula=~pb(x$PA,method="GAIC", k=6),
data=x, family=BCTrc)

#-------------------------------------------------
GAIC(k=6)

#------------------------------------------------
GAIC(m3,mST3,mBEINF, mNOrc)

#---------------------------------------------------------
#-----------Fitted centile curves---------
op <- par(mfrow=c(2,2))
centiles(mNorc,xvar= pass$PA, cent=c(2,10,25,50,75,90,98),

ylab="AMM", xlab="Attendance", ylim = range(pass$AMM3),
legend=F, main="(a) Tobit (NOrc)")

centiles(mBEINF,xvar= pass$PA, cent=c(2,10,25,50,75,90,98),
ylab="AMM", xlab=" Attendance",ylim = range(pass$AMM2),
legend=F,main="(b) BEINF1")

centiles.Inf0to1(mST3,xvar= pass$PA, cent=c(2,10,25,50,75,90,98),
ylab="AMM", xlab=" Attendance",ylim = range(pass$AMM2),
legend=F,main="(c) logitST3Inf1")

centiles.T(mBCTrc,xvar= pass$PA, cent=c(2,10,25,50,75,90,98),
ylab="AMM", xlab=" Attendance", ylim = range(pass$AMM3),
legend=F,main="(d) Gen.Tobit (BCTrc)")

par(op)

#-----------------------------------------------------------
worm plot and twin worm plot
#---------------------------------------------------------
wp.twin(mST3, m3, xvar = x$PA, xvar.column = 2, n.inter = 2,
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show.given = FALSE, ylim.worm = 0.5, line = FALSE, cex = 1,
col1 = "black", col2 = "orange", warnings = FALSE)

wp.twin(mBEINF, mNOrc, xvar = x$PA, xvar.column = 2, n.inter = 10,
show.given = FALSE, ylim.worm = 0.5, line = FALSE, cex = 1,
col1 = "black", col2 = "orange", warnings = FALSE)

#############Prediction###################
#-------------using logitST3Inf1-----------------
# LOGIT sT3 # fitting model for continuous part of the data
p2m<- subset(pass, AMM2!=1)
m9logitST3 <- gamlss(AMM2~ pb(PA, method="GAIC", k=k1),

sigma.formula=~pb(PA,method="GAIC", k=k1),
nu.formula=~pb(PA,method="GAIC", k=k1),
tau.formula=~pb(PA,method="GAIC", k=k1),data=p2m,
family=logitST3,trace = T,gd.tol=100)

#### Predict using 7 data cases
newP2m<-data.frame(PA=c(0.1,0.3,0.5,0.7,0.8,0.9))# ne2w data

pm9logit<-predictAll(m9logitST3, newdata=newP2m, use.weights=TRUE)

########## BI model# fitting binary model
pass$AMM0<- ifelse(pass$AMM2==1, 1 && pass$AMM2!=1, 0)

mbi9<- gamlss(AMM0~ pb(PA, method="GAIC", k=k1),
sigma.formula=~pb(PA, method="GAIC", k=k1),
data=pass, family=BI)

pm9BI<-predictAll(mbi9, newdata=newP2m, use.weights= TRUE)

library(gamlss.inf)
gen.Family(family="ST3", type="logit")
# generating inflated distribution function
gen.Inf0to1(family="logitST3", type.of.Inflation="One")
x11(width = 6, height = 8, pointsize = 12)
op<-par(mfrow=c(3,2))
plotlogitST3Inf1 (mu= -0.4140361, sigma=0.7656729, nu= 1.428967,

tau= 8.767638, xi1= 0.15066964, xlab= "y", ylab="fy")
plotlogitST3Inf1 (mu= -0.4320217, sigma=0.6981526, nu= 1.387453,

tau= 8.264562, xi1= 0.09686596)
plotlogitST3Inf1 (mu= -0.4500436, sigma=0.6365360, nu= 1.347151,

tau= 7.790544, xi1= 0.06290156)
plotlogitST3Inf1 (mu= -0.4681511, sigma=0.5803502, nu= 1.308046,

tau= 7.343815, xi1= 0.04123668)
plotlogitST3Inf1 (mu= -0.4772450, sigma=0.5541458, nu=1.288914,

tau= 7.130169, xi1= 0.03333156)
plotlogitST3Inf1 (mu= -0.4863611, sigma=0.5291258, nu= 1.270052,
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tau= 6.922741, xi1= 0.02689532)
par(op)
### Prediction using BCTrc model

newpass<-data.frame(PA=c(0.1,0.3,0.5,0.7,0.8,0.9))# ne2w data
predict(mBCTrc1, what="mu", newdata=newpass)
predictAll(mBCTrc, newdata= newpass)
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R code for the application on LGD data

[0,1]

library(lattice) # loading lattice plotting package
library(gamlss) # loading gamlss package
library(gamlss.inf) # loading gamlssinf package
source(’/Users/user/Desktop/Bi-modal-dist/GAMLSS_BSSN.txt’, chdir = TRUE)

# DATA
da<-read.table(’/Users/user/Dropbox/inflateddistributions/paper/

LGD.Data.csv’,header = TRUE, sep=",")

#---------------------------------------------------------
Global adjustment

#--------------------------------------------------
da1<- subset(da,da$SEVERITY!=0&da$SEVERITY!= 1)
da2<- subset(da,da$SEVERITY>=0&da$SEVERITY<= 0.5)
da3<- subset(da,da$SEVERITY>0.5&da$SEVERITY<= 1)
da4<-(da1[da1$SEVERITY<=0.98&da1$SEVERITY>=0.02,])
#-------factor----
da$FORIGIN_YR <- factor(da$ORIGIN_YR)
da$FDEFAULT_YR <- factor(da$DEFAULT_YR)

da$sMOB <- sqrt(da9$MOB)
#---------Data processing for generalised tobit
library(survival)
library(gamlss.cens)
#creating Survival object
v1<- ifelse(da$SEVERITY==0,NA,da$SEVERITY)
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v2<- ifelse(da$SEVERITY==1,NA,da$SEVERITY)
Y1 <- Surv(v1,v2, type="interval2")
Y2<- Surv(da$L, type="interval2")
da$Y1 <- Surv(v1,v2, type="interval2")

# generating interval censored BSSN distribution
gen.cens("BSSN",type="interval")

#-----BETA--Inflated----------------------
mBEINF<- gamlss(SEVERITY~pb(sMOB,df=7)+pb(hrate,df=7)

