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ABSTRACT 
 

Identity refers to the unique characteristics or attributes that distinguish an individual. 

Identity crimes, such as theft or fraud, occur when someone unlawfully acquires and 

uses personal information for fraud. Identity resolution, the process of identifying and 

merging duplicates or similar entries, is critical for law enforcement agencies globally. 

However, matching identities in big data presents challenges due to inconsistencies, 

including typographical errors, naming variations, and abbreviations. Traditional record 

and identity matching techniques aim to consolidate or eliminate redundant data 

entries, ensuring accuracy and integrity. Manual identity matching is infeasible in big 

data environments. However, machine learning techniques offer a solution by 

automating pattern extraction and reducing reliance on manually coded rules.  

This research proposes a fuzzy approach for identity resolution, combining unsupervised 

learning with fuzzy string similarity metrics to improve identity matching. The model 

incorporates an iterative search process using a combination of the Soundex and Jaro-

Winkler algorithms to compute an aggregate score for names. The Soundex method has 

been enhanced to generate a six-digit numerical code, overcoming traditional 

limitations. Additionally, with the help of the FuzzyWuzzy Python library, the Edit-

distance algorithm is applied to match attributes such as “address” and “ethnicity 

description.” The Mean-Shift clustering technique dynamically generates clusters based 

on the final dataset, avoiding needing a predefined number of clusters. 

The three name variations of the iterative search process allow the categorisation of 

records into Match, Related or Close Match, and Possible Match while excluding 

duplicates. By grouping entities based on similarity scores and applying graph analysis, 

the framework accurately identifies target identities, even when links span different 

addresses. The results demonstrate the framework’s ability to enhance the speed and 

accuracy of identity resolution, offering a more efficient method than existing solutions. 

This research significantly contributes to identity resolution techniques, improving 

investigative processes with minimal information and offering valuable applications for 

law enforcement and other sectors, such as fraud detection in the financial industry.  
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CHAPTER1 

1. INTRODUCTION 
 

Fraud is a significant ongoing threat to society, the economy, law enforcement agencies, 

and other institutions globally, and it remains a complex task. It has become a great 

challenge for law enforcement agencies to identify the correct identity among the false 

identities from a colossal identity pool. For example, one might have many identities 

that can be used differently. Before diving deep into the problem solution, some basic 

understanding of key terms will be established in the sections below. 

 

1.1. Fraud and Types of Fraud 
 

Fraud refers to the act of deceiving or intentionally misleading others for personal or 

financial gain. It typically involves dishonesty, misrepresentation, or manipulation to 

deceive individuals, organisations, or systems (Albrecht W, Albrecht C, A, 2008; 

Pedneault et al., 2012). There are various types of fraud, including the following that are 

described by (Hedayati, 2012) : 

 Identity Theft: This occurs when someone steals another person’s personal 

information, such as Social Security numbers, credit card details, or bank account 

information, to commit fraudulent activities. 

 Credit Card Fraud: This type of fraud involves using another person’s credit card 

information to purchase or withdraw funds without their consent. 

 Insurance Fraud: This fraud involves false claims or exaggerating events or 

damages to receive insurance benefits illegally. 

 Investment Fraud: This fraud encompasses fraudulent schemes or practices that 

deceive investors into making decisions based on false or misleading 
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information. Ponzi schemes and pump-and-dump schemes are examples of 

investment fraud. 

 Healthcare Fraud: It refers to fraudulent activities in the healthcare industry, 

such as submitting false claims, overbilling, providing unnecessary treatments, 

or selling counterfeit drugs. 

 Tax Fraud: This involves intentionally providing false information on tax returns 

to avoid paying taxes or obtaining tax refunds illegitimately. 

 Online Scams: These frauds occur online, including email scams, phishing attacks, 

online auction fraud, and pyramid schemes conducted through online platforms. 

 Mortgage Fraud: This fraud involves providing false information or engaging in 

illegal activities to obtain a mortgage loan, such as inflating property values or 

misrepresenting financial information. 

 Wire Fraud: This fraud refers to fraudulent activities conducted through 

electronic communications, such as email or online messaging, to deceive 

individuals or organisations into sending money or sensitive information. 

 Employment Fraud: This includes fraudulent practices related to employment, 

such as fake job postings, résumé fraud, or fraudulent recruitment agencies. 

These are just a few examples of fraud, and there are many other variations and 

combinations of fraudulent activities that individuals or groups may engage in for 

personal gain. It is vital to remain vigilant and take necessary precautions to protect 

oneself from fraud. 

 

1.2. Identity and Types of Identity 
 

However, one true identity must be identified at the right time among all the identities. 

(Niblett, 2015) defined, “Identity is the root of who we are as individuals when it comes 

to the matter of trust”. Matching identity is a technique to find a relationship between 
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two or more identities of the same person. Identity can be understood in different 

contexts, and various identities exist. Here are some common types of identities: 

 Personal Identity: Personal identity refers to the unique characteristics, 

experiences, beliefs, and values that define an individual as a distinct person. It 

includes gender, age, ethnicity, nationality, sexual orientation, religion, and 

personal interests (Li and Wang, 2015). 

 Cultural Identity: Cultural identity encompasses the shared beliefs, customs, 

traditions, language, and values that shape a person’s sense of belonging to a 

particular cultural group or community. It can include ethnic, regional, or 

national identities (McCallum-Bayliss, 2004). 

 Social Identity: Social identity refers to an individual identifying with the group 

or groups. Typically, this includes family, occupation, socioeconomic status, 

political affiliation, or membership in specific communities or organisations (Li 

and Wang, 2011). 

 National Identity: National identity relates to an individual’s sense of belonging 

and allegiance to a particular nation or country. It includes a shared sense of 

history, culture, language, and citizenship (Soltani and Abhari, 2013). 

 Gender Identity: Gender identity is an individual’s internal sense of gender, 

which may or may not align with the sex assigned to them at birth. Gender 

identity can be male, female, or non-binary, among other identities along the 

gender spectrum (Li and Wang, 2015). 

 Professional Identity: Professional identity encompasses the roles, skills, and 

values of a person’s chosen profession or career. It includes professional 

affiliations, qualifications, and the sense of professional purpose and identity 

within a specific field (Yan, Bajaj and Bhasin, 2011). 

 Online Identity: With the growth of the internet and social media, online identity 

has become significant. It refers to the persona or representation of oneself 
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created through online platforms, including usernames, profiles, and online 

interactions (Yadav, Sinha and Kumar, 2019). 

 Self-identity: Self-identity encompasses an individual’s subjective understanding 

and perception of oneself, including self-image, self-esteem, and self-concept. 

Personal experiences, beliefs, and values can influence it (Chung et al., 2014). 

It is important to note that identities are complex and multidimensional, and individuals 

may identify with multiple identities simultaneously. Additionally, identities can evolve 

and change over time as individuals develop and experience new aspects of their lives. 

 

1.3. Types of Identity Crimes 
 

Identity refers to the distinguishing characteristics, traits, or attributes that make an 

individual unique. Identity crimes, also known as identity theft or fraud, occur when 

someone wrongfully obtains and uses another person’s personal information for fraud. 

Using this stolen information can commit various types of identity crimes described by 

(Albrecht W, Albrecht C, A, 2008; Hedayati, 2012) , such as: 

 Financial Identity Theft: This involves using another person’s personal 

information, such as Social Security numbers, credit card details, or bank account 

information, to make unauthorised financial transactions, open fraudulent 

accounts, or apply for loans or credit cards. 

 Medical Identity Theft: In this type of identity crime, someone fraudulently uses 

another person’s personal information to receive medical services, prescriptions, 

or insurance coverage. It can lead to incorrect medical records, fraudulent 

insurance claims, and potential health risks for the victim. 

 Criminal Identity Theft: This occurs when someone uses another person’s 

identity during the commission of a crime. The criminal can provide false 
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identification to law enforcement or use the stolen identity to avoid detection or 

prosecution. 

 Synthetic Identity Theft: Synthetic identity theft involves creating a new identity 

by combining real and fake information. Fraudsters may use a combination of 

stolen and fabricated details to establish credit or conduct fraudulent activities. 

 Child Identity Theft: This type of identity theft targets minors. The perpetrator 

may use a child’s personal information, such as their Social Security number, to 

open fraudulent accounts or commit financial fraud. Since children typically have 

limited financial activity, their stolen identities can go undetected for years. 

 Social Media Identity Theft: With the increasing use of social media, individuals’ 

personal information can be exploited. Fraudsters may use stolen identities to 

create fake profiles, conduct scams, or spread malicious content. 

 Tax Identity Theft: Tax identity theft occurs when someone uses another 

person’s Social Security number or other identifying information to file 

fraudulent tax returns and claim refunds illegally. 

It is crucial to safeguard personal information and regularly monitor financial and 

personal records to detect any signs of identity theft. Taking preventive measures like 

using strong passwords, being cautious of phishing attempts, and shredding all personal 

documents can help mitigate the risk of falling victim to identity crimes. 

 

1.4. Machine Learning 
 

Machine learning is a subfield of artificial intelligence that focuses on developing 

algorithms and models that enable computers to learn and make predictions or 

decisions without explicit programming. Machine learning algorithms are designed to 

automatically analyse and interpret complex patterns and relationships in data and use 

that knowledge to perform specific tasks or make predictions. Machine learning can be 
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broadly categorised into the following types (Christopher M. Bishop, 2006; Hastie, 

Tibshirani and Friedman, 2009): 

 

1.4.1. Supervised Learning 
 

Supervised learning involves training a model on labelled data, where corresponding 

desired outputs or labels accompany the input data. The model learns from this labelled 

data and generalises the patterns to make predictions or classify new, unseen data. 

Examples of supervised learning algorithms include linear regression, logistic regression, 

decision trees, random forests, support vector machines (SVM), and neural networks 

(Christen, Vatsalan and Wang, 2016; Jurek et al., 2017). 

 

1.4.2. Unsupervised Learning 
 

Unsupervised learning involves training a model on unlabelled data, where the 

algorithm must discover patterns or structures in the data without prior knowledge of 

the outcomes or labels. Unsupervised learning algorithms aim to find meaningful 

representations, groupings, or relationships in the data. Clustering algorithms, such as 

k-means and hierarchical clustering, Self-organising Maps, and dimensionality reduction 

techniques, such as principal component analysis (PCA), are typical examples of 

unsupervised learning (Kohonen, 1990; Du, 2010). The supervised learning will be 

discussed in later chapters. 

 

1.4.3. Semi-Supervised Learning 
 

Semi-supervised learning combines elements of supervised and unsupervised learning. 

It involves training a model on a mixture of labelled and unlabelled data. The model 

learns from the labelled data to predict new, unseen data and uses the unlabelled data 

to enhance its understanding of the underlying patterns or structures (Sun, 2013). 
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1.4.4. Reinforcement Learning 
 

Reinforcement learning involves training an agent to interact with an environment and 

learn optimal actions to maximise a reward signal. The agent learns through trial and 

error, receiving feedback as rewards or penalties based on its actions. Reinforcement 

learning is commonly used in robotics, game-playing, and autonomous systems 

(Christopher M. Bishop, 2006). 

Machine learning algorithms can be applied to a wide range of tasks, including: 

 Classification – Predicts the class or category of an input based on its features 

and, for example, classifying emails as spam or non-spam (Jurek et al., 2017). 

 Regression – Predicts a continuous value or outcome based on input features, 

for example, predicting housing prices based on location, size, and number of 

rooms (Yan et al., 2020). 

 Clustering – Groups similar data points based on their attributes or 

characteristics, for example, segmenting customers into distinct groups based on 

their purchasing behaviour (Bezdek, 1981). 

 Anomaly detection – Identifies rare or abnormal data points or events that 

deviate from the norm, for example, detecting fraudulent transactions or 

network intrusions (Studiawan, Payne and Sohel, 2017). 

 Recommendation systems – Recommends items or content to users based on 

their preferences and behaviour, for example, suggesting movies or products 

based on previous interactions (Ghahramani, 2015). 

 Natural Language Processing (NLP) – Analyse and understand human language, 

including tasks like text classification, sentiment analysis, and machine 

translation (Liao and Zhao, 2019). 

 Computer Vision – Extract meaningful information and patterns from images or 

videos, including tasks like object recognition, image segmentation, and facial 

recognition (Liu et al., 2013). 
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Machine learning has become increasingly popular and widely used across various 

industries and domains, driving advancements in data analysis, automation, and 

decision-making. 

 

1.5. Understanding Basic Concepts of Matching 

Techniques 
 

1.5.1. Record Matching 
 

Record matching, or entity resolution or deduplication, identifies and merges duplicate 

or similar records within a dataset. In record matching, various attributes or fields in 

records are compared to determine if they likely refer to the same entity. The goal is to 

consolidate or eliminate redundant or duplicate data entries to ensure data accuracy 

and integrity. The comparison can be based on criteria such as name, address, phone 

number, or other identifying information. By identifying and merging duplicate records, 

record matching helps create a clean and consolidated dataset that avoids data 

redundancy and inconsistency (Bharambe, Jain and Jain, 2012). 

For example, in a customer database, record-matching techniques can identify and 

merge duplicate entries for the same customer based on criteria such as name, address, 

phone number, or other identifying information. Usually, this helps create a clean and 

consolidated database with accurate customer information. The following section will 

briefly highlight the records matching techniques. 

 

1.5.1.1. Records Matching Techniques 
 

 Deterministic Matching 
 

This technique uses strict rules or algorithms to compare specific fields or attributes 

between records. It relies on exact matches or predefined rules to identify duplicates or 
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similarities, for example, by comparing Social Security numbers or unique identifiers to 

find exact matches (Sayers et al., 2016). 

 

 Probabilistic Matching 

 

This technique assigns probabilities or weights to the similarity of different attributes 

between records. It considers fuzzy matches and calculates a likelihood score to 

determine the similarity or likelihood of a match. Probabilistic matching techniques use 

algorithms like the Jaro-Winkler distance or the Levenshtein distance to quantify the 

similarity between strings or attributes (Fellegi and Sunter, 1969; Sayers et al., 2016). 

 

 Rule-Based Matching 
 

This technique employs predefined rules or logic to compare and match records. Rules 

can be defined based on specific criteria, such as matching names, addresses, or phone 

numbers. Rule-based matching allows for flexibility in defining the conditions and 

thresholds for matching (Christen, 2012). 

 

 Machine Learning-Based Matching 
 

Machine learning techniques can be applied to record matching by training models on 

labelled data. These models learn patterns and similarities from the data to identify 

potential matches. Supervised learning algorithms, such as decision trees, random 

forests, or support vector machines, can be used for matching records (Christen, 

Vatsalan and Wang, 2016). 

 

1.5.2. Identity Matching 
 

Identity matching, on the other hand, focuses on verifying or establishing the identity of 

an individual or entity. It involves comparing different attributes or data points to 
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determine if they belong to the same identity or if they match against a known identity 

(Soltani and Abhari, 2013).  

Identity matching can be used in various contexts, such as stated by (Boongoen and 

Shen, 2009): 

o Law enforcement agencies use fingerprints or DNA matching to identify suspects 

or link crime scenes. 

o Financial institutions verify the identity of customers through “Know Your 

Customer (KYC)” processes, comparing personal information and identification 

documents. 

o Online platforms use identity-matching techniques to authenticate users during 

account registration or login processes. 

Identity matching techniques may employ various data points, including personal 

identifiers, biometric data, photographs, or unique identifiers like Social Security or 

passport numbers. The goal is to ensure accurate identification and prevent fraud or 

unauthorised access. 

While record matching focuses on identifying and merging duplicate records within a 

dataset, identity matching focuses on establishing the identity of individuals or entities 

by comparing data points to known identities or reference data. Both techniques serve 

distinct purposes in data management and identification processes. 

 

1.5.2.1. Identity Matching Techniques 
 

 Biometric Matching 
 

Biometric matching involves comparing biometric data, such as fingerprints, iris 

patterns, or facial features, to establish identity. Biometric systems use 

mathematical algorithms to analyse and match the unique characteristics of an 

individual’s biometric data (Jain, Ross and Prabhakar, 2004). 
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 Document Verification 
 

This technique involves comparing identification documents, such as passports or 

driver’s licenses, to establish identity. It may involve manual verification by experts 

or automated systems that analyse the document’s security features and data 

consistency or compare it against known reference data (Wang and Dong, 2020). 

 

 Knowledge-Based Authentication 
 

Knowledge-based authentication involves verifying an individual’s identity through 

information they should know, such as personal identification questions, passwords, 

or PINs. This technique assumes that the person claiming an identity possesses 

knowledge specific to that identity (Jain, Ross and Prabhakar, 2004). 

 

 Multifactor Authentication 
 

Multifactor authentication combines multiple identity verification techniques. It 

typically involves a combination of something the individual knows, e.g., a password, 

something they have, e.g., a smart card or mobile device, or something they are, 

e.g., biometric data. By requiring multiple factors, multifactor authentication 

enhances the security and reliability of identity matching. 

It is important to note that the selection of matching techniques depends on the 

specific context, data quality, available resources, and desired level of accuracy. 

Different techniques may be employed to achieve accurate and reliable matching or 

identification results (Jain, Ross and Prabhakar, 2004). 

 

 



1. INTRODUCTION 

22 
 

1.5.3. Deterministic Matching 
 

Deterministic matching is a technique used in record matching where strict rules or 

algorithms are applied to compare specific fields or attributes between records. The goal 

is to identify exact matches or predefined patterns to determine if two records refer to 

the same entity. Deterministic matching relies on precise matching criteria and 

predefined rules to identify duplicates or similarities. In deterministic matching, specific 

fields, such as names, addresses, phone numbers, or unique identifiers, are compared 

between records. The matching process follows predetermined rules, such as requiring 

an exact match or a specific pattern to consider records as a match, for example, by 

comparing Social Security numbers or unique customer IDs to find exact matches. 

Deterministic matching is often faster and more straightforward than probabilistic 

matching as it relies on strict rules (Aiken et al., 2019). However, it may miss potential 

matches if the data has inconsistencies or minor variations, such as misspellings or 

formatting differences. This technique is effective when the data quality is high and 

exact matches or specific patterns are sufficient to identify duplicates or similarities. 

 

1.5.3.1. Deterministic Matching Techniques 
 

Deterministic matching techniques are to identify exact matches or predefined patterns 

between records. These techniques apply strict rules or algorithms to compare specific 

fields or attributes. Here are some commonly used deterministic matching techniques: 

 

 Exact Matching 
 

Exact matching involves comparing specific fields or attributes between records to 

find exact matches. This technique requires the values in the compared fields to be 

identical for the records to be considered a match, for example, by comparing 

unique identifiers like Social Security numbers or customer IDs to find exact matches 

(Al-khamaiseh and Alshagarin, 2014). 
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 Rule-Based Matching 
 

Rule-based matching involves defining predefined rules or logic to compare and 

match records. The rules can have specific criteria or patterns that must be met for 

two records to be considered a match, for example, matching records based on exact 

matches of names, addresses, phone numbers, or a combination of multiple 

attributes (Yi et al., 2020). 

 

 Key-based Matching 
 

Key-based matching involves selecting a specific attribute or set of attributes as the 

key identifier for matching records. Records with the same key value are considered 

a match, for example, by using a unique customer ID or a combination of attributes 

like name and address as the key for matching customer records (Dey, Mookerjee 

and Liu, 2011). 

 

 Token-based Matching 
 

Token-based matching involves breaking down attributes into smaller units or 

tokens and comparing these tokens between records. Tokens can be words, phrases, 

or specific patterns. The matching is based on the presence or absence of specific 

tokens or the order of tokens. Token-based matching helps handle variations or 

inconsistencies in textual attributes (Cohen, Ravikumar and Fienberg, 2003). 

 

 Dictionary-based Matching 
 

Dictionary-based matching involves creating a predefined dictionary or reference 

dataset with known values or patterns. Records are matched by comparing their 

attribute values against the entries in the dictionary. This technique is commonly 

used for matching standard names, addresses, or other reference data (Yi et al., 

2020). 
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 Hierarchical Matching 
 

Hierarchical matching involves establishing a hierarchical structure or grouping 

records based on specific attributes or criteria. Matching is performed at different 

levels of the hierarchy, allowing for more efficient matching by narrowing down the 

search space. This technique is effective when dealing with large datasets 

(Ravikumar and Cohen, 2004). 

 

1.5.4. Probabilistic Matching 
 

Probabilistic and fuzzy matching techniques are used in record matching to identify 

potential matches by assigning probabilities or weights to the similarity of different 

attributes between records. It considers fuzzy matches and calculates a likelihood score 

to determine the similarity or likelihood of a match. Probabilistic matching considers 

variations, inconsistencies, or errors in the data. It uses algorithms that measure the 

similarity between strings or attributes, such as the Jaro-Winkler distance or the 

Levenshtein distance. These algorithms quantify the degree of similarity between two 

strings by calculating the number of transformations required to convert one string into 

the other. The probabilistic matching process involves comparing multiple attributes 

between records and assigning weights or scores to each attribute’s similarity. The final 

match score is calculated based on the combination of attribute scores and a threshold 

set to determine whether the records match. The threshold can be adjusted based on 

the desired level of precision and recall (Ravikumar and Cohen, 2004). It can identify 

potential matches that deterministic matching might overlook. However, it may also 

introduce false results if the threshold is too low or the data quality is poor. 

 

1.5.4.1. Probabilistic Matching Techniques 
 

Probabilistic and fuzzy matching techniques are used to identify potential matches 

between records by assigning probabilities or weights to the similarity of different 
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attributes. These techniques allow for flexibility in handling variations, inconsistencies, 

or errors in the data. Here are some commonly used probabilistic matching techniques: 

 

 Jaro-Winkler Distance 
 

The Jaro-Winkler distance is a string similarity measure that calculates the similarity 

between two strings by comparing their characters’ positions and transpositions. It 

assigns a similarity score between 0 and 1, with 1 indicating a perfect match. The 

Jaro-Winkler distance compares names or other textual attributes (Winkler, 1994). 

 

 Levenshtein Distance 
 

The Levenshtein distance, also known as the edit distance, measures the minimum 

number of single-character edits required to transform one string into another. It 

calculates a distance value, and a similarity score can be derived by taking the inverse 

of the distance. The Levenshtein distance helps compare attributes with potential 

misspellings or slight variations (Ristad and N.yianilos, 1998). 

 

 Soundex 
 

Soundex is a phonetic algorithm that converts words or names into a four-character 

code based on pronunciation. It allows for matching based on similar-sounding 

names, even with different spellings. Soundex matches names or surnames that 

have different spellings but sound similar (A. J. Lait and Randell, 1996). 

 

 N-gram Matching 
 

N-gram matching involves breaking strings into smaller n-gram components and 

comparing these components between records. Similarity scores can be calculated 

by comparing the occurrence and position of n-grams. This technique helps match 

textual attributes that may have variations or typographical errors (Kukich, 1992). 
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 Blocking 
 

Blocking is a technique that divides records into smaller subsets or blocks based on 

specific attributes or criteria. It reduces the number of record pairs that must be 

compared, focusing only on records within the same block. Blocking helps to 

improve the efficiency and speed of probabilistic matching algorithms (Kopcke and 

Rahm, 2010). 

 

These probabilistic matching techniques can be combined and customised based on the 

specific requirements and characteristics of the matched data. The choice of technique 

depends on the nature of the attributes, data quality, and the desired level of precision 

and recall in the matching process. It is often necessary to experiment and fine-tune the 

parameters and thresholds to achieve the desired matching accuracy. Both 

deterministic matching and probabilistic matching techniques have their advantages 

and limitations. The selection of the appropriate matching technique depends on the 

specific use case and the quality and nature of the data being matched. 

 

1.5.5. Record Linkage 
 

Record matching and record linkage are separate concepts in data management and 

analysis. Record linkage, also known as data linkage or entity resolution across datasets, 

is the process of finding and connecting records across multiple datasets that refer to 

the same entity. It involves linking or associating records from different sources 

representing the same real-world entity. Record linkage goes beyond record matching 

within a single dataset and involves integrating and connecting data from various 

sources. The goal is to identify and establish connections between records that pertain 

to the same entity, even if the attribute values or formats may differ across datasets. 

Record linkage techniques typically involve comparing attributes or fields across 

datasets and assigning similarity or matching scores to determine the likelihood of a 

match. These techniques may use deterministic or probabilistic matching algorithms to 
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identify potential matches and establish links between records. Record linkage is used 

in scenarios such as data integration, data warehousing, or data analytics, where data 

from different sources must be combined and linked for comprehensive analysis or 

decision-making (Culotta and McCallum, 2005). 

 

1.6. Understanding Identity Resolution 
 

Traditionally, to match two or more records for similarities, some attributes are 

required, including name, date of birth, nationality, passport number and address. 

However, matching two records using attributes is insufficient for a person’s true 

identity. For example, matching records by name will not resolve this issue as there can 

be many similar names, such as in China where “Wang”, “Wu”, and “Li” are common 

names (Lisbach and Meyer, 2013). While (Wang, Chen and Atabakhsh, 2004) stated that 

each entity has attributes and can be identified by these critical attributes, e.g., ID, 

name, and date of birth. These are used in traditional resolution techniques to describe 

the individual and are available in traditional record management systems. However, 

the traditional resolution techniques are ineffective due to typographical errors and 

intentional issues such as data entry errors and intentional errors for fraud. Many other 

reasons make it challenging to find the correct identity. According to (Barkay and Rein, 

2015) analysis, a massive amount of unstructured, incomplete, and incorrect data is 

available publicly to extract the required information, leading to a monumental task. 

