

Perspectives on the use of a nutritious child-friendly meal recipe kit in neurodivergent families

Elisa Back ^{a,*} , Sarah Sumpter ^a, Hilda Mulrooney ^{a,b}, Ronald Ranta ^a

^a Kingston University London, United Kingdom

^b London Metropolitan University, United Kingdom

ARTICLE INFO

Keywords:

Autism
Neurodiversity
Eating behaviours
Intervention

ABSTRACT

Autistic children often display atypical eating behaviours including heightened sensitivity to food texture and appearance. These behaviours can result in limited dietary variety, increasing the risk of nutritional deficiencies and poor health outcomes. Childhood eating difficulties can also increase familial stress. This study examined the impact of a meal recipe kit intervention (BRITe Box) within neurodivergent households, assessing changes to emotions and eating behaviours including the willingness to try new foods and engage in cooking, and the development of social, numeracy and literacy skills. Eighteen participants took part in the evaluation of this pilot trial including eight parents, eight autistic children, one neurodivergent young adult, and one teacher. Reflexive thematic analysis of semi-structured interviews revealed four main themes: sensory preferences; restrictive eating; benefits to children, and wider impacts on family and community. Sensory preferences including aversion to different food textures and restrictive eating that removed or severely limited intakes of foods were common prior to taking part in the intervention. Benefits to children related to enhanced positive emotional experiences around food and an increased willingness to try new and previously disliked foods. In addition, greater confidence and cooking competence was reported, as well as perceived benefits in applied numeracy and literacy. Benefits for families and the wider community included enhancing family bonding and quality time spent together. Overall, engaging in the intervention improved eating behaviours in families, buffering sensory preferences and facilitating greater family cohesion in neurodivergent households.

1. Introduction

Children are usually exposed to a variety of new foods early in development yet eating challenges such as food sensory sensitivities, selective eating, and difficult mealtime behaviours are common (Wolstenholme et al., 2020). These issues are especially relevant in the context of autism, a neurodevelopmental condition characterised by social communication difficulties and repetitive or restricted behaviours and interests (APA, 2013).

Autistic children have increased risk of developing nutrient deficiencies, eating problems, obesity or being underweight (Molina-Lopez et al., 2021). These challenges arise from multiple factors, including sensory, behavioural, social-emotional, cognitive and gastrointestinal (Nadon et al., 2011; Vissoker et al., 2015). Research indicates a 46% - 89% prevalence of atypical eating behaviours in autistic children (Ledford & Gast, 2006) and an estimated 21% genetic risk of developing

Avoidant/Restrictive Food Intake Disorder (ARFID), characterised by severe food restriction affecting physical and mental health (Koomar et al., 2021). Limited food preferences and hypersensitivity to food textures are the most common atypical eating behaviours in autistic children (Mayes & Zickgraf, 2019) and represents a significant barrier for parents trying to establish healthy eating habits, since eating is an inherently sensory-rich experience and once preferences are learned, they may persist (Chow et al., 2022).

Food selectivity displayed by autistic children can contribute significantly to parental stress (Postorino et al., 2015) and autistic children with clinically significant feeding difficulties negatively impacted caregiver's daily activities and levels of worry (Gent et al., 2024). Parents of children with ARFID had a 54.2% greater risk of anxiety and depression than controls, negatively impacting their social lives, spousal relationship and feelings of being judged (Rodriguez et al., 2022). This suggests that atypical eating behaviours can negatively

* Correspondence to: Department of Psychology, Faculty of Business and Social Sciences, Kingston University London, Penrhyn Road, Kingston upon Thames, Surrey KT1 2EE, United Kingdom.

E-mail address: e.back@kingston.ac.uk (E. Back).

impact family mealtime dynamics and parent/carer mental health.

Autism is associated with executive function (EF) difficulties affecting goal-oriented behaviours needed for social and academic success. EF includes working memory, self-control and planning/organising behaviours necessary to daily life (Pellicano, 2012). Adolescents with EF difficulties, were assigned a standardised performance-based cooking assessment and findings showed they were more likely to take longer and make errors completing the task. Implications included cooking assessments being a useful EF assessment tool (Fogel et al., 2020).

Meal kit subscription services (MKSS) have gained popularity due to their affordability, convenience, and perceived health benefits (Shin et al., 2024). Research in neurotypical populations suggests MKSS improve food literacy and promote positive behaviour changes, including goal setting, planning, and habit formation, while reducing mealtime stress and enhancing family connectedness (Fraser et al., 2022, 2023; Horning et al., 2021). Although these findings are not directly generalisable to autistic populations, they indicate potential benefits for supporting executive functioning and reducing caregiver psychological load.

Evidence from cooking interventions involving neurodivergent and autistic participants shows mixed but promising outcomes. Studies report increased confidence in cooking skills, meal planning, and food preparation, with some improvements in autonomy and food acceptance, particularly among adolescents and young adults (Goldschmidt & Song, 2016; Gustin et al., 2020; Wong et al., 2025). While some interventions (Veneruso et al., 2022; Mac Namara, 2021) showed limited effects on broader adaptive or social outcomes, methodological limitations and external factors such as COVID-19 may have influenced results, suggesting further rigorous research is needed.

2. Current study

There is limited knowledge about the impact of cooking interventions on autistic children and the wider adaptation of culinary/cooking skills. There remains a significant gap in understanding the effects of cooking interventions on autistic children, particularly related to eating, social and learning behaviours in and outside the home, and how this impacts the family environment.

Conceptually, it is proposed that repeated exposure to a range of healthy ingredients and the intentional positioning of the meal recipe kit (MRK) as a gift specifically to the child would increase their willingness to try and to accept a wider range of foods, with potential benefits for the child and family. Repeated exposure particularly of vegetables has been shown to increase their acceptance in children (Birch et al., 1987; Karagiannaki et al., 2021; Rioux et al., 2018; Spill et al., 2019). Theoretically, Social Cognitive Theory, proposes that there is continual interaction between the individual, their behaviours and their environment through reciprocal determinism (Bandura, 1986; Glanz et al., 2002). In this case relevant individual factors included the child's preferences and self-efficacy (both likely to be affected by neurodivergence), with the MRK constituting an environmental factor. Positionally, we proposed that repeated exposure in the form of a cooking kit would increase the child's willingness to handle and then taste the foods, which in turn would build their self-efficacy to try other unknown foods. This would subsequently impact on the family mealtime by reducing the stress that many parents with neurodivergent children report. These assumptions arose from the observations in our previous work (see Method).

This study aimed to determine the impact of a nutritious meal recipe kit (MRK) intervention known as BRITE Box (BRITE: Building Resilience In Today's Environment) on families with neurodivergent children, specifically autism. BRITE Box provides ingredients and a healthy recipe (meeting government nutritional standards based on The Caroline Walker Trust guidelines, Crawley, 2005) for children (Bhakta et al., 2023), weekly (on a Friday) during term time via schools. It is free to recipients, sufficient for one meal for up to five family members which is

designed to be cooked by children (with supervision). Each meal can be replicated for under £ 5 (most families keep and recreate the recipes) in keeping with the low-cost ethos of the intervention. Recipes are presented in a child-oriented, accessible and dyslexia-friendly format. For example, there are photos illustrating each step of the recipe. Recipes included cuisines from a wide range of cultures, cooking styles and techniques. The processes involved in the cooking and preparations were designed for children. There is a clear focus on structure, process, and safety. For neurodivergent children, the recipes and guidance sent to families have also been adapted to support sensory sensitivities, selective eating and anxiety around food, helping to create calmer and more positive mealtime experiences.