+ FORIGIN_YR+FDEFAULT_YR,
sigma.formula=~pb(hrate,df=1)+pb(sMOB,df=1) ,
nu.formula=~pb(hrate,df=9) + FORIGIN_YR
+ FDEFAULT_YR+pb(sMOB,df=9),
tau.formula=~pb(hrate,df=1)
+ pb(sMOB,df=1),data = da,family=BEINF,
n.cyc=200, gd.tol=Inf,c.crit=0.1)

mlogitSST<- gamlss(SEVERITY~pb(sMOB,df=7)+pb(hrate,df=7)
+ FORIGIN_YR+FDEFAULT_YR,
sigma.formula=~pb(hrate,df=1)+pb(sMOB,df=1) ,
nu.formula=~pb(hrate,df=9)
+ FORIGIN_YR + FDEFAULT_YR+pb(sMOB,df=9),
tau.formula=~pb(hrate,df=1)+ pb(sMOB,df=1),
data = da4,family=logitSST,
n.cyc=200, gd.tol=Inf,c.crit=0.1)

mlogitBSSN<- gamlss(SEVERITY~pb(sMOB,df=7)+pb(hrate,df=7)
+ FORIGIN_YR+FDEFAULT_YR,
sigma.formula=~pb(hrate,df=1)+pb(sMOB,df=1) ,
nu.formula=~pb(hrate,df=9)
+ FORIGIN_YR + FDEFAULT_YR+pb(sMOB,df=9),
tau.formula=~pb(hrate,df=1)+ pb(sMOB,df=1),
data = da4,family=logitBSSN,
n.cyc=200, gd.tol=Inf,c.crit=0.1)

---------------------------------------------------
# logitBSSN model with gamlssinfto1
---------------------------------------------------
m2logitBSSN <- gamlssInf0to1(y=SEVERITY,

mu.formula= ~ pb(MOB)+ pb(hrate)
+ FORIGIN_YR + FDEFAULT_YR,
sigma.formula = ~pb(sMOB) + pb(hrate)
+ FORIGIN_YR,
nu.formula = ~ pb(MOB)+ pb(hrate)
+ FORIGIN_YR+ FDEFAULT_YR,
tau.formula = ~~pb(sMOB) + pb(hrate),
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xi1.formula= ~scci+hrate + FORIGIN_YR,
xi0.formula= ~hrate + FORIGIN_YR,
data=da, family=logitBSSN,
trace = T, n.cyc=200,
gd.tol=Inf,c.crit=0.1)

#--------Tobit and genTobit-----
Tobit<- gamlss(Y1~pb(sMOB,df=7)+pb(hrate,df=7)

+ FORIGIN_YR+FDEFAULT_YR,
sigma.formula=~pb(hrate,df=1)+pb(sMOB,df=1) ,
data = da,family=NOic,n.cyc=200,
gd.tol=Inf,c.crit=0.1)

TobitBSSN<- gamlss(Y1~pb(sMOB,df=7)+pb(hrate,df=7)
+FORIGIN_YR+FDEFAULT_YR,
sigma.formula=~pb(hrate,df=1)+pb(sMOB,df=1) ,
nu.formula=~pb(hrate,df=9)+pb(sMOB,df=9)
+ FORIGIN_YR + FDEFAULT_YR,
tau.formula=~pb(hrate)+ pb(sMOB),data = da,
family=BSSNic,n.cyc=200,
gd.tol=Inf,c.crit=0.1)

#------------------------------------------------
comparing model using gen cross validation(GCV)
#------------------------------------------------
set.seed(123)
rand <- sample(2, 6738, replace=TRUE, prob=c(0.6,0.4))

rand1<- sample(10, 6738, replace=TRUE)
rand2<- sample(6, 6738, replace=TRUE)
table(rand)/6738
olddata<-da4[rand==1,] # training data
newdata<-da4[rand==2,] # validation data

g1bssn <- gamlssCV(SEVERITY~sMOB+hrate+FORIGIN_YR+FDEFAULT_YR,
sigma.formula=~hrate+sMOB, nu.formula=~1,
tau.formula=~1, data=da4,
family=logitBSSN,rand=rand1)

g1SST <- gamlssCV(SEVERITY~sMOB+hrate+FORIGIN_YR+FDEFAULT_YR,
sigma.formula=~hrate+sMOB, nu.formula=~1,
tau.formula=~1, data = da4,family=logitSST,
rand=rand1, parallel="no", ncpus=nC)

g1BE <- gamlssCV(SEVERITY~sMOB+hrate+FORIGIN_YR+FDEFAULT_YR,
sigma.formula=~hrate+sMOB, data = da4,
family=BE,rand=rand1,parallel="no", ncpus=nC)
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############## Fitted Distribution of SEVERITY for 6 new cases#####
# generating inflated logit BSSN distribution

gen.Inf0to1(family="logitBSSN", type.of.Inflation="Zero&One")

x11(width = 7, height = 8, pointsize = 12)
op<-par(mfrow=c(3,2))
plotlogitBSSNInf0to1(mu=fitted(m2logitBSSN)[100],
sigma=fitted(m2logitBSSN, "sigma")[100],
nu= fitted(m2logitBSSN, "nu")[100], tau=fitted(m2logitBSSN, "tau")[100],
fitted(m2logitBSSN, "xi0")[100],fitted(m2logitBSSN, "xi1")[100])
plotlogitBSSNInf0to1(mu=fitted(m2logitBSSN)[500],
sigma=fitted(m2logitBSSN, "sigma")[500],
nu= fitted(m2logitBSSN, "nu")[500], tau=fitted(m2logitBSSN, "tau")[500],
fitted(m2logitBSSN, "xi0")[500], fitted(m2logitBSSN, "xi1")[500])
plotlogitBSSNInf0to1(mu=fitted(m2logitBSSN)[1000],
sigma=fitted(m2logitBSSN, "sigma")[1000],
nu= fitted(m2logitBSSN, "nu")[1000], tau=fitted(m2logitBSSN, "tau")[1000],
fitted(m2logitBSSN, "xi0")[1000], fitted(m2logitBSSN, "xi1")[1000])
plotlogitBSSNInf0to1(mu=fitted(m2logitBSSN)[2000],
sigma=fitted(m2logitBSSN, "sigma")[2000],
nu= fitted(m2logitBSSN, "nu")[2000], tau=fitted(m2logitBSSN, "tau")[2000],
fitted(m2logitBSSN, "xi0")[2000],fitted(m2logitBSSN, "xi1")[2000])
plotlogitBSSNInf0to1(mu=fitted(m2logitBSSN)[3000],
sigma=fitted(m2logitBSSN, "sigma")[3000],
nu= fitted(m2logitBSSN, "nu")[3000], tau=fitted(m2logitBSSN, "tau")[3000],
fitted(m2logitBSSN, "xi0")[3000],fitted(m2logitBSSN, "xi1")[3000])
plotlogitBSSNInf0to1(mu=fitted(m2logitBSSN)[5000],
sigma=fitted(m2logitBSSN, "sigma")[5000],
nu= fitted(m2logitBSSN, "nu")[5000], tau=fitted(m2logitBSSN, "tau")[5000],
fitted(m2logitBSSN, "xi0")[5000],fitted(m2logitBSSN, "xi1")[5000])



