

AN INTELLIGENT ANALYSIS
OF POLICING DATA FOR
IDENTITY RESOLUTION

AI and Data Science Research Group

School of Computing and Digital Media

London Metropolitan University

United Kingdom

The dissertation is submitted for the degree of Doctor of Philosophy (PhD)

By

Asif NAWAZ

Supervisor:

Professor Hassan Kazemian

October 2024

2

ABSTRACT

Identity refers to the unique characteristics or attributes that distinguish an individual.

Identity crimes, such as theft or fraud, occur when someone unlawfully acquires and

uses personal information for fraud. Identity resolution, the process of identifying and

merging duplicates or similar entries, is critical for law enforcement agencies globally.

However, matching identities in big data presents challenges due to inconsistencies,

including typographical errors, naming variations, and abbreviations. Traditional record

and identity matching techniques aim to consolidate or eliminate redundant data

entries, ensuring accuracy and integrity. Manual identity matching is infeasible in big

data environments. However, machine learning techniques offer a solution by

automating pattern extraction and reducing reliance on manually coded rules.

This research proposes a fuzzy approach for identity resolution, combining unsupervised

learning with fuzzy string similarity metrics to improve identity matching. The model

incorporates an iterative search process using a combination of the Soundex and Jaro-

Winkler algorithms to compute an aggregate score for names. The Soundex method has

been enhanced to generate a six-digit numerical code, overcoming traditional

limitations. Additionally, with the help of the FuzzyWuzzy Python library, the Edit-

distance algorithm is applied to match attributes such as “address” and “ethnicity

description.” The Mean-Shift clustering technique dynamically generates clusters based

on the final dataset, avoiding needing a predefined number of clusters.

The three name variations of the iterative search process allow the categorisation of

records into Match, Related or Close Match, and Possible Match while excluding

duplicates. By grouping entities based on similarity scores and applying graph analysis,

the framework accurately identifies target identities, even when links span different

addresses. The results demonstrate the framework’s ability to enhance the speed and

accuracy of identity resolution, offering a more efficient method than existing solutions.

This research significantly contributes to identity resolution techniques, improving

investigative processes with minimal information and offering valuable applications for

law enforcement and other sectors, such as fraud detection in the financial industry.

3

ACKNOWLEDGEMENT

I extend my profound gratitude to the esteemed individuals and organisations whose

invaluable contributions have greatly influenced the successful completion of this

doctoral thesis:

First and foremost, I express my most profound appreciation to my esteemed lead

supervisor, Professor Hassan Kazemian. His exceptional guidance, unwavering support,

and scholarly expertise have been instrumental in shaping the trajectory of this research

endeavour. I thank my second supervisor, Dr Rick Adderley, for providing guidance and

de-identified policing data for this research. Their insightful feedback and constructive

criticism have significantly enhanced the quality and rigour of this thesis.

I would also like to thank ITCE Bank of China UK for their financial support, which has

been crucial in completing this research. Their investment and belief in the significance

of this study have provided the necessary resources and opportunities to carry out this

work.

Lastly, I extend my deepest gratitude to all individuals, organisations, and institutions

involved in this journey, directly or indirectly. Your support, encouragement, and belief

in my abilities have been invaluable. This thesis stands as a testament to our collective

efforts.

4

DEDICATION

This thesis is dedicated to my:

Late Parents,

I dedicate this thesis to my beloved late parents in the loving embrace of cherished

memories. Reflecting on their unwavering love and the invaluable lessons they taught

me, my heart swells with gratitude, admiration, and profound sadness. Their absence

felt deep, yet their presence lingers in every step I take on this academic journey. This

thesis is a homage to their enduring impact, a testament to the love that continues to

shape and guide me, even in their physical absence.

Beloved Wife,

To my unwavering pillar of strength, my wife, I dedicate this thesis with overflowing

emotions and gratitude. You have been a constant source of solace and support in the

face of loss and longing. Through the tears and moments of overwhelming grief, your

unwavering love has carried me forward. This thesis is not only a celebration of our

shared dreams and triumphs but also a tribute to the love we carry with us, a love that

transcends boundaries and reaches out to embrace the memories of my late parents.

To the cherished memories of my late parents and my beloved spouse, this thesis is a

testament to the indomitable power of love, resilience, and the bittersweet emotions

shaping our lives. Their love continues to reside within me, filling every chapter of this

academic journey with a profound sense of purpose and remembrance.

5

Table of Contents

ABSTRACT ... 2

ACKNOWLEDGEMENT ... 3

DEDICATION ... 4

LIST OF FIGURES .. 8

LIST OF TABLES .. 10

1. INTRODUCTION ... 11

1.1. FRAUD AND TYPES OF FRAUD .. 11

1.2. IDENTITY AND TYPES OF IDENTITY ... 12

1.3. TYPES OF IDENTITY CRIMES ... 14

1.4. MACHINE LEARNING .. 15

1.4.1. Supervised Learning .. 16

1.4.2. Unsupervised Learning .. 16

1.4.3. Semi-Supervised Learning ... 16

1.4.4. Reinforcement Learning .. 17

1.5. UNDERSTANDING BASIC CONCEPTS OF MATCHING TECHNIQUES ... 18

1.5.1. Record Matching ... 18

1.5.1.1. Records Matching Techniques .. 18

1.5.2. Identity Matching .. 19

1.5.2.1. Identity Matching Techniques .. 20

1.5.3. Deterministic Matching ... 22

1.5.3.1. Deterministic Matching Techniques ... 22

1.5.4. Probabilistic Matching .. 24

1.5.4.1. Probabilistic Matching Techniques ... 24

1.5.5. Record Linkage .. 26

1.6. UNDERSTANDING IDENTITY RESOLUTION ... 27

1.7. LITERATURE REVIEW .. 31

1.7.1. State of The Art - An Entity Resolution .. 32

1.7.1.1. Entity Resolution Techniques .. 33

1.7.1.2. Record De-duplication Approaches .. 37

1.7.1.3. Efficiency Improvement Techniques ... 40

1.8. RESEARCH AIMS .. 44

1.9. PROBLEM DEFINITION .. 44

1.10. THESIS CHAPTERS OVERVIEW .. 46

2. STATE-OF-THE-ART REVIEW OF MACHINE LEARNING APPROACHES FOR IDENTITY

RESOLUTION ... 48

2.1. CHAPTER OVERVIEW .. 48

2.2. BACKGROUND ... 48

2.3. ENTITY RESOLUTION AND CHALLENGES ... 49

2.3.1. Text Standardisation and Name Variations .. 49

2.3.1.1. Spelling Variations ... 50

2.3.1.2. Phonetic Variations ... 51

6

2.3.1.3. Character Variation ... 51

2.3.1.4. Fielding Variations ... 52

2.4. APPROXIMATE STRING MATCHING ... 53

2.4.1. Edit Distance Algorithm .. 54

2.4.1.1. Issues in Levenshtein Edit Distance Algorithm ... 55

2.4.2. Jaro-Winkler Algorithm ... 56

2.4.2.1. Issues in the Jaro-Winkler Algorithm .. 58

2.5. PHONETIC MATCHING .. 58

2.5.1. Soundex Algorithm .. 59

2.5.1.1. Issues of Soundex Algorithm ... 63

2.6. COMPARISON OF MATCHING ALGORITHMS .. 66

2.7. CLUSTERING TECHNIQUE ... 66

2.7.1. The Types of Clustering Techniques .. 67

2.7.1.1. K-Means Clustering ... 68

2.7.1.2. Mean-Shift Clustering ... 69

2.7.1.3. Hierarchical Clustering .. 71

2.7.1.4. Density-Based Spatial Clustering of Applications with Noise (DBSCAN) 72

2.7.1.5. Gaussian Mixture Model (GMM) .. 73

2.7.1.6. Spectral Clustering .. 74

2.8. COMPARISON OF CLUSTERING TECHNIQUES ... 75

2.9. KNOWLEDGE-BASE .. 77

2.9.1. Types of Knowledge-Base.. 77

2.9.1.1. Rule-Based Knowledge-Base ... 77

2.9.1.2. Ontology-Based Knowledge-Base ... 77

2.9.1.3. Case-Based Knowledge-Base .. 78

2.9.1.4. Knowledge Graph .. 78

2.9.2. Use of Knowledge-Base in Machine Learning ... 78

2.9.2.1. Decision-Making .. 78

2.9.2.2. Problem-Solving .. 79

2.9.2.3. Semantic Search .. 79

2.9.2.4. Knowledge Representation ... 79

2.10. SUMMARY .. 80

3. RESEARCH DESIGN AND METHODOLOGY .. 81

3.1. CHAPTER OVERVIEW .. 81

3.2. FOUNDATION OF RESEARCH METHODS (DESIGN) .. 81

3.2.1. Foundation of the Proposed Model ... 82

3.2.1.1. Data Pre-processing .. 82

3.2.1.2. Classification of Data ... 85

3.2.1.3. Clustering of Data.. 86

3.2.1.4. Knowledge-Base (KB) .. 86

3.2.1.5. Record Linkage .. 87

3.2.1.6. Selection of Attributes for Searching Records .. 87

3.2.1.7. Labelling of Matching Records .. 88

3.3. THE PROPOSED MODEL FOR IDENTITY RESOLUTION .. 92

3.3.1. Using Data Pre-processing .. 93

3.3.2. Creation of Attributes Formation .. 94

3.3.3. Selection of Searching Criteria .. 96

7

3.3.4. Calculating the Aggregate Score ... 97

3.3.5. Selection of Records Comparison Criteria ... 99

3.3.6. Clustering and Segmentation of records ... 99

3.3.7. Adding Graph Analysis .. 100

3.4. TOOLS FOR IMPLEMENTATION OF THE PROPOSED MODEL ... 100

3.5. IMPLEMENTATION OF SOUNDEX WITH IMPROVEMENTS.. 101

3.5.1. Standard Soundex Code Algorithm ... 101

3.5.2. Improved Soundex 6-digit Code Algorithm ... 103

3.6. STRING MATCHING WITH 6-DIGIT SOUNDEX CODE .. 105

3.7. SUMMARY .. 107

4. RESULTS – DATA ANALYSIS OF POLICING DATASET & COMPUTER SIMULATION 108

4.1. CHAPTER OVERVIEW .. 108

4.2. EVALUATION OF NAMES VARIATIONS .. 109

4.2.1. Evaluation of English Names ... 110

4.2.2. Evaluation of Selection of Mixed Names ... 114

4.2.3. Evaluation of Arabic Names .. 118

4.2.4. Evaluation of Russian Names .. 122

4.3. POLICING DATASET .. 126

4.4. POLICING DATASET ANALYSIS .. 127

4.4.1. Multiple Nominal References for the same individual 128

4.4.2. Multiple DOBs for the same individual.. 129

4.5. EVALUATION OF DE-IDENTIFIED POLICING DATASET .. 129

4.6. POLICING DATASET RESULTS PERFORMANCE ANALYSIS .. 145

4.6.1. Silhouette Coefficient .. 147

4.7. SUMMARY .. 150

5. CONCLUSION ... 152

5.1. FUTURE WORK .. 155

REFERENCES .. 158

APPENDIX (A) – RESEARCH PUBLICATION ... 174

APPENDIX (B) .. 186

I. Python Programming Language ... 186

II. PyCharm IDE .. 186

III. Pandas Python Library .. 188

IV. FuzzyWuzzy Python Library ... 190

V. NetworkX Python Library .. 191

8

List of Figures

FIGURE 1.1 - IDENTITY RESOLUTION SCENARIO (ADDERLEY, 2015) .. 28

FIGURE 3.1 - PROPOSED IDENTITY RESOLUTION MODEL ... 92

FIGURE 3.2 - SELECTION OF ATTRIBUTES FOR THE DATASET .. 93

FIGURE 3.3 - FORMATION OF THE NAME ATTRIBUTE FOR THE DATASET ... 94

FIGURE 3.4 - FORMATION OF THE ADDRESS ATTRIBUTE FOR THE DATASET .. 95

FIGURE 3.5 - FORMATION OF THE AGE ATTRIBUTE FOR THE DATASET .. 95

FIGURE 3.6 - THE BLOCK DIAGRAM OF A FUZZY APPROACH TO IDENTITY RESOLUTION USING COMPLETE RECORDS

 ... 96

FIGURE 4.1 - ENGLISH NAMES VARIATION WITH THE PROPOSED ALGORITHM .. 110

FIGURE 4.2 - ENGLISH NAMES BREAKDOWN OF MATCHING WITH AND WITHOUT THE SAME SOUNDEX CODE .. 111

FIGURE 4.3 - MATCHING SCORES COMPARISON OF ENGLISH NAMES .. 112

FIGURE 4.4 - PERFORMANCE OF MATCHING SCORES OF ENGLISH NAMES .. 113

FIGURE 4.5 - CONFUSION MATRIX FOR ENGLISH NAMES COMPARISON ... 113

FIGURE 4.6 - OVERALL PERFORMANCE EVALUATION OF ENGLISH NAMES .. 114

FIGURE 4.7 - MIXED NAME VARIATION WITH THE PROPOSED ALGORITHM .. 114

FIGURE 4.8 - MIXED NAMES BREAKDOWN OF MATCHING WITH AND WITHOUT THE SAME SOUNDEX CODE 115

FIGURE 4.9 - MATCHING SCORES COMPARISON OF MIXED NAMES .. 116

FIGURE 4.10 - PERFORMANCE OF MATCHING SCORES OF MIXED NAMES .. 117

FIGURE 4.11 - CONFUSION MATRIX FOR MIXED NAMES COMPARISON ... 117

FIGURE 4.12 - OVERALL PERFORMANCE EVALUATION OF MIXED NAMES .. 118

FIGURE 4.13 - ARABIC NAME VARIATION WITH THE PROPOSED ALGORITHM ... 118

FIGURE 4.14 - ARABIC NAMES BREAKDOWN OF MATCHING WITH AND WITHOUT THE SAME SOUNDEX CODE . 119

FIGURE 4.15 - MATCHING SCORES COMPARISON OF ARABIC NAMES.. 120

FIGURE 4.16 - PERFORMANCE OF MATCHING SCORES OF ARABIC NAMES ... 121

FIGURE 4.17 - CONFUSION MATRIX FOR ARABIC NAMES COMPARISON .. 121

FIGURE 4.18 - OVERALL PERFORMANCE EVALUATION OF ARABIC NAMES .. 122

FIGURE 4.19 - RUSSIAN NAME VARIATION WITH THE PROPOSED ALGORITHM ... 122

FIGURE 4.20 - RUSSIAN NAMES BREAKDOWN OF MATCHING WITH AND WITHOUT THE SAME SOUNDEX CODE 123

FIGURE 4.21 - MATCHING SCORES COMPARISON OF RUSSIAN NAMES .. 124

FIGURE 4.22 - PERFORMANCE OF MATCHING SCORES OF RUSSIAN NAMES ... 124

9

FIGURE 4.23 - CONFUSION MATRIX FOR RUSSIAN NAMES COMPARISON... 125

FIGURE 4.24 - OVERALL PERFORMANCE EVALUATION OF RUSSIAN NAMES .. 125

FIGURE 4.25 - SEARCH 1: NUMBER OF FOUND RECORDS PER SEARCH STAGE .. 130

FIGURE 4.26 - SEARCH 1: FOUND RECORDS BASED ON MATCHING ADDRESSES AND RELATED RECORDS 130

FIGURE 4.27 - SEARCH 1: SEARCHING AND FILTERING OF RECORDS BASED ON ADDRESS SCORE 131

FIGURE 4.28 - SEARCH 1: CLUSTERED RECORDS .. 131

FIGURE 4.29 - GRAPH ANALYSIS, THE SUSPECT IDENTIFIED AS “BECH JAUNETTE” CLUSTERED 133

FIGURE 4.30 - GRAPH ANALYSIS, THE SUSPECT IDENTIFIED AS “BECH JAUNETTE” HIGHLIGHTED RED IN CLUSTERS

ASSOCIATED WITH DIFFERENT ADDRESSES ... 134

FIGURE 4.31 - GRAPH ANALYSIS, THE SUSPECT IDENTIFIED AS “BECH JAUNETTE” HIGHLIGHTED RED AND

ASSOCIATED WITH DIFFERENT ADDRESSES ... 135

FIGURE 4.32 - SEARCH 2: NUMBER OF FOUND RECORDS PER SEARCH STAGE .. 135

FIGURE 4.33 - SEARCH 2: FOUND RECORDS BASED ON MATCHING ADDRESSES AND RELATED RECORDS 136

FIGURE 4.34 - SEARCH 2: SEARCHING AND FILTERING OF RECORDS BASED ON ADDRESS SCORE 136

FIGURE 4.35 - SEARCH 2: CLUSTERED RECORDS .. 137

FIGURE 4.36 - GRAPH ANALYSIS, THE SUSPECT IDENTIFIED AS “ABBIDAH FAROZ” CLUSTERED 138

FIGURE 4.37 - GRAPH ANALYSIS, THE SUSPECT IDENTIFIED AS “ABBIDAH FAROZ” HIGHLIGHTED RED AND RED IN

CLUSTERS ASSOCIATED WITH DIFFERENT ADDRESSES ... 139

FIGURE 4.38 - SEARCH 2: GRAPH ANALYSIS, THE SUSPECT IDENTIFIED AS “ABBIDAH FAROZ” HIGHLIGHTED RED

AND ASSOCIATED WITH DIFFERENT ADDRESSES ... 139

FIGURE 4.39 - SEARCH 3: NUMBER OF FOUND RECORDS PER SEARCH STAGE .. 140

FIGURE 4.40 - SEARCH 3: FOUND RECORDS BASED ON MATCHING ADDRESSES AND RELATED RECORDS 141

FIGURE 4.41 - SEARCH 3: SEARCHING AND FILTERING OF RECORDS BASED ON ADDRESS SCORE 141

FIGURE 4.42 - SEARCH 3: CLUSTERED RECORDS .. 142

FIGURE 4.43 - GRAPH ANALYSIS, THE SUSPECT IDENTIFIED AS “HASKIN ZEID” CLUSTERED 143

FIGURE 4.44 - GRAPH ANALYSIS, THE SUSPECT IDENTIFIED AS “HASKIN ZEID” HIGHLIGHTED RED AND OTHER RED

IN CLUSTERS ASSOCIATED WITH DIFFERENT ADDRESSES ... 144

FIGURE 4.45 - SEARCH 3: GRAPH ANALYSIS, THE SUSPECT IDENTIFIED AS “HASKIN ZIED” HIGHLIGHTED RED AND

ASSOCIATED WITH DIFFERENT ADDRESSES ... 145

FIGURE 4.46 - RESULTS COMPARISON OF NAMES FUZZY MATCHING SCORES .. 146

FIGURE 4.47 - SEARCH 1: HIGHLIGHTED CLUSTERED RECORDS ... 148

FIGURE 4.48 - SEARCH 2: HIGHLIGHTED CLUSTERED RECORDS ... 149

FIGURE 4.49 - SEARCH 3: HIGHLIGHTED CLUSTERED RECORDS ... 150

10

List of Tables

TABLE 2.1 - LEVESHTIEN DISTANCE ALGORITHM ISSUE (PILANIA AND KUMARAN, 2019) 56

TABLE 2.2 - GROUPING OF LETTERS AND CODE ASSIGNMENTS (PATMAN AND SHAEFER, 2001) 61

TABLE 2.3 - PHONETIC DESCRIPTION BASED ON ASSIGNMENTS OF LETTERS (MAGAZINE, 2018) 62

TABLE 2.4 - COMPARISON OF STRING MATCHING TECHNIQUES (SHAH AND KUMAR SINGH, 2014) 66

TABLE 2.5 - COMPARISON OF CLUSTERING TECHNIQUES ... 76

TABLE 3.1 - SOUNDEX 4-DIGIT CODE FOR NAMES REPRESENTING SOUNDEX ISSUES 102

TABLE 3.2 - IMPROVED SOUNDEX 6-DIGIT CODE FOR NAMES REPRESENTING SOUNDEX ISSUES 104

TABLE 3.3 - IMPROVED SOUNDEX 6-DIGIT CODE FOR NAMES WITH ALGORITHM MATCHING STATUS 105

TABLE 4.1 - ANALYSIS OF POLICING DATASET .. 128

TABLE 4.2 - RESULTS PERFORMANCE COMPARISON OF FUZZY MATCHING SCORES 146

1. INTRODUCTION

11

CHAPTER1

1. INTRODUCTION

Fraud is a significant ongoing threat to society, the economy, law enforcement agencies,

and other institutions globally, and it remains a complex task. It has become a great

challenge for law enforcement agencies to identify the correct identity among the false

identities from a colossal identity pool. For example, one might have many identities

that can be used differently. Before diving deep into the problem solution, some basic

understanding of key terms will be established in the sections below.

1.1. Fraud and Types of Fraud

Fraud refers to the act of deceiving or intentionally misleading others for personal or

financial gain. It typically involves dishonesty, misrepresentation, or manipulation to

deceive individuals, organisations, or systems (Albrecht W, Albrecht C, A, 2008;

Pedneault et al., 2012). There are various types of fraud, including the following that are

described by (Hedayati, 2012) :

 Identity Theft: This occurs when someone steals another person’s personal

information, such as Social Security numbers, credit card details, or bank account

information, to commit fraudulent activities.

 Credit Card Fraud: This type of fraud involves using another person’s credit card

information to purchase or withdraw funds without their consent.

 Insurance Fraud: This fraud involves false claims or exaggerating events or

damages to receive insurance benefits illegally.

 Investment Fraud: This fraud encompasses fraudulent schemes or practices that

deceive investors into making decisions based on false or misleading

1. INTRODUCTION

12

information. Ponzi schemes and pump-and-dump schemes are examples of

investment fraud.

 Healthcare Fraud: It refers to fraudulent activities in the healthcare industry,

such as submitting false claims, overbilling, providing unnecessary treatments,

or selling counterfeit drugs.

 Tax Fraud: This involves intentionally providing false information on tax returns

to avoid paying taxes or obtaining tax refunds illegitimately.

 Online Scams: These frauds occur online, including email scams, phishing attacks,

online auction fraud, and pyramid schemes conducted through online platforms.

 Mortgage Fraud: This fraud involves providing false information or engaging in

illegal activities to obtain a mortgage loan, such as inflating property values or

misrepresenting financial information.

 Wire Fraud: This fraud refers to fraudulent activities conducted through

electronic communications, such as email or online messaging, to deceive

individuals or organisations into sending money or sensitive information.

 Employment Fraud: This includes fraudulent practices related to employment,

such as fake job postings, résumé fraud, or fraudulent recruitment agencies.

These are just a few examples of fraud, and there are many other variations and

combinations of fraudulent activities that individuals or groups may engage in for

personal gain. It is vital to remain vigilant and take necessary precautions to protect

oneself from fraud.

1.2. Identity and Types of Identity

However, one true identity must be identified at the right time among all the identities.

(Niblett, 2015) defined, “Identity is the root of who we are as individuals when it comes

to the matter of trust”. Matching identity is a technique to find a relationship between

1. INTRODUCTION

13

two or more identities of the same person. Identity can be understood in different

contexts, and various identities exist. Here are some common types of identities:

 Personal Identity: Personal identity refers to the unique characteristics,

experiences, beliefs, and values that define an individual as a distinct person. It

includes gender, age, ethnicity, nationality, sexual orientation, religion, and

personal interests (Li and Wang, 2015).

 Cultural Identity: Cultural identity encompasses the shared beliefs, customs,

traditions, language, and values that shape a person’s sense of belonging to a

particular cultural group or community. It can include ethnic, regional, or

national identities (McCallum-Bayliss, 2004).

 Social Identity: Social identity refers to an individual identifying with the group

or groups. Typically, this includes family, occupation, socioeconomic status,

political affiliation, or membership in specific communities or organisations (Li

and Wang, 2011).

 National Identity: National identity relates to an individual’s sense of belonging

and allegiance to a particular nation or country. It includes a shared sense of

history, culture, language, and citizenship (Soltani and Abhari, 2013).

 Gender Identity: Gender identity is an individual’s internal sense of gender,

which may or may not align with the sex assigned to them at birth. Gender

identity can be male, female, or non-binary, among other identities along the

gender spectrum (Li and Wang, 2015).

 Professional Identity: Professional identity encompasses the roles, skills, and

values of a person’s chosen profession or career. It includes professional

affiliations, qualifications, and the sense of professional purpose and identity

within a specific field (Yan, Bajaj and Bhasin, 2011).

 Online Identity: With the growth of the internet and social media, online identity

has become significant. It refers to the persona or representation of oneself

1. INTRODUCTION

14

created through online platforms, including usernames, profiles, and online

interactions (Yadav, Sinha and Kumar, 2019).

 Self-identity: Self-identity encompasses an individual’s subjective understanding

and perception of oneself, including self-image, self-esteem, and self-concept.

Personal experiences, beliefs, and values can influence it (Chung et al., 2014).

It is important to note that identities are complex and multidimensional, and individuals

may identify with multiple identities simultaneously. Additionally, identities can evolve

and change over time as individuals develop and experience new aspects of their lives.

1.3. Types of Identity Crimes

Identity refers to the distinguishing characteristics, traits, or attributes that make an

individual unique. Identity crimes, also known as identity theft or fraud, occur when

someone wrongfully obtains and uses another person’s personal information for fraud.

Using this stolen information can commit various types of identity crimes described by

(Albrecht W, Albrecht C, A, 2008; Hedayati, 2012) , such as:

 Financial Identity Theft: This involves using another person’s personal

information, such as Social Security numbers, credit card details, or bank account

information, to make unauthorised financial transactions, open fraudulent

accounts, or apply for loans or credit cards.

 Medical Identity Theft: In this type of identity crime, someone fraudulently uses

another person’s personal information to receive medical services, prescriptions,

or insurance coverage. It can lead to incorrect medical records, fraudulent

insurance claims, and potential health risks for the victim.

 Criminal Identity Theft: This occurs when someone uses another person’s

identity during the commission of a crime. The criminal can provide false

1. INTRODUCTION

15

identification to law enforcement or use the stolen identity to avoid detection or

prosecution.

 Synthetic Identity Theft: Synthetic identity theft involves creating a new identity

by combining real and fake information. Fraudsters may use a combination of

stolen and fabricated details to establish credit or conduct fraudulent activities.

 Child Identity Theft: This type of identity theft targets minors. The perpetrator

may use a child’s personal information, such as their Social Security number, to

open fraudulent accounts or commit financial fraud. Since children typically have

limited financial activity, their stolen identities can go undetected for years.

 Social Media Identity Theft: With the increasing use of social media, individuals’

personal information can be exploited. Fraudsters may use stolen identities to

create fake profiles, conduct scams, or spread malicious content.

 Tax Identity Theft: Tax identity theft occurs when someone uses another

person’s Social Security number or other identifying information to file

fraudulent tax returns and claim refunds illegally.

It is crucial to safeguard personal information and regularly monitor financial and

personal records to detect any signs of identity theft. Taking preventive measures like

using strong passwords, being cautious of phishing attempts, and shredding all personal

documents can help mitigate the risk of falling victim to identity crimes.

1.4. Machine Learning

Machine learning is a subfield of artificial intelligence that focuses on developing

algorithms and models that enable computers to learn and make predictions or

decisions without explicit programming. Machine learning algorithms are designed to

automatically analyse and interpret complex patterns and relationships in data and use

that knowledge to perform specific tasks or make predictions. Machine learning can be

1. INTRODUCTION

16

broadly categorised into the following types (Christopher M. Bishop, 2006; Hastie,

Tibshirani and Friedman, 2009):

1.4.1. Supervised Learning

Supervised learning involves training a model on labelled data, where corresponding

desired outputs or labels accompany the input data. The model learns from this labelled

data and generalises the patterns to make predictions or classify new, unseen data.

Examples of supervised learning algorithms include linear regression, logistic regression,

decision trees, random forests, support vector machines (SVM), and neural networks

(Christen, Vatsalan and Wang, 2016; Jurek et al., 2017).

1.4.2. Unsupervised Learning

Unsupervised learning involves training a model on unlabelled data, where the

algorithm must discover patterns or structures in the data without prior knowledge of

the outcomes or labels. Unsupervised learning algorithms aim to find meaningful

representations, groupings, or relationships in the data. Clustering algorithms, such as

k-means and hierarchical clustering, Self-organising Maps, and dimensionality reduction

techniques, such as principal component analysis (PCA), are typical examples of

unsupervised learning (Kohonen, 1990; Du, 2010). The supervised learning will be

discussed in later chapters.

1.4.3. Semi-Supervised Learning

Semi-supervised learning combines elements of supervised and unsupervised learning.

It involves training a model on a mixture of labelled and unlabelled data. The model

learns from the labelled data to predict new, unseen data and uses the unlabelled data

to enhance its understanding of the underlying patterns or structures (Sun, 2013).

1. INTRODUCTION

17

1.4.4. Reinforcement Learning

Reinforcement learning involves training an agent to interact with an environment and

learn optimal actions to maximise a reward signal. The agent learns through trial and

error, receiving feedback as rewards or penalties based on its actions. Reinforcement

learning is commonly used in robotics, game-playing, and autonomous systems

(Christopher M. Bishop, 2006).

Machine learning algorithms can be applied to a wide range of tasks, including:

 Classification – Predicts the class or category of an input based on its features

and, for example, classifying emails as spam or non-spam (Jurek et al., 2017).

 Regression – Predicts a continuous value or outcome based on input features,

for example, predicting housing prices based on location, size, and number of

rooms (Yan et al., 2020).

 Clustering – Groups similar data points based on their attributes or

characteristics, for example, segmenting customers into distinct groups based on

their purchasing behaviour (Bezdek, 1981).

 Anomaly detection – Identifies rare or abnormal data points or events that

deviate from the norm, for example, detecting fraudulent transactions or

network intrusions (Studiawan, Payne and Sohel, 2017).

 Recommendation systems – Recommends items or content to users based on

their preferences and behaviour, for example, suggesting movies or products

based on previous interactions (Ghahramani, 2015).

 Natural Language Processing (NLP) – Analyse and understand human language,

including tasks like text classification, sentiment analysis, and machine

translation (Liao and Zhao, 2019).

 Computer Vision – Extract meaningful information and patterns from images or

videos, including tasks like object recognition, image segmentation, and facial

recognition (Liu et al., 2013).

1. INTRODUCTION

18

Machine learning has become increasingly popular and widely used across various

industries and domains, driving advancements in data analysis, automation, and

decision-making.

1.5. Understanding Basic Concepts of Matching

Techniques

1.5.1. Record Matching

Record matching, or entity resolution or deduplication, identifies and merges duplicate

or similar records within a dataset. In record matching, various attributes or fields in

records are compared to determine if they likely refer to the same entity. The goal is to

consolidate or eliminate redundant or duplicate data entries to ensure data accuracy

and integrity. The comparison can be based on criteria such as name, address, phone

number, or other identifying information. By identifying and merging duplicate records,

record matching helps create a clean and consolidated dataset that avoids data

redundancy and inconsistency (Bharambe, Jain and Jain, 2012).

For example, in a customer database, record-matching techniques can identify and

merge duplicate entries for the same customer based on criteria such as name, address,

phone number, or other identifying information. Usually, this helps create a clean and

consolidated database with accurate customer information. The following section will

briefly highlight the records matching techniques.

1.5.1.1. Records Matching Techniques

 Deterministic Matching

This technique uses strict rules or algorithms to compare specific fields or attributes

between records. It relies on exact matches or predefined rules to identify duplicates or

1. INTRODUCTION

19

similarities, for example, by comparing Social Security numbers or unique identifiers to

find exact matches (Sayers et al., 2016).

 Probabilistic Matching

This technique assigns probabilities or weights to the similarity of different attributes

between records. It considers fuzzy matches and calculates a likelihood score to

determine the similarity or likelihood of a match. Probabilistic matching techniques use

algorithms like the Jaro-Winkler distance or the Levenshtein distance to quantify the

similarity between strings or attributes (Fellegi and Sunter, 1969; Sayers et al., 2016).

 Rule-Based Matching

This technique employs predefined rules or logic to compare and match records. Rules

can be defined based on specific criteria, such as matching names, addresses, or phone

numbers. Rule-based matching allows for flexibility in defining the conditions and

thresholds for matching (Christen, 2012).

 Machine Learning-Based Matching

Machine learning techniques can be applied to record matching by training models on

labelled data. These models learn patterns and similarities from the data to identify

potential matches. Supervised learning algorithms, such as decision trees, random

forests, or support vector machines, can be used for matching records (Christen,

Vatsalan and Wang, 2016).

1.5.2. Identity Matching

Identity matching, on the other hand, focuses on verifying or establishing the identity of

an individual or entity. It involves comparing different attributes or data points to

1. INTRODUCTION

20

determine if they belong to the same identity or if they match against a known identity

(Soltani and Abhari, 2013).

Identity matching can be used in various contexts, such as stated by (Boongoen and

Shen, 2009):

o Law enforcement agencies use fingerprints or DNA matching to identify suspects

or link crime scenes.

o Financial institutions verify the identity of customers through “Know Your

Customer (KYC)” processes, comparing personal information and identification

documents.

o Online platforms use identity-matching techniques to authenticate users during

account registration or login processes.

Identity matching techniques may employ various data points, including personal

identifiers, biometric data, photographs, or unique identifiers like Social Security or

passport numbers. The goal is to ensure accurate identification and prevent fraud or

unauthorised access.

While record matching focuses on identifying and merging duplicate records within a

dataset, identity matching focuses on establishing the identity of individuals or entities

by comparing data points to known identities or reference data. Both techniques serve

distinct purposes in data management and identification processes.