This novel study is the first to investigate the use of a home-based meal kit on the lived experiences of autistic children and their families. It aimed to capture diverse perspectives including autistic children, their parents, and a teacher, using a qualitative methodology, to provide a comprehensive and inclusive understanding in relation to the impact of BRITE Box, including behavioural and psychological outcomes. It also aimed to evaluate the perceived potential on food-related behaviours among autistic children as well as perceived changes to social skills, educational skills (numeracy and literacy) and wellbeing.

3. Method

A previous study of BRITE Box, that incidentally involved six parents of Special Educational Needs (SEN) children, suggested potential benefits in neurodivergent children. This chance finding led to the current evaluation of a pilot trial focusing specifically on the effects of the intervention in neurodivergent children and their families. The current study focuses specifically on autistic children and was designed to enhance rigor and validity by including multiple perspectives from children, parents, a teacher, and a volunteer.

3.1. Participants

Participants were recruited from one SEN and two mainstream primary schools within Kingston upon Thames and Richmond. Eighteen participants took part; eight parents (two from the same family), eight SEN children (three from the same family), one SEN (dyspraxia and language disorder/learning difficulties) young adult volunteer who helped prepare BRITE Boxes and one teacher/organiser for BRITE Box at a SEN school. The inclusion criteria involved being either a past or present recipient and having at least one child with or awaiting a diagnosis of a neurodevelopmental condition or other SEN needs.

3.2. Materials

Demographic information questionnaires were completed by parents on behalf of their children. Semi-structured interviews (7 parents; 7 children; 1 teacher and 1 SEN volunteer) were conducted in-person at school by a research assistant using a SONY ICD-PX470 audio recorder. The remaining child and parent interviews were conducted by another research assistant using MS Teams to record and transcribe. Child interview questions focused on their emotions, level of involvement, and new foods tried. Visual prompts (see 'Procedure') were used when necessary. Adult interviews focused on their child's and wider family experiences, emotions, skills gained/improved by child or family; impacts on social abilities, sleep, numeracy and literacy skills of SEN children (see [supplementary materials A](#) for interview guides).

3.3. Procedure

Ethical approval was received from Kingston University's Research Ethics Committee. Parents provided written consent for their child and themselves to participate. Children also verbally assented before interviews and were given a verbal debrief afterwards. Adults completed

questionnaires that collected their demographic data (age, gender, & education level) and that of their children (age, gender, ethnicity, diagnosis of neurodevelopmental condition and/or other SEN needs).

All interviews used pre-prepared guides, co-created with the SEN school's BRITE Box co-ordinator as well as the BRITE Box intervention organisers, to ensure questions were relevant and appropriate. To accommodate the needs of two autistic children, the interview schedule was modified with SEN school teachers. This included picture visualisation of the interview guide, use of emotion regulation cards and printed ingredients and past recipes to help children engage in the conversation. During child interviews their speech and language therapist or teacher were present to ensure they felt safe and confident with a familiar staff member. Child interviews ranged from 5 to 15 min (mean duration 8.22 min). Adult participant interviews ranged from 15 to 90 min (mean duration 37.97 min). Participating families received a £30 gift voucher for taking part and they were sent a written debrief.

Interviews were carried out after they had participated in the intervention. In most cases, the duration of the intervention was the full school year (interviews were in July). Three families from one school had participated for one school term. This was due to differences between schools in how they operated the intervention.

3.4. Data analysis

A contextualist epistemological framework was adopted (Braun & Clarke, 2006). Interview data were examined using Reflexive Thematic Analysis (RTA; Braun & Clarke, 2006, 2022; Clarke & Braun, 2017). RTA entails a reflexive and iterative process of engagement with the data, enabling the development of a rigorous and nuanced analysis. Transcribed interviews and recordings were manually coded independently by four researchers using inductive coding. All except three interviews were independently coded by two researchers. Codes were agreed in multiple team meetings using an iterative process to ensure their consistency and validity (Braun & Clarke, 2006); these team collaborations also enabled robust discussion of tacit theories based on individual researcher's positionality and our underlying hypothesis and assumptions.

Table 1
Demographic Summary of Participant Data.

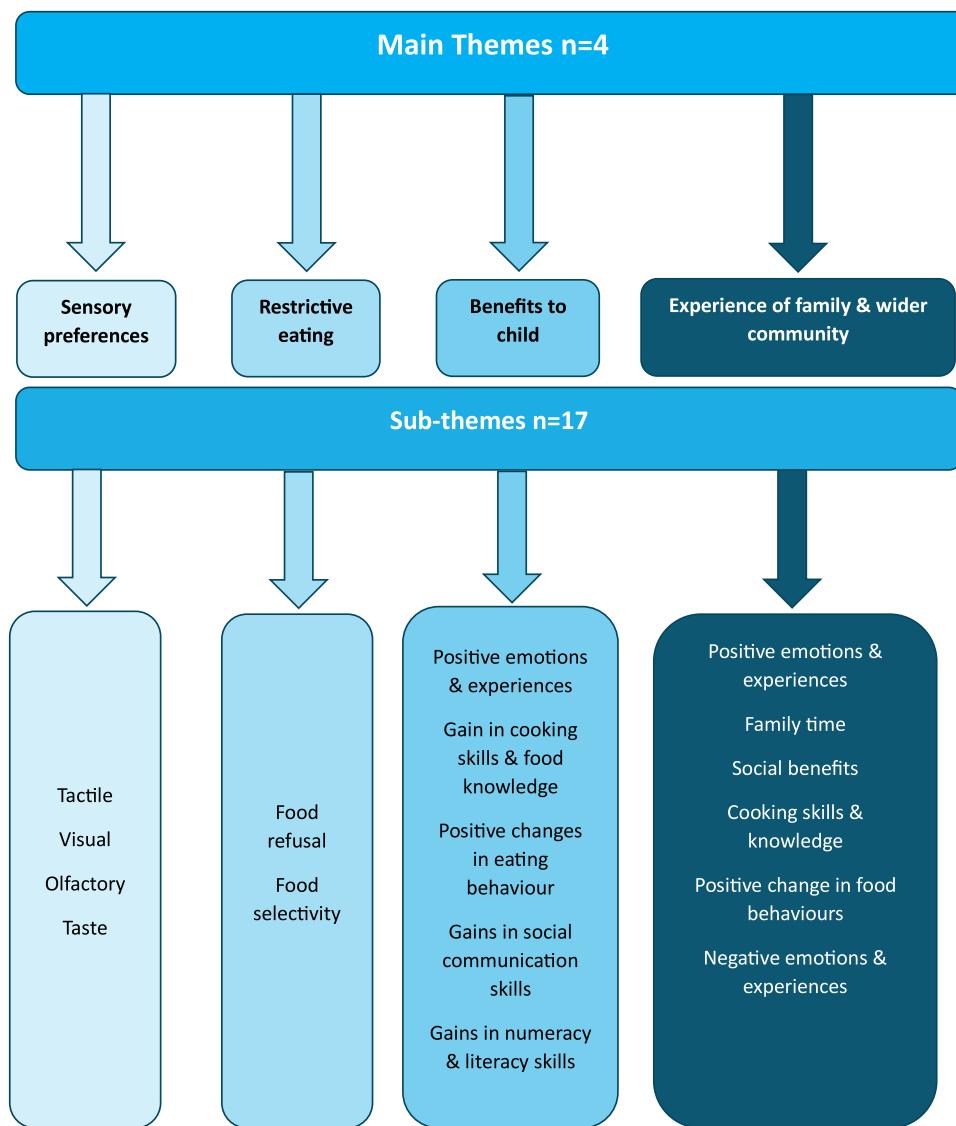
Group	Variable	n	Percentage	Mean	SD	Range (yrs)
Child	Gender	8				
	Male	4	50 %			
	Female	4	50 %			
	Age	8		9.4	2.6	6–15
	Ethnicity	8				
	White/White British	7	87.5 %			
	Asian/Asian British	1	12.5 %			
	Official autism diagnosis					
	Yes	5	55.6 %			
	No / pending	3	44.4 %			
Parents	Gender	8				
	Male	1	12.5 %			
	Female	7	87.5 %			
	Age	8		40.6	5.3	31–46
	Mother/caregivers highest education level*	6				
	A-level or equivalent	1	16.7 %			
	Vocational	1	16.7 %			
	Degree level or equivalent	2	33.3 %			
	Master's degree	2	33.3 %			
	Father/caregivers highest education level*	5				
	GCSE	1	20.0 %			
	Degree level or equivalent	4	80.0 %			