Appendix D

Box-Cox t distribution

Box-Cox t distribution of Rigby and Stasinopoulos (2006) is denoted as Y ∼ BCT (µ,σ ,ν ,τ)

and probability density function is given by

fY (y|µ,σ ,ν ,τ) = fZ(z)| dz
dy |

= yν−1

µν σ
fZ(z)

where fZ(z) is the truncated t probability density function of Z given by

Z =


1

σν
[(Y

µ
)ν −1], if ν ≤ 0

1
σ

log(Y
µ
), if ν = 0

for 0 < Y < ∞, µ > 0, σ > 0 and τ > 0 ( treated as continuous parameter).



Appendix E

R code for bi modal skew symmetric

normal distribution

BSSN <- function (mu.link="identity", sigma.link="log",
nu.link ="identity", tau.link="log")

{
mstats <- checklink( "mu.link",

"Bimodal skew-symmetric normal",
substitute(mu.link),
c("inverse", "log", "identity", "own"))

dstats <- checklink("sigma.link",
"Bimodal skew-symmetric normal",
substitute(sigma.link),
c("inverse", "log", "identity", "own"))

vstats <- checklink( "nu.link",
"Bimodal skew-symmetric normal",
substitute(nu.link),
c("inverse", "log", "identity", "own"))

tstats <- checklink( "tau.link",
"Bimodal skew-symmetric normal",
substitute(tau.link),
c("inverse", "log", "identity", "own"))

structure(
list(family = c("BSSN", "Bimodal skew-symmetric normal"),

parameters = list(mu=TRUE, sigma=TRUE,
nu=TRUE, tau=TRUE),
nopar = 4,
type = "Continuous",
mu.link = as.character(substitute(mu.link)),
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sigma.link = as.character(substitute(sigma.link)),
nu.link = as.character(substitute(nu.link)),
tau.link = as.character(substitute(tau.link)),
mu.linkfun = mstats$linkfun,
sigma.linkfun = dstats$linkfun,
nu.linkfun = vstats$linkfun,
tau.linkfun = tstats$linkfun,
mu.linkinv = mstats$linkinv,
sigma.linkinv = dstats$linkinv,
nu.linkinv = vstats$linkinv,
tau.linkinv = tstats$linkinv,
mu.dr = mstats$mu.eta,
sigma.dr = dstats$mu.eta,
nu.dr = vstats$mu.eta,
tau.dr = tstats$mu.eta,

# The second derivatives of this log likelihood
function with respect to mu

dldm = function(y, mu, sigma, nu, tau)
{ lambda <- nu-mu

theta <- tau + (lambda)^2
gamma <- 1 + 2*sigma*theta
c <- 2 *(sigma)^(3/2)/(gamma*(pi)^(1/2))
dldm<- 4*sigma*lambda/gamma
+ 2*sigma*(y-mu)

dldm
},

#The second derivatives of this log likelihood
function with respect to mu

d2ldm2 = function(y, mu, sigma, nu, tau)
{ lambda <- nu-mu

theta <- tau + (lambda)^2
gamma <- 1 + 2*sigma*theta
c <- 2 *(sigma)^(3/2)/(gamma*(pi)^(1/2))
dldm<- 4*sigma*lambda/gamma

+ 2*sigma*(y-mu)
d2ldm2<- - (dldm) * (dldm)

d2ldm2
},

#The first derivatives of this log likelihood
function with respect to sigma

dldd= function(y,mu, sigma, nu, tau)
{ lambda <- nu-mu

theta <- tau + (lambda)^2
gamma <- 1 + 2*sigma*theta
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c <- 2 *(sigma)^(3/2)/(gamma*(pi)^(1/2))
dldd <- 3/(2*sigma) - 2*theta/gamma
- (y-mu)^2
dldd

},
#The second derivatives of this log likelihood
function with respect to sigma

d2ldd2 = function(y, mu, sigma, nu, tau)
{ lambda <- nu-mu

theta <- tau + (lambda)^2
gamma <- 1 + 2*sigma*theta
c <- 2 *(sigma)^(3/2)/(gamma*(pi)^(1/2))
dldd <- 3/(2*sigma) - 2*theta/gamma
- (y-mu)^2
d2ldd2<- -(dldd) * (dldd)

d2ldd2
},

#The first derivatives of this log likelihood
function with respect to nu

dldv= function(y,mu, sigma, nu, tau)
{ lambda <- nu-mu

theta <- tau + (lambda)^2
gamma <- 1 + 2*sigma*theta
c <- 2 *(sigma)^(3/2)/(gamma*(pi)^(1/2))
dldv <- -4*sigma*lambda/gamma
- 2*(y-nu)/(tau
+ (y-nu)^2)
dldv

},
#The second derivatives of this log likelihood

function with respect to nu
d2ldv2 = function(y, mu, sigma, nu, tau)
{ lambda <- nu-mu

theta <- tau + (lambda)^2
gamma <- 1 + 2*sigma*theta
c <- 2 *(sigma)^(3/2)/(gamma*(pi)^(1/2))
dldv <- -4*sigma*lambda/gamma - 2*(y-nu)/(tau
+ (y-nu)^2)
d2ldv2<- -(dldv) * (dldv)

d2ldv2
},

#The first derivatives of this log likelihood
function with respect to tau

dldt= function(y,mu, sigma, nu, tau)
{ lambda <- nu-mu
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theta <- tau + (lambda)^2
gamma <- 1 + 2*sigma*theta
c <- 2 *(sigma)^(3/2)/(gamma*(pi)^(1/2))
dldt <- -2*sigma/gamma + 1/(tau
+ (y-nu)^2)
dldt

