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ABSTRACT

Identity refers to the unique characteristics or attributes that distinguish an individual.
Identity crimes, such as theft or fraud, occur when someone unlawfully acquires and
uses personal information for fraud. Identity resolution, the process of identifying and
merging duplicates or similar entries, is critical for law enforcement agencies globally.
However, matching identities in big data presents challenges due to inconsistencies,
including typographical errors, naming variations, and abbreviations. Traditional record
and identity matching techniques aim to consolidate or eliminate redundant data
entries, ensuring accuracy and integrity. Manual identity matching is infeasible in big
data environments. However, machine learning techniques offer a solution by

automating pattern extraction and reducing reliance on manually coded rules.

This research proposes a fuzzy approach for identity resolution, combining unsupervised
learning with fuzzy string similarity metrics to improve identity matching. The model
incorporates an iterative search process using a combination of the Soundex and Jaro-
Winkler algorithms to compute an aggregate score for names. The Soundex method has
been enhanced to generate a six-digit numerical code, overcoming traditional
limitations. Additionally, with the help of the FuzzyWuzzy Python library, the Edit-
distance algorithm is applied to match attributes such as “address” and “ethnicity
description.” The Mean-Shift clustering technique dynamically generates clusters based

on the final dataset, avoiding needing a predefined number of clusters.

The three name variations of the iterative search process allow the categorisation of
records into Match, Related or Close Match, and Possible Match while excluding
duplicates. By grouping entities based on similarity scores and applying graph analysis,
the framework accurately identifies target identities, even when links span different
addresses. The results demonstrate the framework’s ability to enhance the speed and

accuracy of identity resolution, offering a more efficient method than existing solutions.

This research significantly contributes to identity resolution techniques, improving
investigative processes with minimal information and offering valuable applications for

law enforcement and other sectors, such as fraud detection in the financial industry.
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ICHAPTER1

1. INTRODUCTION

Fraud is a significant ongoing threat to society, the economy, law enforcement agencies,
and other institutions globally, and it remains a complex task. It has become a great
challenge for law enforcement agencies to identify the correct identity among the false
identities from a colossal identity pool. For example, one might have many identities
that can be used differently. Before diving deep into the problem solution, some basic

understanding of key terms will be established in the sections below.

1.1. Fraud and Types of Fraud

Fraud refers to the act of deceiving or intentionally misleading others for personal or
financial gain. It typically involves dishonesty, misrepresentation, or manipulation to
deceive individuals, organisations, or systems (Albrecht W, Albrecht C, A, 2008;
Pedneault et al., 2012). There are various types of fraud, including the following that are

described by (Hedayati, 2012) :

2 Identity Theft: This occurs when someone steals another person’s personal
information, such as Social Security numbers, credit card details, or bank account

information, to commit fraudulent activities.

S Credit Card Fraud: This type of fraud involves using another person’s credit card

information to purchase or withdraw funds without their consent.

S Insurance Fraud: This fraud involves false claims or exaggerating events or

damages to receive insurance benefits illegally.

2 Investment Fraud: This fraud encompasses fraudulent schemes or practices that

deceive investors into making decisions based on false or misleading
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information. Ponzi schemes and pump-and-dump schemes are examples of

investment fraud.

Healthcare Fraud: It refers to fraudulent activities in the healthcare industry,
such as submitting false claims, overbilling, providing unnecessary treatments,

or selling counterfeit drugs.

Tax Fraud: This involves intentionally providing false information on tax returns

to avoid paying taxes or obtaining tax refunds illegitimately.

Online Scams: These frauds occur online, including email scams, phishing attacks,

online auction fraud, and pyramid schemes conducted through online platforms.

Mortgage Fraud: This fraud involves providing false information or engaging in
illegal activities to obtain a mortgage loan, such as inflating property values or

misrepresenting financial information.

Wire Fraud: This fraud refers to fraudulent activities conducted through
electronic communications, such as email or online messaging, to deceive

individuals or organisations into sending money or sensitive information.

Employment Fraud: This includes fraudulent practices related to employment,

such as fake job postings, résumé fraud, or fraudulent recruitment agencies.

These are just a few examples of fraud, and there are many other variations and

combinations of fraudulent activities that individuals or groups may engage in for

personal gain. It is vital to remain vigilant and take necessary precautions to protect

oneself from fraud.

1.2. Identity and Types of Identity

However, one true identity must be identified at the right time among all the identities.

(Niblett, 2015) defined, “Identity is the root of who we are as individuals when it comes

to the matter of trust”. Matching identity is a technique to find a relationship between
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two or more identities of the same person. Identity can be understood in different

contexts, and various identities exist. Here are some common types of identities:

< Personal Identity: Personal identity refers to the unique characteristics,
experiences, beliefs, and values that define an individual as a distinct person. It
includes gender, age, ethnicity, nationality, sexual orientation, religion, and

personal interests (Li and Wang, 2015).

S Cultural Identity: Cultural identity encompasses the shared beliefs, customs,
traditions, language, and values that shape a person’s sense of belonging to a
particular cultural group or community. It can include ethnic, regional, or

national identities (McCallum-Bayliss, 2004).

<> Social Identity: Social identity refers to an individual identifying with the group
or groups. Typically, this includes family, occupation, socioeconomic status,
political affiliation, or membership in specific communities or organisations (Li

and Wang, 2011).

< National Identity: National identity relates to an individual’s sense of belonging
and allegiance to a particular nation or country. It includes a shared sense of

history, culture, language, and citizenship (Soltani and Abhari, 2013).

2 Gender ldentity: Gender identity is an individual’s internal sense of gender,
which may or may not align with the sex assigned to them at birth. Gender
identity can be male, female, or non-binary, among other identities along the

gender spectrum (Li and Wang, 2015).

2 Professional Identity: Professional identity encompasses the roles, skills, and
values of a person’s chosen profession or career. It includes professional
affiliations, qualifications, and the sense of professional purpose and identity

within a specific field (Yan, Bajaj and Bhasin, 2011).

2 Online Identity: With the growth of the internet and social media, online identity

has become significant. It refers to the persona or representation of oneself
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created through online platforms, including usernames, profiles, and online

interactions (Yadav, Sinha and Kumar, 2019).

> Self-identity: Self-identity encompasses an individual’s subjective understanding
and perception of oneself, including self-image, self-esteem, and self-concept.

Personal experiences, beliefs, and values can influence it (Chung et al., 2014).

It is important to note that identities are complex and multidimensional, and individuals
may identify with multiple identities simultaneously. Additionally, identities can evolve

and change over time as individuals develop and experience new aspects of their lives.

1.3. Types of Identity Crimes

Identity refers to the distinguishing characteristics, traits, or attributes that make an
individual unique. Identity crimes, also known as identity theft or fraud, occur when
someone wrongfully obtains and uses another person’s personal information for fraud.
Using this stolen information can commit various types of identity crimes described by

(Albrecht W, Albrecht C, A, 2008; Hedayati, 2012) , such as:

S Financial lIdentity Theft: This involves using another person’s personal
information, such as Social Security numbers, credit card details, or bank account
information, to make unauthorised financial transactions, open fraudulent

accounts, or apply for loans or credit cards.

S Medical Identity Theft: In this type of identity crime, someone fraudulently uses
another person’s personal information to receive medical services, prescriptions,
or insurance coverage. It can lead to incorrect medical records, fraudulent

insurance claims, and potential health risks for the victim.

S Criminal Identity Theft: This occurs when someone uses another person’s

identity during the commission of a crime. The criminal can provide false
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identification to law enforcement or use the stolen identity to avoid detection or

prosecution.

Synthetic Identity Theft: Synthetic identity theft involves creating a new identity
by combining real and fake information. Fraudsters may use a combination of

stolen and fabricated details to establish credit or conduct fraudulent activities.

Child Identity Theft: This type of identity theft targets minors. The perpetrator
may use a child’s personal information, such as their Social Security number, to
open fraudulent accounts or commit financial fraud. Since children typically have

limited financial activity, their stolen identities can go undetected for years.

Social Media Identity Theft: With the increasing use of social media, individuals’
personal information can be exploited. Fraudsters may use stolen identities to

create fake profiles, conduct scams, or spread malicious content.

Tax ldentity Theft: Tax identity theft occurs when someone uses another
person’s Social Security number or other identifying information to file

fraudulent tax returns and claim refunds illegally.

It is crucial to safeguard personal information and regularly monitor financial and

personal records to detect any signs of identity theft. Taking preventive measures like

using strong passwords, being cautious of phishing attempts, and shredding all personal

documents can help mitigate the risk of falling victim to identity crimes.

1.4. Machine Learning

Machine learning is a subfield of artificial intelligence that focuses on developing

algorithms and models that enable computers to learn and make predictions or

decisions without explicit programming. Machine learning algorithms are designed to

automatically analyse and interpret complex patterns and relationships in data and use

that knowledge to perform specific tasks or make predictions. Machine learning can be
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broadly categorised into the following types (Christopher M. Bishop, 2006; Hastie,
Tibshirani and Friedman, 2009):

1.4.1. Supervised Learning

Supervised learning involves training a model on labelled data, where corresponding
desired outputs or labels accompany the input data. The model learns from this labelled
data and generalises the patterns to make predictions or classify new, unseen data.
Examples of supervised learning algorithms include linear regression, logistic regression,
decision trees, random forests, support vector machines (SVM), and neural networks

(Christen, Vatsalan and Wang, 2016; Jurek et al., 2017).

1.4.2. Unsupervised Learning

Unsupervised learning involves training a model on unlabelled data, where the
algorithm must discover patterns or structures in the data without prior knowledge of
the outcomes or labels. Unsupervised learning algorithms aim to find meaningful
representations, groupings, or relationships in the data. Clustering algorithms, such as
k-means and hierarchical clustering, Self-organising Maps, and dimensionality reduction
techniques, such as principal component analysis (PCA), are typical examples of
unsupervised learning (Kohonen, 1990; Du, 2010). The supervised learning will be

discussed in later chapters.

1.4.3. Semi-Supervised Learning

Semi-supervised learning combines elements of supervised and unsupervised learning.
It involves training a model on a mixture of labelled and unlabelled data. The model
learns from the labelled data to predict new, unseen data and uses the unlabelled data

to enhance its understanding of the underlying patterns or structures (Sun, 2013).
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1.4.4. Reinforcement Learning

Reinforcement learning involves training an agent to interact with an environment and
learn optimal actions to maximise a reward signal. The agent learns through trial and
error, receiving feedback as rewards or penalties based on its actions. Reinforcement
learning is commonly used in robotics, game-playing, and autonomous systems
(Christopher M. Bishop, 2006).

Machine learning algorithms can be applied to a wide range of tasks, including:

< Classification — Predicts the class or category of an input based on its features

and, for example, classifying emails as spam or non-spam (Jurek et al., 2017).

S Regression — Predicts a continuous value or outcome based on input features,
for example, predicting housing prices based on location, size, and number of

rooms (Yan et al., 2020).

S Clustering — Groups similar data points based on their attributes or
characteristics, for example, segmenting customers into distinct groups based on

their purchasing behaviour (Bezdek, 1981).

S Anomaly detection — Identifies rare or abnormal data points or events that
deviate from the norm, for example, detecting fraudulent transactions or

network intrusions (Studiawan, Payne and Sohel, 2017).

S Recommendation systems — Recommends items or content to users based on
their preferences and behaviour, for example, suggesting movies or products

based on previous interactions (Ghahramani, 2015).

S Natural Language Processing (NLP) — Analyse and understand human language,
including tasks like text classification, sentiment analysis, and machine

translation (Liao and Zhao, 2019).

S Computer Vision — Extract meaningful information and patterns from images or
videos, including tasks like object recognition, image segmentation, and facial

recognition (Liu et al., 2013).
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Machine learning has become increasingly popular and widely used across various
industries and domains, driving advancements in data analysis, automation, and

decision-making.

1.5. Understanding Basic Concepts of Matching
Techniques

1.5.1. Record Matching

Record matching, or entity resolution or deduplication, identifies and merges duplicate
or similar records within a dataset. In record matching, various attributes or fields in
records are compared to determine if they likely refer to the same entity. The goal is to
consolidate or eliminate redundant or duplicate data entries to ensure data accuracy
and integrity. The comparison can be based on criteria such as name, address, phone
number, or other identifying information. By identifying and merging duplicate records,
record matching helps create a clean and consolidated dataset that avoids data

redundancy and inconsistency (Bharambe, Jain and Jain, 2012).

For example, in a customer database, record-matching techniques can identify and
merge duplicate entries for the same customer based on criteria such as name, address,
phone number, or other identifying information. Usually, this helps create a clean and
consolidated database with accurate customer information. The following section will

briefly highlight the records matching techniques.

1.5.1.1. Records Matching Techniques

S Deterministic Matching

This technique uses strict rules or algorithms to compare specific fields or attributes

between records. It relies on exact matches or predefined rules to identify duplicates or
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similarities, for example, by comparing Social Security numbers or unique identifiers to

find exact matches (Sayers et al., 2016).

S Probabilistic Matching

This technique assigns probabilities or weights to the similarity of different attributes
between records. It considers fuzzy matches and calculates a likelihood score to
determine the similarity or likelihood of a match. Probabilistic matching techniques use
algorithms like the Jaro-Winkler distance or the Levenshtein distance to quantify the

similarity between strings or attributes (Fellegi and Sunter, 1969; Sayers et al., 2016).

S Rule-Based Matching

This technique employs predefined rules or logic to compare and match records. Rules
can be defined based on specific criteria, such as matching names, addresses, or phone
numbers. Rule-based matching allows for flexibility in defining the conditions and

thresholds for matching (Christen, 2012).

2 Machine Learning-Based Matching

Machine learning techniques can be applied to record matching by training models on
labelled data. These models learn patterns and similarities from the data to identify
potential matches. Supervised learning algorithms, such as decision trees, random
forests, or support vector machines, can be used for matching records (Christen,

Vatsalan and Wang, 2016).

1.5.2. Identity Matching

Identity matching, on the other hand, focuses on verifying or establishing the identity of

an individual or entity. It involves comparing different attributes or data points to
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determine if they belong to the same identity or if they match against a known identity

(Soltani and Abhari, 2013).

Identity matching can be used in various contexts, such as stated by (Boongoen and

Shen, 2009):

o Law enforcement agencies use fingerprints or DNA matching to identify suspects

or link crime scenes.

o Financial institutions verify the identity of customers through “Know Your
Customer (KYC)” processes, comparing personal information and identification

documents.

o Online platforms use identity-matching techniques to authenticate users during

account registration or login processes.

Identity matching techniques may employ various data points, including personal
identifiers, biometric data, photographs, or unique identifiers like Social Security or
passport numbers. The goal is to ensure accurate identification and prevent fraud or

unauthorised access.

While record matching focuses on identifying and merging duplicate records within a
dataset, identity matching focuses on establishing the identity of individuals or entities
by comparing data points to known identities or reference data. Both techniques serve

distinct purposes in data management and identification processes.

1.5.2.1. Identity Matching Techniques

< Biometric Matching

Biometric matching involves comparing biometric data, such as fingerprints, iris
patterns, or facial features, to establish identity. Biometric systems use
mathematical algorithms to analyse and match the unique characteristics of an
individual’s biometric data (Jain, Ross and Prabhakar, 2004).
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S Document Verification

This technique involves comparing identification documents, such as passports or
driver’s licenses, to establish identity. It may involve manual verification by experts
or automated systems that analyse the document’s security features and data

consistency or compare it against known reference data (Wang and Dong, 2020).

S Knowledge-Based Authentication

Knowledge-based authentication involves verifying an individual’s identity through
information they should know, such as personal identification questions, passwords,
or PINs. This technique assumes that the person claiming an identity possesses

knowledge specific to that identity (Jain, Ross and Prabhakar, 2004).

S Multifactor Authentication

Multifactor authentication combines multiple identity verification techniques. It
typically involves a combination of something the individual knows, e.g., a password,
something they have, e.g., a smart card or mobile device, or something they are,
e.g., biometric data. By requiring multiple factors, multifactor authentication

enhances the security and reliability of identity matching.

It is important to note that the selection of matching techniques depends on the
specific context, data quality, available resources, and desired level of accuracy.
Different techniques may be employed to achieve accurate and reliable matching or

identification results (Jain, Ross and Prabhakar, 2004).
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1.5.3. Deterministic Matching

Deterministic matching is a technique used in record matching where strict rules or
algorithms are applied to compare specific fields or attributes between records. The goal
is to identify exact matches or predefined patterns to determine if two records refer to
the same entity. Deterministic matching relies on precise matching criteria and
predefined rules to identify duplicates or similarities. In deterministic matching, specific
fields, such as names, addresses, phone numbers, or unique identifiers, are compared
between records. The matching process follows predetermined rules, such as requiring
an exact match or a specific pattern to consider records as a match, for example, by
comparing Social Security numbers or unique customer IDs to find exact matches.
Deterministic matching is often faster and more straightforward than probabilistic
matching as it relies on strict rules (Aiken et al., 2019). However, it may miss potential
matches if the data has inconsistencies or minor variations, such as misspellings or
formatting differences. This technique is effective when the data quality is high and

exact matches or specific patterns are sufficient to identify duplicates or similarities.

1.5.3.1. Deterministic Matching Techniques

Deterministic matching techniques are to identify exact matches or predefined patterns
between records. These techniques apply strict rules or algorithms to compare specific

fields or attributes. Here are some commonly used deterministic matching techniques:

S Exact Matching

Exact matching involves comparing specific fields or attributes between records to
find exact matches. This technique requires the values in the compared fields to be
identical for the records to be considered a match, for example, by comparing
unique identifiers like Social Security numbers or customer IDs to find exact matches

(Al-khamaiseh and Alshagarin, 2014).
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S Rule-Based Matching

Rule-based matching involves defining predefined rules or logic to compare and
match records. The rules can have specific criteria or patterns that must be met for
two records to be considered a match, for example, matching records based on exact
matches of names, addresses, phone numbers, or a combination of multiple

attributes (Yi et al., 2020).

> Key-based Matching

Key-based matching involves selecting a specific attribute or set of attributes as the
key identifier for matching records. Records with the same key value are considered
a match, for example, by using a unique customer ID or a combination of attributes
like name and address as the key for matching customer records (Dey, Mookerjee

and Liu, 2011).

S Token-based Matching

Token-based matching involves breaking down attributes into smaller units or
tokens and comparing these tokens between records. Tokens can be words, phrases,
or specific patterns. The matching is based on the presence or absence of specific
tokens or the order of tokens. Token-based matching helps handle variations or

inconsistencies in textual attributes (Cohen, Ravikumar and Fienberg, 2003).

< Dictionary-based Matching

Dictionary-based matching involves creating a predefined dictionary or reference
dataset with known values or patterns. Records are matched by comparing their
attribute values against the entries in the dictionary. This technique is commonly
used for matching standard names, addresses, or other reference data (Yi et al.,

2020).
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< Hierarchical Matching

Hierarchical matching involves establishing a hierarchical structure or grouping
records based on specific attributes or criteria. Matching is performed at different
levels of the hierarchy, allowing for more efficient matching by narrowing down the
search space. This technique is effective when dealing with large datasets

(Ravikumar and Cohen, 2004).

1.5.4. Probabilistic Matching

Probabilistic and fuzzy matching techniques are used in record matching to identify
potential matches by assigning probabilities or weights to the similarity of different
attributes between records. It considers fuzzy matches and calculates a likelihood score
to determine the similarity or likelihood of a match. Probabilistic matching considers
variations, inconsistencies, or errors in the data. It uses algorithms that measure the
similarity between strings or attributes, such as the Jaro-Winkler distance or the
Levenshtein distance. These algorithms quantify the degree of similarity between two
strings by calculating the number of transformations required to convert one string into
the other. The probabilistic matching process involves comparing multiple attributes
between records and assigning weights or scores to each attribute’s similarity. The final
match score is calculated based on the combination of attribute scores and a threshold
set to determine whether the records match. The threshold can be adjusted based on
the desired level of precision and recall (Ravikumar and Cohen, 2004). It can identify
potential matches that deterministic matching might overlook. However, it may also

introduce false results if the threshold is too low or the data quality is poor.

1.5.4.1. Probabilistic Matching Techniques

Probabilistic and fuzzy matching techniques are used to identify potential matches

between records by assigning probabilities or weights to the similarity of different
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attributes. These techniques allow for flexibility in handling variations, inconsistencies,

or errors in the data. Here are some commonly used probabilistic matching techniques:

< Jaro-Winkler Distance

The Jaro-Winkler distance is a string similarity measure that calculates the similarity
between two strings by comparing their characters’ positions and transpositions. It
assigns a similarity score between 0 and 1, with 1 indicating a perfect match. The

Jaro-Winkler distance compares names or other textual attributes (Winkler, 1994).

< Levenshtein Distance

The Levenshtein distance, also known as the edit distance, measures the minimum
number of single-character edits required to transform one string into another. It
calculates a distance value, and a similarity score can be derived by taking the inverse
of the distance. The Levenshtein distance helps compare attributes with potential

misspellings or slight variations (Ristad and N.yianilos, 1998).

< Soundex

Soundex is a phonetic algorithm that converts words or names into a four-character
code based on pronunciation. It allows for matching based on similar-sounding
names, even with different spellings. Soundex matches names or surnames that

have different spellings but sound similar (A. J. Lait and Randell, 1996).

S N-gram Matching

N-gram matching involves breaking strings into smaller n-gram components and
comparing these components between records. Similarity scores can be calculated
by comparing the occurrence and position of n-grams. This technique helps match

textual attributes that may have variations or typographical errors (Kukich, 1992).
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< Blocking

Blocking is a technique that divides records into smaller subsets or blocks based on
specific attributes or criteria. It reduces the number of record pairs that must be
compared, focusing only on records within the same block. Blocking helps to
improve the efficiency and speed of probabilistic matching algorithms (Kopcke and

Rahm, 2010).

These probabilistic matching techniques can be combined and customised based on the
specific requirements and characteristics of the matched data. The choice of technique
depends on the nature of the attributes, data quality, and the desired level of precision
and recall in the matching process. It is often necessary to experiment and fine-tune the
parameters and thresholds to achieve the desired matching accuracy. Both
deterministic matching and probabilistic matching techniques have their advantages
and limitations. The selection of the appropriate matching technique depends on the

specific use case and the quality and nature of the data being matched.

1.5.5. Record Linkage

Record matching and record linkage are separate concepts in data management and
analysis. Record linkage, also known as data linkage or entity resolution across datasets,
is the process of finding and connecting records across multiple datasets that refer to
the same entity. It involves linking or associating records from different sources
representing the same real-world entity. Record linkage goes beyond record matching
within a single dataset and involves integrating and connecting data from various
sources. The goal is to identify and establish connections between records that pertain
to the same entity, even if the attribute values or formats may differ across datasets.
Record linkage techniques typically involve comparing attributes or fields across
datasets and assigning similarity or matching scores to determine the likelihood of a

match. These techniques may use deterministic or probabilistic matching algorithms to
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identify potential matches and establish links between records. Record linkage is used
in scenarios such as data integration, data warehousing, or data analytics, where data
from different sources must be combined and linked for comprehensive analysis or

decision-making (Culotta and McCallum, 2005).

1.6. Understanding Identity Resolution

Traditionally, to match two or more records for similarities, some attributes are
required, including name, date of birth, nationality, passport number and address.
However, matching two records using attributes is insufficient for a person’s true
identity. For example, matching records by name will not resolve this issue as there can
be many similar names, such as in China where “Wang”, “Wu”, and “Li” are common
names (Lisbach and Meyer, 2013). While (Wang, Chen and Atabakhsh, 2004) stated that
each entity has attributes and can be identified by these critical attributes, e.g., ID,
name, and date of birth. These are used in traditional resolution techniques to describe
the individual and are available in traditional record management systems. However,
the traditional resolution techniques are ineffective due to typographical errors and
intentional issues such as data entry errors and intentional errors for fraud. Many other
reasons make it challenging to find the correct identity. According to (Barkay and Rein,
2015) analysis, a massive amount of unstructured, incomplete, and incorrect data is
available publicly to extract the required information, leading to a monumental task.
Differentiating and combining are the two main tasks for detecting the true identity by

finding the association between the records.

It is a must for law enforcement agencies to understand the flow of information
between individuals and other sources. This analysis helps to identify lead actors, their
roles and specialisations, communication channels, knowledge distribution, and
ultimately, vulnerabilities in the organisational structure that the agency can exploit. It
requires large datasets and a stream of information to analyse the identity by following
any change in the information or activity pattern, which can give some indication of the

information flow of an individual to identify, such as travelling or financial information.
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For example, an individual may stay under the radar if viewed as isolated. However,
when considering regular meetings with unrelated people connected to a bank account,
showing regular or irregular transfer patterns over a specific company may reveal a very

different picture and be flagged as the lead offender.

It will help police question and track an individual for any criminal activity and match the
identity in the database to find other links, associations and connections if the individual
profile already exists. However, if this individual has changed the name from Billy Smith
to Bobby Jones or changed these names concurrently, then in that case, it is a complex
task for law enforcement agencies to identify and match the correct identity from the
database. Because the change of name may mislead the police, and the lack of tools
available to detect true identity will not be easy, primarily when the name has been used
concurrently on different occasions. Figure 1.1 depicts this type of identity fraud pattern

as described by (Adderley, 2015).
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Figure 1.1 - Identity Resolution Scenario (Adderley, 2015)

According to the US report, many cases documented that terrorists and other criminals
around the world commit identity crimes to achieve their financial needs and execute
different attacks in the real as well as in the cyber world (US Department of State, 2008).
Criminals can easily have fake identities, commonly used to mislead law enforcement
agencies. The social contextual information can improve the resolution accuracy in
addition to traditional identity attributes for identity matching (Bhattacharya and
Getoor, 2007). Thus, detecting the identity fraud pattern is a very critical task in criminal
structure as criminals use bogus identities to achieve malicious goals by hiding true

identities, and such situations are critical for national security. Finding the solution for
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identity duplication is critical as it will help fight terrorism and any other crime. Because
false identities are very commonly used for crime and terrorism, this can mislead law
enforcement agencies by having multiple identities (Li and Wang, 2015). (John S. Pistole,
2003) emphasised that law enforcement agencies must determine an individual identity

to detect potential terrorists and prevent terrorism from occurring.

Detecting fraud becomes increasingly complex when the data grows with time.
Traditional record-matching techniques can not accurately find the relationship within
the records due to the poor quality of input data, with a chance of human typing errors
and missing or incomplete information. As discussed above, the probabilistic and
deterministic techniques can be used for record matching. The probabilistic technique
typically uses training data to match records, which can result in lower accuracy. To
resolve this issue, the system must be retrained each time to process the entire dataset
(Sayers et al., 2016). Meanwhile, the deterministic technique uses predefined rules to
match the record. If the record does not satisfy the predefined rule, no match will be

found, and no data will be collected (Jonas, 2006).

According to (Duncan et al., 2015), both these techniques used for record matching and
linkage divide the record into three states: “Match, No Match and Possible Match”,
where the possible match might not be accurate if the information has been changed
over time. Therefore, it will lead to an incorrect match being flagged as a possible match.
According to (Godby et al., 2009), record matching refers to entity resolution, which
focuses on information extracted using names, while identity resolution is a technique
to determine the extracted information belongs to whom and how it is linked to others

in real-world associations.

Detecting the relationship between different data elements and entities while scanning
individual records to match data is vital. Nevertheless, it is also essential to consider the
difference between available datasets from different resources when matching any
record, which might lead to another problematic task due to different dataset standards.
According to (Jonas, 2006), this will lead to finding the uniqueness and commonalities
between different datasets from different sources to answer who is who and who knows
whom. Considering the above, it can lead to identity resolution rather than simply

matching records, as finding link associations between records is essential for finding
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true identity. Therefore, (Jonas, 2006) defined the semantic reconciliation process as

identifying an individual identity as identity resolution, even if it is described differently.