* Not all questions were completed by participants.

Codes were collated into a codebook in Excel and grouped into themes and sub-themes for subsequent analysis. Trustworthiness was established in the qualitative data analysis, consistent with the standards (credibility, dependability, confirmability, reflexivity) of Guba (1981). Coder triangulation was used to increase credibility and dependability was enhanced through regular research team meetings to discuss findings. Confirmability was highlighted through the use of direct participant quotations and the use of multiple perspectives (children, parents/carers and teachers). Reflexivity was also incorporated by findings being compared with the results of our previous work, from which this study arose, and with the published literature for sense checking.

Descriptive statistics from the demographic surveys were analysed using Jamovi version 2.3.21. For further information about the research team's backgrounds and roles please see [supplementary materials C](#).

4. Results


4.1. Demographic data

Demographic data for all participants are shown in [Table 1](#). There were eight children with a mean age of 9.4 years and an equal split by gender. Five children had an official diagnosis of autism and three children were pending official diagnosis; one for combined ADHD and autism and two for autism.

Parent participants (n = 8) were mostly females (87.5 %) aged 31–46 years old and the majority were educated to at least degree level or equivalent (mothers 66.6 %; fathers 80 %). One teacher was interviewed; a white female aged 49 years and educated to degree level.

4.2. Thematic analysis

Four key themes were identified, and a further 17 sub-themes were derived from the reflexive thematic analysis (see [Fig. 1](#) and [supplementary materials B](#)).

Fig. 1. Main themes (n = 4) and sub-themes (n = 17). N = number of themes/subthemes identified.

4.3. Theme 1: sensory preferences

This theme illustrates how participants described the children's sensory preferences and aversions around eating and food preparation prior to participating in the BRITE Box intervention. The four sub-themes were tactile (texture & touch), visual (appearance), olfactory (smell) and taste. Sensory preferences and aversions were mentioned by all eight parents, the teacher and one child. Sensory aversions were sometimes described as challenging by the parents due to the impact of upon the children's willingness to taste and eat foods and handle ingredients during meal preparation. Most parents understood the need to encourage and praise all types of sensory interactions with food and not solely tasting. Food related sensory preferences were modified by the BRITE Box intervention for some children and is discussed within 'Theme 3: Positive changes in eating Behaviour'.

4.3.1. Sub-theme 1: tactile

Four children were described as being sensitive to tactile aspects of food. 'Tactile aversions were associated with wet or slimy foods (e.g. cucumber) and the sensation of residue on hands. With respect to texture while eating, one child reportedly preferred smaller chunks of food for chewing, whilst another expressed a preference for softer foods (e.g.

grilled peppers) over raw and crunchier foods.

"Yeah, the texture [raw tomato] is just a bit too much, you know."

-Child 3-

4.3.2. Sub-theme 2: visual

Across accounts, four children were described as reacting negatively to foods touching on a plate, though overall visual preferences varied. For example, burnt food or herbs were framed as 'dirty' and preferences were expressed for certain colours of vegetables, like yellow peppers.

"He always had a thing about, you know, green bits in his food."

-Parent 8-

4.3.3. Sub-theme 3: olfactory

Three parents mentioned their child's habit of smelling foods factored into whether they would taste or eat foods prior to BRITE Box and were more influenced to try foods if they had a positive scent, for instance one parent mentioned how their child 'loves' to smell foods and if they liked the smell this would incite their curiosity about what was cooking in the kitchen. One parent specifically mentioned spring onions

were a smell aversion for their child because they associated them with the experience of eye discomfort.

"She loves to smell food. Whenever I get anything or I'm eating, she's just like, what's that? Smells it. And she's like, what's that? What's that? And we're it's food, it's this and that. So yes, she would come in the kitchen, and it would smell nice but if it doesn't look nice she won't try it."

-Parents 1 & 2-

4.3.4. Sub-theme 4: taste

Three parents mentioned their child's typical diets before BRITE Box centred around a preference for a 'beige diet' which includes 'plain' foods such as chips and chicken nuggets, processed foods uniform in both taste and texture and lacking in any distinctive flavour. Another favoured meat based, rice and pasta dishes, although it was unclear whether this was due to other sensory preferences such as smell and texture as well as taste. One child's food choices were described as 'mood dependant'. However, one child exhibited a liking for spicy foods whilst children from another family disliked this same quality. Children's favourite recipes from BRITE Box included rainbow pasta, chicken-based and tomato-based dishes and the spicy turkey nachos.

"...he likes spicy food, so he would ask is spicy or not spicy, so obviously, he learns about the ingredients that are in the recipe and if he doesn't know, he would ask questions."

-Parent 5-

4.4. Theme 2: restrictive eating

Restrictive eating represents children's atypical eating behaviours such as food refusal and selective eating, present before their participation in the BRITE Box intervention. Most but not all children portrayed a degree of restriction. Food refusal was linked to rigid food rules, self-esteem and body weight issues. Food selectivity was broader and included rejection or inclusion of foods or food groups potentially influenced by sensory preferences. Similarly, some restrictive eating behaviours were also modified by the BRITE Box intervention and are discussed in Theme 3.