},
#The second derivatives of this log likelihood
function with respect to tau

d2ldt2 = function(y, mu, sigma, nu, tau)
{ lambda <- nu-mu

theta <- tau + (lambda)^2
gamma <- 1 + 2*sigma*theta
c <- 2 *(sigma)^(3/2)/(gamma*(pi)^(1/2))
dldt <- -2*sigma/gamma + 1/(tau
+ (y-nu)^2)
d2ldt2<- -(dldt) * (dldt)

d2ldt2
},

d2ldmdd = function(y, mu, sigma, nu, tau)
{ lambda <- nu-mu

theta <- tau + (lambda)^2
gamma <- 1 + 2*sigma*theta
c <- 2 *(sigma)^(3/2)/(gamma*(pi)^(1/2))
dldm<- 4*sigma*lambda/gamma + 2*sigma*(y-mu)
dldd <- 3/(2*sigma) - 2*theta/gamma
- (y-mu)^2
d2ldmdd<- -(dldm) * (dldd)

d2ldmdd
},

d2ldmdv = function(y, mu, sigma, nu, tau)
{ lambda <- nu-mu

theta <- tau + (lambda)^2
gamma <- 1 + 2*sigma*theta
c <- 2 *(sigma)^(3/2)/(gamma*(pi)^(1/2))
dldm<- 4*sigma*lambda/gamma + 2*sigma*(y-mu)
dldv <- -4*sigma*lambda/gamma - 2*(y-nu)/(tau
+ (y-nu)^2)

d2ldmdv<- -(dldm) * (dldv)

d2ldmdv
},
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d2ldmdt = function(y, mu, sigma, nu, tau)
{ lambda <- nu-mu

theta <- tau + (lambda)^2
gamma <- 1 + 2*sigma*theta
c <- 2 *(sigma)^(3/2)/(gamma*(pi)^(1/2))
dldm<- 4*sigma*lambda/gamma + 2*sigma*(y-mu)
dldt <- -2*sigma/gamma + 1/(tau + (y-nu)^2)

d2ldmdt<- -(dldm) * (dldt)

d2ldmdt
},

d2ldddv = function(y, mu, sigma, nu, tau)
{ lambda <- nu-mu

theta <- tau + (lambda)^2
gamma <- 1 + 2*sigma*theta
c <- 2 *(sigma)^(3/2)/(gamma*(pi)^(1/2))
dldd <- 3/(2*sigma) - 2*theta/gamma - (y-mu)^2
dldv <- -4*sigma*lambda/gamma - 2*(y-nu)/(tau
+ (y-nu)^2)
d2ldddv<- -(dldd) * (dldv)

d2ldddv
},

d2ldddt = function(y, mu, sigma, nu, tau)
{ lambda <- nu-mu

theta <- tau + (lambda)^2
gamma <- 1 + 2*sigma*theta
c <- 2 *(sigma)^(3/2)/(gamma*(pi)^(1/2))
dldd <- 3/(2*sigma) - 2*theta/gamma
- (y-mu)^2
dldt <- -2*sigma/gamma + 1/(tau + (y-nu)^2)
d2ldddt<- -(dldd) * (dldt)

d2ldddt
},

d2ldvdt = function(y, mu, sigma, nu, tau)
{ lambda <- nu-mu

theta <- tau + (lambda)^2
gamma <- 1 + 2*sigma*theta
c <- 2 *(sigma)^(3/2)/(gamma*(pi)^(1/2))
dldv <- -4*sigma*lambda/gamma - 2*(y-nu)/(tau
+ (y-nu)^2)
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dldt <- -2*sigma/gamma + 1/(tau + (y-nu)^2)
d2ldvdt<- -(dldv) * (dldt)

d2ldvdt
},

G.dev.incr = function(y,mu,sigma,nu,tau,...)
{

-2*dBSSN(y,mu,sigma,nu,tau,log=TRUE)
} ,
rqres = expression(

rqres(pfun="pBSSN", type="Continuous", y=y,
mu=mu, sigma=sigma, nu=nu, tau=tau)) ,

mu.initial = expression(mu <- (y+mean(y))/2),
sigma.initial = expression(sigma <- rep(0.1, length(y))),
nu.initial = expression(nu <- rep(1, length(y))),
tau.initial = expression(tau <-rep(1, length(y))),
mu.valid = function(mu) TRUE,
sigma.valid = function(sigma) all(sigma > 0),
nu.valid = function(nu) TRUE,
tau.valid = function(tau) all(tau > 0),
y.valid = function(y) TRUE

),
class = c("gamlss.family","family"))

}
#-------------------Probability density function of BSSN-------------------
dBSSN <- function(x, mu = 0, sigma = 1, nu = 1, tau = .5, log = FALSE)
{

if (any(sigma < 0)) stop(paste("sigma must be positive",
"\n", ""))

if (any(tau < 0)) stop(paste("tau must be positive",
"\n", ""))

lambda <- nu-mu
theta <- tau + (lambda)^2
gamma1 <- 1 + 2*sigma*theta
c <- 2 *(sigma)^(3/2)/(gamma1*(pi)^(1/2))
d <- c*(tau+(x-nu)^2)*exp(-sigma*(x-mu)^2)
loglik <- log(c)+log(tau+(x-nu)^2)- sigma*(x-mu)^2
if(log==FALSE) ft <- exp(loglik) else ft <- loglik
ft

}
#---------------------CDF of BSSN--------------------------
# pfun needs to check
pBSSN <- function(q, mu = 0, sigma = 1, nu = 1, tau = .5,

lower.tail = TRUE, log.p = FALSE,log=T)
{

if (any(sigma < 0)) stop(paste("sigma must be positive",
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"\n", ""))
if (any(tau < 0)) stop(paste("tau must be positive",
\n", ""))

# lambda <- nu-mu
# theta <- tau + (lambda)^2
# gamma <- 1 + 2*sigma*theta
# c <- (2 *(sigma)^(3/2))/(gamma*((pi)^(1/2)))

ax <- (q + mu-(2*nu))/(1 + (2*sigma)*(tau+(nu-mu)^2))
# dNx <- dNO(q,0,1)
# pNx <- pNO(q,0,1)

p <- pNO(q, mu=mu, sigma=sqrt(1/(2*sigma)))
-ax * dNO(q, mu=mu, sigma=sqrt(1/(2*sigma)))

if(lower.tail==TRUE) p <- p else p <- 1-p
if(log.p==FALSE) p <- p else p <- log(p)
p

}
#---------------Inverse CDF----------------------------------
# needs to get q function
qBSSN <- function(p, mu = 0, sigma = 1, nu = 1, tau = .5,

lower.tail = TRUE, log.p = FALSE)
{

#---functions--------------------------------------------
h1 <- function(q)
{

pBSSN(q , mu = mu[i], sigma = sigma[i], nu = nu[i],
tau = tau[i]) - p[i]

}
h <- function(q)
{

pBSSN(q , mu = mu[i], sigma = sigma[i], nu = nu[i],
tau = tau[i])