It can be easily manipulated to distinguish between different records in a small volume
dataset and find any link association between them. It is difficult for a human brain to
accurately and efficiently match the identity as the data grows in the dataset. In a large
dataset, matching and identifying the record is challenging; therefore, achieving this
goal from computers using machine learning is a complex task. A step towards this task
involves machine learning and data mining techniques such as supervised and
unsupervised learning. The data mining techniques help to extract useful information
and related patterns from the dataset, which can help in machine learning. Data mining
uses link analysis to associate the data in a graph to detect the related patterns and find
the links between them. It identifies any abnormal activity or occurrence (Brown and
Hagen, 2002). In machine learning, the supervised learning technique uses a known set
of predefined patterns to identify similarities in the new records. The unsupervised
learning technique does not use predefined patterns to find similarities. It focuses on a
dynamic algorithm to detect similarities in the object, which starts behaving differently
from objects to which they were similar in the past. (Li and Wang, 2015) defined identity
resolution as an entity resolution type used for identity management. In different
domains, an entity resolution is known as record linkage and deduplication. A white
paper published by (Dun & Bradstreet, 2013) describes that identity resolution helps in
solid decision-making and detecting the correct information at the right time to make
the right decisions. It brings a standard within the datasets by defining the entity. It
allows performing different processes and techniques for analysis to identify entities.
Identity Resolution is matching information and detecting, identifying, and considering
past information associations for the target entity. According to (Edwards et al., 2016),
linking a person's different variations of records to find the real-world identity is called

identity resolution.

Therefore, this research establishes and introduces machine learning techniques and
algorithms to match and identify related records. The following section will discuss the

literature review to help understand the gaps.
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1.7. Literature Review

Some foremost and serious incidents, such as the 9/11 New York terror attack in 2001
and the 7/7 London bombing in 2005, led law enforcement agencies, independent
organisations, and institutions to rethink to find the best possible approach for
harvesting and detecting the identities by finding similarities and links associations
between multiples identities which are referring to one real identity. The only way to
fulfil this approach is to enable a computer system intelligent enough to detect, identify,
and find an association between different records using different record-matching
techniques in less time and with less effort to produce positive outcomes.
(Ananthakrishna, Chaudhuri and Ganti, 2002) proposed eliminating duplicates in the
dataset by applying dimensional hierarchy over the link relations such as city, state, and
country. This approach only matches the identity record if both identities belong to the
same area; otherwise, the record will not be matched against similar entries in the data

set for different areas.

Similarly, (Brown and Hagen, 2002) introduced the record-linking data association
method to match the criminal records referring to the same record. In this method, the
two records are compared by calculating the total similarity using the sum of the
weighting of matching attribute values. However, this requires more computing power
as the dataset increases with time and will not filter the referring records efficiently. It
might also ignore records on fewer similarity measurements. Pasula et al., 2003
introduced a citation-matching approach to match the records using the foreign keys in
the relational database using the probabilistic relational model (PRM). The problem with
the rule-based matching approach is that it relies on the data quality in the dataset. The
actual match will not be accurately generated if the dataset is incomplete or missing

information.

Wang, Chen and Atabakhsh, 2004 proposed to compare four attributes of an individual,
such as full name, date of birth, address, and social security number, for detecting
identities and to combine the total similarity score. He introduced a record linkage
algorithm for detecting deceptive identities. However, this approach is limited and

cannot produce accurately matched results if one or more attributes are missing from
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the dataset. To eliminate the duplicate records, (Culotta and McCallum, 2005) proposed
another rules-based model called “the conditional random field model (CRF)” to
measure the associations among other different entities. However, this approach failed
and could not find the links between the same entity type (Li and Wang, 2015). One of
the graph-based methods proposed by (Bhattacharya and Getoor, 2006) is that between
each pair of reference entities, the relational graph matching is based on similarity with
the same attribute that matches the similarity measure. Furthermore, (Bhattacharya
and Getoor, 2007) enhanced the proposed approach by adding a collective entity
resolution algorithm to match social information based on the already matched records

to reuse for matching more records and not just for comparing two records.

Machine learning technique extracts the patterns from the training data rather than
manually coding the rules to match the record in the data set. After extracting patterns
from the record, the system creates its reference to match new records in the dataset
(Li and Wang, 2015). To match user profiles from social media websites such as
Facebook and Twitter, (Bartunov et al., 2012) proposed combining user profiles using
different attributes into a graph by detecting the social linkages between these two user
profiles using a CRF-based approach. According to (Li and Wang, 2015), IBM’s InfoSphere
Identity Insight is one of the best commercial applications for entity resolution and data
analysis. The application uses a set of rules predefined in the system by humans to
analyse the identities using sophisticated algorithms. If the two given identities have
identical attributes, such as dates of birth and last names, and the threshold value is

higher than the matching score, the system will combine them.

The main issue with the rules-based system is creating a set of rules, which is time-
consuming and limited for specific attribute values. Therefore, different attributes

within different datasets might not be able to be compared.

1.7.1. State of The Art - An Entity Resolution

Entity resolution is essential to identity resolution to increase data quality. Poor data

quality is a consistent issue, especially in the policing system. Suppose errors are
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introduced to the dataset when data enters the system, and the object is identified
incorrectly. In this case, it may affect the final results significantly. Therefore, it is
worthwhile to explore different entity resolution techniques and approaches. In simple
words, entity resolution extracts the correct record from the data set while removing
any record duplication to purify the result. According to (Kopcke and Rahm, 2010), entity
resolution refers to record linkage, matching, reference reconciliation, and duplication
identification. Identifying the real-world entity from the given entities is challenging due
to the poor data quality. (Winkler, 1994) states that this problem was initially addressed
by Newcombe in 1959, and later, in 1969, Fellegi and Sunter refined it to do entity

matching in the structured data.

The main challenge in entity resolution is the mismatch in the data due to typographical
errors and different variations of string appearing in the dataset. There are different
methods have been developed to tackle such issues, and the main techniques are

explained below:

1.7.1.1. Entity Resolution Techniques

< Character-based Similarity Metrics

Edit distance is the distance between two strings calculated by applying insertion,
deletion, or substitution operations to match one string to another. It is also called the
Levenshtein distance, as Levenshtein introduced it in 1965 (Elmagarmid, Ipeirotis and
Verykios, 2007). Suppose the distance of strings is less than a set threshold value by
applying the three edit operations. In this case, the strings are considered a close match
to each other with slight variation. The Edit distance matches the value of two attributes
to see if they represent the same information for the same entity. (Needleman and
Wunsch, 1970), They have slightly modified the edit distance by introducing different
cost values for different edit operations on the string. While (Ristad and N.yianilos, 1998)
introduced an algorithm that automatically calculates the cost for equivalent words

written differently. However, Edit distance fails when strings are in short form or any
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abbreviation is used instead of the complete word because the three edit operations

will not calculate the cost correctly due to this issue.

Affine gap distance is described by (EImagarmid, Ipeirotis and Verykios, 2007) as the gap
between two strings that consider the abbreviated or shortened string calculation which
edit distance cannot perform. It applies two additional edit operations, Open Gap and
Extend Gap, to find the distance between two string values (Waterman, Smith and
Beyer, 1976). The Open Gap determines the starting point in the string from where the
gap should be inserted instead of inserting a character to convert an abbreviated string
to another string. The Extend gap is used to extend the gap by adding one extra space
in the string. The penalty of the extended gap is smaller than the open gap, so the affine
gap of the two strings where one is an abbreviated variation of another string will be
smaller than the original edit distance (Elmagarmid, Ipeirotis and Verykios, 2007).
Therefore, (Bilenko et al., 2003) introduced an algorithm to train an edit distance model
using an affine gap technique. Suppose the two strings are written differently by
exchanged character positions. In this case, the affine gap fails to calculate the cost and
cannot match the strings. For example, the two strings “Belly Smith” and “Smith B” will
have a significant cost value, which will assume that the two strings are not the same

and will find a close similarity to produce the match for an entity.

The Smith-Waterman distance was introduced in 1981 to find the similarity of two
strings by matching the substring. In this method, the two strings are aligned to calculate
the substrings and their similarity by using the edit operations, and the two strings are
compared (Smith and Waterman, 1981). There is a penalty for the alignment of the
strings if any mismatch of characters is found. In contrast, any match of characters in
the strings will generate the score for the two aligned strings. Smith-waterman has
extended the edit distance and affine gap distance algorithms to find the similarity
between two strings where the start and end of the strings get lower cost for
mismatches while mismatches in the middle of the string get higher cost (Elmagarmid,
Ipeirotis and Verykios, 2007). The algorithm runs in deep detail to find the match in
substrings that show the similarity between two strings. However, computing the cost

requires enormous processing power.
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The Jaro distance was introduced to compare the first and last names (Elmagarmid,
Ipeirotis and Verykios, 2007). The Jaro distance finds the number of familiar characters
between two strings and tracks the order of the familiar characters (Gomaa and Fahmy,
2013). The Jaro distance algorithm was enhanced by (Winkler, 1990) in which the name
prefix gets the weighting higher than the surname matches weighting. This variation of
the Jaro distance is called the Jaro-Winkler distance (Gomaa and Fahmy, 2013). The Jaro
and Jaro-Winkler distance algorithms cannot perform well where there is a positional
difference between two strings and more than the allowed change. e.g., in the two
strings “Alice bruce Bob” and “Bob bruce Alice”, the allowed positional change is six.
However, the character "B’ in the string “Bob” has a 12-position difference. So only the
string “Bruce” will match between two strings, and the algorithms will not find the better

match (Elmagarmid, Ipeirotis and Verykios, 2007).

Q-gram distance is used for finding two strings’ similarity by calculating the similarity
between the small substring sequences, and these sequences are referred to as g-grams
(Barrén-Cedeno et al., 2010). As described by (Ukkonen, 1992), the string is divided into
a sequence of substrings having length g. For the string “Hello” where q = 2, the g-gram
sequence will be ‘He’, ‘el’, °IlI’, “lo’. The matching calculation is done on the g-grams
sequences from two strings where the position and occurrence of sequences are
unimportant. The strings will get a high score if both strings have the exact spelling or a
close match. However, g-gram can lead to a false match by scoring high for two strings,
“Chris” and “Rishi”, which will get a high score even if they differ. The higher value
should be used for g-gram, i.e., g = 3 or more, to tackle such an issue. So, the sequence
of g-gram will contain more characters for matching. Q-gram has different variants, such
as trigrams, bigrams, and unigrams, for text matching and correcting spelling errors
(Kukich, 1992). Sutinen and Tarhio, 1995 enhanced the g-gram algorithm even to record
the position of the g-gram of the string, and it is called positional g-gram (Gravano,
Ipeirotis, H. V. Jagadish, et al., 2001; Gravano, Ipeirotis, Hosagrahar Visvesvaraya
Jagadish, et al., 2001) proposed to efficiently use the positional g-gram for locating
similar or matching strings in the relational database. Nevertheless, any slight change in
the strings can quickly decrease the matching accuracy of g-gram, and a low score can

be given to strings.
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S Token-based similarity metrics

An atomic string algorithm was proposed by (Monge and Elkan, 1996) to match text
fields which contain alphanumeric characters enclosed within punctuation characters.
The two strings only match if both are equal or if one string is the prefix of another. The
two fields’ similarity can be calculated by the number of matched atomic strings divided
by the average number of atomic strings (Elmagarmid, Ipeirotis and Verykios, 2007). The
two fields and strings are A = “Comput. Sci. & Eng. Dept., University of California, San
Diego” and B = “Department of Computer Science, Univ. Calif., San Diego”. So by
excluding the stop sign (dot) from the strings and where k = 6, the first field string
matches part of the second field string such as Comput., Sci., San, Diego, Univ. and Calif.
However, no matches were found for the words Eng. and Dept. (Monge and Elkan,

1996).

The WHIRL system was introduced by (Cohen, 1998) that adopts from information
retrieval the cosine similarity combined with the tf.idf weighting scheme to compute the
similarity of two fields. The cosine similarity metric works well for many entries but is
insensitive to the location of words, thus allowing natural word moves and swaps, e.g.,
“John Smith” is equivalent to “Smith, John”. Also, the introduction of frequent words
only minimally affects the similarity of the two strings due to the low idf weight of the
frequent words. For example, “John Smith” and “Mr. John Smith” would have similarities
close to one another. Unfortunately, this similarity metric does not capture word
spelling errors, especially if they are pervasive and affect many of the words in the
strings. For example, the strings “Compter Science Department” and “Deprtment of

Computer Scence” will have zero similarity under this metric.

TF/IDF - Term Frequency or Inverse Document Frequency is a measure of speech and
language processing discussed by (Cohen and Richman, 2002; Bilenko and Mooney,
2003) to determine the frequency of a string and to favour matches of less standard
strings, penalising more common strings. This match requires knowledge or derivation
of each attribute’s frequencies. For example, when transcribing an address, it may be
common for an “Avenue” to be misrecorded as a “Street.” If so, the matching criteria

may choose to ignore the most common words in this field, i.e., “Street,” “Avenue,” and
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“Lane,” instead of concentrating on the more critical number and name (Brizan and

Tansel, 2006).

Q-gram with tf.idf was an extension to WHIRL and was proposed by (Gravano et al.,
2003) for handling spelling errors in the string using the g-grams technique rather than
words. The two strings are less affected by spelling errors by using the sequence of g-
gram, such as strings “Gteway Communications” and “Comunications Gateway” gets
high similarity even if the word gets different arrangements in the string. Also, the
word’s insertion and deletion were handled using the g-gram sequences as the two
strings “Gateway Communications” and “Communications Gateway International” are
highly similar. In contrast, the word “International” would have a low weight due to its

appearance.

1.7.1.2. Record De-duplication Approaches

The supervised learning approach requires a set of training data samples for the records
to be labelled as matched or not matched. A CART algorithm was introduced by
(Cochinwala et al., 2001) by using the classification and regression trees based on a
supervised approach, and the data is represented in the different relevant classes.
(Cohen and Richman, 2002) introduced a system based on a supervised approach to
cluster the records referring to the real-world entity by learning from the training data
of the records. An adaptive distance function was used to learn from the training data
and represent the records on the graph as nodes. Similarly, (Singla and Domingos, 2004)
proposed to use the attribute values on the graph as nodes instead of the whole record
as a node on the graph. Doing so allows the values to be transmitted to other nodes,
and duplicate detection can be improved. Suppose the two records “Google,
MountainView, CA” and “Googlelnc, MountainView, California” are equal. It means the
words of the string “CA” and “California” will also be equal. The main issue with the
supervised approach is acquiring a sufficiently large and representative training dataset.
It might be easy to create the training data samples labelled as duplicates or non-

duplicates, but to provide ambiguous record pairs for creating accurate results is
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complex, and that is why data labelling is time-consuming (Elmagarmid, Ipeirotis and

Verykios, 2007).

The active learning approach is used to overcome the problem of the supervised
learning technique by automatically locating the ambiguous record pairs (Elmagarmid,
Ipeirotis and Verykios, 2007) and mainly by reducing the training data samples (Christen,
2007). According to (Cohn, Atlas and Ladner, 1994), active learning controls the inputs
on which it trains. Active learning differs from learning from examples due to the control
over the data from which it learns and receives information. (Sarawagi and Bhamidipaty,
2002; Sarawagi et al., 2002) introduced a system called ALIAS, which uses the reject
region approach for record duplication detection to reduce the training data sample
size, and the record pairs are presented as duplicate and non-duplicate. So, the record
pairs are categorised as matched and non-matched and no manual labelling is required.
However, if there are many ambiguous records, humans must label them manually. The
training data sample provided to the system ALIAS with categorised labelled data such
as matched and non-matched, and using this training data sample, ALIAS forms initial
classifiers to match the data. By using the classifiers from a small training data sample,
ALIAS distinguishes the records and finds duplicates in the data set. Similarly, (Tejada,
Knoblock and Minton, 2002) propose to use the training data samples to set rules for
matching the records in multiple fields using the decision trees. So, the active learning
approach is suitable for producing better results. However, training data or human
involvement requires training the system to produce the results. Nevertheless, the

system is unsuitable because these resources are unavailable to generate the results.

The distance-based technique is one way of avoiding the need for training data to be
tuned through training data. It is possible to match similar records without training Using
the distance metric and an appropriate matching threshold. One approach is to treat a
record as a long field and use one of the distance metrics to determine which records
are similar. Distance-based approaches that conflate each record into one big field may
ignore valuable information that can be used for duplicate detection (Elmagarmid,

Ipeirotis and Verykios, 2007).

The rule-based approach is similar to the distance-based approach, and the distance of

records is calculated as either 0 or 1. (Wang and Madnick, 1989) suggested using the
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rules for the cases where there is no global key for a set of attributes to detect record
duplication so the rules can combine the attributes as a set to form a key. Similarly, (Lim
et al., 1993) proposed a rule-based approach to have additional control to produce the
correct results where rules provide correct information and have functional
dependencies. So, the rules are not defined heuristically. This idea was further
researched by (Hernandez and Stolfo, 1998), who proposed using logical suggestions for
record matching and finding the similarity between records, e.g., suppose two
individuals have name similarity and similar addresses. It will show that it is the same
individual. However, manual tuning requires human effort, which is time-consuming and
difficult for extensive data. So, such systems are used to generate the rules using the
training data sample, and human experts manually adjust the generated rules based on

the training data samples.

The unsupervised learning approach avoids manually labelling data by using the
clustering technique and algorithms to group similar records for comparison
corresponding to the same class. The probabilistic model, which was introduced in 1969
by Fellegi and Sunter, is the root of the unsupervised learning approach (Elmagarmid,
Ipeirotis and Verykios, 2007; Bharambe, Jain and Jain, 2012). A similar concept was
implemented by (Elfeky, Verykios and Elmagarmid, 2002), introducing a records
duplicate detection toolbox called TAILOR. Using this toolbox, the extensive and new
training data samples get better accuracy with the help of generated classifiers and less
labelled data is required. While (Ravikumar and Cohen, 2004) suggested a similar
approach for matching the records learned from the graphical model. The algorithm
compares each field as a latent variable in binary format to show whether the target

fields match.

The hybrid approach uses multiple similarities and records deduplication techniques
collectively. (Elfeky, Verykios and Elmagarmid, 2002) , suggested overcoming the lack of
training data sample issue by combining the supervised decision trees and unsupervised
k-means clustering techniques where three clusters are used to produce results as
matches, non-matches and possible matches. This whole process of record linkage is
performed in two steps. In the first step, the weight vector subset is clustered as match,

possible match, and non-match. In the second step, using training data, the matching
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sample is generated by matches and non-matches clusters for a supervised classifier for
each record pair. (Islam and Inkpen, 2008) presented a method named Semantic Text
Similarity (STS) to use semantic and syntactic information to determine the similarity of
two strings. In this method, string and semantic word similarity are two compulsory
functions. In contrast, common-word order similarity is an optional function. Using this
method for the 30-sentence dataset achieves an excellent Pearson correlation
coefficient. According to (Buscaldi et al., 2012), combining two modules results in a
promising correlation between manual and automatic similarity. The first module uses
N-gram to calculate the similarity between sentences, and the second module uses
concept similarity measure and WordNet to calculate the similarity between concepts
in the two sentences. (Bar et al., 2012) introduced the system “UKP” to combine multiple
text similarity techniques using a log-linear regression model from a training data
sample. The multiple matching techniques used were string similarity, semantic

similarity, text expansion mechanisms and measures related to structure and style.

1.7.1.3. Efficiency Improvement Techniques

Blocking methods pursue the simple idea of partitioning the set of tuples into different
blocks and then comparing all pairs of tuples only within each block as this reduces the
total number of comparisons of records (Baxter, Christen and Churches, 2003;
Elmagarmid, Ipeirotis and Verykios, 2007; Draisbach and Naumann, 2011; Papadakis et
al., 2011). According to (Draisbach and Naumann, 2011), the central part of the blocking
method is to have a better partitioning strategy to partition the records by partition
number and size. The partitioning strategy should be able to partition the duplicate
records in the same block, for example, using the whole or part of the postal code. So,
if the duplicate records are partitioned in the same block based on the postal code, they
are considered duplicates. The partitioning strategy can use attributes such as first or
last name, name prefixes, and whole or part of address. So, in general, the partitions
should generally be the same size. However, (Elmagarmid, Ipeirotis and Verykios, 2007)
describe that this method is suitable to speed up the overall comparison of records.
However, at the same time, it will bring false mismatches of records. If the records do

not satisfy the blocking strategy, then the records do not appear in the same block.
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Therefore, the records that are supposed to be in the same block but, due to blocking
strategy, appear in the wrong block instead of in the same block, which will cause missed
matches. However, multiple runs should be performed to overcome this issue using a

different blocking strategy for each run (Draisbach and Naumann, 2011).

So, using a different field for each run as a blocking strategy can improve the record
matchingin the block and reduce the chances of false mismatches, which helps to detect
duplicate records having different partitioning attributes (Elmagarmid, Ipeirotis and
Verykios, 2007). sorting requires a block key to implement the blocking for record
duplication detection. The block key can be created by combining single or multiple
fields, such as the age attribute, combined with the postcode attribute to form the key.
So, records that satisfy the block critical criteria are placed into the same block (Elfeky,
Verykios and Elmagarmid, 2002; Baxter, Christen and Churches, 2003). However, the
blocking process can lead to many record pairs generated by the massive number of
records. It can affect the blocking comparison of records, such as blocking keys based
on the gender attribute. In that case, it will generate large blocks matching the key.
However, the records duplication detection will miss records of the blocks that are
generated by the key that are too small. According to (Baxter, Christen and Churches,
2003), different factors can affect the record comparison process in blocking, such as
spelling errors or missing values, which can cause records not to appear in the same
blocks. However, this can be alleviated by using the multiple blocking keys with multiple
passes to improve the comparison. However, this tuning can be a difficult task.
(Papadakis et al., 2011) They introduced a method based on the two layers wherein the
unnecessary record comparisons are excluded from the second layer. In this method,
the first layer is used to block effectively by placing all records in the same block with
the token in all records as the attribute value. So, the resulting records are duplicates
and do not have any chance of no blocks in common. The comparison is made on the
second layer with the help of different methods to increase the blocking efficiency by
reducing unnecessary records. Records with low threshold values are not required to be

compared, and this will reduce the number of comparisons in the blocks.

Windowing methods are more complex than blocking methods. The famous windowing

method is the sorted neighbourhood method (SNM). (Hernandez and Stolfo, 1998)
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proposed using a fixed window size to place over the records sorted by a sorting key. So,
any records placed under the fixed-size window will be paired. The SNM method has
three phases during the whole comparison process. The sorting key is identified in the
first phase for records by combining the different attribute values, and it does not need
to be unique. After this, all the records are sorted based on the sorting key. In the third
phase, all the records are compared and paired by moving the fixed-size window on the
sorted records. The first two phases of windowing are similar to the blocking technique.
The windowing method reduces the number of record comparisons due to the window
limit (Baxter, Christen and Churches, 2003). However, duplicate detection improves due
to the window size, usually between 10 and 20. Increasing the window size can result in
more duplicate detection but can slow the processing of the results (Draisbach and
Naumann, 2011). The records are compared in this method only if they fall within the
window size and the sorting key to sort them accordingly. So, a single key is insufficient
to sort the records and place them under the fixed-size window for comparison. If there
is any error in the records attribute values or any missing value, it will affect the whole

comparison and duplicate detection process (Elmagarmid, Ipeirotis and Verykios, 2007).

These errors can be alleviated by using multiple attributes to form the sorting key and
multi-pass to sort and compare the records under the fixed-size window (Draisbach and
Naumann, 2011). It increases the possibility of more record duplicate detection by
running multiple passes using different sorting keys compared to a single pass
comparison, as it will miss the matched records (Baxter, Christen and Churches, 2003).
(Hernandez and Stolfo, 1998) introduced a multi-pass strategy using the sorted-
neighbourhood method to compare different sorting keys with small window sizes each
time. In this multi-pass method, each run with different sorting keys creates a pair of
records and can merge them during the comparison process under the fixed window
size to produce the result (Elmagarmid, Ipeirotis and Verykios, 2007). The main issue
with the sorted neighbourhood method is that not all records will be compared if the
window size is smaller than the number of matched records using the sorting key, as the
records will not fit under the fixed Window size. It will miss the records during the
comparison. Suppose we use the surname ‘Smith’ as a sorting key; it might produce a

vast number of record pairs where not all record pairs will not fit under the window size
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and will miss the rest of the pairs outside the window and will not be compared (Baxter,

Christen and Churches, 2003).

Clustering is an essential technique in data mining in which a group of data objects is
taken as input (Bezdek, 1981). In this technique, several clusters are obtained as an
output so that the objects in the same group or cluster are similar but are different to
objects outside the cluster (Jain, Murty and Flynn, 1999; Halkidi, Batistakis and
Vazirgiannis, 2001; Dharmarajan and Velmurugan, 2013; Nisha and Kaur, 2015). The
representation of objects is the main feature of clustering, as objects are represented
as patterns to find the similarity (Filippone et al., 2008). The patterns are considered
similar if they are in the same cluster but considered different if not in the same cluster.
So, this difference should be clear and meaningful to represent patterns in the cluster
(Xu and Wunsch, 2005). (Monge and Elkan, 1997) improved the nested-loop record
comparison performance by showing a transitive approach for duplicate detection. For
example, if ‘A’ and ‘B’ are duplicates and ‘B’ and ‘C’ are duplicates, then it is assumed
that ‘A’ and ‘C’ are also duplicates. The problem with this approach is that record
matching relies on the dependency of connected components of the graph. If these
connected components are, then the assumption can be valid; otherwise, no
relationship can be retrieved between records. So, to compute the connected
components efficiently on the graph, (Monge and Elkan, 1997) used a union-find
structure. The records are combined into a cluster during the union stage. The cluster is
used as a comparison representation, and the number of record comparisons gets
reduced for duplicate detection. So, in simple words, if ‘A’ is not a duplicate of ‘B’ already

in the cluster, then other members in the cluster will not be duplicates of ‘A’.

The canopies technique was introduced by (McCallum, Nigam and Ungar, 2000) to
improve the speed of record duplicate detection. In this technique, records are grouped
from clusters overlapping each other, and this overlapped area is named canopies. The
records are grouped using the pairwise comparison with a similarity metric for better
results. Let us supper if the two strings have a length difference of more than “3”, so the
edit distance of these strings cannot be less than “3”. So, the string length is used for
comparison as a canopy function for the edit distance function. (Gravano, Ipeirotis, H.

V. Jagadish, et al., 2001) suggest using the length of strings with the g-gram of strings as
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canopies for the edit distance metric. The advantage of this technique is the use of
vanilla SQL statements, which can be used to do canopy function calculations. (Cohen
and Richman, 2002) suggest using tf.idf similarity metric as a canopy distance with other
multiple similarity metrics duplicate record detection. Similarly, (Chaudhuri et al., 2003)
introduced a canopy function with indexing to match similar records for duplicate
detection. On the other hand, (Baxter, Christen and Churches, 2003) showed that using
the traditional blocking methods with the canopy technique improves the record

duplicate detection speed and quality.

1.8. Research Aims

A framework for identity resolution is essential for incorporating intelligence in
matching raw data. It should employ a suitable algorithm with pattern recognition

capabilities that closely resemble the functioning of the human brain.
S How will the desired identity be extracted from the raw data set?

S How will records be matched to extract meaningful information from the raw

data set?

S To what extent can establishing relationships between diverse identities be

enhanced through applying pattern recognition techniques?