4.4.1. Sub-theme 1: food refusal

Two children displayed highly restrictive eating behaviours. One child focused on only consuming foods deemed 'healthy.' Due to their concerns over the child's bodyweight, the parent incentivised their eating with pocket money. The other child reportedly engaged in self-starving to lose weight after periods of excessively consuming hyperpalatable snack foods.

"He'd go weeks where he would starve himself because he knew he put on too much weight."

-Parent 3-

"Yes, my older son also has a preoccupation with healthy food. And he sort of had that before. Like, he would ask 'is this food healthy?' And if it wasn't, he wouldn't eat it. Food had to be healthy."

-Parent 4-

4.4.2. Sub-theme 2: food selectivity

According to parents prior to the BRITE Box intervention, frequently disliked ingredients were vegetables, but specifically tomatoes, onions, peas, herbs and spices/strong seasoning. An overlap between food selectivity and taste preferences was found around potentially sensory-motivated selectivity which may have influenced their dietary choices. For instance, parents specifically mentioned their child's limited

preference for 'beige foods' like chicken nuggets and crisps, typically plain tasting foods with little to no seasoning or spices.

"My son at lunchtime he just eats chicken nuggets. He's been eating chicken nuggets for years here."

-Parent 4-

4.5. Theme 3: benefits to children

Benefits to children encompassed five sub-themes: positive emotions and experiences; gain in cooking skills & knowledge; positive changes in eating behaviour; gains in social communication skills and gains in numeracy & numeracy skills. Autistic children and the volunteer were generally positive about their BRITE Box experiences noting their emotions, cooking skills and knowledge. Parents corroborated this along with key findings in relation to improvements in behavioural, social and educational areas. Moreover, both teacher and volunteer mentioned distinct benefits such as learning empathy.

4.5.1. Sub-theme 1: positive emotions and experiences

Emotions such as excitement, happiness and curiosity were frequently mentioned, demonstrating uplifting emotional and cognitively stimulating effect of the BRITE Box in the lives of the neurodivergent participants. For the volunteer positive emotions came from an altruistic sense of doing something helpful and bringing joy to others.

"Excited, you know, it's a nice, relaxed lesson and then you get to go and deliver them to students...when we give it to the students, we are very happy."

-SEN Volunteer-

Parents spoke about the intervention's 'positive impact' on their children. They also mentioned it being good for skills, unlocking hidden potential and the gift-like quality of the box.

"They were always looking for what was inside, so they liked the excitement of it, like opening it was like a surprise, like a present for them."

-Parent 7-

4.5.2. Sub-theme 2: gains in cooking skills & knowledge

Overall, there was increased engagement with cooking which transferred to cooking non-BRITE Box meals for some autistic children. They spent more time practicing and gaining new culinary skills, ranging from fine motor control skills like chopping and peeling vegetables, to skills requiring hazard perception, such as handling hot food or being around hot equipment.

".... their confidence is better... he wouldn't go near the cooker. Now he will. Now I've taught him with the BRITE Box, how to turn the gas down slowly and be careful, make sure you're wearing gloves and things like that."

-Parent 6-

"Yes, I can stir as well. What is it called? Like heating up the food."

-Child 3 -

Children improved soft skills in the kitchen such as confidence and independence with organisation, preparation and execution of recipes.

"[...] my older boy he was like yeah, he got right involved and then since then his cooking teacher at school, he said: I don't know what you've done with him over the last few weeks, but I think he's got, you know, potential to be a chef when he's older. She wants him to take cooking GCSE. She went like: where's this come from? ... So

now he's like, I want to make the BRITE Box. So on the weekend, he cooked the BRITE Box all by himself."

-Parent 3-

During interviews some child participants were able to recall ingredients and names of meals from the BRITE Box as well as the skills they used to create the dishes.

"So basically it had a lot of colourful fruits in it, like peas, sweetcorn and red sauce like tomato sauce, I think it was."

-Child 1-

One parent remarked on their child's increased engagement with foods outside the home by recognising ingredients previously used in the BRITE Box, with which they were now familiar:

"[...]it's nice for him to recognise that actually, when we're walking...but he's like, everything's: That's my BRITE Box! That was in my BRITE Box! It's kind of like, that's correct. It was. That's this pepper. That's this courgette, that's this. He's like did we have that in my BRITE Box? I'm like, yeah."

-Parent 3-

4.5.3. Sub-theme 3: positive changes in eating behaviour

Positive changes to children's food behaviours highlight perceived changes that occurred during or after participation in the intervention. These included reduced food neophobia, exposing themselves to new sensory experiences and greater acceptance of more diverse foods and flavours, especially vegetables, herbs and spices.

"Peppers. I never used to like peppers, but I like them now."

-Child 2-

Having a different BRITE Box weekly helped increase the child and families' exposure to new flavours and sensory experiences, especially textures. Over time many parents noticed greater acceptance from their child in relation to sensory preferences like tasting, touching or observing the food during the cooking and eating process.

"It helped him to expose him. Yes, because when you prepare something, you feel how it smells, how it looks like. It kind of helps him to understand, you can try it and see if you like it or not. For example, in the past he didn't like very much peas, he would just put them away if he had them in a meal. Now if it's mixed with the food he will just eat it."

-Parent 5-

Parents also noticed their child was able to eat more mixed foods where previously they had to be separated, not touching. This highlights the role of BRITE Box as a vehicle for repeated exposure to different sensory aspects of food, such as handling ingredients, the smell of food whilst cooking and the communal and positive influence of seeing family members eating and trying new foods together.

"So, she's tried onion, onion was the big one. We couldn't put onion in anything...and tomato. They didn't even try. I think they're still keen on tomato. Yeah *** is keen on tomato, but *** and *** they are not keen on tomato. But they have tried it. But that's all since getting the BRITE Box. And because before we couldn't even get them to try any sort of vegetables or onion. Now they eat it because it's mixed in the meal."

-Parents 1 & 2-

Improved food relationships were recognised by two parents, whose children had been exhibiting food refusal behaviours affecting their self-esteem and weight.

"...definitely these skills are for life, he's learnt skills for life. And he's learning about healthy eating from a young age and I think these skills will be carried out. What he has learnt now sets a really good foundation for moving forwards."

-Parent 4-

Two parents commented on the positive effects satiation had on their child's sleep quality, whilst reduced overeating and unhealthy snacking were mentioned by three parents, who found their child was more satisfied after consuming meals from BRITE Box.

"Yeah, they're having more fulfilling meals and actually they're full up. Where before they'd eat, and then they'd just be, it'd be like never ending train of just eating, right? And it's like, how are you still eating?"

-Parent 3-

4.5.4. Sub-theme 4: gains in social communication skills

Improvements in social communication was mentioned by seven parents, the teacher, and the SEN volunteer. These included more conversation around food likes and dislikes, which helped with family meal planning.

"We do all sit around and try it together and we ask them if they like it. What didn't they like? So, we know what we can put in meals further on and see what works for them."

-Parents 1 & 2-

This appeared to extend more widely, with improved verbal communication during cooking.