}
#-----------------------------------------------------------------
#if (any(mu <= 0)) stop(paste("mu must be positive",
"\n", ""))
if (any(sigma <= 0)) stop(paste("sigma must be positive",
"\n", ""))
if (log.p==TRUE) p <- exp(p) else p <- p
if (lower.tail==TRUE) p <- p else p <- 1-p
if (any(p < 0)|any(p > 1)) stop(paste("p must be between 0 and 1",
"\n", ""))
lp <- max(length(p),length(mu),length(sigma),length(nu),
length(tau))
p <- rep(p, length = lp)
sigma <- rep(sigma, length = lp)
mu <- rep(mu, length = lp)
nu <- rep(nu, length = lp)
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tau <- rep(tau, length = lp)
q <- rep(0,lp)
for (i in seq(along=p))
{

if (h(mu[i])<p[i])
{

interval <- c(mu[i], mu[i]+sigma[i])
j <-2
while (h(interval[2]) < p[i])
{interval[2]<- mu[i]+j*sigma[i]
j<-j+1

}
}
else
{

interval <- c(mu[i]-sigma[i], mu[i])
j <-2
while (h(interval[1]) > p[i])
{interval[1]<- mu[i]-j*sigma[i]
j<-j+1

}
}
q[i] <- uniroot(h1, interval)$root
#interval <- c(.Machine$double.xmin, 20)

}
q

}
#---------------------Random function---------------------------------------
rBSSN <- function(n, mu=0, sigma=1, nu=1, tau=.5)
{

if (any(sigma < 0)) stop(paste("sigma must be positive",
"\n", ""))
if (any(tau < 0)) stop(paste("tau must be positive",
"\n", ""))
n <- ceiling(n)
p <- runif(n)
r <- qBSSN(p,mu=mu,sigma=sigma,nu=nu,tau=tau)
r

}



Appendix F

R code for Spirometric data analysis using

two explanatory variables

#--------------------------------------------------------------
The following are the R code for the analysis of lung data using
two explanatory variables (age and height)

load(file="C:/Users/hossaina/Dropbox/InflatedDistributions
/new_lung_analysis/d2m.Rdata")

#----------------------------------------------------------------
# selection of variables for the binary model
library(gamlss.add)
b0 <- gamlss(y~1, dat=d2m, family=BI)
b1 <- gamlss(y~pb(lht), dat=d2m, family=BI)
b2 <- gamlss(y~pb(lage), dat=d2m, family=BI)
b3 <- gamlss(y~pb(lht)+pb(lage), dat=d2m, family=BI)
b4 <- gamlss(y~ga(~s(lht,lage)), dat=d2m, family=BI)
AIC(b0,b1,b2,b3,b4)
# df AIC
# b3 4.571516 1584.023
# b2 2.044672 1584.439
# b4 3.000000 1586.253
# b1 4.269015 1635.187
# b0 1.000000 2087.976
#------------------------------------------------------------
# selection of variables for the the logitSST model
# reduced data
d2mR <- subset(d2m, y==0)
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head(d2mR)
dim(d2mR)
#- generate logitSST
gen.Family("SST", "logit")
# fit null model
# the followin is the selection model for logitSST
# m0 <- gamlss(fev1fvc~1, family=logitSST, data=d2mR)
# m1<- stepGAICAll.A(m0, scope=list(lower=~1,
# upper=~ lht+lage+pb(lht)+pb(lage)+ga(~s(lht,lage)) ))
# the

#m1<- stepGAICAll.A(m0, scope=list(lower=~1,
#upper=~ lht+lage+pb(lht)+pb(lage)+ga(~s(lht,lage)) ))
# ---------------------------------------------------
# Distribution parameter: mu
# Start: AIC= -6811.69
# fev1fvc ~ 1
#
# Df AIC
# + ga(~s(lht, lage)) 17.2128 -7958.7
# + pb(lage) 6.4977 -7950.1
# + lage 1.0000 -7856.6
# + pb(lht) 5.0526 -7770.7
# + lht 1.0000 -7750.2
# <none> -6811.7
#
# Step: AIC= -7958.73
# fev1fvc ~ ga(~s(lht, lage))
#
# Df AIC
# <none> -7958.7
# + lht 1.0000 -7956.7
# + lage 1.0000 -7956.7
# + pb(lht) 1.0045 -7956.7
# + pb(lage) 1.0085 -7956.7
# ---------------------------------------------------
# Distribution parameter: sigma
# Start: AIC= -7958.73
# ~1
#
# Df AIC
# + pb(lage) 8.25483 -8310.6
# + ga(~s(lht, lage)) 10.10103 -8307.4
# + lage 0.86574 -8273.8
# + pb(lht) 3.06881 -8225.4
# + lht -2.73408 -8223.1
# <none> -7958.7
#
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# Step: AIC= -8310.57
# ~pb(lage)
#
# Df AIC
# <none> -8310.6
# + lht 0.62600 -8309.7
# + pb(lht) 0.62843 -8309.7
# + ga(~s(lht, lage)) 1.62548 -8307.7
# ---------------------------------------------------
# Distribution parameter: nu
# Start: AIC= -8310.57
# ~1
#
# Df AIC
# + pb(lage) 3.25310 -8328.4
# + ga(~s(lht, lage)) 5.12998 -8326.8
# + pb(lht) 4.26102 -8326.4
# + lage 0.24767 -8321.1
# + lht 0.59362 -8317.7
# <none> -8310.6
#
# Step: AIC= -8328.35
# ~pb(lage)
#
# Df AIC
# <none> -8328.4
# + lht 1.0260 -8326.4
# + pb(lht) 1.0270 -8326.4
# + ga(~s(lht, lage)) 2.0235 -8324.4
# ---------------------------------------------------
# Distribution parameter: tau
# Start: AIC= -8328.35
# ~1
#
# Df AIC
# + pb(lage) 3.61785 -8363.2
# + ga(~s(lht, lage)) 5.56324 -8358.7
# + pb(lht) 3.10702 -8353.0
# + lht 1.09025 -8341.0
# + lage 0.91452 -8341.0
# <none> -8328.4
#
# Step: AIC= -8363.17
# ~pb(lage)
#
# Df AIC
# <none> -8363.2
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# + lht 1.66079 -8361.9
# + ga(~s(lht, lage)) 2.65262 -8359.9
# + pb(lht) -0.50741 -8352.2
# - pb(lage) 3.61785 -8328.4
# ---------------------------------------------------
# Distribution parameter: nu
# Start: AIC= -8363.17
# ~pb(lage)
#
# Df AIC
# <none> -8363.2
# - pb(lage) 2.4887 -8343.0
# ---------------------------------------------------
# Distribution parameter: sigma
# Start: AIC= -8363.17
# ~pb(lage)
#
# Df AIC
# <none> -8363.2
# - pb(lage) 3.4514 -8336.0
# ---------------------------------------------------
# Distribution parameter: mu
# Start: AIC= -8363.17
# fev1fvc ~ ga(~s(lht, lage))
#
# Df AIC
# <none> -8363.2
# - ga(~s(lht, lage)) 14.821 -7388.5
# ---------------------------------------------------
# > m1
#
# Family: c("logitSST", "logit SST")
# Fitting method: RS()
#
# Call: gamlss(formula = fev1fvc ~ ga(~s(lht, lage)), sigma.formula = ~pb(lage),
# nu.formula = ~pb(lage), tau.formula = ~pb(lage),
# family = logitSST, data = d2mR, trace = FALSE)
#
# Mu Coefficients:
# (Intercept) ga(~s(lht, lage))
# 2.104 NA
# Sigma Coefficients:
# (Intercept) pb(lage)
# 0.5289 -0.3524
# Nu Coefficients:
# (Intercept) pb(lage)
# 0.6812 -0.1168
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# Tau Coefficients:
# (Intercept) pb(lage)
# 2.3553 -0.5709
#
# Degrees of Freedom for the fit: 36.34 Residual Deg. of Freedom 2805
# Global Deviance: -8435.84
# AIC: -8363.17
# SBC: -8146.88