1.9. Problem Definition

In the entity resolution process, the record de-duplication makes it challenging to
identify duplicates due to the different fundamental values used for the duplicate
record. To find the duplicates in the dataset, it is a must to compare one record with the
rest of the records in the database to find the similarities, but this will require immense
processing power in the case of the large dataset (Wangikar, Deshmukh and Bhirud,
2016). All techniques discussed in the literature review are insufficiently adaptive

regarding record de-duplication and entity matching based on the correct record
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extraction. It is clear from the literature review that techniques that require human
expert tuning are better but are unfeasible for large datasets due to the manual tuning
required. Also, such techniques require some training data samples to generate the
results. However, it is not easy to provide training samples for every situation. So,
considering this, the approach is also unfeasible for better record matching. Another
issue with the proposed techniques is that they do not use all the available similarity
metrics as required and only utilise a couple of techniques to complete the record-
matching process. It leads to unsatisfactory results as every similarity metric is domain-
specific to solve a particular problem, and missing one or more metrics would not help
achieve better results. From a comprehensive literature review that has been carried
out, it can be concluded that so far, there is no unsupervised approach framework that

can achieve the following:

S Automatically adjust to tune the data based on the input, using different

similarity metrics to extract the records.

S After the data cleaning, automatically adjust record matching techniques

without training data samples for record de-duplication.

S Run the similarity metric on data at different stages to output the best results for

record linkage and relationship analyses.

S Use the clustering technique with the help of segmentation for identity

resolution.

So, in the research, an adaptive hybrid approach will be introduced to automatically self-
tune the similarity metrics using fuzzy logic. This searching process will be iterative
(multi-pass searching) using an unsupervised clustering approach to analyse the output
by further segmenting the records to show the relationship in a graph and extract the
true identity. In this process, segmentation will be the process of putting data into
groups based on similarities. At the same time, clustering will be the process of finding
similarities in data to be grouped. Once the entity is resolved, the system will keep the

result as a reference for the future, which will help enhance future search efficiency by
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matching the same or similar record as the new search will also be matched with

references as part of the iterative search process.

1.10. Thesis Chapters Overview

This chapter presents an overview of fraud, identity, and the different types of identity
crimes faced by law enforcement agencies or financial institutions. This chapter briefly
explores machine learning types, different machine learning techniques, and
fundamental concepts related to matching records. Furthermore, the chapter provides
an overview of the literature on string and record-matching techniques related to entity

matching and identity resolution, research aims and the definition of the problem.

This thesis comprises five chapters, starting with “Chapter 1 - introduction and literature
review” discussed above and ending with the research aim and problem definition for

this research. The remaining chapters in this thesis are as follows:

Chapter 2 provides the platform to discuss machine learning techniques, focusing mainly
on fuzzy matching techniques. The chapter explains entity matching and its challenges
when matching an entity for identity resolution. The chapter discusses matching
techniques to handle entity matching challenges and how knowledge can help in the

matching process.

Chapter 3 focuses on the methodology used in this research. The chapter explains the
proposed algorithm and provides the foundation of the research methods. The later
section of the chapter explores the proposed algorithm and its implementation by
enhancing the string-matching technique. The details of different tools used for
implementation are discussed to understand how they are used to generate matching
results. These results provide a better understanding of the implemented string-

matching technique in the proposed algorithm.

Chapter 4 provides the results of the implementation of the proposed algorithm. The
chapter explains and analyses the policing dataset used in the research and presents the
computer simulation results. It starts with evaluating and analysing the performance of

different sets of names from different languages with a proposed algorithm for matching
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names. Later in the chapter, the results of the policing dataset are evaluated in detail,

and the performance of the generated results is discussed.

Chapter 5 concludes this research thesis by providing an overview of the research and
its implementation. It explains this research's limitations, knowledge contribution, and
areas where it can be beneficial with further improvements. The last section of the
chapter discusses future work and provides suggestions for improvements to enhance

the proposed algorithm.

The last sections of the thesis are References used in the research. Appendix A lists the
published research paper, and Appendix B provides additional details on the tools used

in this research.

47



ICHAPTERZ

2. STATE-OF-THE-ART REVIEW OF MIACHINE
LEARNING APPROACHES FOR IDENTITY
RESOLUTION

2.1. Chapter Overview

This chapter discusses different machine-learning techniques that can be used for
identity resolution, and at the end, it discusses the problem definition and the research
aims. It starts with a background discussion of entity resolution and the challenges in
detail. Based on the challenges an entity matching faces, the string matching techniques
will be discussed to understand the issues in the matching techniques. The issues with
each matching technique will be presented, including all the comparisons. The clustering
technique and types for grouping similar entities will be discussed. Finally, the chapter
will discuss the knowledge base and the different types that can be used in machine

learning.

2.2. Background

Entity Resolution (ER) is essential as it leads to identity resolution. Usually, entity and
identity resolutions are used interchangeably and referred to as the same. However,
these are two terms with different requirements. It is evident from the previous studies
that each string-matching technique is domain-specific and cannot perform well
independently to find the required results. Using only one technique is unsuitable for
tackling a particular issue in entity resolution. However, a combination of these
matching techniques can produce the desired results. We know that entity resolution is
an essential step toward identity resolution, and incorrect or missing details in entity
resolution will lead to incorrect or weak identity resolution.
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2.3. Entity Resolution and Challenges

We know Entity Resolution (ER) is to identify one entity in a dataset that refers to the
actual entity. Typically, a database may contain multiple entities, and there can be
relationships among these entities. It is vital to correctly match the string of names,
addresses, or other information to resolve any entity (Altowim, Kalashnikov and
Mehrotra, 2018). Each entity has attributes and can be identified using crucial attributes
such as ID number, name, and date of birth. However, many other reasons make it

challenging to find the correct identity (Phillips, Amirhosseini and Kazemian, 2020).

For entity resolution, there are many different string-matching techniques. In later
sections, the three most essential matching techniques will be discussed in this chapter.
However, before that, there are several different challenges that entity matching faces
in comparing strings and getting the desired results. Some of the challenges are listed

below.

2.3.1. Text Standardisation and Name Variations

Text standardisation involves replacing different spellings in words with single and
correct spellings. For example, ‘Incorporated’ can be represented with the standardized
spelling ‘Inc.” Standardisation typically separates the string into words, such as a
complete name or address. After this, each word is compared in the standard table to
get the standard spelling. However, it is difficult to manage such a standard list of
spellings to match the words against it and bring them into the standard in the dataset
(Winkler, 2006). Names matching has been troublesome for record linkage as names
can have variations. The variation can be phonetic or alternate spellings; in some cases,
it can be a combination of both variations (Snae, 2007). In different computer
applications and record linkage algorithms, spelling variations can be allowed, and the
algorithm's success is determined by identifying the differences in name spelling.
However, in some cases, it is difficult to determine the name variation due to the
different spellings of the same name or to consider it entirely different. Usually,

surnames are more variable in spelling and can have many common alternatives.

49



In some cases, the variations are due to spelling errors. Such a range of name variations
is a big concern due to different naming conventions and languages, so how do we
identify a person based on a name if it is differently spelt or pronounced? It is a
significant problem identifying a person and determining if the name variation is the
spelling of the same or a different person’s name. Most of these variations can be

categorised as follows:

2.3.1.1. Spelling Variations

These variations are due to typographical errors by a human operator or an automated
device designed for inputting data into the database. It can lead to a problem matching
names in the database. However, typically, such variations do not affect the name's
pronunciation (A. J. Lait and Randell, 1996). The variations can be misplaced letters,
substituted letters, adding letters, or omissions of letters. These variations cause issues
for matching algorithms to match strings to one another even though the string is
phonetically not changed (Shah and Kumar Singh, 2014). According to (Pilania and
Kumaran, 2019), a customised matching algorithm can be used to match names with
variations. Many spelling error correction solutions have been designed to encounter
pattern-matching issues. According to studies conducted by different researchers, these

spelling errors can be divided into two categories.

S Typographic errors are spelling errors primarily due to keyboard inputs when a

string is mistyped. However, the actual spelling of the string is known.

This type of error falls into four categories, as suggested (Naseem and Hussain, 2007)
and according to (A. J. Lait and Randell, 1996; Naseem and Hussain, 2007), the spelling

error or mistyping of the names can be categorized as below:

e Insertion or additional letters, e.g. “MCMANUS and MACMANUS”,

e Deletion or omission, e.g. “ROBBIN and ROBIN”, “Collins and Colins”
e Substitution, e.g. “SMYTH as SMITH”

e Transposition, e.g. “BREADLEY and BRAEDLEY”
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These editing operations errors can be referred to as single errors. According to

(Naseem and Hussain, 2007), it was confirmed by researchers at a later stage.

The most common typographic errors are substitution errors caused by keyboard
inputs. It usually happens during typing due to incorrectly replacing letters by not

pressing the correct “key letter” required in the string.

There are other errors called multi-errors that are generated due to more than one
editing operation. These are either the addition of two extra letters, missing two letters

from the string, or transposing two letters.

S Cognitive errors are caused by keyboard input during typing, and the actual
spelling of the string is unknown. In cognitive errors, the mistyped word
pronunciation does not change as the word pronunciation remains the same or
similar to the correct spellings (Naseem and Hussain, 2007). e.g. “recieve” and

n u

“receive”, “abyss” and “abiss”

2.3.1.2. Phonetic Variations

According to (Snae, 2007; A. J. Lait and Randell, 1996), these variations are caused by
mishearing the name, which alters the name structure utterly different from the actual
name. For example, “Pooh” is an English nickname while it would be spelt as “Puh” in
German. Similarly, the names “MAXIME and MAXIMIEN” and “Sinclair and St. Clair” have
different phonetic structures, and the names are significantly changed; however, these
are related names (Shah and Kumar Singh, 2014). Sometimes, the name’s phonetic
variation can be hugely different, such as “ADELINE and LINE”, “Christina and Tina”, and

that is where the name is shortened (A. J. Lait and Randell, 1996).

2.3.1.3. Character Variation

These variations caused problems due to abbreviations, capitalization, punctuation,
qualifiers and namespacing. The capitalization in the name where the upper and lower

letters have been used, such as “brown and Brown” and “SMITH and Smith”. Sometimes,
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first names or surnames are composed of two parts and contain punctuations, spaces
and qualifiers such as “WILL SMITH and WILL-SMITH” or “SMIT and S.M.LT”,
“YOUNGSMITH and YOUNG SMITH”, “WILL SMITH and WILL SMITH YOUNG” or “Philips-
Martin”. These full names do not need to be used as they are; instead, one part of the
name may be used. For example, “Philips” or “Martin” may be used instead of “Philps-
Martin”. Such variations can be called Double Names (A. J. Lait and Randell, 1996; Shah
and Kumar Singh, 2014; Pilania and Kumaran, 2019). Double first names are not common
in English, but other languages can contain double first names. For example, in the
French language, the name “Jean-Claude” may be written in full or as “Jean” or “Claude”

(A. J. Lait and Randell, 1996).

The names can also have abbreviations where the name has been shortened, and this
mainly names the individual. Such as “ROB and ROBBIN” and “BOB and BOBBY” while
“WILL SMITH” is written as “W SMITH” (A. J. Lait and Randell, 1996; Pilania and Kumaran,
2019). Sometimes, an individual prefers to change their name in future from the one
he/she was known to in the past or change the surname to their partner's name. Such
situations cause a big issue in matching names for an individual. Name-matching
algorithms that use spellings or phonetic variation to match names will not be able to
identify the person with past and future names (Snae, 2007; Shah and Kumar Singh,
2014).

2.3.1.4. Fielding Variations

There may be a situation where multi-part names have been added to the database in
a different order. It can happen due to different cultural names. For example, in some
cultures, the name is written in the format First-Middle-Last, while others may write it
as Last-First-Middle. The name “Will Young Smith” may be used as “First-Middle-Last”,
but possibly it may be used in the database as a “First-Last” name, e.g. “Will Smith”

while “Middle” name as “Young” used differently (Pilania and Kumaran, 2019).
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2.4. Approximate String Matching

The data cannot always be easily identifiable through unique identifiers. If the object is
identified incorrectly, it will hugely affect the results. Approximate matching is also
called fuzzy matching, where each matching value can be between 0 and 1 but not just
0 or 1. The matching involves a comparison of substrings with the given string to find
the similarity between two strings. In the entity resolution, the records are compared
by matching the string similarity. Based on the similarities, records are classified into
match and non-match categories. This matching of records takes place on the value of
the attributes to find the similarities (Christen, Vatsalan and Wang, 2016). Approximate
matching is suitable for handling issues such as typographical errors in the string as it
closely matches the search pattern (Al-khamaiseh and Alshagarin, 2014). However,
(Winkler, 2006; Naseem and Hussain, 2007) state that this area is still under research
and requires suitable matching techniques. Fuzzy matching is generally used for pattern
matching by calculating an estimated match between two strings. Approximate
matching is required for a name in an extensive database where names are misspelt
rather than the correct spelling. It makes an exact match difficult in large databases;
therefore, an approximate can be essential in pattern matching (Shah and Kumar Singh,
2014). Pattern matching, phonetic encoding, or Lexographic matching techniques are
the way to do string matching. Pattern matching is to calculate the distance between
each character of the string, and phonetic matching converts a string into code based
on the pronunciation of each string. At the same time, the Lexicographic technique
produces all possible variations of the string (Shah and Kumar Singh, 2014; Pilania and

Kumaran, 2019).

The following section will explore how pattern matching and phonetic encoding

algorithms work for matching names.
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2.4.1. Edit Distance Algorithm

Edit distance is a measure of string comparison (Shah and Kumar Singh, 2014).
Approximate matching is about calculating the distance between each string, and the
commonly known technique is “Edit distance” (Al-khamaiseh and Alshagarin, 2014). It
calculates the distance between two strings by applying three operations on the strings.
Usually, three joint operations are performed on the string to find the similarities or
convert one string into another. These operations are called edit operations, in which
inserting, deleting, or substituting the characters in the strings take place to match
strings. Edit distance, also called Levenshtein distance, was introduced in 1965
(ElImagarmid, Ipeirotis and Verykios, 2007). According to (Soundex, 2015), if the distance
of strings is less than a set threshold value by applying the three edit operations, the
strings are considered a close match to each other with slight variation, or it can be said
that the more the Levenshtein distance, the distinct the strings will be. In substitution,
one character replaces the other character in the string. In contrast, in deletion, a
character gets removed from the string. In insertion, a character gets added to the string
(ElImagarmid, lIpeirotis and Verykios, 2007). The distance 0 means the strings are
identical. These edit operations give cost to the number of required iterations to match
the name. i.e., the cost of deleting a character, inserting a character and substituting
two different characters is “1”; otherwise, the cost value is “0”. According to (Hasan and
Ahmed, 2015), the edit distance where each operation on the single string has the cost
=1, then such edit distance is called unit-cost edit distance. (Needleman and Wunsch,
1970) , modified the edit distance by introducing different cost values for different edit
operations on the string. (Ristad and N.yianilos, 1998) introduced an algorithm for
automatically calculating the cost for equivalent words written differently. For example,
(Shah and Kumar Singh, 2014) describe the Levenshtein distance between "bitten" and
"sitting" as “3” since the following three edits change one into the other. There is no

way to do it with fewer than three edits, e.g.

Step 1: bitten - sitten (substitution of "s" for "b")

Step 2: sitten - sittin (substitution of "i" for "e")
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Step 3: sittin = sitting (insertion of "g" at the end)

Another example of calculating Edit distance to compare the name “ALEXANDRE” to

“ALEKSANDER” is 4. To do this (Soundex, 2015):

Step 1: substitute X with K
Step 2: insert S after K
Step 3: insert E after D
Step 4: delete E at the end

(Balabantaray et al., 2012) state that “the Levenshtein algorithm only edits operations
between two strings, and it does not directly provide a knowledge base to identify
phonetic similarity among the languages that appeared in different phonemes.
However, several research studies have been conducted by assigning different costs for

operations to integrate the knowledge base concept to the Levenshtein algorithm”.

2.4.1.1. Issues in Levenshtein Edit Distance Algorithm

The Edit Distance algorithms perform several iterations to change one string into
another to find the similarity. If the two strings are similar, then the cost of operation is
“0”; otherwise, it will be “1” based on the iteration operations applied to the strings.
However, implementing the Levenshtein Edit distance algorithm to match two strings
encounters the following issues.

Edit distance fails when strings are written in short form, or any abbreviation has been
used instead of the complete word. In this situation, the three edit operations will not
calculate the cost correctly due to this issue. It is a significant drawback of the Edit
Distance algorithm while finding the match between strings. Table 2.1 is taken from
(Pilania and Kumaran, 2019), which shows an example of matching two strings by
matching string 1 with string 2. The two strings are different and show an incorrect

match.
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Table 2.1 - Leveshtien Distance Algorithm Issue (Pilania and Kumaran, 2019)

Stringl String2

Uma Keshkumari
Kunta Shakuntala Devi
Kusum Kusumalta

Tara Sitaram

Indra Indrakala

The Levenshtein Edit distance matches strings by comparing each character in the
strings, so matching strings in Table 2.1 shows that string ‘UMA' is found in string
‘KESHKUMARI’. Therefore, no edit operations are applied, and the cost of operation is
0, which shows it is a match, nevertheless these two strings differ entirely (Pilania and

Kumaran, 2019).

2.4.2. Jaro-Winkler Algorithm

The Jaro distance technique is usually used to tackle typical spelling errors and was
introduced by M. A. Jaro in 1989 (Jaro, 1989). This technique was designed to compare
two short strings, such as first and last names (Elmagarmid, Ipeirotis and Verykios, 2007).
The Jaro distance finds the familiar characters between strings while tracking the order
of these characters (Gomaa and Fahmy, 2013). The Jaro distance can be computed using

the following formula:

, . 1 c c c—t .
simjaro(s1,s2) = 3 (E + = +—) Equation 2.1

The Jaro similarity technique finds the matched characters in the given names. In
equation 2.1, ‘c’ represents the number of equal characters, ‘t’ represents half the

transpositions, [s1]| is the length of the first string, |s2| is the length of the second
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string. The interchanging of the contiguous characters in both strings, such as ‘pe’ and
‘ep’, is called the transposition (Sun, 2015).

Initially, the Jaro-Winkler algorithm following the UNIMATCH similarity was developed
in the 1970s to be used in the post-enumeration analysis by the U.S. Census Bureau. It
was used to match records of different fields with uncertain name spellings. UNIMATCH
matches two strings based on string length, familiar characters in strings and the number

of character transpositions (Kloo, Dabkowski and Huddleston, 2019).

Another approximate matching technique is the Jaro-Winkler, in which Jaro compares
the short strings, mainly names, by computing the length of the string, finding similar
characters, and determining the transpositions required. In 1990, Winkler proposed a
variation to the Jaro distance, which gives preference to the name prefix (Winkler, 1990,
1994, 2006). The name prefix is assigned a weight higher than the surname match
weight. This Jaro distance variation is called the Jaro-Winkler distance (Gomaa and

Fahmy, 2013).

Jaro-Winkler(s1, s2) = Jaro(s1, s2) + 1 *p(1 - Jaro(sl, s2)) Equation 2.2

Here, ‘I' is the longest common prefix of the two strings, where ‘p’ is a scaling factor
variable to adjust the matching score upwards by customarily set to a value of 0.1 and
the maximum value set to 0.25; otherwise, the distance will be computed as more
significant than the value 1 (Sun, 2015; Pilania and Kumaran, 2019). This enhancement
helps to get a few penalties for errors like keyboard errors and errors at the end of a
string (Soundex, 2015). The matching of strings is scaled between values 0 and 1, where
any calculated score of two strings close to 0 represents no match, while the calculated
score value close to value 1 represents a match (Pilania and Kumaran, 2019). For
example, as stated (Soundex, 2015), the Jaro similarity between “ALEXANDRE” and
“ALEKSANDER” is 0.85, calculated as below using equation 2.1:

During this process, match A, L, E, A, N, D, R, and E with a “1” transposition.

Simjaro=(8/9+8/10+(8-1)/8)/3
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=0.85
The Jaro-Winkler similarity score of 0.90 is calculated using equation 2.2 as below:
Jaro-Winkler =0.85 + 3 * 0.1 (1 - 0.85)

=0.90

2.4.2.1. Issues in the Jaro-Winkler Algorithm

Jaro and Jaro-Winkler distance algorithms cannot perform well where there is a
positional difference between two strings and more than the allowed change. e.g. in the
strings “Alice bruce Bob” and “Bob bruce Alice”, the allowed change is six positions.
However, the character ‘B’ in the string “Bob” has a difference of twelve positions. So
only the string “Bruce” will match between two strings, and the algorithms will not find

the better match (Elmagarmid, Ipeirotis and Verykios, 2007).

The Jaro-Winkler algorithm will fail to match short names with typographical errors if
other strings of different lengths have the same errors (Kloo, Dabkowski and

Huddleston, 2019).

2.5. Phonetic Matching

Phonetic matching plays a significant role in matching strings. (Snae, 2007; Shah and
Kumar Singh, 2014) defines phonetic matching as identifying a set of strings most likely
to be similar in sound to a given keyword. The strings can be spelt using different writing
styles but can be matched phonetically (Christopher Jaisunder, Ahmed and Mishra,
2017). The phonetic algorithm matching compares names with similar sounds, even
those with different spellings, and it is vital for matching the names from the database.
According to (A. Lait and Randell, 1996; Christopher Jaisunder, Ahmed and Mishra,
2017), a phonetic algorithm is an algorithm for indexing words by pronunciation. The

complex algorithms have many different rules and exceptions due to the English
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language's historical changes in pronunciation and the integration of many different
language words into it. Phonetic matching evaluates the similarity of the names based
on how they are pronounced without looking at the actual spelling of the names.
Different researchers have carried-out many pieces of research to explore data mining
methods in information retrieval. The most common phonetic matching technique is the
Soundex technique, which compares and matches names based on pronunciation (Shah

and Kumar Singh, 2014; Christopher Jaisunder, Ahmed and Mishra, 2017).

In Soundex, the code value is generated for similar-sounding names and the code is
compared to find a match. The values are called Soundex encodings. Therefore, any
search on any name in the database gets Soundex encoding rather than a direct name
search. Any name match based on Soundex encoding will be retrieved from the
database. According to (A. J. Lait and Randell, 1996), any matches found during a search
are called positives, and the ones rejected by the search are called negatives. So, the
positives relevant to the search term are called true positives, while the other searches
are false positives. Searching for names in an extensive database has always been a
problem. In a large database, misspelt names may be spelt differently due to human
typing errors or mishearing the name. In such a situation, a fuzzy match will be enough

to match the names instead of matching names exactly.

2.5.1. Soundex Algorithm

The Soundex algorithm was developed by Odell and Russell in 1918. It is a code-based
matching algorithm that converts the name into a 4-letter alphanumeric code based on
the sound of each word while preserving the first letter from the name (A. J. Lait and
Randell, 1996). The similar-sounding names get similar code values to match the names.
These codes are called Soundex encodings (Koneru, Pulla and Varol, 2016). The
algorithm does not search the name directly from the database. However, it converts
into Soundex encoding of 4-letter code, keeping the first letter preserved and then
performing a search based on this encoding (Shah and Kumar Singh, 2014; Christopher
Jaisunder, Ahmed and Mishra, 2017).
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The following steps are required to create the Soundex code:

Step 1 - Retain the first letter from the name string.

Step 2 - Convert all occurrences of these letters to Zero: a, e, h,i, 0, u, w, y.

Step 3 - Convert the remaining letters into numbers: b, f, p,v=1;c,8,j,k q,s,x,z=
2;d,t=3;1=4;, m,n=5,r=6

Step 4 - Remove all pairs of digits with the same code adjacent to the original name.
Step 5 - Remove all the zeros.

Step 6 - Return the code with four characters and add zeroes to the right if there are

fewer than four characters.

In Step 1, to generate the Soundex code for any given name or string, the letter will be
kept as the first character of the final Soundex code. It represents the initial sound of
the word. After the first letter, in Step 2, all vowels “A, E, I, O, U” will be ignored. The
letters “H, W, Y” are considered insignificant because these vowels and letters often do
not affect the word's pronunciation meaningfully, particularly when in the middle or end
of words. After this, in Step 3, each of the remaining consonants will be converted into
a number according to Table 2.2. The idea behind this step is that similar-sounding
consonants are grouped under the same number, reducing the variations caused by
different spellings. Step 4 ensures that repeated sounds do not overly influence the
code. That is why if two or more letters that convert to the same number appear next
to each other, only keep the first one and remove the duplicates. Step 5 is to use the
first four characters and discard the rest if there are more than four characters in the
forming code. In Step 6, the first letter kept in Step 1 with the numbers from Step 3 is
combined to result in a four-character alphanumeric code. If there are fewer than four
characters in the code, add zeros (0) until the code is four characters long. This padding
ensures that all Soundex codes are the same length, making them easy to compare. The

standard Soundex algorithm defines the following groups:
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Table 2.2 - Grouping of Letters and Code Assignments (Patman and Shaefer, 2001)

Letters Code Assignment

B,F, PV 1
GG JKQSXZ 2
D, T 3
L 4
M, N 5
R 6

H Y W (omitted)

AE 1,0 U (omitted)

In converting a name to a Soundex code, only one digit is used for any consecutive
letters, e.g. “CK” will not be assigned a code as 22 but will be “CK” = 2. Any code with
more than three digits will be truncated, and any code with fewer than three consonants

will be padded by zero, e.g. the string “PEEL” will get code as “P400”.
For example, using the Table 2.2, the Soundex code of the name “ALEXANDRE” is:

Step 1: A4E2A536E
Step 2: A4E2A536E
Step 3: A42536

Step 4: A425

Another example of Soundex code for the name “ALEKSANDER”. Here, it is assumed the

name is misspelt:

Step 1: A4E22A53E6
Step 2: A4E2A53E6
Step 3: A42536
Step 4: A425

The Soundex code of both names is “A425”; thus, both names are easily comparable

and matched (Soundex, 2015).
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For the Soundex algorithm, it is worth knowing how each word is pronounced based on

the sound of each English language alphabet.

The following Table 2.3 briefly describes this:

Table 2.3 - Phonetic description based on assignments of letters (Magazine, 2018)

Represents the . ..
Number P Phonetic Description
Letter
1 B,F P,V Labial sounFis and labiodental (require particular
use of the lips).
5 G G, J,K QS, X, |Guttural sounds (produced in the throat) and
Z sibilant sounds (requires a hissing noise).
3 DT Dental-mute sounds (formed with the tip of the
’ tongue against the teeth).
Palatal fricative or long liquid sound (produced by
4 L
an extended contact of the tongue and mouth).
5 M. N Nasal sounds (produced partly through the nose).
’ M is labio-nasal and N is dental or lingua-nasal.
Dental fricative or short liquid sound (produced by
6 R .
a slight contact of the tongue and mouth).
Discard H, W,Y Disregard consonants H and W.
Discard AEI,0 U Disregard vowels.

The Soundex technique is commonly used for the English language. However,
researchers have also modified it for other languages (Balabantaray et al., 2012). The
Soundex algorithm matches names that sound similar but have different spellings, e.g.,
“SMITH” and “SMYTH”. The names are given a phonetic code that helps to match names
and reduces the issue of mistyped names (Soundex, 2015). For example, “SMITH” and
“SMYTH” will get code as “S5030”, and it will be refined to a shorter code based on
Soundex rules as “S530” (Christopher Jaisunder, Ahmed and Mishra, 2017). According
to (Patman and Shaefer, 2001), “The computational benefits of Soundex-type algorithms
are easy to see by exchanging a name for a code; all variant spellings of the name can

be expected to share that same code, allowing a relatively efficient search of a small
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subset of a database, versus "brute force" evaluation of every name as a potential
match. Soundex keys are typically used to form an index for data implemented in
relations DBMS products, allowing very fast key-based retrievals of a (theoretically) a

small number of potentially matching names.”

2.5.1.1. Issues of Soundex Algorithm

There are issues with the Soundex code that limit the matching of names. One of the
disadvantages of the Soundex technique is that it preserves the first letter of the name
and converts the rest into a code. Therefore, a name starting with a different letter will
result in a different Soundex code and the match will be unsuccessful. For example, the
Soundex code for “PATER” and “PAIDER” will be P360. The string “SOMERS” Soundex
code S562 will match with “SUMMERS” and “SOMMARS” as the Soundex code for these
is S562. It shows that the Soundex code is assigned based on the pronunciations
regardless of the spellings, which can result in false matches (Patman and Shaefer,

2001).

