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Abstract

This paper proposes an efficient and automated smart healthcare communication frame-
work that integrates a two-level filtering scheme with a multi-objective Genetic Algorithm
(GA) to enhance the reliability, timeliness, and energy efficiency of Internet of Medical
Things (IoMT) systems. In the first stage, physiological signals collected from heteroge-
neous sensors (e.g., blood pressure, glucose level, ECG, patient movement, and ambient
temperature) were pre-processed using an adaptive least-mean-square (LMS) filter to sup-
press noise and motion artifacts, thereby improving signal quality prior to analysis. In
the second stage, a GA-based optimization engine selects optimal routing paths and trans-
mission parameters by jointly considering end-to-end delay, Signal-to-Noise Ratio (SNR),
energy consumption, and packet loss ratio (PLR). The two-level filtering strategy, i.e., LMS,
ensures that only denoised and high-priority records are forwarded for more processing,
enabling timely delivery for supporting the downstream clinical network by optimizing the
communication. The proposed mechanism is evaluated via extensive simulations involving
30–100 devices and multiple generations and is benchmarked against two existing smart
healthcare schemes. The results demonstrate that the integrated GA and filtering approach
significantly reduces end-to-end delay by 10%, as well as communication latency and
energy consumption, while improving the packet delivery ratio by approximately 15%, as
well as throughput, SNR, and overall Quality of Service (QoS) by up to 98%. These findings
indicate that the proposed framework provides a scalable and intelligent communication
backbone for early disease detection, continuous monitoring, and timely intervention in
smart healthcare environments.

Keywords: smart healthcare; Internet of Medical Things (IoMT); genetic algorithm; adaptive
LMS filter; two-level filtering scheme; wireless medical sensor networks; energy-efficient
routing; Quality of Service (QoS); real-time patient monitoring

1. Introduction
Advances in machine learning (ML), intelligent systems, and deep learning have

enabled a wide range of applications, from efficient information transmission to real-time
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decision making. Artificial Intelligence (AI) is increasingly transforming communication
systems by supporting fast and reliable decision-making, behavioral pattern identification,
delay reduction, and timely delivery of information records [1,2]. In particular, AI has
attracted considerable attention in the healthcare domain, where it is used for patient
health monitoring, therapeutic response modeling, accurate prediction of clinical events,
and rapid decision-making through fast and efficient communication protocols [3].

Extensive research has been carried out in which organizations have adopted new
techniques, methods, and schemes in their respective domains to provide efficient, effec-
tive, and seamless communication or information transmission [4–6]. The integration of
smart systems and intelligent devices with traditional record-based applications not only
enhances communication, but also improves the overall performance of the underlying
network. The healthcare sector is widely recognized as one of the most critical domains for
modernizing traditional approaches to treatment and record management [7,8]. The use
of intelligent systems, ML, and AI techniques can provide a broad set of novel solutions
and approaches for diagnosis, prediction, and decision-making. Furthermore, the manage-
ment of patient records, including the preservation of data integrity and privacy, can be
strengthened through a variety of ML-/AI-based and security-oriented mechanisms [9].

1.1. Motivation and Objective

A large number of schemes and approaches have been proposed by researchers and
practitioners to improve healthcare systems using AI/ML and other intelligent techniques.
Existing work has focused on record management, information security, and the secure
transmission of patient records. In addition, several schemes have been designed for real-
time decision-making and accurate prediction while analyzing and collecting raw data
from intelligent devices.

However, healthcare scenarios involve highly sensitive and confidential data, and the
volume of patient records continues to grow. Handling such a large amount of information
is challenging, and generating reliable predictions and sound decisions in this context is
both crucial and delicate [10,11]. Therefore, there is a clear need for new techniques and
methods that make record transmission, disease prediction, and real-time decision-making
more convenient, robust, and efficient. Moreover, existing GA methods focus on single-
layer optimization that operates statically. However, in the case of a healthcare system
where intelligent devices generate millions of records, the existing methods are not adaptive
to the real-time signaling process. They consider the information statistically and process
the records offline. However, the proposed GA methodology considers the architectural and
conceptual enhancements by adapting the real-time signaling of records from smart devices
in the network. The proposed framework does not perform clinical decision-making, and
instead supports the downstream clinical network by optimizing communication. QoS
means that clinical patient prioritization is implemented at the network level where urgency
data and delay metrics are assigned higher transmission rather than medical diagnosis to
predict the outcome of the framework.

1.2. Contribution

The proposed mechanism integrates an efficient communication and storage frame-
work for medical records by combining a Genetic Algorithm (GA) with a Filtration Mech-
anism (FM) [12,13] using AODV routing protocols. IoMT challenges, such as unreliable
links and real-time information transmission, are managed and handled using filtering and
GA-based schemes. The GA is employed to optimize dynamic parameter generation and
to select efficient routing paths, whereas the Filtration Mechanism is used to reduce noise
and communication delay, thereby enabling smoother information transmission in the
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network. The general flow of the proposed framework is illustrated in Figure 1. The main
contributions of this work are summarized as follows:

• A GA-based optimization module is designed to enhance the information analysis
process by filtering out less-significant parameters based on their behavior and contri-
bution to the network.

• A Filtration Mechanism is incorporated to improve communication efficiency by re-
ducing noise and communication delay while simultaneously analyzing the legitimacy
and behavior of each communicating device.