"We are talking about food more and what he likes more... He usually doesn't express anything to me or whilst we are talking. Before the BRITE Box or on another day when we don't get the box if I ask him what happened to you at school, he will just stay quiet, ignore me or say I will tell you later or I don't feel like telling you. But whilst we are cooking, we can have a dialogue and he is happy to talk about what happened at school, he is more expressive."

-Parent 4-

Cooking the BRITE Box together helped facilitate more cohesive family environments at mealtimes, especially between siblings.

"And the girls sit together, which they normally never do. So, the girls are very separate all the time because of their behaviour, and they clash quite easily. But on a Saturday when we've cooked the box, we'll all together and they're not arguing. So, it's made a very big difference in our family."

-Parents 1 & 2-

The collaborative aspect of volunteering was highlighted as a positive for the SEN volunteer, allowing them to practise negotiation and allocating tasks with other volunteers.

"We measure them [ingredients]. Sometimes they [ingredients] are measured for us and they ask us...if we want it [ingredients] measured or not. And then if we don't then they can leave it to us to do it."

-SEN Volunteer-

4.5.5. Sub-theme 5: gains in numeracy and literacy

BRITE Box provided the autistic participants with a valuable real-world opportunity to practise and gain numeracy and literacy skills. Numeracy skills were applied and mostly related to the measuring and weighing of ingredients, an additional benefit for SEN volunteers preparing BRITE boxes.

"So, the fact that they are having to work out tablespoon and teaspoons and a 100 g and 200 g and which is bigger and what does it look like on the scales, and then sort of 10 g of butter might be smaller than 10 g of herbs, like it weighs the same, but it looks different. So, I definitely think it has helped with their numeracy skills."

-Teacher-

Since the BRITE Box ingredients come pre-weighed this benefit only occurred if participants recreated the recipes, however seven of the eight families mentioned reusing recipes, suggesting a potential opportunity for long-term exposure to learning and skills improvement.

"[...]we sort of keep it as like a like a recipe book now, which is lovely. So we can always go back for it. Yeah. Yeah. So we collect them and we turn them into, like, a little book again. We really like the Spanish chicken and rice."

-Parent 6-

Due to the accessible child-friendly presentation of the recipes, parents remarked how easy it was for their child to read and sustain their focus. Improvements in confidence when reading out loud, as well as better pronunciation and comprehension of recipe instructions were mentioned by parents as well as the teacher.

"In the car, he'll look through the box what's there and he would read the ingredient list. It's helped with his reading skills too."

-Parent 4-

4.6. Theme 4: experience of family & wider community

BRITE Box evoked positive responses from most of the parents and the teacher involved. Participants felt it had been a worthwhile investment of time and energy due to spending more time together as a family, as well as developing their own cooking skills, building confidence and self-esteem by putting new recipes together and trying new flavours. Those who engaged with the online BRITE Box platform and/or volunteered had the additional benefit of accessing a supportive community, acting as a form of intrinsic motivation and reward. Parents expressed gratitude for the changes they had witnessed in their children over the duration of receiving the BRITE Boxes. However, this was not universal. Negative effects were noted by Parent 7 who expressed disappointment that their child's negative food behaviours like selective eating and food refusal had increased.

4.6.1. Sub-theme 1: positive emotions and experiences

Parents identified feelings of happiness and excitement from engaging in the experience with their children.

"Yeah, it's always exciting. Don't know what you're gonna get next and. Yes, it's always fun checking out the box. What's in there and what we're supposed to make."

-Parent 8-

Positive experiences included a sense of satisfaction from visibly seeing their child progress with skills, reduced parental barriers to cooking and help with food budgeting. Adult participants frequently used words like 'brilliant,' 'amazing,' and 'good,' to describe their families experience with the intervention.

"the BRITE Box has been really helpful. Honestly, I can't believe the difference its made. Normally, we sort of cook a couple of meals on the weekend and try to make it last till the end of the week. By the end of the week, we're struggling with our kids' behaviour or we don't have any family nearby. But because we get the BRITE Box, my son looks forward to getting that box on a Friday."

-Parent 4-

4.6.2. Sub-theme 2: family time

Six of the seven families felt that cooking together had become part of their weekly routine, enhancing closeness. Three families also mentioned eating meals together more frequently.

"But yeah, so we do it as a family. It's lovely, so. And then we try new foods and we actually had a friend round for dinner the other night. So we've done the chicken wraps together. And and we were laughing because it was very strong spices. So no, no, we always do it, we try and make it fun. As a family, and it does bring the family together."

-Parent 6-

BRITE Box also provided the means and structure to engage in a regular family activity that is free and accessible.

"I've had feedback sort of second hand through one of the specialist advisors from one of the parents, that they look forward to it every week and it's an activity that they can do and one of the specialist advisors specifically chose one of the families because the mum and child don't have much to do together because of finance but they enjoy doing things together, so she has fed back that it's a nice family thing that they can do together."

-Teacher-

4.6.3. Sub-theme 3: social benefits

These related to a sense of feeling connected to a supportive online community by using social media and sharing photos; some families had used the online platforms as a source of guidance and inspiration.

"So, if we put a BRITE Box story up on my like Instagram or Facebook, we can tag BRITE Box in it and then we can actually share it on the page as well as Facebook. So, we see other families how they do their food and then they see what we do."

-Parent 6-

Parents often shared recipes with friends and extended family because they wanted to extend the benefits, they had experienced.

My mum absolutely loves it. So when Mum comes over to help and stay, we always have Monday pie when she's there. And so we're branching it out more to other family members like I've screenshot the recipe and I send it to my sister, whose son's autistic as well as she tries it."

-Parents 1 & 2-

4.6.4. Sub-theme 4: cooking skills & knowledge

Parents increased their knowledge of cooking from scratch and became more adventurous in the kitchen.

"I'm not the greatest cook being totally honest, so it's taught me as well."

-Parent 6-

By increasing their knowledge and skills, parents felt more competent in the kitchen and experienced more pride in the food they were serving their children, relying less heavily on processed 'beige' foods for dinner.

"It's kind of like, now I feel like I'm a, not that I wasn't a mum, but I kind of feel like a bit more of a parent; awww, I've made my kids something nicer than chicken nuggets and chips."

-Parent 3-

4.6.5. Sub-theme 5: positive change in food behaviours

Like the children, family and friends also benefited from regular and repeated exposure to a collection of culturally diverse and nutritious meals. These sometimes included new and unfamiliar ingredients such as herbs and spices as well as new ways of using ingredients like beans and legumes that nudged them towards making healthier food choices and eating a more diverse diet.

“I’ve cut down a lot on meat because don’t really need that. You can add a lot of different things, and it still tastes good and actually filling.”

-Parent 8-

One parent made significant changes to the way they shopped, buying items in bulk and cooking more from scratch.

“So I used to always be going out doing freezer shops. And now I’m like getting all this fresh food, and actually I can cook a meal for under £ 5 and it’s not so scary. So, now I bulk buy my chicken and stuff, separate it and freeze it all up...”