1.5.2.1. Identity Matching Techniques

 Biometric Matching

Biometric matching involves comparing biometric data, such as fingerprints, iris

patterns, or facial features, to establish identity. Biometric systems use

mathematical algorithms to analyse and match the unique characteristics of an

individual’s biometric data (Jain, Ross and Prabhakar, 2004).

1. INTRODUCTION

21

 Document Verification

This technique involves comparing identification documents, such as passports or

driver’s licenses, to establish identity. It may involve manual verification by experts

or automated systems that analyse the document’s security features and data

consistency or compare it against known reference data (Wang and Dong, 2020).

 Knowledge-Based Authentication

Knowledge-based authentication involves verifying an individual’s identity through

information they should know, such as personal identification questions, passwords,

or PINs. This technique assumes that the person claiming an identity possesses

knowledge specific to that identity (Jain, Ross and Prabhakar, 2004).

 Multifactor Authentication

Multifactor authentication combines multiple identity verification techniques. It

typically involves a combination of something the individual knows, e.g., a password,

something they have, e.g., a smart card or mobile device, or something they are,

e.g., biometric data. By requiring multiple factors, multifactor authentication

enhances the security and reliability of identity matching.

It is important to note that the selection of matching techniques depends on the

specific context, data quality, available resources, and desired level of accuracy.

Different techniques may be employed to achieve accurate and reliable matching or

identification results (Jain, Ross and Prabhakar, 2004).

1. INTRODUCTION

22

1.5.3. Deterministic Matching

Deterministic matching is a technique used in record matching where strict rules or

algorithms are applied to compare specific fields or attributes between records. The goal

is to identify exact matches or predefined patterns to determine if two records refer to

the same entity. Deterministic matching relies on precise matching criteria and

predefined rules to identify duplicates or similarities. In deterministic matching, specific

fields, such as names, addresses, phone numbers, or unique identifiers, are compared

between records. The matching process follows predetermined rules, such as requiring

an exact match or a specific pattern to consider records as a match, for example, by

comparing Social Security numbers or unique customer IDs to find exact matches.

Deterministic matching is often faster and more straightforward than probabilistic

matching as it relies on strict rules (Aiken et al., 2019). However, it may miss potential

matches if the data has inconsistencies or minor variations, such as misspellings or

formatting differences. This technique is effective when the data quality is high and

exact matches or specific patterns are sufficient to identify duplicates or similarities.

1.5.3.1. Deterministic Matching Techniques

Deterministic matching techniques are to identify exact matches or predefined patterns

between records. These techniques apply strict rules or algorithms to compare specific

fields or attributes. Here are some commonly used deterministic matching techniques:

 Exact Matching

Exact matching involves comparing specific fields or attributes between records to

find exact matches. This technique requires the values in the compared fields to be

identical for the records to be considered a match, for example, by comparing

unique identifiers like Social Security numbers or customer IDs to find exact matches

(Al-khamaiseh and Alshagarin, 2014).

1. INTRODUCTION

23

 Rule-Based Matching

Rule-based matching involves defining predefined rules or logic to compare and

match records. The rules can have specific criteria or patterns that must be met for

two records to be considered a match, for example, matching records based on exact

matches of names, addresses, phone numbers, or a combination of multiple

attributes (Yi et al., 2020).

 Key-based Matching

Key-based matching involves selecting a specific attribute or set of attributes as the

key identifier for matching records. Records with the same key value are considered

a match, for example, by using a unique customer ID or a combination of attributes

like name and address as the key for matching customer records (Dey, Mookerjee

and Liu, 2011).

 Token-based Matching

Token-based matching involves breaking down attributes into smaller units or

tokens and comparing these tokens between records. Tokens can be words, phrases,

or specific patterns. The matching is based on the presence or absence of specific

tokens or the order of tokens. Token-based matching helps handle variations or

inconsistencies in textual attributes (Cohen, Ravikumar and Fienberg, 2003).

 Dictionary-based Matching

Dictionary-based matching involves creating a predefined dictionary or reference

dataset with known values or patterns. Records are matched by comparing their

attribute values against the entries in the dictionary. This technique is commonly

used for matching standard names, addresses, or other reference data (Yi et al.,

2020).

1. INTRODUCTION

24

 Hierarchical Matching

Hierarchical matching involves establishing a hierarchical structure or grouping

records based on specific attributes or criteria. Matching is performed at different

levels of the hierarchy, allowing for more efficient matching by narrowing down the

search space. This technique is effective when dealing with large datasets

(Ravikumar and Cohen, 2004).

1.5.4. Probabilistic Matching

Probabilistic and fuzzy matching techniques are used in record matching to identify

potential matches by assigning probabilities or weights to the similarity of different

attributes between records. It considers fuzzy matches and calculates a likelihood score

to determine the similarity or likelihood of a match. Probabilistic matching considers

variations, inconsistencies, or errors in the data. It uses algorithms that measure the

similarity between strings or attributes, such as the Jaro-Winkler distance or the

Levenshtein distance. These algorithms quantify the degree of similarity between two

strings by calculating the number of transformations required to convert one string into

the other. The probabilistic matching process involves comparing multiple attributes

between records and assigning weights or scores to each attribute’s similarity. The final

match score is calculated based on the combination of attribute scores and a threshold

set to determine whether the records match. The threshold can be adjusted based on

the desired level of precision and recall (Ravikumar and Cohen, 2004). It can identify

potential matches that deterministic matching might overlook. However, it may also

introduce false results if the threshold is too low or the data quality is poor.

1.5.4.1. Probabilistic Matching Techniques

Probabilistic and fuzzy matching techniques are used to identify potential matches

between records by assigning probabilities or weights to the similarity of different

1. INTRODUCTION

25

attributes. These techniques allow for flexibility in handling variations, inconsistencies,

or errors in the data. Here are some commonly used probabilistic matching techniques:

 Jaro-Winkler Distance

The Jaro-Winkler distance is a string similarity measure that calculates the similarity

between two strings by comparing their characters’ positions and transpositions. It

assigns a similarity score between 0 and 1, with 1 indicating a perfect match. The

Jaro-Winkler distance compares names or other textual attributes (Winkler, 1994).

 Levenshtein Distance

The Levenshtein distance, also known as the edit distance, measures the minimum

number of single-character edits required to transform one string into another. It

calculates a distance value, and a similarity score can be derived by taking the inverse

of the distance. The Levenshtein distance helps compare attributes with potential

misspellings or slight variations (Ristad and N.yianilos, 1998).

 Soundex

Soundex is a phonetic algorithm that converts words or names into a four-character

code based on pronunciation. It allows for matching based on similar-sounding

names, even with different spellings. Soundex matches names or surnames that

have different spellings but sound similar (A. J. Lait and Randell, 1996).

 N-gram Matching

N-gram matching involves breaking strings into smaller n-gram components and

comparing these components between records. Similarity scores can be calculated

by comparing the occurrence and position of n-grams. This technique helps match

textual attributes that may have variations or typographical errors (Kukich, 1992).

1. INTRODUCTION

26

 Blocking

Blocking is a technique that divides records into smaller subsets or blocks based on

specific attributes or criteria. It reduces the number of record pairs that must be

compared, focusing only on records within the same block. Blocking helps to

improve the efficiency and speed of probabilistic matching algorithms (Kopcke and

Rahm, 2010).

These probabilistic matching techniques can be combined and customised based on the

specific requirements and characteristics of the matched data. The choice of technique

depends on the nature of the attributes, data quality, and the desired level of precision

and recall in the matching process. It is often necessary to experiment and fine-tune the

parameters and thresholds to achieve the desired matching accuracy. Both

deterministic matching and probabilistic matching techniques have their advantages

and limitations. The selection of the appropriate matching technique depends on the

specific use case and the quality and nature of the data being matched.

1.5.5. Record Linkage

Record matching and record linkage are separate concepts in data management and

analysis. Record linkage, also known as data linkage or entity resolution across datasets,

is the process of finding and connecting records across multiple datasets that refer to

the same entity. It involves linking or associating records from different sources

representing the same real-world entity. Record linkage goes beyond record matching

within a single dataset and involves integrating and connecting data from various

sources. The goal is to identify and establish connections between records that pertain

to the same entity, even if the attribute values or formats may differ across datasets.

Record linkage techniques typically involve comparing attributes or fields across

datasets and assigning similarity or matching scores to determine the likelihood of a

match. These techniques may use deterministic or probabilistic matching algorithms to

1. INTRODUCTION

27

identify potential matches and establish links between records. Record linkage is used

in scenarios such as data integration, data warehousing, or data analytics, where data

from different sources must be combined and linked for comprehensive analysis or

decision-making (Culotta and McCallum, 2005).

1.6. Understanding Identity Resolution

Traditionally, to match two or more records for similarities, some attributes are

required, including name, date of birth, nationality, passport number and address.

However, matching two records using attributes is insufficient for a person’s true

identity. For example, matching records by name will not resolve this issue as there can

be many similar names, such as in China where “Wang”, “Wu”, and “Li” are common

names (Lisbach and Meyer, 2013). While (Wang, Chen and Atabakhsh, 2004) stated that

each entity has attributes and can be identified by these critical attributes, e.g., ID,

name, and date of birth. These are used in traditional resolution techniques to describe

the individual and are available in traditional record management systems. However,

the traditional resolution techniques are ineffective due to typographical errors and

intentional issues such as data entry errors and intentional errors for fraud. Many other

reasons make it challenging to find the correct identity. According to (Barkay and Rein,

2015) analysis, a massive amount of unstructured, incomplete, and incorrect data is

available publicly to extract the required information, leading to a monumental task.

Differentiating and combining are the two main tasks for detecting the true identity by

finding the association between the records.

It is a must for law enforcement agencies to understand the flow of information

between individuals and other sources. This analysis helps to identify lead actors, their

roles and specialisations, communication channels, knowledge distribution, and

ultimately, vulnerabilities in the organisational structure that the agency can exploit. It

requires large datasets and a stream of information to analyse the identity by following

any change in the information or activity pattern, which can give some indication of the

information flow of an individual to identify, such as travelling or financial information.

1. INTRODUCTION

28

For example, an individual may stay under the radar if viewed as isolated. However,

when considering regular meetings with unrelated people connected to a bank account,

showing regular or irregular transfer patterns over a specific company may reveal a very

different picture and be flagged as the lead offender.

It will help police question and track an individual for any criminal activity and match the

identity in the database to find other links, associations and connections if the individual

profile already exists. However, if this individual has changed the name from Billy Smith

to Bobby Jones or changed these names concurrently, then in that case, it is a complex

task for law enforcement agencies to identify and match the correct identity from the

database. Because the change of name may mislead the police, and the lack of tools

available to detect true identity will not be easy, primarily when the name has been used

concurrently on different occasions. Figure 1.1 depicts this type of identity fraud pattern

as described by (Adderley, 2015).

Figure 1.1 - Identity Resolution Scenario (Adderley, 2015)

According to the US report, many cases documented that terrorists and other criminals

around the world commit identity crimes to achieve their financial needs and execute

different attacks in the real as well as in the cyber world (US Department of State, 2008).

Criminals can easily have fake identities, commonly used to mislead law enforcement

agencies. The social contextual information can improve the resolution accuracy in

addition to traditional identity attributes for identity matching (Bhattacharya and

Getoor, 2007). Thus, detecting the identity fraud pattern is a very critical task in criminal

structure as criminals use bogus identities to achieve malicious goals by hiding true

identities, and such situations are critical for national security. Finding the solution for

1. INTRODUCTION

29

identity duplication is critical as it will help fight terrorism and any other crime. Because

false identities are very commonly used for crime and terrorism, this can mislead law

enforcement agencies by having multiple identities (Li and Wang, 2015). (John S. Pistole,

2003) emphasised that law enforcement agencies must determine an individual identity

to detect potential terrorists and prevent terrorism from occurring.

Detecting fraud becomes increasingly complex when the data grows with time.

Traditional record-matching techniques can not accurately find the relationship within

the records due to the poor quality of input data, with a chance of human typing errors

and missing or incomplete information. As discussed above, the probabilistic and

deterministic techniques can be used for record matching. The probabilistic technique

typically uses training data to match records, which can result in lower accuracy. To

resolve this issue, the system must be retrained each time to process the entire dataset

(Sayers et al., 2016). Meanwhile, the deterministic technique uses predefined rules to

match the record. If the record does not satisfy the predefined rule, no match will be

found, and no data will be collected (Jonas, 2006).

According to (Duncan et al., 2015), both these techniques used for record matching and

linkage divide the record into three states: “Match, No Match and Possible Match”,

where the possible match might not be accurate if the information has been changed

over time. Therefore, it will lead to an incorrect match being flagged as a possible match.

According to (Godby et al., 2009), record matching refers to entity resolution, which

focuses on information extracted using names, while identity resolution is a technique

to determine the extracted information belongs to whom and how it is linked to others

in real-world associations.

Detecting the relationship between different data elements and entities while scanning

individual records to match data is vital. Nevertheless, it is also essential to consider the

difference between available datasets from different resources when matching any

record, which might lead to another problematic task due to different dataset standards.

According to (Jonas, 2006), this will lead to finding the uniqueness and commonalities

between different datasets from different sources to answer who is who and who knows

whom. Considering the above, it can lead to identity resolution rather than simply

matching records, as finding link associations between records is essential for finding

1. INTRODUCTION

30

true identity. Therefore, (Jonas, 2006) defined the semantic reconciliation process as

identifying an individual identity as identity resolution, even if it is described differently.

It can be easily manipulated to distinguish between different records in a small volume

dataset and find any link association between them. It is difficult for a human brain to

accurately and efficiently match the identity as the data grows in the dataset. In a large

dataset, matching and identifying the record is challenging; therefore, achieving this

goal from computers using machine learning is a complex task. A step towards this task

involves machine learning and data mining techniques such as supervised and

unsupervised learning. The data mining techniques help to extract useful information

and related patterns from the dataset, which can help in machine learning. Data mining

uses link analysis to associate the data in a graph to detect the related patterns and find

the links between them. It identifies any abnormal activity or occurrence (Brown and

Hagen, 2002). In machine learning, the supervised learning technique uses a known set

of predefined patterns to identify similarities in the new records. The unsupervised

learning technique does not use predefined patterns to find similarities. It focuses on a

dynamic algorithm to detect similarities in the object, which starts behaving differently

from objects to which they were similar in the past. (Li and Wang, 2015) defined identity

resolution as an entity resolution type used for identity management. In different

domains, an entity resolution is known as record linkage and deduplication. A white

paper published by (Dun & Bradstreet, 2013) describes that identity resolution helps in

solid decision-making and detecting the correct information at the right time to make

the right decisions. It brings a standard within the datasets by defining the entity. It

allows performing different processes and techniques for analysis to identify entities.

Identity Resolution is matching information and detecting, identifying, and considering

past information associations for the target entity. According to (Edwards et al., 2016),

linking a person's different variations of records to find the real-world identity is called

identity resolution.

Therefore, this research establishes and introduces machine learning techniques and

algorithms to match and identify related records. The following section will discuss the

literature review to help understand the gaps.

1. INTRODUCTION

31

1.7. Literature Review

Some foremost and serious incidents, such as the 9/11 New York terror attack in 2001

and the 7/7 London bombing in 2005, led law enforcement agencies, independent

organisations, and institutions to rethink to find the best possible approach for

harvesting and detecting the identities by finding similarities and links associations

between multiples identities which are referring to one real identity. The only way to

fulfil this approach is to enable a computer system intelligent enough to detect, identify,

and find an association between different records using different record-matching

techniques in less time and with less effort to produce positive outcomes.

(Ananthakrishna, Chaudhuri and Ganti, 2002) proposed eliminating duplicates in the

dataset by applying dimensional hierarchy over the link relations such as city, state, and

country. This approach only matches the identity record if both identities belong to the

same area; otherwise, the record will not be matched against similar entries in the data

set for different areas.

Similarly, (Brown and Hagen, 2002) introduced the record-linking data association

method to match the criminal records referring to the same record. In this method, the

two records are compared by calculating the total similarity using the sum of the

weighting of matching attribute values. However, this requires more computing power

as the dataset increases with time and will not filter the referring records efficiently. It

might also ignore records on fewer similarity measurements. Pasula et al., 2003

introduced a citation-matching approach to match the records using the foreign keys in

the relational database using the probabilistic relational model (PRM). The problem with

the rule-based matching approach is that it relies on the data quality in the dataset. The

actual match will not be accurately generated if the dataset is incomplete or missing

information.

Wang, Chen and Atabakhsh, 2004 proposed to compare four attributes of an individual,

such as full name, date of birth, address, and social security number, for detecting

identities and to combine the total similarity score. He introduced a record linkage

algorithm for detecting deceptive identities. However, this approach is limited and

cannot produce accurately matched results if one or more attributes are missing from

1. INTRODUCTION

32

the dataset. To eliminate the duplicate records, (Culotta and McCallum, 2005) proposed

another rules-based model called “the conditional random field model (CRF)” to

measure the associations among other different entities. However, this approach failed

and could not find the links between the same entity type (Li and Wang, 2015). One of

the graph-based methods proposed by (Bhattacharya and Getoor, 2006) is that between

each pair of reference entities, the relational graph matching is based on similarity with

the same attribute that matches the similarity measure. Furthermore, (Bhattacharya

and Getoor, 2007) enhanced the proposed approach by adding a collective entity

resolution algorithm to match social information based on the already matched records

to reuse for matching more records and not just for comparing two records.

Machine learning technique extracts the patterns from the training data rather than

manually coding the rules to match the record in the data set. After extracting patterns

from the record, the system creates its reference to match new records in the dataset

(Li and Wang, 2015). To match user profiles from social media websites such as

Facebook and Twitter, (Bartunov et al., 2012) proposed combining user profiles using

different attributes into a graph by detecting the social linkages between these two user

profiles using a CRF-based approach. According to (Li and Wang, 2015), IBM’s InfoSphere

Identity Insight is one of the best commercial applications for entity resolution and data

analysis. The application uses a set of rules predefined in the system by humans to

analyse the identities using sophisticated algorithms. If the two given identities have

identical attributes, such as dates of birth and last names, and the threshold value is

higher than the matching score, the system will combine them.

The main issue with the rules-based system is creating a set of rules, which is time-

consuming and limited for specific attribute values. Therefore, different attributes

within different datasets might not be able to be compared.

1.7.1. State of The Art - An Entity Resolution

Entity resolution is essential to identity resolution to increase data quality. Poor data

quality is a consistent issue, especially in the policing system. Suppose errors are

1. INTRODUCTION

33

introduced to the dataset when data enters the system, and the object is identified

incorrectly. In this case, it may affect the final results significantly. Therefore, it is

worthwhile to explore different entity resolution techniques and approaches. In simple

words, entity resolution extracts the correct record from the data set while removing

any record duplication to purify the result. According to (Kopcke and Rahm, 2010), entity

resolution refers to record linkage, matching, reference reconciliation, and duplication

identification. Identifying the real-world entity from the given entities is challenging due

to the poor data quality. (Winkler, 1994) states that this problem was initially addressed

by Newcombe in 1959, and later, in 1969, Fellegi and Sunter refined it to do entity

matching in the structured data.

The main challenge in entity resolution is the mismatch in the data due to typographical

errors and different variations of string appearing in the dataset. There are different

methods have been developed to tackle such issues, and the main techniques are

explained below:

1.7.1.1. Entity Resolution Techniques

 Character-based Similarity Metrics

Edit distance is the distance between two strings calculated by applying insertion,

deletion, or substitution operations to match one string to another. It is also called the

Levenshtein distance, as Levenshtein introduced it in 1965 (Elmagarmid, Ipeirotis and

Verykios, 2007). Suppose the distance of strings is less than a set threshold value by

applying the three edit operations. In this case, the strings are considered a close match

to each other with slight variation. The Edit distance matches the value of two attributes

to see if they represent the same information for the same entity. (Needleman and

Wunsch, 1970), They have slightly modified the edit distance by introducing different

cost values for different edit operations on the string. While (Ristad and N.yianilos, 1998)

introduced an algorithm that automatically calculates the cost for equivalent words

written differently. However, Edit distance fails when strings are in short form or any

1. INTRODUCTION

34

abbreviation is used instead of the complete word because the three edit operations

will not calculate the cost correctly due to this issue.

Affine gap distance is described by (Elmagarmid, Ipeirotis and Verykios, 2007) as the gap

between two strings that consider the abbreviated or shortened string calculation which

edit distance cannot perform. It applies two additional edit operations, Open Gap and

Extend Gap, to find the distance between two string values (Waterman, Smith and

Beyer, 1976). The Open Gap determines the starting point in the string from where the

gap should be inserted instead of inserting a character to convert an abbreviated string

to another string. The Extend gap is used to extend the gap by adding one extra space

in the string. The penalty of the extended gap is smaller than the open gap, so the affine

gap of the two strings where one is an abbreviated variation of another string will be

smaller than the original edit distance (Elmagarmid, Ipeirotis and Verykios, 2007).

Therefore, (Bilenko et al., 2003) introduced an algorithm to train an edit distance model

using an affine gap technique. Suppose the two strings are written differently by

exchanged character positions. In this case, the affine gap fails to calculate the cost and

cannot match the strings. For example, the two strings “Belly Smith” and “Smith B” will

have a significant cost value, which will assume that the two strings are not the same

and will find a close similarity to produce the match for an entity.

The Smith-Waterman distance was introduced in 1981 to find the similarity of two

strings by matching the substring. In this method, the two strings are aligned to calculate

the substrings and their similarity by using the edit operations, and the two strings are

compared (Smith and Waterman, 1981). There is a penalty for the alignment of the

strings if any mismatch of characters is found. In contrast, any match of characters in

the strings will generate the score for the two aligned strings. Smith-waterman has

extended the edit distance and affine gap distance algorithms to find the similarity

between two strings where the start and end of the strings get lower cost for

mismatches while mismatches in the middle of the string get higher cost (Elmagarmid,

Ipeirotis and Verykios, 2007). The algorithm runs in deep detail to find the match in

substrings that show the similarity between two strings. However, computing the cost

requires enormous processing power.

1. INTRODUCTION

35

The Jaro distance was introduced to compare the first and last names (Elmagarmid,

Ipeirotis and Verykios, 2007). The Jaro distance finds the number of familiar characters

between two strings and tracks the order of the familiar characters (Gomaa and Fahmy,

2013). The Jaro distance algorithm was enhanced by (Winkler, 1990) in which the name

prefix gets the weighting higher than the surname matches weighting. This variation of

the Jaro distance is called the Jaro-Winkler distance (Gomaa and Fahmy, 2013). The Jaro

and Jaro-Winkler distance algorithms cannot perform well where there is a positional

difference between two strings and more than the allowed change. e.g., in the two

strings “Alice bruce Bob” and “Bob bruce Alice”, the allowed positional change is six.

However, the character `B’ in the string “Bob” has a 12-position difference. So only the

string “Bruce” will match between two strings, and the algorithms will not find the better

match (Elmagarmid, Ipeirotis and Verykios, 2007).

Q-gram distance is used for finding two strings’ similarity by calculating the similarity

between the small substring sequences, and these sequences are referred to as q-grams

(Barrón-Cedeño et al., 2010). As described by (Ukkonen, 1992), the string is divided into

a sequence of substrings having length q. For the string “Hello” where q = 2, the q-gram

sequence will be `He’, `el’, `ll’, `lo’. The matching calculation is done on the q-grams

sequences from two strings where the position and occurrence of sequences are

unimportant. The strings will get a high score if both strings have the exact spelling or a

close match. However, q-gram can lead to a false match by scoring high for two strings,

“Chris” and “Rishi”, which will get a high score even if they differ. The higher value

should be used for q-gram, i.e., q = 3 or more, to tackle such an issue. So, the sequence

of q-gram will contain more characters for matching. Q-gram has different variants, such

as trigrams, bigrams, and unigrams, for text matching and correcting spelling errors

(Kukich, 1992). Sutinen and Tarhio, 1995 enhanced the q-gram algorithm even to record

the position of the q-gram of the string, and it is called positional q-gram (Gravano,

Ipeirotis, H. V. Jagadish, et al., 2001; Gravano, Ipeirotis, Hosagrahar Visvesvaraya

Jagadish, et al., 2001) proposed to efficiently use the positional q-gram for locating

similar or matching strings in the relational database. Nevertheless, any slight change in

the strings can quickly decrease the matching accuracy of q-gram, and a low score can

be given to strings.

1. INTRODUCTION

36

 Token-based similarity metrics

An atomic string algorithm was proposed by (Monge and Elkan, 1996) to match text

fields which contain alphanumeric characters enclosed within punctuation characters.

The two strings only match if both are equal or if one string is the prefix of another. The

two fields’ similarity can be calculated by the number of matched atomic strings divided

by the average number of atomic strings (Elmagarmid, Ipeirotis and Verykios, 2007). The

two fields and strings are A = “Comput. Sci. & Eng. Dept., University of California, San

Diego” and B = “Department of Computer Science, Univ. Calif., San Diego”. So by

excluding the stop sign (dot) from the strings and where k = 6, the first field string

matches part of the second field string such as Comput., Sci., San, Diego, Univ. and Calif.

However, no matches were found for the words Eng. and Dept. (Monge and Elkan,

1996).

The WHIRL system was introduced by (Cohen, 1998) that adopts from information

retrieval the cosine similarity combined with the tf.idf weighting scheme to compute the

similarity of two fields. The cosine similarity metric works well for many entries but is

insensitive to the location of words, thus allowing natural word moves and swaps, e.g.,

“John Smith” is equivalent to “Smith, John”. Also, the introduction of frequent words

only minimally affects the similarity of the two strings due to the low idf weight of the

frequent words. For example, “John Smith” and “Mr. John Smith” would have similarities

close to one another. Unfortunately, this similarity metric does not capture word

spelling errors, especially if they are pervasive and affect many of the words in the

strings. For example, the strings “Compter Science Department” and “Deprtment of

Computer Scence” will have zero similarity under this metric.

TF/IDF - Term Frequency or Inverse Document Frequency is a measure of speech and

language processing discussed by (Cohen and Richman, 2002; Bilenko and Mooney,

2003) to determine the frequency of a string and to favour matches of less standard

strings, penalising more common strings. This match requires knowledge or derivation

of each attribute’s frequencies. For example, when transcribing an address, it may be

common for an “Avenue” to be misrecorded as a “Street.” If so, the matching criteria

may choose to ignore the most common words in this field, i.e., “Street,” “Avenue,” and

1. INTRODUCTION

37

“Lane,” instead of concentrating on the more critical number and name (Brizan and

Tansel, 2006).

Q-gram with tf.idf was an extension to WHIRL and was proposed by (Gravano et al.,

2003) for handling spelling errors in the string using the q-grams technique rather than

words. The two strings are less affected by spelling errors by using the sequence of q-

gram, such as strings “Gteway Communications” and “Comunications Gateway” gets

high similarity even if the word gets different arrangements in the string. Also, the

word’s insertion and deletion were handled using the q-gram sequences as the two

strings “Gateway Communications” and “Communications Gateway International” are

highly similar. In contrast, the word “International” would have a low weight due to its

appearance.

1.7.1.2. Record De-duplication Approaches

The supervised learning approach requires a set of training data samples for the records

to be labelled as matched or not matched. A CART algorithm was introduced by

(Cochinwala et al., 2001) by using the classification and regression trees based on a

supervised approach, and the data is represented in the different relevant classes.

(Cohen and Richman, 2002) introduced a system based on a supervised approach to

cluster the records referring to the real-world entity by learning from the training data

of the records. An adaptive distance function was used to learn from the training data

and represent the records on the graph as nodes. Similarly, (Singla and Domingos, 2004)

proposed to use the attribute values on the graph as nodes instead of the whole record

as a node on the graph. Doing so allows the values to be transmitted to other nodes,

and duplicate detection can be improved. Suppose the two records “Google,

MountainView, CA” and “GoogleInc, MountainView, California” are equal. It means the

words of the string “CA” and “California” will also be equal. The main issue with the

supervised approach is acquiring a sufficiently large and representative training dataset.

It might be easy to create the training data samples labelled as duplicates or non-

duplicates, but to provide ambiguous record pairs for creating accurate results is

1. INTRODUCTION

38

complex, and that is why data labelling is time-consuming (Elmagarmid, Ipeirotis and

Verykios, 2007).

The active learning approach is used to overcome the problem of the supervised

learning technique by automatically locating the ambiguous record pairs (Elmagarmid,

Ipeirotis and Verykios, 2007) and mainly by reducing the training data samples (Christen,

2007). According to (Cohn, Atlas and Ladner, 1994), active learning controls the inputs

on which it trains. Active learning differs from learning from examples due to the control

over the data from which it learns and receives information. (Sarawagi and Bhamidipaty,

2002; Sarawagi et al., 2002) introduced a system called ALIAS, which uses the reject

region approach for record duplication detection to reduce the training data sample

size, and the record pairs are presented as duplicate and non-duplicate. So, the record

pairs are categorised as matched and non-matched and no manual labelling is required.

However, if there are many ambiguous records, humans must label them manually. The

training data sample provided to the system ALIAS with categorised labelled data such

as matched and non-matched, and using this training data sample, ALIAS forms initial

classifiers to match the data. By using the classifiers from a small training data sample,

ALIAS distinguishes the records and finds duplicates in the data set. Similarly, (Tejada,

Knoblock and Minton, 2002) propose to use the training data samples to set rules for

matching the records in multiple fields using the decision trees. So, the active learning

approach is suitable for producing better results. However, training data or human

involvement requires training the system to produce the results. Nevertheless, the

system is unsuitable because these resources are unavailable to generate the results.

The distance-based technique is one way of avoiding the need for training data to be

tuned through training data. It is possible to match similar records without training Using

the distance metric and an appropriate matching threshold. One approach is to treat a

record as a long field and use one of the distance metrics to determine which records

are similar. Distance-based approaches that conflate each record into one big field may

ignore valuable information that can be used for duplicate detection (Elmagarmid,

Ipeirotis and Verykios, 2007).

The rule-based approach is similar to the distance-based approach, and the distance of

records is calculated as either 0 or 1. (Wang and Madnick, 1989) suggested using the

1. INTRODUCTION

39

rules for the cases where there is no global key for a set of attributes to detect record

duplication so the rules can combine the attributes as a set to form a key. Similarly, (Lim

et al., 1993) proposed a rule-based approach to have additional control to produce the

correct results where rules provide correct information and have functional

dependencies. So, the rules are not defined heuristically. This idea was further

researched by (Hernandez and Stolfo, 1998), who proposed using logical suggestions for

record matching and finding the similarity between records, e.g., suppose two

individuals have name similarity and similar addresses. It will show that it is the same

individual. However, manual tuning requires human effort, which is time-consuming and

difficult for extensive data. So, such systems are used to generate the rules using the

training data sample, and human experts manually adjust the generated rules based on

the training data samples.

The unsupervised learning approach avoids manually labelling data by using the

clustering technique and algorithms to group similar records for comparison

corresponding to the same class. The probabilistic model, which was introduced in 1969

by Fellegi and Sunter, is the root of the unsupervised learning approach (Elmagarmid,

Ipeirotis and Verykios, 2007; Bharambe, Jain and Jain, 2012). A similar concept was

implemented by (Elfeky, Verykios and Elmagarmid, 2002), introducing a records

duplicate detection toolbox called TAILOR. Using this toolbox, the extensive and new

training data samples get better accuracy with the help of generated classifiers and less

labelled data is required. While (Ravikumar and Cohen, 2004) suggested a similar

approach for matching the records learned from the graphical model. The algorithm

compares each field as a latent variable in binary format to show whether the target

fields match.

The hybrid approach uses multiple similarities and records deduplication techniques

collectively. (Elfeky, Verykios and Elmagarmid, 2002) , suggested overcoming the lack of

training data sample issue by combining the supervised decision trees and unsupervised

k-means clustering techniques where three clusters are used to produce results as

matches, non-matches and possible matches. This whole process of record linkage is

performed in two steps. In the first step, the weight vector subset is clustered as match,

possible match, and non-match. In the second step, using training data, the matching

1. INTRODUCTION

40

sample is generated by matches and non-matches clusters for a supervised classifier for

each record pair. (Islam and Inkpen, 2008) presented a method named Semantic Text

Similarity (STS) to use semantic and syntactic information to determine the similarity of

two strings. In this method, string and semantic word similarity are two compulsory

functions. In contrast, common-word order similarity is an optional function. Using this

method for the 30-sentence dataset achieves an excellent Pearson correlation

coefficient. According to (Buscaldi et al., 2012), combining two modules results in a

promising correlation between manual and automatic similarity. The first module uses

N-gram to calculate the similarity between sentences, and the second module uses

concept similarity measure and WordNet to calculate the similarity between concepts

in the two sentences. (Bär et al., 2012) introduced the system “UKP” to combine multiple

text similarity techniques using a log-linear regression model from a training data

sample. The multiple matching techniques used were string similarity, semantic

similarity, text expansion mechanisms and measures related to structure and style.

1.7.1.3. Efficiency Improvement Techniques

Blocking methods pursue the simple idea of partitioning the set of tuples into different

blocks and then comparing all pairs of tuples only within each block as this reduces the

total number of comparisons of records (Baxter, Christen and Churches, 2003;

Elmagarmid, Ipeirotis and Verykios, 2007; Draisbach and Naumann, 2011; Papadakis et

al., 2011). According to (Draisbach and Naumann, 2011), the central part of the blocking

method is to have a better partitioning strategy to partition the records by partition

number and size. The partitioning strategy should be able to partition the duplicate

records in the same block, for example, using the whole or part of the postal code. So,

if the duplicate records are partitioned in the same block based on the postal code, they

are considered duplicates. The partitioning strategy can use attributes such as first or

last name, name prefixes, and whole or part of address. So, in general, the partitions

should generally be the same size. However, (Elmagarmid, Ipeirotis and Verykios, 2007)

describe that this method is suitable to speed up the overall comparison of records.