#---------------------------------------------------------
# The final model
#---------------------------------------------------------
gen.Family("SST", "logit")
library(gamlss.add)
library(gamlss.inf)
mf <- gamlssInf0to1(y=fev1fvc,

mu.formula = ~ ga(~s(lht, lage)),
sigma.formula = ~pb(lage),

nu.formula = ~pb(lage),
tau.formula = ~pb(lage),
xi1.formula = ~pb(lage)+pb(lht),

family = logitSST,
data = d2m,
n.cyc = 100,
trace = TRUE)

# ***** The binomial model *****
# GAMLSS-RS iteration 1: Global Deviance = 1580.418
# GAMLSS-RS iteration 2: Global Deviance = 1580.35
# GAMLSS-RS iteration 3: Global Deviance = 1580.35
# ***** The continuous distribution model *****
# GAMLSS-RS iteration 1: Global Deviance = -8334.247
# GAMLSS-RS iteration 2: Global Deviance = -8409.004
# GAMLSS-RS iteration 3: Global Deviance = -8424.92
# GAMLSS-RS iteration 4: Global Deviance = -8435.827
# GAMLSS-RS iteration 5: Global Deviance = -8441.401
# GAMLSS-RS iteration 6: Global Deviance = -8442.847
# GAMLSS-RS iteration 7: Global Deviance = -8442.8
# GAMLSS-RS iteration 8: Global Deviance = -8442.51
# GAMLSS-RS iteration 9: Global Deviance = -8442.3
# GAMLSS-RS iteration 10: Global Deviance = -8442.179
# GAMLSS-RS iteration 11: Global Deviance = -8442.106
# GAMLSS-RS iteration 12: Global Deviance = -8442.053
# GAMLSS-RS iteration 13: Global Deviance = -8442.012
# GAMLSS-RS iteration 14: Global Deviance = -8441.975
# GAMLSS-RS iteration 15: Global Deviance = -8441.945
# GAMLSS-RS iteration 16: Global Deviance = -8441.92
# GAMLSS-RS iteration 17: Global Deviance = -8441.892
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# GAMLSS-RS iteration 18: Global Deviance = -8441.879
# GAMLSS-RS iteration 19: Global Deviance = -8441.86
# GAMLSS-RS iteration 20: Global Deviance = -8441.851
# GAMLSS-RS iteration 21: Global Deviance = -8441.841
# GAMLSS-RS iteration 22: Global Deviance = -8441.833
# GAMLSS-RS iteration 23: Global Deviance = -8441.826
# GAMLSS-RS iteration 24: Global Deviance = -8441.82
# GAMLSS-RS iteration 25: Global Deviance = -8441.815
# GAMLSS-RS iteration 26: Global Deviance = -8441.811
# GAMLSS-RS iteration 27: Global Deviance = -8441.807
# GAMLSS-RS iteration 28: Global Deviance = -8441.804
# GAMLSS-RS iteration 29: Global Deviance = -8441.802
# GAMLSS-RS iteration 30: Global Deviance = -8441.8
# GAMLSS-RS iteration 31: Global Deviance = -8441.797
# GAMLSS-RS iteration 32: Global Deviance = -8441.795
# GAMLSS-RS iteration 33: Global Deviance = -8441.794
# The Final Global Deviance = -6861.444
#### fitted model##########

plot(mf)

wp(mf, xvar=age, n.inter = 9)
wp(mf, xvar=ht, n.inter = 9)
wp(mf, xvar=~age+ht, ylim.worm=1)

Q.stats(mf, xvar=d2m$age)
Q.stats(mf, xvar=d2m$ht)
#-------------------------------------------------------------------
# refit the final with age and height rather than log’s

mf1 <- gamlssInf0to1(y=fev1fvc,
mu.formula = ~ ga(~s(log(ht), log(age))),
sigma.formula = ~pb(log(age)),
nu.formula = ~pb(log(age)),
tau.formula = ~pb(log(age)),
xi1.formula = ~pb(log(age))+ pb(log(ht)),
family = logitSST,
data = d2m,
n.cyc = 100,
trace = TRUE)

x11()
plot(mf1)
## --------------------------------------------------------------
newdata<-expand.grid(age=seq(5,90,0.1), ht=seq(100,210,1))
## --------------------------------------------------------------
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# get prediction values
# for xi1
xi1<-predict(mf1$multinom, newdata=newdata, type="response")
# for mu sigma nu and tau
all<-predictAll(mf1$dist, newdata=newdata, type="response")

xi10 <- predict(mf1, newdata=newdata, type="response", parameter="xi1")
mu0 <- predict(mf1, newdata=newdata, type="response", parameter="mu")
sigma0 <- predict(mf1, newdata=newdata, type="response", parameter="sigma")
nu0 <- predict(mf1, newdata=newdata, type="response", parameter="nu")
tau0 <- predict(mf1, newdata=newdata, type="response", parameter="tau")

plot(xi1~xi10)
plot(all$mu~mu0)

plot(all$sigma~sigma0)
plot(all$nu~nu0)
plot(all$tau~tau0)

names(all)
all$xi1 <- xi1
names(all)
# or using predict
pall <- list()
pall$mu<-predict(mf1, newdata=newdata, type="response")
#plot(pall$mu~all$mu)
pall$sigma<-predict(mf1,newdata=newdata, parameter="sigma",type="response")
pall$nu<-predict(mf1,newdata=newdata, parameter="nu", type="response")
pall$tau<-predict(mf1,newdata=newdata, parameter="tau", type="response")
pall$xi1<-predict(mf1,newdata=newdata, parameter="xi1", type="response")
## --------------------------------------------------------------