S First Letter dependency - According to (Patman and Shaefer, 2001a; Shah and
Kumar Singh, 2014), retaining the initial letter is vital for Soundex, and any name
that starts with a different letter will create a mismatch because it will be
considered a different Soundex code. For example, the names “Corth” and
“Korth” will not match even if one of the names is in the database. It means that
starting with a letter in the Soundex code is essential, and names starting with

different letters will never match (Pilania and Kumaran, 2019).

S Transcription difference - The Soundex codes for Roman and non-Roman names
or strings of different spelling variants do not match each other and will not be
reliably retrieved from the database. The names written in different languages
with different spelling are challenging to match as the form of the name may not
match the other variant of the name present in the database. For example, the
Russian names "lvanov", "lvanoff", or "lwanow” will be difficult to match as the

Soundex code will be different for these names. The Chinese name may be
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written as “Hsiao” or “Xiao” and will not match due to different Soundex codes

(Patman and Shaefer, 2001; Shah and Kumar Singh, 2014).

< Silent consonants - Soundex does not match the names with silent consonants,
so a different code for each name is generated. Because Soundex does not
identify silent consonants in the name or any name with simplified spellings with
omitted consonants, for example, names “Meghburn” and “Meburn,”
“Coghburn” and “Coburn,” or “Deighton” and “Dayton.” will have different
codes and will not match with each other (Patman and Shaefer, 2001; Shah and

Kumar Singh, 2014).

2 Name syntax - In different cultures, the structure of the name is different.
Usually, the structure of the name is First, Middle, and Last. It may result in
inconsistency in the database in the way names are mapped. Soundex provides
no means for accommodating such types of variation. Instead, it codes them as
two different, non-matching names, resulting in two closely related variants not
retrieving each other. For Example, “Sheikh Ali Mohamed” may be in one
database. However, in another database, it may be recorded separately as first
name “Sheikh”, middle name “Ali”, and last hame “Mohamed”. There can be
situations where the first name is recorded as “Sheikh Ali” and the last name
“Mohamed”. It is difficult for Soundex to generate the matching code for such
name variations. However, there can be different variations of the name that
Soundex code may encounter, such as if an Arabic name, “Alhameed,” is written
as “Hameed”, “Hamid,” or “Hamed,” then Soundex code will struggle to match
even though all these name variations refer to the same individual because
Soundex was not designed to tackle such different variations in names (Patman

and Shaefer, 2001; Shah and Kumar Singh, 2014).

S Name Initials - Normally, first names in long names are written with initials, but
this is not limited to only long names. Mostly, full names are substituted with
initials. For example, “Mikhail Kovalchuk” and “M.Kovalchuk,” will have different
Soundex codes and will not be matched to each other (Patman and Shaefer,

2001; Shah and Kumar Singh, 2014).
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> Poor precision - The Soundex algorithm sometimes can match many dissimilar
names in the result, and the amount of poor precision results increases with the
database size. For example, the name “Criton.” search will match with
“Courtmanche,” “Corradino,” “Cartmill,” and “Cortinez” (Patman and Shaefer,

2001; Shah and Kumar Singh, 2014).

2 Noise intolerance - Soundex cannot overcome typographical errors because it
relies on the sound of letters and does not handle common transpositions. This
spelling variation will generate false matches. For example, if the name is
mistyped as “Msith” in the database, it will not match “Smith” due to a
transposition error. Similarly, “Hubbins” will not be matched with “Huggins,” and
“Hreman” will not match with “Herman” (Patman and Shaefer, 2001; Shah and

Kumar Singh, 2014; Pilania and Kumaran, 2019).

S Long Name - The Soundex code combines an initial letter and three digits for any
given name. Therefore, the Soundex code will ignore the name length and
generate the code that may match other names that are not the same length,
but the string may match based on sound. For Example, searching for the name
“Rameshwar” will match with the name “Rameshwaram” even though the name
may refer to two different individuals because the Soundex code will be the same

for both names, and this will result in false matching (Pilania and Kumaran, 2019).

Even with all the above issues found in Soundex, the algorithm is mainly used for name
matching and retrieval. The most common use of Soundex is in airline reservation
systems to generate passenger name codes to avoid confusion when pronouncing the
names. In informational retrieval, Soundex is used to overcome the problem of names
with alternate spellings. It plays a vital role in approximate name matching due to human
errors. However, Soundex can be helpful in systems that are not very sensitive to false
results and can accept if results are high false positive or negative (Shah and Kumar

Singh, 2014).

65



2.6. Comparison of Matching Algorithms

The choice of one from the following string-matching algorithms mainly depends on
the nature of the error in searching the text data. Table 2.4 compares all phonetic
matching algorithms based on the language specification, features, and limitations

(Shah and Kumar Singh, 2014; Soundex, 2015).

Table 2.4 - Comparison of String Matching Techniques (Shah and Kumar Singh, 2014)

Algorithm Type Language Usage

Soundex Phonetic English Misspelt English words

Edit distance | Pattern matching N/A Local spelling errors

Jaro-Winkler | Pattern matching N/A Spelling and typewriting
errors

2.7. Clustering Technique

Clustering is a widely used technique in machine learning and data mining, where the
goal is to group similar data points into distinct clusters based on their similarities.
Clustering is an unsupervised learning method as it does not rely on labelled data but

instead discovers patterns or structures within data (Bezdek, 1981).

Clustering is significant for data mining and pattern recognition. Clustering means
grouping all similar records in one group based on criteria set to compare the similarity
of each string or pattern. (Jain, Murty and Flynn, 1999; Halkidi, Batistakis and
Vazirgiannis, 2001; Dharmarajan and Velmurugan, 2013; Nisha and Kaur, 2015).

Clustering has emerged as a popular technique for pattern recognition, image
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processing, and, most recently, data mining. Clustering algorithms are increasingly
required to deal with large-scale data sets containing categorical and numeric data,
particularly in data mining. According to (Mamun, Aseltine and Rajasekaran, 2014),
clustering refers to the record linkage problem where records are grouped based on

similarity.

The representation of objects is the main feature of clustering, as objects are
represented as patterns to find the similarity (Filippone et al., 2008). The patterns are
considered similar if they are in the same cluster but considered different if not in the
same cluster. This difference should be clear and meaningful to represent patterns in
the cluster (Xu and Wunsch, 2005). (Monge and Elkan, 1997) they improved the nested-
loop record comparison performance by showing a transitive approach for duplicate
detection. For example, if ‘A’ and ‘B’ are duplicates and ‘B’ and ‘C’ are duplicates, then
‘A’ and ‘C’ are assumed duplicates. The problem with this approach is that record
matching relies on the dependency of connected components of the graph. If these
connected components are accurate, then the assumption can be valid; otherwise, no
relationship can be retrieved between records. So, to compute the connected
components efficiently on the graph, (Monge and Elkan, 1997) used a method called
union-find. This method combines records into a cluster during the union stage. In
contrast, the cluster is used as a comparison representation, and the number of record
comparisons gets reduced for duplicate detection. So, we can say that if ‘A’ is not a
duplicate of ‘B’ already in the cluster, other members in the cluster will not be duplicates

of ‘A’.

2.7.1. The Types of Clustering Techniques

Many clustering algorithms are available for specific problems, such as hierarchical, k-
means, mean-shift and fuzzy clustering. Each technique requires matching criteria to
find the distance between different clusters. Usually, edit distance is a common

technique used for this purpose.
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2.7.1.1. K-Means Clustering

K-Means is a widely used partition-based clustering algorithm that aims to divide the
data into K clusters, where K is a user-specified parameter. One method that has proved
particular efficiency is the k-means algorithm (Jain, Murty and Flynn, 1999). (Huang,
1998) developed the k-modes algorithm by extending the standard k-means algorithm
with a simple matching dissimilarity measure for categorical data and a frequency-based
method to update centroids in the clustering. The numeral-only limitation of the k-
means algorithm does not constrain this extended method. It has shown efficient

clustering performance in real-world databases.
The algorithm works as follows:

e Randomly initialize K centroids (points representing each cluster's centre).

e Assign each data point to the nearest centroid, creating K clusters.

e Recalculate the centroids by taking the mean data points in each cluster.

e Repeat steps 2 and 3 until convergence (when the centroids no longer change

significantly or after a certain number of iterations).

K-Means tries to minimize the within-cluster sum of squares (inertia) by iteratively
optimizing the positions of the centroids. While K-Means is efficient and easy to
implement, it may converge to a local minimum, depending on the initial placement of
centroids. K-Means is widely used in customer segmentation, market analysis, image
compression, and pattern recognition tasks. It is particularly effective when the clusters
are well-separated and approximately spherical (Lloyd, 1982). (WONG, 1979; Lloyd,

1982) identifies some advantages and disadvantages of K-mean as below:

Advantages:
e Fast and efficient for large datasets.
e Scalable and easy to implement.

e Well-suited for convex-shaped clusters.
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Disadvantages:
e Must predefine the number of clusters
e Sensitive to the initial placement of centroids.
e |t converges to local optima.

e [tis not suitable for clusters with irregular shapes or different sizes.

Furthermore, the fuzzy k-modes algorithm generates the fuzzy partition matrix from
categorical data with the framework of the fuzzy k-means-type algorithm (Bezdek, 1981;
Bezdek et al., 1999) and improves on the k-modes algorithm by assigning confidence
degrees to data in different clusters. In most fuzzy versions of clustering algorithms, the
assigned data memberships to a cluster are fuzzy, but the centroid is not fuzzy. For
example, although the fuzzy k-modes algorithm efficiently handles categorical data sets,
it uses a complex centroid representation for categorical data in a cluster. This use of
hard rejection of data can lead to misclassification in the region of doubt. The main focus
of clustering is discovering duplicate entities in a dataset without unique identifiers. The
entities in the dataset may be referenced differently from merging records in the
datasets. One common approach to tackling this problem includes clustering, such as
hierarchical agglomerative and k-means clustering, where each cluster represents an
entity. However, a problem with many of these existing approaches is that they require
the number of clusters to be set in advance (Dai, 2011). Using the Mean-Shift technique
gives flexibility in the cluster. It does not require a fixed number of clusters to be defined

in advance.

2.7.1.2. Mean-Shift Clustering

Mean-Shift is an iterative process that moves each point to the average point in the
cluster (Yizong Cheng, 1995). Mean-Shift was originally introduced by Fukunaga and
Hostetler in 1975, where the iteration process shifts points until all points are converged
to estimate the “mode” to define a cluster (Fukunaga and Hostetler, 1975; Comaniciu
and Meet, 1999; Carreira-Perpifidan, 2015). There is no need to predefine the number of

clusters as the number of clusters is obtained automatically by finding the centre of
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modes. According to (Georgescu, Shimshoni and Meer, 2003), finding the closest
neighbours of data points in the area is the most expensive operation in the Mean-Shift
method. The mode is the densest area where most of the data is located due to data
points being moved there during the iteration process, and the process continues until
all data points are moved to the mode. Because of the nature of the process, the mean
shift is a sequential clustering algorithm. The second-in-line data point will be processed
until the first data point is moved to the mode. Therefore, each data point process waits
until the previous process is completed. In this process, the close data points require
less iteration, but data points far from each other require more iteration (Li, Hu and Wu,

2007; Wu and Yang, 2007).

(Liu et al., 2013) states that the Mean-Shift iteration procedure is based on two essential

steps:
° The distribution of data points is based on constructing a probability density
model.
° Each data point is mapped to the density model nearest to the point.

Therefore, the density model is an integral part of machine learning for

representing clusters.

Typically, Mean-shift is used in machine vision for image analysis, image processing,
pattern recognition, and objective tracking. In pattern recognition, mode plays a vital
role in applications like classification, feature extraction, image segmentation and
object tracking (Comaniciu and Meer, 2002). In 1995, Cheng generalized the Mean-Shift
algorithm, and in machine vision, the algorithm became popular (Ghassabeh, 2013).
Mean-Shift is vital in discovering data presented in arbitrary clusters (Anand et al.,

2014).

The following steps are involved in working of the Mean-Shift clustering algorithm

(Comaniciu and Meer, 2002):
Step 1 - First, start with the data points assigned to a cluster of their own.
Step 2 - Next, this algorithm will compute the centroids.

Step 3 - In this step, the location of new centroids will be updated.
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Step 4 - The process will be iterated and moved to the higher-density region.

Step 5 - At last, it will be stopped once the centroids reach a position from

which they cannot move further.

The Mean-Shift algorithm has advantages and disadvantages, as described by (Yizong
Cheng, 1995; Comaniciu and Meer, 2002). The following are some advantages and

disadvantages are discussed below :

Advantages:

e |t does not need to make any model assumption as in K-means
e It can also model complex clusters which have nonconvex shapes.

e |t only needs one bandwidth parameter, which automatically determines the

number of clusters.
e There is no issue with local minima, unlike K-Means.

e No problem was generated from outliers.

Disadvantages:

e The mean-shift algorithm does not work well in the case of high dimensions,

where the number of clusters changes abruptly.
e There is no direct control over defining the number of clusters.

e |t cannot differentiate between meaningful and meaningless modes.

2.7.1.3. Hierarchical Clustering

Hierarchical clustering creates a tree-like structure of nested clusters called a
dendrogram without requiring a predefined number of clusters. There are two main

approaches to hierarchical clustering (Ward, 1963):
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e Agglomerative (bottom-up): Starts with each data point as its cluster and
repeatedly merges the closest pairs of clusters until only one cluster remains.
e Divisive (top-down): Starts with all data points in one cluster and recursively

splits the clusters into smaller ones until each data point is in its cluster.

The choice of merging or splitting is determined by the linkage criteria, such as single
linkage (distance between the closest points in each cluster), complete linkage (distance
between the farthest points in each cluster), or average linkage (average distance
between all points in each cluster). The dendrogram can be cut at a certain level to
obtain a specific number of clusters. The algorithm has advantages and disadvantages

defined by (Ward, 1963; Fionn Murtagh, 2014):

Advantages:

e |t provides insights into hierarchical structures in the data.

o |tisflexible and can be cut at different levels to obtain cluster granularities.

Disadvantages:

e |t is Computationally expensive for large datasets.
e The choice of linkage criteria impacts the clustering result.
e The best-used areas are Biology, bioinformatics, social sciences, image

segmentation, and document clustering.

2.7.1.4. Density-Based Spatial Clustering of Applications with
Noise (DBSCAN)

DBSCAN is a density-based algorithm that groups data points based on their density. It
requires two parameters: "epsilon" (€), which defines the neighbourhood radius around
each data point, and "min Pts," which sets the minimum number of data points within

to form a core point. DBSCAN automatically determines the number of clusters and is
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robust to outliers and irregularly shaped clusters. The algorithm works as follows (Martin

Ester, Hans-Peter Kriegel, Jiirg Sander, 1996; Schubert et al., 2017):

Step 1 - Find all the points within distance € of each data point. It becomes a core

point if a point has at least "minPts" neighbours.

Step 2 - Expand the cluster from the core point by adding all reachable points

within € to the cluster.

Step 3 - Repeat the process for all core and non-core points within the cluster's

reachability distance.

Step 4 - Points not reachable from any core points are considered noise and do

not belong to any cluster.

The algorithm comes with its advantages and disadvantages:
Advantages:

e Automatically determines the number of clusters.
e Robust to outliers and noise.

e |t handles clusters of arbitrary shapes and sizes.

Disadvantages:

e Sensitive to the choice of epsilon and min Pts.
e |t may be difficult with datasets having significantly varying densities.
e The best-used areas are Spatial data analysis, anomaly detection, and varying-

density datasets.

2.7.1.5. Gaussian Mixture Model (GMM)

GMM is a probabilistic model-based clustering algorithm that assumes data points are
generated from a mixture of several Gaussian distributions (Dempster, Laird and Rubin,

1977).
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The algorithm works as follows:

Step 1 - Initialize the parameters (no. of kernels) of the Gaussian components

(mean, covariance, and weight).

Step 2 - Expectation step (E-step): Calculate the probability that each data point

belongs to each Gaussian component.

Step 3 - Maximization step (M-step): Re-estimate the parameters of the Gaussian

components based on the probabilities from the E-step.
Step 4 - Repeat steps 2 and 3 until convergence.

The data points are then assigned to clusters based on their probabilities of belonging
to each Gaussian component. GMM allows soft assignments, meaning each data point

can belong to multiple clusters with different probabilities.
There are the following advantages and disadvantages of this algorithm:
Advantages:

e Soft assignments of data points to clusters.
e Can capture complex data distributions.

e |t handles overlapping clusters.
Disadvantages:

e Sensitive to the initialization of parameters.
e May converge to local optima.
e The best-used areas are Image segmentation, speech recognition, and pattern

recognition tasks with overlapping clusters.

2.7.1.6. Spectral Clustering

Spectral Clustering is a graph-based algorithm that treats data points as nodes and

clusters them based on the graph structure (Von Luxburg, 2007).
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The algorithm works as follows:

Step 1 - Construct an affinity matrix that measures pairwise similarities between
data points. Common choices include the Gaussian affinity and k-nearest

neighbour affinity.
Step 2 - Compute the graph Laplacian matrix, which encodes the graph structure.

Step 3 - Obtain the eigenvectors or eigenvalues of the Laplacian matrix and use

them to create a lower-dimensional data representation.
Step 4 - It performs K-Means or other clustering techniques on the lower-
dimensional representation to identify the clusters.
Spectral Clustering is helpful for non-convex clusters and can handle data in high-
dimensional spaces.
The algorithm has some advantages and disadvantages, as listed below:

Advantages:

e |t handles non-convex clusters and high-dimensional data.

o Performs well with datasets having clear low-dimensional structures.
Disadvantages:

e Computationally expensive for large datasets.
e |t requires parameter tuning for the affinity matrix.
e The best-used areas are Image segmentation, community detection in social

networks, and dimensionality reduction tasks.

2.8. Comparison of Clustering Techniques

The following Table 2.5 provides the comparison summary of the clustering techniques
discussed above. This comparison discusses each clustering technique's key points,

advantages, limitations, and best-used areas.
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Clustering
Technique

K-Means

Hierarchical

DBSCAN

Mean Shift

GMM
(Gaussian
Mixture
Model)

Spectral
Clustering

Table 2.5 - Comparison of Clustering Techniques

Key Points

Partition-based,
iterative K clusters

Hierarchical
representation,
agglomerative

Density-based,
automatic clusters

Mode-seeking,
automatic clusters

Probabilistic
model, soft
assignments

Graph-based,
handles non-
convex clusters

Advantages

Fast and
efficient

Provides
insights into a
hierarchy

Handles
arbitrary
shapes, robust
to noise

Handles
arbitrary
shapes, robust
to noise

Captures
complex data
distributions

Handles high-
dimensional
data

Limitations

Sensitive to initial
centroids, local
optima

Computationally
expensive linkage
criteria

Sensitive to
parameters, varying
density

Computationally
intensive, bandwidth
parameter sensitivity

Sensitive to
initialization, local
optima

Computationally
expensive parameter
tuning

Best-Used Area

Customer segmentation,
market analysis, image
compression, pattern
recognition

Biology, bioinformatics,
social sciences, image
segmentation, document
clustering

Spatial data analysis,
anomaly detection,
clusters with varying
density

Image segmentation,
identifying clusters with
varying density, computer
vision

Image segmentation,
speech recognition,
pattern recognition with
overlapping clusters

Image segmentation,
community detection,
dimensionality reduction,
clusters with low-
dimensional structures
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2.9. Knowledge-Base

In machine learning, a knowledge base is a repository or collection of structured and
organized knowledge that supports an intelligent system's learning and decision-making
processes. It is a central source of information that the system can access and use to
make informed decisions, solve problems, and acquire new knowledge. Knowledge
bases are crucial in various Al applications, including expert systems, natural language

processing, semantic search, and knowledge-based question-answering systems.

2.9.1. Types of Knowledge-Base

2.9.1.1. Rule-Based Knowledge-Base

A rule-based knowledge base consists of rules expressed as "if-then" statements. Each
rule represents a piece of knowledge or a condition the system can apply to make
decisions or perform actions. Rule-based systems benefit expert systems, where human
experts' knowledge is represented as rules for automated decision-making. These
systems are widely used in medical diagnosis, finance, and control systems (Bharambe,

Jain and Jain, 2012).

2.9.1.2. Ontology-Based Knowledge-Base

An ontology formally represents knowledge that defines a specific domain's concepts,
relationships, and constraints. An ontology-based knowledge base organizes knowledge
using ontologies, allowing the system to reason about the domain and perform semantic
searches. Ontology-based systems are standard in natural language processing,
semantic web applications, and knowledge representation tasks. They enable advanced
semantic search and knowledge inference (Studer, Benjamins and Fensel, 1998; Noy and

McGuinness, 2001).
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2.9.1.3. Case-Based Knowledge-Base

A “case-based knowledge base” stores past experiences or cases as features and
outcomes. The system can use these stored cases to solve new problems by retrieving
and adapting relevant solutions from past cases. Case-based reasoning is widely used in
machine learning and artificial intelligence applications, especially in systems that learn
from experience. It is commonly employed in medicine, finance, and customer support

(Aamodt and Plaza, 1996; Watson and Marir, 2007).

2.9.1.4. Knowledge Graph

A knowledge graph is a structured representation of knowledge, typically in a graph,
where entities and their relationships are interconnected. Knowledge graphs capture
complex relationships between entities and provide a powerful knowledge
representation and reasoning framework. They are commonly used in various
applications, including search engines and knowledge-based question-answering

systems (Bollacker et al., 2008; Bizer, Heath and Berners-Lee, 2009).

2.9.2. Use of Knowledge-Base in Machine Learning

2.9.2.1. Decision-Making

Knowledge bases provide a set of rules, facts, and domain-specific knowledge that guide
decision-making processes. They are used in expert systems and Al applications to make
informed choices based on the available information and rules. Expert systems like
MYCIN and DENDRAL employed rule-based knowledge bases for medical diagnosis and

chemistry problem-solving (Studer, Benjamins and Fensel, 1998).

78



2.9.2.2. Problem-Solving

Case-based and ontology-based knowledge bases facilitate problem-solving by
leveraging past experiences and domain-specific knowledge. In case-based reasoning,
past cases are used to solve new problems by retrieving similar cases and adapting their
solutions. While Ontology-based systems reason over the structured knowledge in
ontologies to provide context-aware and domain-specific problem-solving capabilities

(Studer, Benjamins and Fensel, 1998).

2.9.2.3. Semantic Search

Knowledge bases based on ontologies and knowledge graphs enable semantic search,
allowing the system to understand the context and meaning of queries. They support
advanced search capabilities that consider relationships between entities, leading to
more relevant search results. Semantic search is essential in natural language processing

and web search engines (Yerva, Miklos and Aberer, 2010).

2.9.2.4. Knowledge Representation

Knowledge bases formally represent knowledge in a structured and organized manner.
They enable knowledge sharing and reasoning within intelligent systems, facilitating
more efficient learning and decision-making. Knowledge representation is fundamental
to many Al applications, including expert and knowledge-based systems (Islam and

Inkpen, 2008).
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2.10. Summary

This chapter has explored different machine-learning techniques and discussed the
entity resolution and challenges in matching the string in detail. The main three
matching techniques and how they match any two strings were explained. The two
matching techniques, Edit Distance and Jaro-Winkler, have been discussed to address a
few matching challenges. In contrast, the Soundex technique has been explored to
address string matching based on phonetic matching. Next, clustering techniques
required to group similar matching strings were discussed. The last section of the
chapter explains how the knowledge base is valuable in machine learning and how it can

be used.
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ICHAPTER3

3. RESEARCH DESIGN AND METHODOLOGY

3.1. Chapter Overview

This chapter presents the methodology used for this research. The discussion will then
explain the research design approach in detail, along with the foundation of the
methodology. The proposed model will outlined the following sections. The following
sections will detail the implementation of the proposed model. Initially, the discussion
will be of different tools and libraries for computer simulation. Then, it will explain the
importance of improvements in the Soundex technique and present some matching
explanations of this improved Soundex technique and the standard Jaro-Winkler
technique. The next chapter will be the results chapter, which will present and explain

the results based on this chapter.

3.2. Foundation of Research Methods (Design)

For this research evaluation of the similarity techniques, de-identified police data has
been used for record matching and pattern recognition. The search runs iteratively using
a combination of attributes for approximate string matching to find the desired entity,
and the results create three data subsets. These data subsets will be compared and
merged to produce the matched record(s) after the computation steps on the data. This
research (Nawaz and Kazemian, 2021) was published in the EANN2021 Conference held

on 25th-27th June 2021, and the published research paper is attached in Appendix A.
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3.2.1. Foundation of the Proposed Model

In big data, names with different name variations or incorrect spelling may be an issue
for exact matching. However, finding approximate matches for an entity leads to an
arduous task. Nevertheless, missing or incomplete information in the database can also
lead to considerable manual work to guess the matching record (Mon, Mie and Thwin,

2013).

The following sections discuss key terminologies, techniques, and the proposed model's

design.

3.2.1.1. Data Pre-processing

Data pre-processing is a process that runs on data cleaning, standardizing, and fixing
incomplete information. Data pre-processing helps when matching record values for
one or more particular attributes and is considered a vital part of data mining (Huang et
al., 2008). Data pre-processing is a crucial preparatory step in entity matching, also
known as record linkage or deduplication, which aims to identify and link records
referring to the same real-world entities from different data sources. It involves a series
of techniques and operations to clean, standardize, and transform the data, making it

more suitable for subsequent entity-matching.

An essential step is removing the unwanted characters to clean the data. It can refer to
eliminating unwanted text variation affecting the matching. The variations include
uppercase or lowercase, different punctuations, and extra space between text
(Branting, 2003). The standardisation is to bring the text into the same format to be
easily compared, such as matching “London, UK” and “City of London, UK”. Different
attribute values can be matched and combined to generate new attributes for matching
to handle the issue of incomplete information. A piece of incomplete information can
also be called missing information, affecting the matching process where the result can

be inaccurate. Therefore, data pre-processing is essential to improve data quality and
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consistency, leading to more accurate and efficient entity-matching results. However,

some following steps can be used for data pre-processing:

<> Data Pre-processing steps in Entity Matching

® Data Cleaning

Data cleaning involves identifying and correcting errors, inconsistencies, and missing
values in the data. Different techniques, such as data imputation, outlier detection, and
error correction, are applied to ensure high data quality. Cleaning the data reduces the
chances of false matches caused by errors or inconsistencies (Herzog and Reiter, 2008;

Christen, 2012).

e Data Standardisation

Standardisation involves transforming data to a standard format or representation. This
step includes converting data to lowercase, removing punctuation, and applying
stemming or lemmatization to text fields. Standardisation ensures that variations in data

representations are minimized, facilitating more accurate matching (Oracle, 2010).

® Tokenisation

Tokenisation is the process of breaking text into individual tokens or words. Tokenisation
is particularly important for text-based entity-matching tasks. It helps create a more
structured representation of textual data, which aids in identifying standard terms

between records (Bird, Klein and Loper, 2009).
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® Feature Extraction

Feature extraction involves selecting and transforming relevant attributes or features
from the data. Features like TF-IDF (Term Frequency-Inverse Document Frequency) and
n-grams are commonly used for textual data. Numerical data may require feature scaling
to bring all features to a similar scale. Selecting informative features is essential for

accurate entity matching (Basu, Bhattacharyya and Kim, 2010).

® Blocking/Blocking Key Selection

Blocking is a technique that reduces the search space by dividing data into smaller
blocks. The choice of blocking keys (attributes) affects the granularity and efficiency of
entity matching. Effective blocking ensures that only potentially matching records are

compared, reducing computation time (Kirsten et al., 2010).