Differentiating and combining are the two main tasks for detecting the true identity by 

finding the association between the records.  

It is a must for law enforcement agencies to understand the flow of information 

between individuals and other sources. This analysis helps to identify lead actors, their 

roles and specialisations, communication channels, knowledge distribution, and 

ultimately, vulnerabilities in the organisational structure that the agency can exploit. It 

requires large datasets and a stream of information to analyse the identity by following 

any change in the information or activity pattern, which can give some indication of the 

information flow of an individual to identify, such as travelling or financial information. 



1. INTRODUCTION 

28 
 

For example, an individual may stay under the radar if viewed as isolated. However, 

when considering regular meetings with unrelated people connected to a bank account, 

showing regular or irregular transfer patterns over a specific company may reveal a very 

different picture and be flagged as the lead offender.  

It will help police question and track an individual for any criminal activity and match the 

identity in the database to find other links, associations and connections if the individual 

profile already exists. However, if this individual has changed the name from Billy Smith 

to Bobby Jones or changed these names concurrently, then in that case, it is a complex 

task for law enforcement agencies to identify and match the correct identity from the 

database. Because the change of name may mislead the police, and the lack of tools 

available to detect true identity will not be easy, primarily when the name has been used 

concurrently on different occasions. Figure 1.1 depicts this type of identity fraud pattern 

as described by (Adderley, 2015). 

 

 

Figure 1.1 - Identity Resolution Scenario (Adderley, 2015) 

 

According to the US report, many cases documented that terrorists and other criminals 

around the world commit identity crimes to achieve their financial needs and execute 

different attacks in the real as well as in the cyber world (US Department of State, 2008). 

Criminals can easily have fake identities, commonly used to mislead law enforcement 

agencies. The social contextual information can improve the resolution accuracy in 

addition to traditional identity attributes for identity matching (Bhattacharya and 

Getoor, 2007). Thus, detecting the identity fraud pattern is a very critical task in criminal 

structure as criminals use bogus identities to achieve malicious goals by hiding true 

identities, and such situations are critical for national security. Finding the solution for 
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identity duplication is critical as it will help fight terrorism and any other crime. Because 

false identities are very commonly used for crime and terrorism, this can mislead law 

enforcement agencies by having multiple identities (Li and Wang, 2015). (John S. Pistole, 

2003)  emphasised that law enforcement agencies must determine an individual identity 

to detect potential terrorists and prevent terrorism from occurring.  

Detecting fraud becomes increasingly complex when the data grows with time. 

Traditional record-matching techniques can not accurately find the relationship within 

the records due to the poor quality of input data, with a chance of human typing errors 

and missing or incomplete information. As discussed above, the probabilistic and 

deterministic techniques can be used for record matching. The probabilistic technique 

typically uses training data to match records, which can result in lower accuracy. To 

resolve this issue, the system must be retrained each time to process the entire dataset 

(Sayers et al., 2016). Meanwhile, the deterministic technique uses predefined rules to 

match the record. If the record does not satisfy the predefined rule, no match will be 

found, and no data will be collected (Jonas, 2006).  

According to (Duncan et al., 2015), both these techniques used for record matching and 

linkage divide the record into three states: “Match, No Match and Possible Match”, 

where the possible match might not be accurate if the information has been changed 

over time. Therefore, it will lead to an incorrect match being flagged as a possible match. 

According to (Godby et al., 2009), record matching refers to entity resolution, which 

focuses on information extracted using names, while identity resolution is a technique 

to determine the extracted information belongs to whom and how it is linked to others 

in real-world associations.  

Detecting the relationship between different data elements and entities while scanning 

individual records to match data is vital. Nevertheless, it is also essential to consider the 

difference between available datasets from different resources when matching any 

record, which might lead to another problematic task due to different dataset standards. 

According to  (Jonas, 2006), this will lead to finding the uniqueness and commonalities 

between different datasets from different sources to answer who is who and who knows 

whom. Considering the above, it can lead to identity resolution rather than simply 

matching records, as finding link associations between records is essential for finding 
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true identity. Therefore, (Jonas, 2006) defined the semantic reconciliation process as 

identifying an individual identity as identity resolution, even if it is described differently.  

It can be easily manipulated to distinguish between different records in a small volume 

dataset and find any link association between them. It is difficult for a human brain to 

accurately and efficiently match the identity as the data grows in the dataset. In a large 

dataset, matching and identifying the record is challenging; therefore, achieving this 

goal from computers using machine learning is a complex task. A step towards this task 

involves machine learning and data mining techniques such as supervised and 

unsupervised learning. The data mining techniques help to extract useful information 

and related patterns from the dataset, which can help in machine learning. Data mining 

uses link analysis to associate the data in a graph to detect the related patterns and find 

the links between them. It identifies any abnormal activity or occurrence (Brown and 

Hagen, 2002). In machine learning, the supervised learning technique uses a known set 

of predefined patterns to identify similarities in the new records. The unsupervised 

learning technique does not use predefined patterns to find similarities. It focuses on a 

dynamic algorithm to detect similarities in the object, which starts behaving differently 

from objects to which they were similar in the past. (Li and Wang, 2015) defined identity 

resolution as an entity resolution type used for identity management. In different 

domains, an entity resolution is known as record linkage and deduplication. A white 

paper published by (Dun & Bradstreet, 2013) describes that identity resolution helps in 

solid decision-making and detecting the correct information at the right time to make 

the right decisions. It brings a standard within the datasets by defining the entity. It 

allows performing different processes and techniques for analysis to identify entities. 

Identity Resolution is matching information and detecting, identifying, and considering 

past information associations for the target entity. According to (Edwards et al., 2016), 

linking a person's different variations of records to find the real-world identity is called 

identity resolution. 

Therefore, this research establishes and introduces machine learning techniques and 

algorithms to match and identify related records. The following section will discuss the 

literature review to help understand the gaps.   
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1.7. Literature Review 
 

Some foremost and serious incidents, such as the 9/11 New York terror attack in 2001 

and the 7/7 London bombing in 2005, led law enforcement agencies, independent 

organisations, and institutions to rethink to find the best possible approach for 

harvesting and detecting the identities by finding similarities and links associations 

between multiples identities which are referring to one real identity. The only way to 

fulfil this approach is to enable a computer system intelligent enough to detect, identify, 

and find an association between different records using different record-matching 

techniques in less time and with less effort to produce positive outcomes. 

(Ananthakrishna, Chaudhuri and Ganti, 2002) proposed eliminating duplicates in the 

dataset by applying dimensional hierarchy over the link relations such as city, state, and 

country. This approach only matches the identity record if both identities belong to the 

same area; otherwise, the record will not be matched against similar entries in the data 

set for different areas. 

Similarly, (Brown and Hagen, 2002) introduced the record-linking data association 

method to match the criminal records referring to the same record. In this method, the 

two records are compared by calculating the total similarity using the sum of the 

weighting of matching attribute values. However, this requires more computing power 

as the dataset increases with time and will not filter the referring records efficiently. It 

might also ignore records on fewer similarity measurements. Pasula et al., 2003 

introduced a citation-matching approach to match the records using the foreign keys in 

the relational database using the probabilistic relational model (PRM). The problem with 

the rule-based matching approach is that it relies on the data quality in the dataset. The 

actual match will not be accurately generated if the dataset is incomplete or missing 

information.  

Wang, Chen and Atabakhsh, 2004 proposed to compare four attributes of an individual, 

such as full name, date of birth, address, and social security number, for detecting 

identities and to combine the total similarity score. He introduced a record linkage 

algorithm for detecting deceptive identities. However, this approach is limited and 

cannot produce accurately matched results if one or more attributes are missing from 
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the dataset. To eliminate the duplicate records, (Culotta and McCallum, 2005) proposed 

another rules-based model called “the conditional random field model (CRF)” to 

measure the associations among other different entities. However, this approach failed 

and could not find the links between the same entity type (Li and Wang, 2015). One of 

the graph-based methods proposed by (Bhattacharya and Getoor, 2006) is that between 

each pair of reference entities, the relational graph matching is based on similarity with 

the same attribute that matches the similarity measure. Furthermore, (Bhattacharya 

and Getoor, 2007) enhanced the proposed approach by adding a collective entity 

resolution algorithm to match social information based on the already matched records 

to reuse for matching more records and not just for comparing two records.  

Machine learning technique extracts the patterns from the training data rather than 

manually coding the rules to match the record in the data set. After extracting patterns 

from the record, the system creates its reference to match new records in the dataset 

(Li and Wang, 2015). To match user profiles from social media websites such as 

Facebook and Twitter, (Bartunov et al., 2012) proposed combining user profiles using 

different attributes into a graph by detecting the social linkages between these two user 

profiles using a CRF-based approach. According to (Li and Wang, 2015), IBM’s InfoSphere 

Identity Insight is one of the best commercial applications for entity resolution and data 

analysis. The application uses a set of rules predefined in the system by humans to 

analyse the identities using sophisticated algorithms. If the two given identities have 

identical attributes, such as dates of birth and last names, and the threshold value is 

higher than the matching score, the system will combine them.  

The main issue with the rules-based system is creating a set of rules, which is time-

consuming and limited for specific attribute values. Therefore, different attributes 

within different datasets might not be able to be compared. 

 

1.7.1. State of The Art - An Entity Resolution 
 

Entity resolution is essential to identity resolution to increase data quality. Poor data 

quality is a consistent issue, especially in the policing system. Suppose errors are 
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introduced to the dataset when data enters the system, and the object is identified 

incorrectly. In this case, it may affect the final results significantly. Therefore, it is 

worthwhile to explore different entity resolution techniques and approaches. In simple 

words, entity resolution extracts the correct record from the data set while removing 

any record duplication to purify the result. According to (Kopcke and Rahm, 2010), entity 

resolution refers to record linkage, matching, reference reconciliation, and duplication 

identification. Identifying the real-world entity from the given entities is challenging due 

to the poor data quality. (Winkler, 1994) states that this problem was initially addressed 

by Newcombe in 1959, and later, in 1969, Fellegi and Sunter refined it to do entity 

matching in the structured data.  

The main challenge in entity resolution is the mismatch in the data due to typographical 

errors and different variations of string appearing in the dataset. There are different 

methods have been developed to tackle such issues, and the main techniques are 

explained below: 

 

1.7.1.1. Entity Resolution Techniques 
 

 Character-based Similarity Metrics 
 

Edit distance is the distance between two strings calculated by applying insertion, 

deletion, or substitution operations to match one string to another. It is also called the 

Levenshtein distance, as Levenshtein introduced it in 1965  (Elmagarmid, Ipeirotis and 

Verykios, 2007). Suppose the distance of strings is less than a set threshold value by 

applying the three edit operations. In this case, the strings are considered a close match 

to each other with slight variation. The Edit distance matches the value of two attributes 

to see if they represent the same information for the same entity. (Needleman and 

Wunsch, 1970), They have slightly modified the edit distance by introducing different 

cost values for different edit operations on the string. While (Ristad and N.yianilos, 1998) 

introduced an algorithm that automatically calculates the cost for equivalent words 

written differently. However, Edit distance fails when strings are in short form or any 
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abbreviation is used instead of the complete word because the three edit operations 

will not calculate the cost correctly due to this issue. 

Affine gap distance is described by (Elmagarmid, Ipeirotis and Verykios, 2007) as the gap 

between two strings that consider the abbreviated or shortened string calculation which 

edit distance cannot perform. It applies two additional edit operations, Open Gap and 

Extend Gap, to find the distance between two string values (Waterman, Smith and 

Beyer, 1976). The Open Gap determines the starting point in the string from where the 

gap should be inserted instead of inserting a character to convert an abbreviated string 

to another string. The Extend gap is used to extend the gap by adding one extra space 

in the string. The penalty of the extended gap is smaller than the open gap, so the affine 

gap of the two strings where one is an abbreviated variation of another string will be 

smaller than the original edit distance (Elmagarmid, Ipeirotis and Verykios, 2007). 

Therefore, (Bilenko et al., 2003) introduced an algorithm to train an edit distance model 

using an affine gap technique. Suppose the two strings are written differently by 

exchanged character positions. In this case, the affine gap fails to calculate the cost and 

cannot match the strings. For example, the two strings “Belly Smith” and “Smith B” will 

have a significant cost value, which will assume that the two strings are not the same 

and will find a close similarity to produce the match for an entity. 

The Smith-Waterman distance was introduced in 1981 to find the similarity of two 

strings by matching the substring. In this method, the two strings are aligned to calculate 

the substrings and their similarity by using the edit operations, and the two strings are 

compared (Smith and Waterman, 1981). There is a penalty for the alignment of the 

strings if any mismatch of characters is found. In contrast, any match of characters in 

the strings will generate the score for the two aligned strings. Smith-waterman has 

extended the edit distance and affine gap distance algorithms to find the similarity 

between two strings where the start and end of the strings get lower cost for 

mismatches while mismatches in the middle of the string get higher cost (Elmagarmid, 

Ipeirotis and Verykios, 2007). The algorithm runs in deep detail to find the match in 

substrings that show the similarity between two strings. However, computing the cost 

requires enormous processing power.  
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The Jaro distance was introduced to compare the first and last names (Elmagarmid, 

Ipeirotis and Verykios, 2007). The Jaro distance finds the number of familiar characters 

between two strings and tracks the order of the familiar characters (Gomaa and Fahmy, 

2013). The Jaro distance algorithm was enhanced by (Winkler, 1990) in which the name 

prefix gets the weighting higher than the surname matches weighting. This variation of 

the Jaro distance is called the Jaro-Winkler distance (Gomaa and Fahmy, 2013). The Jaro 

and Jaro-Winkler distance algorithms cannot perform well where there is a positional 

difference between two strings and more than the allowed change. e.g., in the two 

strings “Alice bruce Bob” and “Bob bruce Alice”, the allowed positional change is six. 

However, the character `B’ in the string “Bob” has a 12-position difference. So only the 

string “Bruce” will match between two strings, and the algorithms will not find the better 

match (Elmagarmid, Ipeirotis and Verykios, 2007). 

Q-gram distance is used for finding two strings’ similarity by calculating the similarity 

between the small substring sequences, and these sequences are referred to as q-grams 

(Barrón-Cedeño et al., 2010). As described by (Ukkonen, 1992), the string is divided into 

a sequence of substrings having length q. For the string “Hello” where q = 2,  the q-gram 

sequence will be `He’, `el’, `ll’, `lo’. The matching calculation is done on the q-grams 

sequences from two strings where the position and occurrence of sequences are 

unimportant. The strings will get a high score if both strings have the exact spelling or a 

close match. However, q-gram can lead to a false match by scoring high for two strings, 

“Chris” and “Rishi”, which will get a high score even if they differ. The higher value 

should be used for q-gram, i.e., q = 3 or more, to tackle such an issue. So, the sequence 

of q-gram will contain more characters for matching. Q-gram has different variants, such 

as trigrams, bigrams, and unigrams, for text matching and correcting spelling errors 

(Kukich, 1992). Sutinen and Tarhio, 1995 enhanced the q-gram algorithm even to record 

the position of the q-gram of the string, and it is called positional q-gram (Gravano, 

Ipeirotis, H. V. Jagadish, et al., 2001; Gravano, Ipeirotis, Hosagrahar Visvesvaraya 

Jagadish, et al., 2001) proposed to efficiently use the positional q-gram for locating 

similar or matching strings in the relational database. Nevertheless, any slight change in 

the strings can quickly decrease the matching accuracy of q-gram, and a low score can 

be given to strings. 
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 Token-based similarity metrics 
 

An atomic string algorithm was proposed by (Monge and Elkan, 1996) to match text 

fields which contain alphanumeric characters enclosed within punctuation characters. 

The two strings only match if both are equal or if one string is the prefix of another. The 

two fields’ similarity can be calculated by the number of matched atomic strings divided 

by the average number of atomic strings (Elmagarmid, Ipeirotis and Verykios, 2007). The 

two fields and strings are A = “Comput. Sci. & Eng. Dept., University of California, San 

Diego” and B = “Department of Computer Science, Univ. Calif., San Diego”. So by 

excluding the stop sign (dot) from the strings and where k = 6, the first field string 

matches part of the second field string such as Comput., Sci., San, Diego, Univ. and Calif. 

However, no matches were found for the words Eng. and Dept. (Monge and Elkan, 

1996). 

The WHIRL system was introduced by (Cohen, 1998) that adopts from information 

retrieval the cosine similarity combined with the tf.idf weighting scheme to compute the 

similarity of two fields. The cosine similarity metric works well for many entries but is 

insensitive to the location of words, thus allowing natural word moves and swaps, e.g., 

“John Smith” is equivalent to “Smith, John”. Also, the introduction of frequent words 

only minimally affects the similarity of the two strings due to the low idf weight of the 

frequent words. For example, “John Smith” and “Mr. John Smith” would have similarities 

close to one another. Unfortunately, this similarity metric does not capture word 

spelling errors, especially if they are pervasive and affect many of the words in the 

strings. For example, the strings “Compter Science Department” and “Deprtment of 

Computer Scence” will have zero similarity under this metric. 

TF/IDF - Term Frequency or Inverse Document Frequency is a measure of speech and 

language processing discussed by (Cohen and Richman, 2002; Bilenko and Mooney, 

2003) to determine the frequency of a string and to favour matches of less standard 

strings, penalising more common strings. This match requires knowledge or derivation 

of each attribute’s frequencies. For example, when transcribing an address, it may be 

common for an “Avenue” to be misrecorded as a “Street.” If so, the matching criteria 

may choose to ignore the most common words in this field, i.e., “Street,” “Avenue,” and 
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“Lane,” instead of concentrating on the more critical number and name (Brizan and 

Tansel, 2006). 

Q-gram with tf.idf was an extension to WHIRL and was proposed by (Gravano et al., 

2003) for handling spelling errors in the string using the q-grams technique rather than 

words. The two strings are less affected by spelling errors by using the sequence of q-

gram, such as strings “Gteway Communications” and “Comunications Gateway” gets 

high similarity even if the word gets different arrangements in the string. Also, the 

word’s insertion and deletion were handled using the q-gram sequences as the two 

strings “Gateway Communications” and “Communications Gateway International” are 

highly similar. In contrast, the word “International” would have a low weight due to its 

appearance. 

 

1.7.1.2. Record De-duplication Approaches 
 

The supervised learning approach requires a set of training data samples for the records 

to be labelled as matched or not matched. A CART algorithm was introduced by 

(Cochinwala et al., 2001) by using the classification and regression trees based on a 

supervised approach, and the data is represented in the different relevant classes. 

(Cohen and Richman, 2002) introduced a system based on a supervised approach to 

cluster the records referring to the real-world entity by learning from the training data 

of the records. An adaptive distance function was used to learn from the training data 

and represent the records on the graph as nodes. Similarly, (Singla and Domingos, 2004) 

proposed to use the attribute values on the graph as nodes instead of the whole record 

as a node on the graph. Doing so allows the values to be transmitted to other nodes, 

and duplicate detection can be improved. Suppose the two records “Google, 

MountainView, CA” and “GoogleInc, MountainView, California” are equal. It means the 

words of the string “CA” and “California” will also be equal. The main issue with the 

supervised approach is acquiring a sufficiently large and representative training dataset. 

It might be easy to create the training data samples labelled as duplicates or non-

duplicates, but to provide ambiguous record pairs for creating accurate results is 
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complex, and that is why data labelling is time-consuming (Elmagarmid, Ipeirotis and 

Verykios, 2007). 

The active learning approach is used to overcome the problem of the supervised 

learning technique by automatically locating the ambiguous record pairs (Elmagarmid, 

Ipeirotis and Verykios, 2007) and mainly by reducing the training data samples (Christen, 

2007). According to (Cohn, Atlas and Ladner, 1994), active learning controls the inputs 

on which it trains. Active learning differs from learning from examples due to the control 

over the data from which it learns and receives information. (Sarawagi and Bhamidipaty, 

2002; Sarawagi et al., 2002) introduced a system called ALIAS, which uses the reject 

region approach for record duplication detection to reduce the training data sample 

size, and the record pairs are presented as duplicate and non-duplicate. So, the record 

pairs are categorised as matched and non-matched and no manual labelling is required. 

However, if there are many ambiguous records, humans must label them manually. The 

training data sample provided to the system ALIAS with categorised labelled data such 

as matched and non-matched, and using this training data sample, ALIAS forms initial 

classifiers to match the data. By using the classifiers from a small training data sample, 

ALIAS distinguishes the records and finds duplicates in the data set. Similarly, (Tejada, 

Knoblock and Minton, 2002) propose to use the training data samples to set rules for 

matching the records in multiple fields using the decision trees. So, the active learning 

approach is suitable for producing better results. However, training data or human 

involvement requires training the system to produce the results. Nevertheless, the 

system is unsuitable because these resources are unavailable to generate the results.  

The distance-based technique is one way of avoiding the need for training data to be 

tuned through training data. It is possible to match similar records without training Using 

the distance metric and an appropriate matching threshold. One approach is to treat a 

record as a long field and use one of the distance metrics to determine which records 

are similar. Distance-based approaches that conflate each record into one big field may 

ignore valuable information that can be used for duplicate detection (Elmagarmid, 

Ipeirotis and Verykios, 2007). 

The rule-based approach is similar to the distance-based approach, and the distance of 

records is calculated as either 0 or 1. (Wang and Madnick, 1989) suggested using the 
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rules for the cases where there is no global key for a set of attributes to detect record 

duplication so the rules can combine the attributes as a set to form a key. Similarly, (Lim 

et al., 1993) proposed a rule-based approach to have additional control to produce the 

correct results where rules provide correct information and have functional 

dependencies. So, the rules are not defined heuristically. This idea was further 

researched by (Hernandez and Stolfo, 1998), who proposed using logical suggestions for 

record matching and finding the similarity between records, e.g., suppose two 

individuals have name similarity and similar addresses. It will show that it is the same 

individual. However, manual tuning requires human effort, which is time-consuming and 

difficult for extensive data. So, such systems are used to generate the rules using the 

training data sample, and human experts manually adjust the generated rules based on 

the training data samples. 

The unsupervised learning approach avoids manually labelling data by using the 

clustering technique and algorithms to group similar records for comparison 

corresponding to the same class. The probabilistic model, which was introduced in 1969 

by Fellegi and Sunter, is the root of the unsupervised learning approach (Elmagarmid, 

Ipeirotis and Verykios, 2007; Bharambe, Jain and Jain, 2012). A similar concept was 

implemented by (Elfeky, Verykios and Elmagarmid, 2002), introducing a records 

duplicate detection toolbox called TAILOR. Using this toolbox, the extensive and new 

training data samples get better accuracy with the help of generated classifiers and less 

labelled data is required. While (Ravikumar and Cohen, 2004) suggested a similar 

approach for matching the records learned from the graphical model. The algorithm 

compares each field as a latent variable in binary format to show whether the target 

fields match.  

The hybrid approach uses multiple similarities and records deduplication techniques 

collectively. (Elfeky, Verykios and Elmagarmid, 2002) , suggested overcoming the lack of 

training data sample issue by combining the supervised decision trees and unsupervised 

k-means clustering techniques where three clusters are used to produce results as 

matches, non-matches and possible matches. This whole process of record linkage is 

performed in two steps. In the first step, the weight vector subset is clustered as match, 

possible match, and non-match. In the second step, using training data, the matching 
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sample is generated by matches and non-matches clusters for a supervised classifier for 

each record pair. (Islam and Inkpen, 2008) presented a method named Semantic Text 

Similarity (STS) to use semantic and syntactic information to determine the similarity of 

two strings. In this method, string and semantic word similarity are two compulsory 

functions. In contrast, common-word order similarity is an optional function. Using this 

method for the 30-sentence dataset achieves an excellent Pearson correlation 

coefficient. According to (Buscaldi et al., 2012), combining two modules results in a 

promising correlation between manual and automatic similarity. The first module uses 

N-gram to calculate the similarity between sentences, and the second module uses 

concept similarity measure and WordNet to calculate the similarity between concepts 

in the two sentences. (Bär et al., 2012) introduced the system “UKP” to combine multiple 

text similarity techniques using a log-linear regression model from a training data 

sample. The multiple matching techniques used were string similarity, semantic 

similarity, text expansion mechanisms and measures related to structure and style. 

 

1.7.1.3. Efficiency Improvement Techniques 
 

Blocking methods pursue the simple idea of partitioning the set of tuples into different 

blocks and then comparing all pairs of tuples only within each block as this reduces the 

total number of comparisons of records (Baxter, Christen and Churches, 2003; 

Elmagarmid, Ipeirotis and Verykios, 2007; Draisbach and Naumann, 2011; Papadakis et 

al., 2011). According to (Draisbach and Naumann, 2011), the central part of the blocking 

method is to have a better partitioning strategy to partition the records by partition 

number and size. The partitioning strategy should be able to partition the duplicate 

records in the same block, for example, using the whole or part of the postal code. So, 

if the duplicate records are partitioned in the same block based on the postal code, they 

are considered duplicates. The partitioning strategy can use attributes such as first or 

last name, name prefixes, and whole or part of address. So, in general, the partitions 

should generally be the same size. However,  (Elmagarmid, Ipeirotis and Verykios, 2007) 

describe that this method is suitable to speed up the overall comparison of records. 