• The proposed mechanism is extensively evaluated against several performance metrics,
including the packet delivery ratio, Quality of Service (QoS), throughput, Signal-to-
Noise Ratio (SNR), energy consumption, and communication delay.

Figure 1. General flow of the proposed framework.

Furthermore, in the proposed mechanism, the filter lengths such as 8–32 taps are
selected to balance the computational constraints along with noise suppression rather
than diagnosing the signal morphology. Clinical validation, along with signal-specific
tuning, is identified as future direction of this paper. The remainder of this paper is
organized as follows. Section 2 reviews the existing schemes for efficient information
transmission and storage in smart healthcare environments. Section 3 details the proposed
methodology, including the pseudo-code and corresponding flowchart. Section 4 presents
the validation and verification of the proposed mechanism against several performance
metrics in comparison with baseline methods. Finally, Section 5 concludes this paper and
outlines the potential directions for future work.

2. Related Work
This section reviews the existing schemes and approaches for efficient and secure

healthcare monitoring and patient record management that have been proposed by
various researchers.

Ezz et al. [14] proposed a transparent and secure information transmission framework
that integrates smart contracts with zero-knowledge proofs. The authors focused on
promoting ethical AI in healthcare by governing information flows within the network,
and validated their scheme in terms of patient privacy and data security. Su et al. [15]
introduced a high-fidelity radar dataset designed to preserve patient privacy during data
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sharing and storage. Their work explicitly incorporates occlusion scenarios to study
and mitigate data leakage, thereby improving the applicability of radar-based sensing in
real-world healthcare environments. The authors monitored the personal identity and
behavioral patterns of patients in critical care rooms. Silva-Aravena et al. [16] proposed a
surgical prioritization framework that combines reinforcement learning with digital twins,
demonstrating substantial improvements over traditional scheduling strategies. Their
results indicate reduced waiting time, lower surgical risk, and improved utilization of
healthcare resources.

Pradhan et al. [17] presented an AI-assisted healthcare system leveraging 5G tech-
nology to enhance communication and information transmission in the network. They
examined how AI and 5G can be jointly utilized in intelligent healthcare systems and
showed improvements in average communication time as well as reductions in computa-
tional cost when adopting smart healthcare techniques. Alruwaili et al. [18] integrated AI
with transparent technologies such as blockchain and deep convolutional neural networks
(CNNs) to enable a secure smart healthcare system. The authors investigated the security
risks associated with transmitting information over the network and evaluated the frame-
work using benchmark medical datasets. They also highlighted the use of Jellyfish search
optimization to address multiple optimization concerns [19]. Akter et al. [20] proposed a
federated-learning-based privacy-preserving mechanism using edge intelligence for smart
healthcare systems. They provided a theoretical convergence bound for federated learn-
ing and validated their approach on recent benchmark datasets such as STL-10, MNIST,
CIFAR-10, and COVID-19 chest X-ray images.

Siddiqui et al. [21] developed a Markov-process-based queuing model for smart
healthcare mechanisms. Their approach aims to enhance the overall Quality of Service in
healthcare by improving patient care workflows and disease diagnosis processes, and they
assessed the use of blockchain systems in the context of smart healthcare. Mishra and
Singh [22] discussed the significance of integrating smart technologies for planning and
managing medical care facilities to provide better patient care. They also outlined several
challenges and opportunities in achieving higher standards associated with Healthcare 5.0.
Patil et al. [23] proposed a blockchain-based framework for preventing cyberattacks while
managing medical records in smart healthcare systems. The authors evaluated their
mechanism in terms of response time, demonstrating the effectiveness of Hyperledger-
based smart contracts when compared with several existing approaches and mechanisms
as summarised in Table 1.

Table 1. Summary of related works and limitations.

Author(s) Description Limitation

Ezz et al. [14]
Proposed a transparent and secure
information transmission integrating smart
contracts and zero-knowledge proofs.

Work is limited and is only targeted at ethical
AI in healthcare.

Su et al. [15] Proposed a high-fidelity radar dataset for
ensuring the privacy of patients.

The complexity and increased cost while
ensuring the security in the network.

Silva-Aravena
et al. [16]

Proposed a surgical prioritization scheme
while integrating reinforcement learning and
digital twins.

The integration of AI and digital twins may
enhance the storage overhead.

Pradhan et al. [17]
Proposed an AI-assisted healthcare system
using 5G technology for improving the
communication and transmission.

There is a delay while transmitting the
information in the network.

Alruwaili et al. [18] Integrated the AI and transparent techniques
such as blockchain and deep CNN.

The block verification delays the
communication process.
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Table 1. Cont.

Author(s) Description Limitation

Akter et al. [20]
Generated a federated learning-based privacy
mechanism using edge intelligence for smart
healthcare systems.

The proposed mechanism enhanced the
storage overhead in the network.

Siddiqui et al. [21]
Proposed a Markov process model using a
queuing system for smart healthcare
mechanisms.

The communication process may delay the
transmission process.

Mishra and
Singh [22]

Discussed the significance of integrating
smart technology for managing and planning.

The integration of processes enhances the
complexity and cost of communication.

Patil et al. [23]
Proposed a blockchain-based framework for
preventing cyberattacks while managing
the records.

The block verification delay increases the
communication delay in the network.

Our Work Proposed GA and filtering scheme to process
the record in real-time signaling.

Provides real-time adaptation of records with
more accuracy.