® Data Transformation

Data transformation may involve encoding categorical attributes, normalization, or
feature engineering. Transforming data ensures that it is in a suitable format for the
entity-matching algorithms being used. The choice of transformation techniques
depends on the specific data characteristics and the matching approach (Tejada, Knoblock

and Minton, 2002).

< Importance of Data Pre-processing in Entity Matching

Data pre-processing plays a critical role in entity matching for the following reasons

mentioned (Bhattacharya and Getoor, 2007).
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e Improved Data Quality: Data cleaning and standardisation techniques enhance
data quality by removing errors and inconsistencies and standardizing

representations. Clean data leads to more accurate matching results.

e Reduced False Matches: Pre-processing reduces the likelihood of false positives
and false negatives in entity-matching results by handling data variations and

inconsistencies.

e [Efficient Computation: Effective blocking and feature selection reduce the
computational complexity of the matching process. It makes entity matching

more efficient and scalable, especially for large datasets.

e Enhanced Matching Accuracy: Tokenisation and feature extraction techniques
improve the ability to identify similarities between records, increasing the

matching accuracy.

3.2.1.2. Classification of Data

Classification is typically a process in which each record pair gets classified into a match
and no matching category, manually setting the threshold value for record linkage
(Ashish and Toga, 2016). The probabilistic record linkage was proposed by (Fellegi and
Sunter, 1969), and most record linkage systems have been based on this approach for
years. However, many researchers have recently been using binary classification
techniques based on machine learning and data mining because these techniques
provide better results for field comparison of any record (Ravikumar and Cohen, 2004).
The similarity of each field comparison is calculated between the values of 0 and 1. Many
research works have been conducted, and different similarity techniques were
introduced to achieve this, where the field type can influence the result (Wang and

Wang, 2016).
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3.2.1.3. Clustering of Data

Clustering is significant and is one of the famous techniques for pattern recognition, data
mining and image processing. Clustering algorithms typically deal with large datasets,
primarily numeric data (Du, 2010). K-means is one of the efficient clustering algorithms.
It has a fuzzy variation called the fuzzy k-modes algorithm, which produces the fuzzy
partition matrix of the fuzzy k-means-type algorithm. In this fuzzy clustering algorithm,
clusters are fuzzy. However, at the same time, centroids are not fuzzy, which can lead
to misclassification in the cluster. The main focus of clustering is discovering duplicate
entities in a dataset without unique identifiers. The entities in the dataset may be
referenced differently from merging records in the datasets. The clustering techniques
that tackle this problem are hierarchical and K-means clustering. However, these
methods do not address the problem of fixed clustering, which involves specifying the

number of clusters in advance (Dai, 2011).

3.2.1.4. Knowledge-Base (KB)

This phase of the proposed model will be used as a reference to understand the results
in graph and table format while creating the knowledge base for future searches. Any
new search will be compared with the pool of records in the knowledge base. The three
classifiers labelled “match, possible match and close or related match” will be used to
store records in KB accordingly. Any new, similar or identical search looking for “identity
match” first in KB will speed up the matching process. It will help to reduce the
processing time for records to be matched or to find similarities to the records found in
the knowledge base. If the searched input is found in KB, it will be compared with the
central database to check for any new changes to the record. Once the record reference
has been updated, it will be stored in KB for future searches. However, suppose the
searched input record is not found in KB. In this case, only the central database will be
used to find matches, possible matches and related match records. After such a

classification, new records will added to KB for future searches.
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3.2.1.5. Record Linkage

It is crucial to extract the correct information for the record based on the correct
relationship. The record linkage process links the shared values of particular attributes
and finds the relationship in each record. Related or similar values might appear in this
record linkage process, which can be duplicate records and a step closer to entity
resolution (Brizan and Tansel, 2006). In simple words, connecting different records in
the dataset to find the relationship is called record linkage, which helps to find the one
actual record representing the real-world entity record. However, the dataset might
contain errors such as misspellings, and the vast number of records makes it difficult to
correctly match all records (Basu, Bhattacharyya and Kim, 2010; Mamun, Aseltine and
Rajasekaran, 2014). So, record linkage needs to handle such errors during the clustering
process, and it is only possible by using the approximate matching or fuzzy matching of
attributes of records. The efficient record linkage is crucial for identity resolution to find
the correct real-world individual identity. Nevertheless, the record linkage performance
depends on accuracy, the number of required comparisons, complexity and the time

required to complete the process (Wangikar, Deshmukh and Bhirud, 2016).

The relationship between records can be found by comparing it with family members
and friends, which can quickly determine the real-world target entity. The information
about an entity allows an individual to be linked to other entities related to an individual
entity. This information helps to create links between all possible and related entities.
This linkage is called Link analysis, which involves connecting and comparing the

information within a dataset or multiple datasets (Brizan and Tansel, 2006).

3.2.1.6. Selection of Attributes for Searching Records

It is usually straightforward to provide the search query and find the required results
from the database based on the search criteria set. However, if there are typographical

errors in the database, the query result will not be accurate (Brizan and Tansel, 2006).
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In entity resolution, finding the results as accurately as possible is imperative. For this,
it is essential to run the number of queries on the database to retrieve the matching
record. It is known that each entity contains different attributes, which help
differentiate one entity from another. However, appropriate matching techniques are
required to search records. Usually, in a single dataset, simple attributes such as address

can be used to link or associate the entity with other entities.

Similarly, a forename and surname can also allow association or link the single entities
with other entities matching surnames and address information as a combination of
matching criteria. Also, date of birth is another attribute that helps determine the
entities' linkage. It is challenging to compare the date of birth due to the different
formats, such as “YYYY.MM.DD” or “MM.DD.YYYY” or “DD.MM.YYYY”. The combination
of name and date of birth will not be good enough to link or associate the entity with
other entities if there are no typographical errors in the records. The date format issue
has been tackled in the proposed model by converting the date of birth attribute values

to a string value.

3.2.1.7. Labelling of Matching Records

It is crucial to establish criteria for entity resolution and record linkage to match the
records by comparing the value of attributes of the record. Typically, the matching
criteria are used to compare the attributes of one or two records to generate the result
in “Match or No Match”. (Brizan and Tansel, 2006) state that Fellengi and Sunter defined
the matching criteria for records to be classified as “match”, “no match”, and “needs
more review”. Establishing the matching criteria is critical as most of the data in the
database is text-based, and entity resolution needs matching criteria for text matching

as follows:

S Match criteria consider a match where all the values of more than one particular
attribute exactly match. It is the easy matching criteria. For example, if a record's
last name, first name and date of birth are the same, it will be categorised as

“match”. According to (Cohen and Richman, 2002), the matching criteria may
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contain partial matches only. However, records can be an exact match only with

no typographical errors or other missing details.

Possible match criteria, where at least one or more than one value for a
particular attribute is similar, will be considered a “possible match”. In fuzzy
matching, it is vital to determine a possible match to help classify the records
based on the matching criteria. For example, a record contains a similar surname,
date of birth, and different forename. However, a similar address will be

considered a possible match.

Related or Close match criteria, where any one or more values for a particular
attribute are similar. It can also be called a “close match”. Finding the related
match helps to classify the records based on the matching criteria. For example,
a record containing a similar date of birth and address but a different name will

be considered a related or close match.

No match criteria, where values for a particular attribute that do not match or
contain any similarity will be considered “No match”. For example, if a record
does not contain or match the name (forename, surname), date of birth and
address, it will be considered no match. Because some records may match the
date of birth while the rest of the attribute values do not, it will still be
considered a no-match. In the past, all researchers have included no match in
the matching criteria. However, it will not be included in this proposed model to
eliminate non-match records from further processing and simplify the clustering
and segmentation process. The “No match” records are dropped during the

initial search iteration phase from further processing.

In this research, a new algorithm has been introduced to overcome the performance

shortage of the Jaro-Winkler and Soundex similarity metrics to produce the desired fuzzy

matching results. This new hybrid fuzzy matching algorithm contains all the good

features of Jaro-Winkler and Soundex similarity metrics discussed in the previous

chapter.
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In the proposed algorithm shown below in Figure 3.1, each input name is searched based
on Soundex code to find similar matches pronounced similarly. During this process,
Soundex encoding is applied to all the names in the database and compared to the
Soundex code of the input name. The two hash values are created for all the matching
names by applying the Jaro-Winkler technique on the Soundex encoding of each name.
The matching value between 0 and 1 is generated by the Jaro-Winkler distance. By doing
this, the aim has been to get improved results by using the Jaro-Winkler and Soundex
similarity metrics to generate an aggregate score for entity matching. All names in the
database will have Soundex code generated, and a Jaro-Winkler score will be generated
for the target name and names in the database. The Soundex code score is generated
by applying the Jaro-Winkler technique to match the database's target name and other
names. Once there are two distance scores, one based on the Soundex code and another
from Jaro-Winkler, each name's aggregate score is generated. Converting Soundex
codes into the Jaro-Winkler score tackles most name variations and Soundex issues

discussed in the previous chapter.

Typically, the Soundex is based on phonetic matching by generating the 4-digit code for
the given name and matching names that sound or are pronounced similarly without
worrying too much about the spelling of the name (Kessler, 2005; Shah and Kumar Singh,

2014).

However, in this research, the Soundex code generates a 6-digit code. The methodology
involves the combination of two different string similarity metrics to find an
approximate match for the entity by applying it during the iterative search process. The
iterative process is based on the combination of different attributes with three different
possible name variations. These name variations are not fixed and can be anything based
on how the name is pronounced. Each iterative search generates a dataset that is later
combined into one final dataset. The approximate score of names is based on aggregate
calculations of Soundex's and Jaro-Winkler's approximate scores. The FuzzyWuzzy
Python library is used to generate the long string address score. The Mean-Shift
algorithm groups resultant records based on aggregate score and calculated age. The
clusters are calculated automatically based on a matched number of records, and there

is no need to provide a fixed number. After this, the results are further analysed by
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segmenting the records based on further similarities and displaying the relationship in
the graph to detect the identity. The results will be categorised as “ Match”, “Possible

Match”, and “Close or Related Match”.

The following section explains the proposed model for identity resolution and
discusses the design phases in detail, building upon the foundational techniques

outlined in this section.
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3.3. The Proposed Model for Identity Resolution
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3.3.1. Using Data Pre-processing

In the proposed model, the data pre-processing is simple, and the main focus is to match
the field’s values simply by using the similarity metrics collectively. The selected
attributes are “surname”, “forename”, “gender”, “address”, “postcode”, “description”
and “date of birth”. The input values to match can be partial, e.g., matching birth year
(converted into age) instead of the complete date of birth, partial postcode, or part of
the address. The proposed model converts all the values in the selected attributes to
lowercase. All the numeric fields are matched as string values, such as “postcode” and
“date of birth”, in the records as a string. As discussed in previous sections, comparing
the “date of birth” as a string benefits the search and eliminates the date format issues.

Figure 3.2 below defines the used attributes:

A combination of surname and forename

¢ Surname and Forename are merged to create one name field. The name field starts with surname.

To identify the entity as "Male" or "Female"

e Instead of strings "male" and "female", only initials will be used for the search, such as M or F.

Age Calculated from the Date of Birth

* The age is calculated by finding the difference between the year of birth and the current year. It generates an
approximate age for the proposed model.

Address A combination of location attributes to form address

¢ The Street, Town and District fields are merged to create the "Address" field, excluding the postcode for this merge.

Description

Defines the Ethnicity of an entity

* In the search process, the description field provides the ethnicity of the entity in question. Therefore, the attribute's
name is taken from the dataset and has not been changed.

Figure 3.2 - Selection of attributes for the dataset
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During this phase, the dataset splits into two datasets. The purpose of this dataset is to

separate complete records from incomplete records with different attribute values.

3.3.2. Creation of Attributes Formation

2 Name —In the policing dataset, two separate fields define entity name. The first
field is a surname, a given family name of an entity. The second field is forename,
the first name given by parents. For the proposed model, to simplify and
generate one similarity code, the two fields, surname and forename, are
combined into one field as a Name. In this Name field, the name for each entity
starts with surname and then forename. The Name field will consider all the
naming issues discussed about similarity matching algorithms in the previous

chapter. Figure 3.3 shows the formation of the Name field.

Forename
I

Figure 3.3 - Formation of the Name attribute for the dataset

S Address —In the policing dataset, multiple fields provide street, town, and district
names and postcodes. All these fields are combined for the proposed model to
form the address field instead of having different fields representing address.
The postcode field is not combined with this Address field. The main reason is to
keep the postcode separate for an approximate match based on the partially
known postcode while using the Address field for approximate matching for any
known address information. It gives the two sets matching flexibility based on
Address and postcode. Figure 3.4 below shows the formation of the Address

field.
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3. RESEARCH DESIGN AND METHODOLOGY

Street
Name

District
Name

0:0:0

Figure 3.4 - Formation of the Address attribute for the dataset

S Age — For the proposed model, the full Date of Birth is required, and only
approximate age is required to populate the records during the search. So, the
calculation is done by extracting the birth year and subtracting it from the
current year to calculate the approximate number. This resultant number is
counted as Age and added to the policing datasets while keeping the date of

birth in the dataset. Figure 3.5 shows the extraction of age from the Date of Birth.

Date Of Birth (Day/Month/Year)

Birth Year - Current Year

Age

Figure 3.5 - Formation of the Age attribute for the dataset
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The block diagram of the fuzzy approach for complete records shown in Figure 3.6 uses

string similarity techniques in a cascaded manner, scoring the names to

approximate name match.
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Figure 3.6 - The block diagram of a fuzzy approach to identity resolution using complete records

3.3.3. Selection of Searching Criteria

The proposed model introduces the iterative process for searching the target name in

the database. The search iteration process runs in three passes, combining selected

attributes to generate the search results. The search is formed in each pass with

different name variations, and the result of each pass will be stored as a data subset.

Once the iteration process is completed, all three data subsets will be compared for

duplicate records and merged to generate one final dataset. The search process is bound

to similarity metrics for matching text in case of errors.

Figure 3.1 shows the iterative process that runs in three passes and can be denoted as

follows:

S ={s1, s, s3}

Here “S” represents the search iteration process, and si, sz, and s3 are the iterations,

respectively. Each iteration process combines the selected attributes {a} to generate the
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search results as data subset {d}. Each iteration uses a different name variation, and the

result of each pass is stored as a data subset {d}. It can be denoted as:

di={a1, a2, a3, a4, as}

aoin
|

Here represents the data subsets as di, da, and ds, respectively. Once the iteration
process is completed, all three data subsets are compared by removing duplicate records

and merging to form the final dataset “D”. This can be denoted as follows:

D= [{dl, dZ, d3} - dup] Equation 3.1

Here, “dup” represents the duplicate records.

Another process is scoring the address field strings with the help of the FuzzyWuzzy
Python library’s partial token function by comparing the input address during the initial
search process. The scoring of addresses helps to retrieve the related records for the
target name based on the matching address or part of the address. Once the matching
and related records dataset is generated, it runs on the incomplete dataset to pick any
matching records. Figure 3.6 shows the matching of records and different phases to
generate results from the record's complete dataset. The fuzzy approach eliminates most
no-match entities based on the low aggregate score compared to the threshold value set
during the initial search. Finding the results as accurately as possible is essential because

each record contains different attributes that help differentiate one entity from another.

3.3.4. Calculating the Aggregate Score

This fuzzy approach uses Soundex and Jaro-Winkler similarity techniques to calculate
the aggregate score for name matching, as shown in Figure 3.6. The names are encoded
using Soundex code, and the Jaro-Winkler score (JWscore) is calculated for each name
and records are retrieved based on the matching score. Due to the mistake of the match
of the Soundex code and the Jaro-Winkler score format, the Jaro-Winkler matching

technique is applied to the Soundex code of each name to generate the matching score
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called the Soundex score (Sscore). All these scores are added (+) together and multiplied
(*) by the average value of 0.5 to get the aggregate score (AggScore) ranging between 0
and 1.

For this purpose, the Soundex algorithm has been modified by removing the retention
of the first character of a name as a constant letter in the code while increasing the code
length to 6 digits. It generates a numerical 6-digit Soundex code to help eliminate the
Soundex first character mismatch issue. Increasing the code length helps to reduce many

false-positive retrievals compared to the 4-digit code.

The conversion of name s; and s; to Soundex code into Jaro-Winkler score and aggregate

score calculations are as follows:

Sscore = [Wscore(s, sj) Equation 3.2

The aggregate score is calculated with the following equation:

AggScore = (Sscore + JWscore) * 0.5 Equation 3.3

The names will be labelled based on the following criteria:

S Possible Match - The aggregate score is less than or equal to 1.0 and greater than
or equal to 0.90. i.e. aggregate score >= 90% and aggregate score <= 100%

matching score

S Close Match - The aggregate score is less than 0.90 and greater than or equal to

0.70. i.e. aggregate score < 90% and aggregate score >= 70% matching score

S No Match - The aggregate score is less than 0.70. i.e. aggregate score < 70%

matching score
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3.3.5. Selection of Records Comparison Criteria

Figure 3.1 shows that all three data subsets will be merged and compared for duplicate
records to form one final dataset. Even though all duplicate records are removed at this
stage, records will be retrieved with a low aggregate score, e.g., a score of 0.50 or 0.60
with a matching aggregate code. Any “No match” or irrelevant records will be dropped
based on the name fuzzy matching score of attribute values. However, to ensure the
threshold filtering is not missing any relevant records, as shown in Figure 3.6, the
matching records are based on the selected attribute values in the initial search dataset
that the search iteration process will produce. It will help to create the final dataset to

cluster or group the records.

3.3.6. Clustering and Segmentation of records

After comparing records and acquiring the final dataset, it will be used to cluster records
based on the selection criteria for the grouping as shown in Figure 3.6. The clustering
will further identify matching records based on link analysis classified as “match”,
“possible match”, and “close or related match”. At this stage, the clustering does not
require labelling data from a human expert to group similar records. Because the Mean-
Shift clustering algorithm has been used to group similar records based on age, name
aggregate score, and address score. Using the Mean-Shift algorithm gives flexibility in
the clustering that does not require a fixed number of clusters to be defined. Each record
will be labelled automatically with a cluster number during this clustering process. These
clustered records will then be matched, compared and filtered based on the highest
name and address score to create segments of records. It will ensure that similar records
are linked together even in different clusters. These records will be matched for similar
addresses from the initial retrieved and clustered datasets in the segmentation process,
as seen in Figure 3.6. The similar segmented records will be merged into one dataset,
and any relevant records will be kept separate. Any found duplicate entries for the same

entity will be eliminated to reduce the number of matched records. For example, if a
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record contains a similar “name” and “address” but a different “date of birth”, then in
this case, it will be labelled as “possible match”. However, suppose a record contains a
similar “date of birth” and “address” but a different name, then it will be labelled as a
“close or related match”. The proposed model will efficiently avoid duplicate records

and provide clean record linkage for a detailed resolution process.

3.3.7. Adding Graph Analysis

During the graph analysis, these segmented records will be compared with the clustered
dataset to match the final identity out of all other identities. Figure 3.6 shows that the
graph creation will be layer-based by using different attributes from the dataset to
explore the matching records step by step visually. The first graph will be created using
the entity name and cluster label for the entities, and it will visually represent all entities
linked to each cluster in the clustered dataset. The second graph will use the entity name
and address from the segmented dataset. The third graph will be created using the
second graph data compared with the first graph to find the matched identity out of

other identities, and the matched identity will be shown with associated addresses.

3.4. Tools for Implementation of the Proposed
Model

The fuzzy approach utilises Soundex and Jaro-Winkler algorithms to calculate the
aggregate score for names and the FuzzyWuzzy Python library using Edit-Distance partial
token to score the other attributes, e.g. ethnicity description and address. The aim is to
match names simply by using similarity metrics and analysing retrieved records for
similarities using clustering, segmentation, and graph analysis. This fuzzy approach is
implemented using Python 3.7 using PyCharm (community version) IDE, and the
anonymized policing dataset is stored in MS SQL Server Express 2017. Pandas (Python
data analysis library) cleans data and stores datasets retrieved during different stages.

The NetworkX library is used for graph analysis and visualization.
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The proposed approach requires implementation and computer programming language,
tools, and machine learning packages to achieve the proposed result. The details of the

tools used to implement the proposed model have been added to Appendix B.

3.5. Implementation of Soundex with
Improvements

3.5.1. Standard Soundex Code Algorithm

The following is the algorithm of the standard Soundex code. It will generate a 4-
character alphanumeric code for any name. The results of the standard code for each

name are discussed in table format in the next section.

1. Define “Soundex” function for “name” to create code of “length 4”
2. Define “digit” mapping for letters A-Z as '01230120022455012623010202'
3. Initialise variables name as ‘“soundex_code” and “first_character”

4, Convert name to uppercase and iterate through each character

5 for character in name converted to uppercase

6. if character is an alphabetic letter

7 Store the first letter as the initial letter

8 digit = digits[ASCII value of character - ASCII value of 'A']

9. if soundex_code is empty or digit is not the same as the last digit
added:
10. append digit to soundex_code

11. Replace the first digit with the initial letter and store in soundex_code
12. Remove all '@'s from the soundex_code

13. Adjust the code to the required length 4 and remove additional characters
14. Return the result to the function Soundex

< Standard Soundex (4-digit Code) Results

Table 3.1 shows that the standard Soundex code is generated for the given names. The
Soundex issues are added in the table below to show each name matching results

accordingly.
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Table 3.1 - Soundex 4-digit code for names representing Soundex issues

Soundex Issues

Names

Soundex Code

First Letter

dependency

Corth, Korth

C630, K630

Transcription

Ivanov, Ivanoff, Iwanow

1151, 1151, 1151

difference
Hsiao , Xiao H200, X000
Silent consonants Meghburn, Meburn M216, M165
Coghburn, Coburn C216, C165
Deighton, Dayton D235, D350
Name syntax Sheikh Ali Mohamed , Sheikh Ali S245, S240
Sheikh Ali Mohamed , Sheikh Mohamed S245, S255
Ali Mohamed , Sheikh Ali Mohamed A455, S245
Alhameed , Hameed A453, H530
Alhameed , Hamid A453, H530
Name Initials Mikhail Kovalchuk , M.Kovalchuk, M242 , M214
Poor precision Criton., Courtmanche C635, C635
Criton., Corradino C635, C635
Criton., Cartmill C635, C635
Criton., Cortinez C635, C635
Noise intolerance Hreman, Herman H655 , H655
Hubbins , Huggins, H152, H252
Msith , Smith M230, S530
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Smith , Smythe S530, S530

Long Name Rameshwar , Rameshwaram R526, R526

In the standard Soundex algorithm, the code produced to match the names retains the
first character from the names. The remaining alphabets in the names are converted
into digits. The first letter dependency issue mismatches the names starting with
different letters. If there is a typo error, then the name does not match. For example,
“Corth” and “Korth” do not match names based on the standard Soundex code. The

other issues of Standard Soundex code matching can be seen in the table.

3.5.2. Improved Soundex 6-digit Code Algorithm

The Soundex code algorithm has been modified by removing the first character of a
name as a constant letter from the code and changing the length to 6 digits. It generates
a numerical Soundex code of 6-digit code to help eliminate the Soundex first character
mismatch issue. Increasing the code length helps reduce many false-positive retrievals
compared to the 4-digit code. The results of this improved Soundex 6-digit code are
presented in the next section. The following is the algorithm of the improved Soundex

6-digit code:

1. Define “Soundex” function for “name” to create code of “length 6”
2. Define “digit” mapping for letters A-Z as '01230120022455012623010202"

3. Initialise variables name as “soundex_code” and “first_character”

4. Convert name to uppercase and iterate through each character

5. for character in name converted to uppercase

6. if character is an alphabetic letter

7. digit = digits[ASCII value of character - ASCII value of 'A']

8. if soundex_code is empty or digit is not the same as the last digit
added:

9. append digit to soundex_code

10. Remove all '@'s from the soundex_code
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11. Adjust the code to the required length 6 and remove additional characters
12. Return the result to the function Soundex

< Improved Soundex 6-digit Code Results

Table 3.2 - Improved Soundex 6-digit code for names representing Soundex issues

Soundex Issues Names Soundex Code
(Modified)
First Letter Corth, Korth 263000, 263000
dependency
Transcription Ivanov , Ivanoff, Iwanow 151000, 151000
difference
Hsiao, Xiao 200000, 200000
Silent consonants Meghburn , Meburn 521650, 516500
Coghburn, Coburn 221650, 216500
Deighton, Dayton 323500, 335000
Name syntax Sheikh Ali Mohamed , Sheikh Ali 224553, 224000

Sheikh Ali Mohamed , Sheikh Mohamed 224553, 225530

Ali Mohamed, Sheikh Ali Mohamed 455300, 224553
Alhameed , Hameed 453000, 530000
Alhameed , Hamid 453000, 530000
Name Initials Mikhail Kovalchuk , M.Kovalchuk, 524214, 521422
Poor precision Criton., Courtmanche 263500, 263552
Criton., Corradino 263500, 263500
Criton., Cartmill 263500, 263540
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Criton., Cortinez

263500, 263520

Noise intolerance

Hreman, Herman

Hubbins , Huggins,

Msith , Smith

Smith , Smythe

655000, 655000

152000, 252000

523000, 253000

253000, 253000

Long Name Rameshwar , Rameshwaram 652600, 652650

It is worth noting that the code implementation brought different results compared to
the standard Soundex code. The First letter dependency has been eliminated to fuzzy
match the strings. However, most notably, the poor precision strings are not matched
because the codes generated are different for each pair. It also improved the matching
of long names and helped reduce the noise tolerance issue of the standard Soundex

algorithm.

3.6. String Matching with 6-digit Soundex code

The improved 6-digit Soundex code shows the improvement over the standard Soundex
code by addressing most of the issues discussed in previous sections. Table 3.3 provides
the matching status of each pair of strings to better understand the results of the

improved Soundex 6-digit code algorithm.

Table 3.3 - Improved Soundex 6-digit code for names with Algorithm Matching status

Soundex Issues | Names Soundex Code Matching
(Modified) Status

First Letter Corth, Korth 263000, 263000 | Possible Match

dependency
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Transcription

Ivanov, lvanoff , Iwanow

151000, 151000

Possible Match

difference

Hsiao, Xiao 200000, 200000 | Close Match
Silent Meghburn , Meburn 521650, 516500 | Possible Match
consonants

Coghburn , Coburn

Deighton, Dayton

221650, 216500

323500, 335000

Possible Match

Close Match

Name syntax

Sheikh Ali Mohamed , Sheikh
Ali

Sheikh Ali Mohamed , Sheikh

224553, 224000

224553 , 225530

Close Match

Possible Match

Mohamed
455300, 224553 | Close Match

Ali Mohamed , Sheikh Ali
Mohamed 453000, 530000 | Close Match
Alhameed , Hameed 453000, 530000 | Close Match
Alhameed , Hamid

Name Initials Mikhail Kovalchuk , 524214 ,521422 | Close Match
M.Kovalchuk,

Poor precision | Criton., Courtmanche 263500, 263552 | Close Match
Criton., Corradino 263500, 263500 | Close Match
Criton., Cartmill 263500, 263540 | Close Match
Criton., Cortinez 263500, 263520 | Close Match

Noise

intolerance

Hreman , Herman

Hubbins , Huggins,

655000, 655000

152000, 252000

Possible Match

Close Match
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Msith , Smith 523000, 253000 | Close Match

Smith , Smythe 253000, 253000 | Possible Match

Long Name Rameshwar, Rameshwaram 652600, 652650 | Possible Match

The matching status for most of the pairs of strings helps to fuzzy match them rather
than complete mistakes compared to standard Soundex code. The poor precision is
closed-matched if the matching threshold is set to 0.70. However, if the matching
threshold is lower than 0.70, these pairs of strings will not be matched as close or
matches. At the same time, the matching status of other Standard Soundex issues is

improved.