However, at the same time, it will bring false mismatches of records. If the records do

not satisfy the blocking strategy, then the records do not appear in the same block.

1. INTRODUCTION

41

Therefore, the records that are supposed to be in the same block but, due to blocking

strategy, appear in the wrong block instead of in the same block, which will cause missed

matches. However, multiple runs should be performed to overcome this issue using a

different blocking strategy for each run (Draisbach and Naumann, 2011).

So, using a different field for each run as a blocking strategy can improve the record

matching in the block and reduce the chances of false mismatches, which helps to detect

duplicate records having different partitioning attributes (Elmagarmid, Ipeirotis and

Verykios, 2007). sorting requires a block key to implement the blocking for record

duplication detection. The block key can be created by combining single or multiple

fields, such as the age attribute, combined with the postcode attribute to form the key.

So, records that satisfy the block critical criteria are placed into the same block (Elfeky,

Verykios and Elmagarmid, 2002; Baxter, Christen and Churches, 2003). However, the

blocking process can lead to many record pairs generated by the massive number of

records. It can affect the blocking comparison of records, such as blocking keys based

on the gender attribute. In that case, it will generate large blocks matching the key.

However, the records duplication detection will miss records of the blocks that are

generated by the key that are too small. According to (Baxter, Christen and Churches,

2003), different factors can affect the record comparison process in blocking, such as

spelling errors or missing values, which can cause records not to appear in the same

blocks. However, this can be alleviated by using the multiple blocking keys with multiple

passes to improve the comparison. However, this tuning can be a difficult task.

(Papadakis et al., 2011) They introduced a method based on the two layers wherein the

unnecessary record comparisons are excluded from the second layer. In this method,

the first layer is used to block effectively by placing all records in the same block with

the token in all records as the attribute value. So, the resulting records are duplicates

and do not have any chance of no blocks in common. The comparison is made on the

second layer with the help of different methods to increase the blocking efficiency by

reducing unnecessary records. Records with low threshold values are not required to be

compared, and this will reduce the number of comparisons in the blocks.

Windowing methods are more complex than blocking methods. The famous windowing

method is the sorted neighbourhood method (SNM). (Hernandez and Stolfo, 1998)

1. INTRODUCTION

42

proposed using a fixed window size to place over the records sorted by a sorting key. So,

any records placed under the fixed-size window will be paired. The SNM method has

three phases during the whole comparison process. The sorting key is identified in the

first phase for records by combining the different attribute values, and it does not need

to be unique. After this, all the records are sorted based on the sorting key. In the third

phase, all the records are compared and paired by moving the fixed-size window on the

sorted records. The first two phases of windowing are similar to the blocking technique.

The windowing method reduces the number of record comparisons due to the window

limit (Baxter, Christen and Churches, 2003). However, duplicate detection improves due

to the window size, usually between 10 and 20. Increasing the window size can result in

more duplicate detection but can slow the processing of the results (Draisbach and

Naumann, 2011). The records are compared in this method only if they fall within the

window size and the sorting key to sort them accordingly. So, a single key is insufficient

to sort the records and place them under the fixed-size window for comparison. If there

is any error in the records attribute values or any missing value, it will affect the whole

comparison and duplicate detection process (Elmagarmid, Ipeirotis and Verykios, 2007).

These errors can be alleviated by using multiple attributes to form the sorting key and

multi-pass to sort and compare the records under the fixed-size window (Draisbach and

Naumann, 2011). It increases the possibility of more record duplicate detection by

running multiple passes using different sorting keys compared to a single pass

comparison, as it will miss the matched records (Baxter, Christen and Churches, 2003).

(Hernandez and Stolfo, 1998) introduced a multi-pass strategy using the sorted-

neighbourhood method to compare different sorting keys with small window sizes each

time. In this multi-pass method, each run with different sorting keys creates a pair of

records and can merge them during the comparison process under the fixed window

size to produce the result (Elmagarmid, Ipeirotis and Verykios, 2007). The main issue

with the sorted neighbourhood method is that not all records will be compared if the

window size is smaller than the number of matched records using the sorting key, as the

records will not fit under the fixed Window size. It will miss the records during the

comparison. Suppose we use the surname ‘Smith’ as a sorting key; it might produce a

vast number of record pairs where not all record pairs will not fit under the window size

1. INTRODUCTION

43

and will miss the rest of the pairs outside the window and will not be compared (Baxter,

Christen and Churches, 2003).

Clustering is an essential technique in data mining in which a group of data objects is

taken as input (Bezdek, 1981). In this technique, several clusters are obtained as an

output so that the objects in the same group or cluster are similar but are different to

objects outside the cluster (Jain, Murty and Flynn, 1999; Halkidi, Batistakis and

Vazirgiannis, 2001; Dharmarajan and Velmurugan, 2013; Nisha and Kaur, 2015). The

representation of objects is the main feature of clustering, as objects are represented

as patterns to find the similarity (Filippone et al., 2008). The patterns are considered

similar if they are in the same cluster but considered different if not in the same cluster.

So, this difference should be clear and meaningful to represent patterns in the cluster

(Xu and Wunsch, 2005). (Monge and Elkan, 1997) improved the nested-loop record

comparison performance by showing a transitive approach for duplicate detection. For

example, if ‘A’ and ‘B’ are duplicates and ‘B’ and ‘C’ are duplicates, then it is assumed

that ‘A’ and ‘C’ are also duplicates. The problem with this approach is that record

matching relies on the dependency of connected components of the graph. If these

connected components are, then the assumption can be valid; otherwise, no

relationship can be retrieved between records. So, to compute the connected

components efficiently on the graph, (Monge and Elkan, 1997) used a union-find

structure. The records are combined into a cluster during the union stage. The cluster is

used as a comparison representation, and the number of record comparisons gets

reduced for duplicate detection. So, in simple words, if ‘A’ is not a duplicate of ‘B’ already

in the cluster, then other members in the cluster will not be duplicates of ‘A’.

The canopies technique was introduced by (McCallum, Nigam and Ungar, 2000) to

improve the speed of record duplicate detection. In this technique, records are grouped

from clusters overlapping each other, and this overlapped area is named canopies. The

records are grouped using the pairwise comparison with a similarity metric for better

results. Let us supper if the two strings have a length difference of more than “3”, so the

edit distance of these strings cannot be less than “3”. So, the string length is used for

comparison as a canopy function for the edit distance function. (Gravano, Ipeirotis, H.

V. Jagadish, et al., 2001) suggest using the length of strings with the q-gram of strings as

1. INTRODUCTION

44

canopies for the edit distance metric. The advantage of this technique is the use of

vanilla SQL statements, which can be used to do canopy function calculations. (Cohen

and Richman, 2002) suggest using tf.idf similarity metric as a canopy distance with other

multiple similarity metrics duplicate record detection. Similarly, (Chaudhuri et al., 2003)

introduced a canopy function with indexing to match similar records for duplicate

detection. On the other hand, (Baxter, Christen and Churches, 2003) showed that using

the traditional blocking methods with the canopy technique improves the record

duplicate detection speed and quality.

1.8. Research Aims

A framework for identity resolution is essential for incorporating intelligence in

matching raw data. It should employ a suitable algorithm with pattern recognition

capabilities that closely resemble the functioning of the human brain.

 How will the desired identity be extracted from the raw data set?

 How will records be matched to extract meaningful information from the raw

data set?

 To what extent can establishing relationships between diverse identities be

enhanced through applying pattern recognition techniques?

1.9. Problem Definition

In the entity resolution process, the record de-duplication makes it challenging to

identify duplicates due to the different fundamental values used for the duplicate

record. To find the duplicates in the dataset, it is a must to compare one record with the

rest of the records in the database to find the similarities, but this will require immense

processing power in the case of the large dataset (Wangikar, Deshmukh and Bhirud,

2016). All techniques discussed in the literature review are insufficiently adaptive

regarding record de-duplication and entity matching based on the correct record

1. INTRODUCTION

45

extraction. It is clear from the literature review that techniques that require human

expert tuning are better but are unfeasible for large datasets due to the manual tuning

required. Also, such techniques require some training data samples to generate the

results. However, it is not easy to provide training samples for every situation. So,

considering this, the approach is also unfeasible for better record matching. Another

issue with the proposed techniques is that they do not use all the available similarity

metrics as required and only utilise a couple of techniques to complete the record-

matching process. It leads to unsatisfactory results as every similarity metric is domain-

specific to solve a particular problem, and missing one or more metrics would not help

achieve better results. From a comprehensive literature review that has been carried

out, it can be concluded that so far, there is no unsupervised approach framework that

can achieve the following:

 Automatically adjust to tune the data based on the input, using different

similarity metrics to extract the records.

 After the data cleaning, automatically adjust record matching techniques

without training data samples for record de-duplication.

 Run the similarity metric on data at different stages to output the best results for

record linkage and relationship analyses.

 Use the clustering technique with the help of segmentation for identity

resolution.

So, in the research, an adaptive hybrid approach will be introduced to automatically self-

tune the similarity metrics using fuzzy logic. This searching process will be iterative

(multi-pass searching) using an unsupervised clustering approach to analyse the output

by further segmenting the records to show the relationship in a graph and extract the

true identity. In this process, segmentation will be the process of putting data into

groups based on similarities. At the same time, clustering will be the process of finding

similarities in data to be grouped. Once the entity is resolved, the system will keep the

result as a reference for the future, which will help enhance future search efficiency by

1. INTRODUCTION

46

matching the same or similar record as the new search will also be matched with

references as part of the iterative search process.

1.10. Thesis Chapters Overview

This chapter presents an overview of fraud, identity, and the different types of identity

crimes faced by law enforcement agencies or financial institutions. This chapter briefly

explores machine learning types, different machine learning techniques, and

fundamental concepts related to matching records. Furthermore, the chapter provides

an overview of the literature on string and record-matching techniques related to entity

matching and identity resolution, research aims and the definition of the problem.

This thesis comprises five chapters, starting with “Chapter 1 - introduction and literature

review” discussed above and ending with the research aim and problem definition for

this research. The remaining chapters in this thesis are as follows:

Chapter 2 provides the platform to discuss machine learning techniques, focusing mainly

on fuzzy matching techniques. The chapter explains entity matching and its challenges

when matching an entity for identity resolution. The chapter discusses matching

techniques to handle entity matching challenges and how knowledge can help in the

matching process.

Chapter 3 focuses on the methodology used in this research. The chapter explains the

proposed algorithm and provides the foundation of the research methods. The later

section of the chapter explores the proposed algorithm and its implementation by

enhancing the string-matching technique. The details of different tools used for

implementation are discussed to understand how they are used to generate matching

results. These results provide a better understanding of the implemented string-

matching technique in the proposed algorithm.

Chapter 4 provides the results of the implementation of the proposed algorithm. The

chapter explains and analyses the policing dataset used in the research and presents the

computer simulation results. It starts with evaluating and analysing the performance of

different sets of names from different languages with a proposed algorithm for matching

1. INTRODUCTION

47

names. Later in the chapter, the results of the policing dataset are evaluated in detail,

and the performance of the generated results is discussed.

Chapter 5 concludes this research thesis by providing an overview of the research and

its implementation. It explains this research's limitations, knowledge contribution, and

areas where it can be beneficial with further improvements. The last section of the

chapter discusses future work and provides suggestions for improvements to enhance

the proposed algorithm.

The last sections of the thesis are References used in the research. Appendix A lists the

published research paper, and Appendix B provides additional details on the tools used

in this research.

2. STATE-OF-THE-ART REVIEW OF MACHINE LEARNING APPROACHES FOR IDENTITY RESOLUTION

48

CHAPTER2

2. STATE-OF-THE-ART REVIEW OF MACHINE

LEARNING APPROACHES FOR IDENTITY

RESOLUTION

2.1. Chapter Overview

This chapter discusses different machine-learning techniques that can be used for

identity resolution, and at the end, it discusses the problem definition and the research

aims. It starts with a background discussion of entity resolution and the challenges in

detail. Based on the challenges an entity matching faces, the string matching techniques

will be discussed to understand the issues in the matching techniques. The issues with

each matching technique will be presented, including all the comparisons. The clustering

technique and types for grouping similar entities will be discussed. Finally, the chapter

will discuss the knowledge base and the different types that can be used in machine

learning.

2.2. Background

Entity Resolution (ER) is essential as it leads to identity resolution. Usually, entity and

identity resolutions are used interchangeably and referred to as the same. However,

these are two terms with different requirements. It is evident from the previous studies

that each string-matching technique is domain-specific and cannot perform well

independently to find the required results. Using only one technique is unsuitable for

tackling a particular issue in entity resolution. However, a combination of these

matching techniques can produce the desired results. We know that entity resolution is

an essential step toward identity resolution, and incorrect or missing details in entity

resolution will lead to incorrect or weak identity resolution.

2. STATE-OF-THE-ART REVIEW OF MACHINE LEARNING APPROACHES FOR IDENTITY RESOLUTION

49

2.3. Entity Resolution and Challenges

We know Entity Resolution (ER) is to identify one entity in a dataset that refers to the

actual entity. Typically, a database may contain multiple entities, and there can be

relationships among these entities. It is vital to correctly match the string of names,

addresses, or other information to resolve any entity (Altowim, Kalashnikov and

Mehrotra, 2018). Each entity has attributes and can be identified using crucial attributes

such as ID number, name, and date of birth. However, many other reasons make it

challenging to find the correct identity (Phillips, Amirhosseini and Kazemian, 2020).

For entity resolution, there are many different string-matching techniques. In later

sections, the three most essential matching techniques will be discussed in this chapter.

However, before that, there are several different challenges that entity matching faces

in comparing strings and getting the desired results. Some of the challenges are listed

below.

2.3.1. Text Standardisation and Name Variations

Text standardisation involves replacing different spellings in words with single and

correct spellings. For example, ‘Incorporated’ can be represented with the standardized

spelling ‘Inc.’ Standardisation typically separates the string into words, such as a

complete name or address. After this, each word is compared in the standard table to

get the standard spelling. However, it is difficult to manage such a standard list of

spellings to match the words against it and bring them into the standard in the dataset

(Winkler, 2006). Names matching has been troublesome for record linkage as names

can have variations. The variation can be phonetic or alternate spellings; in some cases,

it can be a combination of both variations (Snae, 2007). In different computer

applications and record linkage algorithms, spelling variations can be allowed, and the

algorithm's success is determined by identifying the differences in name spelling.

However, in some cases, it is difficult to determine the name variation due to the

different spellings of the same name or to consider it entirely different. Usually,

surnames are more variable in spelling and can have many common alternatives.

2. STATE-OF-THE-ART REVIEW OF MACHINE LEARNING APPROACHES FOR IDENTITY RESOLUTION

50

In some cases, the variations are due to spelling errors. Such a range of name variations

is a big concern due to different naming conventions and languages, so how do we

identify a person based on a name if it is differently spelt or pronounced? It is a

significant problem identifying a person and determining if the name variation is the

spelling of the same or a different person’s name. Most of these variations can be

categorised as follows:

2.3.1.1. Spelling Variations

These variations are due to typographical errors by a human operator or an automated

device designed for inputting data into the database. It can lead to a problem matching

names in the database. However, typically, such variations do not affect the name's

pronunciation (A. J. Lait and Randell, 1996). The variations can be misplaced letters,

substituted letters, adding letters, or omissions of letters. These variations cause issues

for matching algorithms to match strings to one another even though the string is

phonetically not changed (Shah and Kumar Singh, 2014). According to (Pilania and

Kumaran, 2019), a customised matching algorithm can be used to match names with

variations. Many spelling error correction solutions have been designed to encounter

pattern-matching issues. According to studies conducted by different researchers, these

spelling errors can be divided into two categories.

 Typographic errors are spelling errors primarily due to keyboard inputs when a

string is mistyped. However, the actual spelling of the string is known.

This type of error falls into four categories, as suggested (Naseem and Hussain, 2007)

and according to (A. J. Lait and Randell, 1996; Naseem and Hussain, 2007), the spelling

error or mistyping of the names can be categorized as below:

• Insertion or additional letters, e.g. “MCMANUS and MACMANUS”,

• Deletion or omission, e.g. “ROBBIN and ROBIN”, “Collins and Colins”

• Substitution, e.g. “SMYTH as SMITH”

• Transposition, e.g. “BREADLEY and BRAEDLEY”

2. STATE-OF-THE-ART REVIEW OF MACHINE LEARNING APPROACHES FOR IDENTITY RESOLUTION

51

These editing operations errors can be referred to as single errors. According to

(Naseem and Hussain, 2007), it was confirmed by researchers at a later stage.

The most common typographic errors are substitution errors caused by keyboard

inputs. It usually happens during typing due to incorrectly replacing letters by not

pressing the correct “key letter” required in the string.

There are other errors called multi-errors that are generated due to more than one

editing operation. These are either the addition of two extra letters, missing two letters

from the string, or transposing two letters.

 Cognitive errors are caused by keyboard input during typing, and the actual

spelling of the string is unknown. In cognitive errors, the mistyped word

pronunciation does not change as the word pronunciation remains the same or

similar to the correct spellings (Naseem and Hussain, 2007). e.g. “recieve” and

“receive”, “abyss” and “abiss”

2.3.1.2. Phonetic Variations

According to (Snae, 2007; A. J. Lait and Randell, 1996), these variations are caused by

mishearing the name, which alters the name structure utterly different from the actual

name. For example, “Pooh” is an English nickname while it would be spelt as “Puh” in

German. Similarly, the names “MAXIME and MAXIMIEN” and “Sinclair and St. Clair” have

different phonetic structures, and the names are significantly changed; however, these

are related names (Shah and Kumar Singh, 2014). Sometimes, the name’s phonetic

variation can be hugely different, such as “ADELINE and LINE”, “Christina and Tina”, and

that is where the name is shortened (A. J. Lait and Randell, 1996).

2.3.1.3. Character Variation

These variations caused problems due to abbreviations, capitalization, punctuation,

qualifiers and namespacing. The capitalization in the name where the upper and lower

letters have been used, such as “brown and Brown” and “SMITH and Smith”. Sometimes,

2. STATE-OF-THE-ART REVIEW OF MACHINE LEARNING APPROACHES FOR IDENTITY RESOLUTION

52

first names or surnames are composed of two parts and contain punctuations, spaces

and qualifiers such as “WILL SMITH and WILL-SMITH” or “SMIT and S.M.I.T”,

“YOUNGSMITH and YOUNG SMITH”, “WILL SMITH and WILL SMITH YOUNG” or “Philips-

Martin”. These full names do not need to be used as they are; instead, one part of the

name may be used. For example, “Philips” or “Martin” may be used instead of “Philps-

Martin”. Such variations can be called Double Names (A. J. Lait and Randell, 1996; Shah

and Kumar Singh, 2014; Pilania and Kumaran, 2019). Double first names are not common

in English, but other languages can contain double first names. For example, in the

French language, the name “Jean-Claude” may be written in full or as “Jean” or “Claude”

(A. J. Lait and Randell, 1996).

The names can also have abbreviations where the name has been shortened, and this

mainly names the individual. Such as “ROB and ROBBIN” and “BOB and BOBBY” while

“WILL SMITH” is written as “W SMITH” (A. J. Lait and Randell, 1996; Pilania and Kumaran,

2019). Sometimes, an individual prefers to change their name in future from the one

he/she was known to in the past or change the surname to their partner's name. Such

situations cause a big issue in matching names for an individual. Name-matching

algorithms that use spellings or phonetic variation to match names will not be able to

identify the person with past and future names (Snae, 2007; Shah and Kumar Singh,

2014).

2.3.1.4. Fielding Variations

There may be a situation where multi-part names have been added to the database in

a different order. It can happen due to different cultural names. For example, in some

cultures, the name is written in the format First-Middle-Last, while others may write it

as Last-First-Middle. The name “Will Young Smith” may be used as “First-Middle-Last”,

but possibly it may be used in the database as a “First-Last” name, e.g. “Will Smith”

while “Middle” name as “Young” used differently (Pilania and Kumaran, 2019).

2. STATE-OF-THE-ART REVIEW OF MACHINE LEARNING APPROACHES FOR IDENTITY RESOLUTION

53

2.4. Approximate String Matching

The data cannot always be easily identifiable through unique identifiers. If the object is

identified incorrectly, it will hugely affect the results. Approximate matching is also

called fuzzy matching, where each matching value can be between 0 and 1 but not just

0 or 1. The matching involves a comparison of substrings with the given string to find

the similarity between two strings. In the entity resolution, the records are compared

by matching the string similarity. Based on the similarities, records are classified into

match and non-match categories. This matching of records takes place on the value of

the attributes to find the similarities (Christen, Vatsalan and Wang, 2016). Approximate

matching is suitable for handling issues such as typographical errors in the string as it

closely matches the search pattern (Al-khamaiseh and Alshagarin, 2014). However,

(Winkler, 2006; Naseem and Hussain, 2007) state that this area is still under research

and requires suitable matching techniques. Fuzzy matching is generally used for pattern

matching by calculating an estimated match between two strings. Approximate

matching is required for a name in an extensive database where names are misspelt

rather than the correct spelling. It makes an exact match difficult in large databases;

therefore, an approximate can be essential in pattern matching (Shah and Kumar Singh,

2014). Pattern matching, phonetic encoding, or Lexographic matching techniques are

the way to do string matching. Pattern matching is to calculate the distance between

each character of the string, and phonetic matching converts a string into code based

on the pronunciation of each string. At the same time, the Lexicographic technique

produces all possible variations of the string (Shah and Kumar Singh, 2014; Pilania and

Kumaran, 2019).

The following section will explore how pattern matching and phonetic encoding

algorithms work for matching names.

2. STATE-OF-THE-ART REVIEW OF MACHINE LEARNING APPROACHES FOR IDENTITY RESOLUTION

54

2.4.1. Edit Distance Algorithm

Edit distance is a measure of string comparison (Shah and Kumar Singh, 2014).

Approximate matching is about calculating the distance between each string, and the

commonly known technique is “Edit distance” (Al-khamaiseh and Alshagarin, 2014). It

calculates the distance between two strings by applying three operations on the strings.

Usually, three joint operations are performed on the string to find the similarities or

convert one string into another. These operations are called edit operations, in which

inserting, deleting, or substituting the characters in the strings take place to match

strings. Edit distance, also called Levenshtein distance, was introduced in 1965

(Elmagarmid, Ipeirotis and Verykios, 2007). According to (Soundex, 2015), if the distance

of strings is less than a set threshold value by applying the three edit operations, the

strings are considered a close match to each other with slight variation, or it can be said

that the more the Levenshtein distance, the distinct the strings will be. In substitution,

one character replaces the other character in the string. In contrast, in deletion, a

character gets removed from the string. In insertion, a character gets added to the string

(Elmagarmid, Ipeirotis and Verykios, 2007). The distance 0 means the strings are

identical. These edit operations give cost to the number of required iterations to match

the name. i.e., the cost of deleting a character, inserting a character and substituting

two different characters is “1”; otherwise, the cost value is “0”. According to (Hasan and

Ahmed, 2015), the edit distance where each operation on the single string has the cost

= 1, then such edit distance is called unit-cost edit distance. (Needleman and Wunsch,

1970) , modified the edit distance by introducing different cost values for different edit

operations on the string. (Ristad and N.yianilos, 1998) introduced an algorithm for

automatically calculating the cost for equivalent words written differently. For example,

(Shah and Kumar Singh, 2014) describe the Levenshtein distance between "bitten" and

"sitting" as “3” since the following three edits change one into the other. There is no

way to do it with fewer than three edits, e.g.

Step 1: bitten → sitten (substitution of "s" for "b")

Step 2: sitten → sittin (substitution of "i" for "e")

2. STATE-OF-THE-ART REVIEW OF MACHINE LEARNING APPROACHES FOR IDENTITY RESOLUTION

55

Step 3: sittin → sitting (insertion of "g" at the end)

Another example of calculating Edit distance to compare the name “ALEXANDRE” to

“ALEKSANDER” is 4. To do this (Soundex, 2015):

Step 1: substitute X with K

Step 2: insert S after K

Step 3: insert E after D

Step 4: delete E at the end

(Balabantaray et al., 2012) state that “the Levenshtein algorithm only edits operations

between two strings, and it does not directly provide a knowledge base to identify

phonetic similarity among the languages that appeared in different phonemes.

However, several research studies have been conducted by assigning different costs for

operations to integrate the knowledge base concept to the Levenshtein algorithm”.

2.4.1.1. Issues in Levenshtein Edit Distance Algorithm

The Edit Distance algorithms perform several iterations to change one string into

another to find the similarity. If the two strings are similar, then the cost of operation is

“0”; otherwise, it will be “1” based on the iteration operations applied to the strings.

However, implementing the Levenshtein Edit distance algorithm to match two strings

encounters the following issues.

Edit distance fails when strings are written in short form, or any abbreviation has been

used instead of the complete word. In this situation, the three edit operations will not

calculate the cost correctly due to this issue. It is a significant drawback of the Edit

Distance algorithm while finding the match between strings. Table 2.1 is taken from

(Pilania and Kumaran, 2019), which shows an example of matching two strings by

matching string 1 with string 2. The two strings are different and show an incorrect

match.

2. STATE-OF-THE-ART REVIEW OF MACHINE LEARNING APPROACHES FOR IDENTITY RESOLUTION

56

Table 2.1 - Leveshtien Distance Algorithm Issue (Pilania and Kumaran, 2019)

String1 String2

Uma Keshkumari

Kunta Shakuntala Devi

Kusum Kusumalta

Tara Sitaram

Indra Indrakala

The Levenshtein Edit distance matches strings by comparing each character in the

strings, so matching strings in Table 2.1 shows that string ‘UMA' is found in string

‘KESHKUMARI’. Therefore, no edit operations are applied, and the cost of operation is

0, which shows it is a match, nevertheless these two strings differ entirely (Pilania and

Kumaran, 2019).

2.4.2. Jaro-Winkler Algorithm

The Jaro distance technique is usually used to tackle typical spelling errors and was

introduced by M. A. Jaro in 1989 (Jaro, 1989). This technique was designed to compare

two short strings, such as first and last names (Elmagarmid, Ipeirotis and Verykios, 2007).

The Jaro distance finds the familiar characters between strings while tracking the order

of these characters (Gomaa and Fahmy, 2013). The Jaro distance can be computed using

the following formula:

𝒔𝒊𝒎𝒋𝒂𝒓𝒐(𝒔𝟏, 𝒔𝟐) =
𝟏

𝟑
 (

𝒄

|𝒔𝟏|
+

𝒄

|𝒔𝟐|
+

𝒄−𝒕

𝒄
) Equation 2.1

The Jaro similarity technique finds the matched characters in the given names. In

equation 2.1, ‘c’ represents the number of equal characters, ‘t’ represents half the

transpositions, |s1| is the length of the first string, |s2| is the length of the second

2. STATE-OF-THE-ART REVIEW OF MACHINE LEARNING APPROACHES FOR IDENTITY RESOLUTION

57

string. The interchanging of the contiguous characters in both strings, such as ’pe’ and

’ep’, is called the transposition (Sun, 2015).

Initially, the Jaro-Winkler algorithm following the UNIMATCH similarity was developed

in the 1970s to be used in the post-enumeration analysis by the U.S. Census Bureau. It

was used to match records of different fields with uncertain name spellings. UNIMATCH

matches two strings based on string length, familiar characters in strings and the number

of character transpositions (Kloo, Dabkowski and Huddleston, 2019).

Another approximate matching technique is the Jaro-Winkler, in which Jaro compares

the short strings, mainly names, by computing the length of the string, finding similar

characters, and determining the transpositions required. In 1990, Winkler proposed a

variation to the Jaro distance, which gives preference to the name prefix (Winkler, 1990,

1994, 2006). The name prefix is assigned a weight higher than the surname match

weight. This Jaro distance variation is called the Jaro-Winkler distance (Gomaa and

Fahmy, 2013).

Jaro-Winkler(s1, s2) = Jaro(s1, s2) + l * p(1 – Jaro(s1, s2)) Equation 2.2

Here, ‘l’ is the longest common prefix of the two strings, where ‘p’ is a scaling factor

variable to adjust the matching score upwards by customarily set to a value of 0.1 and

the maximum value set to 0.25; otherwise, the distance will be computed as more

significant than the value 1 (Sun, 2015; Pilania and Kumaran, 2019). This enhancement

helps to get a few penalties for errors like keyboard errors and errors at the end of a

string (Soundex, 2015). The matching of strings is scaled between values 0 and 1, where

any calculated score of two strings close to 0 represents no match, while the calculated

score value close to value 1 represents a match (Pilania and Kumaran, 2019). For

example, as stated (Soundex, 2015), the Jaro similarity between “ALEXANDRE” and

“ALEKSANDER” is 0.85, calculated as below using equation 2.1:

During this process, match A, L, E, A, N, D, R, and E with a “1” transposition.

Simjaro = (8 / 9 + 8 / 10 + (8 – 1) / 8) / 3

2. STATE-OF-THE-ART REVIEW OF MACHINE LEARNING APPROACHES FOR IDENTITY RESOLUTION

58

= 0.85

The Jaro-Winkler similarity score of 0.90 is calculated using equation 2.2 as below:

Jaro-Winkler = 0.85 + 3 * 0.1 (1 - 0.85)

= 0.90

2.4.2.1. Issues in the Jaro-Winkler Algorithm

Jaro and Jaro-Winkler distance algorithms cannot perform well where there is a

positional difference between two strings and more than the allowed change. e.g. in the

strings “Alice bruce Bob” and “Bob bruce Alice”, the allowed change is six positions.

However, the character ’B’ in the string “Bob” has a difference of twelve positions. So

only the string “Bruce” will match between two strings, and the algorithms will not find

the better match (Elmagarmid, Ipeirotis and Verykios, 2007).

The Jaro-Winkler algorithm will fail to match short names with typographical errors if

other strings of different lengths have the same errors (Kloo, Dabkowski and

Huddleston, 2019).

2.5. Phonetic Matching

Phonetic matching plays a significant role in matching strings. (Snae, 2007; Shah and

Kumar Singh, 2014) defines phonetic matching as identifying a set of strings most likely

to be similar in sound to a given keyword. The strings can be spelt using different writing

styles but can be matched phonetically (Christopher Jaisunder, Ahmed and Mishra,

2017). The phonetic algorithm matching compares names with similar sounds, even

those with different spellings, and it is vital for matching the names from the database.

According to (A. Lait and Randell, 1996; Christopher Jaisunder, Ahmed and Mishra,

2017), a phonetic algorithm is an algorithm for indexing words by pronunciation. The

complex algorithms have many different rules and exceptions due to the English

2. STATE-OF-THE-ART REVIEW OF MACHINE LEARNING APPROACHES FOR IDENTITY RESOLUTION

59

language's historical changes in pronunciation and the integration of many different

language words into it. Phonetic matching evaluates the similarity of the names based

on how they are pronounced without looking at the actual spelling of the names.

Different researchers have carried-out many pieces of research to explore data mining

methods in information retrieval. The most common phonetic matching technique is the

Soundex technique, which compares and matches names based on pronunciation (Shah

and Kumar Singh, 2014; Christopher Jaisunder, Ahmed and Mishra, 2017).

In Soundex, the code value is generated for similar-sounding names and the code is

compared to find a match. The values are called Soundex encodings. Therefore, any

search on any name in the database gets Soundex encoding rather than a direct name

search. Any name match based on Soundex encoding will be retrieved from the

database. According to (A. J. Lait and Randell, 1996), any matches found during a search

are called positives, and the ones rejected by the search are called negatives. So, the

positives relevant to the search term are called true positives, while the other searches

are false positives. Searching for names in an extensive database has always been a

problem. In a large database, misspelt names may be spelt differently due to human

typing errors or mishearing the name. In such a situation, a fuzzy match will be enough

to match the names instead of matching names exactly.

2.5.1. Soundex Algorithm

The Soundex algorithm was developed by Odell and Russell in 1918. It is a code-based

matching algorithm that converts the name into a 4-letter alphanumeric code based on

the sound of each word while preserving the first letter from the name (A. J. Lait and

Randell, 1996). The similar-sounding names get similar code values to match the names.

These codes are called Soundex encodings (Koneru, Pulla and Varol, 2016). The

algorithm does not search the name directly from the database. However, it converts

into Soundex encoding of 4-letter code, keeping the first letter preserved and then

performing a search based on this encoding (Shah and Kumar Singh, 2014; Christopher

Jaisunder, Ahmed and Mishra, 2017).

2. STATE-OF-THE-ART REVIEW OF MACHINE LEARNING APPROACHES FOR IDENTITY RESOLUTION

60

The following steps are required to create the Soundex code:

Step 1 - Retain the first letter from the name string.

Step 2 - Convert all occurrences of these letters to Zero: a, e, h, i, o, u, w, y.

Step 3 - Convert the remaining letters into numbers: b, f, p, v = 1; c, g, j, k, q, s, x, z =

2; d, t = 3; l = 4; m, n =5; r = 6

Step 4 - Remove all pairs of digits with the same code adjacent to the original name.

Step 5 - Remove all the zeros.

Step 6 - Return the code with four characters and add zeroes to the right if there are

fewer than four characters.