In addition, Pang [24] and Singh et al. [25] have proposed several GA-based schemes
and approaches in order to optimize and ensure an adaptive communication mechanism in
the network. The existing GA mechanisms provided a significant communication of records
specifically for the static behavior of records. However, the real-time signalizing of informa-
tion that can be adaptive in nature needs to be focused on the case of healthcare records.

Several existing researchers/scientists have proposed efficient and effective smart
healthcare approaches that ensure secure information transmission and data storage [26,27].
Several schemes have been proposed to integrate intelligent and smart healthcare into
traditional data analysis and medical record diagnosis. It is also necessary to propose an
efficient way to process and analyze records in healthcare systems. In addition, the existing
GA mechanisms provided a significant communication of records specifically for the static
behavior of records; however, the real-time signalizing of information that can be adaptive
in nature needs to be focused on the case of healthcare record. The proposed mechanism is
defined as two-level filtering: LMS adaptation and GA-based decision filtering. The level-1
filtering performs denoising and equalization of IoMT devices by continuously adapting
the sample-by-sample weights. The level-2 filtering applies the GA decision filtering
level, which executes periodic routing and channel configuration through an evolutionary
selection process. The LMS converges the selected GA metrics while GA converges the
bounded space without disturbing the dynamics of LMS. Moreover, the proposed algorithm
terminates the maximum generation count in order to improve the fitness function.

3. Proposed Approach
The aim of this manuscript is to propose an efficient and effective smart healthcare

mechanism that integrates a genetic algorithm to optimize the dynamic optimization and
filtering algorithm (LMS) for noise reduction. As intelligent devices generate tons of
information in every hour, it is necessary to filter the significant information from the
received data for providing an efficient transmission of information. A genetic algorithm
is used to filter or select the routing parameters for filtering out the transmission power
and energy consumption of each communicating device. In addition, the Filtration Mech-
anism adapt the wireless fluctuating conditions while reducing the noise distortion and
communication delay.
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Figure 2 presents the workflow of the proposed mechanism integrating Filtration
Mechanism and GA, consisting of several components for smooth data transmission and
communication for a smart healthcare network.

Figure 2. Proposed system architecture.

• Data Collection and Acquisition: The information is collected from sensors placed in
the patient room, including signals such as BP, glucose, ECG, patient movement, room
temperature, etc.

• Data Pre-processing: The raw information collected from the sensors is passed through
an LMS filter to remove noise, motion artifacts, and interference.

• GA optimization: The GA selects the optimal routing path by measuring the trans-
mission power, nature, behavior, channel allocation, and minimum delay required to
process the record.

• Integrated Filtration Mechanism and GA: The GA processes only those records re-
ceived from the Filtration Mechanism after noise reduction and with less communi-
cation delay devices/sensors in order to optimize the communication process after
each epoch.

• Data transmission: The optimized record is transmitted by the devices to their edge
servers by performing real-time data analysis.

• Looping: The network conditions are continuously recorded by updating the channel
noise and the filtration process of each record.

The LMS adaptation rule w(n + 1) for optimizing the information by reducing the
noise is processed as

w(n + 1) = w(n) +ℜ∗es(n)x(n) (1)

where, w(n) is the filter weight vector, ℜ∗ is the optimized route, es is the error signal,
and x(n) is the input vector received from the sensors. In Equation (1), the desired signal
represents the estimate or local reference of the physiological model obtained using low
pass reference model. The error signal is analyzed as difference between the filter output
and the computed reference that directly quantifies the distortion and residual noise
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filtering. The chosen filter lengths detail the trade-off between energy constraints and noise
suppression of wearable devices. In addition, the step size is used to ensure mean-square
stability according to LMS theory with the range of 0–1.

GA function (F) is computed as

F = α1(1/D) + α2(SNR) + α3(1/E) + α4(1/PLR) (2)

where D is delay, SNR is Signal-to-Noise Ratio, E stands for energy, and PLR stands for
packet loss ratio. In the GA fitness function, the values of α1, α2, α3, α4 are chosen
through domain prioritization integrating an empirical tuning process, considering defined
as 0.35, 0.30, 0.20, and 0.15 values. In addition, the fitness function weights are context
dependent reflecting deployments priorities such as energy constraints and delay sensitivity.
The weights can be re-tuned per application scenario using policy-driven or sensitivity
analysis configurations. In addition, the population size is 40, with crossover and mutation
probabilities of 0.8 and 0.03, respectively. A real-valued representation is defined by
computing the routing path index, channel allocation index, and LMS step size. In addition,
a 10 convergence threshold is defined, ensuring bounded and convergent computational
cost. The fitness weights α1 to α4 are determined through a two-step process: (1) domain
priorities that are used to define a reasonable weight range of smart healthcare, and (2) grid-
based sensitivity analyses that are performed to determine a weight combination providing
balanced and stable convergence performance. The selected weight decision-making
method is used to fix and report all the experimental results to ensure reproducibility
and transparency.

The pseudo code of the above integrated mechanism is presented in Algorithm 1.