3.7. Summary

The research methodology has been explained in this chapter. The methods used to
form the proposed algorithm involve data preparation, labelling, clustering, records
linkage, and data selection based on set criteria with data segmentation. Following this
detail, the proposed model was explained, and each phase was presented in detail.
Different tools and libraries that helped implement the proposed model were discussed
in detail. The chapter's last sections discussed the implementation of matching
algorithms and introduced improvements in the Soundex algorithm. At the end of the
chapter, the matching of different strings was discussed using an improved Soundex
algorithm. The next chapter uses these matching algorithms and the proposed model to

provide the computer-simulated results.
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ICHAPTER4

4. RESULTS — DATA ANALYSIS OF POLICING
DATASET & COMPUTER SIMULATION

4.1. Chapter Overview

The chapter is divided into four sections, which provide the analysis and discuss the
results. These results will be generated based on the proposal model in Chapter 3. The
chapter starts by evaluating the matching of different language name variations using
improved Soundex algorithms and the aggregate score for each name. For this reason,
English, Arabic, Russian and other mixed names will be used. The matching results and
the performance of each language name will be discussed. Following this, the evaluation
will be conducted on the de-identified policing dataset, but before that, the policing
dataset will be explained and analysed. The dataset will be evaluated using computer
simulation by performing three individual searches. The results of each search will be
analysed in detail, and the final section of the chapter will evaluate each search result's
performance measures. The measures of success for this research on identity resolution
would be based on several key criteria, reflecting the proposed approach's
effectiveness, efficiency, and impact. It will include assessing the effectiveness of the
aggregate matching score to retrieve records, flexibility and adaptability of the proposed
model to handle the variation of data, precision, recall and accuracy of the matching

names and quality of the clustering of records matching.
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4.2. Evaluation of Names Variations

It is significant for entity matching in an extensive database to match names of different
languages. At the same time, identify no match from the results. The classification of
results is needed to do this, and the aggregate score algorithm can be applied to achieve
this. The aim is to find matches as true positives and reduce false positives and false
negatives where needed. For this purpose, a confusion matrix will be applied to evaluate
the performance of the aggregate score algorithm. Therefore, some true positives (TP),
true negatives (TN), false positives (FP), and false negatives (FN) calculations will help to
measure the matching outcome and provide the precision, recall and accuracy of the
results. The results will be placed in the following four categories. They will help to

calculate the precision, recall and accuracy of the overall results:

2 True positives (TP): When the match is a true match detected by the algorithm.

It means the entity name correctly matches the actual name.

S True negative (TN): When the non-match is a non-match detected by the
algorithm. It means the entity name is a true non-match with the actual name and

detected correctly.

2 False positives (FP): When the algorithm detects the match as a true match with
a non-match. It means a false match is found that should not be matched with the

actual name.

< False negatives (FN). When the algorithm detects a non-match with a match, it

should be found as a match but detected incorrectly.

To assess the algorithm's overall performance through a single value measurement,
precision, recall, and accuracy will be derived from the four values in the confusion
matrix. Precision provides the measure of the accuracy of the positive predictions. It is
the ratio of correctly predicted positive observations to the total predicted positives.
Recall measures the ability of the model to capture all the relevant instances of a class.

It is the ratio of correctly predicted positive observations to the actual positives.
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Accuracy provides the overall correctness of the model. It is the ratio of correctly

predicted instances to the total number of instances.

The following sections are the computer simulation results to compare names and find
similarities. It shows the performances of the proposed algorithm by generating these
matching results. Therefore, before implementing the proposed algorithm on the
policing dataset, it is worth discussing and evaluating the results of different name

matching using improved Soundex code using the proposed algorithm.

4.2.1. Evaluation of English Names

In Figure 4.1, the 17 English names are selected from the previous work by (Winkler,
1994) to evaluate the names' similarities. These names are fed into the proposed
matching algorithm and are compared here using modified Soundex code with Jaro-

Winkler similarity metrics.

Names matching codes & scores:

Namel Soundexl Name2 Soundex2 Soundex-Jaro Score Jaro-Winkler Score Aggregate score Status
@  SHACKLEFORD 224163 SHACKELFORD 224163 1.08 8.98 .99 Possible Match
1  DUNNINGHAM 355250  CUNNIGHAM 252560 .63 9.90 9.79 Close Match
2 NICHLESON 524256  NICHULSON 524256 1.08 8.96 .98 Possible Match
3 MASSEY 520000 MASSIE 520000 1.00 9.93 .97 Possible Match
4 JONES 252000 JOHNSON 252500 9.92 8.83 .88 Close Match
5 ABROMS 165200 ABRAMS 165200 1.08 8.92 .96 Possible Match
6 HARDIN 635000 MARTINEZ 563520 .65 8.72 .69 No Match
7 ITMAN 355000 SMITH 253800 0.82 .47 0.65 No Match
8 JERALDINE 264356  GERALDINE 264356 1.08 8.93 0.97 Possible Match
9 MARHTA 563600 MARTHA 563600 1.08 8.96 .98 Possible Match
10 MICHELLE 524000 MICHAEL 524000 1.00 9.92 .96 Possible Match
11 JULIES 242000 JULIUS 242000 1.08 8.93 .97 Possible Match
12 TANYA 350000 TONYA 350000 1.00 0.88 .94 Possible Match
13 DWAYNE 350000 DUANE 356000 1.08 9.84 8.92 Possible Match
14 SEAN 250000 SUSAN 225000 .98 8.80 .85 Close Match
15 JON 256000 JOHN 250000 1.08 8.93 0.97 Possible Match
16 JON  25@000 JAN 250000 1.08 0.80 .92 Possible Match

Figure 4.1 - English names variation with the proposed algorithm
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All these names have different scores listed, but to clarify the results further, the results

are separated into three sections, as shown below in Figure 4.2.

Names with Aggregate score higher than JW Score and different Soundex Codes:

Namel Soundexl  Name2 Soundex2 Soundex-Jaro Score Jaro-Winkler Score Aggregate score Status
4 JONES 252000 JOHNSON 252508 .92 0.83 8.88 Close Match
7 ITMAN 355680  SMITH 253008 0.82 .47 0.65 No Match
14 SEAN 250000  SUSAN 225060 .99 0.80 0.85 Close Match

Names with Aggregate score Less than JW Score and different Soundex Codes:

Namel Soundexl Name2 Soundex2 Soundex-Jaro Score Jaro-Winkler Score Aggregate score Status
1 DUNNINGHAM 355250 CUNNIGHAM 252500 8.69 0.99 0.79 Close Match
6 HARDIN 635000 MARTINEZ 563520 8.65 8.72 .69  No Match

Names with equal Aggregate & JW score and different Soundex Codes:
Empty DataFrame

Figure 4.2 - English names breakdown of matching with and without the same Soundex code

The first three names in Figure 4.2 have higher aggregate scores compared to the Jaro
Winkler Score. At the same time, they have different Soundex codes. Jaro-Winkler
scored lower than Soundex and the aggregate score for these three names. However,
looking at these names closely, it can be observed that these “3” names are different
and should not be matched with a higher score. The aggregate score generated for the
names matches them as a close match for two names. The last two names in Figure 4.2
have an aggregate score lower than the Jaro-Winkler score. The first name is labelled as
a close match as the names are similar yet different. In comparison, the second name is
labelled as no match. It is lower than the Jaro-Winkler score because the names are not

similar.
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Comparison of English Names Matching Scores
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Figure 4.3 - Matching Scores Comparison of English Names

The score comparison graph in Figure 4.3 shows the name match Soundex, Jaro-Winkler,
and Aggregate score. Based on the fuzzy string matching requirements, the aggregate
score approximately matches the names instead of giving the value of 1 to show a 100%
match. Therefore, in this instance, this is the correct way to match these names to find

the best match.
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Names matching codes & scores:
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9
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Namel Soundexl

SHACKLEFORD
MARHTA
NICHLESON
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355250 CUNNIGHAM
635000 MARTINEZ
355000 SMITH

Figure 4.4 — Performance of Matching Scores of English Names
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Figure 4.4 is colour-coded based on the Figure 4.5 confusion matrix values for a better

understanding. Based on these values, the precision, recall and accuracy have been

calculated as shown below:

Figure 4.5 — Confusion Matrix for English Names Comparison

The Precision is calculated as TP / (TP + FP), and the result is 0.79. The Recall is calculated

as TP / (TP + FN), and the result is 0.92. The accuracy is calculated as TP+TN /

TP+TN+FP+FN, and the result is 0.76. Figure 4.6 below shows the overall result of the

comparison of algorithm performance.
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Overall Performance - English Names
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Figure 4.6 — Overall Performance Evaluation of English Names

4.2.2. Evaluation of Selection of Mixed Names

Figure 4.7 lists the random names of different languages for similarity matching. These
22 names are fed into the proposed matching algorithm, which combines English,
Arabic, and Russian names and abbreviations. These names are compared here using

modified Soundex code and Jaro-Winkler similarity metrics.

Names matching codes & scores:

Namel Soundexl Name2 Soundex2 Soundex-Jaro Score Jaro-Winkler Score Aggregate score Status
8 Abdal-Rachid 134623 Abdur-rashide 136230 8.91 0.80 0.85 Close Match
1 Catherine 236500 Katherine 236500 1.00 9.93 8.97 Possible Match
2 ADELINE 345000 LINE 456000 0.89 0.46 0.68 No Match
3 MCMANUS 525520 MACMANUS 525520 1.00 0.90 0.95 Possible Match
4 WILL SMITH 425300 WILL SMITH YOUNG 425352 0.87 8.93 0.98 Possible Match
5 SMIT  253@00 S.M.I.T 253000 1,00 8.75 0.88 Close Match
6 WILL SMITH 425300 WILL-SMITH 425300 1.00 0.96 0.98 Possible Match
7 Mikhail Kovalchuk 524214 M.Kovalchuk, 521422 .83 8.69 .76 Close Match
8 Ivanov 151600 Iwanow 500000 9.78 0.80 0.79 Close Match
9 Ivanoff 151000 Iwanow 500000 9.78 9.77 9.78 Close Match
10 Ivanoff 151000 Ivanov 151000 1.00 .91 0.96 Possible Match
11 BOBBY 110000 BOB  110¢@0 1.00 0.91 0.96 Possible Match
12 ROB 610000 ROBBIN 615000 8,91 0.88 8.99 Close Match
13 Sinclair 252460 St. Clair 232460 8.90 0.75 8.82 Close Match
14 MAXIME 525000 MAXIMIEN 525500 8.92 8.95 8.94 Possible Match
15 Christina 262350 Tina 350000 0.44 0.45 8.45 No Match
16 Pooh 100008 Puh 100808 1.00 8.75 0.88 Close Match
17 Incorporated 526163 Inc. 520000 0.56 9.67 8.61 No Match
18 Korth 263000 Corth 263000 1,00 0.87 0.94 Possible Match
19 Meghburn 521650 Meburn, 516500 9.90 .90 0.99 Possible Match
20 Herman 655000 Hreman 655000 1.00 9.95 8.97 Possible Match
21 Smith 253000 Smythe 253000 1.00 0.86 0.93 Possible Match

Figure 4.7 - Mixed name variation with the proposed algorithm
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All names have different scores listed, but to clarify the results further, the results are

separated into three sections, as shown below in Figure 4.8.

Names with Aggregate score higher than JW Score and different Soundex Codes:

Namel Soundex1 Name2 Soundex2 Soundex-Jaro Score Jaro-Winkler Score Aggregate score Status
] Abdal-Rachid 134623 Abdur-rashide 136230 0.91 0.80 0.85 Close Match
2 ADELINE 345000 LINE 450000 2.89 0.46 .68  No Match
7 Mikhail Kovalchuk 524214  M.Kovalchuk, 521422 .83 0.69 0.76 Close Match
9 Ivanoff 151000 Iwanow 500000 0.78 8.77 0.78 C(lose Match
1 ROB 610008 ROBBIN 615000 0.91 0.88 0.99 Close Match
13 Sinclair 252468 St. Clair 232460 2.90 0.75 0.82 (lose Match

Names with Aggregate score Less than JW Score and different Soundex Codes:

Namel Soundexl Name2 Soundex2 Soundex-Jaro Score Jaro-Winkler Score Aggregate score Status
4 WILL SMITH 425300 WILL SMITH YOUNG 425352 0.87 0.93 8.9 Possible Match
8 Ivanov 151000 Iwanow 500000 0.78 0.80 .79 Close Match
14 MAXIME 525000 MAXIMIEN 525500 8.92 8.95 8.94 Possible Match
17 Incorporated 526163 Inc. 520000 0.56 .67 .61 No Match

Names with equal Aggregate & JW score and different Soundex Codes:

Namel Soundexl  Name2 Soundex2 Soundex-Jaro Score Jaro-Winkler Score Aggregate score Status
15 Christina 262350 Tina 350000 .44 0.45 .45 No Match
19  Meghburn 521650 Meburn, 516500 0.90 0.90 0.98 Possible Match

Figure 4.8 - Mixed names breakdown of matching with and without the same Soundex code

The first six names are in Figure 4.8, and they have higher aggregate scores than the
Jaro-Winkler score with different Soundex codes. For these six names, Jaro-Winkler
scored lower than Soundex and aggregate score. It can be observed that “Adeline” and
“Line” are different strings and should not be matched with a higher score. The other
“5” names are matched as close matches with aggregate scores. The middle four names
in Figure 4.8. have an aggregate score lower than the Jaro-Winkler score. The two names
are labelled as Possible matches because these names are similar. One name is labelled
as close matched while another is labelled as no match with a lower score than the Jaro-
Winkler score, but this should match as this is an abbreviated word. The last two names
got similar Soundex, Jaro-Winkler, and aggregate scores. One name is labelled as no
match, and it is correct to be a no match because names are different. The other name

is labelled as a possible match. It is good to be picked up with a better score because the

115



name can be mistyped or misspelt in the dataset. However, based on fuzzy matching,

the algorithm will pick it as a possible match.

The score comparison graph in Figure 4.9 below shows the name match Soundex, Jaro-
Winkler and aggregate score. Based on the fuzzy matching requirements, the aggregate
score approximately matches the names instead of giving the value of 1 to show a 100%

match. In this instance, that is the correct way to match these names.

Comparison of Mixed Names Matching Scores
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Figure 4.9 - Matching Scores Comparison of Mixed Names
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Names matching codes & scores:
Namel Soundexl
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Figure 4.10 — Performance of Matching Scores of Mixed Names
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Figure 4.10 is colour-coded based on the Figure 4.11 confusion matrix values for a better

understanding. Based on these values, the precision, recall and accuracy have been

calculated as shown below:

Figure 4.11 — Confusion Matrix for Mixed Names Comparison

The Precision is calculated as TP / (TP + FP), and the result is 0.95. while the Recall is

calculated as TP / (TP + FN), and the result is 0.95. The accuracy is calculated as TP+TN /

TP+TN+FP+FN, and the result is 0.90. Figure 4.12 below shows the overall result of the

comparison of algorithm performance.
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Overall Performance - Mixed Names
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Figure 4.12 — Overall Performance Evaluation of Mixed Names

4.2.3. Evaluation of Arabic Names

In Figure 4.13, Arabic names are selected and fed into the proposed matching algorithm.
These 15 names are taken to compare using modified Soundex code and Jaro-Winkler

similarity metrics.

Names matching codes & scores:

Namel Soundexl Name2 Soundex2 Soundex-Jaro Score Jaro-Winkler Score Aggregate score Status
@  Abdal-Rachid 134623 Abdur-rashid 136230 8.91 9.82 0.86 Close Match
1 KADER 236000 QADIR 236000 1.00 0.73 0.86 Close Match
2 ABD AL-RAHMAN 134655 ABDULREHMAAN 134655 1.00 0.84 0.92 Possible Match
3 ABD AL-AZIZ 134226 ABDELAZIZ 134226 1.00 .88 0.94 Possible Match
4 Hussein 250000 HUSAYN 250000 1.00 0.44 8.72 Close Match
5 MOHAMED 553000 MUHAMMAD 553000 1.00 .80 0.90 Possible Match
6 ABU AL-FADL 141348 AFAZL 124000 .67 .62 .65 No Match
7 BRAHIM 165060 ABRAHIM 165600 1.00 8.87 0.94 Possible Match
8 DAUD 330000 DAWOOD 330000 1.00 .89 0.9 Possible Match
9 HABIBULLAH 114060 HABIB  11e@0e 9.91 .99 0.91 Possible Match
18 I77 UD DIN 235000 AZIZ UD-DEEN 223500 .90 8.78 0.84 Close Match
11  JAMAL AL-DIN 254435 KAMAL UD-DIN 254356 .92 .80 .86 Close Match
12 NOUREDDINE 563568  NUR AD-DIN 563560 1.00 .82 .91 Possible Match
13 ZAMHIR 260000 ZAHEER 260000 1.00 .82 0.91 Possible Match
14 ZAKARIA 226000 ZAKARIYYA 226000 1.00 .96 0.98 Possible Match

Figure 4.13 - Arabic name variation with the proposed algorithm
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All names have different scores listed, but to clarify the results further, the results are

separated into three sections, as shown below in Figure 4.14.

Names with Aggregate score higher than JW Score and different Soundex Codes:

Namel Soundex1 Name2 Soundex2 Soundex-Jaro Score Jaro-Winkler Score Aggregate score Status
0 Abdal-Rachid 134623 Abdur-rashid 136230 0.91 8.82 0.86  Close Match
6  ABU AL-FADL 141349 AFAZL 124000 0.67 8.62 0.65 No Match
9 HABIBULLAH 114668 HABIB 110000 9.91 9.90 8.91 Possible Match
10 177 UDDIN 235000 AZIZ UD-DEEN 223500 8.90 0.78 0.84  (lose Match
11 JAMAL AL-DIN 254435 KAMAL UD-DIN 254350 0.9 0.80 0.86  Close Match

Names with Aggregate score Less than JW Score and different Soundex Codes:
Empty DataFrame

Names with equal Aggregate & JW score and different Soundex Codes:
Empty DataFrame

Figure 4.14 - Arabic names breakdown of matching with and without the same Soundex code

The names in Figure 4.14 have higher aggregate scores than the Jaro-Winkler score. At
the same time, they have different Soundex codes. Three names are labelled as close
matches, and Jaro-Winkler has scored lower than the aggregate. Only one name is
labelled as no match as it has been scored lower. It can be observed that this name is a
variation of another name and should match as a possible or close match. It should be
like the other name, where names are labelled as possible matches. The aggregate score

generated for the name is higher than Jaro-Winkler and equivalent to the Soundex code.

The score comparison graph in Figure 4.15 below shows the name match Soundex, Jaro-
Winkler, and Aggregate score. Based on the fuzzy matching requirements, the aggregate
score approximately matches the names instead of giving the value of 1 to show a 100%

match in this instance; that is the correct way to match these names.
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4. RESULTS — DATA ANALYSIS OF POLICING DATASET & COMPUTER SIMULATION

Comparison of Arabic Name Matching Scores
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Figure 4.15 - Matching Scores Comparison of Arabic Names
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Names matching codes & scores:

14
3
7
2
9
12
13

u

(]

10

6

Namel Soundexl

ZAKARIA

ABD AL-AZIZ
BRAHIM

ABD AL -RAHMAN
HABIBULLAH
NOUREDDINE
ZAAHIR
MOHAMED

DAUD
Abdal-Rachid
KADER

JAMAL AL-DIN
177 UD DIN
Hussein

ABU AL-FADL

226000
134220
165600
134655
114600
563500
260000
553000
330000
134623
236000
254435
235600
250000
141349

Figure 4.16 — Performance of Matching Scores of Arabic Names

Name2 Soundex2 Soundex-Jaro Score Jaro-Winkler Score Aggregate score

ZAKARIYYA
ABDELAZIZ
ABRAHIM
ABDULREHMAAN
HABIB

NUR AD-DIN
ZAHEER
MUHAMMAD
DAWOOD
Abdur-rashid
QADIR

KAMAL UD-DIN
AZIZ UD-DEEN
HUSAYN

AFAZL

226000
134220
165600
134655
110600
563500
260000
553000
330000
136230
236000
254350
223560
250000
124600

1.00
1.00
1.00
1.00
.91
1.00
1.60
1.00
1.00
.91
1.00
.92
.90
1.00
0.67

.96
.88
.87
0.84
.90
0.82
0.82
0.80
.80
.82
0.73
.80
0.78
.44
.62

.98
.94
.94
9.92
9.91
9.91
8.91
.90
.90
0.86
0.86
0.86
0.84
0.72
0.65

Status

Possible Match
Possible Match
Possible Match
Possible Match
Possible Match
Possible Match
Possible Match
Possible Match
Possible Match
Close Match
Close Match
Close Match
Close Match
Close Match

No Match

Figure 4.16 is colour-coded based on the Figure 4.17 confusion matrix values for a better

understanding. Based on these values, the precision, recall and accuracy have been

calculated as shown below:

Figure 4.17 — Confusion Matrix for Arabic Names Comparison

The Precision is calculated as TP / (TP + FP), and the result is 1.0. while the Recall is

calculated as TP / (TP + FN), and the result is 0.93. The accuracy is calculated as TP+TN /

TP+TN+FP+FN, and the result is 1.0. Figure 4.18 below shows the overall result of the

comparison of algorithm performance.
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Overall Performance - Arabic Names
1 1
1 0.93

0.8
0.6
0.4

0.2
Precision Recall Accuracy

Figure 4.18 — Overall Performance Evaluation of Arabic Names

4.2.4. Evaluation of Russian Names

In Figure 4.19, Russian names are selected and fed into the proposed matching
algorithm. These 9 names are compared here using modified Soundex code and Jaro-

Winkler similarity metrics.

Names matching codes & scores:

Namel Soundexl Name2 Soundex2 Soundex-Jaro Score Jaro-Winkler Score Aggregate score Status
0 EKATERINA 236500  YEKATERINA 236500 1.00 0.97 0.98 Possible Match
1 ELENA 456000 YELENA 450000 1.00 0.9 0.97 Possible Match
2 JEKATERINA 223656  YEKATERINA 236500 .99 0.93 8.92 Possible Match
3 LIOUBA 410000 LYUBA 410000 1.00 0.84 .92 Possible Match
4 NASTASYA 523206  ANASTASIYA 523200 1.00 0.77 0.89 (lose Match
5 MAX 520000 MAKS 520000 1.00 0.78 0.89 (lose Match
6 Mikhail Kovalchuk 524214 M.Kovalchuk 521422 0.83 0.74 .78 (lose Match
7 Ivanov 151660 Iwanow 500000 .78 0.80 0.79 (lose Match
8 Ivanoff 151000 Ivanov 151000 1.00 8.91 0.96 Possible Match

Figure 4.19 - Russian name variation with the proposed algorithm
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These results are separated into three sections to clarify the results further, for all the

names have different Soudex codes, as shown below in Figure 4.20.

Names with Aggregate score higher than JW Score and different Soundex Codes:

Namel Soundex1 Name2 Soundex2 Soundex-Jaro Score Jaro-Winkler Score Aggregate score Status
6 Mikhail Kovalchuk 524214 M.Kovalchuk 521422 0.83 0.74 8.78 (lose Match

Names with Aggregate score Less than JW Score and different Soundex Codes:

Namel Soundex1 Name2 Soundex2 Soundex-Jaro Score Jaro-Winkler Score Aggregate score Status
2 JEKATERINA 223650 VYEKATERINA 236500 0.90 .93 .92 Possible Match
7 Ivanov 151060 Iwanow 500000 8.78 0.80 0.79 Close Match

Names with equal Aggregate & JW score and different Soundex Codes:
Empty DataFrame

Figure 4.20 - Russian names breakdown of matching with and without the same Soundex code

The first name in Figure 4.20 has a higher aggregate score than the Jaro Winkler Score,
while it has different Soundex codes and has been labelled as a close match. However,
the name Jaro-Winkler scored lower than Soundex and aggregate score. By close

observation, the name is the same but with Full name and initials in the second variation.

The last two names in Figure 4.20 have an aggregate score lower than the Jaro-Winkler
score. The first name is labelled as a possible match as names are similar but are possibly
similar or different names. While the second name is labelled as a close match and has
a score lower than the Jaro-Winkler score, it is still the same or a similar name to be

matched.

The score comparison graph in Figure 4.21 below shows the name match Soundex, Jaro-
Winkler and Aggregate score. Based on the fuzzy matching requirements, the aggregate
score approximately matches the names instead of giving the value of 1 to show a 100%

match in this instance; that is the correct way to match these names.
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4. RESULTS — DATA ANALYSIS OF POLICING DATASET & COMPUTER SIMULATION
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Figure 4.21 - Matching Scores Comparison of Russian Names

Names matching codes & scores:

Namel Soundexl

EKATERINA

ELENA

Ivanoff
JEKATERINA

LIOUBA

NASTASYA

MAX

Ivanov

Mikhail Kovalchuk

236500
450000
151000
223650
4100800
523200
520000
151000
524214

Figure 4.22 — Performance of Matching Scores of Russian Names

Name2 Soundex2 Soundex-Jaro Score Jaro-Winkler Score Aggregate score
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4. RESULTS — DATA ANALYSIS OF POLICING DATASET & COMPUTER SIMULATION

For better understanding, figure 4.22 is colour-coded based on the Figure 4.23 confusion
matrix values. Based on these values, the precision, recall and accuracy have been

calculated as shown below:

Figure 4.23 — Confusion Matrix for Russian Names Comparison

The Precision is calculated as TP / (TP + FP), and the result is 1.0. while the Recall is
calculated as TP / (TP + FN), and the result is 1.0. The accuracy is calculated as TP+TN /
TP+TN+FP+FN, and the result is 1.0. Figure 4.24 below shows the overall result of the

comparison of algorithm performance.

Overall Performance - Russian Names
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Figure 4.24 — Overall Performance Evaluation of Russian Names
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4.3. Policing Dataset

This section will explore and analyse the de-identified police dataset. The proposed

algorithm in Chapter 3 has been applied to this dataset. The details will be discussed

later in this chapter. The policing dataset comprises the following fields about each

entity. The names of each field listed here are precisely the same as in the dataset.

S Crime_Ref: This is a computer-generated unique reference number, which is

continuous.

2 nominal_ref: This is a computer-generated unique reference number, which is

continuous.

S surname: Surname or family name.

> forename: First name(s).

< sex: Genderis “M” for Male or “F” for Female.

< date_of_birth: Thisisin dd/mm/yyyy format. Atime aspect of 00:00:00 is attached

to this field, which is not utilised.

S ea_desc: Police Identity Codes as outlined below or written text:

o IC1—White person, northern European/northern America type.
o IC2 — Mediterranean European/Hispanic.
o 1C3 — African/Afro-Caribbean person.
o IC4 — Indian, Pakistani, Nepalese, Maldivian, Sri Lankan, Bangladeshi, or other
(South) Asian persons.
o IC5 - Chinese, Japanese, or South-East Asian person.
o IC6 —Middle Eastern, Arabic.
o 1CO, IC7 or IC9 — Origin unknown.
> role_type:
o victims (VICT);
o defendants (DEFE);
o persons who are probably responsible for an offence (PROB);
o persons are known to be responsible for an offence (RESP);
o suspects for committing an offence (SUSP)
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o victims (VICA).
S street_name: The street name of the Nominal’'s home address that is manually
entered. House number is excluded.
< district_name: District of Nominal’s home address, which is manually entered.
2 town_name: Town of Nominal’s home address, which is manually entered.
S Postcode_sectorl: The postcode of Nominal’s home address is manually entered
and encompasses 3,000 residences.
S Beat_numberl: Computer allocated. It is a Local Policing Unit (LPU) sub-area. For
example, E125 is Beat 25 in E1 LPU.
S grid_ref_northingl: This is a six-digit Ordnance Survey Grid Reference, which is a
1km block.
S grid_ref_eastingl: This s a six-digit Ordnance Survey Grid Reference, which is a 1km

block.