In Step 1, to generate the Soundex code for any given name or string, the letter will be

kept as the first character of the final Soundex code. It represents the initial sound of

the word. After the first letter, in Step 2, all vowels “A, E, I, O, U” will be ignored. The

letters “H, W, Y” are considered insignificant because these vowels and letters often do

not affect the word's pronunciation meaningfully, particularly when in the middle or end

of words. After this, in Step 3, each of the remaining consonants will be converted into

a number according to Table 2.2. The idea behind this step is that similar-sounding

consonants are grouped under the same number, reducing the variations caused by

different spellings. Step 4 ensures that repeated sounds do not overly influence the

code. That is why if two or more letters that convert to the same number appear next

to each other, only keep the first one and remove the duplicates. Step 5 is to use the

first four characters and discard the rest if there are more than four characters in the

forming code. In Step 6, the first letter kept in Step 1 with the numbers from Step 3 is

combined to result in a four-character alphanumeric code. If there are fewer than four

characters in the code, add zeros (0) until the code is four characters long. This padding

ensures that all Soundex codes are the same length, making them easy to compare. The

standard Soundex algorithm defines the following groups:

2. STATE-OF-THE-ART REVIEW OF MACHINE LEARNING APPROACHES FOR IDENTITY RESOLUTION

61

Table 2.2 - Grouping of Letters and Code Assignments (Patman and Shaefer, 2001)

Letters Code Assignment

B, F, P, V 1

C, G, J, K, Q, S, X, Z 2

D, T 3

L 4

M, N 5

R 6

H, Y, W (omitted)

A, E, I, O, U (omitted)

In converting a name to a Soundex code, only one digit is used for any consecutive

letters, e.g. “CK” will not be assigned a code as 22 but will be “CK” = 2. Any code with

more than three digits will be truncated, and any code with fewer than three consonants

will be padded by zero, e.g. the string “PEEL” will get code as “P400”.

For example, using the Table 2.2, the Soundex code of the name “ALEXANDRE” is:

Step 1: A4E2A536E

Step 2: A4E2A536E

Step 3: A42536

Step 4: A425

Another example of Soundex code for the name “ALEKSANDER”. Here, it is assumed the

name is misspelt:

Step 1: A4E22A53E6

Step 2: A4E2A53E6

Step 3: A42536

Step 4: A425

The Soundex code of both names is “A425”; thus, both names are easily comparable

and matched (Soundex, 2015).

2. STATE-OF-THE-ART REVIEW OF MACHINE LEARNING APPROACHES FOR IDENTITY RESOLUTION

62

For the Soundex algorithm, it is worth knowing how each word is pronounced based on

the sound of each English language alphabet.

The following Table 2.3 briefly describes this:

Table 2.3 - Phonetic description based on assignments of letters (Magazine, 2018)

The Soundex technique is commonly used for the English language. However,

researchers have also modified it for other languages (Balabantaray et al., 2012). The

Soundex algorithm matches names that sound similar but have different spellings, e.g.,

“SMITH” and “SMYTH”. The names are given a phonetic code that helps to match names

and reduces the issue of mistyped names (Soundex, 2015). For example, “SMITH” and

“SMYTH” will get code as “S5030”, and it will be refined to a shorter code based on

Soundex rules as “S530” (Christopher Jaisunder, Ahmed and Mishra, 2017). According

to (Patman and Shaefer, 2001), “The computational benefits of Soundex-type algorithms

are easy to see by exchanging a name for a code; all variant spellings of the name can

be expected to share that same code, allowing a relatively efficient search of a small

Number
Represents the

Letter
Phonetic Description

1 B, F, P, V
Labial sounds and labiodental (require particular
use of the lips).

2
C, G, J, K, Q, S, X,

Z
Guttural sounds (produced in the throat) and
sibilant sounds (requires a hissing noise).

3 D, T
Dental-mute sounds (formed with the tip of the
tongue against the teeth).

4 L
Palatal fricative or long liquid sound (produced by
an extended contact of the tongue and mouth).

5 M, N
Nasal sounds (produced partly through the nose).
M is labio-nasal and N is dental or lingua-nasal.

6 R
Dental fricative or short liquid sound (produced by
a slight contact of the tongue and mouth).

Discard H, W, Y Disregard consonants H and W.

Discard A, E, I, O, U Disregard vowels.

2. STATE-OF-THE-ART REVIEW OF MACHINE LEARNING APPROACHES FOR IDENTITY RESOLUTION

63

subset of a database, versus "brute force" evaluation of every name as a potential

match. Soundex keys are typically used to form an index for data implemented in

relations DBMS products, allowing very fast key-based retrievals of a (theoretically) a

small number of potentially matching names.”

2.5.1.1. Issues of Soundex Algorithm

There are issues with the Soundex code that limit the matching of names. One of the

disadvantages of the Soundex technique is that it preserves the first letter of the name

and converts the rest into a code. Therefore, a name starting with a different letter will

result in a different Soundex code and the match will be unsuccessful. For example, the

Soundex code for “PATER” and “PAIDER” will be P360. The string “SOMERS” Soundex

code S562 will match with “SUMMERS” and “SOMMARS” as the Soundex code for these

is S562. It shows that the Soundex code is assigned based on the pronunciations

regardless of the spellings, which can result in false matches (Patman and Shaefer,

2001).

 First Letter dependency - According to (Patman and Shaefer, 2001a; Shah and

Kumar Singh, 2014), retaining the initial letter is vital for Soundex, and any name

that starts with a different letter will create a mismatch because it will be

considered a different Soundex code. For example, the names “Corth” and

“Korth” will not match even if one of the names is in the database. It means that

starting with a letter in the Soundex code is essential, and names starting with

different letters will never match (Pilania and Kumaran, 2019).

 Transcription difference - The Soundex codes for Roman and non-Roman names

or strings of different spelling variants do not match each other and will not be

reliably retrieved from the database. The names written in different languages

with different spelling are challenging to match as the form of the name may not

match the other variant of the name present in the database. For example, the

Russian names "Ivanov", "Ivanoff", or "Iwanow” will be difficult to match as the

Soundex code will be different for these names. The Chinese name may be

2. STATE-OF-THE-ART REVIEW OF MACHINE LEARNING APPROACHES FOR IDENTITY RESOLUTION

64

written as “Hsiao” or “Xiao” and will not match due to different Soundex codes

(Patman and Shaefer, 2001; Shah and Kumar Singh, 2014).

 Silent consonants - Soundex does not match the names with silent consonants,

so a different code for each name is generated. Because Soundex does not

identify silent consonants in the name or any name with simplified spellings with

omitted consonants, for example, names “Meghburn” and “Meburn,”

“Coghburn” and “Coburn,” or “Deighton” and “Dayton.” will have different

codes and will not match with each other (Patman and Shaefer, 2001; Shah and

Kumar Singh, 2014).

 Name syntax - In different cultures, the structure of the name is different.

Usually, the structure of the name is First, Middle, and Last. It may result in

inconsistency in the database in the way names are mapped. Soundex provides

no means for accommodating such types of variation. Instead, it codes them as

two different, non-matching names, resulting in two closely related variants not

retrieving each other. For Example, “Sheikh Ali Mohamed” may be in one

database. However, in another database, it may be recorded separately as first

name “Sheikh”, middle name “Ali”, and last name “Mohamed”. There can be

situations where the first name is recorded as “Sheikh Ali” and the last name

“Mohamed”. It is difficult for Soundex to generate the matching code for such

name variations. However, there can be different variations of the name that

Soundex code may encounter, such as if an Arabic name, “Alhameed,” is written

as “Hameed”, “Hamid,” or “Hamed,” then Soundex code will struggle to match

even though all these name variations refer to the same individual because

Soundex was not designed to tackle such different variations in names (Patman

and Shaefer, 2001; Shah and Kumar Singh, 2014).

 Name Initials - Normally, first names in long names are written with initials, but

this is not limited to only long names. Mostly, full names are substituted with

initials. For example, “Mikhail Kovalchuk” and “M.Kovalchuk,” will have different

Soundex codes and will not be matched to each other (Patman and Shaefer,

2001; Shah and Kumar Singh, 2014).

2. STATE-OF-THE-ART REVIEW OF MACHINE LEARNING APPROACHES FOR IDENTITY RESOLUTION

65

 Poor precision - The Soundex algorithm sometimes can match many dissimilar

names in the result, and the amount of poor precision results increases with the

database size. For example, the name “Criton.” search will match with

“Courtmanche,” “Corradino,” “Cartmill,” and “Cortinez” (Patman and Shaefer,

2001; Shah and Kumar Singh, 2014).

 Noise intolerance - Soundex cannot overcome typographical errors because it

relies on the sound of letters and does not handle common transpositions. This

spelling variation will generate false matches. For example, if the name is

mistyped as “Msith” in the database, it will not match “Smith” due to a

transposition error. Similarly, “Hubbins” will not be matched with “Huggins,” and

“Hreman” will not match with “Herman” (Patman and Shaefer, 2001; Shah and

Kumar Singh, 2014; Pilania and Kumaran, 2019).

 Long Name - The Soundex code combines an initial letter and three digits for any

given name. Therefore, the Soundex code will ignore the name length and

generate the code that may match other names that are not the same length,

but the string may match based on sound. For Example, searching for the name

“Rameshwar” will match with the name “Rameshwaram” even though the name

may refer to two different individuals because the Soundex code will be the same

for both names, and this will result in false matching (Pilania and Kumaran, 2019).

 Even with all the above issues found in Soundex, the algorithm is mainly used for name

matching and retrieval. The most common use of Soundex is in airline reservation

systems to generate passenger name codes to avoid confusion when pronouncing the

names. In informational retrieval, Soundex is used to overcome the problem of names

with alternate spellings. It plays a vital role in approximate name matching due to human

errors. However, Soundex can be helpful in systems that are not very sensitive to false

results and can accept if results are high false positive or negative (Shah and Kumar

Singh, 2014).

2. STATE-OF-THE-ART REVIEW OF MACHINE LEARNING APPROACHES FOR IDENTITY RESOLUTION

66

2.6. Comparison of Matching Algorithms

The choice of one from the following string-matching algorithms mainly depends on

the nature of the error in searching the text data. Table 2.4 compares all phonetic

matching algorithms based on the language specification, features, and limitations

(Shah and Kumar Singh, 2014; Soundex, 2015).

Table 2.4 - Comparison of String Matching Techniques (Shah and Kumar Singh, 2014)

Algorithm Type Language Usage

Soundex Phonetic English Misspelt English words

Edit distance Pattern matching N/A Local spelling errors

Jaro-Winkler Pattern matching N/A Spelling and typewriting

errors

2.7. Clustering Technique

Clustering is a widely used technique in machine learning and data mining, where the

goal is to group similar data points into distinct clusters based on their similarities.

Clustering is an unsupervised learning method as it does not rely on labelled data but

instead discovers patterns or structures within data (Bezdek, 1981).

Clustering is significant for data mining and pattern recognition. Clustering means

grouping all similar records in one group based on criteria set to compare the similarity

of each string or pattern. (Jain, Murty and Flynn, 1999; Halkidi, Batistakis and

Vazirgiannis, 2001; Dharmarajan and Velmurugan, 2013; Nisha and Kaur, 2015).

Clustering has emerged as a popular technique for pattern recognition, image

2. STATE-OF-THE-ART REVIEW OF MACHINE LEARNING APPROACHES FOR IDENTITY RESOLUTION

67

processing, and, most recently, data mining. Clustering algorithms are increasingly

required to deal with large-scale data sets containing categorical and numeric data,

particularly in data mining. According to (Mamun, Aseltine and Rajasekaran, 2014),

clustering refers to the record linkage problem where records are grouped based on

similarity.

The representation of objects is the main feature of clustering, as objects are

represented as patterns to find the similarity (Filippone et al., 2008). The patterns are

considered similar if they are in the same cluster but considered different if not in the

same cluster. This difference should be clear and meaningful to represent patterns in

the cluster (Xu and Wunsch, 2005). (Monge and Elkan, 1997) they improved the nested-

loop record comparison performance by showing a transitive approach for duplicate

detection. For example, if ‘A’ and ‘B’ are duplicates and ‘B’ and ‘C’ are duplicates, then

‘A’ and ‘C’ are assumed duplicates. The problem with this approach is that record

matching relies on the dependency of connected components of the graph. If these

connected components are accurate, then the assumption can be valid; otherwise, no

relationship can be retrieved between records. So, to compute the connected

components efficiently on the graph, (Monge and Elkan, 1997) used a method called

union-find. This method combines records into a cluster during the union stage. In

contrast, the cluster is used as a comparison representation, and the number of record

comparisons gets reduced for duplicate detection. So, we can say that if ‘A’ is not a

duplicate of ‘B’ already in the cluster, other members in the cluster will not be duplicates

of ‘A’.

2.7.1. The Types of Clustering Techniques

Many clustering algorithms are available for specific problems, such as hierarchical, k-

means, mean-shift and fuzzy clustering. Each technique requires matching criteria to

find the distance between different clusters. Usually, edit distance is a common

technique used for this purpose.

2. STATE-OF-THE-ART REVIEW OF MACHINE LEARNING APPROACHES FOR IDENTITY RESOLUTION

68

2.7.1.1. K-Means Clustering

K-Means is a widely used partition-based clustering algorithm that aims to divide the

data into K clusters, where K is a user-specified parameter. One method that has proved

particular efficiency is the k-means algorithm (Jain, Murty and Flynn, 1999). (Huang,

1998) developed the k-modes algorithm by extending the standard k-means algorithm

with a simple matching dissimilarity measure for categorical data and a frequency-based

method to update centroids in the clustering. The numeral-only limitation of the k-

means algorithm does not constrain this extended method. It has shown efficient

clustering performance in real-world databases.

 The algorithm works as follows:

• Randomly initialize K centroids (points representing each cluster's centre).

• Assign each data point to the nearest centroid, creating K clusters.

• Recalculate the centroids by taking the mean data points in each cluster.

• Repeat steps 2 and 3 until convergence (when the centroids no longer change

significantly or after a certain number of iterations).

K-Means tries to minimize the within-cluster sum of squares (inertia) by iteratively

optimizing the positions of the centroids. While K-Means is efficient and easy to

implement, it may converge to a local minimum, depending on the initial placement of

centroids. K-Means is widely used in customer segmentation, market analysis, image

compression, and pattern recognition tasks. It is particularly effective when the clusters

are well-separated and approximately spherical (Lloyd, 1982). (WONG, 1979; Lloyd,

1982) identifies some advantages and disadvantages of K-mean as below:

Advantages:

• Fast and efficient for large datasets.

• Scalable and easy to implement.

• Well-suited for convex-shaped clusters.

2. STATE-OF-THE-ART REVIEW OF MACHINE LEARNING APPROACHES FOR IDENTITY RESOLUTION

69

Disadvantages:

• Must predefine the number of clusters

• Sensitive to the initial placement of centroids.

• It converges to local optima.

• It is not suitable for clusters with irregular shapes or different sizes.

Furthermore, the fuzzy k-modes algorithm generates the fuzzy partition matrix from

categorical data with the framework of the fuzzy k-means-type algorithm (Bezdek, 1981;

Bezdek et al., 1999) and improves on the k-modes algorithm by assigning confidence

degrees to data in different clusters. In most fuzzy versions of clustering algorithms, the

assigned data memberships to a cluster are fuzzy, but the centroid is not fuzzy. For

example, although the fuzzy k-modes algorithm efficiently handles categorical data sets,

it uses a complex centroid representation for categorical data in a cluster. This use of

hard rejection of data can lead to misclassification in the region of doubt. The main focus

of clustering is discovering duplicate entities in a dataset without unique identifiers. The

entities in the dataset may be referenced differently from merging records in the

datasets. One common approach to tackling this problem includes clustering, such as

hierarchical agglomerative and k-means clustering, where each cluster represents an

entity. However, a problem with many of these existing approaches is that they require

the number of clusters to be set in advance (Dai, 2011). Using the Mean-Shift technique

gives flexibility in the cluster. It does not require a fixed number of clusters to be defined

in advance.

2.7.1.2. Mean-Shift Clustering

Mean-Shift is an iterative process that moves each point to the average point in the

cluster (Yizong Cheng, 1995). Mean-Shift was originally introduced by Fukunaga and

Hostetler in 1975, where the iteration process shifts points until all points are converged

to estimate the “mode” to define a cluster (Fukunaga and Hostetler, 1975; Comaniciu

and Meet, 1999; Carreira-Perpiñán, 2015). There is no need to predefine the number of

clusters as the number of clusters is obtained automatically by finding the centre of

2. STATE-OF-THE-ART REVIEW OF MACHINE LEARNING APPROACHES FOR IDENTITY RESOLUTION

70

modes. According to (Georgescu, Shimshoni and Meer, 2003), finding the closest

neighbours of data points in the area is the most expensive operation in the Mean-Shift

method. The mode is the densest area where most of the data is located due to data

points being moved there during the iteration process, and the process continues until

all data points are moved to the mode. Because of the nature of the process, the mean

shift is a sequential clustering algorithm. The second-in-line data point will be processed

until the first data point is moved to the mode. Therefore, each data point process waits

until the previous process is completed. In this process, the close data points require

less iteration, but data points far from each other require more iteration (Li, Hu and Wu,

2007; Wu and Yang, 2007).

(Liu et al., 2013) states that the Mean-Shift iteration procedure is based on two essential

steps:

• The distribution of data points is based on constructing a probability density

model.

• Each data point is mapped to the density model nearest to the point.

Therefore, the density model is an integral part of machine learning for

representing clusters.

Typically, Mean-shift is used in machine vision for image analysis, image processing,

pattern recognition, and objective tracking. In pattern recognition, mode plays a vital

role in applications like classification, feature extraction, image segmentation and

object tracking (Comaniciu and Meer, 2002). In 1995, Cheng generalized the Mean-Shift

algorithm, and in machine vision, the algorithm became popular (Ghassabeh, 2013).

Mean-Shift is vital in discovering data presented in arbitrary clusters (Anand et al.,

2014).

The following steps are involved in working of the Mean-Shift clustering algorithm

(Comaniciu and Meer, 2002):

Step 1 − First, start with the data points assigned to a cluster of their own.

Step 2 − Next, this algorithm will compute the centroids.

Step 3 − In this step, the location of new centroids will be updated.

2. STATE-OF-THE-ART REVIEW OF MACHINE LEARNING APPROACHES FOR IDENTITY RESOLUTION

71

Step 4 − The process will be iterated and moved to the higher-density region.

Step 5 − At last, it will be stopped once the centroids reach a position from

which they cannot move further.

The Mean-Shift algorithm has advantages and disadvantages, as described by (Yizong

Cheng, 1995; Comaniciu and Meer, 2002). The following are some advantages and

disadvantages are discussed below :

Advantages:

• It does not need to make any model assumption as in K-means

• It can also model complex clusters which have nonconvex shapes.

• It only needs one bandwidth parameter, which automatically determines the

number of clusters.

• There is no issue with local minima, unlike K-Means.

• No problem was generated from outliers.

Disadvantages:

• The mean-shift algorithm does not work well in the case of high dimensions,

where the number of clusters changes abruptly.

• There is no direct control over defining the number of clusters.

• It cannot differentiate between meaningful and meaningless modes.

2.7.1.3. Hierarchical Clustering

Hierarchical clustering creates a tree-like structure of nested clusters called a

dendrogram without requiring a predefined number of clusters. There are two main

approaches to hierarchical clustering (Ward, 1963):

2. STATE-OF-THE-ART REVIEW OF MACHINE LEARNING APPROACHES FOR IDENTITY RESOLUTION

72

• Agglomerative (bottom-up): Starts with each data point as its cluster and

repeatedly merges the closest pairs of clusters until only one cluster remains.

• Divisive (top-down): Starts with all data points in one cluster and recursively

splits the clusters into smaller ones until each data point is in its cluster.

The choice of merging or splitting is determined by the linkage criteria, such as single

linkage (distance between the closest points in each cluster), complete linkage (distance

between the farthest points in each cluster), or average linkage (average distance

between all points in each cluster). The dendrogram can be cut at a certain level to

obtain a specific number of clusters. The algorithm has advantages and disadvantages

defined by (Ward, 1963; Fionn Murtagh, 2014):

Advantages:

• It provides insights into hierarchical structures in the data.

• It is flexible and can be cut at different levels to obtain cluster granularities.

Disadvantages:

• It is Computationally expensive for large datasets.

• The choice of linkage criteria impacts the clustering result.

• The best-used areas are Biology, bioinformatics, social sciences, image

segmentation, and document clustering.

2.7.1.4. Density-Based Spatial Clustering of Applications with

Noise (DBSCAN)

DBSCAN is a density-based algorithm that groups data points based on their density. It

requires two parameters: "epsilon" (ε), which defines the neighbourhood radius around

each data point, and "min Pts," which sets the minimum number of data points within ε

to form a core point. DBSCAN automatically determines the number of clusters and is

2. STATE-OF-THE-ART REVIEW OF MACHINE LEARNING APPROACHES FOR IDENTITY RESOLUTION

73

robust to outliers and irregularly shaped clusters. The algorithm works as follows (Martin

Ester, Hans-Peter Kriegel, Jiirg Sander, 1996; Schubert et al., 2017):

Step 1 - Find all the points within distance ε of each data point. It becomes a core

point if a point has at least "minPts" neighbours.

Step 2 - Expand the cluster from the core point by adding all reachable points

within ε to the cluster.

Step 3 - Repeat the process for all core and non-core points within the cluster's

reachability distance.

Step 4 - Points not reachable from any core points are considered noise and do

not belong to any cluster.

The algorithm comes with its advantages and disadvantages:

Advantages:

• Automatically determines the number of clusters.

• Robust to outliers and noise.

• It handles clusters of arbitrary shapes and sizes.

Disadvantages:

• Sensitive to the choice of epsilon and min Pts.

• It may be difficult with datasets having significantly varying densities.

• The best-used areas are Spatial data analysis, anomaly detection, and varying-

density datasets.

2.7.1.5. Gaussian Mixture Model (GMM)

GMM is a probabilistic model-based clustering algorithm that assumes data points are

generated from a mixture of several Gaussian distributions (Dempster, Laird and Rubin,

1977).

2. STATE-OF-THE-ART REVIEW OF MACHINE LEARNING APPROACHES FOR IDENTITY RESOLUTION

74

The algorithm works as follows:

Step 1 - Initialize the parameters (no. of kernels) of the Gaussian components

(mean, covariance, and weight).

Step 2 - Expectation step (E-step): Calculate the probability that each data point

belongs to each Gaussian component.

Step 3 - Maximization step (M-step): Re-estimate the parameters of the Gaussian

components based on the probabilities from the E-step.

Step 4 - Repeat steps 2 and 3 until convergence.

The data points are then assigned to clusters based on their probabilities of belonging

to each Gaussian component. GMM allows soft assignments, meaning each data point

can belong to multiple clusters with different probabilities.

There are the following advantages and disadvantages of this algorithm:

Advantages:

• Soft assignments of data points to clusters.

• Can capture complex data distributions.

• It handles overlapping clusters.

Disadvantages:

• Sensitive to the initialization of parameters.

• May converge to local optima.

• The best-used areas are Image segmentation, speech recognition, and pattern

recognition tasks with overlapping clusters.

2.7.1.6. Spectral Clustering

Spectral Clustering is a graph-based algorithm that treats data points as nodes and

clusters them based on the graph structure (Von Luxburg, 2007).

2. STATE-OF-THE-ART REVIEW OF MACHINE LEARNING APPROACHES FOR IDENTITY RESOLUTION

75

The algorithm works as follows:

Step 1 - Construct an affinity matrix that measures pairwise similarities between

data points. Common choices include the Gaussian affinity and k-nearest

neighbour affinity.

Step 2 - Compute the graph Laplacian matrix, which encodes the graph structure.

Step 3 - Obtain the eigenvectors or eigenvalues of the Laplacian matrix and use

them to create a lower-dimensional data representation.

Step 4 - It performs K-Means or other clustering techniques on the lower-

dimensional representation to identify the clusters.

Spectral Clustering is helpful for non-convex clusters and can handle data in high-

dimensional spaces.

The algorithm has some advantages and disadvantages, as listed below:

Advantages:

• It handles non-convex clusters and high-dimensional data.

• Performs well with datasets having clear low-dimensional structures.

Disadvantages:

• Computationally expensive for large datasets.

• It requires parameter tuning for the affinity matrix.

• The best-used areas are Image segmentation, community detection in social

networks, and dimensionality reduction tasks.

2.8. Comparison of Clustering Techniques

The following Table 2.5 provides the comparison summary of the clustering techniques

discussed above. This comparison discusses each clustering technique's key points,

advantages, limitations, and best-used areas.

2. STATE-OF-THE-ART REVIEW OF MACHINE LEARNING APPROACHES FOR IDENTITY RESOLUTION

76

Table 2.5 - Comparison of Clustering Techniques

Clustering
Technique

Key Points Advantages Limitations Best-Used Area

K-Means Partition-based,
iterative K clusters

Fast and
efficient

Sensitive to initial
centroids, local
optima

Customer segmentation,
market analysis, image
compression, pattern
recognition

Hierarchical Hierarchical
representation,
agglomerative

Provides
insights into a
hierarchy

Computationally
expensive linkage
criteria

Biology, bioinformatics,
social sciences, image
segmentation, document
clustering

DBSCAN Density-based,
automatic clusters

Handles
arbitrary
shapes, robust
to noise

Sensitive to
parameters, varying
density

Spatial data analysis,
anomaly detection,
clusters with varying
density

Mean Shift Mode-seeking,
automatic clusters

Handles
arbitrary
shapes, robust
to noise

Computationally
intensive, bandwidth
parameter sensitivity

Image segmentation,
identifying clusters with
varying density, computer
vision

GMM
(Gaussian
Mixture
Model)

Probabilistic
model, soft
assignments

Captures
complex data
distributions

Sensitive to
initialization, local
optima

Image segmentation,
speech recognition,
pattern recognition with
overlapping clusters

Spectral
Clustering

Graph-based,
handles non-
convex clusters

Handles high-
dimensional
data

Computationally
expensive parameter
tuning

Image segmentation,
community detection,
dimensionality reduction,
clusters with low-
dimensional structures

2. STATE-OF-THE-ART REVIEW OF MACHINE LEARNING APPROACHES FOR IDENTITY RESOLUTION

77

2.9. Knowledge-Base

In machine learning, a knowledge base is a repository or collection of structured and

organized knowledge that supports an intelligent system's learning and decision-making

processes. It is a central source of information that the system can access and use to

make informed decisions, solve problems, and acquire new knowledge. Knowledge

bases are crucial in various AI applications, including expert systems, natural language

processing, semantic search, and knowledge-based question-answering systems.

2.9.1. Types of Knowledge-Base

2.9.1.1. Rule-Based Knowledge-Base

A rule-based knowledge base consists of rules expressed as "if-then" statements. Each

rule represents a piece of knowledge or a condition the system can apply to make

decisions or perform actions. Rule-based systems benefit expert systems, where human

experts' knowledge is represented as rules for automated decision-making. These

systems are widely used in medical diagnosis, finance, and control systems (Bharambe,

Jain and Jain, 2012).

2.9.1.2. Ontology-Based Knowledge-Base

An ontology formally represents knowledge that defines a specific domain's concepts,

relationships, and constraints. An ontology-based knowledge base organizes knowledge

using ontologies, allowing the system to reason about the domain and perform semantic

searches. Ontology-based systems are standard in natural language processing,

semantic web applications, and knowledge representation tasks. They enable advanced

semantic search and knowledge inference (Studer, Benjamins and Fensel, 1998; Noy and

McGuinness, 2001).

2. STATE-OF-THE-ART REVIEW OF MACHINE LEARNING APPROACHES FOR IDENTITY RESOLUTION

78

2.9.1.3. Case-Based Knowledge-Base

A “case-based knowledge base” stores past experiences or cases as features and

outcomes. The system can use these stored cases to solve new problems by retrieving

and adapting relevant solutions from past cases. Case-based reasoning is widely used in

machine learning and artificial intelligence applications, especially in systems that learn

from experience. It is commonly employed in medicine, finance, and customer support

(Aamodt and Plaza, 1996; Watson and Marir, 2007).

2.9.1.4. Knowledge Graph

A knowledge graph is a structured representation of knowledge, typically in a graph,

where entities and their relationships are interconnected. Knowledge graphs capture

complex relationships between entities and provide a powerful knowledge

representation and reasoning framework. They are commonly used in various

applications, including search engines and knowledge-based question-answering

systems (Bollacker et al., 2008; Bizer, Heath and Berners-Lee, 2009).

2.9.2. Use of Knowledge-Base in Machine Learning

2.9.2.1. Decision-Making

Knowledge bases provide a set of rules, facts, and domain-specific knowledge that guide

decision-making processes. They are used in expert systems and AI applications to make

informed choices based on the available information and rules. Expert systems like

MYCIN and DENDRAL employed rule-based knowledge bases for medical diagnosis and

chemistry problem-solving (Studer, Benjamins and Fensel, 1998).

2. STATE-OF-THE-ART REVIEW OF MACHINE LEARNING APPROACHES FOR IDENTITY RESOLUTION

79

2.9.2.2. Problem-Solving

Case-based and ontology-based knowledge bases facilitate problem-solving by

leveraging past experiences and domain-specific knowledge. In case-based reasoning,

past cases are used to solve new problems by retrieving similar cases and adapting their

solutions. While Ontology-based systems reason over the structured knowledge in

ontologies to provide context-aware and domain-specific problem-solving capabilities

(Studer, Benjamins and Fensel, 1998).

2.9.2.3. Semantic Search

Knowledge bases based on ontologies and knowledge graphs enable semantic search,

allowing the system to understand the context and meaning of queries. They support

advanced search capabilities that consider relationships between entities, leading to

more relevant search results. Semantic search is essential in natural language processing

and web search engines (Yerva, Miklos and Aberer, 2010).

2.9.2.4. Knowledge Representation

Knowledge bases formally represent knowledge in a structured and organized manner.

They enable knowledge sharing and reasoning within intelligent systems, facilitating

more efficient learning and decision-making. Knowledge representation is fundamental

to many AI applications, including expert and knowledge-based systems (Islam and

Inkpen, 2008).

2. STATE-OF-THE-ART REVIEW OF MACHINE LEARNING APPROACHES FOR IDENTITY RESOLUTION

80

2.10. Summary

This chapter has explored different machine-learning techniques and discussed the

entity resolution and challenges in matching the string in detail. The main three

matching techniques and how they match any two strings were explained. The two

matching techniques, Edit Distance and Jaro-Winkler, have been discussed to address a

few matching challenges. In contrast, the Soundex technique has been explored to

address string matching based on phonetic matching. Next, clustering techniques

required to group similar matching strings were discussed. The last section of the

chapter explains how the knowledge base is valuable in machine learning and how it can

be used.

3. RESEARCH DESIGN AND METHODOLOGY

81

CHAPTER3

3. RESEARCH DESIGN AND METHODOLOGY

3.1. Chapter Overview

This chapter presents the methodology used for this research. The discussion will then

explain the research design approach in detail, along with the foundation of the

methodology. The proposed model will outlined the following sections. The following

sections will detail the implementation of the proposed model. Initially, the discussion

will be of different tools and libraries for computer simulation. Then, it will explain the

importance of improvements in the Soundex technique and present some matching

explanations of this improved Soundex technique and the standard Jaro-Winkler

technique. The next chapter will be the results chapter, which will present and explain

the results based on this chapter.

3.2. Foundation of Research Methods (Design)

For this research evaluation of the similarity techniques, de-identified police data has

been used for record matching and pattern recognition. The search runs iteratively using

a combination of attributes for approximate string matching to find the desired entity,

and the results create three data subsets. These data subsets will be compared and

merged to produce the matched record(s) after the computation steps on the data. This

research (Nawaz and Kazemian, 2021) was published in the EANN2021 Conference held

on 25th-27th June 2021, and the published research paper is attached in Appendix A.

3. RESEARCH DESIGN AND METHODOLOGY

82

3.2.1. Foundation of the Proposed Model

In big data, names with different name variations or incorrect spelling may be an issue

for exact matching. However, finding approximate matches for an entity leads to an

arduous task. Nevertheless, missing or incomplete information in the database can also

lead to considerable manual work to guess the matching record (Mon, Mie and Thwin,

2013).

The following sections discuss key terminologies, techniques, and the proposed model's

design.

3.2.1.1. Data Pre-processing

Data pre-processing is a process that runs on data cleaning, standardizing, and fixing

incomplete information. Data pre-processing helps when matching record values for

one or more particular attributes and is considered a vital part of data mining (Huang et

al., 2008). Data pre-processing is a crucial preparatory step in entity matching, also

known as record linkage or deduplication, which aims to identify and link records

referring to the same real-world entities from different data sources. It involves a series

of techniques and operations to clean, standardize, and transform the data, making it

more suitable for subsequent entity-matching.

An essential step is removing the unwanted characters to clean the data. It can refer to

eliminating unwanted text variation affecting the matching. The variations include

uppercase or lowercase, different punctuations, and extra space between text

(Branting, 2003). The standardisation is to bring the text into the same format to be

easily compared, such as matching “London, UK” and “City of London, UK”. Different

attribute values can be matched and combined to generate new attributes for matching

to handle the issue of incomplete information. A piece of incomplete information can

also be called missing information, affecting the matching process where the result can

be inaccurate. Therefore, data pre-processing is essential to improve data quality and

3. RESEARCH DESIGN AND METHODOLOGY

83

consistency, leading to more accurate and efficient entity-matching results. However,

some following steps can be used for data pre-processing:

 Data Pre-processing steps in Entity Matching

• Data Cleaning

Data cleaning involves identifying and correcting errors, inconsistencies, and missing

values in the data. Different techniques, such as data imputation, outlier detection, and

error correction, are applied to ensure high data quality. Cleaning the data reduces the

chances of false matches caused by errors or inconsistencies (Herzog and Reiter, 2008;

Christen, 2012).

• Data Standardisation

Standardisation involves transforming data to a standard format or representation. This

step includes converting data to lowercase, removing punctuation, and applying

stemming or lemmatization to text fields. Standardisation ensures that variations in data

representations are minimized, facilitating more accurate matching (Oracle, 2010).