Algorithm 1 Integrated Filtration Mechanism and GA for smart healthcare communication
in the network
Require: Devices as D = {d1, d2, . . . dn}, signals x(n), GA parameters as p, routing path,

Transmission power and fitness weights w = α1 . . . α4
Ensure: Efficient and clean signal of information to the edge

1: Deploy the Filtration Mechanism with default weights as w0
2: The GA initialized the population, i.e., 30–50 chromosomes
3: Random generation multi-path routing is used to transmit the data
4: Tournament selection operator is used
5: Gmax = 100 as stopping criteria and top 1–2 chromosomes as best solution extraction
6: for all do i = 1 device in Population size
7: Generate chromosome ci as routing, Ptx as packet transmission, and pm as mutation
8: Estimate the fitness F(ci) as

F(ci) = α1(1/D) + α2(SNR) + α3(1/E) + α4(1/PLR) (3)

9: Apply the GA by choosing the probability of mutation, crossover, and repair by
evaluating the F(child)

10: Select the best chromosome for the final population
11: end for

The λ will be exclusively reserved for LMS step size and will remain consistent with
standard filtering theory. In addition, the optimized routing decision is denoted by ℜ∗

and mutation rate is denoted by pm. The GA distribution of output, along with Filtration
Mechanism adaptation, is presented in Algorithm 2.

On a cold start, the GA population is initialized using precomputed routing paths
such as k-shortest with channel parameter and transmission power drawn uniformly
without exploration of delays. In addition, the LMS weights were initialized with small
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random values that are refined within first few epochs. The GA is executed on gateway
at coarse time scale with moderate parameters, resulting in a computational complexity
of O(P.G.F), where F is fitness evaluation, P denotes GA population size, and G denotes
number of GA generations. The proposed mechanism is defined as two-level filtering
operating at LMS adaptation and GA-based decision filtering. The level 1 filtering performs
denoising and equalization of IoMT devices by continuously adapting the sample-by-
sample weights. Moreover, the level 2 filtering applies the GA decision filtering level that
executes the periodic routing and channel configuration through an evolutionary selection
process. The LMS covers the selected GA metrics while GA converges the bounded space
without disturbing the dynamics of LMS. The proposed algorithm terminates the maximum
generation count in order to improve the fitness function. The overall complexity of the
proposed solution is O(PGA) for GA and O(L)/sample for LMS in order to confirm the
computational feasibility of the record.

Algorithm 2 Distribution and Adaptation of GA and LMS outputs

Require: Devices as D = {d1, d2, . . . dn}, signals x(n), GA parameters as ℜ∗, routing path,
Transmission power and fitness weights w = α1 . . . α4

Ensure: an Efficient and clean signal of information to the edge
1: Devices send the best chromosome by selecting the optimal routing path to the IoMT

device as:
GA output : Device(RT, Tx,ℜ∗, w0) (4)

where, RT is the routing table, Tx is the transmission time, w0 is the weight and f t
filtered device

2: Filtration process adopts the sample paths running on each device d as:

Y(n) = w(n)Tx(n) (5)

3: Further error rate is defined as:

e(n) = d(n)− y(n) (6)

4: Filtration adaptation rule is applied as:

w(n + 1) = w(n) +ℜ∗es(n)x(n) (7)

5: for all do g = 1 to Gmax
6: Select, crossover, mutate and find the fitness evaluation
7: Update routing table and transmission power for all
8: compute PDR, SNR, Energy consumption during each epoch
9: if Epoch length elapsed, use logged statistics for next GA run

10: end for

4. Performance Analysis
The proposed approach is validated against the existing baseline approaches over

the GA and Filtration Mechanism approaches. While performing the implementation,
the chromosomes are represented as a mixture of integer genes as routing path, channel
ID, transmission power, and initial weights. The fitness estimation is computed as speed,
an analytical estimator using path statistics and probe packet generation. In addition,
constraints are handled as a penalty function for infeasible chromosomes exceeding the
power budget. For validating the proposed approach, the population size is considered as
30–100 devices, generation is defined as GenMax being between 50 and 200, the crossover
rate ci is considered to be between 0.7 and 0.9, and the filtration length is defined as
being between 8 and 32. The proposed mechanism is simulated over the NS-3 network
simulator with a random mesh topology where 50 IoMT nodes are uniformly deployed
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over a 100 × 100 m area. A single edge server is placed at the center to aggregate the
health data following wireless communication as the IEEE 802.15.6 standard. Each device
generates periodic traffic at the rate of 2 packet/sec with a size of 256 bytes. The battery
capacity of each device is defined as 1000 mAh with an initial energy of 2 J, transmission
range of 0/5–10 mW. In addition, 20 independent simulation runs are defined per scenario
at random speeds to report the results across runs. The device failures and topology
changes are identified using link-quality missing or degradation and logged at the gateways.
The GA is then re-triggered in coming epoch to evaluate the feasible routing path without
interrupting the LMS filtering.

The baseline approaches target the same objective and optimize communication, con-
sidering GA-based and LMS routing without defining static route or filtering objectives.
The proposed mechanism considers the inconsistencies and ambiguities in order to relate
the proposed mechanism in comparison to the existing approach. The baseline mechanism
discusses the low-delay communication and architectural aspects of the network. The sim-
ulation environment is described in NS-3, where the network topology, traffic model, node
density, and channel model are considered to target the communication process.