-Parent 3-

4.6.6. Sub-theme 6: negative emotions & experiences

Only one parent expressed disappointment in their experience compared to their initial expectations. Their autistic child reportedly increased food refusal due to their involvement in food preparation leading to a greater awareness of disliked ingredients in the intervention’s meals and in meals they had previously accepted.

“The overall impact is that he’s refusing more types of food now than before. So, it’s, I think it’s a negative for us. Yeah, that’s what I would say.”

-Parent 7-

This meant the parent had to invest more time and effort cooking a backup meal in addition to the meals from the intervention.

“It was a bit more challenging, I think, for the family because I had to prepare more types of food when the food was something that my child would generally refuse to eat. Then I had to cook a second option for him.”

-Parent 7-

This parent also expressed dislike of the ‘surprise’ element of the box (viewed as a positive by all the other families). They felt it made planning meals more difficult with an autistic child. Interestingly the parent said their children had enjoyed the surprise element, highlighting a dissonance between the experience of the parent and their children.

“So, when we came home, we opened the package to see what food was inside, which was always a surprise, which to be honest, I wasn’t a fan of [...] They yes, they enjoyed it. Not me, but the kids. They loved it.”

-Parent 7-

5. Discussion

This study explored the experiences of autistic children and families participating in a nutritious child friendly home-based meal recipe kit intervention. Overall it was an enjoyable experience for participants, providing an engaging and accessible way to develop their cooking skills, knowledge, food acceptance and exposure to new flavours. It created opportunities for real-world application of maths and literacy, development of social skills and quality family time. A key element of BRITE Box was the fun and engaging design which elicited excitement and curiosity from the children. Children responded favourably to the

‘surprise’ element of the box, a positive given the insistence on sameness and predictability that is common in autistic children (APA, 2013). This has also been found in neurotypical children receiving BRITE Box (Sumpter et al., 2025) and highlights the value of BRITE Box in stimulating curiosity, a ‘flourishing’ indicator in autistic children (Hilton et al., 2019). Uplifting emotions increased participants’ motivation to engage in prepping, cooking and eating the recipes together. Families with autistic children typically have more child-oriented routines compared to those of neurotypical children which can negatively affect family connectedness (Rodger & Umaibalan, 2011). By encouraging activities like cooking and eating together, activities associated with better social skills, school engagement and family health (DeGrace et al., 2016), the BRITE Box intervention facilitated greater social cohesion within the family and time for connection. Additionally, participation provided opportunities for children to take ownership and independence over cooking tasks. The intentional positioning of the BRITE Box as a direct gift to the child, and the ownership, may also have contributed to increased food acceptance, also shown in neurotypical children (Sumpter et al., 2025). This BRITE Box intervention appears to facilitate the development of agency, autonomy, and life skills of autistic children which extends findings from previous studies (Goldschmidt & Song, 2016; Veneruso et al., 2022).

For parents, very limited food preferences created challenges of finding acceptable foods their child would eat with the added caveat of being healthy. All but one parent noted improvements in their child’s willingness to taste or engage with foods such as vegetables, herbs and spices at a visual or tactile level following the BRITE Box, which they attributed to their child’s participation in the cooking process. Increased food acceptance is associated with repeated exposure by engaging the senses and embedding cooking together in the family routine. Exposure from the BRITE Box helped create a sense of familiarity with these foods a finding that’s consistent in the wider literature (Ehrenberg et al., 2019; Wardle et al., 2003).

Another BRITE Box benefit for autistic children was a perceived improvement in essential skills such as numeracy and literacy, possibly due to the applied nature of learning which engaged multiple senses e.g., weighing out the ingredients, measuring liquids, and learning the difference between teaspoons and tablespoons. Developing numeracy and literacy skills requires a blend of executive functioning, cognitive flexibility, working memory and visuospatial abilities to grasp and apply theoretical concepts (Kim & Cameron, 2016; Purpura et al., 2017). Success in these areas strongly predicts later career success (Duncan et al., 2007). Some neurodivergent children struggle more with maths and literacy than neurotypical children; explanations for this are varied but underlying genetic as well as environmental influences have been suggested (Tonizzi & Usai, 2023). The recipes use short and simple instructions written in a dyslexia-friendly font, which some parents noted helped their child focus for longer compared to conventional recipes. These clear instructions provided opportunities for children to practise reading and learning skills such as measuring and dividing ingredients, while the intrinsically fun and rewarding elements of the BRITE Box may have enhanced motivation.

The engaging, simple and convenient design of BRITE Box helped both parents and children to cook more frequently together. This provided an opportunity for family bonding as well as for parents and siblings to model and reinforce positive behaviours such as eating meals together at the dinner table and instigating more discussions about food and the ingredients they saw in the BRITE Box. This helped to create a more supportive mealtime structure and environment for the family.

Whilst feedback was mostly positive, this was not universal. There is a potential sub-group of autistic children for whom increased engagement in cooking could lead to greater food refusal, restrictive eating, and additional food-related work for parents, as the child becomes aware of disliked ingredients in the meal that they may have previously overlooked. This occurred for one parent who expressed disappointment in their experience because participation led their child to refuse

previously accepted food, subsequently increasing the time they spent cooking separate meals for the family. Despite this, the child reportedly still enjoyed receiving and opening the recipe box. More research is needed to understand the sensory profiles of autistic children and whether there is a sub-group that may incur potential negative effects from involvement in such interventions, and whether initial increases in food refusal were transient or prolonged.

This study had some limitations. There were differences in how individual schools operated the intervention which meant not all participants received it for the same duration. Two schools took a whole class approach for the entire school year and one school was more targeted (for one school term), so the duration of receiving BRITE Box varied substantially between families. Differences in exposure duration may bias results as those participating longer may report stronger effects or deeper insights. The relatively small number of participants and lack of ethnic diversity in the participant sample may limit the generalisability of thematic insights to the wider autism community.

Future research could include other neurodivergent conditions that affect eating behaviours, learning and social behaviours to see whether the benefits extend beyond autism. Furthermore, including pre- and post-intervention data collection will improve our understanding of the long-term effects of home-based meal kit interventions, such as potential improvements in literacy, numeracy and social skills. A full-scale feasibility study could also be conducted that includes more objective quantitative measures regarding changes in dietary intake and wider determinants of health.

The findings of this study, albeit in a small number of participants, suggest child-focused meal kits are a novel and fun way to support autistic children and their families engage in healthier lifestyles. They also point to the importance of focusing on children's agency and autonomy where possible via goal-oriented executive function tasks that support the learning and transfer of skills essential for success and flourishing (Hilton et al., 2019). For parents, meal kits provide opportunities and encouragement for their child to engage with food preparation and cooking at home, gradually exposing them to new ingredients. This can contribute to more cohesive home and mealtime environments, leading to greater acceptance of new foods by their child. Findings indicate that educators should seek to implement more cooking education in the school curriculum and/or introduce meal recipe kit interventions to the school environment for both volunteer and recipient benefits.