• Tokenisation

Tokenisation is the process of breaking text into individual tokens or words. Tokenisation

is particularly important for text-based entity-matching tasks. It helps create a more

structured representation of textual data, which aids in identifying standard terms

between records (Bird, Klein and Loper, 2009).

3. RESEARCH DESIGN AND METHODOLOGY

84

• Feature Extraction

Feature extraction involves selecting and transforming relevant attributes or features

from the data. Features like TF-IDF (Term Frequency-Inverse Document Frequency) and

n-grams are commonly used for textual data. Numerical data may require feature scaling

to bring all features to a similar scale. Selecting informative features is essential for

accurate entity matching (Basu, Bhattacharyya and Kim, 2010).

• Blocking/Blocking Key Selection

Blocking is a technique that reduces the search space by dividing data into smaller

blocks. The choice of blocking keys (attributes) affects the granularity and efficiency of

entity matching. Effective blocking ensures that only potentially matching records are

compared, reducing computation time (Kirsten et al., 2010).

• Data Transformation

Data transformation may involve encoding categorical attributes, normalization, or

feature engineering. Transforming data ensures that it is in a suitable format for the

entity-matching algorithms being used. The choice of transformation techniques

depends on the specific data characteristics and the matching approach (Tejada, Knoblock

and Minton, 2002).

 Importance of Data Pre-processing in Entity Matching

Data pre-processing plays a critical role in entity matching for the following reasons

mentioned (Bhattacharya and Getoor, 2007).

3. RESEARCH DESIGN AND METHODOLOGY

85

• Improved Data Quality: Data cleaning and standardisation techniques enhance

data quality by removing errors and inconsistencies and standardizing

representations. Clean data leads to more accurate matching results.

• Reduced False Matches: Pre-processing reduces the likelihood of false positives

and false negatives in entity-matching results by handling data variations and

inconsistencies.

• Efficient Computation: Effective blocking and feature selection reduce the

computational complexity of the matching process. It makes entity matching

more efficient and scalable, especially for large datasets.

• Enhanced Matching Accuracy: Tokenisation and feature extraction techniques

improve the ability to identify similarities between records, increasing the

matching accuracy.

3.2.1.2. Classification of Data

Classification is typically a process in which each record pair gets classified into a match

and no matching category, manually setting the threshold value for record linkage

(Ashish and Toga, 2016). The probabilistic record linkage was proposed by (Fellegi and

Sunter, 1969), and most record linkage systems have been based on this approach for

years. However, many researchers have recently been using binary classification

techniques based on machine learning and data mining because these techniques

provide better results for field comparison of any record (Ravikumar and Cohen, 2004).

The similarity of each field comparison is calculated between the values of 0 and 1. Many

research works have been conducted, and different similarity techniques were

introduced to achieve this, where the field type can influence the result (Wang and

Wang, 2016).

3. RESEARCH DESIGN AND METHODOLOGY

86

3.2.1.3. Clustering of Data

Clustering is significant and is one of the famous techniques for pattern recognition, data

mining and image processing. Clustering algorithms typically deal with large datasets,

primarily numeric data (Du, 2010). K-means is one of the efficient clustering algorithms.

It has a fuzzy variation called the fuzzy k-modes algorithm, which produces the fuzzy

partition matrix of the fuzzy k-means-type algorithm. In this fuzzy clustering algorithm,

clusters are fuzzy. However, at the same time, centroids are not fuzzy, which can lead

to misclassification in the cluster. The main focus of clustering is discovering duplicate

entities in a dataset without unique identifiers. The entities in the dataset may be

referenced differently from merging records in the datasets. The clustering techniques

that tackle this problem are hierarchical and K-means clustering. However, these

methods do not address the problem of fixed clustering, which involves specifying the

number of clusters in advance (Dai, 2011).

3.2.1.4. Knowledge-Base (KB)

This phase of the proposed model will be used as a reference to understand the results

in graph and table format while creating the knowledge base for future searches. Any

new search will be compared with the pool of records in the knowledge base. The three

classifiers labelled “match, possible match and close or related match” will be used to

store records in KB accordingly. Any new, similar or identical search looking for “identity

match” first in KB will speed up the matching process. It will help to reduce the

processing time for records to be matched or to find similarities to the records found in

the knowledge base. If the searched input is found in KB, it will be compared with the

central database to check for any new changes to the record. Once the record reference

has been updated, it will be stored in KB for future searches. However, suppose the

searched input record is not found in KB. In this case, only the central database will be

used to find matches, possible matches and related match records. After such a

classification, new records will added to KB for future searches.

3. RESEARCH DESIGN AND METHODOLOGY

87

3.2.1.5. Record Linkage

It is crucial to extract the correct information for the record based on the correct

relationship. The record linkage process links the shared values of particular attributes

and finds the relationship in each record. Related or similar values might appear in this

record linkage process, which can be duplicate records and a step closer to entity

resolution (Brizan and Tansel, 2006). In simple words, connecting different records in

the dataset to find the relationship is called record linkage, which helps to find the one

actual record representing the real-world entity record. However, the dataset might

contain errors such as misspellings, and the vast number of records makes it difficult to

correctly match all records (Basu, Bhattacharyya and Kim, 2010; Mamun, Aseltine and

Rajasekaran, 2014). So, record linkage needs to handle such errors during the clustering

process, and it is only possible by using the approximate matching or fuzzy matching of

attributes of records. The efficient record linkage is crucial for identity resolution to find

the correct real-world individual identity. Nevertheless, the record linkage performance

depends on accuracy, the number of required comparisons, complexity and the time

required to complete the process (Wangikar, Deshmukh and Bhirud, 2016).

The relationship between records can be found by comparing it with family members

and friends, which can quickly determine the real-world target entity. The information

about an entity allows an individual to be linked to other entities related to an individual

entity. This information helps to create links between all possible and related entities.

This linkage is called Link analysis, which involves connecting and comparing the

information within a dataset or multiple datasets (Brizan and Tansel, 2006).

3.2.1.6. Selection of Attributes for Searching Records

It is usually straightforward to provide the search query and find the required results

from the database based on the search criteria set. However, if there are typographical

errors in the database, the query result will not be accurate (Brizan and Tansel, 2006).

3. RESEARCH DESIGN AND METHODOLOGY

88

In entity resolution, finding the results as accurately as possible is imperative. For this,

it is essential to run the number of queries on the database to retrieve the matching

record. It is known that each entity contains different attributes, which help

differentiate one entity from another. However, appropriate matching techniques are

required to search records. Usually, in a single dataset, simple attributes such as address

can be used to link or associate the entity with other entities.

Similarly, a forename and surname can also allow association or link the single entities

with other entities matching surnames and address information as a combination of

matching criteria. Also, date of birth is another attribute that helps determine the

entities' linkage. It is challenging to compare the date of birth due to the different

formats, such as “YYYY.MM.DD” or “MM.DD.YYYY” or “DD.MM.YYYY”. The combination

of name and date of birth will not be good enough to link or associate the entity with

other entities if there are no typographical errors in the records. The date format issue

has been tackled in the proposed model by converting the date of birth attribute values

to a string value.

3.2.1.7. Labelling of Matching Records

It is crucial to establish criteria for entity resolution and record linkage to match the

records by comparing the value of attributes of the record. Typically, the matching

criteria are used to compare the attributes of one or two records to generate the result

in “Match or No Match”. (Brizan and Tansel, 2006) state that Fellengi and Sunter defined

the matching criteria for records to be classified as “match”, “no match”, and “needs

more review”. Establishing the matching criteria is critical as most of the data in the

database is text-based, and entity resolution needs matching criteria for text matching

as follows:

 Match criteria consider a match where all the values of more than one particular

attribute exactly match. It is the easy matching criteria. For example, if a record's

last name, first name and date of birth are the same, it will be categorised as

“match”. According to (Cohen and Richman, 2002), the matching criteria may

3. RESEARCH DESIGN AND METHODOLOGY

89

contain partial matches only. However, records can be an exact match only with

no typographical errors or other missing details.

 Possible match criteria, where at least one or more than one value for a

particular attribute is similar, will be considered a “possible match”. In fuzzy

matching, it is vital to determine a possible match to help classify the records

based on the matching criteria. For example, a record contains a similar surname,

date of birth, and different forename. However, a similar address will be

considered a possible match.

 Related or Close match criteria, where any one or more values for a particular

attribute are similar. It can also be called a “close match”. Finding the related

match helps to classify the records based on the matching criteria. For example,

a record containing a similar date of birth and address but a different name will

be considered a related or close match.

 No match criteria, where values for a particular attribute that do not match or

contain any similarity will be considered “No match”. For example, if a record

does not contain or match the name (forename, surname), date of birth and

address, it will be considered no match. Because some records may match the

date of birth while the rest of the attribute values do not, it will still be

considered a no-match. In the past, all researchers have included no match in

the matching criteria. However, it will not be included in this proposed model to

eliminate non-match records from further processing and simplify the clustering

and segmentation process. The “No match” records are dropped during the

initial search iteration phase from further processing.

In this research, a new algorithm has been introduced to overcome the performance

shortage of the Jaro-Winkler and Soundex similarity metrics to produce the desired fuzzy

matching results. This new hybrid fuzzy matching algorithm contains all the good

features of Jaro-Winkler and Soundex similarity metrics discussed in the previous

chapter.

3. RESEARCH DESIGN AND METHODOLOGY

90

In the proposed algorithm shown below in Figure 3.1, each input name is searched based

on Soundex code to find similar matches pronounced similarly. During this process,

Soundex encoding is applied to all the names in the database and compared to the

Soundex code of the input name. The two hash values are created for all the matching

names by applying the Jaro-Winkler technique on the Soundex encoding of each name.

The matching value between 0 and 1 is generated by the Jaro-Winkler distance. By doing

this, the aim has been to get improved results by using the Jaro-Winkler and Soundex

similarity metrics to generate an aggregate score for entity matching. All names in the

database will have Soundex code generated, and a Jaro-Winkler score will be generated

for the target name and names in the database. The Soundex code score is generated

by applying the Jaro-Winkler technique to match the database's target name and other

names. Once there are two distance scores, one based on the Soundex code and another

from Jaro-Winkler, each name's aggregate score is generated. Converting Soundex

codes into the Jaro-Winkler score tackles most name variations and Soundex issues

discussed in the previous chapter.

Typically, the Soundex is based on phonetic matching by generating the 4-digit code for

the given name and matching names that sound or are pronounced similarly without

worrying too much about the spelling of the name (Kessler, 2005; Shah and Kumar Singh,

2014).

However, in this research, the Soundex code generates a 6-digit code. The methodology

involves the combination of two different string similarity metrics to find an

approximate match for the entity by applying it during the iterative search process. The

iterative process is based on the combination of different attributes with three different

possible name variations. These name variations are not fixed and can be anything based

on how the name is pronounced. Each iterative search generates a dataset that is later

combined into one final dataset. The approximate score of names is based on aggregate

calculations of Soundex's and Jaro-Winkler's approximate scores. The FuzzyWuzzy

Python library is used to generate the long string address score. The Mean-Shift

algorithm groups resultant records based on aggregate score and calculated age. The

clusters are calculated automatically based on a matched number of records, and there

is no need to provide a fixed number. After this, the results are further analysed by

3. RESEARCH DESIGN AND METHODOLOGY

91

segmenting the records based on further similarities and displaying the relationship in

the graph to detect the identity. The results will be categorised as “ Match”, “Possible

Match”, and “Close or Related Match”.

The following section explains the proposed model for identity resolution and

discusses the design phases in detail, building upon the foundational techniques

outlined in this section.

3. RESEARCH DESIGN AND METHODOLOGY

92

3.3. The Proposed Model for Identity Resolution

Figure 3.1 - Proposed Identity Resolution Model

3. RESEARCH DESIGN AND METHODOLOGY

93

3.3.1. Using Data Pre-processing

In the proposed model, the data pre-processing is simple, and the main focus is to match

the field’s values simply by using the similarity metrics collectively. The selected

attributes are “surname”, “forename”, “gender”, “address”, “postcode”, “description”

and “date of birth”. The input values to match can be partial, e.g., matching birth year

(converted into age) instead of the complete date of birth, partial postcode, or part of

the address. The proposed model converts all the values in the selected attributes to

lowercase. All the numeric fields are matched as string values, such as “postcode” and

“date of birth”, in the records as a string. As discussed in previous sections, comparing

the “date of birth” as a string benefits the search and eliminates the date format issues.

Figure 3.2 below defines the used attributes:

Figure 3.2 - Selection of attributes for the dataset

A combination of surname and forenameName

• Surname and Forename are merged to create one name field. The name field starts with surname.

To identify the entity as "Male" or "Female"Gender

• Instead of strings "male" and "female", only initials will be used for the search, such as M or F.

Calculated from the Date of BirthAge

• The age is calculated by finding the difference between the year of birth and the current year. It generates an
approximate age for the proposed model.

A combination of location attributes to form addressAddress

• The Street, Town and District fields are merged to create the "Address" field, excluding the postcode for this merge.

Defines the Ethnicity of an entityDescription

• In the search process, the description field provides the ethnicity of the entity in question. Therefore, the attribute's
name is taken from the dataset and has not been changed.

3. RESEARCH DESIGN AND METHODOLOGY

94

During this phase, the dataset splits into two datasets. The purpose of this dataset is to

separate complete records from incomplete records with different attribute values.

3.3.2. Creation of Attributes Formation

 Name – In the policing dataset, two separate fields define entity name. The first

field is a surname, a given family name of an entity. The second field is forename,

the first name given by parents. For the proposed model, to simplify and

generate one similarity code, the two fields, surname and forename, are

combined into one field as a Name. In this Name field, the name for each entity

starts with surname and then forename. The Name field will consider all the

naming issues discussed about similarity matching algorithms in the previous

chapter. Figure 3.3 shows the formation of the Name field.

Figure 3.3 - Formation of the Name attribute for the dataset

 Address – In the policing dataset, multiple fields provide street, town, and district

names and postcodes. All these fields are combined for the proposed model to

form the address field instead of having different fields representing address.

The postcode field is not combined with this Address field. The main reason is to

keep the postcode separate for an approximate match based on the partially

known postcode while using the Address field for approximate matching for any

known address information. It gives the two sets matching flexibility based on

Address and postcode. Figure 3.4 below shows the formation of the Address

field.

Surname Forename Name

3. RESEARCH DESIGN AND METHODOLOGY

95

Figure 3.4 - Formation of the Address attribute for the dataset

 Age – For the proposed model, the full Date of Birth is required, and only

approximate age is required to populate the records during the search. So, the

calculation is done by extracting the birth year and subtracting it from the

current year to calculate the approximate number. This resultant number is

counted as Age and added to the policing datasets while keeping the date of

birth in the dataset. Figure 3.5 shows the extraction of age from the Date of Birth.

Figure 3.5 - Formation of the Age attribute for the dataset

Street
Name

Town
Name

District
Name

Address

Date Of Birth (Day/Month/Year)

Birth Year - Current Year

Age

3. RESEARCH DESIGN AND METHODOLOGY

96

The block diagram of the fuzzy approach for complete records shown in Figure 3.6 uses

string similarity techniques in a cascaded manner, scoring the names to find an

approximate name match.

Figure 3.6 - The block diagram of a fuzzy approach to identity resolution using complete records

3.3.3. Selection of Searching Criteria

The proposed model introduces the iterative process for searching the target name in

the database. The search iteration process runs in three passes, combining selected

attributes to generate the search results. The search is formed in each pass with

different name variations, and the result of each pass will be stored as a data subset.

Once the iteration process is completed, all three data subsets will be compared for

duplicate records and merged to generate one final dataset. The search process is bound

to similarity metrics for matching text in case of errors.

Figure 3.1 shows the iterative process that runs in three passes and can be denoted as

follows:

S = {s1, s2, s3}

Here “S” represents the search iteration process, and s1, s2, and s3 are the iterations,

respectively. Each iteration process combines the selected attributes {a} to generate the

3. RESEARCH DESIGN AND METHODOLOGY

97

search results as data subset {d}. Each iteration uses a different name variation, and the

result of each pass is stored as a data subset {d}. It can be denoted as:

di = {a1, a2, a3, a4, a5}

Here “i” represents the data subsets as d1, d2, and d3, respectively. Once the iteration

process is completed, all three data subsets are compared by removing duplicate records

and merging to form the final dataset “D”. This can be denoted as follows:

D = [{d1, d2, d3} – dup] Equation 3.1

Here, “dup” represents the duplicate records.

Another process is scoring the address field strings with the help of the FuzzyWuzzy

Python library’s partial token function by comparing the input address during the initial

search process. The scoring of addresses helps to retrieve the related records for the

target name based on the matching address or part of the address. Once the matching

and related records dataset is generated, it runs on the incomplete dataset to pick any

matching records. Figure 3.6 shows the matching of records and different phases to

generate results from the record's complete dataset. The fuzzy approach eliminates most

no-match entities based on the low aggregate score compared to the threshold value set

during the initial search. Finding the results as accurately as possible is essential because

each record contains different attributes that help differentiate one entity from another.

3.3.4. Calculating the Aggregate Score

This fuzzy approach uses Soundex and Jaro-Winkler similarity techniques to calculate

the aggregate score for name matching, as shown in Figure 3.6. The names are encoded

using Soundex code, and the Jaro-Winkler score (JWscore) is calculated for each name

and records are retrieved based on the matching score. Due to the mistake of the match

of the Soundex code and the Jaro-Winkler score format, the Jaro-Winkler matching

technique is applied to the Soundex code of each name to generate the matching score

3. RESEARCH DESIGN AND METHODOLOGY

98

called the Soundex score (Sscore). All these scores are added (+) together and multiplied

(*) by the average value of 0.5 to get the aggregate score (AggScore) ranging between 0

and 1.

For this purpose, the Soundex algorithm has been modified by removing the retention

of the first character of a name as a constant letter in the code while increasing the code

length to 6 digits. It generates a numerical 6-digit Soundex code to help eliminate the

Soundex first character mismatch issue. Increasing the code length helps to reduce many

false-positive retrievals compared to the 4-digit code.

The conversion of name si and sj to Soundex code into Jaro-Winkler score and aggregate

score calculations are as follows:

Sscore = JWscore(si, sj) Equation 3.2

The aggregate score is calculated with the following equation:

AggScore = (Sscore + JWscore) * 0.5 Equation 3.3

The names will be labelled based on the following criteria:

 Possible Match - The aggregate score is less than or equal to 1.0 and greater than

or equal to 0.90. i.e. aggregate score >= 90% and aggregate score <= 100%

matching score

 Close Match - The aggregate score is less than 0.90 and greater than or equal to

0.70. i.e. aggregate score < 90% and aggregate score >= 70% matching score

 No Match - The aggregate score is less than 0.70. i.e. aggregate score < 70%

matching score

3. RESEARCH DESIGN AND METHODOLOGY

99

3.3.5. Selection of Records Comparison Criteria

Figure 3.1 shows that all three data subsets will be merged and compared for duplicate

records to form one final dataset. Even though all duplicate records are removed at this

stage, records will be retrieved with a low aggregate score, e.g., a score of 0.50 or 0.60

with a matching aggregate code. Any “No match” or irrelevant records will be dropped

based on the name fuzzy matching score of attribute values. However, to ensure the

threshold filtering is not missing any relevant records, as shown in Figure 3.6, the

matching records are based on the selected attribute values in the initial search dataset

that the search iteration process will produce. It will help to create the final dataset to

cluster or group the records.

3.3.6. Clustering and Segmentation of records

After comparing records and acquiring the final dataset, it will be used to cluster records

based on the selection criteria for the grouping as shown in Figure 3.6. The clustering

will further identify matching records based on link analysis classified as “match”,

“possible match”, and “close or related match”. At this stage, the clustering does not

require labelling data from a human expert to group similar records. Because the Mean-

Shift clustering algorithm has been used to group similar records based on age, name

aggregate score, and address score. Using the Mean-Shift algorithm gives flexibility in

the clustering that does not require a fixed number of clusters to be defined. Each record

will be labelled automatically with a cluster number during this clustering process. These

clustered records will then be matched, compared and filtered based on the highest

name and address score to create segments of records. It will ensure that similar records

are linked together even in different clusters. These records will be matched for similar

addresses from the initial retrieved and clustered datasets in the segmentation process,

as seen in Figure 3.6. The similar segmented records will be merged into one dataset,

and any relevant records will be kept separate. Any found duplicate entries for the same

entity will be eliminated to reduce the number of matched records. For example, if a

3. RESEARCH DESIGN AND METHODOLOGY

100

record contains a similar “name” and “address” but a different “date of birth”, then in

this case, it will be labelled as “possible match”. However, suppose a record contains a

similar “date of birth” and “address” but a different name, then it will be labelled as a

“close or related match”. The proposed model will efficiently avoid duplicate records

and provide clean record linkage for a detailed resolution process.

3.3.7. Adding Graph Analysis

During the graph analysis, these segmented records will be compared with the clustered

dataset to match the final identity out of all other identities. Figure 3.6 shows that the

graph creation will be layer-based by using different attributes from the dataset to

explore the matching records step by step visually. The first graph will be created using

the entity name and cluster label for the entities, and it will visually represent all entities

linked to each cluster in the clustered dataset. The second graph will use the entity name

and address from the segmented dataset. The third graph will be created using the

second graph data compared with the first graph to find the matched identity out of

other identities, and the matched identity will be shown with associated addresses.

3.4. Tools for Implementation of the Proposed

Model

The fuzzy approach utilises Soundex and Jaro-Winkler algorithms to calculate the

aggregate score for names and the FuzzyWuzzy Python library using Edit-Distance partial

token to score the other attributes, e.g. ethnicity description and address. The aim is to

match names simply by using similarity metrics and analysing retrieved records for

similarities using clustering, segmentation, and graph analysis. This fuzzy approach is

implemented using Python 3.7 using PyCharm (community version) IDE, and the

anonymized policing dataset is stored in MS SQL Server Express 2017. Pandas (Python

data analysis library) cleans data and stores datasets retrieved during different stages.

The NetworkX library is used for graph analysis and visualization.

3. RESEARCH DESIGN AND METHODOLOGY

101

The proposed approach requires implementation and computer programming language,

tools, and machine learning packages to achieve the proposed result. The details of the

tools used to implement the proposed model have been added to Appendix B.

3.5. Implementation of Soundex with

Improvements

3.5.1. Standard Soundex Code Algorithm

The following is the algorithm of the standard Soundex code. It will generate a 4-

character alphanumeric code for any name. The results of the standard code for each

name are discussed in table format in the next section.

1. Define “Soundex” function for “name” to create code of “length 4”

2. Define “digit” mapping for letters A-Z as '01230120022455012623010202'

3. Initialise variables name as “soundex_code” and “first_character”

4. Convert name to uppercase and iterate through each character
5. for character in name converted to uppercase
6. if character is an alphabetic letter
7. Store the first letter as the initial letter
8. digit = digits[ASCII value of character - ASCII value of 'A']
9. if soundex_code is empty or digit is not the same as the last digit
added:
10. append digit to soundex_code

11. Replace the first digit with the initial letter and store in soundex_code

12. Remove all '0's from the soundex_code

13. Adjust the code to the required length 4 and remove additional characters
14. Return the result to the function Soundex

 Standard Soundex (4-digit Code) Results

Table 3.1 shows that the standard Soundex code is generated for the given names. The

Soundex issues are added in the table below to show each name matching results

accordingly.

3. RESEARCH DESIGN AND METHODOLOGY

102

Table 3.1 - Soundex 4-digit code for names representing Soundex issues

Soundex Issues Names Soundex Code

First Letter

dependency

Corth , Korth C630 , K630

Transcription

difference

Ivanov , Ivanoff , Iwanow

Hsiao , Xiao

I151 , I151 , I151

H200 , X000

Silent consonants Meghburn , Meburn

Coghburn , Coburn

Deighton , Dayton

M216 , M165

C216 , C165

D235 , D350

Name syntax Sheikh Ali Mohamed , Sheikh Ali

Sheikh Ali Mohamed , Sheikh Mohamed

Ali Mohamed , Sheikh Ali Mohamed

Alhameed , Hameed

Alhameed , Hamid

S245 , S240

S245 , S255

A455 , S245

A453 , H530

A453 , H530

Name Initials Mikhail Kovalchuk , M.Kovalchuk, M242 , M214

Poor precision Criton. , Courtmanche

Criton. , Corradino

Criton. , Cartmill

Criton. , Cortinez

C635 , C635

C635 , C635

C635 , C635

C635 , C635

Noise intolerance Hreman , Herman

Hubbins , Huggins,

Msith , Smith

H655 , H655

H152 , H252

M230 , S530

3. RESEARCH DESIGN AND METHODOLOGY

103

Smith , Smythe S530 , S530

Long Name Rameshwar , Rameshwaram R526 , R526

In the standard Soundex algorithm, the code produced to match the names retains the

first character from the names. The remaining alphabets in the names are converted

into digits. The first letter dependency issue mismatches the names starting with

different letters. If there is a typo error, then the name does not match. For example,

“Corth” and “Korth” do not match names based on the standard Soundex code. The

other issues of Standard Soundex code matching can be seen in the table.

3.5.2. Improved Soundex 6-digit Code Algorithm

The Soundex code algorithm has been modified by removing the first character of a

name as a constant letter from the code and changing the length to 6 digits. It generates

a numerical Soundex code of 6-digit code to help eliminate the Soundex first character

mismatch issue. Increasing the code length helps reduce many false-positive retrievals

compared to the 4-digit code. The results of this improved Soundex 6-digit code are

presented in the next section. The following is the algorithm of the improved Soundex

6-digit code:

1. Define “Soundex” function for “name” to create code of “length 6”

2. Define “digit” mapping for letters A-Z as '01230120022455012623010202'

3. Initialise variables name as “soundex_code” and “first_character”

4. Convert name to uppercase and iterate through each character
5. for character in name converted to uppercase
6. if character is an alphabetic letter
7. digit = digits[ASCII value of character - ASCII value of 'A']
8. if soundex_code is empty or digit is not the same as the last digit
added:
9. append digit to soundex_code

10. Remove all '0's from the soundex_code

3. RESEARCH DESIGN AND METHODOLOGY

104

11. Adjust the code to the required length 6 and remove additional characters
12. Return the result to the function Soundex

 Improved Soundex 6-digit Code Results

Table 3.2 - Improved Soundex 6-digit code for names representing Soundex issues

Soundex Issues Names Soundex Code

(Modified)

First Letter

dependency

Corth , Korth 263000 , 263000

Transcription

difference

Ivanov , Ivanoff , Iwanow

Hsiao , Xiao

151000 , 151000

200000 , 200000

Silent consonants Meghburn , Meburn

Coghburn , Coburn

Deighton , Dayton

521650 , 516500

221650 , 216500

323500 , 335000

Name syntax Sheikh Ali Mohamed , Sheikh Ali

Sheikh Ali Mohamed , Sheikh Mohamed

Ali Mohamed , Sheikh Ali Mohamed

Alhameed , Hameed

Alhameed , Hamid

224553 , 224000

224553 , 225530

455300 , 224553

453000 , 530000

453000 , 530000

Name Initials Mikhail Kovalchuk , M.Kovalchuk, 524214 , 521422

Poor precision Criton. , Courtmanche

Criton. , Corradino

Criton. , Cartmill

263500 , 263552

263500 , 263500

263500 , 263540

3. RESEARCH DESIGN AND METHODOLOGY

105

Criton. , Cortinez 263500 , 263520

Noise intolerance Hreman , Herman

Hubbins , Huggins,

Msith , Smith

Smith , Smythe

655000 , 655000

152000 , 252000

523000 , 253000

253000 , 253000

Long Name Rameshwar , Rameshwaram 652600 , 652650

It is worth noting that the code implementation brought different results compared to

the standard Soundex code. The First letter dependency has been eliminated to fuzzy

match the strings. However, most notably, the poor precision strings are not matched

because the codes generated are different for each pair. It also improved the matching

of long names and helped reduce the noise tolerance issue of the standard Soundex

algorithm.

3.6. String Matching with 6-digit Soundex code

The improved 6-digit Soundex code shows the improvement over the standard Soundex

code by addressing most of the issues discussed in previous sections. Table 3.3 provides

the matching status of each pair of strings to better understand the results of the

improved Soundex 6-digit code algorithm.

Table 3.3 - Improved Soundex 6-digit code for names with Algorithm Matching status

Soundex Issues Names Soundex Code

(Modified)

Matching

Status

First Letter

dependency

Corth , Korth 263000 , 263000 Possible Match

3. RESEARCH DESIGN AND METHODOLOGY

106

Transcription

difference

Ivanov , Ivanoff , Iwanow

Hsiao , Xiao

151000 , 151000

200000 , 200000

Possible Match

Close Match

Silent

consonants

Meghburn , Meburn

Coghburn , Coburn

Deighton , Dayton

521650 , 516500

221650 , 216500

323500 , 335000

Possible Match

Possible Match

Close Match

Name syntax Sheikh Ali Mohamed , Sheikh

Ali

Sheikh Ali Mohamed , Sheikh

Mohamed

Ali Mohamed , Sheikh Ali

Mohamed

Alhameed , Hameed

Alhameed , Hamid

224553 , 224000

224553 , 225530

455300 , 224553

453000 , 530000

453000 , 530000

Close Match

Possible Match

Close Match

Close Match

Close Match

Name Initials Mikhail Kovalchuk ,

M.Kovalchuk,

524214 , 521422 Close Match

Poor precision Criton. , Courtmanche

Criton. , Corradino

Criton. , Cartmill

Criton. , Cortinez

263500 , 263552

263500 , 263500

263500 , 263540

263500 , 263520

Close Match

Close Match

Close Match

Close Match

Noise

intolerance

Hreman , Herman

Hubbins , Huggins,

655000 , 655000

152000 , 252000

Possible Match

Close Match

3. RESEARCH DESIGN AND METHODOLOGY

107

Msith , Smith

Smith , Smythe

523000 , 253000

253000 , 253000

Close Match

Possible Match

Long Name Rameshwar , Rameshwaram 652600 , 652650 Possible Match

The matching status for most of the pairs of strings helps to fuzzy match them rather

than complete mistakes compared to standard Soundex code. The poor precision is

closed-matched if the matching threshold is set to 0.70. However, if the matching

threshold is lower than 0.70, these pairs of strings will not be matched as close or

matches. At the same time, the matching status of other Standard Soundex issues is

improved.

3.7. Summary

The research methodology has been explained in this chapter. The methods used to

form the proposed algorithm involve data preparation, labelling, clustering, records

linkage, and data selection based on set criteria with data segmentation. Following this

detail, the proposed model was explained, and each phase was presented in detail.

Different tools and libraries that helped implement the proposed model were discussed

in detail. The chapter's last sections discussed the implementation of matching

algorithms and introduced improvements in the Soundex algorithm. At the end of the

chapter, the matching of different strings was discussed using an improved Soundex

algorithm. The next chapter uses these matching algorithms and the proposed model to

provide the computer-simulated results.

4. RESULTS – DATA ANALYSIS OF POLICING DATASET & COMPUTER SIMULATION

108

CHAPTER4

4. RESULTS – DATA ANALYSIS OF POLICING

DATASET & COMPUTER SIMULATION

4.1. Chapter Overview

The chapter is divided into four sections, which provide the analysis and discuss the

results. These results will be generated based on the proposal model in Chapter 3. The

chapter starts by evaluating the matching of different language name variations using

improved Soundex algorithms and the aggregate score for each name. For this reason,

English, Arabic, Russian and other mixed names will be used. The matching results and

the performance of each language name will be discussed. Following this, the evaluation

will be conducted on the de-identified policing dataset, but before that, the policing

dataset will be explained and analysed. The dataset will be evaluated using computer

simulation by performing three individual searches. The results of each search will be

analysed in detail, and the final section of the chapter will evaluate each search result's

performance measures. The measures of success for this research on identity resolution

would be based on several key criteria, reflecting the proposed approach's

effectiveness, efficiency, and impact. It will include assessing the effectiveness of the

aggregate matching score to retrieve records, flexibility and adaptability of the proposed

model to handle the variation of data, precision, recall and accuracy of the matching

names and quality of the clustering of records matching.

4. RESULTS – DATA ANALYSIS OF POLICING DATASET & COMPUTER SIMULATION

109

4.2. Evaluation of Names Variations

It is significant for entity matching in an extensive database to match names of different

languages. At the same time, identify no match from the results. The classification of

results is needed to do this, and the aggregate score algorithm can be applied to achieve

this. The aim is to find matches as true positives and reduce false positives and false

negatives where needed. For this purpose, a confusion matrix will be applied to evaluate

the performance of the aggregate score algorithm. Therefore, some true positives (TP),

true negatives (TN), false positives (FP), and false negatives (FN) calculations will help to

measure the matching outcome and provide the precision, recall and accuracy of the

results. The results will be placed in the following four categories. They will help to

calculate the precision, recall and accuracy of the overall results:

 True positives (TP): When the match is a true match detected by the algorithm.

It means the entity name correctly matches the actual name.

 True negative (TN): When the non-match is a non-match detected by the

algorithm. It means the entity name is a true non-match with the actual name and

detected correctly.

 False positives (FP): When the algorithm detects the match as a true match with

a non-match. It means a false match is found that should not be matched with the

actual name.

 False negatives (FN). When the algorithm detects a non-match with a match, it

should be found as a match but detected incorrectly.

To assess the algorithm's overall performance through a single value measurement,

precision, recall, and accuracy will be derived from the four values in the confusion

matrix. Precision provides the measure of the accuracy of the positive predictions. It is

the ratio of correctly predicted positive observations to the total predicted positives.

Recall measures the ability of the model to capture all the relevant instances of a class.

It is the ratio of correctly predicted positive observations to the actual positives.