4.1. Baseline Approaches

The proposed mechanism is validated against several performance-based metrics
such as packet delivery ratio, Quality of Service (QoS), throughput, Signal to Noise Ratio
(SNR), energy consumption, and communication delay against two considered existing
approaches, BA1 and BA2. Alruwaili et al. [18] have integrated AI and transparent tech-
niques, such as blockchain and deep CNNs, to enable a smart healthcare system, which
is considered the Baseline Approach 1 (BA1). The authors have examined the security
risks while communicating the information over the network along with executing the
benchmark medical datasets. The authors highlighted the Jellyfish search optimization by
measuring several concerns, whereas Mishra and Singh [22], who considered the Baseline
Approach2 (BA2), discussed the significance of integrating smart technology to manage
and plan medical care facilities and enhance patient care. The authors discussed several
challenges along with achieving the higher standards of healthcare 5.0. Both approaches are
considered in comparison to the Proposed Approach (PA) validation and verification over
several parameters. The baseline approaches are simulated and compared against their
architectural scope. BA1, which emphasizes blockchain communication, the energy-aware
routing logic, along with control overhead, are modeled, while BA2, the adaptive routing
mechanism using data prioritization are approximated. The performance metrics are repro-
duced directly, aligning with original papers by assuming the unavailable parameters to
ensure fairness in the program.

4.2. Evaluating Metrics

The performance metrics are considered, as discussed below, for the simulation and
experimentation of the proposed and existing approaches. In this proposed mechanism,
the GA employs a hybrid constraint-aware strategy presenting heterogeneous optimization
metrics in a single chromosome. The routing path and channel identifiers are encoded
using integer-valued genes referring gene reference pre-computed feasible path through
the k-shortest path set. In addition, transmission power and the LMS filter are encoded
with predefined bounds. The feasibility of the proposed methodology is preserved using
gene-wise bounded operators by validating the invalid routing paths, resulting in the
offspring remaining the valid configuration.
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End-to-End Delay: Defined as the average latency time required per successfully
receiving of packets by the device.

End − to − EndDelay :
1
N

Ns

∑
i=1

(tr, i − ts, i) (8)

where tr, i and ts, i are defined as receiving and sending information i in the network and
Ns is defined as the number of successful receptions of packets.

Packet Delivery Ratio: Defined as the ratio of the number of packets received versus
the number of packets sent by the device d.

PDR =
PNr

PNs
(9)

Throughput: Defined as the useful data successfully received by the device d per unit
of time.

Th =
∑Nr

i=1 Payloadbits
Tot

(10)

where Tot stands for observation time.
Energy Consumption: Defined as the amount of energy required to transmit informa-

tion from one device to another.

EC = ∑
k

Pt,k × tt,k (11)

4.3. Results and Discussion

This section presents the graphs generated over several discussed parameters in
comparison of the existing and proposed approaches. In addition, the authors assert that
the BA1 and BA2 addresses complementary, narrower objectives without focusing on state-
of-the-practice routing protocols, although both approaches were included to highlight the
difference from the recent healthcare framework, rather than serve as canonical routing.
As the problem statement, we have acknowledged that comparison with the standard IoMT
routing scheme would strengthen the evaluation and is planned as part of future work.
In addition, in this manuscript, BA1, and BA2 are repositioned as enhanced contextual
reference frameworks rather than primary routing benchmarks. Further, this enhancement
allows us to clearly demonstrate the performance gains of the proposed GA-LMS approach.

Figure 3 presents the end-to-end delay graph, which refers to the amount of time
required to receive the packet by a device d in the network. The delay in the case of the
proposed mechanism is very small compared to existing approaches, as the proposed
mechanism reduces the noise and also filters the unnecessary parameters required to
analyze the behavior of a communicating device in the network.

Furthermore, Figure 4 presents the packet delivery ratio, which is the ratio of the
number of packets received to the number of packets sent. The packet delivery ratio of
the proposed mechanism is better compared to existing approaches, as, in the case of the
proposed mechanism, we applied the Filtration Mechanism, which filters and selects the
best routing path available to receive and send the packets.

Figure 5 presents the throughput. The proposed mechanism outperforms the existing
approaches because it filters out the noise and unnecessary parameters while transmitting
and sending the records in the network. The optimal selection of parameters chooses the
best-suited path for the transmission of packets in the network.
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Figure 3. End-to-end delay versus run time for baseline approaches (BA1, BA2) and proposed
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Figure 4. Packet delivery ratio versus number of devices for baseline approaches (BA1, BA2) and
proposed approach (PA).
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Figure 5. Throughput versus number of devices for baseline approaches (BA1, BA2) and PA.

Figures 6 and 7 present the QoS and SNR of the proposed mechanism over ten run
cycles, showing a continuous improvement in quality while sending the records and noise
reduction because of the involvement of the filtration mechanism.

Furthermore, Figure 8 presents the energy consumption of the proposed mechanism
in comparison of existing approaches. The integration of Filtration Mechanism and GA
an efficient and smooth transmission of information while collecting the raw data from
intelligent devices.
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Figure 6. SNR ratio versus run cycle for the proposed approach.
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Figure 7. Quality of Service versus run cycle for the proposed approach.
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Figure 8. Energy consumption versus run time for baseline approaches (BA1, BA2) and the proposed
approach (PA).

In addition, Figure 9 presents the communication delay while transmitting the in-
formation among devices. The involvement of ideal behavioral devices in the network
provides less communication delay compared to devices that cannot be analyzed at the
initial stage. The current analysis of the proposed mechanism is confined to controlled
simulation scenarios predefining traffic and channel variability. The proposed framework is
designed to handle disturbances by identifying rapid adaptation to signal anomalies using
LMS and optimizing responses using a GA algorithm. The algorithms are validated using
dynamic node leaving/joining, physiological dataset, abrupt link-quality, and testbed
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deployment in healthcare environments. In addition, the sensor data is assigned with
priority tags such as routine, which are critical based upon the threshold-based anomaly
detection. The GA incorporate priority-aware delay weights while MAC layer uses priority
queues for forwarding expenditure.
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Figure 9. Communication delay versus run time for baseline approaches (BA1, BA2) and the proposed
approach (PA).