However, at the same time, it will bring false mismatches of records. If the records do 

not satisfy the blocking strategy, then the records do not appear in the same block. 
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Therefore, the records that are supposed to be in the same block but, due to blocking 

strategy, appear in the wrong block instead of in the same block, which will cause missed 

matches. However, multiple runs should be performed to overcome this issue using a 

different blocking strategy for each run (Draisbach and Naumann, 2011). 

So, using a different field for each run as a blocking strategy can improve the record 

matching in the block and reduce the chances of false mismatches, which helps to detect 

duplicate records having different partitioning attributes (Elmagarmid, Ipeirotis and 

Verykios, 2007). sorting requires a block key to implement the blocking for record 

duplication detection. The block key can be created by combining single or multiple 

fields, such as the age attribute, combined with the postcode attribute to form the key. 

So, records that satisfy the block critical criteria are placed into the same block (Elfeky, 

Verykios and Elmagarmid, 2002; Baxter, Christen and Churches, 2003).  However, the 

blocking process can lead to many record pairs generated by the massive number of 

records. It can affect the blocking comparison of records, such as blocking keys based 

on the gender attribute. In that case, it will generate large blocks matching the key. 

However, the records duplication detection will miss records of the blocks that are 

generated by the key that are too small. According to (Baxter, Christen and Churches, 

2003), different factors can affect the record comparison process in blocking, such as 

spelling errors or missing values, which can cause records not to appear in the same 

blocks. However, this can be alleviated by using the multiple blocking keys with multiple 

passes to improve the comparison. However, this tuning can be a difficult task. 

(Papadakis et al., 2011) They introduced a method based on the two layers wherein the 

unnecessary record comparisons are excluded from the second layer. In this method, 

the first layer is used to block effectively by placing all records in the same block with 

the token in all records as the attribute value. So, the resulting records are duplicates 

and do not have any chance of no blocks in common. The comparison is made on the 

second layer with the help of different methods to increase the blocking efficiency by 

reducing unnecessary records. Records with low threshold values are not required to be 

compared, and this will reduce the number of comparisons in the blocks.  

Windowing methods are more complex than blocking methods. The famous windowing 

method is the sorted neighbourhood method (SNM). (Hernandez and Stolfo, 1998) 
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proposed using a fixed window size to place over the records sorted by a sorting key. So, 

any records placed under the fixed-size window will be paired. The SNM method has 

three phases during the whole comparison process. The sorting key is identified in the 

first phase for records by combining the different attribute values, and it does not need 

to be unique. After this, all the records are sorted based on the sorting key. In the third 

phase, all the records are compared and paired by moving the fixed-size window on the 

sorted records. The first two phases of windowing are similar to the blocking technique. 

The windowing method reduces the number of record comparisons due to the window 

limit (Baxter, Christen and Churches, 2003). However, duplicate detection improves due 

to the window size, usually between 10 and 20. Increasing the window size can result in 

more duplicate detection but can slow the processing of the results (Draisbach and 

Naumann, 2011). The records are compared in this method only if they fall within the 

window size and the sorting key to sort them accordingly. So, a single key is insufficient 

to sort the records and place them under the fixed-size window for comparison. If there 

is any error in the records attribute values or any missing value, it will affect the whole 

comparison and duplicate detection process (Elmagarmid, Ipeirotis and Verykios, 2007). 

These errors can be alleviated by using multiple attributes to form the sorting key and 

multi-pass to sort and compare the records under the fixed-size window (Draisbach and 

Naumann, 2011). It increases the possibility of more record duplicate detection by 

running multiple passes using different sorting keys compared to a single pass 

comparison, as it will miss the matched records (Baxter, Christen and Churches, 2003). 

(Hernandez and Stolfo, 1998) introduced a multi-pass strategy using the sorted-

neighbourhood method to compare different sorting keys with small window sizes each 

time. In this multi-pass method, each run with different sorting keys creates a pair of 

records and can merge them during the comparison process under the fixed window 

size to produce the result (Elmagarmid, Ipeirotis and Verykios, 2007). The main issue 

with the sorted neighbourhood method is that not all records will be compared if the 

window size is smaller than the number of matched records using the sorting key, as the 

records will not fit under the fixed Window size. It will miss the records during the 

comparison. Suppose we use the surname ‘Smith’ as a sorting key; it might produce a 

vast number of record pairs where not all record pairs will not fit under the window size 
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and will miss the rest of the pairs outside the window and will not be compared (Baxter, 

Christen and Churches, 2003). 

Clustering is an essential technique in data mining in which a group of data objects is 

taken as input (Bezdek, 1981). In this technique, several clusters are obtained as an 

output so that the objects in the same group or cluster are similar but are different to 

objects outside the cluster (Jain, Murty and Flynn, 1999; Halkidi, Batistakis and 

Vazirgiannis, 2001; Dharmarajan and Velmurugan, 2013; Nisha and Kaur, 2015). The 

representation of objects is the main feature of clustering, as objects are represented 

as patterns to find the similarity (Filippone et al., 2008). The patterns are considered 

similar if they are in the same cluster but considered different if not in the same cluster. 

So, this difference should be clear and meaningful to represent patterns in the cluster 

(Xu and Wunsch, 2005). (Monge and Elkan, 1997) improved the nested-loop record 

comparison performance by showing a transitive approach for duplicate detection. For 

example, if ‘A’ and ‘B’ are duplicates and ‘B’ and ‘C’ are duplicates, then it is assumed 

that ‘A’ and ‘C’ are also duplicates. The problem with this approach is that record 

matching relies on the dependency of connected components of the graph. If these 

connected components are, then the assumption can be valid; otherwise, no 

relationship can be retrieved between records. So, to compute the connected 

components efficiently on the graph, (Monge and Elkan, 1997) used a union-find 

structure. The records are combined into a cluster during the union stage. The cluster is 

used as a comparison representation, and the number of record comparisons gets 

reduced for duplicate detection. So, in simple words, if ‘A’ is not a duplicate of ‘B’ already 

in the cluster, then other members in the cluster will not be duplicates of ‘A’. 

The canopies technique was introduced by (McCallum, Nigam and Ungar, 2000) to 

improve the speed of record duplicate detection. In this technique, records are grouped 

from clusters overlapping each other, and this overlapped area is named canopies. The 

records are grouped using the pairwise comparison with a similarity metric for better 

results. Let us supper if the two strings have a length difference of more than “3”, so the 

edit distance of these strings cannot be less than “3”.  So, the string length is used for 

comparison as a canopy function for the edit distance function. (Gravano, Ipeirotis, H. 

V. Jagadish, et al., 2001) suggest using the length of strings with the q-gram of strings as 



1. INTRODUCTION 

44 
 

canopies for the edit distance metric. The advantage of this technique is the use of 

vanilla SQL statements, which can be used to do canopy function calculations. (Cohen 

and Richman, 2002) suggest using tf.idf similarity metric as a canopy distance with other 

multiple similarity metrics duplicate record detection. Similarly, (Chaudhuri et al., 2003) 

introduced a canopy function with indexing to match similar records for duplicate 

detection. On the other hand, (Baxter, Christen and Churches, 2003) showed that using 

the traditional blocking methods with the canopy technique improves the record 

duplicate detection speed and quality. 

 

1.8. Research Aims 
 

A framework for identity resolution is essential for incorporating intelligence in 

matching raw data. It should employ a suitable algorithm with pattern recognition 

capabilities that closely resemble the functioning of the human brain. 

 How will the desired identity be extracted from the raw data set? 

 How will records be matched to extract meaningful information from the raw 

data set? 

 To what extent can establishing relationships between diverse identities be 

enhanced through applying pattern recognition techniques? 

 

1.9. Problem Definition 
 
In the entity resolution process, the record de-duplication makes it challenging to 

identify duplicates due to the different fundamental values used for the duplicate 

record. To find the duplicates in the dataset, it is a must to compare one record with the 

rest of the records in the database to find the similarities, but this will require immense 

processing power in the case of the large dataset (Wangikar, Deshmukh and Bhirud, 

2016). All techniques discussed in the literature review are insufficiently adaptive 

regarding record de-duplication and entity matching based on the correct record 
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extraction. It is clear from the literature review that techniques that require human 

expert tuning are better but are unfeasible for large datasets due to the manual tuning 

required. Also, such techniques require some training data samples to generate the 

results. However, it is not easy to provide training samples for every situation. So, 

considering this, the approach is also unfeasible for better record matching. Another 

issue with the proposed techniques is that they do not use all the available similarity 

metrics as required and only utilise a couple of techniques to complete the record-

matching process. It leads to unsatisfactory results as every similarity metric is domain-

specific to solve a particular problem, and missing one or more metrics would not help 

achieve better results. From a comprehensive literature review that has been carried 

out, it can be concluded that so far, there is no unsupervised approach framework that 

can achieve the following: 

 Automatically adjust to tune the data based on the input, using different 

similarity metrics to extract the records.  

 After the data cleaning, automatically adjust record matching techniques 

without training data samples for record de-duplication. 

 Run the similarity metric on data at different stages to output the best results for 

record linkage and relationship analyses. 

 Use the clustering technique with the help of segmentation for identity 

resolution.  

So, in the research, an adaptive hybrid approach will be introduced to automatically self-

tune the similarity metrics using fuzzy logic. This searching process will be iterative 

(multi-pass searching) using an unsupervised clustering approach to analyse the output 

by further segmenting the records to show the relationship in a graph and extract the 

true identity. In this process, segmentation will be the process of putting data into 

groups based on similarities. At the same time, clustering will be the process of finding 

similarities in data to be grouped. Once the entity is resolved, the system will keep the 

result as a reference for the future, which will help enhance future search efficiency by 
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matching the same or similar record as the new search will also be matched with 

references as part of the iterative search process. 

 

1.10. Thesis Chapters Overview 
 

This chapter presents an overview of fraud, identity, and the different types of identity 

crimes faced by law enforcement agencies or financial institutions. This chapter briefly 

explores machine learning types, different machine learning techniques, and 

fundamental concepts related to matching records. Furthermore, the chapter provides 

an overview of the literature on string and record-matching techniques related to entity 

matching and identity resolution, research aims and the definition of the problem. 

This thesis comprises five chapters, starting with “Chapter 1 - introduction and literature 

review” discussed above and ending with the research aim and problem definition for 

this research. The remaining chapters in this thesis are as follows: 

Chapter 2 provides the platform to discuss machine learning techniques, focusing mainly 

on fuzzy matching techniques. The chapter explains entity matching and its challenges 

when matching an entity for identity resolution. The chapter discusses matching 

techniques to handle entity matching challenges and how knowledge can help in the 

matching process. 

Chapter 3 focuses on the methodology used in this research. The chapter explains the 

proposed algorithm and provides the foundation of the research methods. The later 

section of the chapter explores the proposed algorithm and its implementation by 

enhancing the string-matching technique. The details of different tools used for 

implementation are discussed to understand how they are used to generate matching 

results. These results provide a better understanding of the implemented string-

matching technique in the proposed algorithm. 

Chapter 4 provides the results of the implementation of the proposed algorithm. The 

chapter explains and analyses the policing dataset used in the research and presents the 

computer simulation results. It starts with evaluating and analysing the performance of 

different sets of names from different languages with a proposed algorithm for matching 
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names. Later in the chapter, the results of the policing dataset are evaluated in detail, 

and the performance of the generated results is discussed. 

Chapter 5 concludes this research thesis by providing an overview of the research and 

its implementation. It explains this research's limitations, knowledge contribution, and 

areas where it can be beneficial with further improvements. The last section of the 

chapter discusses future work and provides suggestions for improvements to enhance 

the proposed algorithm. 

The last sections of the thesis are References used in the research. Appendix A lists the 

published research paper, and Appendix B provides additional details on the tools used 

in this research. 
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CHAPTER2 

2. STATE-OF-THE-ART REVIEW OF MACHINE 

LEARNING APPROACHES FOR IDENTITY 

RESOLUTION 
 

2.1. Chapter Overview 
 

This chapter discusses different machine-learning techniques that can be used for 

identity resolution, and at the end, it discusses the problem definition and the research 

aims. It starts with a background discussion of entity resolution and the challenges in 

detail. Based on the challenges an entity matching faces, the string matching techniques 

will be discussed to understand the issues in the matching techniques. The issues with 

each matching technique will be presented, including all the comparisons. The clustering 

technique and types for grouping similar entities will be discussed. Finally, the chapter 

will discuss the knowledge base and the different types that can be used in machine 

learning. 

 

2.2. Background 
 

Entity Resolution (ER) is essential as it leads to identity resolution. Usually, entity and 

identity resolutions are used interchangeably and referred to as the same. However, 

these are two terms with different requirements. It is evident from the previous studies 

that each string-matching technique is domain-specific and cannot perform well 

independently to find the required results. Using only one technique is unsuitable for 

tackling a particular issue in entity resolution. However, a combination of these 

matching techniques can produce the desired results. We know that entity resolution is 

an essential step toward identity resolution, and incorrect or missing details in entity 

resolution will lead to incorrect or weak identity resolution. 
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2.3. Entity Resolution and Challenges 

 

We know Entity Resolution (ER) is to identify one entity in a dataset that refers to the 

actual entity. Typically, a database may contain multiple entities, and there can be 

relationships among these entities. It is vital to correctly match the string of names, 

addresses, or other information to resolve any entity (Altowim, Kalashnikov and 

Mehrotra, 2018). Each entity has attributes and can be identified using crucial attributes 

such as ID number, name, and date of birth. However, many other reasons make it 

challenging to find the correct identity (Phillips, Amirhosseini and Kazemian, 2020). 

For entity resolution, there are many different string-matching techniques. In later 

sections, the three most essential matching techniques will be discussed in this chapter. 

However, before that, there are several different challenges that entity matching faces 

in comparing strings and getting the desired results. Some of the challenges are listed 

below. 

 

2.3.1. Text Standardisation and Name Variations 
 

Text standardisation involves replacing different spellings in words with single and 

correct spellings. For example, ‘Incorporated’ can be represented with the standardized 

spelling ‘Inc.’ Standardisation typically separates the string into words, such as a 

complete name or address. After this, each word is compared in the standard table to 

get the standard spelling. However, it is difficult to manage such a standard list of 

spellings to match the words against it and bring them into the standard in the dataset 

(Winkler, 2006). Names matching has been troublesome for record linkage as names 

can have variations. The variation can be phonetic or alternate spellings; in some cases, 

it can be a combination of both variations (Snae, 2007). In different computer 

applications and record linkage algorithms, spelling variations can be allowed, and the 

algorithm's success is determined by identifying the differences in name spelling. 

However, in some cases, it is difficult to determine the name variation due to the 

different spellings of the same name or to consider it entirely different. Usually, 

surnames are more variable in spelling and can have many common alternatives. 
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In some cases, the variations are due to spelling errors. Such a range of name variations 

is a big concern due to different naming conventions and languages, so how do we 

identify a person based on a name if it is differently spelt or pronounced? It is a 

significant problem identifying a person and determining if the name variation is the 

spelling of the same or a different person’s name. Most of these variations can be 

categorised as follows: 

 

2.3.1.1. Spelling Variations   
 

These variations are due to typographical errors by a human operator or an automated 

device designed for inputting data into the database. It can lead to a problem matching 

names in the database. However, typically, such variations do not affect the name's 

pronunciation (A. J. Lait and Randell, 1996). The variations can be misplaced letters, 

substituted letters, adding letters, or omissions of letters. These variations cause issues 

for matching algorithms to match strings to one another even though the string is 

phonetically not changed (Shah and Kumar Singh, 2014). According to  (Pilania and 

Kumaran, 2019), a customised matching algorithm can be used to match names with 

variations. Many spelling error correction solutions have been designed to encounter 

pattern-matching issues. According to studies conducted by different researchers, these 

spelling errors can be divided into two categories. 

 

 Typographic errors are spelling errors primarily due to keyboard inputs when a 

string is mistyped. However, the actual spelling of the string is known. 

 

This type of error falls into four categories, as suggested (Naseem and Hussain, 2007) 

and according to (A. J. Lait and Randell, 1996; Naseem and Hussain, 2007), the spelling 

error or mistyping of the names can be categorized as below: 

 

• Insertion or additional letters, e.g. “MCMANUS and MACMANUS”,  

• Deletion or omission, e.g. “ROBBIN and ROBIN”, “Collins and Colins” 

• Substitution, e.g. “SMYTH as SMITH” 

• Transposition, e.g. “BREADLEY and BRAEDLEY”  
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These editing operations errors can be referred to as single errors. According to 

(Naseem and Hussain, 2007), it was confirmed by researchers at a later stage.  

The most common typographic errors are substitution errors caused by keyboard 

inputs. It usually happens during typing due to incorrectly replacing letters by not 

pressing the correct “key letter” required in the string.  

There are other errors called multi-errors that are generated due to more than one 

editing operation. These are either the addition of two extra letters, missing two letters 

from the string, or transposing two letters.  

  

 Cognitive errors are caused by keyboard input during typing, and the actual 

spelling of the string is unknown. In cognitive errors, the mistyped word 

pronunciation does not change as the word pronunciation remains the same or 

similar to the correct spellings (Naseem and Hussain, 2007). e.g. “recieve” and 

“receive”, “abyss” and “abiss”  

 

2.3.1.2. Phonetic Variations 
 

According to (Snae, 2007; A. J. Lait and Randell, 1996), these variations are caused by 

mishearing the name, which alters the name structure utterly different from the actual 

name. For example, “Pooh” is an English nickname while it would be spelt as “Puh” in 

German. Similarly, the names “MAXIME and MAXIMIEN” and “Sinclair and St. Clair” have 

different phonetic structures, and the names are significantly changed; however, these 

are related names (Shah and Kumar Singh, 2014). Sometimes, the name’s phonetic 

variation can be hugely different, such as “ADELINE and LINE”, “Christina and Tina”, and 

that is where the name is shortened (A. J. Lait and Randell, 1996). 

 

2.3.1.3. Character Variation 
 

These variations caused problems due to abbreviations, capitalization, punctuation, 

qualifiers and namespacing. The capitalization in the name where the upper and lower 

letters have been used, such as “brown and Brown” and “SMITH and Smith”. Sometimes, 
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first names or surnames are composed of two parts and contain punctuations, spaces 

and qualifiers such as “WILL SMITH and WILL-SMITH” or “SMIT and S.M.I.T”, 

“YOUNGSMITH and YOUNG SMITH”, “WILL SMITH and WILL SMITH YOUNG” or “Philips-

Martin”. These full names do not need to be used as they are; instead, one part of the 

name may be used. For example, “Philips” or  “Martin” may be used instead of “Philps-

Martin”. Such variations can be called Double Names (A. J. Lait and Randell, 1996; Shah 

and Kumar Singh, 2014; Pilania and Kumaran, 2019). Double first names are not common 

in English, but other languages can contain double first names. For example, in the 

French language, the name “Jean-Claude” may be written in full or as “Jean” or “Claude” 

(A. J. Lait and Randell, 1996). 

The names can also have abbreviations where the name has been shortened, and this 

mainly names the individual. Such as “ROB and ROBBIN” and “BOB and BOBBY” while 

“WILL SMITH” is written as “W SMITH” (A. J. Lait and Randell, 1996; Pilania and Kumaran, 

2019). Sometimes, an individual prefers to change their name in future from the one 

he/she was known to in the past or change the surname to their partner's name. Such 

situations cause a big issue in matching names for an individual. Name-matching 

algorithms that use spellings or phonetic variation to match names will not be able to 

identify the person with past and future names  (Snae, 2007; Shah and Kumar Singh, 

2014). 

 

2.3.1.4. Fielding Variations 
 

There may be a situation where multi-part names have been added to the database in 

a different order. It can happen due to different cultural names. For example, in some 

cultures, the name is written in the format First-Middle-Last, while others may write it 

as Last-First-Middle. The name “Will Young Smith” may be used as “First-Middle-Last”, 

but possibly it may be used in the database as a “First-Last” name, e.g. “Will Smith” 

while “Middle” name as “Young” used differently (Pilania and Kumaran, 2019).  
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2.4. Approximate String Matching 

 

The data cannot always be easily identifiable through unique identifiers. If the object is 

identified incorrectly, it will hugely affect the results. Approximate matching is also 

called fuzzy matching, where each matching value can be between 0 and 1 but not just 

0 or 1. The matching involves a comparison of substrings with the given string to find 

the similarity between two strings. In the entity resolution, the records are compared 

by matching the string similarity. Based on the similarities, records are classified into 

match and non-match categories. This matching of records takes place on the value of 

the attributes to find the similarities (Christen, Vatsalan and Wang, 2016). Approximate 

matching is suitable for handling issues such as typographical errors in the string as it 

closely matches the search pattern (Al-khamaiseh and Alshagarin, 2014). However, 

(Winkler, 2006; Naseem and Hussain, 2007) state that this area is still under research 

and requires suitable matching techniques. Fuzzy matching is generally used for pattern 

matching by calculating an estimated match between two strings. Approximate 

matching is required for a name in an extensive database where names are misspelt 

rather than the correct spelling. It makes an exact match difficult in large databases; 

therefore, an approximate can be essential in pattern matching (Shah and Kumar Singh, 

2014). Pattern matching, phonetic encoding, or Lexographic matching techniques are 

the way to do string matching. Pattern matching is to calculate the distance between 

each character of the string, and phonetic matching converts a string into code based 

on the pronunciation of each string. At the same time, the Lexicographic technique 

produces all possible variations of the string (Shah and Kumar Singh, 2014; Pilania and 

Kumaran, 2019). 

The following section will explore how pattern matching and phonetic encoding 

algorithms work for matching names. 
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2.4.1. Edit Distance Algorithm 
 

Edit distance is a measure of string comparison (Shah and Kumar Singh, 2014).  

Approximate matching is about calculating the distance between each string, and the 

commonly known technique is “Edit distance” (Al-khamaiseh and Alshagarin, 2014). It 

calculates the distance between two strings by applying three operations on the strings. 

Usually, three joint operations are performed on the string to find the similarities or 

convert one string into another. These operations are called edit operations, in which 

inserting, deleting, or substituting the characters in the strings take place to match 

strings. Edit distance, also called Levenshtein distance, was introduced in 1965 

(Elmagarmid, Ipeirotis and Verykios, 2007). According to (Soundex, 2015), if the distance 

of strings is less than a set threshold value by applying the three edit operations, the 

strings are considered a close match to each other with slight variation, or it can be said 

that the more the Levenshtein distance, the distinct the strings will be. In substitution, 

one character replaces the other character in the string. In contrast, in deletion, a 

character gets removed from the string. In insertion, a character gets added to the string 

(Elmagarmid, Ipeirotis and Verykios, 2007).  The distance 0 means the strings are 

identical. These edit operations give cost to the number of required iterations to match 

the name. i.e., the cost of deleting a character, inserting a character and substituting 

two different characters is “1”; otherwise, the cost value is “0”. According to (Hasan and 

Ahmed, 2015), the edit distance where each operation on the single string has the cost 

= 1, then such edit distance is called unit-cost edit distance. (Needleman and Wunsch, 

1970) , modified the edit distance by introducing different cost values for different edit 

operations on the string. (Ristad and N.yianilos, 1998) introduced an algorithm for 

automatically calculating the cost for equivalent words written differently. For example, 

(Shah and Kumar Singh, 2014) describe the Levenshtein distance between "bitten" and 

"sitting" as “3” since the following three edits change one into the other. There is no 

way to do it with fewer than three edits, e.g.  

 

Step 1: bitten → sitten (substitution of "s" for "b")  

Step 2: sitten → sittin (substitution of "i" for "e")  
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Step 3: sittin → sitting (insertion of "g" at the end) 

 

Another example of calculating Edit distance to compare the name “ALEXANDRE” to 

“ALEKSANDER” is 4. To do this (Soundex, 2015): 

 

Step 1: substitute X with K  

Step 2: insert S after K 

Step 3: insert E after D 

Step 4: delete E at the end 

 

(Balabantaray et al., 2012) state that “the Levenshtein algorithm only edits operations 

between two strings, and it does not directly provide a knowledge base to identify 

phonetic similarity among the languages that appeared in different phonemes. 

However, several research studies have been conducted by assigning different costs for 

operations to integrate the knowledge base concept to the Levenshtein algorithm”.  

 

2.4.1.1. Issues in Levenshtein Edit Distance Algorithm 

 

The Edit Distance algorithms perform several iterations to change one string into 

another to find the similarity. If the two strings are similar, then the cost of operation is 

“0”; otherwise, it will be “1” based on the iteration operations applied to the strings. 

However, implementing the Levenshtein Edit distance algorithm to match two strings 

encounters the following issues. 

Edit distance fails when strings are written in short form, or any abbreviation has been 

used instead of the complete word. In this situation, the three edit operations will not 

calculate the cost correctly due to this issue. It is a significant drawback of the Edit 

Distance algorithm while finding the match between strings. Table 2.1 is taken from 

(Pilania and Kumaran, 2019), which shows an example of matching two strings by 

matching string 1 with string 2. The two strings are different and show an incorrect 

match. 
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Table 2.1 - Leveshtien Distance Algorithm Issue (Pilania and Kumaran, 2019)  

String1 String2 

Uma Keshkumari 

Kunta Shakuntala Devi 

Kusum Kusumalta 

Tara Sitaram 

Indra Indrakala 

 

The Levenshtein Edit distance matches strings by comparing each character in the 

strings, so matching strings in Table 2.1 shows that string ‘UMA' is found in string 

‘KESHKUMARI’. Therefore, no edit operations are applied, and the cost of operation is 

0, which shows it is a match, nevertheless these two strings differ entirely (Pilania and 

Kumaran, 2019). 