4. RESULTS – DATA ANALYSIS OF POLICING DATASET & COMPUTER SIMULATION

110

Accuracy provides the overall correctness of the model. It is the ratio of correctly

predicted instances to the total number of instances.

The following sections are the computer simulation results to compare names and find

similarities. It shows the performances of the proposed algorithm by generating these

matching results. Therefore, before implementing the proposed algorithm on the

policing dataset, it is worth discussing and evaluating the results of different name

matching using improved Soundex code using the proposed algorithm.

4.2.1. Evaluation of English Names

In Figure 4.1, the 17 English names are selected from the previous work by (Winkler,

1994) to evaluate the names' similarities. These names are fed into the proposed

matching algorithm and are compared here using modified Soundex code with Jaro-

Winkler similarity metrics.

Figure 4.1 - English names variation with the proposed algorithm

4. RESULTS – DATA ANALYSIS OF POLICING DATASET & COMPUTER SIMULATION

111

All these names have different scores listed, but to clarify the results further, the results

are separated into three sections, as shown below in Figure 4.2.

Figure 4.2 - English names breakdown of matching with and without the same Soundex code

The first three names in Figure 4.2 have higher aggregate scores compared to the Jaro

Winkler Score. At the same time, they have different Soundex codes. Jaro-Winkler

scored lower than Soundex and the aggregate score for these three names. However,

looking at these names closely, it can be observed that these “3” names are different

and should not be matched with a higher score. The aggregate score generated for the

names matches them as a close match for two names. The last two names in Figure 4.2

have an aggregate score lower than the Jaro-Winkler score. The first name is labelled as

a close match as the names are similar yet different. In comparison, the second name is

labelled as no match. It is lower than the Jaro-Winkler score because the names are not

similar.

4. RESULTS – DATA ANALYSIS OF POLICING DATASET & COMPUTER SIMULATION

112

Figure 4.3 - Matching Scores Comparison of English Names

The score comparison graph in Figure 4.3 shows the name match Soundex, Jaro-Winkler,

and Aggregate score. Based on the fuzzy string matching requirements, the aggregate

score approximately matches the names instead of giving the value of 1 to show a 100%

match. Therefore, in this instance, this is the correct way to match these names to find

the best match.

NAMES

SH
A
C
K
LE
FO

R
D
 ,
SH

A
C
K
EL
FO

R
D

D
U
N
N
IN
G
H
A
M
 ,
C
U
N
N
IG
H
A
M

N
IC
H
LE
SO

N
 ,
N
IC
H
U
LS
O
N

M
A
SS
EY
 ,
M
A
SS
IE

JO
N
ES
 ,
JO
H
N
SO

N

A
B
R
O
M
S
, A

B
R
A
M
S

H
A
R
D
IN
 ,
M
A
R
TI
N
E

IT
M
A
N
 ,
SM

IT
H

JE
R
A
LD

IN
E
, G

ER
A
LD

IN
E

M
A
R
H
TA
 ,
M
A
R
TH

A

M
IC
H
EL
LE
 ,
M
IC
H
A
EL

JU
LI
ES
 ,
JU
LI
U
S

TA
N
YA
 ,
TO

N
YA

D
W
A
YN

E
, D

U
A
N
E

SE
A
N
 ,
SU

SA
N

JO
N
 ,
JO
H
N

JO
N
 ,
JA
N

SC
O

R
E

0

0.1

0.2

0.3

0.

0.5

0.6

0.

0.8

0.

1

Comparison of English Names Matching Scores

Soundex Score JaroWinkler Score Aggregate Score

4. RESULTS – DATA ANALYSIS OF POLICING DATASET & COMPUTER SIMULATION

113

Figure 4.4 – Performance of Matching Scores of English Names

Figure 4.4 is colour-coded based on the Figure 4.5 confusion matrix values for a better

understanding. Based on these values, the precision, recall and accuracy have been

calculated as shown below:

Figure 4.5 – Confusion Matrix for English Names Comparison

The Precision is calculated as TP / (TP + FP), and the result is 0.79. The Recall is calculated

as TP / (TP + FN), and the result is 0.92. The accuracy is calculated as TP+TN /

TP+TN+FP+FN, and the result is 0.76. Figure 4.6 below shows the overall result of the

comparison of algorithm performance.

11

•TP

3

•FP

2

•TN

1

•FN

4. RESULTS – DATA ANALYSIS OF POLICING DATASET & COMPUTER SIMULATION

114

Figure 4.6 – Overall Performance Evaluation of English Names

4.2.2. Evaluation of Selection of Mixed Names

Figure 4.7 lists the random names of different languages for similarity matching. These

22 names are fed into the proposed matching algorithm, which combines English,

Arabic, and Russian names and abbreviations. These names are compared here using

modified Soundex code and Jaro-Winkler similarity metrics.

Figure 4.7 - Mixed name variation with the proposed algorithm

0.79

0.92

0.76

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Precision Recall Accuracy

Overall Performance - English Names

4. RESULTS – DATA ANALYSIS OF POLICING DATASET & COMPUTER SIMULATION

115

All names have different scores listed, but to clarify the results further, the results are

separated into three sections, as shown below in Figure 4.8.

Figure 4.8 - Mixed names breakdown of matching with and without the same Soundex code

The first six names are in Figure 4.8, and they have higher aggregate scores than the

Jaro-Winkler score with different Soundex codes. For these six names, Jaro-Winkler

scored lower than Soundex and aggregate score. It can be observed that “Adeline” and

“Line” are different strings and should not be matched with a higher score. The other

“5” names are matched as close matches with aggregate scores. The middle four names

in Figure 4.8. have an aggregate score lower than the Jaro-Winkler score. The two names

are labelled as Possible matches because these names are similar. One name is labelled

as close matched while another is labelled as no match with a lower score than the Jaro-

Winkler score, but this should match as this is an abbreviated word. The last two names

got similar Soundex, Jaro-Winkler, and aggregate scores. One name is labelled as no

match, and it is correct to be a no match because names are different. The other name

is labelled as a possible match. It is good to be picked up with a better score because the

4. RESULTS – DATA ANALYSIS OF POLICING DATASET & COMPUTER SIMULATION

116

name can be mistyped or misspelt in the dataset. However, based on fuzzy matching,

the algorithm will pick it as a possible match.

The score comparison graph in Figure 4.9 below shows the name match Soundex, Jaro-

Winkler and aggregate score. Based on the fuzzy matching requirements, the aggregate

score approximately matches the names instead of giving the value of 1 to show a 100%

match. In this instance, that is the correct way to match these names.

Figure 4.9 - Matching Scores Comparison of Mixed Names

NAMES

A
b
d
al
 R
ac
h
id
 ,
A
b
d
u
r
ra
sh
id
e

C
at
h
er
in
e
, K
at
h
er
in
e

A
D
EL
IN
E
, L
IN
E

M
C
M
A
N
U
S
, M

A
C
M
A
N
U
S

W
IL
L
SM

IT
H
 ,
W
IL
L
SM

IT
H
 Y
O
U
N
G

SM
IT
 ,
S.
M
.I
.T

W
IL
L
SM

IT
H
 ,
W
IL
L
SM

IT
H

M
ik
h
ai
l K
o
va
lc
h
u
k
, M

.K
o
va
lc
h
u
k,

Iv
an
o
v
, I
w
an
o
w

Iv
an
o

 ,
Iw
an
o
w

Iv
an
o

 ,
Iv
an
o
v

B
O
B
B
Y
, B

O
B

R
O
B
 ,
R
O
B
B
IN

Si
n
cl
ai
r
, S
t.
 C
la
ir

M
A
X
IM

E
, M

A
X
IM

IE
N

C
h
ri
s
n
a
, T
in
a

Po
o
h
 ,
P
u
h

In
co
rp
o
ra
te
d
 ,
In
c.

K
o
rt
h
 ,
C
o
rt
h

M
eg
h
b
u
rn
 ,
M
eb

u
rn
,

H
er
m
an
 ,
H
re
m
an

Sm
it
h
 ,
Sm

yt
h
e

SC
O

R
E

0

0.1

0.2

0.3

0.

0.5

0.6

0.

0.8

0.

1

Comparison of Mixed Names Matching Scores

Soundex Score JaroWinkler Score Aggregate Score

4. RESULTS – DATA ANALYSIS OF POLICING DATASET & COMPUTER SIMULATION

117

Figure 4.10 – Performance of Matching Scores of Mixed Names

Figure 4.10 is colour-coded based on the Figure 4.11 confusion matrix values for a better

understanding. Based on these values, the precision, recall and accuracy have been

calculated as shown below:

Figure 4.11 – Confusion Matrix for Mixed Names Comparison

The Precision is calculated as TP / (TP + FP), and the result is 0.95. while the Recall is

calculated as TP / (TP + FN), and the result is 0.95. The accuracy is calculated as TP+TN /

TP+TN+FP+FN, and the result is 0.90. Figure 4.12 below shows the overall result of the

comparison of algorithm performance.

18

•TP

1

• FP

2

•TN

1

• FN

4. RESULTS – DATA ANALYSIS OF POLICING DATASET & COMPUTER SIMULATION

118

Figure 4.12 – Overall Performance Evaluation of Mixed Names

4.2.3. Evaluation of Arabic Names

In Figure 4.13, Arabic names are selected and fed into the proposed matching algorithm.

These 15 names are taken to compare using modified Soundex code and Jaro-Winkler

similarity metrics.

Figure 4.13 - Arabic name variation with the proposed algorithm

0.79

0.95
0.9

0

0.2

0.4

0.6

0.8

1

Precision Recall Accuracy

Overall Performance - Mixed Names

4. RESULTS – DATA ANALYSIS OF POLICING DATASET & COMPUTER SIMULATION

119

All names have different scores listed, but to clarify the results further, the results are

separated into three sections, as shown below in Figure 4.14.

Figure 4.14 - Arabic names breakdown of matching with and without the same Soundex code

The names in Figure 4.14 have higher aggregate scores than the Jaro-Winkler score. At

the same time, they have different Soundex codes. Three names are labelled as close

matches, and Jaro-Winkler has scored lower than the aggregate. Only one name is

labelled as no match as it has been scored lower. It can be observed that this name is a

variation of another name and should match as a possible or close match. It should be

like the other name, where names are labelled as possible matches. The aggregate score

generated for the name is higher than Jaro-Winkler and equivalent to the Soundex code.

The score comparison graph in Figure 4.15 below shows the name match Soundex, Jaro-

Winkler, and Aggregate score. Based on the fuzzy matching requirements, the aggregate

score approximately matches the names instead of giving the value of 1 to show a 100%

match in this instance; that is the correct way to match these names.

4. RESULTS – DATA ANALYSIS OF POLICING DATASET & COMPUTER SIMULATION

120

Figure 4.15 - Matching Scores Comparison of Arabic Names

NAMES

A
b
d
al
 R
ac
h
id
 ,
A
b
d
u
r
ra
sh
id

K
A
D
ER

 ,

A
D
IR

A
B
D
 A
L
R
A
H
M
A
N
 ,
A
B
D
U
LR
EH

M
A
A
N

A
B
D
 A
L
A
 I

, A

B
D
EL
A
 I

H
u
ss
ei
n
 ,
H
U
SA
YN

M
O
H
A
M
ED

 ,
M
U
H
A
M
M
A
D

A
B
U
 A
L
FA
D
L
, A

FA
 L

B
R
A
H
IM

 ,
A
B
R
A
H
IM

D
A
U
D
 ,
D
A
W
O
O
D

H
A
B
IB
U
LL
A
H
 ,
H
A
B
IB

I

U
D
 D
IN
 ,
A
 I

U
D
 D
EE
N

JA
M
A
L
A
L
D
IN
 ,
K
A
M
A
L
U
D
 D
IN

N
O
U
R
ED

D
IN
E
, N

U
R
 A
D
 D
IN

 A
A
H
IR
 ,
 A

H
EE
R

 A
K
A
R
IA
 ,
 A

K
A
R
IY
YA

SC
O

R
E

0

0.1

0.2

0.3

0.

0.5

0.6

0.

0.8

0.

1

Comparison of Arabic Name Matching Scores

Soundex Score JaroWinkler Score Aggregate Score

4. RESULTS – DATA ANALYSIS OF POLICING DATASET & COMPUTER SIMULATION

121

Figure 4.16 – Performance of Matching Scores of Arabic Names

Figure 4.16 is colour-coded based on the Figure 4.17 confusion matrix values for a better

understanding. Based on these values, the precision, recall and accuracy have been

calculated as shown below:

Figure 4.17 – Confusion Matrix for Arabic Names Comparison

The Precision is calculated as TP / (TP + FP), and the result is 1.0. while the Recall is

calculated as TP / (TP + FN), and the result is 0.93. The accuracy is calculated as TP+TN /

TP+TN+FP+FN, and the result is 1.0. Figure 4.18 below shows the overall result of the

comparison of algorithm performance.

14

• TP

0

• FP

0

• TN

1

• FN

4. RESULTS – DATA ANALYSIS OF POLICING DATASET & COMPUTER SIMULATION

122

Figure 4.18 – Overall Performance Evaluation of Arabic Names

4.2.4. Evaluation of Russian Names

In Figure 4.19, Russian names are selected and fed into the proposed matching

algorithm. These 9 names are compared here using modified Soundex code and Jaro-

Winkler similarity metrics.

Figure 4.19 - Russian name variation with the proposed algorithm

1
0.93

1

0

0.2

0.4

0.6

0.8

1

Precision Recall Accuracy

Overall Performance - Arabic Names

4. RESULTS – DATA ANALYSIS OF POLICING DATASET & COMPUTER SIMULATION

123

These results are separated into three sections to clarify the results further, for all the

names have different Soudex codes, as shown below in Figure 4.20.

Figure 4.20 - Russian names breakdown of matching with and without the same Soundex code

The first name in Figure 4.20 has a higher aggregate score than the Jaro Winkler Score,

while it has different Soundex codes and has been labelled as a close match. However,

the name Jaro-Winkler scored lower than Soundex and aggregate score. By close

observation, the name is the same but with Full name and initials in the second variation.

The last two names in Figure 4.20 have an aggregate score lower than the Jaro-Winkler

score. The first name is labelled as a possible match as names are similar but are possibly

similar or different names. While the second name is labelled as a close match and has

a score lower than the Jaro-Winkler score, it is still the same or a similar name to be

matched.

The score comparison graph in Figure 4.21 below shows the name match Soundex, Jaro-

Winkler and Aggregate score. Based on the fuzzy matching requirements, the aggregate

score approximately matches the names instead of giving the value of 1 to show a 100%

match in this instance; that is the correct way to match these names.

4. RESULTS – DATA ANALYSIS OF POLICING DATASET & COMPUTER SIMULATION

124

Figure 4.21 - Matching Scores Comparison of Russian Names

Figure 4.22 – Performance of Matching Scores of Russian Names

NAMES

EK
AT
ER
IN
A
 ,
YE
KA
TE
RI
N
A

EL
EN
A
 ,
YE
LE
N
A

JE
KA
TE
RI
N
A
 ,
YE
KA
TE
RI
N
A

LI
O
U
BA
 ,
LY
U
BA

N
A
ST
A
SY
A
 ,
A
N
A
ST
A
SI
YA

M
A
X
, M

A
KS

M
ik
ha
il
Ko
va
lc
hu
k
, M

.K
ov
al
ch
uk

Iv
an
ov
 ,
Iw
an
ow

Iv
an
o
 ,
Iv
an
ov

SC
O

R
E

0

0.1

0.2

0.3

0.

0.5

0.6

0.

0.8

0.

1

Comparison of Russian Names Matching Score

Soundex Score JaroWinkler Score Aggregate Score

4. RESULTS – DATA ANALYSIS OF POLICING DATASET & COMPUTER SIMULATION

125

For better understanding, figure 4.22 is colour-coded based on the Figure 4.23 confusion

matrix values. Based on these values, the precision, recall and accuracy have been

calculated as shown below:

Figure 4.23 – Confusion Matrix for Russian Names Comparison

The Precision is calculated as TP / (TP + FP), and the result is 1.0. while the Recall is

calculated as TP / (TP + FN), and the result is 1.0. The accuracy is calculated as TP+TN /

TP+TN+FP+FN, and the result is 1.0. Figure 4.24 below shows the overall result of the

comparison of algorithm performance.

Figure 4.24 – Overall Performance Evaluation of Russian Names

9

• TP

0

• FP

0

• TN

0

• FN

1 1 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Precision Recall Accuracy

Overall Performance - Russian Names

4. RESULTS – DATA ANALYSIS OF POLICING DATASET & COMPUTER SIMULATION

126

4.3. Policing Dataset

This section will explore and analyse the de-identified police dataset. The proposed

algorithm in Chapter 3 has been applied to this dataset. The details will be discussed

later in this chapter. The policing dataset comprises the following fields about each

entity. The names of each field listed here are precisely the same as in the dataset.

 Crime_Ref: This is a computer-generated unique reference number, which is

continuous.

 nominal_ref: This is a computer-generated unique reference number, which is

continuous.

 surname: Surname or family name.

 forename : First name(s).

 sex: Gender is “M” for Male or “F” for Female.

 date_of_birth : This is in dd/mm/yyyy format. A time aspect of 00:00:00 is attached

to this field, which is not utilised.

 ea_desc: Police Identity Codes as outlined below or written text:

o IC1 – White person, northern European/northern America type.

o IC2 – Mediterranean European/Hispanic.

o IC3 – African/Afro-Caribbean person.

o IC4 – Indian, Pakistani, Nepalese, Maldivian, Sri Lankan, Bangladeshi, or other

(South) Asian persons.

o IC5 – Chinese, Japanese, or South-East Asian person.

o IC6 – Middle Eastern, Arabic.

o IC0, IC7 or IC9 – Origin unknown.

 role_type :

o victims (VICT);

o defendants (DEFE);

o persons who are probably responsible for an offence (PROB);

o persons are known to be responsible for an offence (RESP);

o suspects for committing an offence (SUSP)

4. RESULTS – DATA ANALYSIS OF POLICING DATASET & COMPUTER SIMULATION

127

o victims (VICA).

 street_name: The street name of the Nominal’s home address that is manually

entered. House number is excluded.

 district_name: District of Nominal’s home address, which is manually entered.

 town_name: Town of Nominal’s home address, which is manually entered.

 Postcode_sector1: The postcode of Nominal’s home address is manually entered

and encompasses 3,000 residences.

 Beat_number1: Computer allocated. It is a Local Policing Unit (LPU) sub-area. For

example, E125 is Beat 25 in E1 LPU.

 grid_ref_northing1: This is a six-digit Ordnance Survey Grid Reference, which is a

1km block.

 grid_ref_easting1: This is a six-digit Ordnance Survey Grid Reference, which is a 1km

block.

4.4. Policing Dataset Analysis

The data pre-processing phase discussed in Chapter 3 eliminates missing values from

the dataset for each record. In the dataset, four different fields represent the address.

So, the three fields are merged as one address field while keeping the postcode field

separate. Similarly, the surname and forename are merged as the name field. The

records defined as ‘Unknown’ gender rather than ‘M’ for males and ‘F’ for females are

considered missing values. Overall, a total of 430,293 missing values are removed from

the dataset. Therefore, after data cleaning, the dataset still has 715,919 records. All

attribute values are converted to lowercase for standard matching.

In this fuzzy approach, name, gender, ethnicity, and address attributes are used to start

the initial search of records. There are a total of 1146212 records in the dataset.

4. RESULTS – DATA ANALYSIS OF POLICING DATASET & COMPUTER SIMULATION

128

Table 4.1 - Analysis of Policing Dataset

Column Name Total Records Missing Records

Crime_Ref 1146212 0

Offence 1145418 794

HOMC_Code 1077337 68875

HOOC_Code 1077341 68871

nominal_ref 1146212 0

Surname 1146212 0

Forename 1145364 848

Gender 1146212 0

date_of_birth 1136404 9808

role_type 1146212 0

street_name 1137798 8414

town_name 1104356 41856

district_name 1002364 143848

postcode 1039866 106346

ea_desc 1126280 19932

grid_ref_northing 1146212 0

grid_ref_easting 1146212 0

beat_number 1146212 0

4.4.1. Multiple Nominal References for the same

individual

When joining column Nominal_Ref to assign nominals to crimes and ascertaining their

network activities, it would not obtain a complete picture of all individuals as many

entities have multiple Nominal_Refs presented in the dataset.

Based on Nominal_Ref, Surname, Forename, dob and count Crime_Ref, there are

697773 records where flagged duplicate surnames, forenames, and dobs, and 12295

records are found in the dataset. There are 6032 individuals, each with 5 or fewer

different Nominal_Refs. For example, Surname = BECK & Forename = JAUNETTE & dob

4. RESULTS – DATA ANALYSIS OF POLICING DATASET & COMPUTER SIMULATION

129

= 16/08/64, it retrieves 17 crimes over the 3 Nominal_Refs, joined the 6032 to the using

Nominals ref to retrieve the number of crimes for each Surname, Forename, dob shows

27363 records. For example, Surname = HASKIN, Forename = ZIED dob = 19/11/99, by

using the combination, 5 Nominal_Ref has 38 crime records.

4.4.2. Multiple DOBs for the same individual

Omitting Nominal_Refs and only using Surname, Forename and Date of Birth (DOB) as a

compound key eliminates the issue above. However, many nominal records have the

same names, but some have different DOBs. It can account for common names such as

John Smith. However, there could be data errors, such as recording the UK vs

international dates (01/12/1945 is the same as 12/01/1945). Aggregate on Surname,

Forename, dob, and with flagged duplicates to ID all records with the same Surname

and Forename retrieves 309518 records. To check the different dob associated with the

same details, e.g. Surname = ABBIDAH, Forename = FAROS, retrieves 12 records where

10 are related to the same person across 3 different dobs judged by the addresses.

Entities comprise the complete list of all persons associated with the crime data set – a

victim, offender, witness, or suspect. Each entity is identified under a separate role.

4.5. Evaluation of De-identified Policing Dataset

The three names are input as desired in searches 1, 2 and 3 to find the corresponding

match in the database. Figure 4.25 shows the start of the iteration process by providing

three different name variations of search 1. The input name may or may not be the

correct spelling of the name, but this is what is known or being guessed for searching.

This search process produced records found in the database, as shown in Figure 4.26

and Figure 4.27.

4. RESULTS – DATA ANALYSIS OF POLICING DATASET & COMPUTER SIMULATION

130

 Search 1 – The target name is Bech Jaunette

Figure 4.25 - Search 1: Number of found records per search stage

Figure 4.26 - Search 1: Found records based on matching addresses and related records

4. RESULTS – DATA ANALYSIS OF POLICING DATASET & COMPUTER SIMULATION

131

Figure 4.27 - Search 1: Searching and filtering of records based on address score

Based on the inputs for Search 1 in Figure 4.25, the initial search and matching criteria

produced three datasets. The first variation of the name retrieved 95 records, the

second retrieved 61, and the third retrieved 95. A resultant dataset of 173 records is

generated after merging all three datasets and removing duplicate records. The records

are input into the clustering algorithm to calculate the number of clusters based on the

records found with matching addresses, names, and ages. Figure 4.28. shows the

clustering of the records.

Figure 4.28 - Search 1: Clustered records

Age

A
d

d
re

ss
 S

co
re

4. RESULTS – DATA ANALYSIS OF POLICING DATASET & COMPUTER SIMULATION

132

The dataset produced from the search results is fed into the clustering algorithm, and

clusters of the records are created based on age, name aggregate score, and address

score. The records are grouped into four clusters based on the similarity score of the

attributes involved using the Mean-Shift clustering technique. Some of the records in

clusters have low scores at the y-axis (address score). However, these records are still

required for the next stage to ensure not to ignore any related or close matches. After

the clustering phase, the segmentation picked the address with the highest score of

0.83. Figure 4.26 shows that 7 records, displayed in the last column, were retrieved

matching the highest address and name aggregate scores. In comparison, 9 related

records were retrieved with similar names with low address scores and a different date

of birth. Therefore, after merging these retrieved records, the final dataset has been

obtained containing 16 records, displayed in the last column, with a combination of the

same name, two different date of birth, and different addresses, as shown in Figure 4.27.

Figure 4.29 below presents the graphical analysis of the clustered records, where blue

dots represent individual entities by name, and the orange dots denote the clusters.

There are 4 clusters in Figure 4.29, with different entities linked to each cluster. The two

small clusters at the top right and bottom right in the graph are simple clusters of entities

and have no similarities with other clusters. However, the two clusters in the middle left

of the graph have some similar entities linked to each cluster. The three entities linked

to each cluster are shown in Figure 4.29 below.

4. RESULTS – DATA ANALYSIS OF POLICING DATASET & COMPUTER SIMULATION

133

Figure 4.29 - Graph analysis, the suspect identified as “Bech Jaunette” clustered

Figure 4.30 further explores the entity linkage details in the graph analysis, where the

red dot represents the matched entity. In contrast, the orange dot represents the

clusters. So, one of the three entities linked to two clusters from Figure 4.29 is matched

with the target search entity and represented with a red dot in Figure 4.30. This entity

is linked to different addresses, as shown in Figure 4.30. Therefore, the suspect was

identified out of other entities, with a red dot associated with different addresses.

4. RESULTS – DATA ANALYSIS OF POLICING DATASET & COMPUTER SIMULATION

134

Figure 4.30 - Graph analysis, the suspect identified as “Bech Jaunette” highlighted Red in Clusters
associated with different addresses.

However, this matched suspect entity in Figure 4.30 requires further clarity on the

address to be easily readable, as shown in Figure 4.31. Here, the red dot represents the

suspect entity, and the black arrows show the particular entity's link with different

addresses. The grey dot represents each address in Figure 4.31.

4. RESULTS – DATA ANALYSIS OF POLICING DATASET & COMPUTER SIMULATION

135

Figure 4.31 - Graph analysis, the suspect identified as “Bech Jaunette” highlighted Red and associated
with different addresses.

 Search 2 – The target name is Abbidah Faroz

Figure 4.32 - Search 2: Number of found records per search stage

Based on the inputs for Search 2 in Figure 4.32, the initial search and matching criteria

produced three datasets. All three name variations retrieved 41 records, and the

resultant dataset of 85 records was generated after merging all three datasets and

removing any duplicate records. All these retrieved records have some similarities or are

entirely different, but this will be distinguished later in the next stage.

4. RESULTS – DATA ANALYSIS OF POLICING DATASET & COMPUTER SIMULATION

136

Figure 4.33 - Search 2: Found records based on matching addresses and related records

Figure 4.34 - Search 2: Searching and filtering of records based on address score

4. RESULTS – DATA ANALYSIS OF POLICING DATASET & COMPUTER SIMULATION

137

Applying the resultant dataset to the clustering phase generated 4 clusters based on

age, name aggregate score, and address score. Figure 4.35 shows that some cluster

records have low scores at the y-axis (address score). These records are required for the

next stage to ensure that any related or close matches are not ignored. After the

clustering phase, the segmentation picked the address with the highest score of 1.0. In

Figure 4.33, 6 records were retrieved with the highest address and different name

aggregate scores.

In comparison, 20 other related records were retrieved with a similar name, low address

score, and 5 different dates of birth. So, the final dataset retrieved 22 records with a

combination of the same name, 6 different dates of birth, and different addresses. In

comparison, it contains 6 records with a different name, 3 different dates of birth, and

a high address matching score, possibly having similar addresses as shown in Figure 4.34.

Figure 4.35 - Search 2: Clustered records

Figure 4.36 shows a graph analysis of the entities added to different clusters. The blue

dot represents the entity, while the orange represents each cluster, showing that

different entities are linked to each cluster. However, some entities are linked to other

clusters too. These are familiar entities found in multiple clusters due to some

Age

A
d

d
re

ss
 S

co
re

4. RESULTS – DATA ANALYSIS OF POLICING DATASET & COMPUTER SIMULATION

138

similarities. In the graph of Figure 4.36, entities are linked between clusters 0, 1, 2 and

3.

Meanwhile, clusters 1 and 2 have a common entity but are not linked to other clusters.

Two similar entities are linked to clusters 1 and 3. Therefore, the main clusters to focus

on here are “0 and 1”, “0 and 2”, and “0 and 3”. Further graph analysis is required to

find the matched entity from these entities.

Figure 4.36 - Graph analysis, the suspect identified as “Abbidah Faroz” clustered

Figure 4.37 shows further analysis of the identified clusters. The entities in clusters are

linked to different addresses. In Figure 4.37, orange dots represent the clusters, while

the red dots represent the match entities. The match entities are also linked to

addresses. At the same time, the entities are shown as linked to other clusters, as

discussed before. However, this graph is not easily interpretable with respect to the

addresses where the entities are linked.

4. RESULTS – DATA ANALYSIS OF POLICING DATASET & COMPUTER SIMULATION

139

Figure 4.37 - Graph analysis, the suspect identified as “Abbidah Faroz” highlighted Red and Red in
Clusters associated with different addresses.

Therefore, to clarify these details, Figure 4.38 shows the matched entities with different

addresses.

Figure 4.38 - Search 2: Graph analysis, the suspect identified as “Abbidah Faroz” highlighted Red and
associated with different addresses.

4. RESULTS – DATA ANALYSIS OF POLICING DATASET & COMPUTER SIMULATION

140

In Figure 4.38, the red dots represent the matched entities. These entities are linked to

addresses represented by black arrows, where grey dots represent the address. The

results of the graph analysis show there are two matched entities. One suspect entity

can be easily identified in terms of the search for the target entity. Therefore, “Abbidah

Faros” is the matched suspect entity. However, the other suspect entity, “Boty Faros”,

is either a linked related suspect or a false negative matched entity.

 Search 3 – The target name is Haskin Zeid

Figure 4.39 - Search 3: Number of found records per search stage

Based on the inputs for search 3 in Figure 4.39, the initial search and matching criteria

produced three datasets. All three name variations retrieved 204 records, and the

resultant dataset of 208 records was generated after merging all three datasets and

removing duplicate records. All these retrieved records have some similarities or are

entirely different, but this will be differentiated later in the next stage.

4. RESULTS – DATA ANALYSIS OF POLICING DATASET & COMPUTER SIMULATION

141

Figure 4.40 – Search 3: Found records based on matching addresses and related records

Figure 4.41 - Search 3: Searching and filtering of records based on address score

The dataset, produced from the search results, is fed into the clustering algorithm, and

4 clusters of records are created by the Mean-Shift clustering algorithm based on age,

name aggregate score, and address score, as shown in Figure 4.42. There are records in

clusters with low scores at the y-axis (address score). However, these records are

4. RESULTS – DATA ANALYSIS OF POLICING DATASET & COMPUTER SIMULATION

142

required for the next stage to ensure that any related or close matches are not ignored.

After the clustering phase, the segmentation picked the address with the highest score

of 1.0. Figure 4.40 shows a total of 21 records, numbers displayed in the last column,

were retrieved with the highest address and name aggregate scores of 0.70 and the

same date of birth. However, the 2 other records, numbers displayed in the last column,

were retrieved with different names, high address scores, and dates of birth. At the

same time, 4 records were found with related records with matching names, a low

address score of 0.69 and the exact date of birth, the same as 21 records found during

the initial search. Therefore, the final dataset containing 27 records, numbers displayed

in the last column, and the combination of the two different names, dates of birth, and

addresses was obtained, as shown in Figure 4.41.

Figure 4.42 - Search 3: Clustered records

Figure 4.43 below is the graph analysis of the clustered records. The blue dots represent

the Entity and the individual's name, and the orange dots represent the clusters. The 4

clusters contain different entities linked to each cluster. The small cluster at the top left

of the graph is a simple cluster with no similarities. However, the two clusters on the

bottom left of the graph have some similar entities linked to each cluster. One entity is

linked to clusters 1 and 2, while the other is linked to clusters 0 and 1.

Age

A
d

d
re

ss
 S

co
re

4. RESULTS – DATA ANALYSIS OF POLICING DATASET & COMPUTER SIMULATION

143

Figure 4.43 - Graph analysis, the suspect identified as “Haskin eid” clustered

Figure 4.44 further explores the entity linkage details in the graph analysis, where the

red dot represents the matched entity. In contrast, the orange dot represents the

clusters. Here, two entities linked to two clusters are matched with the target search

entity and represented with a red dot in Figure 4.44. However, one entity is an entirely

different name while getting a high address match score. It could be a close match or a

related match retrieved during the search process. Therefore, the suspect has been

identified out of other entities, represented with a red dot associated with different

addresses matching the exact search name.

4. RESULTS – DATA ANALYSIS OF POLICING DATASET & COMPUTER SIMULATION

144

Figure 4.44 - Graph analysis, the suspect identified as “Haskin eid” highlighted Red and other Red in
Clusters associated with different addresses.

However, this matched suspect entity in Figure 4.44 requires further clarity on the

address to be easily readable, as shown in Figure 4.45. The red dot represents the

suspect entity, and the black arrows show the particular entity's link with different

addresses. In contrast, the grey dot represents each address. Therefore, “Haskin ied”

is the matched suspect entity. The other suspect entity, “Keynes Utt”, is either a linked

suspect or a false negative matched entity.

4. RESULTS – DATA ANALYSIS OF POLICING DATASET & COMPUTER SIMULATION

145

Figure 4.45 - Search 3: Graph analysis, the suspect identified as “Haskin ied” highlighted Red and
associated with different addresses.

4.6. Policing Dataset Results Performance Analysis

After the search results from the database on different scenarios above, it is apparent

that both similarity techniques mentioned are performing up to some extent to find a

match for the given name but have issues matching the string.

To further discuss, we can see the matching scores in Table 4.2 to compare the matching

results. In Table 4.2. the target string is converted into the 6-digit Soundex code to

compare and get the scores and the aggregate score.