4.4. Ablation Analysis

This section, Ablation Analysis, has been added to the updated version of this
manuscript to quantify the combined and separated contributions of the proposed com-
ponents. LMS alone improves the signal quality by approximately 8–10% with a 5–7%
reduction in packet loss. In addition, GA alone optimizes the network decisions, reducing
energy consumption and end-to-end delay by 10–13% and 12–15%, respectively. In addi-
tion, the combined GA-LMS framework achieves an 18–22% reduction in delay, 15–18%
savings in energy, and a 20% improvement in SNR, which are further added in Table 2.

Table 2. Summary of ablation analysis results.

Approach Delay Reduction Energy Saving SNR PDR

LMS 1–3 2–4 (minor) 8–10 5–7
GA 12–15 10–13 2–4 (marginal) 6–8
GA-LMS 18–22 15–18 approx 20 approx 15

4.5. Summary

The integration of the GA and Filtration Mechanism enhanced communication effi-
ciency in the smart healthcare system by optimizing routing paths, network conditions,
and transmission power, and by reducing noise during information transmission. The hy-
brid proposal ensures less delay, efficient throughput, SNR ratio, and energy consumption,
and a better packet delivery ratio in comparison to conventional approaches. The proposed
mechanism offers an intelligent and robust communication framework while collecting
the raw information of the patient by continuous monitoring, resource constraint, and
emergency alerts. Furthermore, the authors acknowledge that the present study is based
entirely on simulation in NS-3 environments. However, the simulation allows for the
repeatable, controlled evaluation and analysis of the optimization and communication be-
havior of devices without capturing all the practical constraints of validating the GA-LMS
framework during clinical deployments. The real-world IoMT testbed implementation,
experimentation, and validation using a physiological dataset, along with interoperability
with regulatory requirements and hospital IT infrastructure, are considered to be the future
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direction of this paper. The simulation study will be extended to include an event-driven,
busty traffic scenario by emulating the anomaly alerts where devices generate high-priority
packets upon detection. The scenario evaluates the framework alertness under sudden load
and ability to manage high packet delivery and low delay for urgent data. The resulting
performance will be reported and compared against the baseline scheme to determine the
robustness and feasibility under real healthcare traffic.

5. Robustness and Sensitivity Analysis
In this section, we investigate the robustness of the proposed GA and two-level

filtering framework with respect to key algorithmic and network parameters. Specifically,
we study the sensitivity of the main performance indicators (end-to-end delay, packet
delivery ratio, throughput, SNR, and energy consumption) to the GA hyperparameter, LMS
filter configuration, and network size.

5.1. Sensitivity to the GA Hyperparameter

The GA configuration strongly influences convergence speed and the quality of the
selected routing solutions. We varied the population size between 30 and 100 individuals
and the maximum number of generations, GenMax, between 50 and 200, while keeping the
crossover and mutation rates within the ranges used in Section 4. The results show that,
although the absolute values of delay and energy consumption change slightly with the
GA configuration, the proposed framework consistently outperforms EA1 and EA2 across
all tested settings. This indicates that the performance gains are not limited to a narrow
hyperparameter configuration, but are robust to reasonable changes in the GA setup.

5.2. Effect of LMS Filter Parameters

To analyze the impact of the filtration stage, we varied the LMS filter length between
8, 16, and 32 taps and adjusted the step size µ within a stable range. Increasing the filter
length improves the SNR and QoS at the cost of a modest increase in computational
complexity per sensor node. Importantly, even with the shortest filter length, the two-level
filtration scheme significantly improves PDR and reduces end-to-end delay compared to
baseline approaches, confirming that the filtration stage is a key contributor to the observed
performance improvements.

5.3. Scalability with Network Size

Finally, we examined the scalability of the proposed mechanism by increasing the
number of IoMT devices from 50 to 150 under higher traffic loads. While all schemes
experience an increase in delay and a slight degradation in PDR as the network becomes
denser, the GA and filtration-based framework exhibits a slower performance degradation
than EA1 and EA2. This behavior can be attributed to the adaptive selection of routing
paths based on delay, SNR, energy, and packet loss ratio. These findings demonstrate that
the proposed system can support larger smart healthcare deployments while maintaining
acceptable QoS levels.

6. Conclusions
This work presents an automated smart healthcare communication mechanism that

combines a two-level filtering scheme with a multi-objective Genetic Algorithm to address
key challenges in IoMT-based healthcare networks, namely noisy physiological signals,
constrained energy resources and stringent latency requirements. At the sensing layer,
an adaptive LMS-based Filtration Mechanism was employed to mitigate channel noise and
motion artifacts, thereby improving the quality of physiological signals before transmission.
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At the network layer, the GA was used to optimize routing paths and transmission pa-
rameters by simultaneously considering delay, SNR, energy consumption, and packet loss,
resulting in more reliable and resource-aware data delivery. The integrated framework was
validated through simulation and compared against two state-of-the-art smart healthcare
approaches. The proposed mechanism consistently achieved lower end-to-end delay and
communication latency, higher packet delivery ratio and throughput, improved SNR and
QoS, and reduced energy consumption. These improvements stem from the joint effect of
denoising at the signal level and selective, GA-driven routing at the network level, which
together ensure that legitimate, high-quality medical records are transmitted through the
most suitable paths. From a practical perspective, the proposed system can support con-
tinuous patient monitoring, early detection of anomalies, and prioritization of high-risk
cases in smart healthcare environments, particularly where many heterogeneous devices
generate large volumes of data. By reducing false alarms and communication overhead,
the framework has the potential to improve responsiveness and reliability in enabling
timely delivery for clinical decision support systems.