 

2.4.2. Jaro-Winkler Algorithm 

 
The Jaro distance technique is usually used to tackle typical spelling errors and was 

introduced by M. A. Jaro in 1989 (Jaro, 1989).  This technique was designed to compare 

two short strings, such as first and last names (Elmagarmid, Ipeirotis and Verykios, 2007). 

The Jaro distance finds the familiar characters between strings while tracking the order 

of these characters (Gomaa and Fahmy, 2013). The Jaro distance can be computed using 

the following formula: 

 

 

𝒔𝒊𝒎𝒋𝒂𝒓𝒐(𝒔𝟏, 𝒔𝟐) =
𝟏

𝟑
 ( 

𝒄

|𝒔𝟏|
+

𝒄

|𝒔𝟐|
+  

𝒄−𝒕

𝒄
 )   Equation 2.1 

 
 
The Jaro similarity technique finds the matched characters in the given names. In 

equation 2.1, ‘c’ represents the number of equal characters,  ‘t’ represents half the 

transpositions, |s1| is the length of the first string, |s2| is the length of the second 
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string. The interchanging of the contiguous characters in both strings, such as ’pe’ and 

’ep’, is called the transposition (Sun, 2015). 

Initially, the Jaro-Winkler algorithm following the UNIMATCH similarity was developed 

in the 1970s to be used in the post-enumeration analysis by the U.S. Census Bureau. It 

was used to match records of different fields with uncertain name spellings. UNIMATCH 

matches two strings based on string length, familiar characters in strings and the number 

of character transpositions (Kloo, Dabkowski and Huddleston, 2019). 

Another approximate matching technique is the Jaro-Winkler, in which Jaro compares 

the short strings, mainly names, by computing the length of the string, finding similar 

characters, and determining the transpositions required. In 1990, Winkler proposed a 

variation to the Jaro distance, which gives preference to the name prefix (Winkler, 1990, 

1994, 2006). The name prefix is assigned a weight higher than the surname match 

weight. This Jaro distance variation is called the Jaro-Winkler distance (Gomaa and 

Fahmy, 2013).  

 

Jaro-Winkler(s1, s2) = Jaro(s1, s2) + l * p(1 – Jaro(s1, s2))  Equation 2.2 

 

Here, ‘l’ is the longest common prefix of the two strings, where ‘p’ is a scaling factor 

variable to adjust the matching score upwards by customarily set to a value of 0.1 and 

the maximum value set to 0.25; otherwise, the distance will be computed as more 

significant than the value 1 (Sun, 2015; Pilania and Kumaran, 2019). This enhancement 

helps to get a few penalties for errors like keyboard errors and errors at the end of a 

string (Soundex, 2015). The matching of strings is scaled between values 0 and 1, where 

any calculated score of two strings close to 0 represents no match, while the calculated 

score value close to value 1 represents a match (Pilania and Kumaran, 2019). For 

example, as stated (Soundex, 2015), the Jaro similarity between “ALEXANDRE” and 

“ALEKSANDER” is 0.85, calculated as below using equation 2.1:  

During this process, match A, L, E, A, N, D, R, and E with a “1” transposition. 

Simjaro = (8 / 9 + 8 / 10 + ( 8 – 1 ) / 8 ) / 3  
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= 0.85  

The Jaro-Winkler similarity score of 0.90 is calculated using equation 2.2 as below: 

Jaro-Winkler = 0.85 + 3 * 0.1 (1 - 0.85)  

= 0.90 

 

2.4.2.1. Issues in the Jaro-Winkler Algorithm 

 
Jaro and Jaro-Winkler distance algorithms cannot perform well where there is a 

positional difference between two strings and more than the allowed change. e.g. in the 

strings “Alice bruce Bob” and “Bob bruce Alice”, the allowed change is six positions. 

However, the character ’B’ in the string “Bob” has a difference of twelve positions. So 

only the string “Bruce” will match between two strings, and the algorithms will not find 

the better match (Elmagarmid, Ipeirotis and Verykios, 2007). 

The Jaro-Winkler algorithm will fail to match short names with typographical errors if 

other strings of different lengths have the same errors (Kloo, Dabkowski and 

Huddleston, 2019). 

 

2.5. Phonetic Matching 
 

Phonetic matching plays a significant role in matching strings. (Snae, 2007; Shah and 

Kumar Singh, 2014) defines phonetic matching as identifying a set of strings most likely 

to be similar in sound to a given keyword. The strings can be spelt using different writing 

styles but can be matched phonetically (Christopher Jaisunder, Ahmed and Mishra, 

2017). The phonetic algorithm matching compares names with similar sounds, even 

those with different spellings, and it is vital for matching the names from the database. 

According to (A. Lait and Randell, 1996; Christopher Jaisunder, Ahmed and Mishra, 

2017), a phonetic algorithm is an algorithm for indexing words by pronunciation. The 

complex algorithms have many different rules and exceptions due to the English 
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language's historical changes in pronunciation and the integration of many different 

language words into it. Phonetic matching evaluates the similarity of the names based 

on how they are pronounced without looking at the actual spelling of the names. 

Different researchers have carried-out many pieces of research to explore data mining 

methods in information retrieval. The most common phonetic matching technique is the 

Soundex technique, which compares and matches names based on pronunciation (Shah 

and Kumar Singh, 2014; Christopher Jaisunder, Ahmed and Mishra, 2017). 

In Soundex, the code value is generated for similar-sounding names and the code is 

compared to find a match. The values are called Soundex encodings. Therefore, any 

search on any name in the database gets Soundex encoding rather than a direct name 

search. Any name match based on Soundex encoding will be retrieved from the 

database. According to (A. J. Lait and Randell, 1996), any matches found during a search 

are called positives, and the ones rejected by the search are called negatives. So, the 

positives relevant to the search term are called true positives, while the other searches 

are false positives. Searching for names in an extensive database has always been a 

problem. In a large database, misspelt names may be spelt differently due to human 

typing errors or mishearing the name. In such a situation, a fuzzy match will be enough 

to match the names instead of matching names exactly. 

 

2.5.1. Soundex Algorithm 
 

The Soundex algorithm was developed by Odell and Russell in 1918. It is a code-based 

matching algorithm that converts the name into a 4-letter alphanumeric code based on 

the sound of each word while preserving the first letter from the name (A. J. Lait and 

Randell, 1996). The similar-sounding names get similar code values to match the names. 

These codes are called Soundex encodings (Koneru, Pulla and Varol, 2016). The 

algorithm does not search the name directly from the database. However, it converts 

into Soundex encoding of 4-letter code, keeping the first letter preserved and then 

performing a search based on this encoding (Shah and Kumar Singh, 2014; Christopher 

Jaisunder, Ahmed and Mishra, 2017).  
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The following steps are required to create the Soundex code: 

 

Step 1 - Retain the first letter from the name string. 

Step 2 - Convert all occurrences of these letters to Zero: a, e, h, i, o, u, w, y. 

Step 3 - Convert the remaining letters into numbers: b, f, p, v = 1; c, g, j, k, q, s, x, z = 

2; d, t = 3; l = 4; m, n =5; r = 6 

Step 4 - Remove all pairs of digits with the same code adjacent to the original name. 

Step 5 - Remove all the zeros. 

Step 6 - Return the code with four characters and add zeroes to the right if there are 

fewer than four characters.  

 

In Step 1, to generate the Soundex code for any given name or string, the letter will be 

kept as the first character of the final Soundex code. It represents the initial sound of 

the word. After the first letter, in Step 2, all vowels “A, E, I, O, U” will be ignored. The 

letters “H, W, Y” are considered insignificant because these vowels and letters often do 

not affect the word's pronunciation meaningfully, particularly when in the middle or end 

of words. After this, in Step 3, each of the remaining consonants will be converted into 

a number according to Table 2.2. The idea behind this step is that similar-sounding 

consonants are grouped under the same number, reducing the variations caused by 

different spellings. Step 4 ensures that repeated sounds do not overly influence the 

code. That is why if two or more letters that convert to the same number appear next 

to each other, only keep the first one and remove the duplicates. Step 5 is to use the 

first four characters and discard the rest if there are more than four characters in the 

forming code. In Step 6, the first letter kept in Step 1 with the numbers from Step 3 is 

combined to result in a four-character alphanumeric code. If there are fewer than four 

characters in the code, add zeros (0) until the code is four characters long. This padding 

ensures that all Soundex codes are the same length, making them easy to compare. The 

standard Soundex algorithm defines the following groups:  
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Table 2.2 - Grouping of Letters and Code Assignments (Patman and Shaefer, 2001) 

Letters  Code Assignment 

B, F, P, V  1  

C, G, J, K, Q, S, X, Z  2  

D, T  3  

L  4  

M, N  5  

R  6  

H, Y, W  (omitted)  

A, E, I, O, U  (omitted)  

 

In converting a name to a Soundex code, only one digit is used for any consecutive 

letters, e.g. “CK” will not be assigned a code as 22 but will be “CK” = 2. Any code with 

more than three digits will be truncated, and any code with fewer than three consonants 

will be padded by zero, e.g. the string “PEEL” will get code as “P400”. 

For example, using the Table 2.2, the Soundex code of the name “ALEXANDRE” is: 

Step 1:  A4E2A536E 

Step 2:  A4E2A536E 

Step 3:  A42536 

Step 4:  A425 

Another example of Soundex code for the name “ALEKSANDER”. Here, it is assumed the 

name is misspelt: 

Step 1:  A4E22A53E6  

Step 2:  A4E2A53E6  

Step 3:  A42536 

Step 4:  A425 

The Soundex code of both names is “A425”; thus, both names are easily comparable 

and matched (Soundex, 2015).  
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For the Soundex algorithm, it is worth knowing how each word is pronounced based on 

the sound of each English language alphabet.  

The following Table 2.3 briefly describes this: 

Table 2.3 - Phonetic description based on assignments of letters (Magazine, 2018) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Soundex technique is commonly used for the English language. However, 

researchers have also modified it for other languages (Balabantaray et al., 2012). The 

Soundex algorithm matches names that sound similar but have different spellings, e.g., 

“SMITH” and “SMYTH”. The names are given a phonetic code that helps to match names 

and reduces the issue of mistyped names (Soundex, 2015). For example, “SMITH” and 

“SMYTH” will get code as “S5030”, and it will be refined to a shorter code based on 

Soundex rules as “S530” (Christopher Jaisunder, Ahmed and Mishra, 2017). According 

to (Patman and Shaefer, 2001), “The computational benefits of Soundex-type algorithms 

are easy to see by exchanging a name for a code; all variant spellings of the name can 

be expected to share that same code, allowing a relatively efficient search of a small 

Number 
Represents the 

Letter 
Phonetic Description 

1 B, F, P, V 
Labial sounds and labiodental (require particular 
use of the lips). 

2 
C, G, J, K, Q, S, X, 

Z 
Guttural sounds (produced in the throat) and 
sibilant sounds (requires a hissing noise). 

3 D, T 
Dental-mute sounds (formed with the tip of the 
tongue against the teeth). 

4 L 
Palatal fricative or long liquid sound (produced by 
an extended contact of the tongue and mouth). 

5 M, N 
Nasal sounds (produced partly through the nose). 
M is labio-nasal and N is dental or lingua-nasal. 

6 R 
Dental fricative or short liquid sound (produced by 
a slight contact of the tongue and mouth). 

Discard H, W, Y Disregard consonants H and W. 

Discard A, E, I, O, U Disregard vowels. 
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subset of a database, versus "brute force" evaluation of every name as a potential 

match.  Soundex keys are typically used to form an index for data implemented in 

relations DBMS products, allowing very fast key-based retrievals of a (theoretically) a 

small number of potentially matching names.” 

 

2.5.1.1. Issues of Soundex Algorithm  
 

There are issues with the Soundex code that limit the matching of names. One of the 

disadvantages of the Soundex technique is that it preserves the first letter of the name 

and converts the rest into a code. Therefore, a name starting with a different letter will 

result in a different Soundex code and the match will be unsuccessful. For example, the 

Soundex code for “PATER” and “PAIDER” will be P360. The string “SOMERS” Soundex 

code S562 will match with “SUMMERS” and “SOMMARS” as the Soundex code for these 

is S562. It shows that the Soundex code is assigned based on the pronunciations 

regardless of the spellings, which can result in false matches (Patman and Shaefer, 

2001).  

 First Letter dependency - According to (Patman and Shaefer, 2001a; Shah and 

Kumar Singh, 2014), retaining the initial letter is vital for Soundex, and any name 

that starts with a different letter will create a mismatch because it will be 

considered a different Soundex code. For example, the names “Corth” and 

“Korth” will not match even if one of the names is in the database. It means that 

starting with a letter in the Soundex code is essential, and names starting with 

different letters will never match (Pilania and Kumaran, 2019). 

 Transcription difference - The Soundex codes for Roman and non-Roman names 

or strings of different spelling variants do not match each other and will not be 

reliably retrieved from the database. The names written in different languages 

with different spelling are challenging to match as the form of the name may not 

match the other variant of the name present in the database. For example, the 

Russian names "Ivanov", "Ivanoff", or  "Iwanow” will be difficult to match as the 

Soundex code will be different for these names. The Chinese name may be 
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written as “Hsiao” or “Xiao” and will not match due to different Soundex codes 

(Patman and Shaefer, 2001; Shah and Kumar Singh, 2014). 

 Silent consonants - Soundex does not match the names with silent consonants, 

so a different code for each name is generated. Because   Soundex does not 

identify silent consonants in the name or any name with simplified spellings with 

omitted consonants, for example, names “Meghburn” and “Meburn,” 

“Coghburn” and “Coburn,” or “Deighton” and  “Dayton.”   will have different 

codes and will not match with each other (Patman and Shaefer, 2001; Shah and 

Kumar Singh, 2014).  

 Name syntax - In different cultures, the structure of the name is different. 

Usually, the structure of the name is First, Middle, and Last. It may result in 

inconsistency in the database in the way names are mapped. Soundex provides 

no means for accommodating such types of variation. Instead, it codes them as 

two different, non-matching names, resulting in two closely related variants not 

retrieving each other. For Example, “Sheikh Ali Mohamed” may be in one 

database. However, in another database, it may be recorded separately as first 

name “Sheikh”, middle name “Ali”, and last name “Mohamed”. There can be 

situations where the first name is recorded as “Sheikh Ali” and the last name 

“Mohamed”. It is difficult for Soundex to generate the matching code for such 

name variations. However, there can be different variations of the name that 

Soundex code may encounter, such as if an Arabic name, “Alhameed,” is written 

as “Hameed”, “Hamid,” or “Hamed,” then Soundex code will struggle to match 

even though all these name variations refer to the same individual because 

Soundex was not designed to tackle such different variations in names (Patman 

and Shaefer, 2001; Shah and Kumar Singh, 2014).  

 Name Initials - Normally, first names in long names are written with initials, but 

this is not limited to only long names. Mostly, full names are substituted with 

initials. For example, “Mikhail Kovalchuk” and “M.Kovalchuk,” will have different 

Soundex codes and will not be matched to each other (Patman and Shaefer, 

2001; Shah and Kumar Singh, 2014). 
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 Poor precision - The Soundex algorithm sometimes can match many dissimilar 

names in the result, and the amount of poor precision results increases with the 

database size. For example, the name “Criton.” search will match with 

“Courtmanche,” “Corradino,” “Cartmill,” and “Cortinez” (Patman and Shaefer, 

2001; Shah and Kumar Singh, 2014).  

 Noise intolerance - Soundex cannot overcome typographical errors because it 

relies on the sound of letters and does not handle common transpositions. This 

spelling variation will generate false matches. For example, if the name is 

mistyped as “Msith” in the database, it will not match “Smith” due to a 

transposition error. Similarly, “Hubbins” will not be matched with “Huggins,” and 

“Hreman” will not match with “Herman” (Patman and Shaefer, 2001; Shah and 

Kumar Singh, 2014; Pilania and Kumaran, 2019).  

 Long Name - The Soundex code combines an initial letter and three digits for any 

given name. Therefore, the Soundex code will ignore the name length and 

generate the code that may match other names that are not the same length, 

but the string may match based on sound. For Example, searching for the name 

“Rameshwar” will match with the name “Rameshwaram” even though the name 

may refer to two different individuals because the Soundex code will be the same 

for both names, and this will result in false matching (Pilania and Kumaran, 2019).  

       Even with all the above issues found in Soundex, the algorithm is mainly used for name 

matching and retrieval. The most common use of Soundex is in airline reservation 

systems to generate passenger name codes to avoid confusion when pronouncing the 

names. In informational retrieval, Soundex is used to overcome the problem of names 

with alternate spellings. It plays a vital role in approximate name matching due to human 

errors. However, Soundex can be helpful in systems that are not very sensitive to false 

results and can accept if results are high false positive or negative (Shah and Kumar 

Singh, 2014).  
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2.6. Comparison of Matching Algorithms 

 

The choice of one from the following string-matching algorithms mainly depends on 

the nature of the error in searching the text data. Table 2.4 compares all phonetic 

matching algorithms based on the language specification, features, and limitations 

(Shah and Kumar Singh, 2014; Soundex, 2015).  

  
Table 2.4 - Comparison of String Matching Techniques (Shah and Kumar Singh, 2014) 

Algorithm  Type Language  Usage 

Soundex  Phonetic English  Misspelt English words 

Edit distance Pattern matching N/A  Local spelling errors 

Jaro-Winkler Pattern matching N/A Spelling and typewriting 

errors 

  

 

 

2.7. Clustering Technique 
 

Clustering is a widely used technique in machine learning and data mining, where the 

goal is to group similar data points into distinct clusters based on their similarities. 

Clustering is an unsupervised learning method as it does not rely on labelled data but 

instead discovers patterns or structures within data (Bezdek, 1981). 

Clustering is significant for data mining and pattern recognition. Clustering means 

grouping all similar records in one group based on criteria set to compare the similarity 

of each string or pattern. (Jain, Murty and Flynn, 1999; Halkidi, Batistakis and 

Vazirgiannis, 2001; Dharmarajan and Velmurugan, 2013; Nisha and Kaur, 2015). 

Clustering has emerged as a popular technique for pattern recognition, image 
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processing, and, most recently, data mining. Clustering algorithms are increasingly 

required to deal with large-scale data sets containing categorical and numeric data, 

particularly in data mining. According to (Mamun, Aseltine and Rajasekaran, 2014), 

clustering refers to the record linkage problem where records are grouped based on 

similarity. 

The representation of objects is the main feature of clustering, as objects are 

represented as patterns to find the similarity (Filippone et al., 2008). The patterns are 

considered similar if they are in the same cluster but considered different if not in the 

same cluster. This difference should be clear and meaningful to represent patterns in 

the cluster (Xu and Wunsch, 2005). (Monge and Elkan, 1997) they improved the nested-

loop record comparison performance by showing a transitive approach for duplicate 

detection. For example, if ‘A’ and ‘B’ are duplicates and ‘B’ and ‘C’ are duplicates, then 

‘A’ and ‘C’ are assumed duplicates. The problem with this approach is that record 

matching relies on the dependency of connected components of the graph. If these 

connected components are accurate, then the assumption can be valid; otherwise, no 

relationship can be retrieved between records. So, to compute the connected 

components efficiently on the graph, (Monge and Elkan, 1997) used a method called 

union-find. This method combines records into a cluster during the union stage. In 

contrast, the cluster is used as a comparison representation, and the number of record 

comparisons gets reduced for duplicate detection. So, we can say that if ‘A’ is not a 

duplicate of ‘B’ already in the cluster, other members in the cluster will not be duplicates 

of ‘A’.  

 

2.7.1. The Types of Clustering Techniques 
 

Many clustering algorithms are available for specific problems, such as hierarchical, k-

means, mean-shift and fuzzy clustering. Each technique requires matching criteria to 

find the distance between different clusters. Usually, edit distance is a common 

technique used for this purpose. 
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2.7.1.1. K-Means Clustering 
 

K-Means is a widely used partition-based clustering algorithm that aims to divide the 

data into K clusters, where K is a user-specified parameter. One method that has proved 

particular efficiency is the k-means algorithm (Jain, Murty and Flynn, 1999). (Huang, 

1998) developed the k-modes algorithm by extending the standard k-means algorithm 

with a simple matching dissimilarity measure for categorical data and a frequency-based 

method to update centroids in the clustering. The numeral-only limitation of the k-

means algorithm does not constrain this extended method. It has shown efficient 

clustering performance in real-world databases.  

 The algorithm works as follows: 

• Randomly initialize K centroids (points representing each cluster's centre). 

• Assign each data point to the nearest centroid, creating K clusters. 

• Recalculate the centroids by taking the mean data points in each cluster. 

• Repeat steps 2 and 3 until convergence (when the centroids no longer change 

significantly or after a certain number of iterations). 

K-Means tries to minimize the within-cluster sum of squares (inertia) by iteratively 

optimizing the positions of the centroids. While K-Means is efficient and easy to 

implement, it may converge to a local minimum, depending on the initial placement of 

centroids. K-Means is widely used in customer segmentation, market analysis, image 

compression, and pattern recognition tasks. It is particularly effective when the clusters 

are well-separated and approximately spherical (Lloyd, 1982). (WONG, 1979; Lloyd, 

1982) identifies some advantages and disadvantages of K-mean as below: 

 

Advantages: 

• Fast and efficient for large datasets. 

• Scalable and easy to implement. 

• Well-suited for convex-shaped clusters. 
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Disadvantages: 

• Must predefine the number of clusters 

• Sensitive to the initial placement of centroids. 

• It converges to local optima. 

• It is not suitable for clusters with irregular shapes or different sizes. 

Furthermore, the fuzzy k-modes algorithm generates the fuzzy partition matrix from 

categorical data with the framework of the fuzzy k-means-type algorithm (Bezdek, 1981; 

Bezdek et al., 1999) and improves on the k-modes algorithm by assigning confidence 

degrees to data in different clusters. In most fuzzy versions of clustering algorithms, the 

assigned data memberships to a cluster are fuzzy, but the centroid is not fuzzy. For 

example, although the fuzzy k-modes algorithm efficiently handles categorical data sets, 

it uses a complex centroid representation for categorical data in a cluster. This use of 

hard rejection of data can lead to misclassification in the region of doubt. The main focus 

of clustering is discovering duplicate entities in a dataset without unique identifiers. The 

entities in the dataset may be referenced differently from merging records in the 

datasets. One common approach to tackling this problem includes clustering, such as 

hierarchical agglomerative and k-means clustering, where each cluster represents an 

entity. However, a problem with many of these existing approaches is that they require 

the number of clusters to be set in advance (Dai, 2011). Using the Mean-Shift technique 

gives flexibility in the cluster. It does not require a fixed number of clusters to be defined 

in advance. 

 

2.7.1.2. Mean-Shift Clustering 
 

Mean-Shift is an iterative process that moves each point to the average point in the 

cluster (Yizong Cheng, 1995). Mean-Shift was originally introduced by Fukunaga and 

Hostetler in 1975, where the iteration process shifts points until all points are converged 

to estimate the “mode” to define a cluster (Fukunaga and Hostetler, 1975; Comaniciu 

and Meet, 1999; Carreira-Perpiñán, 2015). There is no need to predefine the number of 

clusters as the number of clusters is obtained automatically by finding the centre of 
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modes. According to (Georgescu, Shimshoni and Meer, 2003), finding the closest 

neighbours of data points in the area is the most expensive operation in the Mean-Shift 

method. The mode is the densest area where most of the data is located due to data 

points being moved there during the iteration process, and the process continues until 

all data points are moved to the mode. Because of the nature of the process, the mean 

shift is a sequential clustering algorithm. The second-in-line data point will be processed 

until the first data point is moved to the mode. Therefore, each data point process waits 

until the previous process is completed. In this process, the close data points require 

less iteration, but data points far from each other require more iteration (Li, Hu and Wu, 

2007; Wu and Yang, 2007). 

(Liu et al., 2013) states that the Mean-Shift iteration procedure is based on two essential 

steps:  

• The distribution of data points is based on constructing a probability density 

model. 

• Each data point is mapped to the density model nearest to the point. 

Therefore, the density model is an integral part of machine learning for 

representing clusters.  

Typically, Mean-shift is used in machine vision for image analysis, image processing, 

pattern recognition, and objective tracking. In pattern recognition, mode plays a vital 

role in applications like classification, feature extraction, image segmentation and 

object tracking (Comaniciu and Meer, 2002). In 1995, Cheng generalized the Mean-Shift 

algorithm, and in machine vision, the algorithm became popular (Ghassabeh, 2013). 

Mean-Shift is vital in discovering data presented in arbitrary clusters (Anand et al., 

2014).  

The following steps are involved in working of the Mean-Shift clustering algorithm 

(Comaniciu and Meer, 2002): 

Step 1 − First, start with the data points assigned to a cluster of their own. 

Step 2 − Next, this algorithm will compute the centroids. 

Step 3 − In this step, the location of new centroids will be updated. 
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Step 4 − The process will be iterated and moved to the higher-density region. 

Step 5 − At last, it will be stopped once the centroids reach a position from 

which they cannot move further. 

The Mean-Shift algorithm has advantages and disadvantages, as described by (Yizong 

Cheng, 1995; Comaniciu and Meer, 2002). The following are some advantages and 

disadvantages are discussed below : 

 

Advantages: 

• It does not need to make any model assumption as in K-means  

• It can also model complex clusters which have nonconvex shapes. 

• It only needs one bandwidth parameter, which automatically determines the 

number of clusters. 

• There is no issue with local minima, unlike K-Means. 