4. RESULTS – DATA ANALYSIS OF POLICING DATASET & COMPUTER SIMULATION

146

Table 4.2 - Results Performance Comparison of Fuzzy Matching Scores

Search
Target
String

Target
String 6-

digit
Soundex

Code

Input String
6-digit

Soundex
Code

Soundex-JW
Score

Jaro-
Winkler

Score

Aggregate
Score

1
Bech

Jaunette
122530

Back Junete 125300 0.91 0.84 0.88

Bach Junette 122530 1.00 0.91 0.96

Beck Jaunete 125300 0.91 0.94 0.93

2
Abbidah

Faros 131620

Abidah Feros 131620 1.00 0.94 0.97

Abbidha Firoz 131620 1.00 0.92 0.96

Abiddah
Farose

131620 1.00 0.94 0.97

3
Haskin

Zeid
252300

Huskin Zaid 252300 1.00 0.89 0.95

Haskin Zayed 252300 1.00 0.95 0.97

Hasken Zeid 252300 1.00 0.92 0.96

The graph below shows the aggregate score against modified Soundex and Jaro-Winkler

scores.

Figure 4.46 - Results comparison of Names Fuzzy Matching Scores

0.7

0.75

0.8

0.85

0.9

0.95

1

Back
Junete

Bach
Junette

Beck
Jaunete

Abidah
Feros

Abbidha
Firoz

Abiddah
Farose

Huskin
Zaid

Haskin
Zayed

Hasken
Zeid

Sc
o

re

Names

Comparison of Fuzzy Matching Scores

Soundex-JW_Score Jaro-Winkler_Score Aggregate_Score

4. RESULTS – DATA ANALYSIS OF POLICING DATASET & COMPUTER SIMULATION

147

From Figure 4.46, it can be seen that the selected similarity metrics are suitable for

matching names. However, an individual technique alone is unsuitable for generating

accurate required results to match the searched string. Therefore, combining Soundex

and Jaro_Winkler techniques is better for generating the aggregate score for name

matching. This aggregate score method fits the purpose of doing fuzzy matching of

strings. For long strings, edit distance is suitable for the approximate matching of strings.

It is about scoring the strings to help cluster similar records that have been retrieved.

The input strings Soundex-JW scores are the same or similar results scores matching

names from the database.

In contrast, the Jaro-Winkler matching scores are different for input strings. However,

the aggregate score provides the fuzzy score. It shows better results, showing that the

names are not exact matches but are only fuzzy. The results show that the matching

performance of the Jaro_Winkler is good. However, the aggregate score gives an even

better fuzzy score to match strings in fuzzy matching.

The records are grouped using the clustering technique based on the aggregate score of

strings. However, evaluating if the clusters are good or bad created is necessary. It can

be achieved by applying the Silhouette Coefficient or score for clusters.

4.6.1. Silhouette Coefficient

The Silhouette Coefficient or Silhouette score is a metric used to calculate the goodness

of a clustering technique (Rousseeuw, 1987). The value ranges from -1 to 1.

Where:

• 1: This means clusters are well apart from each other and distinguished.

• 0: This means clusters are indifferent, or we can say that the distance

between clusters is not significant.

• -1: This means clusters are assigned in the wrong way.

The formula to calculate the Silhouette score is:

4. RESULTS – DATA ANALYSIS OF POLICING DATASET & COMPUTER SIMULATION

148

Silhouette Score = (b – a) / max (a, b)

Here:

• a = An average intra-cluster distance, i.e., the average distance between

each point within a cluster.

• b = An average inter-cluster distance, i.e., the average distance between

all clusters.

The clustering results generated by the three search results in evaluating the de-

identified dataset can be measured using the Silhouette Coefficient method. Below are

the clustering figures from the three search results. The Silhouette Coefficient score is

calculated for each clustering search result.

Search 1: Figure 4.47 shows the clustering of entities where 4 clusters are

generated by putting entities into clusters. For easy understanding, these

clusters are represented using different colours in Figure 4.47. The Silhouette

Coefficient score is applied below to find out the quality or performance of the

clustering of entities.

Figure 4.47 - Search 1: Highlighted Clustered records

Silhouette Score(n =): 4," " ,0.556

Age

A
d

d
re

ss
 S

co
re

4. RESULTS – DATA ANALYSIS OF POLICING DATASET & COMPUTER SIMULATION

149

It calculates that there are 4 clusters, and the score is 0.556. The round-off score

is 0.56 for this clustering of records, which has a positive value close to 1.

Therefore, it shows that the clusters are well apart and that the clustering quality

of the records is good.

Search 2: Figure 4.48 shows the clustering of entities generated in search 2

during the results evaluation of the dataset. There are 4 clusters generated, and

each cluster is represented with a different colour for easy understanding in

Figure 4.48. To measure the cluster quality, the Silhouette Score is applied to

calculate the clustering score.

Figure 4.48 - Search 2: Highlighted Clustered records

Silhouette Score(n =): 4," " ,0.647

The Silhouette Score calculates 4 clusters with a score of 0.647. After round-off,

the score is 0.65 for this clustering of the records. The score is close to 1, and

again, it shows that the clusters are dense and well apart for search 2. Therefore,

it means the clusters are of good quality.

Search 3: Figure 4.49 shows clustered entities generated during search 3. The

entities are grouped into 4 clusters and are represented with different colours

Age

A
d

d
re

ss
 S

co
re

4. RESULTS – DATA ANALYSIS OF POLICING DATASET & COMPUTER SIMULATION

150

for easy understanding, as shown in Figure 4.49. The Silhouette coefficient is

applied to measure the performance of the clusters.

Figure 4.49 - Search 3: Highlighted Clustered records

Silhouette Score(n =): 4," " ,0.571

The Silhouette Score is calculated as 0.57 with a total of 4 clusters. The score is

close to 1, so the clusters are well apart and dense. Therefore, the clustering

quality of search 3 records is good.

4.7. Summary

The improved Soundex algorithm was applied to the names collected from three

languages: English, Arabic, and Russian. It was also applied to mixed language names of

different name variations. The computer-simulated results show that each name-

matching score matches the names based on the aggregate score. The results of name

scores are compared and analysed based on Soundex, Jaro-Winkler and aggregate

scores. These matching results provided good fuzzy matching, where using only a single

matching technique will not match names correctly. The proposed model was then

applied to the de-identified policing data. The results were generated for three different

target individual's names. Each search was named search1, search2, and search3, and

Age

A
d

d
re

ss
 S

co
re

4. RESULTS – DATA ANALYSIS OF POLICING DATASET & COMPUTER SIMULATION

151

each search identified the target identity. These identity-matching results were

presented in tabular and visualised in graph format for easy identification. The results

showed that the model efficiently identified the target individual. The Silhouette

Coefficient was applied to the clustering of records for each of the three searches for

clustering performance measures. The overall identification and clustering performance

are promising to match any identity.

5. CONCLUSION

152

CHAPTER5

5. CONCLUSION

This chapter concludes by summarising the findings related to the critical research

questions and discussing the value and contribution to knowledge. Research limitations

will be highlighted, and avenues for future work will be explored.

This research successfully addressed fundamental questions: How can the desired

identity be extracted from a raw dataset? How can records be matched to derive

meaningful information? Furthermore, how can relationships between different

identities be intelligently established using pattern recognition? The research evaluated

various string-matching techniques and determined that a combination of Soundex,

Jaro-Winkler, and edit distance matching techniques was most effective.

Notably, modifications were made to the original Soundex technique to generate a six-

digit numeric code, which does not retain the first character of the name but instead

produces a purely numerical code. This code, combined with the Jaro-Winkler score,

generates an aggregate score. This approach enables the extraction of matching names

based on the aggregate score, facilitating the retrieval of related records from the

dataset. It aids in clustering these retrieved records and performing graph analysis to

identify potential target identities and associated links.

The research aims to identify and evaluate techniques for improved identity resolution.

Consequently, using an unsupervised machine learning approach, different string

similarity techniques were analysed to retrieve matching entity records and identify

related links. These techniques were cascaded within the framework to produce an

aggregate name score. Based on this score, names could be categorised as “match”,

"possible match", and "close or related match” in cases where string matching was

applied. However, the framework utilised an iterative search to combine three spelling

variations of given names, enabling the retrieval of data related to each fuzzy-matched

5. CONCLUSION

153

name from the dataset. After obtaining the three datasets, they were merged into a final

dataset, from which duplicate records were removed.

Similar matching name records from the final dataset were grouped to refine the results

further. The Means-Shift clustering technique was employed to cluster matching records

based on the name "aggregate score" and "age" attributes. Notably, the Mean-Shift

algorithm used within this framework automatically determines the number of clusters,

providing a more dynamic approach by allowing the number of clusters to be adjusted

based on the dataset size. Once clustering was complete, the records were labelled with

a cluster number. Using NetworkX, graph analysis was conducted, linking all entities

based on selected attributes in a layered approach across multiple graphs. This method

effectively identified the suspect entity and displayed links to different addresses

associated with the same entity. The results indicate that this fuzzy matching approach

is effective in retrieving suspect entities and related records, aiding in identity matching.

These links are presented graphically, with detailed records stored in a table format for

ease of review. The entire matching process is automated, requiring minimal human

interaction and providing fuzzy attribute inputs to the framework. It enables results to

be generated even with limited information about a suspect entity.

According to the comprehensive literature review:

 No existing unsupervised machine learning framework automatically adjusts

and fine-tunes results based on input, utilising various similarity metrics in a

cascaded manner for record retrieval.

 Existing approaches do not enable record matching and retrieval without

training data samples or record de-duplication.

 Current methods do not employ different similarity metrics at various stages to

produce optimal record linkage and relationship analysis results.

 The literature does not address the use of clustering techniques to group

records without a fixed number of clusters, thus facilitating record segmentation

for identity resolution.

Therefore, this framework for identity resolution incorporates intelligence in matching

raw information by employing a suitable algorithm with pattern recognition capabilities

5. CONCLUSION

154

that mimic the human brain’s ability for fuzzy matching. In June 2021, this research was

presented and published in a Springer conference paper and is also available in Appendix

A. The research has practical implications, particularly for law enforcement agencies, as

this framework can expedite investigations with minimal available information about a

suspect.

 Contributions to Knowledge Summary:

This research makes several significant contributions to identity resolution and data

science. Firstly, the hybrid approach combining unsupervised machine learning

techniques with traditional string-matching algorithms represents a novel advancement

in the field. Developing and implementing a modified Soundex algorithm to produce a

6-digit numeric code, coupled with Jaro-Winkler and edit distance and aggregate score

methods, introduced a more refined and efficient approach to record matching.

Moreover, the research provides valuable insights into applying clustering techniques in

handling large datasets within a hybrid framework. The use of the Mean-Shift algorithm,

which dynamically adjusts the number of clusters based on the dataset size, showcases

the ability of this framework to process and analyse big data more effectively. This

contribution is especially relevant to big data applications, where the ability to cluster

large volumes of records dynamically can lead to more accurate and efficient data

analysis. The framework's capacity to handle complex datasets with minimal human

intervention further underscores its potential for real-world applications, particularly in

fields requiring high data accuracy and reliability.

In conclusion, this research not only advances the theoretical understanding of identity

resolution techniques but also offers practical solutions for addressing the challenges

associated with big data and unsupervised learning. By leveraging a hybrid model and

innovative clustering method, the framework developed in this study provides a robust

tool for identity resolution in various domains, including law enforcement and beyond.

Additionally, the implications of this research extend to consumer behaviour analysis in

business contexts. Companies increasingly require a 360-degree view of consumers,

encompassing their activities across multiple devices, apps, and pre-account

interactions. The framework's ability to intelligently resolve identities by linking

5. CONCLUSION

155

disparate data points offers businesses a powerful means to achieve this comprehensive

view. This, in turn, opens up opportunities for more sophisticated personalisation

strategies, where businesses can tailor their offerings based on a holistic understanding

of consumer behaviour. By accurately matching records and identifying links between

different consumer profiles, businesses can deliver highly targeted and relevant

experiences, enhancing customer engagement and loyalty. Thus, the identity resolution

framework developed in this study holds significant potential for applications in

consumer analytics, enabling businesses to navigate the complexities of modern digital

behaviour with greater precision and insight.

However, this research has some limitations. The analysis was conducted using a limited

de-identified policing dataset, comprising only a single database table, with other

relational database tables absent. This limitation hinders efficient record linkage and

determination of true identities. Moreover, the research did not focus on addressing

missing information within records. As a result, records with incomplete information

were separated into different datasets, and the framework was applied only to records

with complete information. This approach restricts the scope for utilising other

attributes within the dataset. Future studies could further explore methods to fully use

all available information.

5.1. Future work

This research has demonstrated that the proposed framework can produce matched

records that can be utilised to identify individuals. While the framework shows

significant potential benefits for law enforcement agencies in identity resolution, its

applications extend beyond this domain. For instance, it could be employed within the

financial sector to detect fraud by identifying individuals attempting to manipulate

institutions through different identities.

Nonetheless, there are several opportunities for future research to enhance and extend

the current framework. The following areas are proposed for further investigation:

5. CONCLUSION

156

I. Introduction of a Weighting System for Attribute Matching:

One of the key improvements that could be made is incorporating a weighting system

into the current matching process. While the existing framework generates an aggregate

score based on the similarity of strings, adding a weighting mechanism would allow for

more nuanced differentiation between matches. For each attribute, a corresponding

weighting score could be assigned alongside the aggregate score, enabling the

framework to prioritise higher-confidence matches. For example, when two strings

receive similar aggregate scores, the weighting score would enable the framework to

distinguish between them based on predefined criteria, such as the significance of

particular attributes.

II. Development of Criteria-Based Weighting Scores:

Further to introducing a weighting system, future studies could explore the

development of specific criteria for determining weighting scores. For instance, the

number of common characters between two strings could be a determinant, with higher

scores assigned to matches with greater character similarity. Additionally, the

framework could be refined to ensure that strings are matched within the same

language, as cross-linguistic matches often result in inaccuracies. For example, English-

language strings should not be matched with those in other languages. In cases where

such mismatches occur, the weighting system would promptly flag them. This

refinement addresses a common issue in string-matching techniques, where linguistic

differences are often overlooked, leading to erroneous matches.

III. Addressing Missing Data Through Machine Learning:

An essential area for future research is handling incomplete records within the dataset.

The current framework relies on complete records, but many datasets contain records

with missing information in one or more attributes. Future studies should investigate

the use of data harvesting and data regeneration techniques, particularly those

employing machine learning algorithms, to fill these gaps. By comparing incomplete

records within the dataset and cross-referencing them with external data sources, such

as social media profiles, it would be possible to enrich the dataset with additional

5. CONCLUSION

157

information. This approach would ensure that all records are fully populated, thereby

improving the accuracy and efficacy of the matching algorithm. Furthermore, this would

minimise the risk of overlooking critical data, enhancing the framework’s overall

capacity for identity resolution.

IV. Enhancement of the Knowledge Base with a Relational Database

Structure:

Future work should also refine how matched records are stored within the framework’s

knowledge base. Rather than merely categorising records as "matched," "possible

match," or "close or related match," it would be advantageous to implement a relational

database structure. It would allow for storing additional harvested and regenerated

information for each matched record, facilitating a more organised and sophisticated

retrieval system. By incorporating a relational database, the knowledge base could

dynamically evolve over time, updating records with new information obtained through

ongoing data harvesting processes. It would lead to a more comprehensive and flexible

knowledge base, enhancing the framework’s reliability and accuracy in future identity

resolutions.

V. Exploring Hybrid Models and Big Data Clustering for Enhanced Identity

Resolution:

Moreover, future research should investigate applying hybrid models and advanced

clustering techniques for big data. While this research has demonstrated the

effectiveness of clustering methods such as the Mean-Shift technique in grouping similar

records, further studies could explore their performance on larger datasets and in more

complex scenarios. By integrating clustering methods within a hybrid model combining

unsupervised learning with other machine learning approaches, future research could

enhance the scalability and robustness of the identity resolution framework.

Additionally, optimising these clustering techniques for real-time processing of large-

scale data would be particularly valuable in domains where rapid identity resolution is

critical, such as the financial services industry and online platforms. It could enable the

development of more sophisticated, accurate, and scalable identity resolution systems.

REFERENCES

158

REFERENCES

Aamodt, A. and Plaza, E. (1 6) ‘Case-based reasoning: Foundational issues,

methodological variations, and system approaches’, Artificial Intelligence

Communications, 7(1), pp. 39–59.

Adderley, R., 2015. Director A E Solutions (BI).

Aiken, V.C.F. et al. (201) ‘Record linkage for farm-level data analytics: Comparison of

deterministic, stochastic and machine learning methods’, Computers and Electronics in

Agriculture, 163(June), p. 104857. Available at:

https://doi.org/10.1016/j.compag.2019.104857.

Albrecht W, Albrecht C, A, .M. (2008) ‘Fraud Examination’, p. 282.

Al-khamaiseh, K. and Alshagarin, S. (201) ‘A Survey of String Matching Algorithms’,

4(7), pp. 144–156.

Altowim, Y., Kalashnikov, D. V. and Mehrotra, S. (2018) ‘ProgressER: Adaptive

progressive approach to relational entity resolution’, ACM Transactions on Knowledge

Discovery from Data, 12(3). Available at: https://doi.org/10.1145/3154410.

Anand, S. et al. (201) ‘Semi-supervised kernel mean shift clustering’, IEEE Transactions

on Pattern Analysis and Machine Intelligence, 36(6), pp. 1201–1215. Available at:

https://doi.org/10.1109/TPAMI.2013.190.

Ananthakrishna, R., Chaudhuri, S. and Ganti, V. (2002) ‘Eliminating Fuzzy Duplicates in

Data Warehouses’, Proceedings of the 28th international conference on Very Large

Data Bases, pp. 586–597.

Ashish, N. and Toga, A.W. (2016) ‘Name Similarity for Composite Element Name

Matching’.

Balabantaray, R.C. et al. (2012) ‘An Automatic Approximate Matching Technique Based

on Phonetic Encoding for Odia uery’, IJCSI, Vol9, No3, 9(3), pp. 439–444.

Bär, D. et al. (2012) ‘Ukp: Computing semantic textual similarity by combining multiple

content similarity measures’, in First Joint Conference on Lexical and Computational

Semantics (*SEM 2012). Montreal, Canada: Association for Computational Linguistics,

pp. 435–440.

Barkay, N. and Rein, E.D. (2015) ‘Achieving cyber identity resolution via electronic

warfare techniques’, in RSA Conference, Singapore.

REFERENCES

159

Barrón-Cedeño, A. et al. (2010) ‘Plagiarism Detection across Distant Language Pairs’, In

Proceedings of the 23rd International Conference on Computational Linguistics,

(August), pp. 37–45.

Bartunov, S. et al. (2012) ‘Joint Link-Attribute User Identity Resolution in Online Social

Networks Categories and Subject Descriptors’, The Sixth SNA-KDD Workshop

Proceedings [Preprint].

Basu, J.K., Bhattacharyya, D. and Kim, T. (2010) ‘Use of Artificial Neural Network in

Pattern Recognition’, International Journal of Software Engineering and its

Applications, 4(2), pp. 23–34.

Baxter, R., Christen, P. and Churches, T. (2003) ‘A Comparison of Fast Blocking Methods

for Record Linkage’, Proceedings of the Ninth ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, Workshop, pp. 25–27.

Bezdek, J.C. (1981) Pattern recognition with fuzzy objective function algorithms.

Bezdek, J.C. et al. (1999) Fuzzy models and algorithms for pattern recognition and

image processing, Springer.

Bharambe, D., Jain, S. and Jain, A. (2012) ‘A Survey : Detection of Duplicate Record’,

International Journal of Emerging Technology and Advanced Engineering, 2(11).

Bhattacharya, I. and Getoor, L. (2006) ‘Entity Resolution in Graphs’, Mining Graph

Data, pp. 311–344. Available at: https://doi.org/10.1002/9780470073049.ch13.

Bhattacharya, I. and Getoor, L. (200) ‘Collective entity resolution in relational data’,

ACM Transactions on Knowledge Discovery from Data, 1(1), pp. 5-es. Available at:

https://doi.org/10.1145/1217299.1217304.

Bilenko, M. et al. (2003) ‘Adaptative name matching in information integration’, IEEE

Intelligent Systems, 18(5).

Bilenko, M. and Mooney, R.J. (2003) ‘Adaptive duplicate detection using learnable

string similarity measures’, Proceedings of the Ninth ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pp. 39–48. Available at:

https://doi.org/10.1145/956755.956759.

Bird, S., Klein, E. and Loper, E. (2009) Natural Language Processing with Python.

O’Reilly Media, Inc.

Bizer, C., Heath, T. and Berners-Lee, T. (200) ‘Linked data - The story so far’,

International Journal on Semantic Web and Information Systems, 5(3), pp. 1–22.

Available at: https://doi.org/10.4018/jswis.2009081901.

REFERENCES

160

Bollacker, K. et al. (2008) ‘Freebase: A collaboratively created graph database for

structuring human knowledge’, Proceedings of the ACM SIGMOD International

Conference on Management of Data, pp. 1247–1249. Available at:

https://doi.org/10.1145/1376616.1376746.

Bonzanini, M. (2017) Fuzzy String Matching in Python. Available at:

https://marcobonzanini.com/2015/02/25/fuzzy-string-matching-in-python/

(Accessed: 8 May 2017).

Boongoen, T. and Shen, . (200) ‘Intelligent hybrid approach to false identity

detection’, in Proceedings of the 12th International Conference on Artificial Intelligence

and Law - ICAIL ’09. New York, New York, USA: ACM Press, p. 147. Available at:

https://doi.org/10.1145/1568234.1568251.

Branting, L.K. (2003) ‘A comparative evaluation of name-matching algorithms’,

Proceedings of the 9th international conference on Artificial intelligence and law - ICAIL

’03, p. 224. Available at: https://doi.org/10.1145/1047788.1047837.

Brizan, D.G. and Tansel, A.U. (2006) ‘A Survey of Entity Resolution and Record Linkage

Methodologies’, Communications of the IIMA, 6(3), pp. 41–50.

Brown, D.E. and Hagen, S. (2002) ‘Data association methods with applications to law

enforcement’, Decision Support Systems, 34(4), pp. 369–378. Available at:

https://doi.org/10.1016/S0167-9236(02)00064-7.

Buscaldi, D. et al. (2012) ‘IRIT : Textual Similarity Combining Conceptual Similarity with

an N-Gram Comparison Method’, in First Joint Conference on Lexical and

Computational Semantics (*SEM 2012). Montreal, Canada: Association for

Computational Linguistics, pp. 552–556.

Carreira-Perpiñán, M.Á. (2015) ‘A review of mean-shift algorithms for clustering’, pp.

1–28. Available at: http://arxiv.org/abs/1503.00687.

Chaudhuri, S. et al. (2003) ‘Robust and efficient fuzzy match for online data cleaning’,

in Proceedings of the 2003 ACM SIGMOD international conference on on Management

of data. New York, NY, USA: ACM, pp. 313–324. Available at:

https://doi.org/10.1145/872794.872796.

Christen, P. (200) ‘A two-step classification approach to unsupervised record linkage’,

(Clarke), pp. 111–119.

Christen, P. (2012) ‘Concepts and Techniques for Record Linkage ’, Springer [Preprint].

REFERENCES

161

Christen, P., Vatsalan, D. and Wang, . (2016) ‘Efficient entity resolution with adaptive

and interactive training data selection’, Proceedings - IEEE International Conference on

Data Mining, ICDM, 2016-Janua, pp. 727–732. Available at:

https://doi.org/10.1109/ICDM.2015.63.

Christopher Jaisunder, G., Ahmed, I. and Mishra, R.K. (201) ‘Need for Customized

Soundex based Algorithm on Indian Names for Phonetic Matching’, Global Journal of

Enterprise Information System, 8(2), p. 30. Available at:

https://doi.org/10.18311/gjeis/2016/7658.

Christopher M. Bishop (2006) Pattern Recognition and Machine Learning. Springer.

Chung, C.T. et al. (201) ‘Person Identification between Different Online Social

Networks’, in 2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence

(WI) and Intelligent Agent Technologies (IAT). IEEE, pp. 94–101. Available at:

https://doi.org/10.1109/WI-IAT.2014.21.

Cochinwala, M. et al. (2001) ‘Efficient data reconciliation’, Information Sciences,

137(1–4), pp. 1–15. Available at: https://doi.org/10.1016/S0020-0255(00)00070-0.

Cohen, W.W. (1 8) ‘Integration of heterogeneous databases without common

domains using queries based on textual similarity’, in Proceedings of the 1998 ACM

SIGMOD international conference on Management of data. New York, NY, USA: ACM,

pp. 201–212. Available at: https://doi.org/10.1145/276305.276323.

Cohen, W.W., Ravikumar, P. and Fienberg, S.E. (2003) ‘A comparison of string metrics

for matching names and records’, KDD Workshop on Data Cleaning and Object

Consolidation, 3, pp. 73–78. Available at: https://doi.org/citeulike-article-id:964346.

Cohen, W.W. and Richman, J. (2002) ‘Learning to match and cluster large high-

dimensional data sets for data integration’, Proceedings of the eighth ACM SIGKDD

international conference on Knowledge discovery and data mining, pp. 475–480.

Available at: https://doi.org/10.1145/775107.775116.

Cohn, D., Atlas, L. and Ladner, R. (1) ‘improving Generaliztion with active learning’,

Machine Learning, 15(2), pp. 201–221.

Comaniciu, D. and Meer, P. (2002) ‘Mean shift: A robust approach toward feature

space analysis’, IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5),

pp. 603–619. Available at: https://doi.org/10.1109/34.1000236.

Comaniciu, D. and Meet, P. (1) ‘Mean shift analysis and applications’, Proceedings

of the IEEE International Conference on Computer Vision, 2(3), pp. 1197–1203.

Available at: https://doi.org/10.1109/iccv.1999.790416.

REFERENCES

162

Culotta, A. and McCallum, A. (2005) ‘Joint deduplication of multiple record types in

relational data’, International Conference on Information and Knowledge

Management, Proceedings, pp. 257–258. Available at:

https://doi.org/10.1145/1099554.1099615.

Dai, A.M. (2011) ‘The Grouped Author-Topic Model for Unsupervised Entity

Resolution’, Artificial Neural Networks and Machine Learning – ICANN 2011, 6791(May

2014). Available at: https://doi.org/10.1007/978-3-642-21735-7.

Datacamp.com (no date) Fuzzy String Matching in Python Tutorial | DataCamp.

Available at: https://www.datacamp.com/tutorial/fuzzy-string-python (Accessed: 14

March 2019).

Dempster, A.P., Laird, N.M. and Rubin, D.B. (1) ‘ Maximum Likelihood from

Incomplete Data Via the EM Algorithm ’, Journal of the Royal Statistical Society: Series

B (Methodological), pp. 1–22. Available at: https://doi.org/10.1111/j.2517-

6161.1977.tb01600.x.

Dey, D., Mookerjee, V.S. and Liu, D. (2011) ‘Efficient techniques for online record

linkage’, IEEE Transactions on Knowledge and Data Engineering, 23(3), pp. 373–387.

Available at: https://doi.org/10.1109/TKDE.2010.134.

Dharmarajan, A. and Velmurugan, T. (2013) ‘Applications of partition based clustering

algorithms: A survey’, 2013 IEEE International Conference on Computational

Intelligence and Computing Research, IEEE ICCIC 2013 [Preprint]. Available at:

https://doi.org/10.1109/ICCIC.2013.6724235.

Docs.python.org (2017) 1. Whetting Your Appetite — Python 2.7.13 documentation.

Available at: https://docs.python.org/2.7/tutorial/appetite.html (Accessed: 8 May

2017).

Draisbach, U. and Naumann, F. (2011) ‘A generalization of blocking and windowing

algorithms for duplicate detection’, Proceedings - 2011 International Conference on

Data and Knowledge Engineering, ICDKE 2011, pp. 18–24. Available at:

https://doi.org/10.1109/ICDKE.2011.6053920.

Du, K.L. (2010) ‘Clustering: A neural network approach’, Neural Networks, 23(1), pp.

89–107. Available at: https://doi.org/10.1016/j.neunet.2009.08.007.

Dun & Bradstreet (2013) ‘Identity Resolution Enables Informed Decision Making’,

(January), pp. 1–6. Available at: https://www.dnb.com/content/dam/english/dnb-

solutions/identity_resolution_enables_informed_decision_making_2013_01.pdf.

REFERENCES

163

Duncan, J. et al. (2015) ‘Building an Ontology for Identity Resolution in Healthcare and

Public Health’, Online Journal of Public Health Informatics, 7(2), pp. 1–17. Available at:

https://doi.org/10.5210/ojphi.v7i2.6010.

Edwards, M. et al. (2016) ‘Sampling Labelled Profile Data for Identity Resolution’, pp.

540–547.

Elfeky, M.G., Verykios, V.S. and Elmagarmid, A.K. (2002) ‘TAILOR: a record linkage

toolbox’, Proceedings 18th International Conference on Data Engineering, pp. 17–28.

Available at: https://doi.org/10.1109/ICDE.2002.994694.

Elmagarmid, A.K., Ipeirotis, P.G. and Verykios, V.S. (200) ‘Duplicate record detection:

A survey’, IEEE Transactions on Knowledge and Data Engineering, 19(1), pp. 1–16.

Available at: https://doi.org/10.1109/TKDE.2007.250581.

Fellegi, I.P. and Sunter, A.B. (1 6) ‘A Theory for Record Linkage’, Source Journal of the

American Statistical Association, 64(328), pp. 1183–1210. Available at:

https://doi.org/10.1080/01621459.1969.10501049.

Filippone, M. et al. (2008) ‘A survey of kernel and spectral methods for clustering’,

Pattern Recognition, 41(1), pp. 176–190. Available at:

https://doi.org/10.1016/j.patcog.2007.05.018.

Fionn Murtagh, P.L. (201) ‘Feature Relevance in Ward’s Hierarchical Clustering Using

the Lp Norm’, Journal of Classification, 32, pp. 274–295. Available at:

https://doi.org/10.1007/s00357-014-9161-z.

Fukunaga, K. and Hostetler, L.D. (1 5) ‘The Estimation of the Gradient of a Density

Function, with Applications in Pattern Recognition’, IEEE Transactions on Information

Theory, 21(1), pp. 32–40. Available at: https://doi.org/10.1109/TIT.1975.1055330.

Georgescu, Shimshoni and Meer (2003) ‘Mean shift based clustering in high

dimensions: a texture classification example’, in Proceedings Ninth IEEE International

Conference on Computer Vision. IEEE, pp. 456–463 vol.1. Available at:

https://doi.org/10.1109/ICCV.2003.1238382.

Ghahramani, . (2015) ‘Probabilistic machine learning and artificial intelligence’,

Nature, 521(7553), pp. 452–459. Available at: https://doi.org/10.1038/nature14541.

Ghassabeh, Y.A. (2013) ‘On the convergence of the mean shift algorithm in the one-

dimensional space’, Pattern Recognition Letters, 34(12), pp. 1423–1427. Available at:

https://doi.org/10.1016/j.patrec.2013.05.004.

REFERENCES

164

Godby, J. et al. (200) ‘Who’s who in your digital collection? Developing a tool for name

disambiguation and identity resolution’, Proceedings of the Chicago Colloquium on

Digital Humanities and Computer Science, pp. 1–17. Available at:

https://letterpress.uchicago.edu/index.php/jdhcs/article/view/58.

Gomaa, W. and Fahmy, A. (2013) ‘A survey of text similarity approaches’, International

Journal of Computer Applications, 68(13), pp. 13–18. Available at:

https://doi.org/10.5120/11638-7118.

Gravano, L., Ipeirotis, P.G., Jagadish, H.V., et al. (2001) ‘Approximate String Joins in a

Database (Almost) for Free’, VLDB 2001, Proceedings of 27th International Conference

on Very Large Data Bases, pp. 491–500.

Gravano, L., Ipeirotis, P.G., Jagadish, H. v., et al. (2001) ‘Using q-grams in a DBMS for

Approximate String Processing’, IEEE Data Eng. Bull., 24(4), pp. 28–34. Available at:

https://doi.org/10.1.1.14.6009.

Gravano, L. et al. (2003) ‘Text joins for data cleansing and integration in an RDBMS’, in

Proceedings of IEEE 9th International Conference on Data Engineering. IEEE, pp. 729–

731. Available at: https://doi.org/10.1109/ICDE.2003.1260850.

Hagberg, A.A., Schult, D.A. and Swart, P.J. (2008) ‘Exploring network structure,

dynamics, and function using NetworkX’, 7th Python in Science Conference (SciPy

2008), (SciPy), pp. 11–15.

Halkidi, M., Batistakis, Y. and Vazirgiannis, M. (2001) ‘On clustering validation

techniques’, Journal of Intelligent Information Systems, 17(2–3), pp. 107–145.

Available at: https://doi.org/10.1023/A:1012801612483.

Hanneman, R.A. and Riddle, M. (2005) Introduction to social network methods,

Introduction to social network methods. University of California, Riverside.

Hasan, S.S. and Ahmed, F. (2015) ‘Approximate String Matching Algorithms : A Brief

Survey and Comparison’, 120(8), p. 888 .

Hastie, T., Tibshirani, R. and Friedman, J. (2009) The Elements of Statistical Learning.

2nd Editio. Springer.

Hedayati, A. (2012) ‘An analysis of identity theft : Motives, related frauds, techniques

and prevention’, Journal of Law and Conflict Resolution, 4(January), pp. 1–12. Available

at: https://doi.org/10.5897/JLCR11.044.

REFERENCES

165

Hernandez, M.A. and Stolfo, S.J. (1 8) ‘Real-World Data Is Dirty-Data Cleansing and

the Merge or Purge Problem’, Data Mining and Knowledge Discovery, 2(1), pp. 9–37.