4.4. Policing Dataset Analysis

The data pre-processing phase discussed in Chapter 3 eliminates missing values from
the dataset for each record. In the dataset, four different fields represent the address.
So, the three fields are merged as one address field while keeping the postcode field
separate. Similarly, the surname and forename are merged as the name field. The
records defined as ‘Unknown’ gender rather than ‘M’ for males and ‘F’ for females are
considered missing values. Overall, a total of 430,293 missing values are removed from
the dataset. Therefore, after data cleaning, the dataset still has 715,919 records. All

attribute values are converted to lowercase for standard matching.

In this fuzzy approach, name, gender, ethnicity, and address attributes are used to start

the initial search of records. There are a total of 1146212 records in the dataset.
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Table 4.1 - Analysis of Policing Dataset

Column Name Total Records Missing Records
Crime_Ref 1146212 0
Offence 1145418 794
HOMC_Code 1077337 68875
HOOC_Code 1077341 68871
nominal_ref 1146212 0
Surname 1146212 0
Forename 1145364 848
Gender 1146212 0
date_of_birth 1136404 9808
role_type 1146212 0
street_name 1137798 8414
town_name 1104356 41856
district_name 1002364 143848
postcode 1039866 106346
ea_desc 1126280 19932
grid_ref northing 1146212 0
grid_ref easting 1146212 0
beat_number 1146212 0

4.4.1. Multiple Nominal References for the same
individual

When joining column Nominal_Ref to assign nominals to crimes and ascertaining their
network activities, it would not obtain a complete picture of all individuals as many

entities have multiple Nominal_Refs presented in the dataset.

Based on Nominal_Ref, Surname, Forename, dob and count Crime_Ref, there are
697773 records where flagged duplicate surnames, forenames, and dobs, and 12295
records are found in the dataset. There are 6032 individuals, each with 5 or fewer

different Nominal_Refs. For example, Surname = BECK & Forename = JAUNETTE & dob
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=16/08/64, it retrieves 17 crimes over the 3 Nominal_Refs, joined the 6032 to the using
Nominals ref to retrieve the number of crimes for each Surname, Forename, dob shows
27363 records. For example, Surname = HASKIN, Forename = ZIED dob = 19/11/99, by

using the combination, 5 Nominal_Ref has 38 crime records.
4.4.2. Multiple DOBs for the same individual

Omitting Nominal_Refs and only using Surname, Forename and Date of Birth (DOB) as a
compound key eliminates the issue above. However, many nominal records have the
same names, but some have different DOBs. It can account for common names such as
John Smith. However, there could be data errors, such as recording the UK vs
international dates (01/12/1945 is the same as 12/01/1945). Aggregate on Surname,
Forename, dob, and with flagged duplicates to ID all records with the same Surname
and Forename retrieves 309518 records. To check the different dob associated with the
same details, e.g. Surname = ABBIDAH, Forename = FARQS, retrieves 12 records where
10 are related to the same person across 3 different dobs judged by the addresses.
Entities comprise the complete list of all persons associated with the crime data set —a

victim, offender, witness, or suspect. Each entity is identified under a separate role.

4.5. Evaluation of De-identified Policing Dataset

The three names are input as desired in searches 1, 2 and 3 to find the corresponding
match in the database. Figure 4.25 shows the start of the iteration process by providing
three different name variations of search 1. The input name may or may not be the
correct spelling of the name, but this is what is known or being guessed for searching.
This search process produced records found in the database, as shown in Figure 4.26

and Figure 4.27.
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S Search 1 -The target name is Bech Jaunette

Please type the 1st variation of name : back junete
Please type the 2nd variation of name : bach junette
Please type the 3rd variation of name : beck jaunete
Please type the gender (m/f) : f

Please type approx. age : 49

Please type the description : white

Please type the address : town and close

Found records for 1st variation of name : 95
Found records for 2nd variation of name : 61
Found records for 3rd variation of name : 95
Length of Dataset by merging three name variation datasets : 173

Length of Dataset without duplicate records : 173
ClusterID [0 1 2 3]

Figure 4.25 - Search 1: Number of found records per search stage

Final Records By Address :

0
nane address nominal_ref age date of birth postcode FullNameScore address_score Cluster gender ea_desc role type
BECH JAUNETTE TONN END CLOSE YAULE TETHERDALE 1181378980 59 1964-88-16 B8 31Y 6.7 0.8 1 F HITE SKINNED EUROPEAN DEFE 1

010603831 59 1964-08-16  BS6 3TV 0.7 0.83 1 F - WHITE SKINNED EUROPEAN DEFE 5

VICT 1

Related Records found by name :

nane address nominal_ref age date of birth postcode FullNameScore address score Cluster gender ea_desc role_type

BECH JAUNETTE BREEZE LANE VAULE TETHERDALE 9346618 59 1964-88-16  B6G 4PR 0.7 8.9 1 F WHITE SKINNED EUROPEAN DEFE

BROWNEY CROFT VAULE TETHERDALE 96346618 59 1964-88-16  B6S 4PR 0.7 .0 1 F WHITE SKINNED EUROPEAN DEFE

FARTHINGDALE CLOSE CARSINGTON TELGN HILL 2010603834 59 1964-88-16  B11 3AF 0.7 8.53 1 F WHITE SKINNED EUROPEAN VICT

HESSLE TERRACE CARSINGTON THACKFORD 118137890 59 1964-08-16 B33 8RS 4.7 8.33 1 - WHITE SKINNED EUROPEAN DEFE

KNAVESHIRE YAULE TETHERDALE 953466181 59 1964-08-16  B65 4PR 4.7 9.4 1 - WHITE SKINNED EUROPEAN DEFE

ROMAN AVENUE YAULE TETHERDALE 953466181 59 1964-08-16  B65 4PR 4.7 8.8 1 - WHITE SKINNED EUROPEAN DEFE

SERVIA GARDENS CARSINGTON DRAYFORD COMMON 852671541 31 1992-65-26 B35 7LB 4.7 8.2 4 F - WHITE SKINNED EUROPEAN VICT

Figure 4.26 - Search 1: Found records based on matching addresses and related records
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Max value Add Score 0,83

Mae alldress noninal_ref age date of birth postcode FullNaneScore address score Cluster gender ea_desc role_type
BECH JAUNETTE BREEZE LANE YAULE TETHERDALE 96346618M 59 1964-B8-16  BeS 4PR 6.7 8.9 1 F - HHITE SKINNED EUROPEAN DEFE
BROKNEY CROFT YAULE TETHERDALE 963460181 59 194-08-16  Be6 4R 0.7 8. 1 F - HHITE SKINNED EUROPEAN DEFE
FARTHINGDALE CLOSE CARSINGTON TEIGN HILL 2010683831 59 1964-88-16  BIL 3AF &.7 8.53 1 F - HHITE SKINNED EUROPEAN VICT
HESSLE TERRACE CARSINGTON THACKFORD 1181378990 59 1964-88-16 B33 RS 8.7 0.3 1 - WHITE SKINNED EUROPEAN DEFE
KNAVESHIRE YAULE TETHERDALE 96346618M 59 1964-B8-16  Be6 4PR 6.7 6.2 1 F - HHITE SKINNED EUROPEAN DEFE
ROMAN AVENUE YAULE TETHERDALE 9634601811 59 1964-08-16  Be6 4R 0.7 0.8 1 F - HHITE SKINNED EUROPEAN DEFE
SERVIA GARDENS CARSINGTON DRAVFORD COMMON 85267154 31 1992-65-26 B35 7LB @.7 8.9 g F - HHITE SKINNED EUROPEAN VICT
TOWN END CLOSE YAULE TETHERDALE 118137830 59 1904-08-16  Be6 3TV 8.7 6.83 1 F - HHITE SKINNED EUROPEAN DEFE
201063834 59 1964-88-16  Be6 3TV @.7 6.83 1 F - HHITE SKINNED EUROPEAN DEFE

VI

Figure 4.27 - Search 1: Searching and filtering of records based on address score

Based on the inputs for Search 1 in Figure 4.25, the initial search and matching criteria
produced three datasets. The first variation of the name retrieved 95 records, the
second retrieved 61, and the third retrieved 95. A resultant dataset of 173 records is
generated after merging all three datasets and removing duplicate records. The records
are input into the clustering algorithm to calculate the number of clusters based on the
records found with matching addresses, names, and ages. Figure 4.28. shows the

clustering of the records.
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Figure 4.28 - Search 1: Clustered records
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The dataset produced from the search results is fed into the clustering algorithm, and
clusters of the records are created based on age, name aggregate score, and address
score. The records are grouped into four clusters based on the similarity score of the
attributes involved using the Mean-Shift clustering technique. Some of the records in
clusters have low scores at the y-axis (address score). However, these records are still
required for the next stage to ensure not to ignore any related or close matches. After
the clustering phase, the segmentation picked the address with the highest score of
0.83. Figure 4.26 shows that 7 records, displayed in the last column, were retrieved
matching the highest address and name aggregate scores. In comparison, 9 related
records were retrieved with similar names with low address scores and a different date
of birth. Therefore, after merging these retrieved records, the final dataset has been
obtained containing 16 records, displayed in the last column, with a combination of the

same name, two different date of birth, and different addresses, as shown in Figure 4.27.

Figure 4.29 below presents the graphical analysis of the clustered records, where blue
dots represent individual entities by name, and the orange dots denote the clusters.
There are 4 clusters in Figure 4.29, with different entities linked to each cluster. The two
small clusters at the top right and bottom right in the graph are simple clusters of entities
and have no similarities with other clusters. However, the two clusters in the middle left
of the graph have some similar entities linked to each cluster. The three entities linked

to each cluster are shown in Figure 4.29 below.
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Entities in Clusters

Entity BOYCE JAUNETTE

Cluster BOHHAG WWDM

ADDIE
FOGG AUTE o
ASCR HAMIDA
TU

PESEY NE

BAZEN ETA

BACKSG\J/wm’S NIDIA

Figure 4.29 - Graph analysis, the suspect identified as “Bech Jaunette” clustered

Figure 4.30 further explores the entity linkage details in the graph analysis, where the
red dot represents the matched entity. In contrast, the orange dot represents the
clusters. So, one of the three entities linked to two clusters from Figure 4.29 is matched
with the target search entity and represented with a red dot in Figure 4.30. This entity
is linked to different addresses, as shown in Figure 4.30. Therefore, the suspect was

identified out of other entities, with a red dot associated with different addresses.
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Entities in Clusters and target Entity identified with linked addresses

@ Matched Entity
Cluster

Back ADD
BESS DYOD
TS YHERAGRHERDALE  BOUZIRQUA MAODY
BRI AR WATBN THACKFORD gy 1a ADDY
SERVIA GARDENS CARSINGIQR 5 ADDY
ROMAN AVENUE YAG:ER \ :?ﬁp,. NTA
DORALAR

FARTHINGDALE CLOSE pARS T

Figure 4.30 - Graph analysis, the suspect identified as “Bech Jaunette” highlighted Red in Clusters
associated with different addresses.

However, this matched suspect entity in Figure 4.30 requires further clarity on the
address to be easily readable, as shown in Figure 4.31. Here, the red dot represents the
suspect entity, and the black arrows show the particular entity's link with different

addresses. The grey dot represents each address in Figure 4.31.
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Identified Entity linked to addresses

@® Entity
HESSLE TERRACE CARSINGTON THACKFORD Address

TOWN END CLOSE ¥AULE TETHERDALE
SERVIA GARDENS CARSINGTON DRAYFORD COMMON

ROMAN AVENUSYAULE TETHEI

KNAVESMIRE YAULE TETHERDALE
"HINGDALE CLOSE CARSINGTON TEIGN HILL

BROWNEY CROFT YAULE TETHERDALE

Figure 4.31 - Graph analysis, the suspect identified as “Bech Jaunette” highlighted Red and associated
with different addresses.

< Search 2 — The target name is Abbidah Faroz

Please type the 1st variation of name : abidah feros
Please type the 2nd variation of name : abbidha firoz
Please type the 3rd variation of name : abiddah farose
Please type the gender (m/f) : f

Please type approx. age : 44

Please type the description : white

Please type the address : close carsington

Found records for 1st variation of name : 41
Found records for 2nd variation of name : 41
Found records for 3rd variation of name : 41
Length of Dataset by merging three name variation datasets : 85

Length of Dataset without duplicate records : 85
ClusterID [0 1 2 3]

Figure 4.32 - Search 2: Number of found records per search stage

Based on the inputs for Search 2 in Figure 4.32, the initial search and matching criteria
produced three datasets. All three name variations retrieved 41 records, and the
resultant dataset of 85 records was generated after merging all three datasets and
removing any duplicate records. All these retrieved records have some similarities or are

entirely different, but this will be distinguished later in the next stage.

135



Final Records By Address :

nae address noninal_ref age date_of birth postcode FullNameScore address_score Cluster gender ea_desc role_type
ABBIDAH FAROS ELGOOD CLOSE CARSINGTON ARBORFIELD 114726519 46 1977-02-25  B32 20N 0.50 1.0 0 F WHITE SKINNED EUROPEAN VICT
8.69 1.0 ] F WHITE SKINNED EUROPEAN VICT
BOTY FAROS ~ BERESFORD CLOSE CARSINGTON LOWER DRAYFORD 8711864227 53 1970-62-28  B36 1Y 0.50 1.0 1 3 WHITE SKINNED EUROPEAN VICT
0.70 1.0 1 F WHITE SKINNED EUROPEAN VICT
HOLBETON CLOSE CARSINGTON FORTHINGTON ~ 97898721E 42 1981-02-25  B23 6IN .50 1.0 0 F WHITE SKINNED EUROPEAN VICT
0.70 1.0 ) F WHITE SKINNED EUROPEAN VICT
Related Records found by name :
name address nominal_ref age date_of birth postcode FullNameScore address_score Cluster gender ea_desc role_type
ABBIDAH FAROS BRANDEARTH HEY CARSINGTON ARBORFIELD  1012878080T 46 1977-62-02  B32 20N 0.50 0.77 ) F WHITE SKINNED EUROPEAN VICT 2
0.69 0.77 ] F WHITE SKINNED EUROPEAN VICT 2
114726519 46 1977-62-25  B32 20N 9.50 0.77 ] F WHITE SKINNED EUROPEAN DEFE 2
VICT 3
0.69 0.77 ] F WHITE SKINNED EUROPEAN DEFE 2
VICT 3
1551512716 46 1977-62-17  B32 20N .50 0.77 0 F WHITE SKINNED EUROPEAN VICT 1
0.69 0.77 0 f WHITE SKINNED EUROPEAN VICT 1
CHILD'S ERCALL LANE CARSINGTON BARBWORTH 10131383640 47 1976-62-18  B25 8UT 0.50 0.77 ] f WHITE SKINNED EUROPEAN VICT 1
0.69 0.77 ] F WHITE SKINNED EUROPEAN VICT 1
PRIMROSE AVENUE DEWMAPLE BLACKFORD 861972838 53 1970-03-18 (V5 917 .50 .32 1 F WHITE SKINNED EUROPEAN VICT 1
0.69 0.3 1 f WHITE SKINNED EUROPEAN VICT 1
BOTY FAROS  ATHENS GARDENS CARSINGTON GARNET GREEN 133699¢7L 23 2000-11-15  B28 8LZ 0.50 0.77 3 f WHITE SKINNED EUROPEAN DEFE 1
0.70 0.77 3 f WHITE SKINNED EUROPEAN DEFE 1
Figure 4.33 - Search 2: Found records based on matching addresses and related records
Max value Add Score 1.0
name address nominal_ref age date of birth postcode FullNameScore address_score Cluster gender ea_desc role_type
ABBIDAH FAROS BRANDEARTH HEY CARSINGTON ARBORFIELD 10128780807 46 1977-82-82  B32 20N .58 8.77 ] F WHITE SKINNED EUROPEAN VICT
8,69 8.77 4 F - WHITE SKINNED EUROPEAN VICT
114726519Y 46 1977-82-25  B32 20N @.58 8.77 ] F WHITE SKINNED EUROPEAN DEFE
VICT
8.69 8.77 [ F WHITE SKINNED EUROPEAN DEFE
VICT
1551512716 46 1977-82-17  B32 20N @.5@ 8.77 ] F WHITE SKINNED EUROPEAN VICT
8.69 8.77 8 F WHITE SKINNED EUROPEAN VICT
CHILD'S ERCALL LANE CARSINGTON BARBWORTH 10131383640 47 1976-82-18  B25 8UT 0.58 8.77 [ F WHITE SKINNED EUROPEAN VICT
8.69 8.77 ] F WHITE SKINNED EUROPEAN VICT
ELGOOD CLOSE CARSINGTON ARBORFIELD 114726518Y 46 1977-82-25  B32 20N 6.56 1.08 [} F WHITE SKINNED EUROPEAN VICT
8.69 1.09 [ F WHITE SKINNED EUROPEAN VICT
PRIMROSE AVENUE DEWMAPLE BLACKFORD 861972838 53 1970-83-18 (V5 97 @.50 8.3 1 F WHITE SKINNED EUROPEAN VICT
8.69 8.32 1 F WHITE SKINNED EUROPEAN VICT
BOTY FAROS  ATHENS GARDENS CARSINGTON GARNET GREEN  1336997L 23 2008-11-15  B28 8lZ @.50 8.77 3 F WHITE SKINNED EUROPEAN DEFE
8.78 8.77 k] F WHITE SKINNED EUROPEAN DEFE
BERESFORD CLOSE CARSINGTON LOWER DRAYFORD 8711864227 53 1970-82-28  B36 €TV 0.50 1.00 1 F WHITE SKINNED EUROPEAN VICT
8.70 1.0 1 F WHITE SKINNED EUROPEAN VICT
HOLBETON CLOSE CARSINGTON FORTHINGTON 97898721 42 1981-82-25  B23 6IN @.58 1.08 ] F WHITE SKINNED EUROPEAN VICT
.78 1.08 ] F WHITE SKINNED EUROPEAN VICT

Figure 4.34 - Search 2: Searching and filtering of records based on address score
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Applying the resultant dataset to the clustering phase generated 4 clusters based on
age, name aggregate score, and address score. Figure 4.35 shows that some cluster
records have low scores at the y-axis (address score). These records are required for the
next stage to ensure that any related or close matches are not ignored. After the
clustering phase, the segmentation picked the address with the highest score of 1.0. In
Figure 4.33, 6 records were retrieved with the highest address and different name

aggregate scores.

In comparison, 20 other related records were retrieved with a similar name, low address
score, and 5 different dates of birth. So, the final dataset retrieved 22 records with a
combination of the same name, 6 different dates of birth, and different addresses. In
comparison, it contains 6 records with a different name, 3 different dates of birth, and

a high address matching score, possibly having similar addresses as shown in Figure 4.34.
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Figure 4.35 - Search 2: Clustered records

Figure 4.36 shows a graph analysis of the entities added to different clusters. The blue
dot represents the entity, while the orange represents each cluster, showing that
different entities are linked to each cluster. However, some entities are linked to other

clusters too. These are familiar entities found in multiple clusters due to some
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similarities. In the graph of Figure 4.36, entities are linked between clusters 0, 1, 2 and

3.

Meanwhile, clusters 1 and 2 have a common entity but are not linked to other clusters.
Two similar entities are linked to clusters 1 and 3. Therefore, the main clusters to focus
on here are “0 and 1”, “0 and 2”, and “0 and 3”. Further graph analysis is required to

find the matched entity from these entities.

Entities in Clusters

BOD FARDS Entity
ABADIEFAROS  BADDIE HUBERCE Cluster

POTTAY [AROS

BATEY FAROS

BHOTT FAROS

AVDIU PAROS

BOTY

/D s
1

BATTNFAROS

Figure 4.36 - Graph analysis, the suspect identified as “Abbidah Faroz” clustered

Figure 4.37 shows further analysis of the identified clusters. The entities in clusters are
linked to different addresses. In Figure 4.37, orange dots represent the clusters, while
the red dots represent the match entities. The match entities are also linked to
addresses. At the same time, the entities are shown as linked to other clusters, as
discussed before. However, this graph is not easily interpretable with respect to the

addresses where the entities are linked.
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Entities in Clusters and target Entity identified with linked addresses

@ Matched Entity
FOTERAROS  ABADIE FAROS Clust:
BOD FARCS uster

BEEDOE.FAROS
BRANDEARTH HEY CARSINGTON ARBORFIELD

3ADDIE %”‘ROS ABSINGTON ARBO!
N FARDS,
EY 0 AVENUE B

POTTAY-FAROS

+ GARDENS CAR

HOLBETON CLOSE TON LOWER DRAYFORD

Figure 4.37 - Graph analysis, the suspect identified as “Abbidah Faroz” highlighted Red and Red in
Clusters associated with different addresses.

Therefore, to clarify these details, Figure 4.38 shows the matched entities with different

addresses.

Identified Entity linked to addresses

@ Entity
BERESFORD CLOSE CARSINGTON LOWER DRAYFORD Address
HOLBETON CLOSE CARSINGTON FORTHING Uiy

ARTH HEY CARS|NGTON ARBORFIELD

PRIMROSE AVEN

TON GARNET GREEN CHILD'S ERCALL LANE TCARSINGTON BARBWORTH

ELGOOD CLOSE CARSINGTON ARBORFIELD

Figure 4.38 - Search 2: Graph analysis, the suspect identified as “Abbidah Faroz” highlighted Red and
associated with different addresses.
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In Figure 4.38, the red dots represent the matched entities. These entities are linked to
addresses represented by black arrows, where grey dots represent the address. The
results of the graph analysis show there are two matched entities. One suspect entity
can be easily identified in terms of the search for the target entity. Therefore, “Abbidah
Faros” is the matched suspect entity. However, the other suspect entity, “Boty Faros”,

is either a linked related suspect or a false negative matched entity.

S Search 3 — The target name is Haskin Zeid

Please type the 1st variation of name : huskin zaid
Please type the 2nd variation of name : haskin zayed
Please type the 3rd variation of name : hasken zeid
Please type the gender (m/f) : m

Please type approx. age : 3@

Please type the description : white

Please type the address : carsington drampton

Found records for 1st variation of name : 204
Found records for 2nd variation of name : 2e4
Found records for 3rd variation of name : 204
Length of Dataset by merging three name variation datasets : 208

Length of Dataset without duplicate records : 208
ClusterID [0 1 2 3]

Figure 4.39 - Search 3: Number of found records per search stage

Based on the inputs for search 3 in Figure 4.39, the initial search and matching criteria
produced three datasets. All three name variations retrieved 204 records, and the
resultant dataset of 208 records was generated after merging all three datasets and
removing duplicate records. All these retrieved records have some similarities or are

entirely different, but this will be differentiated later in the next stage.

140



Final Records By Address :

name address nominal_ref age date_of_birth postcode FullNameScore address_score Cluster gender ea_desc role_type
HASKIN ZIED BASING STREET CARSINGTON DRAMPTON 551000108 24 1999-11-19  B37 SEW 0.7 1.0 ] M WHITE SKINNED EUROPEAN DEFE
BITTACY RISE CARSINGTON DRAMPTON 551000108 24 1999-11-19  B37 SEW 0.7 1.0 [ M WHITE SKINNED EUROPEAN DEFE
CLEVEDON ROAD CARSINGTON DRAMPTON 551000108 24 1999-11-19  B37 SEW 0.7 1.0 [ ] WHITE SKINNED EUROPEAN DEFE
COCK BANK CARSINGTON DRAMPTON 551000108 24 1999-11-19  B37 SEW 0.7 1.0 [ M WHITE SKINNED EUROPEAN DEFE
ELECTRIC PARADE CARSINGTON DRAMPTON 551000108 24 1999-11-19  B37 SEW 0.7 1.0 ] M WHITE SKINNED EUROPEAN DEFE
FORD LANE CARSINGTON DRAMPTON 551000108 24 1999-11-19  B37 SEW 0.7 1.0 0 M WHITE SKINNED EUROPEAN DEFE
KELMSCOTT CRESCENT CARSINGTON DRAMPTON 551000108 24 1999-11-19  B37 SEW 0.7 1.0 ] M WHITE SKINNED EUROPEAN DEFE
KNOWLE GROVE CARSINGTON DRAMPTON 551000108 24 1999-11-19  B37 SEW 0.7 1.0 ] M WHITE SKINNED EUROPEAN DEFE
MOULE RISE CARSINGTON DRAMPTON 551000108 24 1999-11-19  B37 SEW 0.7 1.0 [ " WHITE SKINNED EUROPEAN DEFE
SCOTIA DRIVE CARSINGTON DRAMPTON 551000108 24 1999-11-19  B37 7UA 0.7 1.0 (/] M WHITE SKINNED EUROPEAN DEFE
SORREL GARDENS CARSINGTON DRAMPTON 551000108 24 1999-11-19  B37 SEW 0.7 1.0 [ M WHITE SKINNED EUROPEAN DEFE
WENTWORTH GROVE CARSINGTON DRAMPTON 551000108 24 1999-11-19  B37 SEW 0.7 1.0 [ M WHITE SKINNED EUROPEAN DEFE
WOODNEWTONS ROAD CARSINGTON DRAMPTON 551000108 24 1999-11-19  B37 SEW 0.7 1.0 0 M WHITE SKINNED EUROPEAN DEFE
WOODTHORPE CRESCENT CARSINGTON DRAMPTON 551000108 24 1999-11-19  B37 SEW 0.7 1.0 [ M WHITE SKINNED EUROPEAN DEFE
KEYNES UTT ROCKHALL ROAD CARSINGTON DRAMPTON 921272734C 30 1993-85-25  B37 7R 0.7 1.0 ] M WHITE SKINNED EUROPEAN DEFE
VICT
Related Records found by name :
name address nominal_ref age date_of birth postcode FullNameScore address_score Cluster gender ea_desc role_type
HASKIN ZIED BURNT ASH HILL CARSINGTON TARLINGTON 551000108 24 1999-11-19  B26 1LY 0.7 0.69 0 il WHITE SKINNED EUROPEAN DEFE
QUORN ROAD CARSINGTON IVERSONS HEATH 381368636 24 1999-11-19  B19 3UL 0.7 0.69 0 M WHITE SKINNED EUROPEAN DEFE
REMNANT STREET CARSINGTON UPPEREND GREEN 551000108 24 1999-11-19 B33 AN 0.7 0.69 0 il WHITE SKINNED EUROPEAN DEFE
Figure 4.40 — Search 3: Found records based on matching addresses and related records
Max value Add Score 1.8
[
name address nominal_ref age date_of_birth postcode FullNameScore address_score Cluster gender ea_desc role_type
HASKIN ZIED BASING STREET CARSINGTON DRAMPTON 551000108 24 1999-11-19  B37 SEW @.7 1.6 [ M WHITE SKINNED EURCPEAN DEFE 1
BITTACY RISE CARSINGTON DRAMPTON 551000108 24 1999-11-19  B37 SEW 8.7 1.60 [ M WHITE SKINNED EUROPEAN DEFE 1
BURNT ASH HILL CARSINGTON TARLINGTON 551p@e1e6 24 1999-11-19  B26 1LY 8.7 8.69 [ M WHITE SKINNED EUROPEAN DEFE 2
CLEVEDON ROAD CARSINGTON DRAMPTON 551000106 24 1999-11-19  B37 SEW @.7 1.60 4 M WHITE SKINNED EUROPEAN DEFE 1
COCK BANK CARSINGTON DRAMPTON 551009168 24 1999-11-19  B37 SEW @.7 1.00 [ M WHITE SKINNED EUROPEAN DEFE 1
ELECTRIC PARADE CARSINGTON DRAMPTON 551000108 24 1999-11-19  B37 SEW 6.7 1.60 [/ M WHITE SKINNED EUROPEAN DEFE 1
FORD LANE CARSINGTON DRAMPTON 551000108 24 1999-11-19  B37 SEW 8.7 1.0 [ M WHITE SKINNED EUROPEAN DEFE 1
KELMSCOTT CRESCENT CARSINGTON DRAMPTON  5516@0168 24 1999-11-19  B37 SEW 0.7 1.60 [ M WHITE SKINNED EUROPEAN DEFE 1
KNOWLE GROVE CARSINGTON DRAMPTON 551000108 24 1999-11-19  B37 SEW 8.7 1.60 [ M WHITE SKINNED EUROPEAN DEFE 1
MOULE RISE CARSINGTON DRAMPTON 551000106 24 1999-11-19  B37 SEW @.7 1.60 4 M WHITE SKINNED EUROPEAN DEFE 8
QUORN ROAD CARSINGTON IVERSONS HEATH 381368636) 24 1999-11-19  B19 3UL @.7 8.69 [ il WHITE SKINNED EUROPEAN DEFE 1
REMNANT STREET CARSINGTON UPPEREND GREEN 5516@0168 24 1999-11-19 B33 @AN 8.7 8.69 [ M WHITE SKINNED EUROPEAN DEFE 1
SCOTIA DRIVE CARSINGTON DRAMPTON 551060108 24 1999-11-19  B37 TUA 8.7 1.00 [ M WHITE SKINNED EUROPEAN DEFE 1
SORREL GARDENS CARSINGTON DRAMPTON 551000106 24 1999-11-19  B37 SEW @.7 1.60 4 M WHITE SKINNED EUROPEAN DEFE 1
WENTWORTH GROVE CARSINGTON DRAMPTON 551009168 24 1999-11-19  B37 SEW @.7 1.00 [ M WHITE SKINNED EUROPEAN DEFE 1
WOODNEWTONS ROAD CARSINGTON DRAMPTON 551000188 24 1999-11-19  B37 SEW 6.7 1.60 [/ M WHITE SKINNED EUROPEAN DEFE 1
WOODTHORPE CRESCENT CARSINGTON DRAMPTON 551eeel8 24 1999-11-19  B37 SEW @.7 1.80 [ M WHITE SKINNED EUROPEAN DEFE 1
KEYNES UTT ROCKHALL ROAD CARSINGTON DRAMPTON 921272734C 36 1993-85-25  B37 7UR 0.7 1.60 [/ M WHITE SKINNED EUROPEAN DEFE 1
VICT 1

Figure 4.41 - Search 3: Searching and filtering of records based on address score

The dataset, produced from the search results, is fed into the clustering algorithm, and
4 clusters of records are created by the Mean-Shift clustering algorithm based on age,
name aggregate score, and address score, as shown in Figure 4.42. There are records in

clusters with low scores at the y-axis (address score). However, these records are
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required for the next stage to ensure that any related or close matches are not ignored.
After the clustering phase, the segmentation picked the address with the highest score
of 1.0. Figure 4.40 shows a total of 21 records, numbers displayed in the last column,
were retrieved with the highest address and name aggregate scores of 0.70 and the
same date of birth. However, the 2 other records, numbers displayed in the last column,
were retrieved with different names, high address scores, and dates of birth. At the
same time, 4 records were found with related records with matching names, a low
address score of 0.69 and the exact date of birth, the same as 21 records found during
the initial search. Therefore, the final dataset containing 27 records, numbers displayed
in the last column, and the combination of the two different names, dates of birth, and

addresses was obtained, as shown in Figure 4.41.