This innovative study captured a comprehensive and inclusive understanding of the BRITE Box intervention from multiple perspectives and was perceived as an effective tool for positively influencing eating behaviours in autistic children and their families, in addition to enhancing family cohesion and real-world opportunities for developing social communication, literacy, and numeracy skills. Overall participants were highly positive about their experience with BRITE Box and reported important benefits for children, volunteers, family and the wider community.

CRediT authorship contribution statement

Elisa Back: Writing – review & editing, Writing – original draft, Supervision, Project administration, Methodology, Funding acquisition, Formal analysis, Conceptualization. **Sarah Sumpter:** Writing – review & editing, Writing – original draft, Formal analysis, Data collection. **Hilda Mulrooney:** Writing – review & editing, Methodology, Formal analysis, Conceptualization. **Ronald Ranta:** Writing – review & editing, Methodology, Formal analysis, Conceptualization.

Funding

Pump-priming research funding, Faculty of Business and Social Sciences, Kingston University London.

Declaration of Competing Interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Ronald Ranta reports a relationship with Voices of Hope that includes: consulting or advisory and employment. Hilda Mulrooney is a volunteer (unpaid) for Voices of Hope, the organisation which runs and manages BRITE Box. Sarah Sumpter reports a relationship with Voices of Hope that includes: employment. If there are other author(s), they declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

We would like to thank Voices of Hope and the meal recipe kit (BRITE Box) organisers Nick Dawson and Ruth Dawson, the schools, parents and children for their time participating in the research study. We would also like to thank Eunika Maciak for her research assistance with the project.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at [doi:10.1016/j.rin.2025.100014](https://doi.org/10.1016/j.rin.2025.100014).

References

American Psychiatric Association. (2013). *Diagnostic and statistical manual of mental disorders* (5th ed.). <https://doi.org/10.1176/appi.books.9780890425596>.

Bandura, A. (1986). *Social foundations of thoughts and actions: A social cognitive theory*. Englewood Cliffs, NJ: Prentice-Hall.

Bhakta, D., Mulrooney, H., Sattaoui, I., Aghili, A., Illingworth, I., Ranta, R., & Dawson, N. (2023). Assessment of energy and nutrient content of a recipe food box for schoolchildren—“Nutrition in a BRITE Box®”. *Proceedings of the Nutrition Society*, 82, E301.

Birch, L. L., McPhee, L., Shoba, B. C., Pirok, E., & Steinberg, L. (1987). What kind of exposure reduces children's food neophobia? Looking vs. tasting. *Appetite*, 9(3), 171–178. [https://doi.org/10.1016/S0195-6663\(87\)80011-9](https://doi.org/10.1016/S0195-6663(87)80011-9)

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. *Qualitative Research In Psychology*, 3(2), 77–101. <https://doi.org/10.1191/1478088706qp063oa>

Braun, V., & Clarke, V. (2022). *Thematic analysis: A practical guide*. Sage. ISBN: 978-1-4739 5323-9.

Chow, Y. C., Skouw, S., Bech, C. A., Olsen, A., & Bredie, P. L. W. (2022). A review of children's oral texture perception and preference in foods. *Critical Reviews in Food Science and Nutrition*, 64(12), 3861–3879. <https://doi.org/10.1080/10408398.2022.2136619>

Clarke, V., & Braun, V. (2017). Thematic analysis. *The Journal of Positive Psychology*, 12 (3), 297–298. <https://doi.org/10.1080/17439760.2016.1262613>

Crawley, H. (2005). *NutrientBased standards for School Food*. (<https://www.cwt.org.uk/wp-content/uploads/2014/07/eatingwell.pdf>).

DeGrace, W. B., Foust, E. R., Sisson, B. S., & Lora, R. K. (2016). Benefits of family meals for children with special therapeutic and behavioral needs. *The American Journal of Occupational Therapy*, 70(3). <https://doi.org/10.5014/ajot.2016.014969>

Duncan, G. J., Dowsett, C. J., Claessens, A., Magnuson, K., Huston, A. C., Klebanov, P., Pagani, L. S., Feinstein, L., Engel, M., Brooks-Gunn, J., Sexton, H., Duckworth, K., & Japel, C. (2007). School readiness and later achievement. *Developmental Psychology*, 43(6), 1428–1446. <https://doi.org/10.1037/0012-1649.43.6.1428>

Ehrenberg, S., Leone, L. A., Sharpe, B., Reardon, K., & Anzman-Frasca, S. (2019). Using repeated exposure through hands-on cooking to increase children's preferences for fruits and vegetables. *Appetite*, 141, Article 104348. <https://doi.org/10.1016/j.appet.2019.104347>

Fogel, Y., Rosenblum, S., Hirsh, R., Chevignard, M., & Josman, N. (2020). Daily performance of adolescents with executive function deficits: An empirical study using a complex cooking task. *Occupational Therapy International*, 1, Article 3051809. <https://doi.org/10.1155/2020/3051809>

Fraser, K., Johnson, J. B., Love, P., Spence, A., Laws, R., & Campbell, J. K. (2023). Mapping the behaviour change potential of meal kits to positively influence parental food literacy. *Public Health Nutrition*, 17(e16), 1–13. <https://doi.org/10.1017/S136898002300263X>

Fraser, K., Love, P., Campbell, J. K., Ball, K., & Opie, S. R. (2022). Meal kits in the family setting: Impacts on family dynamics, nutrition, social and mental health. *Appetite*, 169, Article 105816. <https://doi.org/10.1016/j.appet.2021.105816>

Gent, V., Marshall, J., Weir, A. K., & Trembath, D. (2024). Investigating the impact of autistic children's feeding difficulties on caregivers. *Child Care Health and Development*, 50(1), Article e13218. <https://doi.org/10.1111/cch.13218>

Glanz, K., Rimer, B. K., & Lewis, F. M. (2002). *Health behavior and health education: Theory, research, and practice*. San Francisco: Wiley & Sons.

Goldschmidt, J., & Song, H., J. (2016). Development of cooking skills as nutrition intervention for adults with autism and other developmental disabilities. *Journal of the Academy of Nutrition and Dietetics*, 117(5), 671–679. <https://doi.org/10.1016/j.jand.2016.06.368>

Guba, E. G. (1981). Criteria for assessing the trustworthiness of naturalistic inquiries. *ECTJ*, 29, 75–91. <https://doi.org/10.1007/BF02766777>

Gustin, L., Funk, E. H., Reiboldt, W., Parker, E., Smith, N., & Blaine, R. (2020). Gaining independence: Cooking classes tailored for college students with autism (Practice Brief). *Journal of Postsecondary Education and Disability*, 33(4), 395–403.