Available at: https://doi.org/10.1023/A.

Herzog, T. and Reiter, J. (2008) Data Quality and Record Linkage Techniques Data

Quality and Record Linkage Techniques . Thomas N. Herzog , Fritz J. Scheuren , and

William E. Winkler . New York : Springer , 2007 . ISBN 978-0-387-69502-0 . xiii + 227 pp.

$44.95 (P)., Journal of the American Statistical Association. Available at:

https://doi.org/10.1198/jasa.2008.s229.

Huang, L. et al. (2008) ‘Duplicate Records Cleansing with Length Filtering and Dynamic

Weighting’, 2008 Fourth International Conference on Semantics, Knowledge and Grid,

(2003), pp. 95–102. Available at: https://doi.org/10.1109/SKG.2008.88.

Huang, . (1 8) ‘Extensions to the k-Means Algorithm for Clustering Large Data Sets

with Categorical Values. Data Mining and Knowledge Discovery 2, 283-30 ’, Data

Mining and Knowledge Discovery, 2(3), pp. 283–304.

Islam, A. and Inkpen, D. (2008) ‘Semantic text similarity using corpus-based word

similarity and string similarity’, ACM Transactions on Knowledge Discovery from Data,

2(2), pp. 1–25. Available at: https://doi.org/10.1145/1376815.1376819.

Jain, a. K., Murty, M.N. and Flynn, P.J. (1) ‘Data clustering: a review’, ACM

Computing Surveys, 31(3), pp. 264–323. Available at:

https://doi.org/10.1145/331499.331504.

Jain, A.K., Ross, A. and Prabhakar, S. (200) ‘An Introduction to Biometric Recognition’,

IEEE Transactions on Circuits and Systems for Video Technology, 14(1), pp. 4–20.

Available at: https://doi.org/10.1109/TCSVT.2003.818349.

Jaro, M.A. (1 8) ‘Advances in record-linkage methodology as applied to matching the

1 85 census of Tampa, Florida’, Journal of the American Statistical Association,

84(406), pp. 414–420. Available at:

https://doi.org/10.1080/01621459.1989.10478785.

Jetbrains.com. (2017) 1 Help :: Meet PyCharm. Available at:

https://www.jetbrains.com/help/pycharm/2017.1/meet-pycharm.html (Accessed: 8

May 2017).

John S. Pistole (2003) FBI — Fraudulent Identification Documents and the Implications

for Homeland Security, Before the House Select Committee On Homeland Security

Washington DC. Available at:

https://archives.fbi.gov/archives/news/testimony/fraudulent-identification-

REFERENCES

166

documents-and-the-implications-for-homeland-security (Accessed: 10 December

2015).

Jonas, J. (2006) ‘Threat and Fraud Intelligence, Las Vegas Style’, Security & Privacy,

IEEE, 4(6), pp. 28–34. Available at: https://doi.org/AA7908A8-D2AE-4C76-848D-

421866FB1018.

Jurek, A. et al. (201) ‘A novel ensemble learning approach to unsupervised record

linkage’, Information Systems, 71, pp. 40–54. Available at:

https://doi.org/10.1016/j.is.2017.06.006.

Kessler, B. (2005) ‘Phonetic comparison algorithms’, Transactions of the Philological

Society, 103(2), pp. 243–260. Available at: https://doi.org/10.1111/j.1467-

968X.2005.00153.x.

Kirsten, T. et al. (2010) ‘Data Partitioning for Parallel Entity Matching’, Strategies, 3(2),

p. 11.

Kloo, I., Dabkowski, M.F. and Huddleston, S.H. (201) ‘Improving Record Linkage for

Counter-Threat Finance Intelligence with Dynamic Jaro-Winkler Thresholds’,

Proceedings - Winter Simulation Conference, 2019-Decem, pp. 2467–2478. Available

at: https://doi.org/10.1109/WSC40007.2019.9004945.

Kohonen, T. (1 0) ‘The Self-organizing Map’, 8(), pp. 1 6 –1480.

Koneru, K., Pulla, V.S.V. and Varol, C. (2016) ‘Performance Evaluation of Phonetic

Matching Algorithms on English Words and Street Names - Comparison and

Correlation’, (Data), pp. 5 –64. Available at:

https://doi.org/10.5220/0005926300570064.

Kopcke, H. and Rahm, E. (2010) ‘Frameworks for entity matching: A comparison’, Data

and Knowledge Engineering, 69(2), pp. 197–210. Available at:

https://doi.org/10.1016/j.datak.2009.10.003.

Kukich, K. (1 2) ‘Technique for automatically correcting words in text’, ACM

Computing Surveys, 24(4), pp. 377–439. Available at:

https://doi.org/10.1145/146370.146380.

Lait, A. and Randell, B. (1 6) ‘An assessment of name matching algorithms’, Technical

Report Series-University of Newcastle upon Tyne, pp. 1–32. Available at:

http://homepages.cs.ncl.ac.uk/brian.randell/Genealogy/NameMatching.pdf.

REFERENCES

167

Lait, A.J. and Randell, B. (1 6) ‘An Assessment of Name Matching Algorithms

Department of Computing Science University of Newcastle upon Tyne Abstract 1 .

Name Variations 2 . Current Name-Matching Methods’, pp. 1–32.

Li, J. and Wang, A. (2015) ‘A framework of identity resolution: evaluating identity

attributes and matching algorithms’, Security Informatics, 4(1), p. 6. Available at:

https://doi.org/10.1186/s13388-015-0021-0.

Li, J. and Wang, G.A. (2011) ‘Criminal Identity Resolution Using Social Behavior and

Relationship Attributes’, pp. 1 3–175.

Li, X., Hu, . and Wu, F. (200) ‘A note on the convergence of the mean shift’, Pattern

Recognition, 40(6), pp. 1756–1762. Available at:

https://doi.org/10.1016/j.patcog.2006.10.016.

Liao, X. and hao, . (201) ‘Unsupervised approaches for textual semantic annotation,

a survey’, ACM Computing Surveys, 52(4). Available at:

https://doi.org/10.1145/3324473.

Lim, E.-P. et al. (1 3) ‘Entity identification in database integration’, Proceedings of

IEEE 9th International Conference on Data Engineering, pp. 294–301. Available at:

https://doi.org/10.1109/ICDE.1993.344053.

Lisbach, B. and Meyer, V. (2013) ‘Name Matching and Identity Matching BT - Linguistic

Identity Matching’, in B. Lisbach and V. Meyer (eds). Wiesbaden: Springer Fachmedien

Wiesbaden, pp. 172–192. Available at: https://doi.org/10.1007/978-3-8348-2095-

2_12.

Liu, Y. et al. (2013) ‘Dynamics of a mean-shift-like algorithm and its applications on

clustering’, Information Processing Letters, 113(1–2), pp. 8–16. Available at:

https://doi.org/10.1016/j.ipl.2012.10.002.

Lloyd, S.P. (1 82) ‘Least Squares uantization in PCM’, IEEE Transactions on

Information Theory, 28(2), pp. 129–137. Available at:

https://doi.org/10.1109/TIT.1982.1056489.

Von Luxburg, U. (200) ‘A tutorial on spectral clustering’, Statistics and Computing,

17(4), pp. 395–416. Available at: https://doi.org/10.1007/s11222-007-9033-z.

Mamun, A. Al, Aseltine, R. and Rajasekaran, S. (201) ‘Poster: Efficient record linkage

techniques’, 2014 IEEE 4th International Conference on Computational Advances in Bio

and Medical Sciences, ICCABS 2014, p. 4673. Available at:

https://doi.org/10.1109/ICCABS.2014.6863930.

REFERENCES

168

Martin Ester, Hans-Peter Kriegel, Jiirg Sander, X.X. (1 6) ‘A Density-Based Algorithm

for Discovering Clusters’, Proceedings of the Second International Conference on

Knowledge Discovery and Data Mining (KDD-96), pp. 226–231. Available at:

https://doi.org/10.1016/B978-0-444-64165-6.03005-6.

McCallum, A., Nigam, K. and Ungar, L.H. (2000) ‘Efficient clustering of high-dimensional

data sets with application to reference matching’, in Proceedings of the ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining. New York, NY,

USA: ACM, pp. 169–178. Available at: https://doi.org/10.1145/347090.347123.

McCallum-Bayliss, H. (200) ‘Identity resolution in a global environment: Fishing for

people in a sea of names’, IT Professional, 6(6), pp. 21–26. Available at:

https://doi.org/10.1109/MITP.2004.81.

McKinney, W. (2013) Python for Data Analysis. 1st Editio. O’Reilly Media, Inc.

M.E.J.Newman (2010) Networks: An Introduction. Oxford University Press.

Mon, A.C., Mie, M. and Thwin, S. (2013) ‘Effective Blocking for Combining Multiple

Entity Resolution Systems’, 2(0), pp. 126–136.

Monge, A.E. and Elkan, C.P. (1 6) ‘The field matching problem: Algorithms and

applications’, Proceedings of the Second International Conference on Knowledge

Discovery and Data Mining, (Slaven 1992), pp. 267–270. Available at:

https://doi.org/10.1.1.23.9685.

Monge, A.E. and Elkan, C.P. (1) ‘An Efficient Domain-Independent Algorithm for

Detecting Approximately Duplicate Database Records’, Proceedings of the SIGMOD

1997 workshop on research issues on data mining and knowledge discovery, pp. 23–

29.

Naseem, T. and Hussain, S. (200) ‘A novel approach for ranking spelling error

corrections for Urdu’, Language Resources and Evaluation, 41(2), pp. 117–128.

Available at: https://doi.org/10.1007/s10579-007-9028-6.

Nawaz, A. and Kazemian, H. (2021) ‘A Fuzzy Approach to Identity Resolution’,

Proceedings of the 22nd Engineering Applications of Neural Networks Conference

EANN 2021, 3, pp. 307–318. doi: 10.1007/978-3-030-80568-5_26.

Needleman, S.B. and Wunsch, C.D. (1 0) ‘A general method applicable to the search

for similiarities in the amino acid sequence of two proteins’, Journal of molecular

biology, 48(3), pp. 443–453.

REFERENCES

169

Niblett, G. (2015) ‘Identity’, ITNOW, 57(3), p. 23. Available at:

https://doi.org/10.1093/itnow/bwv066.

Nisha and Kaur, P.J. (2015) ‘A Survey of Clustering Techniques and Algorithms’, in 2nd

International Conference on Computing for Sustainable Global Development

(INDIACom). New Delhi: IEEE, pp. 304–307.

Noy, N.F. and McGuinness, D.L. (2001) ‘Ontology Development 101: A Guide to

Creating Your First Ontology’, Stanford Knowledge Systems Laboratory, (January 2001),

p. 25. Available at: https://doi.org/10.1016/j.artmed.2004.01.014.

Oracle (2010) ‘Identity Resolution and Data uality Algorithms for Master Person

Index’, An Oracle White Paper, (August), pp. 1–16.

Pandas.pydata.org. (2017) pandas: powerful Python data analysis toolkit — pandas

0.20.1 documentation. Available at: http://pandas.pydata.org/pandas-docs/stable/

(Accessed: 8 May 2017).

Papadakis, G. et al. (2011) ‘To Compare or Not to Compare: Making Entity Resolution

More Efficient’, Proceedings of the International Workshop on Semantic Web

Information Management, pp. 3:1--3:7. Available at:

https://doi.org/10.1145/1999299.1999302.

Pasula, H. et al. (2003) ‘Identity uncertainty and citation matching’, Advances in Neural

Information Processing Systems, pp. 1425–1432. Available at:

https://doi.org/10.1.1.15.8644.

Patman, F. and Shaefer, L. (2001) ‘Is Soundex good enough for you? On the hidden risks

of Soundex-based name searching’, Language Analysis Systems, Inc., pp. 1–31.

Available at: http://www.surnamestudies.org/teaching/soundex.pdf.

Pedneault, S. et al. (2012) Forensic Accounting and Fraud Investigation. 3rd Editio, John

Wiley & Sons. 3rd Editio. The CPE Store, Inc.

Phillips, M., Amirhosseini, M.H. and Kazemian, H.B. (2020) ‘A Rule and Graph-Based

Approach for Targeted Identity Resolution on Policing Data’, 2020 IEEE Symposium

Series on Computational Intelligence, SSCI 2020, pp. 2077–2083. Available at:

https://doi.org/10.1109/SSCI47803.2020.9308182.

Pilania, A. and Kumaran, G.M.M. (201) ‘Comparative study of name matching

algorithms’, Proceedings of the 2019 6th International Conference on Computing for

Sustainable Global Development, INDIACom 2019, pp. 1174–1178.

REFERENCES

170

Ravikumar, P.D. and Cohen, W.W. (200) ‘A Hierarchical Graphical Model for Record

Linkage’, in Proceedings of the 20th Conference in Uncertainty in Artificial Intelligence.

Arlington, Virginia, United States: AUAI Press, pp. 454–461. Available at:

https://doi.org/http://citeseerx.ist.psu.edu/viewdoc/summary?doi=?doi=10.1.1.3.31

38.

Ristad, E.S. and N.yianilos, P. (1 8) ‘Learning string-edit distance’, IEEE Transactions

on Pattern Analysis and Machine Intelligence, 20(5), pp. 522–532. Available at:

https://doi.org/10.1109/34.682181.

Rousseeuw, P.J. (1 8) ‘Silhouettes: A graphical aid to the interpretation and validation

of cluster analysis’, Journal of Computational and Applied Mathematics, 20(C), pp. 53–

65. Available at: https://doi.org/10.1016/0377-0427(87)90125-7.

Sarawagi, S. et al. (2002) ‘Alias: An active learning led interactive deduplication

system’, VLDB ’02 Proceedings of the 28th international conference on Very Large Data

Bases, pp. 1103–1106.

Sarawagi, S. and Bhamidipaty, A. (2002) ‘Interactive Deduplication using Active

Learning’, Proceedings of the eighth ACM SIGKDD international conference on

Knowledge discovery and data mining, pp. 269–278. Available at:

https://doi.org/10.1145/775047.775087.

Sayers, A. et al. (2016) ‘Probabilistic record linkage’, International Journal of

Epidemiology, 45(3), pp. 954–964. Available at: https://doi.org/10.1093/ije/dyv322.

Schubert, E. et al. (201) ‘Why and How You Should (Still) Use DBSCAN’, ACM

Transactions on Database Systems, 42(3), pp. 1–21.

Schult, D. (1 3) ‘LA-UR- EXPLORING NETWORK STRUCTU Exploring network structure

, dynamics , and function using NetworkX’, 836.

Shah, R. and Kumar Singh, D. (201) ‘Analysis and Comparative Study on Phonetic

Matching Techniques’, International Journal of Computer Applications, 87(9), pp. 14–

17. Available at: https://doi.org/10.5120/15236-3771.

Singla, P. and Domingos, P. (200) ‘Multi-Relational Record Linkage’, Proceedings of

the 3rd KDD Workshop on Multi-Relational Data Mining, pp. 31–48.

Smith, T.F. and Waterman, M.S. (1 81) ‘Identification of Common Molecular

Subsequences’, J. Mol. Biol., 147, pp. 195–197. Available at:

https://doi.org/10.1016/0022-2836(81)90087-5.

REFERENCES

171

Snae, C. (200) ‘A Comparison and Analysis of Name Matching Algorithms’,

Engineering and Technology, 1(1), pp. 252–257. Available at:

https://waset.org/publications/8664/a-comparison-and-analysis-of-name-matching-

algorithms-.

Soltani, R. and Abhari, A. (2013) ‘Identity matching in social media platforms’,

Performance Evaluation of Computer and Telecommunication Systems (SPECTS), 2013

International Symposium on, pp. 64–70.

Soundex, D. (2015) Databularium. Available at:

databularium.com/en/2015/08/22/approximate-string-matching-algorithms/ 1/10

(Accessed: 20 September 2005).

Studer, R., Benjamins, V.R. and Fensel, D. (1 8) ‘Knowledge Engineering: Principles

and methods’, Data and Knowledge Engineering, 25(1–2), pp. 161–197. Available at:

https://doi.org/10.1016/S0169-023X(97)00056-6.

Studiawan, H., Payne, C. and Sohel, F. (201) ‘Graph clustering and anomaly detection

of access control log for forensic purposes’, Digital Investigation, 21(May), pp. 76–87.

Available at: https://doi.org/10.1016/j.diin.2017.05.001.

Sun, S. (2013) ‘A survey of multi-view machine learning’, Neural Computing and

Applications, 23(7–8), pp. 2031–2038. Available at: https://doi.org/10.1007/s00521-

013-1362-6.

Sun, Y. (2015) ‘A Comparative Evaluation of String Similarity Metrics for Ontology

Alignment’, Journal of Information and Computational Science, 12(3), pp. 957–964.

Available at: https://doi.org/10.12733/jics20105420.

Sutinen, E. and Tarhio, J. (1 5) ‘On using q-gram locations in approximate string

matching’, Proc. Third Ann. European Symp. Algorithms (ESA ’95), pp. 327–340.

Available at: https://doi.org/10.1007/3-540-60313-1_153.

Tejada, S., Knoblock, C. a. and Minton, S. (2002) ‘Learning Domain-Independent String

Transformation Weights for High Accuracy Object Identification’, Proceedings of the

eighth ACM SIGKDD international conference on Knowledge discovery and data mining,

pp. 350–359. Available at: https://doi.org/10.1145/775047.775099.

Ukkonen, E. (1 2) ‘Approximate string-matching with q-grams and maximal matches’,

Theoretical Computer Science, 92(1), pp. 191–211. Available at:

https://doi.org/10.1016/0304-3975(92)90143-4.

US Department of State (2008) ‘Country Reports on Terrorism 200 ’, (April), pp. 1–312.

REFERENCES

172

VanderPlas, J. (2017) Python Data Science Handbook. O’Reilly Media, Inc.

Wang, F. and Wang, H. (2016) ‘Record Linkage Using the Combination of Twice Iterative

SVM Training and Controllable Manual Review.’, DASC/PiCom/DataCom/CyberSciTech,

pp. 31–38. Available at: https://doi.org/10.1109/DASC-PICom-DataCom-

CyberSciTec.2016.21.

Wang, G., Chen, H. and Atabakhsh, H. (200) ‘Automatically detecting deceptive

criminal identities’, Communications of the ACM, 47(3), pp. 70–76. Available at:

https://doi.org/10.1145/971617.971618.

Wang, J. and Dong, Y. (2020) ‘Measurement of Text Similarity: A Survey’, Information,

11, pp. 1–17. Available at: https://doi.org/10.3390/info11090421.

Wang, Y.R. and Madnick, S.E. (1 8) ‘The inter-database instance identification

problem in integrating autonomous systems’, Proceedings of the Fifth International

Conference on Data Engineering, pp. 46–55. Available at:

https://doi.org/10.1109/ICDE.1989.47199.

Wangikar, V., Deshmukh, S. and Bhirud, S. (2016) ‘Study and Implementation of Record

De-duplication Algorithms’, Proceedings of the Second International Conference on

Information and Communication Technology for Competitive Strategies - ICTCS ’16,

(January), pp. 1–6. Available at: https://doi.org/10.1145/2905055.2905063.

Ward, J.H. (1 63) ‘Hierarchical Grouping to Optimize an Objective Function’, Journal of

the American Statistical Association, pp. 236–244. Available at:

https://doi.org/10.1080/01621459.1963.10500845.

Waterman, M.S., Smith, T.F. and Beyer, W.A. (1 6) ‘Some biological sequence

metrics’, Advances in Mathematics, 20(3), pp. 367–387. Available at:

https://doi.org/10.1016/0001-8708(76)90202-4.

Watson, I. and Marir, F. (200) ‘Case-Based Reasoning : A Review’, Published in The

Knowledge Engineering Review, 9(4), pp. 1–34.

What is Soundex and How Does Soundex Work? (page 2). Available at:

http://www.genealogyintime.com/GenealogyResources/Articles/what_is_soundex_a

nd_how_does_soundex_work_page2.html (Accessed: 26 November 2022).

Winkler, W. (1) ‘Advanced methods for record linkage’, (1 1), p. 2 . Available at:

https://doi.org/10.1.1.39.3724.

REFERENCES

173

Winkler, W.E. (1 0) ‘String Comparator Metrics and Enhanced Decision Rules in the

Fellegi-Sunter Model of Record Linkage’, Proceedings of the Section on Survey

Research, pp. 354–359.

Winkler, W.E. (2006) ‘Overview of Record Linkage and Current Research Directions’,

Statistical Research Division, (2), pp. 1–44. Available at:

https://doi.org/10.1206/3728.2.

WONG, J.A.H. and M.A. (1) ‘Algorithm AS 136: A k-means clustering algorithm’,

ournal of the Royal Statistical Society: Series C (Applied Statistics), 28(1), pp. 100–108.

Wu, K.L. and Yang, M.S. (200) ‘Mean shift-based clustering’, Pattern Recognition,

40(11), pp. 3035–3052. Available at: https://doi.org/10.1016/j.patcog.2007.02.006.

Xu, R. and Wunsch, D. (2005) ‘Survey of clustering algorithms’, IEEE Transactions on

Neural Networks, 16(3), pp. 645–678. Available at:

https://doi.org/10.1109/TNN.2005.845141.

Yadav, S., Sinha, A. and Kumar, P. (201) ‘Multi-attribute identity resolution for online

social network’, SN Applied Sciences, 1(12), pp. 1–15. Available at:

https://doi.org/10.1007/s42452-019-1701-z.

Yan, B., Bajaj, L. and Bhasin, A. (2011) ‘Entity Resolution Using Social Graphs for

Business Applications’, in 2011 International Conference on Advances in Social

Networks Analysis and Mining. IEEE, pp. 220–227. Available at:

https://doi.org/10.1109/ASONAM.2011.119.

Yan, Y. et al. (2020) ‘Entity Matching in the Wild: A Consistent and Versatile Framework

to Unify Data in Industrial Applications’, Proceedings of the ACM SIGMOD International

Conference on Management of Data, pp. 2287–2301. Available at:

https://doi.org/10.1145/3318464.3386143.

Yerva, S.R., Miklos, . and Aberer, K. (2010) ‘Towards better entity resolution

techniques for Web document collections’, in 2010 IEEE 26th International Conference

on Data Engineering Workshops (ICDEW 2010). IEEE, pp. 209–214. Available at:

https://doi.org/10.1109/ICDEW.2010.5452698.

Yi, F. et al. (2020) ‘Cybersecurity Named Entity Recognition Using Multi-Modal

Ensemble Learning’, IEEE Access, 8, pp. 63214–63224. Available at:

https://doi.org/10.1109/ACCESS.2020.2984582.

Yizong Cheng (1 5) ‘Mean shift, mode seeking, and clustering’, IEEE Transactions on

Pattern Analysis and Machine Intelligence, 17(8), pp. 790–799. Available at:

https://doi.org/10.1109/34.400568.

Appendix (A)

174

Appendix (A) – Research Publication

asn0144@my.londonmet.ac.uk

Appendix (A)

175

Appendix (A)

176

Appendix (A)

177

Appendix (A)

178

Appendix (A)

179

Appendix (A)

180

Appendix (A)

181

Appendix (A)

182

Appendix (A)

183

Appendix (A)

184

Appendix (A)

185

Appendix (B)

186

Appendix (B)

I. Python Programming Language

Python is a programming language that is very simple to use and offers excellent features

compared to other high-level programming languages. The Python language syntax is

straightforward, allowing a programmer to focus on the task rather than the

programming syntax complication and making the program development easy. Most

importantly, the Python program is much shorter to code than other computer

programming languages for many reasons, as a single statement is required to express

complex operations. No starting and ending brackets are required for the statements,

but they only need indentation to group them. In contrast, the variable declaration is

not required (Docs.python.org, 2017).

II. PyCharm IDE

There are many programming editors that a programmer can use to code in Python.

However, PyCharm is simple to use and full of features. PyCharm IDE provides many

features for developers to use the essential tools for an easy and smooth program

development process. It was developed by JetBrains, a software development company

known for creating powerful development tools. According to (Jetbrains.com., 2017),

there are two versions available to download:

o The Community Edition is free and provides many features for Python program

development. However, it has limited features available to the programmer

because this edition is primarily for academic staff and students.

o The Professional Edition is not free and requires a licence to be purchased. It is

for a professional programmer and provides a full-featured IDE with robust

program development, especially web development, by supporting other

frameworks and toolkits on top of those supported in the Community edition.

Appendix (B)

187

PyCharm provides a wide range of features to enhance productivity, code quality, and

collaboration for Python programmers, making it one of the most popular choices

among developers. As an application, it has hardware system requirements for both

editions that require at least the following:

• A minimum of 1 GB RAM, but 2 GB RAM is recommended,

• 1024x768 minimum screen resolution,

• Microsoft Windows 10/8/7 (incl.64-bit),

• At least Python 2.4 or higher installed

• The JRE1.8 is required, but it is integrated into the package, so there is no need

to install a separate version of Java (Jetbrains.com., 2017)

 Key Features of PyCharm

• Code Editor - PyCharm offers a feature-rich code editor with syntax highlighting,

code completion, formatting, and navigation tools. It supports intelligent code

suggestions and auto-completion, which saves time and reduces coding errors.

• Code Inspection and Refactoring - PyCharm performs code inspections and

provides suggestions for improving code quality and adhering to Python best

practices. It offers various automated refactoring options to improve code

maintainability, such as renaming variables, extracting methods, and optimizing

imports.

• Debugger - PyCharm includes a powerful debugger that allows developers to

step through code, inspect variables and set breakpoints to troubleshoot and fix

issues efficiently.

• Testing and Profiling - PyCharm integrates seamlessly with popular testing

frameworks like unittest, pytest, and doctest. It provides built-in tools for

running tests, viewing test results, and profiling code to identify performance

bottlenecks.

Appendix (B)

188

• Version Control Integration - PyCharm supports version control systems like Git,

Mercurial, and Subversion, allowing developers to manage code repositories

directly from the IDE. It provides visual diff and merge tools to simplify code

collaboration and merging changes.

• Database Tools - PyCharm offers tools to connect and interact with databases,

allowing developers to query and visualize data within the IDE.

• Web Development Support - PyCharm includes support for web development

with frameworks like Django, Flask, and Pyramid. It provides code completion,

templates, and other features tailored for web development.

• Scientific Tools Integration - PyCharm integrates with tools and libraries like

NumPy, SciPy, and Matplotlib, making it suitable for data analysis and scientific

computing projects.

• Remote Development - PyCharm allows developers to work on remote projects

by connecting to a remote server or a virtual machine.

III. Pandas Python Library

Pandas is an open-source Python data analysis tool that provides fast, flexible and

robust data analysis and manipulation features. It is one of Python's most popular data

manipulation and analysis libraries. Currently, it provides some of the main features of

Python language. It displays data in a tabular format like an SQL table or Excel

spreadsheet. It easily handles missing data that is typically displayed as NaN. It allows

new columns to be added or deleted from the table called “DataFrame” in Pandas, which

provides a powerful “group by” functionality (Pandas.pydata.org., 2017). It is built on

top of the NumPy library and also offers additional data structures and functionalities

tailored for handling structured data efficiently. Pandas library is widely used in various

domains, including data science, machine learning, finance, economics, and social

sciences, due to its ease of use, flexibility, and performance.

Appendix (B)

189

 Key Features of Pandas

There are several different features that Pandas offer (McKinney, 2013; VanderPlas,

2017):

• Data Structures - Pandas provides the following two primary data structures.

o Series: A one-dimensional labelled array containing various data types,

including integers, floats, strings, and Python objects. It has an index

(labels) and a corresponding array of values, allowing for data alignment.

o DataFrame: A two-dimensional labelled data structure resembling a

table, where data is organised in rows and columns. Each column in a

“DataFrame” is a Series. DataFrame provides a flexible and powerful way

to work with tabular data.

• Data Manipulation - Pandas offers a rich set of functions and methods for data

manipulation tasks, such as filtering, sorting, merging, grouping, reshaping, and

aggregating data. Data can be easily sliced, diced, and transformed to meet the

requirements of specific data analysis tasks.

• Missing Data Handling - Pandas provides various methods to handle missing

data, including dropping missing values or filling them with appropriate values

using interpolation or imputation techniques.

• Data Alignment - One of the strengths of Pandas is its ability to automatically

align data based on the labels of the data structures. This alignment simplifies

performing operations on different datasets with different indices.

• Time Series Functionality - Pandas offers robust support for time series data,

making it suitable for working with time-based data, such as financial data, stock

prices, and sensor readings. It provides date/time indexing, resampling, time

shifting, and frequency conversion functionalities.

Appendix (B)

190

• Data I/O - Pandas supports reading and writing data in various formats, such as

CSV, Excel, SQL databases, JSON, and more. It allows for seamless data

integration and sharing between different data sources.

• Integration with NumPy and Matplotlib - Pandas is built on top of NumPy,

enabling seamless integration with NumPy arrays and functions. It also works

well with Matplotlib, a popular data visualization library, making insightful plots

and charts from Pandas data easy.

Alongside Pandas, the other approximate string-matching packages are used in this

framework.

IV. FuzzyWuzzy Python Library

FuzzyWuzzy is a string-matching similarity metric Python library. It offers various fuzzy

string-matching algorithms to compare strings and calculate the similarity by using the

Levenshtein distance (edit distance) to convert one string into another by calculating the

distance. It is open-source and was developed by SeatGeek in 2011. It has been designed

to solve the labelling of different events for sports and concert tickets from the internet.

Nothing extra software is required as FuzzyWuzzy uses “difflib” from the Python

standard library (Bonzanini, 2017). FuzzyWuzzy is particularly useful when dealing with

strings with slight variations, typos, or misspellings, as it allows for approximate string

matching.

 Key Features of FuzzyWuzzy

• String Similarity Measurement - FuzzyWuzzy provides several algorithms to

calculate the similarity between two strings. The most commonly used

algorithm is the Levenshtein distance, which counts the number of single-

character edits (insertions, deletions, or substitutions) required to transform

one string into another.

Appendix (B)

191

• Ratios and Partial Ratios - FuzzyWuzzy calculates similarity ratios, represented

as percentages, indicating the similarity between two strings. It offers different

ratio types, such as ratio, partial ratio, and token sort ratio, each considering

different aspects of string matching.

• Tokenisation and Sorting - FuzzyWuzzy tokenises strings into individual words

or tokens before performing comparisons. Tokenisation helps to compare

words regardless of their order in the string, and sorting tokens alphabetically

improves matching results in some cases.

• Process and Choices - FuzzyWuzzy provides the “process” and “choices”

functions, allowing easy comparison of a target string with a list of strings. The

“process” function ranks the list of choices based on similarity to the target

string (Datacamp.com).

 Usage of FuzzyWuzzy

• String Matching and Deduplication - FuzzyWuzzy is often used to identify

duplicate records in a dataset, especially when dealing with data from different

sources with inconsistent or slightly different representations of the same

entities.

• Search and Suggestion Systems - FuzzyWuzzy is helpful in search and suggestion

systems, where it can be employed to provide more accurate and robust search

results, especially when users make typos or misspellings.

V. NetworkX Python Library

NetworkX is an open-source Python library for exploring and analysing networks and

network algorithms. The core provides data structures for representing many types of

networks, directed graphs, and graphs with self-loops. The nodes in NetworkX graphs

can be any (hashable) Python, and edges can contain arbitrary data. Simply put, the

nodes represent entities, and the edges represent relationships or connections between

Appendix (B)

192

the entities. This kind of flexibility makes NetworkX ideal for networks in many scientific

fields. In addition to the primary data structures, many algorithms are implemented to

calculate network properties and structure measures, such as shortest paths,

betweenness and distribution, and many more. (Schult, 1943). NetworkX is widely used

in various domains, including social network analysis, biology, physics, transportation,

and computer science, to model and analyze complex systems with interconnected

components (Hagberg, Schult and Swart, 2008).

 Key Features of NetworkX

• Graph Data Structures - NetworkX offers various graph data structures, such as

directed graphs (DiGraphs), undirected graphs (Graphs), and multi-graphs

(MultiGraphs). The library allows for creating, adding, and removing nodes and

edges and attaching attributes to nodes and edges to store additional

information (M.E.J.Newman, 2010).

• Graph Algorithms - NetworkX provides a rich set of graph algorithms, such as

shortest path finding, centrality measures (e.g., degree centrality, betweenness

centrality), clustering coefficient, and community detection (e.g., Louvain

method). These algorithms allow for in-depth analysis and insights into the

structural properties of networks.

• Graph Visualization - NetworkX integrates with Matplotlib for graph

visualization, allowing users to create insightful plots and visualizations of the

networks. It provides options to customize node and edge appearance to

represent various attributes visually (Hanneman and Riddle, 2005).

• Import and Export - NetworkX supports importing and exporting graphs in

various formats, such as GraphML, GML, JSON, and Pajek. It facilitates

interoperability with other network analysis tools.

Appendix (B)

193

• Extensibility - NetworkX is designed with a modular architecture, allowing users

to extend its functionalities by defining custom graph algorithms or graph

classes (Hagberg, Schult and Swart, 2008).

 Usage of NetworkX

• Social Network Analysis (SNA) - NetworkX is commonly used in social network

analysis to study relationships between individuals in a social network, measure

influence, identify key players, and detect communities.

• Transportation and Infrastructure Networks - NetworkX is employed in

modelling transportation systems, such as road, public, and communication

networks, to analyze flow patterns and optimize routes.

• Biological and Molecular Networks - In biology, NetworkX is used to study

molecular interactions, protein-protein interaction networks, gene regulatory

networks, and metabolic pathways.

• Computer Networks - NetworkX is utilized in computer science to analyze

computer networks, communication networks, and data networks.