# we need to generate the distrbution
gen.Inf0to1("logitSST", "One")

fev5<-qlogitSSTInf1(0.05, mu=all$mu,sigma=all$sigma,
nu=all$nu,tau=all$tau, xi1=all$xi1)

# this can be used to plot fitted observations
pl <- function(i=1)
plotlogitSSTInf1(all$mu[i],all$sigma[i],all$nu[i],all$tau[i], all$xi1[i])

pl(1)
pl(1000)
pl(100)
pl(3045)

## ----eval=FALSE----------------------------------------------------------
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# lower<-rep(maty[,2],111)
# upper<-rep(maty[,4],111)
# fev5a<-ifelse(((newdata$height<lower) | (newdata$height>upper)),
# NaN,fev5)

## ----eval=FALSE-------Contour plot---------------------------------------------------
newheight<-seq(100,210,1)
newage<-seq(5,90,0.1)
mfev5<-matrix(data=fev5,nrow=851,ncol=111)
x11()
contour(newage,newheight,mfev5, nlevels=40, xlab="age(years)",

ylab="height(cm)")
points(d2m$age, d2m$ht, col="green4")



Appendix G

Help file for BSSN distribution in R

The following are the source Rd text to generate help file for the bimodal skew symmetric

normal distribution (BSSN).

\name{BSSN}
\alias{BSSN}
\alias{dBSSN}
\alias{pBSSN}
\alias{qBSSN}
\alias{rBSSN}

%- Also NEED an ’\alias’ for EACH other topic documented here.
\title{Bimodal Skew Symmetric Normal Distribution}
\description{
These functions define the Bimodal Skew Symmetric Normal Distribution.
This is a four parameter distribution and can be used to fit a GAMLSS model.
The functions \code{dBSSN}, \code{pBSSN}, \code{qBSSN} and \code{rBSSN} define
the probability distribution function, the cumulative distribution function,
the inverse cumulative distribution functions and the random generation
for the Bimodal Skew Symmetric Normal Distribution; respectively.
}
\usage{
BSSN(mu.link = "identity", sigma.link = "log", nu.link = "identity",

tau.link = "log")
dBSSN(x, mu = 0, sigma = 1, nu = 1, tau = 0.5, log = FALSE)
pBSSN(q, mu = 0, sigma = 1, nu = 1, tau = 0.5, lower.tail = TRUE,

log.p = FALSE, log = TRUE)
qBSSN(p, mu = 0, sigma = 1, nu = 1, tau = 0.5, lower.tail = TRUE,

log.p = FALSE)
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}
%- maybe also ’usage’ for other objects documented here.
\arguments{

\item{mu.link}{Defines the \code{mu.link}, with "identity"
link as the default for the mu parameter}
\item{sigma.link}{Defines the \code{sigma.link}, with "log"
link as the default for the sigma parameter}
\item{nu.link}{Defines the \code{nu.link}, with "identity"
link as the default for the nu parameter}
\item{tau.link}{Defines the \code{tau.link}, with "identity"
link as the default for the tau parameter}
\item{x,q}{vector of quantiles}
\item{mu}{vector of location parameter values}
\item{sigma}{vector of scale parameter values}
\item{nu}{vector of nu parameter values}
\item{tau}{vector of tau parameter values}
\item{log, log.p}{logical; if TRUE, probabilities p are given as log(p).}
\item{lower.tail}{logical; if TRUE (default), probabilities
are P[X <= x], otherwise, P[X > x]}
\item{p}{vector of probabilities}

\item{n}{number of observations. If \code{length(n) > 1},
the length is taken to be the number required}

}
\details{
Then the probability density function of the BSSN distribution is given by

\deqn{f_Y(y|\mu, \sigma, \nu, \tau)= c[\tau + (y-\nu)^(2)]e^{-\sigma(y-\mu)^(2)}}

for \eqn{-\infty < y < \infty}, where \eqn{c = 2\sigma^(3/2) / \gamma \sqrt\pi},
\eqn{\gamma= 1 + 2 \sigma \theta}, eqn{\theta= \tau + \delta^{2}},
\eqn{\delta= \nu - \mu}. \eqn{-\infty <\mu <\infty} and
\eqn{-\infty < \nu < \infty} are location parameters and
\eqn{\sigma >0} and \eqn{\tau \geq 0 }
denote the scale and bi-modality parameters respectively.
}
\value{
%% ~Describe the value returned
%% If it is a LIST, use
%% \item{comp1 }{Description of ’comp1’}
%% \item{comp2 }{Description of ’comp2’}
%% ...
}
\references{
Hassan, M. Y. and El-Bassiouni M. Y. (2015).
Bimodal skew-symmetric normal distribution,
\emph{Communications in Statistics-Theory and Methods},
\bold{45}, part 5, pp 1527--1541.
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}
\author{Abu Hossain, Bob Rigby and Mikis Stasinopoulos}
\note{
%% ~~further notes~~
}

%% ~Make other sections like Warning with \section{Warning }{....} ~

\seealso{
%% ~~objects to See Also as \code{\link{help}}, ~~~
}
\examples{
op<-par(mfrow=c(3,3))
curve(dBSSN(x, mu=1, sigma=0.1, nu=1, tau=1),-12, 12,

ylab="f(x)", main="BSSN")
curve(dBSSN(x, mu=1, sigma=0.1, nu=1, tau=5),-12, 12,

ylab="f(x)", main="BSSN")
curve(dBSSN(x, mu=1, sigma=0.1, nu=1, tau=10),-12, 12,

ylab="f(x)", main="BSSN")
curve(dBSSN(x, mu=1, sigma=0.1, nu=1, tau=20),-12, 12,

ylab="f(x)", main="BSSN")
curve(dBSSN(x, mu=1, sigma=0.1, nu=0, tau=4),-12, 12,

ylab="f(x)", main="BSSN")
curve(dBSSN(x, mu=-1, sigma=0.1, nu=0, tau=3),-12, 12,

ylab="f(x)", main="BSSN")
curve(dBSSN(x, mu=1, sigma=0.1, nu=2, tau=0),-12, 12,

ylab="f(x)", main="BSSN")
curve(dBSSN(x, mu=-1, sigma=0.1, nu=-2, tau=0),-12, 12,

ylab="f(x)", main="BSSN")
curve(dBSSN(x, mu=-1, sigma=0.1, nu=-3, tau=0.8),-12, 12,

ylab="f(x)", main="BSSN")
par(op)