• No problem was generated from outliers. 

 

Disadvantages: 

• The mean-shift algorithm does not work well in the case of high dimensions, 

where the number of clusters changes abruptly. 

• There is no direct control over defining the number of clusters.  

• It cannot differentiate between meaningful and meaningless modes. 

 

2.7.1.3. Hierarchical Clustering 
   

Hierarchical clustering creates a tree-like structure of nested clusters called a 

dendrogram without requiring a predefined number of clusters. There are two main 

approaches to hierarchical clustering (Ward, 1963): 
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• Agglomerative (bottom-up): Starts with each data point as its cluster and 

repeatedly merges the closest pairs of clusters until only one cluster remains. 

• Divisive (top-down): Starts with all data points in one cluster and recursively 

splits the clusters into smaller ones until each data point is in its cluster. 

The choice of merging or splitting is determined by the linkage criteria, such as single 

linkage (distance between the closest points in each cluster), complete linkage (distance 

between the farthest points in each cluster), or average linkage (average distance 

between all points in each cluster). The dendrogram can be cut at a certain level to 

obtain a specific number of clusters. The algorithm has advantages and disadvantages 

defined by (Ward, 1963; Fionn Murtagh, 2014): 

 

Advantages: 

• It provides insights into hierarchical structures in the data. 

• It is flexible and can be cut at different levels to obtain cluster granularities. 

 

Disadvantages: 

• It is Computationally expensive for large datasets. 

• The choice of linkage criteria impacts the clustering result. 

• The best-used areas are Biology, bioinformatics, social sciences, image 

segmentation, and document clustering. 

 

2.7.1.4. Density-Based Spatial Clustering of Applications with 

Noise (DBSCAN) 
    

DBSCAN is a density-based algorithm that groups data points based on their density. It 

requires two parameters: "epsilon" (ε), which defines the neighbourhood radius around 

each data point, and "min Pts," which sets the minimum number of data points within ε 

to form a core point. DBSCAN automatically determines the number of clusters and is 
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robust to outliers and irregularly shaped clusters. The algorithm works as follows (Martin 

Ester, Hans-Peter Kriegel, Jiirg Sander, 1996; Schubert et al., 2017): 

Step 1 - Find all the points within distance ε of each data point. It becomes a core 

point if a point has at least "minPts" neighbours. 

Step 2 - Expand the cluster from the core point by adding all reachable points 

within ε to the cluster. 

Step 3 - Repeat the process for all core and non-core points within the cluster's 

reachability distance. 

Step 4 - Points not reachable from any core points are considered noise and do 

not belong to any cluster. 

 

The algorithm comes with its advantages and disadvantages: 

Advantages: 

• Automatically determines the number of clusters. 

• Robust to outliers and noise. 

• It handles clusters of arbitrary shapes and sizes. 

Disadvantages: 

• Sensitive to the choice of epsilon and min Pts. 

• It may be difficult with datasets having significantly varying densities. 

• The best-used areas are Spatial data analysis, anomaly detection, and varying-

density datasets. 

 

2.7.1.5. Gaussian Mixture Model (GMM) 
    

GMM is a probabilistic model-based clustering algorithm that assumes data points are 

generated from a mixture of several Gaussian distributions (Dempster, Laird and Rubin, 

1977). 
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The algorithm works as follows: 

Step 1 - Initialize the parameters (no. of kernels) of the Gaussian components 

(mean, covariance, and weight). 

Step 2 - Expectation step (E-step): Calculate the probability that each data point 

belongs to each Gaussian component. 

Step 3 - Maximization step (M-step): Re-estimate the parameters of the Gaussian 

components based on the probabilities from the E-step. 

Step 4 - Repeat steps 2 and 3 until convergence. 

The data points are then assigned to clusters based on their probabilities of belonging 

to each Gaussian component. GMM allows soft assignments, meaning each data point 

can belong to multiple clusters with different probabilities.  

There are the following advantages and disadvantages of this algorithm: 

Advantages: 

• Soft assignments of data points to clusters. 

• Can capture complex data distributions. 

• It handles overlapping clusters. 

Disadvantages: 

• Sensitive to the initialization of parameters. 

• May converge to local optima. 

• The best-used areas are Image segmentation, speech recognition, and pattern 

recognition tasks with overlapping clusters. 

 

2.7.1.6. Spectral Clustering 
   

Spectral Clustering is a graph-based algorithm that treats data points as nodes and 

clusters them based on the graph structure (Von Luxburg, 2007). 
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The algorithm works as follows: 

Step 1 - Construct an affinity matrix that measures pairwise similarities between 

data points. Common choices include the Gaussian affinity and k-nearest 

neighbour affinity. 

Step 2 - Compute the graph Laplacian matrix, which encodes the graph structure. 

Step 3 - Obtain the eigenvectors or eigenvalues of the Laplacian matrix and use 

them to create a lower-dimensional data representation. 

Step 4 - It performs K-Means or other clustering techniques on the lower-

dimensional representation to identify the clusters. 

 
Spectral Clustering is helpful for non-convex clusters and can handle data in high-

dimensional spaces.  

The algorithm has some advantages and disadvantages, as listed below: 

Advantages: 

• It handles non-convex clusters and high-dimensional data. 

• Performs well with datasets having clear low-dimensional structures. 

Disadvantages: 

• Computationally expensive for large datasets. 

• It requires parameter tuning for the affinity matrix. 

• The best-used areas are Image segmentation, community detection in social 

networks, and dimensionality reduction tasks. 

 

2.8. Comparison of Clustering Techniques 
 

The following Table 2.5 provides the comparison summary of the clustering techniques 

discussed above. This comparison discusses each clustering technique's key points, 

advantages, limitations, and best-used areas. 
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Table 2.5 - Comparison of Clustering Techniques 

Clustering 
Technique 

Key Points Advantages Limitations Best-Used Area 

K-Means Partition-based, 
iterative K clusters 

Fast and 
efficient 

Sensitive to initial 
centroids, local 
optima 

Customer segmentation, 
market analysis, image 
compression, pattern 
recognition 

Hierarchical Hierarchical 
representation, 
agglomerative 

Provides 
insights into a 
hierarchy 

Computationally 
expensive linkage 
criteria 

Biology, bioinformatics, 
social sciences, image 
segmentation, document 
clustering 

DBSCAN Density-based, 
automatic clusters 

Handles 
arbitrary 
shapes, robust 
to noise 

Sensitive to 
parameters, varying 
density 

Spatial data analysis, 
anomaly detection, 
clusters with varying 
density 

Mean Shift Mode-seeking, 
automatic clusters 

Handles 
arbitrary 
shapes, robust 
to noise 

Computationally 
intensive, bandwidth 
parameter sensitivity 

Image segmentation, 
identifying clusters with 
varying density, computer 
vision 

GMM 
(Gaussian 
Mixture 
Model) 

Probabilistic 
model, soft 
assignments 

Captures 
complex data 
distributions 

Sensitive to 
initialization, local 
optima 

Image segmentation, 
speech recognition, 
pattern recognition with 
overlapping clusters 

Spectral 
Clustering 

Graph-based, 
handles non-
convex clusters 

Handles high-
dimensional 
data 

Computationally 
expensive parameter 
tuning 

Image segmentation, 
community detection, 
dimensionality reduction, 
clusters with low-
dimensional structures 
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2.9. Knowledge-Base 
 

In machine learning, a knowledge base is a repository or collection of structured and 

organized knowledge that supports an intelligent system's learning and decision-making 

processes. It is a central source of information that the system can access and use to 

make informed decisions, solve problems, and acquire new knowledge. Knowledge 

bases are crucial in various AI applications, including expert systems, natural language 

processing, semantic search, and knowledge-based question-answering systems. 

 

2.9.1. Types of Knowledge-Base 
 

2.9.1.1. Rule-Based Knowledge-Base 
 

A rule-based knowledge base consists of rules expressed as "if-then" statements. Each 

rule represents a piece of knowledge or a condition the system can apply to make 

decisions or perform actions. Rule-based systems benefit expert systems, where human 

experts' knowledge is represented as rules for automated decision-making. These 

systems are widely used in medical diagnosis, finance, and control systems (Bharambe, 

Jain and Jain, 2012). 

 

2.9.1.2. Ontology-Based Knowledge-Base 
 

An ontology formally represents knowledge that defines a specific domain's concepts, 

relationships, and constraints. An ontology-based knowledge base organizes knowledge 

using ontologies, allowing the system to reason about the domain and perform semantic 

searches. Ontology-based systems are standard in natural language processing, 

semantic web applications, and knowledge representation tasks. They enable advanced 

semantic search and knowledge inference (Studer, Benjamins and Fensel, 1998; Noy and 

McGuinness, 2001). 
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2.9.1.3. Case-Based Knowledge-Base 
 

A “case-based knowledge base” stores past experiences or cases as features and 

outcomes. The system can use these stored cases to solve new problems by retrieving 

and adapting relevant solutions from past cases. Case-based reasoning is widely used in 

machine learning and artificial intelligence applications, especially in systems that learn 

from experience. It is commonly employed in medicine, finance, and customer support 

(Aamodt and Plaza, 1996; Watson and Marir, 2007). 

 

2.9.1.4. Knowledge Graph 
 

A knowledge graph is a structured representation of knowledge, typically in a graph, 

where entities and their relationships are interconnected. Knowledge graphs capture 

complex relationships between entities and provide a powerful knowledge 

representation and reasoning framework. They are commonly used in various 

applications, including search engines and knowledge-based question-answering 

systems (Bollacker et al., 2008; Bizer, Heath and Berners-Lee, 2009). 

 

2.9.2. Use of Knowledge-Base in Machine Learning 
 

2.9.2.1. Decision-Making 
 

Knowledge bases provide a set of rules, facts, and domain-specific knowledge that guide 

decision-making processes. They are used in expert systems and AI applications to make 

informed choices based on the available information and rules. Expert systems like 

MYCIN and DENDRAL employed rule-based knowledge bases for medical diagnosis and 

chemistry problem-solving (Studer, Benjamins and Fensel, 1998). 
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2.9.2.2. Problem-Solving 
 

Case-based and ontology-based knowledge bases facilitate problem-solving by 

leveraging past experiences and domain-specific knowledge. In case-based reasoning, 

past cases are used to solve new problems by retrieving similar cases and adapting their 

solutions. While Ontology-based systems reason over the structured knowledge in 

ontologies to provide context-aware and domain-specific problem-solving capabilities 

(Studer, Benjamins and Fensel, 1998). 

 

2.9.2.3. Semantic Search 
 

Knowledge bases based on ontologies and knowledge graphs enable semantic search, 

allowing the system to understand the context and meaning of queries. They support 

advanced search capabilities that consider relationships between entities, leading to 

more relevant search results. Semantic search is essential in natural language processing 

and web search engines (Yerva, Miklos and Aberer, 2010). 

 

2.9.2.4. Knowledge Representation 
  

Knowledge bases formally represent knowledge in a structured and organized manner. 

They enable knowledge sharing and reasoning within intelligent systems, facilitating 

more efficient learning and decision-making. Knowledge representation is fundamental 

to many AI applications, including expert and knowledge-based systems (Islam and 

Inkpen, 2008). 
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2.10. Summary 
 

This chapter has explored different machine-learning techniques and discussed the 

entity resolution and challenges in matching the string in detail. The main three 

matching techniques and how they match any two strings were explained. The two 

matching techniques, Edit Distance and Jaro-Winkler, have been discussed to address a 

few matching challenges. In contrast, the Soundex technique has been explored to 

address string matching based on phonetic matching. Next, clustering techniques 

required to group similar matching strings were discussed. The last section of the 

chapter explains how the knowledge base is valuable in machine learning and how it can 

be used. 
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CHAPTER3 

3. RESEARCH DESIGN AND METHODOLOGY 
 

3.1. Chapter Overview 
 

This chapter presents the methodology used for this research. The discussion will then 

explain the research design approach in detail, along with the foundation of the 

methodology. The proposed model will outlined the following sections. The following 

sections will detail the implementation of the proposed model. Initially, the discussion 

will be of different tools and libraries for computer simulation. Then, it will explain the 

importance of improvements in the Soundex technique and present some matching 

explanations of this improved Soundex technique and the standard Jaro-Winkler 

technique. The next chapter will be the results chapter, which will present and explain 

the results based on this chapter. 

   

3.2. Foundation of Research Methods (Design) 
 

For this research evaluation of the similarity techniques, de-identified police data has 

been used for record matching and pattern recognition. The search runs iteratively using 

a combination of attributes for approximate string matching to find the desired entity, 

and the results create three data subsets. These data subsets will be compared and 

merged to produce the matched record(s) after the computation steps on the data. This 

research (Nawaz and Kazemian, 2021) was published in the EANN2021 Conference held 

on 25th-27th June 2021, and the published research paper is attached in Appendix A. 
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3.2.1. Foundation of the Proposed Model 
 

In big data, names with different name variations or incorrect spelling may be an issue 

for exact matching. However, finding approximate matches for an entity leads to an 

arduous task. Nevertheless, missing or incomplete information in the database can also 

lead to considerable manual work to guess the matching record (Mon, Mie and Thwin, 

2013). 

The following sections discuss key terminologies, techniques, and the proposed model's 

design.  

 

3.2.1.1. Data Pre-processing 

 

Data pre-processing is a process that runs on data cleaning, standardizing, and fixing 

incomplete information. Data pre-processing helps when matching record values for 

one or more particular attributes and is considered a vital part of data mining (Huang et 

al., 2008). Data pre-processing is a crucial preparatory step in entity matching, also 

known as record linkage or deduplication, which aims to identify and link records 

referring to the same real-world entities from different data sources. It involves a series 

of techniques and operations to clean, standardize, and transform the data, making it 

more suitable for subsequent entity-matching.  

An essential step is removing the unwanted characters to clean the data. It can refer to 

eliminating unwanted text variation affecting the matching. The variations include 

uppercase or lowercase, different punctuations, and extra space between text 

(Branting, 2003). The standardisation is to bring the text into the same format to be 

easily compared, such as matching “London, UK” and “City of London, UK”. Different 

attribute values can be matched and combined to generate new attributes for matching 

to handle the issue of incomplete information. A piece of incomplete information can 

also be called missing information, affecting the matching process where the result can 

be inaccurate. Therefore, data pre-processing is essential to improve data quality and 
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consistency, leading to more accurate and efficient entity-matching results. However, 

some following steps can be used for data pre-processing: 

 

 Data Pre-processing steps in Entity Matching 

 

• Data Cleaning 

 

Data cleaning involves identifying and correcting errors, inconsistencies, and missing 

values in the data. Different techniques, such as data imputation, outlier detection, and 

error correction, are applied to ensure high data quality. Cleaning the data reduces the 

chances of false matches caused by errors or inconsistencies (Herzog and Reiter, 2008; 

Christen, 2012). 

 

• Data Standardisation 

 

Standardisation involves transforming data to a standard format or representation. This 

step includes converting data to lowercase, removing punctuation, and applying 

stemming or lemmatization to text fields. Standardisation ensures that variations in data 

representations are minimized, facilitating more accurate matching (Oracle, 2010). 

 

• Tokenisation 

 

Tokenisation is the process of breaking text into individual tokens or words. Tokenisation 

is particularly important for text-based entity-matching tasks. It helps create a more 

structured representation of textual data, which aids in identifying standard terms 

between records (Bird, Klein and Loper, 2009). 

 



3. RESEARCH DESIGN AND METHODOLOGY 

84 
 

• Feature Extraction 

 

Feature extraction involves selecting and transforming relevant attributes or features 

from the data. Features like TF-IDF (Term Frequency-Inverse Document Frequency) and 

n-grams are commonly used for textual data. Numerical data may require feature scaling 

to bring all features to a similar scale. Selecting informative features is essential for 

accurate entity matching (Basu, Bhattacharyya and Kim, 2010). 

 

• Blocking/Blocking Key Selection 

 

Blocking is a technique that reduces the search space by dividing data into smaller 

blocks. The choice of blocking keys (attributes) affects the granularity and efficiency of 

entity matching. Effective blocking ensures that only potentially matching records are 

compared, reducing computation time (Kirsten et al., 2010). 

 

• Data Transformation 

 

Data transformation may involve encoding categorical attributes, normalization, or 

feature engineering. Transforming data ensures that it is in a suitable format for the 

entity-matching algorithms being used. The choice of transformation techniques 

depends on the specific data characteristics and the matching approach (Tejada, Knoblock 

and Minton, 2002). 

 

 Importance of Data Pre-processing in Entity Matching 

 

Data pre-processing plays a critical role in entity matching for the following reasons 

mentioned (Bhattacharya and Getoor, 2007). 
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• Improved Data Quality: Data cleaning and standardisation techniques enhance 

data quality by removing errors and inconsistencies and standardizing 

representations. Clean data leads to more accurate matching results. 

• Reduced False Matches: Pre-processing reduces the likelihood of false positives 

and false negatives in entity-matching results by handling data variations and 

inconsistencies. 

• Efficient Computation: Effective blocking and feature selection reduce the 

computational complexity of the matching process. It makes entity matching 

more efficient and scalable, especially for large datasets. 

• Enhanced Matching Accuracy: Tokenisation and feature extraction techniques 

improve the ability to identify similarities between records, increasing the 

matching accuracy. 

 

3.2.1.2. Classification of Data 

 

Classification is typically a process in which each record pair gets classified into a match 

and no matching category, manually setting the threshold value for record linkage 

(Ashish and Toga, 2016). The probabilistic record linkage was proposed by (Fellegi and 

Sunter, 1969), and most record linkage systems have been based on this approach for 

years. However, many researchers have recently been using binary classification 

techniques based on machine learning and data mining because these techniques 

provide better results for field comparison of any record (Ravikumar and Cohen, 2004). 

The similarity of each field comparison is calculated between the values of 0 and 1. Many 

research works have been conducted, and different similarity techniques were 

introduced to achieve this, where the field type can influence the result (Wang and 

Wang, 2016). 

 

 

 



3. RESEARCH DESIGN AND METHODOLOGY 

86 
 

3.2.1.3. Clustering of Data 
 

Clustering is significant and is one of the famous techniques for pattern recognition, data 

mining and image processing. Clustering algorithms typically deal with large datasets, 

primarily numeric data (Du, 2010). K-means is one of the efficient clustering algorithms. 

It has a fuzzy variation called the fuzzy k-modes algorithm, which produces the fuzzy 

partition matrix of the fuzzy k-means-type algorithm. In this fuzzy clustering algorithm, 

clusters are fuzzy. However, at the same time, centroids are not fuzzy, which can lead 

to misclassification in the cluster. The main focus of clustering is discovering duplicate 

entities in a dataset without unique identifiers. The entities in the dataset may be 

referenced differently from merging records in the datasets. The clustering techniques 

that tackle this problem are hierarchical and K-means clustering. However, these 

methods do not address the problem of fixed clustering, which involves specifying the 

number of clusters in advance (Dai, 2011).  

 

3.2.1.4. Knowledge-Base (KB) 

 

This phase of the proposed model will be used as a reference to understand the results 

in graph and table format while creating the knowledge base for future searches. Any 

new search will be compared with the pool of records in the knowledge base. The three 

classifiers labelled “match, possible match and close or related match” will be used to 

store records in KB accordingly. Any new, similar or identical search looking for “identity 

match” first in KB will speed up the matching process. It will help to reduce the 

processing time for records to be matched or to find similarities to the records found in 

the knowledge base. If the searched input is found in KB, it will be compared with the 

central database to check for any new changes to the record. Once the record reference 

has been updated, it will be stored in KB for future searches. However, suppose the 

searched input record is not found in KB. In this case, only the central database will be 

used to find matches, possible matches and related match records. After such a 

classification, new records will added to KB for future searches. 
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3.2.1.5. Record Linkage 

 

It is crucial to extract the correct information for the record based on the correct 

relationship. The record linkage process links the shared values of particular attributes 

and finds the relationship in each record. Related or similar values might appear in this 

record linkage process, which can be duplicate records and a step closer to entity 

resolution (Brizan and Tansel, 2006). In simple words, connecting different records in 

the dataset to find the relationship is called record linkage, which helps to find the one 

actual record representing the real-world entity record. However, the dataset might 

contain errors such as misspellings, and the vast number of records makes it difficult to 

correctly match all records (Basu, Bhattacharyya and Kim, 2010; Mamun, Aseltine and 

Rajasekaran, 2014). So, record linkage needs to handle such errors during the clustering 

process, and it is only possible by using the approximate matching or fuzzy matching of 

attributes of records. The efficient record linkage is crucial for identity resolution to find 

the correct real-world individual identity. Nevertheless, the record linkage performance 

depends on accuracy, the number of required comparisons, complexity and the time 

required to complete the process (Wangikar, Deshmukh and Bhirud, 2016). 

The relationship between records can be found by comparing it with family members 

and friends, which can quickly determine the real-world target entity. The information 

about an entity allows an individual to be linked to other entities related to an individual 

entity. This information helps to create links between all possible and related entities. 

This linkage is called Link analysis, which involves connecting and comparing the 

information within a dataset or multiple datasets (Brizan and Tansel, 2006). 

 

3.2.1.6. Selection of Attributes for Searching Records 
 

It is usually straightforward to provide the search query and find the required results 

from the database based on the search criteria set. However, if there are typographical 

errors in the database, the query result will not be accurate (Brizan and Tansel, 2006). 
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In entity resolution, finding the results as accurately as possible is imperative. For this, 

it is essential to run the number of queries on the database to retrieve the matching 

record. It is known that each entity contains different attributes, which help 

differentiate one entity from another. However, appropriate matching techniques are 

required to search records. Usually, in a single dataset, simple attributes such as address 

can be used to link or associate the entity with other entities. 

Similarly, a forename and surname can also allow association or link the single entities 

with other entities matching surnames and address information as a combination of 

matching criteria. Also, date of birth is another attribute that helps determine the 

entities' linkage. It is challenging to compare the date of birth due to the different 

formats, such as “YYYY.MM.DD” or “MM.DD.YYYY” or “DD.MM.YYYY”. The combination 

of name and date of birth will not be good enough to link or associate the entity with 

other entities if there are no typographical errors in the records. The date format issue 

has been tackled in the proposed model by converting the date of birth attribute values 

to a string value. 

 

3.2.1.7. Labelling of Matching Records 
 

It is crucial to establish criteria for entity resolution and record linkage to match the 

records by comparing the value of attributes of the record. Typically, the matching 

criteria are used to compare the attributes of one or two records to generate the result 

in “Match or No Match”. (Brizan and Tansel, 2006) state that Fellengi and Sunter defined 

the matching criteria for records to be classified as “match”, “no match”, and “needs 

more review”. Establishing the matching criteria is critical as most of the data in the 

database is text-based, and entity resolution needs matching criteria for text matching 

as follows: 

 

 Match criteria consider a match where all the values of more than one particular 

attribute exactly match. It is the easy matching criteria. For example, if a record's 

last name, first name and date of birth are the same, it will be categorised as 

“match”. According to (Cohen and Richman, 2002), the matching criteria may 



3. RESEARCH DESIGN AND METHODOLOGY 

89 
 

contain partial matches only. However, records can be an exact match only with 

no typographical errors or other missing details. 

 

 Possible match criteria, where at least one or more than one value for a 

particular attribute is similar, will be considered a “possible match”. In fuzzy 

matching, it is vital to determine a possible match to help classify the records 

based on the matching criteria. For example, a record contains a similar surname, 

date of birth, and different forename. However, a similar address will be 

considered a possible match. 

 

 Related or Close match criteria, where any one or more values for a particular 

attribute are similar. It can also be called a “close match”. Finding the related 

match helps to classify the records based on the matching criteria. For example, 

a record containing a similar date of birth and address but a different name will 

be considered a related or close match. 

 

 No match criteria, where values for a particular attribute that do not match or 

contain any similarity will be considered “No match”. For example, if a record 

does not contain or match the name (forename, surname), date of birth and 

address, it will be considered no match. Because some records may match the 

date of birth while the rest of the attribute values do not, it will still be 

considered a no-match. In the past, all researchers have included no match in 

the matching criteria. However, it will not be included in this proposed model to 

eliminate non-match records from further processing and simplify the clustering 

and segmentation process. The “No match” records are dropped during the 

initial search iteration phase from further processing. 

In this research, a new algorithm has been introduced to overcome the performance 

shortage of the Jaro-Winkler and Soundex similarity metrics to produce the desired fuzzy 

matching results. This new hybrid fuzzy matching algorithm contains all the good 

features of Jaro-Winkler and Soundex similarity metrics discussed in the previous 

chapter.  
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In the proposed algorithm shown below in Figure 3.1, each input name is searched based 

on Soundex code to find similar matches pronounced similarly. During this process, 

Soundex encoding is applied to all the names in the database and compared to the 

Soundex code of the input name. The two hash values are created for all the matching 

names by applying the Jaro-Winkler technique on the Soundex encoding of each name. 

The matching value between 0 and 1 is generated by the Jaro-Winkler distance. By doing 

this, the aim has been to get improved results by using the Jaro-Winkler and Soundex 

similarity metrics to generate an aggregate score for entity matching. All names in the 

database will have Soundex code generated, and a Jaro-Winkler score will be generated 

for the target name and names in the database. The Soundex code score is generated 

by applying the Jaro-Winkler technique to match the database's target name and other 

names. Once there are two distance scores, one based on the Soundex code and another 

from Jaro-Winkler, each name's aggregate score is generated. Converting Soundex 

codes into the Jaro-Winkler score tackles most name variations and Soundex issues 

discussed in the previous chapter.  