Hilton, L. C., Ratcliff, K., Collins, M. D., Flanagan, J., & Hong, I. (2019). Flourishing in children with autism spectrum disorder. *Autism Research*, 12, 952–966. <https://doi.org/10.1002/aur.2097>

Horning, L. M., Hill, T., Martin, L. C., Hassan, A., Petrovskis, A., & Bohen, L. (2021). The east side table make-at-home meal-kit program is feasible and acceptable: A pilot study. *Appetite*, 160, Article 105087. <https://doi.org/10.1016/j.appet.2020.105087>

Karagiannaki, K., Ritz, C., Søbye Andreason, D., Achtelik, R., Møller, P., Hausner, H., & Olsen, A. (2021). Optimising repeated exposure: Determining optimal stimulus shape for introducing a novel vegetable among children. *Foods*, 10(5), 909. <https://doi.org/10.3390/foods10050909>

Kim, H., & Cameron, E. C. (2016). Implications of visuospatial skills and executive functions for learning mathematics: Evidence from children with autism and Williams syndrome. *AERA Open*, 2(4). <https://doi.org/10.1177/2332858416675124>

Koomar, T., Thomas, R. T., Pottschmidt, R. N., Lutter, M., & Michaelson, J. J. (2021). Estimating the prevalence and genetic risk mechanisms of ARFID in a large autism cohort. *Frontiers in Psychology*, 12, Article 668297. <https://doi.org/10.3389/fpsyg.2021.668297>

Ledford, J., & Gast, L. D. (2006). Feeding problems in children with autism spectrum disorders: A review. *Focus on Autism and Other Developmental Disabilities*, 21(3), 153–166. <https://doi.org/10.1177/10883576060210030401>

Mac Namara, R. (2021). A group-based intervention for children with special educational needs: Promoting social skills and communication through shared cooking activities in a mainstream primary school. *REACH Journal of Special Needs Education in Ireland*, 28, 3–20.

Mayes, S. D., & Zickgraf, H. (2019). Atypical eating behaviours in children and adolescents with autism, ADHD, other disorders, and typical development. *Research in Autism Spectrum Disorders*, 64, 76–83. <https://doi.org/10.1016/j.rasd.2019.04.002>

Molina-Lopez, J., Leiva-Garcia, B., Planells, E., & Planells, P. (2021). Food selectivity, nutritional inadequacies, and mealtime behavioral problems in children with autism spectrum disorder compared to neurotypical children. *International Journal of Eating Disorders*, 54(12), 2155–2166. <https://doi.org/10.1002/eat.23631>

Nadon, G., Feldman, E. D., Dunn, W., & Gisel, E. (2011). Association of sensory processing and eating problems in children with autism spectrum disorders. *Autism and Treatment*, 1, Article 541926. <https://doi.org/10.1155/2011/541926>

Pellicano, E. (2012). The development of executive function in autism. *Autism Research and Treatment*, 1, Article 146132. <https://doi.org/10.1155/2012/146132>

Postorino, V., Sanges, V., Giovagnoli, G., Fatta, M. L., Peppo, D. L., Armando, M., Vicari, S., & Mazzone, L. (2015). Clinical differences in children with autism spectrum disorder with and without food selectivity. *Appetite*, 92, 126–132. <https://doi.org/10.1016/j.appet.2015.05.016>

Purpura, J. D., Schmitt, A. S., & Ganley, M. C. (2017). Foundations of mathematics and literacy: The role of executive functioning components. *Journal of Experimental Child Psychology*, 153, 15–34. <https://doi.org/10.1016/j.jecp.2016.08.010>

Rioux, C., Lafraire, J., & Picard, D. (2018). Visual exposure and categorization performance positively influence 3- to 6-year-old children's willingness to taste unfamiliar vegetables. *Appetite*, 120, 32–42. <https://doi.org/10.1016/j.appet.2017.08.016>

Rodger, S., & Umaibalan, V. (2011). The routine and rituals of families of typically developing children compared with families of children with autism spectrum disorder: An exploratory study. *British Journal of Occupational Therapy*, 74(4), 20–26. <https://doi.org/10.4276/030802211X12947686093567>

Rodriguez, V. F. A., Sangrador, O. C., Giner, P. C., & Hernandez, S. J. (2022). Psychological and social impact on parents of children with feeding difficulties. *Analisis Dialektico Pediatrico (English Edition)*, 97(5), 317–325. <https://doi.org/10.1016/j.anpede.2022.09.004>

Shin, H., Jeon, J., & Jeong, L. E. (2024). Investigating consumers' perceived benefits and risks of meal-kit delivery service. *International Journal of Hospitality Management*, 119, Article 103715. <https://doi.org/10.1016/j.ijhm.2024.103715>

Spill, M. K., Johns, K., Callahan, E. H., Shapiro, M. J., Wong, Y. P., Benjamin-Neelon, S. E., Birch, L., Black, M. M., Cook, J. T., Faith, M. S., Mennella, J. A., & Casavale, K. O. (2019). Repeated exposure to food and food acceptability in infants and toddlers: a systematic review. *American Journal of Clinical Nutrition*, 109(7), 978S–989S. <https://doi.org/10.1093/ajcn/nqy308>

Sumpter, S., Dawson, R., Dawson, N., Nancheva, N., Ranta, R., Bhakta, D., & Mulrooney, H. (2025). Impact of a recipe kit scheme (BRITe Box) on cooking and food-related behaviours of children and families: exploring parental/carer views. *Journal of Human Nutrition and Dietetics*, 38, Article e70038. <https://doi.org/10.1111/jhn.7003>

Tonizzi, I., & Usai, C. M. (2023). Maths abilities in autism spectrum disorder: A meta-analysis. *Research in Developmental Disabilities*, 139, Article 104559. <https://doi.org/10.1016/j.ridd.2023.104559>

Veneruso, M., Varallo, G., Franceschini, C., Mercante, A., Rossetti, M., Rebuttini, A., Mantovani, A., Musetti, A., Castelnuovo, G., Nobili, L., Nardocci, F., & Plazzi, G. (2022). Short report: Cooking for autism: a pilot study of an innovative culinary laboratory for Italian adolescents and emerging adults with autism spectrum disorder. *Research in Developmental Disabilities*, 126, Article 104259. <https://doi.org/10.1016/j.ridd.2022.104259>

Vissoker, E. R., Latzer, Y., & Gal, E. (2015). Eating and feeding problems and gastrointestinal dysfunction in Autism Spectrum Disorders. *Research in Autism Spectrum Disorders*, 12, 10–21. <https://doi.org/10.1016/j.rasd.2014.12.010>

Wardle, J., Herrera, M. L., Cooke, L., & Gibson, L. E. (2003). Modifying children's food preferences: the effects of exposure and reward on acceptance of an unfamiliar vegetable. *European Journal of Clinical Nutrition*, 57(2), 341–348. <https://doi.org/10.1038/sj.ejcn.1601541>

Wolstenholme, H., Kelly, C., Hennessy, M., & Heary, C. (2020). Childhood fussy/picky eating behaviours: A systematic review and synthesis of qualitative studies. *International Journal of Behavioral Nutrition and Physical Activity*, 17(1), 2. <https://doi.org/10.1186/s12966-019-0899-x>

Wong, Y. M., Carlton, C., Paul, S., Deutsch, J., Sherman, B. J. M., Farmer, N., Hingst, R., Richardson, C., & Shea, L. (2025). Cooking with confidence for autistic youth: outcomes from a pilot program evaluation model. *BMC Research Notes*, 18, 35. <https://doi.org/10.1186/s13104-025-07105-6>