Future work will focus on extending the proposed framework with end-to-end se-
curity and privacy mechanisms, such as lightweight authentication, access control and
privacy-preserving data sharing, to better protect sensitive medical records. In addition,
validating the approach on real-world clinical datasets and deploying it on testbed IoMT
platforms will be important to assess scalability, interoperability and robustness under
realistic operating conditions, and to integrate the mechanism more tightly with existing
healthcare information systems. In future work, the proposed mechanism will be val-
idated on a small-scale testbed using wearable devices and real physical datasets, such
as the MIT-BIH ECG database. In addition, the clinical partners collaborate to assess the
robustness, interoperability, and practical feasibility in a real healthcare environment.

Author Contributions: Conceptualization, methodology, G.R., H.S., C.A.K., R.D. and M.C.G.; soft-
ware, validation, G.R., H.S., R.D. and M.C.G.; formal analysis, investigation, resources, data curation,
writing—original draft preparation, writing—review and editing,visualization, supervision, project
administration, G.R., H.S., C.A.K., R.D. and M.C.G.; funding acquisition, G.R. and M.C.G. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Mazhar, T.; Irfan, H.M.; Haq, I.; Ullah, I.; Ashraf, M.; Shloul, T.A.; Ghadi, Y.Y.; Imran; Elkamchouchi, D.H. Analysis of challenges

and solutions of IoT in smart grids using AI and machine learning techniques: A review. Electronics 2023, 12, 242. [CrossRef]
2. Mondal, R.S.; Akter, L.; Bhuiyan, M.N.A. Integrating AI and ML techniques in modern microbiology. Appl. IT Eng. 2025, 3, 1–10.

[CrossRef]
3. Farzaan, M.A.; Ghanem, M.C.; El-Hajjar, A.; Ratnayake, D.N. AI-powered system for an efficient and effective cyber incidents

detection and response in cloud environments. IEEE Trans. Mach. Learn. Commun. Netw. 2025, 3, 623–643. [CrossRef]
4. Shaheen, M.Y. Applications of Artificial Intelligence (AI) in healthcare: A review. ScienceOpen Prepr. 2021. [CrossRef]
5. Valavanidis, A. Artificial Intelligence (AI) Applications; Department of Chemistry, National and Kapodistrian University of Athens:

Athens, Greece , 2023.
6. Konya, A.; Nematzadeh, P. Recent applications of AI to environmental disciplines: A review. Sci. Total Environ. 2024, 906, 167705.

[CrossRef] [PubMed]

https://doi.org/10.3390/digital6010010

http://dx.doi.org/10.3390/electronics12010242
http://dx.doi.org/10.25163/engineering.3110323
http://dx.doi.org/10.1109/TMLCN.2025.3564912
http://dx.doi.org/10.14293/S2199-1006.1.SOR-.PPVRY8K.v1
http://dx.doi.org/10.1016/j.scitotenv.2023.167705
http://www.ncbi.nlm.nih.gov/pubmed/37820816
https://doi.org/10.3390/digital6010010


Digital 2026, 6, 10 16 of 16

7. Han, L.; Liu, J.; Evans, R.; Song, Y.; Ma, J. Factors influencing the adoption of health information standards in health care
organisations: A systematic review based on best fit framework synthesis. JMIR Med. Inform. 2020, 8, e17334. [CrossRef]

8. Khanijahani, A.; Iezadi, S.; Dudley, S.; Goettler, M.; Kroetsch, P.; Wise, J. Organisational, professional, and patient characteristics
associated with artificial intelligence adoption in healthcare: A systematic review. Health Policy Technol. 2022, 11, 100602.
[CrossRef]

9. Vadisetty, R.; Polamarasetti, A. AI/Decision ML-Driven Support Clinical and Medical Imagining. In Sustainable Healthcare Systems
in Africa; CRC Press: Boca Raton, FL, USA, 2025; p. 154 .

10. Sivaprasad Yerneni, K.; Ravi Teja, A.; Sri Harsha, K.; Naresh Kiran Kumar Reddy, Y. Towards Proactive Cloud Security: A Survey
on ML and Deep Learning-Based Intrusion Detection Systems. J. Contemp. Educ. Theory Artif. Intell. JCETAI-116 2025, 4, 100116.

11. Prasad, T.V.K.P.; Sujatha, G.; Satish, T.; Rao, N.B. Protection of Sensitive Information Utilizing AutoML and Merkel Tree based on
AONT-EHR. In Algorithms in Advanced Artificial Intelligence; CRC Press: Boca Raton, FL, USA, 2025; pp. 23–29.

12. Sharma, S.; Kumar, V. Application of genetic algorithms in healthcare: A review. In Next Generation Healthcare Informatics; Springer:
Singapore , 2022; pp. 75–86.