Typically, the Soundex is based on phonetic matching by generating the 4-digit code for 

the given name and matching names that sound or are pronounced similarly without 

worrying too much about the spelling of the name (Kessler, 2005; Shah and Kumar Singh, 

2014).  

However, in this research, the Soundex code generates a 6-digit code. The methodology 

involves the combination of two different string similarity metrics to find an 

approximate match for the entity by applying it during the iterative search process. The 

iterative process is based on the combination of different attributes with three different 

possible name variations. These name variations are not fixed and can be anything based 

on how the name is pronounced. Each iterative search generates a dataset that is later 

combined into one final dataset. The approximate score of names is based on aggregate 

calculations of Soundex's and Jaro-Winkler's approximate scores. The FuzzyWuzzy 

Python library is used to generate the long string address score. The Mean-Shift 

algorithm groups resultant records based on aggregate score and calculated age. The 

clusters are calculated automatically based on a matched number of records, and there 

is no need to provide a fixed number. After this, the results are further analysed by 
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segmenting the records based on further similarities and displaying the relationship in 

the graph to detect the identity. The results will be categorised as “ Match”, “Possible 

Match”, and “Close or Related Match”.  

The following section explains the proposed model for identity resolution and 

discusses the design phases in detail, building upon the foundational techniques 

outlined in this section. 
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3.3. The Proposed Model for Identity Resolution 
 

 

 

 

 

 

 

Figure 3.1 - Proposed Identity Resolution Model 
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3.3.1. Using Data Pre-processing 
 

In the proposed model, the data pre-processing is simple, and the main focus is to match 

the field’s values simply by using the similarity metrics collectively. The selected 

attributes are “surname”, “forename”, “gender”, “address”, “postcode”, “description” 

and “date of birth”. The input values to match can be partial, e.g., matching birth year 

(converted into age) instead of the complete date of birth, partial postcode, or part of 

the address. The proposed model converts all the values in the selected attributes to 

lowercase. All the numeric fields are matched as string values, such as “postcode” and 

“date of birth”, in the records as a string. As discussed in previous sections, comparing 

the “date of birth” as a string benefits the search and eliminates the date format issues. 

Figure 3.2 below defines the used attributes: 

 

 

Figure 3.2 - Selection of attributes for the dataset 

A combination of surname and forenameName

• Surname and Forename are merged to create one name field. The name field starts with surname.

To identify the entity as "Male" or "Female"Gender

• Instead of strings "male" and "female", only initials will be used for the search, such as M or F.

Calculated from the Date of BirthAge

• The age is calculated by finding the difference between the year of birth and the current year. It generates an 
approximate age for the proposed model.

A combination of location attributes to form addressAddress

• The Street, Town and District fields are merged to create the "Address" field, excluding the postcode for this merge.

Defines the Ethnicity of an entityDescription

• In the search process, the description field provides the ethnicity of the entity in question. Therefore, the attribute's 
name is taken from the dataset and has not been changed.
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During this phase, the dataset splits into two datasets. The purpose of this dataset is to 

separate complete records from incomplete records with different attribute values.  

 

3.3.2. Creation of Attributes Formation 
 

 Name – In the policing dataset, two separate fields define entity name. The first 

field is a surname, a given family name of an entity. The second field is forename, 

the first name given by parents. For the proposed model, to simplify and 

generate one similarity code, the two fields, surname and forename, are 

combined into one field as a Name. In this Name field, the name for each entity 

starts with surname and then forename. The Name field will consider all the 

naming issues discussed about similarity matching algorithms in the previous 

chapter. Figure 3.3 shows the formation of the Name field. 

 

 

Figure 3.3 - Formation of the Name attribute for the dataset 

 

 Address – In the policing dataset, multiple fields provide street, town, and district 

names and postcodes. All these fields are combined for the proposed model to 

form the address field instead of having different fields representing address. 

The postcode field is not combined with this Address field. The main reason is to 

keep the postcode separate for an approximate match based on the partially 

known postcode while using the Address field for approximate matching for any 

known address information. It gives the two sets matching flexibility based on 

Address and postcode. Figure 3.4 below shows the formation of the Address 

field. 

Surname Forename Name
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Figure 3.4 - Formation of the Address attribute for the dataset 

 

 Age – For the proposed model, the full Date of Birth is required, and only 

approximate age is required to populate the records during the search. So, the 

calculation is done by extracting the birth year and subtracting it from the 

current year to calculate the approximate number. This resultant number is 

counted as Age and added to the policing datasets while keeping the date of 

birth in the dataset. Figure 3.5 shows the extraction of age from the Date of Birth. 

 

 

Figure 3.5 - Formation of the Age attribute for the dataset 

 

 

 

Street 
Name

Town 
Name

District 
Name

Address

Date Of Birth (Day/Month/Year)

Birth Year - Current Year

Age
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The block diagram of the fuzzy approach for complete records shown in Figure 3.6 uses 

string similarity techniques in a cascaded manner, scoring the names to find an 

approximate name match.  

 

Figure 3.6 - The block diagram of a fuzzy approach to identity resolution using complete records 

 

3.3.3. Selection of Searching Criteria 
 

The proposed model introduces the iterative process for searching the target name in 

the database. The search iteration process runs in three passes, combining selected 

attributes to generate the search results. The search is formed in each pass with 

different name variations, and the result of each pass will be stored as a data subset. 

Once the iteration process is completed, all three data subsets will be compared for 

duplicate records and merged to generate one final dataset. The search process is bound 

to similarity metrics for matching text in case of errors. 

Figure 3.1 shows the iterative process that runs in three passes and can be denoted as 

follows: 

S = {s1, s2, s3} 

Here “S” represents the search iteration process, and s1, s2, and s3 are the iterations, 

respectively. Each iteration process combines the selected attributes {a} to generate the 
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search results as data subset {d}. Each iteration uses a different name variation, and the 

result of each pass is stored as a data subset {d}. It can be denoted as: 

di = {a1, a2, a3, a4, a5} 

Here “i” represents the data subsets as d1, d2, and d3, respectively. Once the iteration 

process is completed, all three data subsets are compared by removing duplicate records 

and merging to form the final dataset “D”.  This can be denoted as follows: 

 

D = [{d1, d2, d3} – dup]    Equation 3.1 

 

Here, “dup” represents the duplicate records. 

Another process is scoring the address field strings with the help of the FuzzyWuzzy 

Python library’s partial token function by comparing the input address during the initial 

search process. The scoring of addresses helps to retrieve the related records for the 

target name based on the matching address or part of the address. Once the matching 

and related records dataset is generated, it runs on the incomplete dataset to pick any 

matching records. Figure 3.6 shows the matching of records and different phases to 

generate results from the record's complete dataset. The fuzzy approach eliminates most 

no-match entities based on the low aggregate score compared to the threshold value set 

during the initial search. Finding the results as accurately as possible is essential because 

each record contains different attributes that help differentiate one entity from another.  

 

3.3.4. Calculating the Aggregate Score 
 

This fuzzy approach uses Soundex and Jaro-Winkler similarity techniques to calculate 

the aggregate score for name matching, as shown in Figure 3.6. The names are encoded 

using Soundex code, and the Jaro-Winkler score (JWscore) is calculated for each name 

and records are retrieved based on the matching score. Due to the mistake of the match 

of the Soundex code and the Jaro-Winkler score format, the Jaro-Winkler matching 

technique is applied to the Soundex code of each name to generate the matching score 
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called the Soundex score (Sscore). All these scores are added (+) together and multiplied 

(*) by the average value of 0.5 to get the aggregate score (AggScore) ranging between 0 

and 1. 

For this purpose, the Soundex algorithm has been modified by removing the retention 

of the first character of a name as a constant letter in the code while increasing the code 

length to 6 digits. It generates a numerical 6-digit Soundex code to help eliminate the 

Soundex first character mismatch issue. Increasing the code length helps to reduce many 

false-positive retrievals compared to the 4-digit code.  

The conversion of name si and sj to Soundex code into Jaro-Winkler score and aggregate 

score calculations are as follows: 

 

Sscore = JWscore(si, sj)    Equation 3.2 

 

The aggregate score is calculated with the following equation: 

 

AggScore = (Sscore + JWscore) * 0.5  Equation 3.3 

 

The names will be labelled based on the following criteria: 

 Possible Match - The aggregate score is less than or equal to 1.0 and greater than 

or equal to 0.90. i.e. aggregate score >= 90% and aggregate score <= 100% 

matching score 

 Close Match - The aggregate score is less than 0.90 and greater than or equal to 

0.70. i.e. aggregate score < 90% and aggregate score >= 70% matching score 

 No Match - The aggregate score is less than 0.70. i.e. aggregate score < 70% 

matching score 
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3.3.5. Selection of Records Comparison Criteria 

 

Figure 3.1 shows that all three data subsets will be merged and compared for duplicate 

records to form one final dataset. Even though all duplicate records are removed at this 

stage, records will be retrieved with a low aggregate score, e.g., a score of 0.50 or 0.60 

with a matching aggregate code. Any “No match” or irrelevant records will be dropped 

based on the name fuzzy matching score of attribute values. However, to ensure the 

threshold filtering is not missing any relevant records, as shown in Figure 3.6, the 

matching records are based on the selected attribute values in the initial search dataset 

that the search iteration process will produce. It will help to create the final dataset to 

cluster or group the records. 

 

3.3.6. Clustering and Segmentation of records 
 

After comparing records and acquiring the final dataset, it will be used to cluster records 

based on the selection criteria for the grouping as shown in Figure 3.6. The clustering 

will further identify matching records based on link analysis classified as “match”, 

“possible match”, and “close or related match”. At this stage, the clustering does not 

require labelling data from a human expert to group similar records. Because the Mean-

Shift clustering algorithm has been used to group similar records based on age, name 

aggregate score, and address score. Using the Mean-Shift algorithm gives flexibility in 

the clustering that does not require a fixed number of clusters to be defined. Each record 

will be labelled automatically with a cluster number during this clustering process. These 

clustered records will then be matched, compared and filtered based on the highest 

name and address score to create segments of records. It will ensure that similar records 

are linked together even in different clusters. These records will be matched for similar 

addresses from the initial retrieved and clustered datasets in the segmentation process, 

as seen in Figure 3.6. The similar segmented records will be merged into one dataset, 

and any relevant records will be kept separate. Any found duplicate entries for the same 

entity will be eliminated to reduce the number of matched records. For example, if a 
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record contains a similar “name” and “address” but a different “date of birth”, then in 

this case, it will be labelled as “possible match”. However, suppose a record contains a 

similar “date of birth” and “address” but a different name, then it will be labelled as a 

“close or related match”. The proposed model will efficiently avoid duplicate records 

and provide clean record linkage for a detailed resolution process. 

 

3.3.7. Adding Graph Analysis 
 

During the graph analysis, these segmented records will be compared with the clustered 

dataset to match the final identity out of all other identities. Figure 3.6 shows that the 

graph creation will be layer-based by using different attributes from the dataset to 

explore the matching records step by step visually. The first graph will be created using 

the entity name and cluster label for the entities, and it will visually represent all entities 

linked to each cluster in the clustered dataset. The second graph will use the entity name 

and address from the segmented dataset. The third graph will be created using the 

second graph data compared with the first graph to find the matched identity out of 

other identities, and the matched identity will be shown with associated addresses.  

 

3.4. Tools for Implementation of the Proposed 

Model 
 

The fuzzy approach utilises Soundex and Jaro-Winkler algorithms to calculate the 

aggregate score for names and the FuzzyWuzzy Python library using Edit-Distance partial 

token to score the other attributes, e.g. ethnicity description and address. The aim is to 

match names simply by using similarity metrics and analysing retrieved records for 

similarities using clustering, segmentation, and graph analysis. This fuzzy approach is 

implemented using Python 3.7 using PyCharm (community version) IDE, and the 

anonymized policing dataset is stored in MS SQL Server Express 2017. Pandas (Python 

data analysis library) cleans data and stores datasets retrieved during different stages. 

The NetworkX library is used for graph analysis and visualization. 
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The proposed approach requires implementation and computer programming language, 

tools, and machine learning packages to achieve the proposed result. The details of the 

tools used to implement the proposed model have been added to Appendix B.  

 

3.5. Implementation of Soundex with 

Improvements 
 

3.5.1. Standard Soundex Code Algorithm 
 

The following is the algorithm of the standard Soundex code. It will generate a 4-

character alphanumeric code for any name. The results of the standard code for each 

name are discussed in table format in the next section. 

 

1. Define “Soundex” function for “name” to create code of “length 4”  
 
2. Define “digit” mapping for letters A-Z as '01230120022455012623010202' 
 
3. Initialise variables name as “soundex_code” and “first_character” 
 
4. Convert name to uppercase and iterate through each character 
5.    for character in name converted to uppercase 
6.     if character is an alphabetic letter 
7.   Store the first letter as the initial letter 
8.     digit = digits[ASCII value of character - ASCII value of 'A'] 
9.      if soundex_code is empty or digit is not the same as the last digit 
added: 
10.     append digit to soundex_code 
 
11. Replace the first digit with the initial letter and store in soundex_code 
 
12. Remove all '0's from the soundex_code 
 
13. Adjust the code to the required length 4 and remove additional characters 
14. Return the result to the function Soundex 
 
 
 

 Standard Soundex (4-digit Code) Results 

 

Table 3.1 shows that the standard Soundex code is generated for the given names. The 

Soundex issues are added in the table below to show each name matching results 

accordingly. 
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Table 3.1 - Soundex 4-digit code for names representing Soundex issues 

Soundex Issues Names Soundex Code 

First Letter 

dependency 

Corth , Korth C630 , K630 

Transcription 

difference 

Ivanov , Ivanoff , Iwanow 

Hsiao , Xiao 

I151 , I151 , I151 

H200 , X000 

Silent consonants Meghburn , Meburn 

Coghburn , Coburn 

Deighton ,  Dayton 

M216 , M165 

C216 ,  C165 

D235 ,  D350 

Name syntax Sheikh Ali Mohamed , Sheikh Ali 

Sheikh Ali Mohamed , Sheikh Mohamed 

Ali Mohamed , Sheikh Ali Mohamed 

Alhameed , Hameed 

Alhameed , Hamid 

S245 ,  S240 

S245 ,  S255 

A455 ,  S245 

A453 ,  H530 

A453 ,  H530   

Name Initials Mikhail Kovalchuk ,  M.Kovalchuk, M242 , M214 

Poor precision Criton. ,  Courtmanche 

Criton. ,  Corradino 

Criton. ,  Cartmill 

Criton. ,  Cortinez 

C635 , C635 

C635 , C635 

C635 , C635 

C635 , C635 

Noise intolerance Hreman ,  Herman 

Hubbins , Huggins, 

Msith ,  Smith 

H655 , H655 

H152 , H252 

M230 ,  S530 
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Smith , Smythe S530 , S530 

Long Name Rameshwar , Rameshwaram R526 , R526 

 

In the standard Soundex algorithm, the code produced to match the names retains the 

first character from the names. The remaining alphabets in the names are converted 

into digits. The first letter dependency issue mismatches the names starting with 

different letters. If there is a typo error, then the name does not match. For example, 

“Corth” and “Korth” do not match names based on the standard Soundex code. The 

other issues of Standard Soundex code matching can be seen in the table. 

 

3.5.2. Improved Soundex 6-digit Code Algorithm 
 

The Soundex code algorithm has been modified by removing the first character of a 

name as a constant letter from the code and changing the length to 6 digits. It generates 

a numerical Soundex code of 6-digit code to help eliminate the Soundex first character 

mismatch issue. Increasing the code length helps reduce many false-positive retrievals 

compared to the 4-digit code. The results of this improved Soundex 6-digit code are 

presented in the next section. The following is the algorithm of the improved Soundex 

6-digit code: 

 

1. Define “Soundex” function for “name” to create code of “length 6”  
 
2. Define “digit” mapping for letters A-Z as '01230120022455012623010202' 
 
3. Initialise variables name as “soundex_code” and “first_character” 
 
4. Convert name to uppercase and iterate through each character 
5.    for character in name converted to uppercase 
6.     if character is an alphabetic letter 
7.     digit = digits[ASCII value of character - ASCII value of 'A'] 
8.      if soundex_code is empty or digit is not the same as the last digit 
added: 
9.     append digit to soundex_code 
 
10. Remove all '0's from the soundex_code 
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11. Adjust the code to the required length 6 and remove additional characters 
12. Return the result to the function Soundex 

 

 

 Improved Soundex 6-digit Code Results 
 

Table 3.2 - Improved Soundex 6-digit code for names representing Soundex issues 

Soundex Issues Names Soundex Code 

(Modified) 

First Letter 

dependency 

Corth , Korth 263000 , 263000 

Transcription 

difference 

Ivanov , Ivanoff , Iwanow 

Hsiao , Xiao 

151000 , 151000 

200000 , 200000 

Silent consonants Meghburn , Meburn 

Coghburn , Coburn 

Deighton ,  Dayton 

521650 , 516500 

221650 , 216500 

323500 , 335000 

Name syntax Sheikh Ali Mohamed , Sheikh Ali 

Sheikh Ali Mohamed , Sheikh Mohamed 

Ali Mohamed , Sheikh Ali Mohamed 

Alhameed , Hameed 

Alhameed , Hamid 

224553 , 224000 

224553 , 225530 

455300 , 224553 

453000 , 530000 

453000 , 530000 

Name Initials Mikhail Kovalchuk ,  M.Kovalchuk, 524214 , 521422 

Poor precision Criton. ,  Courtmanche 

Criton. ,  Corradino 

Criton. ,  Cartmill 

263500 , 263552 

263500 , 263500 

263500 , 263540 
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Criton. ,  Cortinez 263500 , 263520 

Noise intolerance Hreman ,  Herman 

Hubbins , Huggins, 

Msith ,  Smith 

Smith , Smythe 

655000 , 655000 

152000 , 252000 

523000 , 253000 

253000 , 253000 

Long Name Rameshwar , Rameshwaram 652600 , 652650 

 
 

It is worth noting that the code implementation brought different results compared to 

the standard Soundex code. The First letter dependency has been eliminated to fuzzy 

match the strings. However, most notably, the poor precision strings are not matched 

because the codes generated are different for each pair. It also improved the matching 

of long names and helped reduce the noise tolerance issue of the standard Soundex 

algorithm. 

 
 

3.6. String Matching with 6-digit Soundex code 

 
The improved 6-digit Soundex code shows the improvement over the standard Soundex 

code by addressing most of the issues discussed in previous sections. Table 3.3 provides 

the matching status of each pair of strings to better understand the results of the 

improved Soundex 6-digit code algorithm.  

 

 

Table 3.3 - Improved Soundex 6-digit code for names with Algorithm Matching status 

Soundex Issues Names Soundex Code 

(Modified) 

Matching 

Status 

First Letter 

dependency 

Corth , Korth 263000 , 263000 Possible Match 
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Transcription 

difference 

Ivanov , Ivanoff , Iwanow 

Hsiao , Xiao 

151000 , 151000 

200000 , 200000 

Possible Match 

Close Match 

Silent 

consonants 

Meghburn , Meburn 

Coghburn , Coburn 

Deighton ,  Dayton 

521650 , 516500 

221650 , 216500 

323500 , 335000 

Possible Match 

Possible Match 

Close Match 

Name syntax Sheikh Ali Mohamed , Sheikh 

Ali 

Sheikh Ali Mohamed , Sheikh 

Mohamed 

Ali Mohamed , Sheikh Ali 

Mohamed 

Alhameed , Hameed 

Alhameed , Hamid 

224553 , 224000 

224553 , 225530 

 

455300 , 224553 

453000 , 530000 

453000 , 530000 

Close Match 

Possible Match 

 

Close Match 

Close Match 

Close Match 

Name Initials Mikhail Kovalchuk ,  

M.Kovalchuk, 

524214 , 521422 Close Match 

Poor precision Criton. ,  Courtmanche 

Criton. ,  Corradino 

Criton. ,  Cartmill 

Criton. ,  Cortinez 

263500 , 263552 

263500 , 263500 

263500 , 263540 

263500 , 263520 

Close Match 

Close Match 

Close Match 

Close Match 

Noise 

intolerance 

Hreman ,  Herman 

Hubbins , Huggins, 

655000 , 655000 

152000 , 252000 

Possible Match 

Close Match 
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Msith ,  Smith 

Smith , Smythe 

523000 , 253000 

253000 , 253000 

Close Match 

Possible Match 

Long Name Rameshwar , Rameshwaram 652600 , 652650 Possible Match 

 
 

The matching status for most of the pairs of strings helps to fuzzy match them rather 

than complete mistakes compared to standard Soundex code. The poor precision is 

closed-matched if the matching threshold is set to 0.70. However, if the matching 

threshold is lower than 0.70, these pairs of strings will not be matched as close or 

matches. At the same time, the matching status of other Standard Soundex issues is 

improved. 

 

3.7. Summary 
 

The research methodology has been explained in this chapter. The methods used to 

form the proposed algorithm involve data preparation, labelling, clustering, records 

linkage, and data selection based on set criteria with data segmentation. Following this 

detail, the proposed model was explained, and each phase was presented in detail. 

Different tools and libraries that helped implement the proposed model were discussed 

in detail. The chapter's last sections discussed the implementation of matching 

algorithms and introduced improvements in the Soundex algorithm. At the end of the 

chapter, the matching of different strings was discussed using an improved Soundex 

algorithm. The next chapter uses these matching algorithms and the proposed model to 

provide the computer-simulated results. 
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CHAPTER4 
 

4. RESULTS – DATA ANALYSIS OF POLICING 

DATASET & COMPUTER SIMULATION 
 

4.1. Chapter Overview 
 

The chapter is divided into four sections, which provide the analysis and discuss the 

results. These results will be generated based on the proposal model in Chapter 3. The 

chapter starts by evaluating the matching of different language name variations using 

improved Soundex algorithms and the aggregate score for each name. For this reason, 

English, Arabic, Russian and other mixed names will be used. The matching results and 

the performance of each language name will be discussed. Following this, the evaluation 

will be conducted on the de-identified policing dataset, but before that, the policing 

dataset will be explained and analysed. The dataset will be evaluated using computer 

simulation by performing three individual searches. The results of each search will be 

analysed in detail, and the final section of the chapter will evaluate each search result's 

performance measures. The measures of success for this research on identity resolution 

would be based on several key criteria, reflecting the proposed approach's 

effectiveness, efficiency, and impact. It will include assessing the effectiveness of the 

aggregate matching score to retrieve records, flexibility and adaptability of the proposed 

model to handle the variation of data, precision, recall and accuracy of the matching 

names and quality of the clustering of records matching. 
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4.2. Evaluation of Names Variations 

 

It is significant for entity matching in an extensive database to match names of different 

languages. At the same time, identify no match from the results. The classification of 

results is needed to do this, and the aggregate score algorithm can be applied to achieve 

this. The aim is to find matches as true positives and reduce false positives and false 

negatives where needed. For this purpose, a confusion matrix will be applied to evaluate 

the performance of the aggregate score algorithm. Therefore, some true positives (TP), 

true negatives (TN), false positives (FP), and false negatives (FN) calculations will help to 

measure the matching outcome and provide the precision, recall and accuracy of the 

results. The results will be placed in the following four categories. They will help to 

calculate the precision, recall and accuracy of the overall results: 

 True positives (TP):  When the match is a true match detected by the algorithm. 

It means the entity name correctly matches the actual name. 

 True negative (TN): When the non-match is a non-match detected by the 

algorithm. It means the entity name is a true non-match with the actual name and 

detected correctly.  

 False positives (FP): When the algorithm detects the match as a true match with 

a non-match. It means a false match is found that should not be matched with the 

actual name. 

 False negatives (FN). When the algorithm detects a non-match with a match, it 

should be found as a match but detected incorrectly. 

To assess the algorithm's overall performance through a single value measurement, 

precision, recall, and accuracy will be derived from the four values in the confusion 

matrix. Precision provides the measure of the accuracy of the positive predictions. It is 

the ratio of correctly predicted positive observations to the total predicted positives. 

Recall measures the ability of the model to capture all the relevant instances of a class. 

It is the ratio of correctly predicted positive observations to the actual positives. 
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Accuracy provides the overall correctness of the model. It is the ratio of correctly 

predicted instances to the total number of instances. 

The following sections are the computer simulation results to compare names and find 

similarities. It shows the performances of the proposed algorithm by generating these 

matching results. Therefore, before implementing the proposed algorithm on the 

policing dataset, it is worth discussing and evaluating the results of different name 

matching using improved Soundex code using the proposed algorithm.  

 

4.2.1. Evaluation of English Names 

 

In Figure 4.1, the 17 English names are selected from the previous work by (Winkler, 

1994) to evaluate the names' similarities. These names are fed into the proposed 

matching algorithm and are compared here using modified Soundex code with Jaro-

Winkler similarity metrics. 

 

 
 

 

Figure 4.1 - English names variation with the proposed algorithm 
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All these names have different scores listed, but to clarify the results further, the results 

are separated into three sections, as shown below in Figure 4.2. 