}
}
% Add one or more standard keywords, see file ’KEYWORDS’ in the
% R documentation directory.
\keyword{ ~kwd1 }% use one of RShowDoc("KEYWORDS")
\keyword{ ~kwd2 }% __ONLY ONE__ keyword per line


	Table of contents
	List of figures
	List of tables
	Nomenclature
	1 Introduction
	1.1 Background and introduction
	1.2 Research motivation
	1.3 GAMLSS framework and proposed contributions
	1.4 Thesis outline 

	2 Review of models for proportion data on [0,1), (0,1] and [0,1]
	2.1 Introduction
	2.2 PW fractional response regression 
	2.3 Tobit model tobin1958estimation
	2.4 Two limit Tobit model rosett1975estimation
	2.5 Censored gamma regression sigrist2010using
	2.6 Inverse Gaussian regression (IGR)
	2.7 Inverse Gaussian regression with beta transformation (IGR-BT) gupton2005dynamic
	2.8 Two-step approach gurtler2013improvements
	2.9 Beta inflated model
	2.9.1 Beta distribution inflated at 0 (BEINF0)
	2.9.2 Beta inflated distribution at 1 (BEINF1)
	2.9.3 Beta inflated distribution at 0 and 1, BEINF(,,,)


	3 Distributions on (0,1)
	3.1 Introduction
	3.1.1 Beta distribution
	3.1.2 Arcsine distribution
	3.1.3 Kumarasawamy distribution
	3.1.4 Generalised beta distribution
	3.1.4.1 Generalised beta type 1 (GB1)
	3.1.4.2 Generalised beta distribution type 3 (G3B)

	3.1.5 Triangular Distribution
	3.1.6 Simplex distribution
	3.1.7 Logit distributions
	3.1.7.1 Logit normal distribution
	3.1.7.2 Logit skew t type 3 distribution

	3.1.8 Truncated distributions
	3.1.8.1  Below truncation
	3.1.8.2 Above truncation
	3.1.8.3 Both truncation



	4 Bimodal skew symmetric normal (BSSN) distribution
	4.1 Introduction
	4.2 Bi-modal skew symmetric normal distribution and its logit transformation
	4.2.1 Maximum likelihood estimation of BSSN

	4.3 R implementation of BSSN
	4.3.0.1 Functions used in R implementation of BSSN
	4.3.1 Arguments
	4.3.2 Functions
	4.3.3 Use of BSSN function


	5 General inflated GAMLSS model on the unit interval
	5.1 Introduction
	5.2 General distribution on (0,1) inflated at 0 and/or 1
	5.3 Model Definition
	5.4 Model components
	5.4.1 Population distribution fY(y|)
	5.4.2 Link function
	5.4.3 The predictor
	5.4.3.1 Parametric terms 
	5.4.3.2 Penalized splines term

	5.4.4 Model estimation
	5.4.5 Local estimation of smoothing parameter 
	5.4.5.1 Local random effect model
	5.4.5.2 Local generalized Akaike information criteron
	5.4.5.3 Local generalised cross validation criteron

	5.4.6 Model Diagnostics
	5.4.6.1 Residuals
	5.4.6.2 Global goodness-of-fit measure

	5.4.7 Inflated logit skew t distribution: An example of an inflated GAMLSS model
	5.4.8 Inflated truncated skew power exponential: An example of an inflated GAMLSS model


	6 Generalized Tobit GAMLSS model
	6.1 Introduction
	6.2 Tobit model
	6.3 Generalized Tobit model for 0y 1
	6.3.1 Generalised Tobit model for 0y <1 and 0 < y 1 

	6.4 Generalized Tobit GAMLSS model
	6.4.1 Likelihood inference
	6.4.2 Residuals

	6.5 Interval censored BSSN distribution: An example of the generalized Tobit GAMLSS model

	7 The GAMLSSinf package in R
	7.1 Distributions on (0,1)
	7.1.1 Explicit distributions on  (0,1)
	7.1.2 Logit distributions on (0, 1) 

	7.2 Truncated distributions on (0,1)
	7.3 Generating inflated distributions on [0,1]
	7.4 Plotting inflated distributions on [0,1]
	7.5 Fitting a distributions on [0,1] 
	7.5.1 The gamlssInf0to1() function
	7.5.2 Simulating data
	7.5.3 Fitting a distributions on [0,1) 
	7.5.4 Fitting a distributions on (0,1] 
	7.5.5 Fitting a distribution on [0,1] 


	8 Analysis of a proportion response variable on (0,1]
	8.1 Introduction
	8.2 Statistical methodology
	8.2.1 LMS centile estimation method and extensions
	8.2.2  General model for centile estimation
	8.2.3 Logit skew student t distribution (logitSST)
	8.2.4 LogitSST distribution inflated at 1
	8.2.5 Generalized Tobit model

	8.3 Data Analysis
	8.3.1 Data and fitted models
	8.3.2 Centile estimation
	8.3.3 Data analysis using two explanatory variables
	8.3.4 Model checking using residual based diagnostics
	8.3.4.1 Worm Plots
	8.3.4.2 Z and Q statistics


	8.4 Conclusion

	9 Application of proposed models to a response variable on [0,1)
	9.1 Introduction
	9.2 Data
	9.3 Inflated at 0 GAMLSS model
	9.4 Generalised Tobit model
	9.5 Model selection 
	9.6 Residual based diagnostics
	9.6.1 Worm plot

	9.7 Fitted centile curves
	9.8 Fitted distributions of Y=(1-AMM) for different values of PA
	9.9 Conclusion

	10 Application on loss given default, a proportion response on [0,1]
	10.1 Introduction
	10.2 Data
	10.3 Models
	10.3.1 Logit distribution
	10.3.2 Logit distribution, inflated at 0 and 1
	10.3.3 Inflated logit distribution with global adjustment

	10.4 Generalized Tobit model
	10.4.1 Inflated truncated censored model
	10.4.2 Model selection
	10.4.3 Residuals of the fitted model
	10.4.4 Fitted distribution

	10.5 Conclusion

	11 Conclusion and Future developments
	11.1 Originality of inflated GAMLSS model
	11.2 Important applications of inflated GAMLSS model
	11.3 Originality of the generalized Tobit GAMLSS model
	11.4 Limitations and future developments
	11.4.1 Future developments


	References
	Appendix A R code for application on lung function data
	Appendix B R code for the application on PASS scheme data
	Appendix C R code for the application on LGD data [0,1]
	Appendix D Box-Cox t distribution
	Appendix E R code for bi modal skew symmetric normal distribution
	Appendix F R code for Spirometric data analysis using two explanatory variables 
	Appendix G Help file for BSSN distribution in R 