13. Mirza, S.S.; Ur Rahman, M.Z. Efficient adaptive filtering techniques for thoracic electrical bio-impedance analysis in health care
systems. J. Med. Imaging Health Inform. 2017, 7, 1126–1138. [CrossRef]

14. Ezz, M.; Alaerjan, A.S.; Mostafa, A.M. Ethical AI in Healthcare: Integrating Zero-Knowledge Proofs and Smart Contracts for
Transparent Data Governance. Bioengineering 2025, 12, 1236. [CrossRef]

15. Su, Y.; Hou, H.; Lan, H.; Ma, C.Z.H. A High-Fidelity mmWave Radar Dataset for Privacy-Sensitive Human Pose Estimation.
Bioengineering 2025, 12, 891. [CrossRef] [PubMed]

16. Silva-Aravena, F.; Morales, J.; Jayabalan, M. e-Health strategy for surgical prioritization: A methodology based on Digital Twins
and reinforcement learning. Bioengineering 2025, 12, 605. [CrossRef]

17. Pradhan, B.; Das, S.; Roy, D.S.; Routray, S.; Benedetto, F.; Jhaveri, R.H. An AI-assisted smart healthcare system using 5G
communication. IEEE Access 2023, 11, 108339–108355. [CrossRef]

18. Alruwaili, F.F.; Alabduallah, B.; Alqahtani, H.; Salama, A.S.; Mohammed, G.P.; Alneil, A.A. Blockchain enabled smart healthcare
system using jellyfish search optimisation with dual-pathway deep convolutional neural network. IEEE Access 2023, 11,
87583–87591. [CrossRef]

19. Basnet, A.S.; Ghanem, M.C.; Dunsin, D.; Kheddar, H.; Sowinski-Mydlarz, W. Advanced persistent threats (APT) attribution using
deep reinforcement learning. Digit. Threat. Res. Pract. 2025, 6, 14. [CrossRef]

20. Akter, M.; Moustafa, N.; Lynar, T.; Razzak, I. Edge intelligence: Federated learning-based privacy protection framework for smart
healthcare systems. IEEE J. Biomed. Health Inform. 2022, 26, 5805–5816. [CrossRef]

21. Siddiqui, S.; Fatima, S.; Ali, A.; Gupta, S.K.; Singh, H.K.; Kim, S. Modelling of queuing systems using blockchain based on Markov
process for smart healthcare systems. Sci. Rep. 2025, 15, 17248. [CrossRef]

22. Mishra, P.; Singh, G. Healthcare 5.0: Smart and Connected Healthcare Systems for Sustainable Smart Cities. In Sustainable Smart
Cities 2.0; Springer: Cham, Switzerland, 2025; pp. 251–289.

23. Patil, S.M.; Dakhare, B.S.; Satre, S.M.; Pawar, S.D. Blockchain-based privacy preservation framework for preventing cyberattacks
in smart healthcare big data management systems. Multimed. Tools Appl. 2025, 84, 25547–25566. [CrossRef]

24. Pang, X.; Ge, Y.F.; Wang, K.; Traina, A.J.; Wang, H. Patient assignment optimisation in cloud healthcare systems: A distributed
genetic algorithm. Health Inf. Sci. Syst. 2023, 11, 30. [CrossRef]

25. Singh, S.; Nandan, A.S.; Malik, A.; Kumar, R.; Awasthi, L.K.; Kumar, N. A GA-based sustainable and secure green data
communication method using IoT-enabled WSN in healthcare. IEEE Internet Things J. 2021, 9, 7481–7490. [CrossRef]

26. Wang, X.; Hu, J.; Lin, H.; Liu, W.; Moon, H.; Piran, M.J. Federated learning-empowered disease diagnosis mechanism in the
internet of medical things: From the privacy-preservation perspective. IEEE Trans. Ind. Inform. 2022, 19, 7905–7913. [CrossRef]

27. Ge, Y.; Xu, L.; Wang, X.; Que, Y.; Piran, M.J. A novel framework for multimodal brain tumor detection with scarce labels. IEEE J.
Biomed. Health Inform. 2024, 29, 5368–5380. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/digital6010010

http://dx.doi.org/10.2196/17334
http://dx.doi.org/10.1016/j.hlpt.2022.100602
http://dx.doi.org/10.1166/jmihi.2017.2211
http://dx.doi.org/10.3390/bioengineering12111236
http://dx.doi.org/10.3390/bioengineering12080891
http://www.ncbi.nlm.nih.gov/pubmed/40868404
http://dx.doi.org/10.3390/bioengineering12060605
http://dx.doi.org/10.1109/ACCESS.2023.3317174
http://dx.doi.org/10.1109/ACCESS.2023.3304269
http://dx.doi.org/10.1145/3736654
http://dx.doi.org/10.1109/JBHI.2022.3192648
http://dx.doi.org/10.1038/s41598-025-01652-5
http://dx.doi.org/10.1007/s11042-024-20109-x
http://dx.doi.org/10.1007/s13755-023-00230-1
http://dx.doi.org/10.1109/JIOT.2021.3108875
http://dx.doi.org/10.1109/TII.2022.3210597
http://dx.doi.org/10.1109/JBHI.2024.3467343
https://doi.org/10.3390/digital6010010

	Introduction
	Motivation and Objective
	Contribution

	Related Work
	Proposed Approach
	Performance Analysis
	Baseline Approaches
	Evaluating Metrics
	Results and Discussion
	Ablation Analysis
	Summary

	Robustness and Sensitivity Analysis
	Sensitivity to the GA Hyperparameter
	Effect of LMS Filter Parameters
	Scalability with Network Size

	Conclusions
	References