 

 
 

 

Figure 4.2 - English names breakdown of matching with and without the same Soundex code 

 

The first three names in Figure 4.2 have higher aggregate scores compared to the Jaro 

Winkler Score. At the same time, they have different Soundex codes. Jaro-Winkler 

scored lower than Soundex and the aggregate score for these three names. However, 

looking at these names closely, it can be observed that these “3” names are different 

and should not be matched with a higher score. The aggregate score generated for the 

names matches them as a close match for two names. The last two names in Figure 4.2 

have an aggregate score lower than the Jaro-Winkler score. The first name is labelled as 

a close match as the names are similar yet different. In comparison, the second name is 

labelled as no match. It is lower than the Jaro-Winkler score because the names are not 

similar. 
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Figure 4.3 - Matching Scores Comparison of English Names 

 

The score comparison graph in Figure 4.3 shows the name match Soundex, Jaro-Winkler, 

and Aggregate score. Based on the fuzzy string matching requirements, the aggregate 

score approximately matches the names instead of giving the value of 1 to show a 100% 

match. Therefore, in this instance, this is the correct way to match these names to find 

the best match. 
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Figure 4.4 – Performance of Matching Scores of English Names 

 

Figure 4.4 is colour-coded based on the Figure 4.5 confusion matrix values for a better 

understanding. Based on these values, the precision, recall and accuracy have been 

calculated as shown below: 

 

 

 

Figure 4.5 – Confusion Matrix for English Names Comparison 

 

The Precision is calculated as TP / (TP + FP), and the result is 0.79. The Recall is calculated 

as TP / (TP + FN), and the result is 0.92. The accuracy is calculated as TP+TN / 

TP+TN+FP+FN, and the result is 0.76. Figure 4.6 below shows the overall result of the 

comparison of algorithm performance. 
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Figure 4.6 – Overall Performance Evaluation of English Names 

 

4.2.2. Evaluation of Selection of Mixed Names 

Figure 4.7 lists the random names of different languages for similarity matching. These 

22 names are fed into the proposed matching algorithm, which combines English, 

Arabic, and Russian names and abbreviations. These names are compared here using 

modified Soundex code and Jaro-Winkler similarity metrics. 

 

 

Figure 4.7 - Mixed name variation with the proposed algorithm 
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All names have different scores listed, but to clarify the results further, the results are 

separated into three sections, as shown below in Figure 4.8. 

 

 

Figure 4.8 - Mixed names breakdown of matching with and without the same Soundex code 

 

The first six names are in Figure 4.8, and they have higher aggregate scores than the 

Jaro-Winkler score with different Soundex codes. For these six names, Jaro-Winkler 

scored lower than Soundex and aggregate score. It can be observed that “Adeline” and 

“Line” are different strings and should not be matched with a higher score. The other 

“5” names are matched as close matches with aggregate scores. The middle four names 

in Figure 4.8. have an aggregate score lower than the Jaro-Winkler score. The two names 

are labelled as Possible matches because these names are similar. One name is labelled 

as close matched while another is labelled as no match with a lower score than the Jaro-

Winkler score, but this should match as this is an abbreviated word. The last two names 

got similar Soundex, Jaro-Winkler, and aggregate scores. One name is labelled as no 

match, and it is correct to be a no match because names are different. The other name 

is labelled as a possible match. It is good to be picked up with a better score because the 
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name can be mistyped or misspelt in the dataset. However, based on fuzzy matching, 

the algorithm will pick it as a possible match. 

The score comparison graph in Figure 4.9 below shows the name match Soundex, Jaro-

Winkler and aggregate score. Based on the fuzzy matching requirements, the aggregate 

score approximately matches the names instead of giving the value of 1 to show a 100% 

match. In this instance, that is the correct way to match these names.  

 

 

 

Figure 4.9 - Matching Scores Comparison of Mixed Names 
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Figure 4.10 – Performance of Matching Scores of Mixed Names 

 

Figure 4.10 is colour-coded based on the Figure 4.11 confusion matrix values for a better 

understanding. Based on these values, the precision, recall and accuracy have been 

calculated as shown below: 

 

 

Figure 4.11 – Confusion Matrix for Mixed Names Comparison 

 

The Precision is calculated as TP / (TP + FP), and the result is 0.95. while the Recall is 

calculated as TP / (TP + FN), and the result is 0.95. The accuracy is calculated as TP+TN / 

TP+TN+FP+FN, and the result is 0.90. Figure 4.12 below shows the overall result of the 

comparison of algorithm performance. 
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Figure 4.12 – Overall Performance Evaluation of Mixed Names 

 

4.2.3. Evaluation of Arabic Names 

 

In Figure 4.13, Arabic names are selected and fed into the proposed matching algorithm. 

These 15 names are taken to compare using modified Soundex code and Jaro-Winkler 

similarity metrics. 

 

 
 

Figure 4.13 - Arabic name variation with the proposed algorithm 
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All names have different scores listed, but to clarify the results further, the results are 

separated into three sections, as shown below in Figure 4.14. 

 

 

 

Figure 4.14 - Arabic names breakdown of matching with and without the same Soundex code 

 

The names in Figure 4.14 have higher aggregate scores than the Jaro-Winkler score. At 

the same time, they have different Soundex codes. Three names are labelled as close 

matches, and Jaro-Winkler has scored lower than the aggregate. Only one name is 

labelled as no match as it has been scored lower. It can be observed that this name is a 

variation of another name and should match as a possible or close match. It should be 

like the other name, where names are labelled as possible matches. The aggregate score 

generated for the name is higher than Jaro-Winkler and equivalent to the Soundex code. 

The score comparison graph in Figure 4.15 below shows the name match Soundex, Jaro-

Winkler, and Aggregate score. Based on the fuzzy matching requirements, the aggregate 

score approximately matches the names instead of giving the value of 1 to show a 100% 

match in this instance; that is the correct way to match these names. 
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Figure 4.15 - Matching Scores Comparison of Arabic Names 
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Figure 4.16 – Performance of Matching Scores of Arabic Names 

 

Figure 4.16 is colour-coded based on the Figure 4.17 confusion matrix values for a better 

understanding. Based on these values, the precision, recall and accuracy have been 

calculated as shown below: 

 

 

 

Figure 4.17 – Confusion Matrix for Arabic Names Comparison  

 

The Precision is calculated as TP / (TP + FP), and the result is 1.0. while the Recall is 

calculated as TP / (TP + FN), and the result is 0.93. The accuracy is calculated as TP+TN / 

TP+TN+FP+FN, and the result is 1.0. Figure 4.18 below shows the overall result of the 

comparison of algorithm performance. 
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Figure 4.18 – Overall Performance Evaluation of Arabic Names 

 

4.2.4. Evaluation of Russian Names 

 

In Figure 4.19, Russian names are selected and fed into the proposed matching 

algorithm. These 9 names are compared here using modified Soundex code and Jaro-

Winkler similarity metrics. 

 

 

Figure 4.19 - Russian name variation with the proposed algorithm 
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These results are separated into three sections to clarify the results further, for all the 

names have different Soudex codes, as shown below in Figure 4.20. 

 

 

Figure 4.20 - Russian names breakdown of matching with and without the same Soundex code 

 

The first name in Figure 4.20 has a higher aggregate score than the Jaro Winkler Score, 

while it has different Soundex codes and has been labelled as a close match. However, 

the name Jaro-Winkler scored lower than Soundex and aggregate score. By close 

observation, the name is the same but with Full name and initials in the second variation. 

The last two names in Figure 4.20 have an aggregate score lower than the Jaro-Winkler 

score. The first name is labelled as a possible match as names are similar but are possibly 

similar or different names. While the second name is labelled as a close match and has 

a score lower than the Jaro-Winkler score, it is still the same or a similar name to be 

matched. 

The score comparison graph in Figure 4.21 below shows the name match Soundex, Jaro-

Winkler and Aggregate score. Based on the fuzzy matching requirements, the aggregate 

score approximately matches the names instead of giving the value of 1 to show a 100% 

match in this instance; that is the correct way to match these names. 
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Figure 4.21 - Matching Scores Comparison of Russian Names 

 

 

Figure 4.22 – Performance of Matching Scores of Russian Names 
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For better understanding, figure 4.22 is colour-coded based on the Figure 4.23 confusion 

matrix values. Based on these values, the precision, recall and accuracy have been 

calculated as shown below: 

 

 

 

Figure 4.23 – Confusion Matrix for Russian Names Comparison 

 

The Precision is calculated as TP / (TP + FP), and the result is 1.0. while the Recall is 

calculated as TP / (TP + FN), and the result is 1.0. The accuracy is calculated as TP+TN / 

TP+TN+FP+FN, and the result is 1.0. Figure 4.24 below shows the overall result of the 

comparison of algorithm performance. 

 

 
 

Figure 4.24 – Overall Performance Evaluation of Russian Names 
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4.3. Policing Dataset 
 

This section will explore and analyse the de-identified police dataset. The proposed 

algorithm in Chapter 3 has been applied to this dataset. The details will be discussed 

later in this chapter. The policing dataset comprises the following fields about each 

entity. The names of each field listed here are precisely the same as in the dataset. 

 

 Crime_Ref:  This is a computer-generated unique reference number, which is 

continuous. 

 nominal_ref: This is a computer-generated unique reference number, which is 

continuous. 

 surname: Surname or family name. 

 forename : First name(s). 

 sex: Gender is “M” for Male or “F” for Female. 

 date_of_birth : This is in dd/mm/yyyy format.  A time aspect of 00:00:00 is attached 

to this field, which is not utilised. 

 ea_desc: Police Identity Codes as outlined below or written text: 

o IC1 – White person, northern European/northern America type. 

o IC2 – Mediterranean European/Hispanic. 

o IC3 – African/Afro-Caribbean person. 

o IC4 – Indian, Pakistani, Nepalese, Maldivian, Sri Lankan, Bangladeshi, or other 

(South) Asian persons. 

o IC5 – Chinese, Japanese, or South-East Asian person. 

o IC6 – Middle Eastern, Arabic. 

o IC0, IC7 or IC9 – Origin unknown. 

 role_type : 

o victims (VICT); 

o defendants (DEFE); 

o persons who are probably responsible for an offence (PROB); 

o persons are known to be responsible for an offence (RESP); 

o suspects for committing an offence (SUSP) 
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o victims (VICA). 

 street_name: The street name of the Nominal’s home address that is manually 

entered.  House number is excluded. 

 district_name: District of Nominal’s home address, which is manually entered. 

 town_name: Town of Nominal’s home address, which is manually entered. 

 Postcode_sector1: The postcode of Nominal’s home address is manually entered 

and encompasses 3,000 residences. 

 Beat_number1: Computer allocated. It is a Local Policing Unit (LPU) sub-area. For 

example, E125 is Beat 25 in E1 LPU. 

 grid_ref_northing1: This is a six-digit Ordnance Survey Grid Reference, which is a 

1km block. 

 grid_ref_easting1: This is a six-digit Ordnance Survey Grid Reference, which is a 1km 

block. 

 

4.4. Policing Dataset Analysis 

 

The data pre-processing phase discussed in Chapter 3 eliminates missing values from 

the dataset for each record. In the dataset, four different fields represent the address. 

So, the three fields are merged as one address field while keeping the postcode field 

separate. Similarly, the surname and forename are merged as the name field. The 

records defined as ‘Unknown’ gender rather than ‘M’ for males and ‘F’ for females are 

considered missing values. Overall, a total of 430,293 missing values are removed from 

the dataset. Therefore, after data cleaning, the dataset still has 715,919 records. All 

attribute values are converted to lowercase for standard matching.  

In this fuzzy approach, name, gender, ethnicity, and address attributes are used to start 

the initial search of records. There are a total of 1146212 records in the dataset. 
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Table 4.1 - Analysis of Policing Dataset 

Column Name Total Records Missing Records 

Crime_Ref 1146212 0 

Offence 1145418 794 

HOMC_Code 1077337 68875 

HOOC_Code 1077341 68871 

nominal_ref 1146212 0 

Surname 1146212 0 

Forename 1145364 848 

Gender 1146212 0 

date_of_birth 1136404 9808 

role_type 1146212 0 

street_name 1137798 8414 

town_name 1104356 41856 

district_name 1002364 143848 

postcode 1039866 106346 

ea_desc 1126280 19932 

grid_ref_northing 1146212 0 

grid_ref_easting 1146212 0 

beat_number 1146212 0 

 

 

4.4.1. Multiple Nominal References for the same 

individual 
 

When joining column Nominal_Ref to assign nominals to crimes and ascertaining their 

network activities, it would not obtain a complete picture of all individuals as many 

entities have multiple Nominal_Refs presented in the dataset. 

Based on Nominal_Ref, Surname, Forename, dob and count Crime_Ref, there are 

697773 records where flagged duplicate surnames, forenames, and dobs, and 12295 

records are found in the dataset. There are 6032 individuals, each with 5 or fewer 

different Nominal_Refs. For example, Surname = BECK & Forename = JAUNETTE & dob 
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= 16/08/64, it retrieves 17 crimes over the 3 Nominal_Refs, joined the 6032 to the using 

Nominals ref to retrieve the number of crimes for each Surname, Forename, dob shows 

27363 records. For example, Surname = HASKIN, Forename = ZIED dob = 19/11/99, by 

using the combination, 5 Nominal_Ref has 38 crime records. 

 

4.4.2. Multiple DOBs for the same individual 

 

Omitting Nominal_Refs and only using Surname, Forename and Date of Birth (DOB) as a 

compound key eliminates the issue above. However, many nominal records have the 

same names, but some have different DOBs. It can account for common names such as 

John Smith. However, there could be data errors, such as recording the UK vs 

international dates (01/12/1945 is the same as 12/01/1945). Aggregate on Surname, 

Forename, dob, and with flagged duplicates to ID all records with the same Surname 

and Forename retrieves 309518 records. To check the different dob associated with the 

same details, e.g. Surname = ABBIDAH, Forename = FAROS, retrieves 12 records where 

10 are related to the same person across 3 different dobs judged by the addresses. 

Entities comprise the complete list of all persons associated with the crime data set – a 

victim, offender, witness, or suspect.  Each entity is identified under a separate role. 

 

4.5. Evaluation of De-identified Policing Dataset 

 

The three names are input as desired in searches 1, 2 and 3 to find the corresponding 

match in the database. Figure 4.25 shows the start of the iteration process by providing 

three different name variations of search 1. The input name may or may not be the 

correct spelling of the name, but this is what is known or being guessed for searching. 

This search process produced records found in the database, as shown in Figure 4.26 

and Figure 4.27. 
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 Search 1 – The target name is Bech Jaunette 

 

 

Figure 4.25 - Search 1: Number of found records per search stage 

 

 

 

Figure 4.26 - Search 1: Found records based on matching addresses and related records 
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Figure 4.27 - Search 1: Searching and filtering of records based on address score 

 

Based on the inputs for Search 1 in Figure 4.25, the initial search and matching criteria 

produced three datasets. The first variation of the name retrieved 95 records, the 

second retrieved 61, and the third retrieved 95. A resultant dataset of 173 records is 

generated after merging all three datasets and removing duplicate records. The records 

are input into the clustering algorithm to calculate the number of clusters based on the 

records found with matching addresses, names, and ages. Figure 4.28. shows the 

clustering of the records. 

 

 

 

Figure 4.28 - Search 1: Clustered records 
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The dataset produced from the search results is fed into the clustering algorithm, and 

clusters of the records are created based on age, name aggregate score, and address 

score. The records are grouped into four clusters based on the similarity score of the 

attributes involved using the Mean-Shift clustering technique. Some of the records in 

clusters have low scores at the y-axis (address score). However, these records are still 

required for the next stage to ensure not to ignore any related or close matches. After 

the clustering phase, the segmentation picked the address with the highest score of 

0.83. Figure 4.26 shows that 7 records, displayed in the last column, were retrieved 

matching the highest address and name aggregate scores. In comparison, 9 related 

records were retrieved with similar names with low address scores and a different date 

of birth. Therefore, after merging these retrieved records, the final dataset has been 

obtained containing 16 records, displayed in the last column, with a combination of the 

same name, two different date of birth, and different addresses, as shown in Figure 4.27. 

Figure 4.29 below presents the graphical analysis of the clustered records, where blue 

dots represent individual entities by name, and the orange dots denote the clusters. 

There are 4 clusters in Figure 4.29, with different entities linked to each cluster. The two 

small clusters at the top right and bottom right in the graph are simple clusters of entities 

and have no similarities with other clusters. However, the two clusters in the middle left 

of the graph have some similar entities linked to each cluster. The three entities linked 

to each cluster are shown in Figure 4.29 below. 
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Figure 4.29 - Graph analysis, the suspect identified as “Bech Jaunette” clustered 

 

Figure 4.30 further explores the entity linkage details in the graph analysis, where the 

red dot represents the matched entity. In contrast, the orange dot represents the 

clusters. So, one of the three entities linked to two clusters from Figure 4.29 is matched 

with the target search entity and represented with a red dot in Figure 4.30. This entity 

is linked to different addresses, as shown in Figure 4.30. Therefore, the suspect was 

identified out of other entities, with a red dot associated with different addresses. 
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Figure 4.30 - Graph analysis, the suspect identified as “Bech Jaunette” highlighted Red in Clusters 
associated with different addresses. 

 

However, this matched suspect entity in Figure 4.30 requires further clarity on the 

address to be easily readable, as shown in Figure 4.31. Here, the red dot represents the 

suspect entity, and the black arrows show the particular entity's link with different 

addresses. The grey dot represents each address in Figure 4.31. 
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Figure 4.31 - Graph analysis, the suspect identified as “Bech Jaunette” highlighted Red and associated 
with different addresses. 

 

 Search 2 – The target name is Abbidah Faroz  

 

Figure 4.32 - Search 2: Number of found records per search stage 

 

Based on the inputs for Search 2 in Figure 4.32, the initial search and matching criteria 

produced three datasets. All three name variations retrieved 41 records, and the 

resultant dataset of 85 records was generated after merging all three datasets and 

removing any duplicate records. All these retrieved records have some similarities or are 

entirely different, but this will be distinguished later in the next stage. 
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Figure 4.33 - Search 2: Found records based on matching addresses and related records 

 

 

 

Figure 4.34 - Search 2: Searching and filtering of records based on address score 
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Applying the resultant dataset to the clustering phase generated 4 clusters based on 

age, name aggregate score, and address score. Figure 4.35 shows that some cluster 

records have low scores at the y-axis (address score). These records are required for the 

next stage to ensure that any related or close matches are not ignored. After the 

clustering phase, the segmentation picked the address with the highest score of 1.0. In 

Figure 4.33, 6 records were retrieved with the highest address and different name 

aggregate scores. 

In comparison, 20 other related records were retrieved with a similar name, low address 

score, and  5 different dates of birth. So, the final dataset retrieved 22 records with a 

combination of the same name, 6 different dates of birth, and different addresses. In 

comparison, it contains 6 records with a different name, 3 different dates of birth, and 

a high address matching score, possibly having similar addresses as shown in Figure 4.34. 

 

 

Figure 4.35 - Search 2: Clustered records 

 

Figure 4.36 shows a graph analysis of the entities added to different clusters. The blue 

dot represents the entity, while the orange represents each cluster, showing that 

different entities are linked to each cluster. However, some entities are linked to other 

clusters too. These are familiar entities found in multiple clusters due to some 
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similarities. In the graph of Figure 4.36, entities are linked between clusters 0, 1, 2 and 

3. 

Meanwhile, clusters 1 and 2 have a common entity but are not linked to other clusters. 

Two similar entities are linked to clusters 1 and 3. Therefore, the main clusters to focus 

on here are “0 and 1”, “0 and 2”, and “0 and 3”. Further graph analysis is required to 

find the matched entity from these entities. 

 

 

Figure 4.36 - Graph analysis, the suspect identified as “Abbidah Faroz” clustered 

 

Figure 4.37 shows further analysis of the identified clusters. The entities in clusters are 

linked to different addresses. In Figure 4.37, orange dots represent the clusters, while 

the red dots represent the match entities. The match entities are also linked to 

addresses. At the same time, the entities are shown as linked to other clusters, as 

discussed before. However, this graph is not easily interpretable with respect to the 

addresses where the entities are linked. 
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Figure 4.37 - Graph analysis, the suspect identified as “Abbidah Faroz” highlighted Red and Red in 
Clusters associated with different addresses. 

Therefore, to clarify these details, Figure 4.38 shows the matched entities with different 

addresses. 

 

Figure 4.38 - Search 2: Graph analysis, the suspect identified as “Abbidah Faroz” highlighted Red and 
associated with different addresses. 
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In Figure 4.38, the red dots represent the matched entities. These entities are linked to 

addresses represented by black arrows, where grey dots represent the address. The 

results of the graph analysis show there are two matched entities. One suspect entity 

can be easily identified in terms of the search for the target entity. Therefore, “Abbidah 

Faros” is the matched suspect entity. However, the other suspect entity, “Boty Faros”, 

is either a linked related suspect or a false negative matched entity. 

 

 Search 3 – The target name is Haskin Zeid 

 

Figure 4.39 - Search 3: Number of found records per search stage 

 

Based on the inputs for search 3 in Figure 4.39, the initial search and matching criteria 

produced three datasets. All three name variations retrieved 204 records, and the 

resultant dataset of 208 records was generated after merging all three datasets and 

removing duplicate records. All these retrieved records have some similarities or are 

entirely different, but this will be differentiated later in the next stage. 
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Figure 4.40 – Search 3: Found records based on matching addresses and related records 

 

 

 

Figure 4.41 - Search 3: Searching and filtering of records based on address score 

 

The dataset, produced from the search results, is fed into the clustering algorithm, and  

4 clusters of records are created by the Mean-Shift clustering algorithm based on age, 

name aggregate score, and address score, as shown in Figure 4.42. There are records in 

clusters with low scores at the y-axis (address score). However, these records are 
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required for the next stage to ensure that any related or close matches are not ignored. 

After the clustering phase, the segmentation picked the address with the highest score 

of 1.0. Figure 4.40 shows a total of 21 records, numbers displayed in the last column, 

were retrieved with the highest address and name aggregate scores of 0.70 and the 

same date of birth. However, the 2 other records, numbers displayed in the last column, 

were retrieved with different names, high address scores, and dates of birth. At the 

same time, 4 records were found with related records with matching names, a low 

address score of 0.69 and the exact date of birth, the same as 21 records found during 

the initial search. Therefore, the final dataset containing 27 records, numbers displayed 

in the last column, and the combination of the two different names, dates of birth, and 

addresses was obtained, as shown in Figure 4.41. 

 

 

Figure 4.42 - Search 3: Clustered records 

 

Figure 4.43 below is the graph analysis of the clustered records. The blue dots represent 

the Entity and the individual's name, and the orange dots represent the clusters. The 4 

clusters contain different entities linked to each cluster. The small cluster at the top left 

of the graph is a simple cluster with no similarities. However, the two clusters on the 

bottom left of the graph have some similar entities linked to each cluster. One entity is 

linked to clusters 1 and 2, while the other is linked to clusters 0 and 1. 
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Figure 4.43 - Graph analysis, the suspect identified as “Haskin  eid” clustered 

 

Figure 4.44 further explores the entity linkage details in the graph analysis, where the 

red dot represents the matched entity. In contrast, the orange dot represents the 

clusters. Here, two entities linked to two clusters are matched with the target search 

entity and represented with a red dot in Figure 4.44. However, one entity is an entirely 

different name while getting a high address match score. It could be a close match or a 

related match retrieved during the search process. Therefore, the suspect has been 

identified out of other entities, represented with a red dot associated with different 

addresses matching the exact search name. 
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Figure 4.44 - Graph analysis, the suspect identified as “Haskin  eid” highlighted Red and other Red in 
Clusters associated with different addresses. 

 

However, this matched suspect entity in Figure 4.44 requires further clarity on the 

address to be easily readable, as shown in Figure 4.45. The red dot represents the 

suspect entity, and the black arrows show the particular entity's link with different 

addresses. In contrast, the grey dot represents each address. Therefore, “Haskin  ied” 

is the matched suspect entity. The other suspect entity, “Keynes Utt”, is either a linked 

suspect or a false negative matched entity. 
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Figure 4.45 - Search 3: Graph analysis, the suspect identified as “Haskin  ied” highlighted Red and 
associated with different addresses. 

 

4.6. Policing Dataset Results Performance Analysis 
 

After the search results from the database on different scenarios above, it is apparent 

that both similarity techniques mentioned are performing up to some extent to find a 

match for the given name but have issues matching the string.  

To further discuss, we can see the matching scores in Table 4.2 to compare the matching 

results. In Table 4.2. the target string is converted into the 6-digit Soundex code to 

compare and get the scores and the aggregate score. 
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Table 4.2 - Results Performance Comparison of Fuzzy Matching Scores 

Search 
Target 
String 

Target 
String 6-

digit 
Soundex 

Code 

Input String 
6-digit 

Soundex 
Code 

Soundex-JW 
Score 

Jaro-
Winkler 

Score 

Aggregate 
Score 

1 
Bech 

Jaunette 
122530 

Back Junete 125300 0.91 0.84 0.88 

Bach Junette 122530 1.00 0.91 0.96 

Beck Jaunete 125300 0.91 0.94 0.93 

2 
Abbidah 

Faros 131620 

Abidah Feros 131620 1.00 0.94 0.97 

Abbidha Firoz 131620 1.00 0.92 0.96 

Abiddah 
Farose 

131620 1.00 0.94 0.97 

3 
Haskin 

Zeid 
252300 

Huskin Zaid 252300 1.00 0.89 0.95 

Haskin Zayed 252300 1.00 0.95 0.97 

Hasken Zeid 252300 1.00 0.92 0.96 

 

The graph below shows the aggregate score against modified Soundex and Jaro-Winkler 

scores. 

 

Figure 4.46 -  Results comparison of Names Fuzzy Matching Scores 
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From Figure 4.46, it can be seen that the selected similarity metrics are suitable for 

matching names. However, an individual technique alone is unsuitable for generating 

accurate required results to match the searched string. Therefore, combining Soundex 

and Jaro_Winkler techniques is better for generating the aggregate score for name 

matching. This aggregate score method fits the purpose of doing fuzzy matching of 

strings. For long strings, edit distance is suitable for the approximate matching of strings. 

It is about scoring the strings to help cluster similar records that have been retrieved. 

The input strings Soundex-JW scores are the same or similar results scores matching 

names from the database. 

In contrast, the Jaro-Winkler matching scores are different for input strings. However, 

the aggregate score provides the fuzzy score. It shows better results, showing that the 

names are not exact matches but are only fuzzy. The results show that the matching 

performance of the Jaro_Winkler is good. However, the aggregate score gives an even 

better fuzzy score to match strings in fuzzy matching.  

The records are grouped using the clustering technique based on the aggregate score of 

strings. However, evaluating if the clusters are good or bad created is necessary. It can 

be achieved by applying the Silhouette Coefficient or score for clusters. 

 

4.6.1. Silhouette Coefficient 
 

The Silhouette Coefficient or Silhouette score is a metric used to calculate the goodness 

of a clustering technique (Rousseeuw, 1987). The value ranges from -1 to 1. 

Where: 

• 1: This means clusters are well apart from each other and distinguished. 

• 0: This means clusters are indifferent, or we can say that the distance 

between clusters is not significant. 

• -1: This means clusters are assigned in the wrong way. 

The formula to calculate the Silhouette score is: 
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Silhouette Score = ( b – a ) / max ( a, b ) 

Here: 

• a  = An average intra-cluster distance, i.e., the average distance between 

each point within a cluster. 

• b = An average inter-cluster distance, i.e., the average distance between 

all clusters. 

The clustering results generated by the three search results in evaluating the de-

identified dataset can be measured using the Silhouette Coefficient method. Below are 

the clustering figures from the three search results. The Silhouette Coefficient score is 

calculated for each clustering search result. 

Search 1: Figure 4.47 shows the clustering of entities where 4 clusters are 

generated by putting entities into clusters. For easy understanding, these 

clusters are represented using different colours in Figure 4.47. The Silhouette 

Coefficient score is applied below to find out the quality or performance of the 

clustering of entities. 

 

 

Figure 4.47 - Search 1: Highlighted Clustered records  

 

Silhouette Score(n = ): 4,"  " ,0.556 
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It calculates that there are 4 clusters, and the score is 0.556. The round-off score 

is 0.56 for this clustering of records, which has a positive value close to 1. 

Therefore, it shows that the clusters are well apart and that the clustering quality 

of the records is good.  

Search 2: Figure 4.48 shows the clustering of entities generated in search 2 

during the results evaluation of the dataset. There are 4 clusters generated, and 

each cluster is represented with a different colour for easy understanding in 

Figure 4.48. To measure the cluster quality, the Silhouette Score is applied to 

calculate the clustering score.  

 

 

 

Figure 4.48 - Search 2: Highlighted Clustered records 

 

Silhouette Score(n = ): 4,"  " ,0.647 

The Silhouette Score calculates 4 clusters with a score of 0.647. After round-off, 

the score is 0.65 for this clustering of the records. The score is close to 1, and 

again, it shows that the clusters are dense and well apart for search 2. Therefore, 

it means the clusters are of good quality. 

Search 3: Figure 4.49 shows clustered entities generated during search 3. The 

entities are grouped into 4 clusters and are represented with different colours 
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for easy understanding, as shown in Figure 4.49. The Silhouette coefficient is 

applied to measure the performance of the clusters. 

 

Figure 4.49 - Search 3: Highlighted Clustered records 

 

Silhouette Score(n = ): 4,"  " ,0.571 

The Silhouette Score is calculated as 0.57 with a total of 4 clusters. The score is 

close to 1, so the clusters are well apart and dense. Therefore, the clustering 

quality of search 3 records is good. 

 

4.7. Summary 
 

The improved Soundex algorithm was applied to the names collected from three 

languages: English, Arabic, and Russian. It was also applied to mixed language names of 

different name variations. The computer-simulated results show that each name-

matching score matches the names based on the aggregate score. The results of name 

scores are compared and analysed based on Soundex, Jaro-Winkler and aggregate 

scores. These matching results provided good fuzzy matching, where using only a single 

matching technique will not match names correctly. The proposed model was then 

applied to the de-identified policing data. The results were generated for three different 

target individual's names. Each search was named search1, search2, and search3, and 
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each search identified the target identity. These identity-matching results were 

presented in tabular and visualised in graph format for easy identification. The results 

showed that the model efficiently identified the target individual. The Silhouette 

Coefficient was applied to the clustering of records for each of the three searches for 

clustering performance measures. The overall identification and clustering performance 

are promising to match any identity.  

 

 

 

 

 

 

 



5. CONCLUSION 

152 
 

CHAPTER5 

5. CONCLUSION 
 

This chapter concludes by summarising the findings related to the critical research 

questions and discussing the value and contribution to knowledge. Research limitations 

will be highlighted, and avenues for future work will be explored. 

This research successfully addressed fundamental questions: How can the desired 

identity be extracted from a raw dataset? How can records be matched to derive 

meaningful information? Furthermore, how can relationships between different 

identities be intelligently established using pattern recognition? The research evaluated 

various string-matching techniques and determined that a combination of Soundex, 

Jaro-Winkler, and edit distance matching techniques was most effective. 

Notably, modifications were made to the original Soundex technique to generate a six-

digit numeric code, which does not retain the first character of the name but instead 

produces a purely numerical code. This code, combined with the Jaro-Winkler score, 

generates an aggregate score. This approach enables the extraction of matching names 

based on the aggregate score, facilitating the retrieval of related records from the 

dataset. It aids in clustering these retrieved records and performing graph analysis to 

identify potential target identities and associated links. 

The research aims to identify and evaluate techniques for improved identity resolution. 

Consequently, using an unsupervised machine learning approach, different string 

similarity techniques were analysed to retrieve matching entity records and identify 

related links. These techniques were cascaded within the framework to produce an 

aggregate name score. Based on this score, names could be categorised as “match”, 

"possible match", and "close or related match” in cases where string matching was 

applied. However, the framework utilised an iterative search to combine three spelling 

variations of given names, enabling the retrieval of data related to each fuzzy-matched 
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name from the dataset. After obtaining the three datasets, they were merged into a final 

dataset, from which duplicate records were removed. 

Similar matching name records from the final dataset were grouped to refine the results 

further. The Means-Shift clustering technique was employed to cluster matching records 

based on the name "aggregate score" and "age" attributes. Notably, the Mean-Shift 

algorithm used within this framework automatically determines the number of clusters, 

providing a more dynamic approach by allowing the number of clusters to be adjusted 

based on the dataset size. Once clustering was complete, the records were labelled with 

a cluster number. Using NetworkX, graph analysis was conducted, linking all entities 

based on selected attributes in a layered approach across multiple graphs. This method 

effectively identified the suspect entity and displayed links to different addresses 

associated with the same entity. The results indicate that this fuzzy matching approach 

is effective in retrieving suspect entities and related records, aiding in identity matching. 

These links are presented graphically, with detailed records stored in a table format for 

ease of review. The entire matching process is automated, requiring minimal human 

interaction and providing fuzzy attribute inputs to the framework. It enables results to 

be generated even with limited information about a suspect entity. 

According to the comprehensive literature review: 

  No existing unsupervised machine learning framework automatically adjusts 

and fine-tunes results based on input, utilising various similarity metrics in a 

cascaded manner for record retrieval. 

  Existing approaches do not enable record matching and retrieval without 

training data samples or record de-duplication. 

  Current methods do not employ different similarity metrics at various stages to 

produce optimal record linkage and relationship analysis results. 

  The literature does not address the use of clustering techniques to group 

records without a fixed number of clusters, thus facilitating record segmentation 

for identity resolution. 

Therefore, this framework for identity resolution incorporates intelligence in matching 

raw information by employing a suitable algorithm with pattern recognition capabilities 
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that mimic the human brain’s ability for fuzzy matching. In June 2021, this research was 

presented and published in a Springer conference paper and is also available in Appendix 

A. The research has practical implications, particularly for law enforcement agencies, as 

this framework can expedite investigations with minimal available information about a 

suspect. 

 Contributions to Knowledge Summary: 

This research makes several significant contributions to identity resolution and data 

science. Firstly, the hybrid approach combining unsupervised machine learning 

techniques with traditional string-matching algorithms represents a novel advancement 

in the field. Developing and implementing a modified Soundex algorithm to produce a 

6-digit numeric code, coupled with Jaro-Winkler and edit distance and aggregate score 

methods, introduced a more refined and efficient approach to record matching.  

Moreover, the research provides valuable insights into applying clustering techniques in 

handling large datasets within a hybrid framework. The use of the Mean-Shift algorithm, 

which dynamically adjusts the number of clusters based on the dataset size, showcases 

the ability of this framework to process and analyse big data more effectively.  This 

contribution is especially relevant to big data applications, where the ability to cluster 

large volumes of records dynamically can lead to more accurate and efficient data 

analysis. The framework's capacity to handle complex datasets with minimal human 

intervention further underscores its potential for real-world applications, particularly in 

fields requiring high data accuracy and reliability. 

In conclusion, this research not only advances the theoretical understanding of identity 

resolution techniques but also offers practical solutions for addressing the challenges 

associated with big data and unsupervised learning. By leveraging a hybrid model and 

innovative clustering method, the framework developed in this study provides a robust 

tool for identity resolution in various domains, including law enforcement and beyond. 

Additionally, the implications of this research extend to consumer behaviour analysis in 

business contexts. Companies increasingly require a 360-degree view of consumers, 

encompassing their activities across multiple devices, apps, and pre-account 

interactions. The framework's ability to intelligently resolve identities by linking 
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disparate data points offers businesses a powerful means to achieve this comprehensive 

view. This, in turn, opens up opportunities for more sophisticated personalisation 

strategies, where businesses can tailor their offerings based on a holistic understanding 

of consumer behaviour. By accurately matching records and identifying links between 

different consumer profiles, businesses can deliver highly targeted and relevant 

experiences, enhancing customer engagement and loyalty. Thus, the identity resolution 

framework developed in this study holds significant potential for applications in 

consumer analytics, enabling businesses to navigate the complexities of modern digital 

behaviour with greater precision and insight. 

However, this research has some limitations. The analysis was conducted using a limited 

de-identified policing dataset, comprising only a single database table, with other 

relational database tables absent. This limitation hinders efficient record linkage and 

determination of true identities. Moreover, the research did not focus on addressing 

missing information within records. As a result, records with incomplete information 

were separated into different datasets, and the framework was applied only to records 

with complete information. This approach restricts the scope for utilising other 

attributes within the dataset. Future studies could further explore methods to fully use 

all available information. 

 

5.1. Future work 

 

This research has demonstrated that the proposed framework can produce matched 

records that can be utilised to identify individuals. While the framework shows 

significant potential benefits for law enforcement agencies in identity resolution, its 

applications extend beyond this domain. For instance, it could be employed within the 

financial sector to detect fraud by identifying individuals attempting to manipulate 

institutions through different identities. 

Nonetheless, there are several opportunities for future research to enhance and extend 

the current framework. The following areas are proposed for further investigation: 
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I. Introduction of a Weighting System for Attribute Matching: 

One of the key improvements that could be made is incorporating a weighting system 

into the current matching process. While the existing framework generates an aggregate 

score based on the similarity of strings, adding a weighting mechanism would allow for 

more nuanced differentiation between matches. For each attribute, a corresponding 

weighting score could be assigned alongside the aggregate score, enabling the 

framework to prioritise higher-confidence matches. For example, when two strings 

receive similar aggregate scores, the weighting score would enable the framework to 

distinguish between them based on predefined criteria, such as the significance of 

particular attributes. 

II. Development of Criteria-Based Weighting Scores: 

Further to introducing a weighting system, future studies could explore the 

development of specific criteria for determining weighting scores. For instance, the 

number of common characters between two strings could be a determinant, with higher 

scores assigned to matches with greater character similarity. Additionally, the 

framework could be refined to ensure that strings are matched within the same 

language, as cross-linguistic matches often result in inaccuracies. For example, English-

language strings should not be matched with those in other languages. In cases where 

such mismatches occur, the weighting system would promptly flag them. This 

refinement addresses a common issue in string-matching techniques, where linguistic 

differences are often overlooked, leading to erroneous matches. 

III. Addressing Missing Data Through Machine Learning: 

An essential area for future research is handling incomplete records within the dataset. 

The current framework relies on complete records, but many datasets contain records 

with missing information in one or more attributes. Future studies should investigate 

the use of data harvesting and data regeneration techniques, particularly those 

employing machine learning algorithms, to fill these gaps. By comparing incomplete 

records within the dataset and cross-referencing them with external data sources, such 

as social media profiles, it would be possible to enrich the dataset with additional 
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information. This approach would ensure that all records are fully populated, thereby 

improving the accuracy and efficacy of the matching algorithm. Furthermore, this would 

minimise the risk of overlooking critical data, enhancing the framework’s overall 

capacity for identity resolution. 

IV. Enhancement of the Knowledge Base with a Relational Database 

Structure: 

Future work should also refine how matched records are stored within the framework’s 

knowledge base. Rather than merely categorising records as "matched," "possible 

match," or "close or related match," it would be advantageous to implement a relational 

database structure. It would allow for storing additional harvested and regenerated 

information for each matched record, facilitating a more organised and sophisticated 

retrieval system. By incorporating a relational database, the knowledge base could 

dynamically evolve over time, updating records with new information obtained through 

ongoing data harvesting processes. It would lead to a more comprehensive and flexible 

knowledge base, enhancing the framework’s reliability and accuracy in future identity 

resolutions. 

V. Exploring Hybrid Models and Big Data Clustering for Enhanced Identity 

Resolution: 

Moreover, future research should investigate applying hybrid models and advanced 

clustering techniques for big data. While this research has demonstrated the 

effectiveness of clustering methods such as the Mean-Shift technique in grouping similar 

records, further studies could explore their performance on larger datasets and in more 

complex scenarios. By integrating clustering methods within a hybrid model combining 

unsupervised learning with other machine learning approaches, future research could 

enhance the scalability and robustness of the identity resolution framework. 

Additionally, optimising these clustering techniques for real-time processing of large-

scale data would be particularly valuable in domains where rapid identity resolution is 

critical, such as the financial services industry and online platforms. It could enable the 

development of more sophisticated, accurate, and scalable identity resolution systems. 
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Appendix (B) 
 

I. Python Programming Language 
 

Python is a programming language that is very simple to use and offers excellent features 

compared to other high-level programming languages. The Python language syntax is 

straightforward, allowing a programmer to focus on the task rather than the 

programming syntax complication and making the program development easy. Most 

importantly, the Python program is much shorter to code than other computer 

programming languages for many reasons, as a single statement is required to express 

complex operations. No starting and ending brackets are required for the statements, 

but they only need indentation to group them. In contrast, the variable declaration is 

not required (Docs.python.org, 2017). 

 

II. PyCharm IDE 

There are many programming editors that a programmer can use to code in Python. 

However, PyCharm is simple to use and full of features. PyCharm IDE provides many 

features for developers to use the essential tools for an easy and smooth program 

development process. It was developed by JetBrains, a software development company 

known for creating powerful development tools. According to (Jetbrains.com., 2017), 

there are two versions available to download: 

o The Community Edition is free and provides many features for Python program 

development. However, it has limited features available to the programmer 

because this edition is primarily for academic staff and students.  

o The Professional Edition is not free and requires a licence to be purchased. It is 

for a professional programmer and provides a full-featured IDE with robust 

program development, especially web development, by supporting other 

frameworks and toolkits on top of those supported in the Community edition.  
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PyCharm provides a wide range of features to enhance productivity, code quality, and 

collaboration for Python programmers, making it one of the most popular choices 

among developers. As an application, it has hardware system requirements for both 

editions that require at least the following: 

• A minimum of 1 GB RAM, but 2 GB RAM is recommended,  

• 1024x768 minimum screen resolution,  

• Microsoft Windows 10/8/7 (incl.64-bit), 

• At least Python 2.4 or higher installed 

• The JRE1.8 is required, but it is integrated into the package, so there is no need 

to install a separate version of Java (Jetbrains.com., 2017) 

 

 Key Features of PyCharm 
 

• Code Editor - PyCharm offers a feature-rich code editor with syntax highlighting, 

code completion, formatting, and navigation tools. It supports intelligent code 

suggestions and auto-completion, which saves time and reduces coding errors. 

• Code Inspection and Refactoring - PyCharm performs code inspections and 

provides suggestions for improving code quality and adhering to Python best 

practices. It offers various automated refactoring options to improve code 

maintainability, such as renaming variables, extracting methods, and optimizing 

imports. 

• Debugger - PyCharm includes a powerful debugger that allows developers to 

step through code, inspect variables and set breakpoints to troubleshoot and fix 

issues efficiently. 

• Testing and Profiling - PyCharm integrates seamlessly with popular testing 

frameworks like unittest, pytest, and doctest. It provides built-in tools for 

running tests, viewing test results, and profiling code to identify performance 

bottlenecks. 
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• Version Control Integration - PyCharm supports version control systems like Git, 

Mercurial, and Subversion, allowing developers to manage code repositories 

directly from the IDE. It provides visual diff and merge tools to simplify code 

collaboration and merging changes. 

• Database Tools - PyCharm offers tools to connect and interact with databases, 

allowing developers to query and visualize data within the IDE. 

• Web Development Support - PyCharm includes support for web development 

with frameworks like Django, Flask, and Pyramid. It provides code completion, 

templates, and other features tailored for web development. 

• Scientific Tools Integration - PyCharm integrates with tools and libraries like 

NumPy, SciPy, and Matplotlib, making it suitable for data analysis and scientific 

computing projects. 

• Remote Development - PyCharm allows developers to work on remote projects 

by connecting to a remote server or a virtual machine. 

 

III. Pandas Python Library 
 

Pandas is an open-source Python data analysis tool that provides fast, flexible and 

robust data analysis and manipulation features. It is one of Python's most popular data 

manipulation and analysis libraries. Currently, it provides some of the main features of 

Python language. It displays data in a tabular format like an SQL table or Excel 

spreadsheet. It easily handles missing data that is typically displayed as NaN. It allows 

new columns to be added or deleted from the table called “DataFrame” in Pandas, which 

provides a powerful “group by” functionality (Pandas.pydata.org., 2017). It is built on 

top of the NumPy library and also offers additional data structures and functionalities 

tailored for handling structured data efficiently. Pandas library is widely used in various 

domains, including data science, machine learning, finance, economics, and social 

sciences, due to its ease of use, flexibility, and performance. 
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 Key Features of Pandas 
 

There are several different features that Pandas offer (McKinney, 2013; VanderPlas, 

2017): 

• Data Structures - Pandas provides the following two primary data structures. 

o Series: A one-dimensional labelled array containing various data types, 

including integers, floats, strings, and Python objects. It has an index 

(labels) and a corresponding array of values, allowing for data alignment. 

o DataFrame: A two-dimensional labelled data structure resembling a 

table, where data is organised in rows and columns. Each column in a 

“DataFrame” is a Series. DataFrame provides a flexible and powerful way 

to work with tabular data. 

• Data Manipulation - Pandas offers a rich set of functions and methods for data 

manipulation tasks, such as filtering, sorting, merging, grouping, reshaping, and 

aggregating data. Data can be easily sliced, diced, and transformed to meet the 

requirements of specific data analysis tasks. 

• Missing Data Handling - Pandas provides various methods to handle missing 

data, including dropping missing values or filling them with appropriate values 

using interpolation or imputation techniques. 

• Data Alignment - One of the strengths of Pandas is its ability to automatically 

align data based on the labels of the data structures. This alignment simplifies 

performing operations on different datasets with different indices.  

• Time Series Functionality - Pandas offers robust support for time series data, 

making it suitable for working with time-based data, such as financial data, stock 

prices, and sensor readings. It provides date/time indexing, resampling, time 

shifting, and frequency conversion functionalities. 
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• Data I/O - Pandas supports reading and writing data in various formats, such as 

CSV, Excel, SQL databases, JSON, and more. It allows for seamless data 

integration and sharing between different data sources. 

• Integration with NumPy and Matplotlib - Pandas is built on top of NumPy, 

enabling seamless integration with NumPy arrays and functions. It also works 

well with Matplotlib, a popular data visualization library, making insightful plots 

and charts from Pandas data easy. 

Alongside Pandas, the other approximate string-matching packages are used in this 

framework. 

 

IV. FuzzyWuzzy Python Library 
 

FuzzyWuzzy is a string-matching similarity metric Python library. It offers various fuzzy 

string-matching algorithms to compare strings and calculate the similarity by using the 

Levenshtein distance (edit distance) to convert one string into another by calculating the 

distance. It is open-source and was developed by SeatGeek in 2011. It has been designed 

to solve the labelling of different events for sports and concert tickets from the internet. 

Nothing extra software is required as FuzzyWuzzy uses “difflib” from the Python 

standard library (Bonzanini, 2017). FuzzyWuzzy is particularly useful when dealing with 

strings with slight variations, typos, or misspellings, as it allows for approximate string 

matching. 

 

 Key Features of FuzzyWuzzy 
 

• String Similarity Measurement - FuzzyWuzzy provides several algorithms to 

calculate the similarity between two strings. The most commonly used 

algorithm is the Levenshtein distance, which counts the number of single-

character edits (insertions, deletions, or substitutions) required to transform 

one string into another. 
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• Ratios and Partial Ratios - FuzzyWuzzy calculates similarity ratios, represented 

as percentages, indicating the similarity between two strings. It offers different 

ratio types, such as ratio, partial ratio, and token sort ratio, each considering 

different aspects of string matching. 

• Tokenisation and Sorting - FuzzyWuzzy tokenises strings into individual words 

or tokens before performing comparisons. Tokenisation helps to compare 

words regardless of their order in the string, and sorting tokens alphabetically 

improves matching results in some cases. 

• Process and Choices - FuzzyWuzzy provides the “process” and “choices” 

functions, allowing easy comparison of a target string with a list of strings. The 

“process” function ranks the list of choices based on similarity to the target 

string (Datacamp.com). 

 Usage of FuzzyWuzzy 

 

• String Matching and Deduplication - FuzzyWuzzy is often used to identify 

duplicate records in a dataset, especially when dealing with data from different 

sources with inconsistent or slightly different representations of the same 

entities. 

• Search and Suggestion Systems - FuzzyWuzzy is helpful in search and suggestion 

systems, where it can be employed to provide more accurate and robust search 

results, especially when users make typos or misspellings. 

V. NetworkX Python Library 

 

NetworkX is an open-source Python library for exploring and analysing networks and 

network algorithms. The core provides data structures for representing many types of 

networks, directed graphs, and graphs with self-loops. The nodes in NetworkX graphs 

can be any (hashable) Python, and edges can contain arbitrary data. Simply put, the 

nodes represent entities, and the edges represent relationships or connections between 
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the entities. This kind of flexibility makes NetworkX ideal for networks in many scientific 

fields. In addition to the primary data structures, many algorithms are implemented to 

calculate network properties and structure measures, such as shortest paths, 

betweenness and distribution, and many more. (Schult, 1943). NetworkX is widely used 

in various domains, including social network analysis, biology, physics, transportation, 

and computer science, to model and analyze complex systems with interconnected 

components (Hagberg, Schult and Swart, 2008). 

 

 Key Features of NetworkX 
 

• Graph Data Structures - NetworkX offers various graph data structures, such as 

directed graphs (DiGraphs), undirected graphs (Graphs), and multi-graphs 

(MultiGraphs). The library allows for creating, adding, and removing nodes and 

edges and attaching attributes to nodes and edges to store additional 

information (M.E.J.Newman, 2010). 

• Graph Algorithms - NetworkX provides a rich set of graph algorithms, such as 

shortest path finding, centrality measures (e.g., degree centrality, betweenness 

centrality), clustering coefficient, and community detection (e.g., Louvain 

method). These algorithms allow for in-depth analysis and insights into the 

structural properties of networks. 

• Graph Visualization - NetworkX integrates with Matplotlib for graph 

visualization, allowing users to create insightful plots and visualizations of the 

networks. It provides options to customize node and edge appearance to 

represent various attributes visually (Hanneman and Riddle, 2005). 

• Import and Export - NetworkX supports importing and exporting graphs in 

various formats, such as GraphML, GML, JSON, and Pajek. It facilitates 

interoperability with other network analysis tools. 
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• Extensibility - NetworkX is designed with a modular architecture, allowing users 

to extend its functionalities by defining custom graph algorithms or graph 

classes (Hagberg, Schult and Swart, 2008). 

 Usage of NetworkX 
 

• Social Network Analysis (SNA) - NetworkX is commonly used in social network 

analysis to study relationships between individuals in a social network, measure 

influence, identify key players, and detect communities. 

• Transportation and Infrastructure Networks - NetworkX is employed in 

modelling transportation systems, such as road, public, and communication 

networks, to analyze flow patterns and optimize routes. 

• Biological and Molecular Networks - In biology, NetworkX is used to study 

molecular interactions, protein-protein interaction networks, gene regulatory 

networks, and metabolic pathways. 

• Computer Networks - NetworkX is utilized in computer science to analyze 

computer networks, communication networks, and data networks. 