Entities grouped in clusters
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Figure 4.42 - Search 3: Clustered records

Figure 4.43 below is the graph analysis of the clustered records. The blue dots represent
the Entity and the individual's name, and the orange dots represent the clusters. The 4
clusters contain different entities linked to each cluster. The small cluster at the top left
of the graph is a simple cluster with no similarities. However, the two clusters on the
bottom left of the graph have some similar entities linked to each cluster. One entity is

linked to clusters 1 and 2, while the other is linked to clusters 0 and 1.
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Entities in Clusters

HUSSON NAZHAT .
GAYE Nm.&&a Entity
T ZEENHAZHAT Cluster

SYINNG ZEAT

1 AZHAT
dm* AZHAT
- ZHAT

Figure 4.43 - Graph analysis, the suspect identified as “Haskin Zeid” clustered

Figure 4.44 further explores the entity linkage details in the graph analysis, where the
red dot represents the matched entity. In contrast, the orange dot represents the
clusters. Here, two entities linked to two clusters are matched with the target search
entity and represented with a red dot in Figure 4.44. However, one entity is an entirely
different name while getting a high address match score. It could be a close match or a
related match retrieved during the search process. Therefore, the suspect has been
identified out of other entities, represented with a red dot associated with different

addresses matching the exact search name.
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Entities in Clusters and target Entity identified with linked addresses

ROCKHALL ROAD CARSINGTON DRAMPTON -
@ Matched Entity

Cluster
KEYNE UTT
suMO,SSTel UARAY DA
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KAIN ZEZIA AEMTE 7veD
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CLEVEDON ROAD CARSINGTCHS GTON UPPEREND GREEN
0 A

ELECTRIC PARADE CARSHGTOL DR
BURNT ASH HL B4 O DRAETC
KELMSCO” £ iy SRS HEATH  ECKK WAZFAT

Figure 4.44 - Graph analysis, the suspect identified as “Haskin Zeid” highlighted Red and other Red in
Clusters associated with different addresses.

However, this matched suspect entity in Figure 4.44 requires further clarity on the
address to be easily readable, as shown in Figure 4.45. The red dot represents the
suspect entity, and the black arrows show the particular entity's link with different
addresses. In contrast, the grey dot represents each address. Therefore, “Haskin Zied”
is the matched suspect entity. The other suspect entity, “Keynes Utt”, is either a linked

suspect or a false negative matched entity.
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Identified Entity linked to addresses

@ Entity
SORREL GARDENS/OGESIEGTON DROMBTDARSINGTON DRAMPTON Address
MOULE RISE CARSINGTON DRAMPTON KELMSEOTT CRESCENT GARSINGTON DRAMPTON
OR
BASING STREET CARSIGTON DRAMPTON 3 MR ramprc
ORTH GROVE CAREINGTON DRAMPTON
CLEVEDON ROAD GARSINGTON DRAMPT

RPE CRESCENT SINGTON DRAMPTON REMNANT STREET CARSINGTQN UPPEREND GREEN

SCOTIA DRIVE CARSINGTON DRAMI

KNOWLE GROVE cARSMIGTON DRAMPTON RoCKHALEROMBSHHSINGTON DRAMPTON

QUORN ROAD CARSINGTON IVERSONS HEATH
FORD LANE CARSINGTON DRAMPTON

Figure 4.45 - Search 3: Graph analysis, the suspect identified as “Haskin Zied” highlighted Red and
associated with different addresses.

4.6. Policing Dataset Results Performance Analysis

After the search results from the database on different scenarios above, it is apparent
that both similarity techniques mentioned are performing up to some extent to find a

match for the given name but have issues matching the string.

To further discuss, we can see the matching scores in Table 4.2 to compare the matching
results. In Table 4.2. the target string is converted into the 6-digit Soundex code to

compare and get the scores and the aggregate score.
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4. RESULTS — DATA ANALYSIS OF POLICING DATASET & COMPUTER SIMULATION

Table 4.2 - Results Performance Comparison of Fuzzy Matching Scores

Target
String 6- 6-digit Jaro-
Search Tar-get digit Input String Soundex SR Winkler Aggregate
String Score Score
Soundex Code Score
Code
Back Junete 125300 0.91 0.84 0.88
Bech
1 122530 Bach Junette 122530 1.00 0.91 0.96
Jaunette
Beck Jaunete 125300 0.91 0.94 0.93
Abidah Feros 131620 1.00 0.94 0.97
Abbidah . .
2 Faros 131620 Abbidha Firoz 131620 1.00 0.92 0.96
Abiddah 131620 1.00 0.94 0.97
Farose
Huskin Zaid 252300 1.00 0.89 0.95
3 H;;kc;” 252300 | HaskinZayed | 252300 1.00 0.95 0.97
Hasken Zeid 252300 1.00 0.92 0.96

The graph below shows the aggregate score against modified Soundex and Jaro-Winkler

scores.

Comparison of Fuzzy Matching Scores
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Figure 4.46 - Results comparison of Names Fuzzy Matching Scores
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From Figure 4.46, it can be seen that the selected similarity metrics are suitable for
matching names. However, an individual technique alone is unsuitable for generating
accurate required results to match the searched string. Therefore, combining Soundex
and Jaro_Winkler techniques is better for generating the aggregate score for name
matching. This aggregate score method fits the purpose of doing fuzzy matching of
strings. For long strings, edit distance is suitable for the approximate matching of strings.
It is about scoring the strings to help cluster similar records that have been retrieved.
The input strings Soundex-JW scores are the same or similar results scores matching

names from the database.

In contrast, the Jaro-Winkler matching scores are different for input strings. However,
the aggregate score provides the fuzzy score. It shows better results, showing that the
names are not exact matches but are only fuzzy. The results show that the matching
performance of the Jaro_Winkler is good. However, the aggregate score gives an even

better fuzzy score to match strings in fuzzy matching.

The records are grouped using the clustering technique based on the aggregate score of
strings. However, evaluating if the clusters are good or bad created is necessary. It can

be achieved by applying the Silhouette Coefficient or score for clusters.

4.6.1. Silhouette Coefficient

The Silhouette Coefficient or Silhouette score is a metric used to calculate the goodness

of a clustering technique (Rousseeuw, 1987). The value ranges from -1 to 1.
Where:

e 1:This means clusters are well apart from each other and distinguished.
e 0: This means clusters are indifferent, or we can say that the distance
between clusters is not significant.

e -1: This means clusters are assigned in the wrong way.

The formula to calculate the Silhouette score is:
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Silhouette Score=(b—-a)/max(a,b)

Here:

e a = An average intra-cluster distance, i.e., the average distance between
each point within a cluster.
e b = An average inter-cluster distance, i.e., the average distance between

all clusters.

The clustering results generated by the three search results in evaluating the de-
identified dataset can be measured using the Silhouette Coefficient method. Below are
the clustering figures from the three search results. The Silhouette Coefficient score is

calculated for each clustering search result.

Search 1: Figure 4.47 shows the clustering of entities where 4 clusters are
generated by putting entities into clusters. For easy understanding, these
clusters are represented using different colours in Figure 4.47. The Silhouette
Coefficient score is applied below to find out the quality or performance of the

clustering of entities.

Entities grouped in clusters
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Figure 4.47 - Search 1: Highlighted Clustered records

Silhouette Score(n =): 4," " ,0.556

148



It calculates that there are 4 clusters, and the score is 0.556. The round-off score
is 0.56 for this clustering of records, which has a positive value close to 1.
Therefore, it shows that the clusters are well apart and that the clustering quality

of the records is good.

Search 2: Figure 4.48 shows the clustering of entities generated in search 2
during the results evaluation of the dataset. There are 4 clusters generated, and
each cluster is represented with a different colour for easy understanding in
Figure 4.48. To measure the cluster quality, the Silhouette Score is applied to

calculate the clustering score.

Entities grouped in clusters
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Figure 4.48 - Search 2: Highlighted Clustered records

Silhouette Score(n =): 4," " ,0.647

The Silhouette Score calculates 4 clusters with a score of 0.647. After round-off,
the score is 0.65 for this clustering of the records. The score is close to 1, and
again, it shows that the clusters are dense and well apart for search 2. Therefore,

it means the clusters are of good quality.

Search 3: Figure 4.49 shows clustered entities generated during search 3. The

entities are grouped into 4 clusters and are represented with different colours
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for easy understanding, as shown in Figure 4.49. The Silhouette coefficient is

applied to measure the performance of the clusters.

Entities grouped in clusters
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Figure 4.49 - Search 3: Highlighted Clustered records

Silhouette Score(n =): 4," ",0.571
The Silhouette Score is calculated as 0.57 with a total of 4 clusters. The score is
close to 1, so the clusters are well apart and dense. Therefore, the clustering

quality of search 3 records is good.

4.7. Summary

The improved Soundex algorithm was applied to the names collected from three
languages: English, Arabic, and Russian. It was also applied to mixed language names of
different name variations. The computer-simulated results show that each name-
matching score matches the names based on the aggregate score. The results of name
scores are compared and analysed based on Soundex, Jaro-Winkler and aggregate
scores. These matching results provided good fuzzy matching, where using only a single
matching technique will not match names correctly. The proposed model was then
applied to the de-identified policing data. The results were generated for three different
target individual's names. Each search was named searchl, search2, and search3, and
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each search identified the target identity. These identity-matching results were
presented in tabular and visualised in graph format for easy identification. The results
showed that the model efficiently identified the target individual. The Silhouette
Coefficient was applied to the clustering of records for each of the three searches for
clustering performance measures. The overall identification and clustering performance

are promising to match any identity.
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ICHAPTERS

5. CONCLUSION

This chapter concludes by summarising the findings related to the critical research
guestions and discussing the value and contribution to knowledge. Research limitations

will be highlighted, and avenues for future work will be explored.

This research successfully addressed fundamental questions: How can the desired
identity be extracted from a raw dataset? How can records be matched to derive
meaningful information? Furthermore, how can relationships between different
identities be intelligently established using pattern recognition? The research evaluated
various string-matching techniques and determined that a combination of Soundex,

Jaro-Winkler, and edit distance matching techniques was most effective.

Notably, modifications were made to the original Soundex technique to generate a six-
digit numeric code, which does not retain the first character of the name but instead
produces a purely numerical code. This code, combined with the Jaro-Winkler score,
generates an aggregate score. This approach enables the extraction of matching names
based on the aggregate score, facilitating the retrieval of related records from the
dataset. It aids in clustering these retrieved records and performing graph analysis to

identify potential target identities and associated links.

The research aims to identify and evaluate techniques for improved identity resolution.
Consequently, using an unsupervised machine learning approach, different string
similarity techniques were analysed to retrieve matching entity records and identify
related links. These techniques were cascaded within the framework to produce an
aggregate name score. Based on this score, names could be categorised as “match”,
"possible match", and "close or related match” in cases where string matching was
applied. However, the framework utilised an iterative search to combine three spelling

variations of given names, enabling the retrieval of data related to each fuzzy-matched
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name from the dataset. After obtaining the three datasets, they were merged into a final

dataset, from which duplicate records were removed.

Similar matching name records from the final dataset were grouped to refine the results
further. The Means-Shift clustering technique was employed to cluster matching records
based on the name "aggregate score" and "age" attributes. Notably, the Mean-Shift
algorithm used within this framework automatically determines the number of clusters,
providing a more dynamic approach by allowing the number of clusters to be adjusted
based on the dataset size. Once clustering was complete, the records were labelled with
a cluster number. Using NetworkX, graph analysis was conducted, linking all entities
based on selected attributes in a layered approach across multiple graphs. This method
effectively identified the suspect entity and displayed links to different addresses
associated with the same entity. The results indicate that this fuzzy matching approach
is effective in retrieving suspect entities and related records, aiding in identity matching.
These links are presented graphically, with detailed records stored in a table format for
ease of review. The entire matching process is automated, requiring minimal human
interaction and providing fuzzy attribute inputs to the framework. It enables results to

be generated even with limited information about a suspect entity.
According to the comprehensive literature review:

S No existing unsupervised machine learning framework automatically adjusts
and fine-tunes results based on input, utilising various similarity metrics in a
cascaded manner for record retrieval.

S Existing approaches do not enable record matching and retrieval without
training data samples or record de-duplication.

S Current methods do not employ different similarity metrics at various stages to
produce optimal record linkage and relationship analysis results.

S The literature does not address the use of clustering techniques to group
records without a fixed number of clusters, thus facilitating record segmentation

for identity resolution.

Therefore, this framework for identity resolution incorporates intelligence in matching

raw information by employing a suitable algorithm with pattern recognition capabilities
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that mimic the human brain’s ability for fuzzy matching. In June 2021, this research was
presented and published in a Springer conference paper and is also available in Appendix
A. The research has practical implications, particularly for law enforcement agencies, as
this framework can expedite investigations with minimal available information about a

suspect.

<& Contributions to Knowledge Summary:

This research makes several significant contributions to identity resolution and data
science. Firstly, the hybrid approach combining unsupervised machine learning
techniques with traditional string-matching algorithms represents a novel advancement
in the field. Developing and implementing a modified Soundex algorithm to produce a
6-digit numeric code, coupled with Jaro-Winkler and edit distance and aggregate score

methods, introduced a more refined and efficient approach to record matching.

Moreover, the research provides valuable insights into applying clustering techniques in
handling large datasets within a hybrid framework. The use of the Mean-Shift algorithm,
which dynamically adjusts the number of clusters based on the dataset size, showcases
the ability of this framework to process and analyse big data more effectively. This
contribution is especially relevant to big data applications, where the ability to cluster
large volumes of records dynamically can lead to more accurate and efficient data
analysis. The framework's capacity to handle complex datasets with minimal human
intervention further underscores its potential for real-world applications, particularly in

fields requiring high data accuracy and reliability.

In conclusion, this research not only advances the theoretical understanding of identity
resolution techniques but also offers practical solutions for addressing the challenges
associated with big data and unsupervised learning. By leveraging a hybrid model and
innovative clustering method, the framework developed in this study provides a robust
tool for identity resolution in various domains, including law enforcement and beyond.
Additionally, the implications of this research extend to consumer behaviour analysis in
business contexts. Companies increasingly require a 360-degree view of consumers,
encompassing their activities across multiple devices, apps, and pre-account

interactions. The framework's ability to intelligently resolve identities by linking
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disparate data points offers businesses a powerful means to achieve this comprehensive
view. This, in turn, opens up opportunities for more sophisticated personalisation
strategies, where businesses can tailor their offerings based on a holistic understanding
of consumer behaviour. By accurately matching records and identifying links between
different consumer profiles, businesses can deliver highly targeted and relevant
experiences, enhancing customer engagement and loyalty. Thus, the identity resolution
framework developed in this study holds significant potential for applications in
consumer analytics, enabling businesses to navigate the complexities of modern digital

behaviour with greater precision and insight.

However, this research has some limitations. The analysis was conducted using a limited
de-identified policing dataset, comprising only a single database table, with other
relational database tables absent. This limitation hinders efficient record linkage and
determination of true identities. Moreover, the research did not focus on addressing
missing information within records. As a result, records with incomplete information
were separated into different datasets, and the framework was applied only to records
with complete information. This approach restricts the scope for utilising other
attributes within the dataset. Future studies could further explore methods to fully use

all available information.

5.1. Future work

This research has demonstrated that the proposed framework can produce matched
records that can be utilised to identify individuals. While the framework shows
significant potential benefits for law enforcement agencies in identity resolution, its
applications extend beyond this domain. For instance, it could be employed within the
financial sector to detect fraud by identifying individuals attempting to manipulate

institutions through different identities.

Nonetheless, there are several opportunities for future research to enhance and extend

the current framework. The following areas are proposed for further investigation:
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I. Introduction of a Weighting System for Attribute Matching:

One of the key improvements that could be made is incorporating a weighting system
into the current matching process. While the existing framework generates an aggregate
score based on the similarity of strings, adding a weighting mechanism would allow for
more nuanced differentiation between matches. For each attribute, a corresponding
weighting score could be assigned alongside the aggregate score, enabling the
framework to prioritise higher-confidence matches. For example, when two strings
receive similar aggregate scores, the weighting score would enable the framework to
distinguish between them based on predefined criteria, such as the significance of

particular attributes.

Il. Development of Criteria-Based Weighting Scores:

Further to introducing a weighting system, future studies could explore the
development of specific criteria for determining weighting scores. For instance, the
number of common characters between two strings could be a determinant, with higher
scores assigned to matches with greater character similarity. Additionally, the
framework could be refined to ensure that strings are matched within the same
language, as cross-linguistic matches often result in inaccuracies. For example, English-
language strings should not be matched with those in other languages. In cases where
such mismatches occur, the weighting system would promptly flag them. This
refinement addresses a common issue in string-matching techniques, where linguistic

differences are often overlooked, leading to erroneous matches.

lll. Addressing Missing Data Through Machine Learning:

An essential area for future research is handling incomplete records within the dataset.
The current framework relies on complete records, but many datasets contain records
with missing information in one or more attributes. Future studies should investigate
the use of data harvesting and data regeneration techniques, particularly those
employing machine learning algorithms, to fill these gaps. By comparing incomplete
records within the dataset and cross-referencing them with external data sources, such

as social media profiles, it would be possible to enrich the dataset with additional
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information. This approach would ensure that all records are fully populated, thereby
improving the accuracy and efficacy of the matching algorithm. Furthermore, this would
minimise the risk of overlooking critical data, enhancing the framework’s overall

capacity for identity resolution.

IV. Enhancement of the Knowledge Base with a Relational Database

Structure:

Future work should also refine how matched records are stored within the framework’s
knowledge base. Rather than merely categorising records as "matched," "possible
match," or "close or related match," it would be advantageous to implement a relational
database structure. It would allow for storing additional harvested and regenerated
information for each matched record, facilitating a more organised and sophisticated
retrieval system. By incorporating a relational database, the knowledge base could
dynamically evolve over time, updating records with new information obtained through
ongoing data harvesting processes. It would lead to a more comprehensive and flexible
knowledge base, enhancing the framework’s reliability and accuracy in future identity

resolutions.

V. Exploring Hybrid Models and Big Data Clustering for Enhanced Identity

Resolution:

Moreover, future research should investigate applying hybrid models and advanced
clustering techniques for big data. While this research has demonstrated the
effectiveness of clustering methods such as the Mean-Shift technique in grouping similar
records, further studies could explore their performance on larger datasets and in more
complex scenarios. By integrating clustering methods within a hybrid model combining
unsupervised learning with other machine learning approaches, future research could
enhance the scalability and robustness of the identity resolution framework.
Additionally, optimising these clustering techniques for real-time processing of large-
scale data would be particularly valuable in domains where rapid identity resolution is
critical, such as the financial services industry and online platforms. It could enable the

development of more sophisticated, accurate, and scalable identity resolution systems.
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Abstract. Identity resolution is crucial for law enforcement agencies globally
and a difficult task to match the real-world identity in big data due to data incon-
sistency e.g. typographical errors, naming variation, and abbreviations. The fuzzy
approach to identity resolution has been introduced that uses Soundex and Jaro-
Winkler distance algorithms in a cascaded manner to calculate an aggregate score
for the full name. While the Edit-distance algorithm is used to score the address and
ethnicity description attributes. The Soundex code has been modified to numbers
only with increased code length to 6-digits for this fuzzy approach. This allowed
the matching algorithm to overcome some of the Soundex code limitations of
name matching. The approach accommodates three different variations of name
for an iterative search process that retrieves matched records based on inputs. In
the experiment, searching for a suspect in two different cases, the initial search
retrieved 173 and 52 records for each target suspect. These records were grouped
using the Mean-Shift clustering technique based on the similarity score of three
attributes. For further analysis, the segmentation process of records matched 16
and 22 records for each case respectively, and graph analysis matched the target
suspect identity out of other matched identities with links association to different
addresses. The overall matching performance of this fuzzy approach is encour-
aging, and it can benefit law enforcement agencies to speed up the investigation
process and most importantly can help to identify the suspect with even minimal
information available.

Keywords: Fuzzy string matching - Identity resolution - Graph analysis -
Soundex - Jaro-Winkler

1 Introduction

Identity Resolution is not just matching information but to detect, identify and consider
pastinformation or associations for the target entity. Fraud and other crimes are a globally
major ongoing threat for law enforcement agencies and other institutions to identify the
real-world identity from a pool of false or similar identities. Identity is the property and
characteristics of an entity that helps to differentiate entities from each other. Each entity
[1] has attributes and can be identified by ID number, name, and date of birth as key
attributes but there are many reasons which make it difficult to find the correct identity.
But matching two records using limited attributes is not sufficient for the true identity
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of any entity. For example, matching records by name will not resolve this issue as there
can be many similar names in the database. One of the main issues is a huge amount of
unstructured, incomplete, and incorrect data available to extract the required information
for a particular individual [2].

The techniques used for record matching and record linkage normally classify records
into three categories i.e. “Match”, “No Match” and “Possible Match”. But match or
possible match may not be accurate if the information changes or not updated with time
because this can lead to incorrectly flagged results as a match or possible match [3]. The
record matching in [4] refers to entity resolution as information extraction using names
and refers to identity resolution as a technique to determine the extracted information
belongs to whom and how it is linked to others in the real world. This statement leads
to find uniqueness and commonality between different datasets from different sources
to answer who 1s who and who knows whom [5].

The data quality issues in the database make it difficult to identify one real-world
entity due to various similar multiple entries in the database. Removing or resolving
duplicate and similar entries can be achieved by merging and de-duplicating records in
the database representing the same entity. This is referred to as record matching in [6, 7].
But missing or incomplete information in the database leads to a huge amount of manual
work to guess the matching record [8]. The data grows with the passage of time and
traditional record matching techniques cannot accurately find a relationship between the
records.

2 Literature Review

Fuzzy string matching is a technique to match strings based on approximate pattern
similarity for entity resolution. A survey about duplicate record detection [9] explores
the string similarity techniques developed for fuzzy string matching. The most common
technique is Levenshtein distance also known as Edit-distance to calculate the distance
between two strings by applying three edit operations on the strings. The three edit
operations are inserting, deleting, or substituting the characters to match any given
strings. If the distance of strings is less than the set threshold value after applying edit
operations, then the strings are considered a close match with slight variation. But this
technique fails in the situation where strings are written in short form or abbreviation,
instead of a complete word as it results in the distance incorrectly. Jaro distance is another
fuzzy string matching technique, primarily to compare the short strings e.g. first and last
names. This technique finds the common characters between strings while tracking the
order of the characters [10]. The algorithm was enhanced by Winkler in 1990 by giving
name prefix higher weighting. This variation was named as Jaro-Winkler distance. Jaro
and Jaro-Winkler distance [9] algorithms cannot perform well if there is a positional
difference between two strings and is more than allowed change. For example, strings
“Alice bruce Bob™ and “Bob bruce Alice” have allowed a change of 6 positions, but
the character ‘B’ in the string “Bob” has a difference of 12 positions. In this case, only
string “Bruce” will match between two strings, and the algorithms will not find the better
match.
For records matching, the record linking data association method [11] was introduce

to match the criminal records referring to the same individual record. This method
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compares two records and calculates the total similarity measure as a weighted sum
of the similarity measures of all corresponding featured values. The approach requires
more computing power to calculate the total similarity as the dataset grows with time.
Another similar work proposed in [1] to compare four personal attributes such as name,
date of birth, social security number, and address for detecting identities by combining the
overall similarity score. But the approach is limited and cannot produce accurate results if
one or more attributes are missing from the dataset. It does not filter the referring records
efficiently and can also ignore needed records on fewer similarity measurements. Another
method discussed in [12] to remove duplicates from the dataset by applying dimensional
hierarchy over the link relations such as city, state, and country. This approach matches
the identity record only if both identities belong to the same area otherwise the record
does not match against other similar entries in the dataset for different areas. The foreign
keys in [13] were utilized in a relational database using a probabilistic relational model
(PRM) for citation matching. The approach is rule-based and relies on the quality of
data in the dataset and if the dataset has incomplete or missing information then the true
match cannot be generated accurately.

To eliminate the duplicate records, [14] proposed another rule-based model called
conditional random field model (CRF) to measure the associations among other differ-
ent entities. However, [15] suggested that this approach fails and cannot find the links
between similar entities. One of the interesting graph-based methods was proposed by
[16] in which, between each pair of the reference entity, the relational graph created,
matching is based on similarity with the same attribute that matches with similarity
measure. Furthermore, the approach was enhanced [17] by adding a collective entity
resolution algorithm to match social information based on already matched records to
reuse it for matching more records instead of only comparing two records. To match
entities from social media websites e.g. Facebook and Twitter, the model in [18] com-
bines user profiles using different attributes into a graph by detecting the social linkages
between two user profiles using a CRF-based approach. The recent work in [ 19] proposed
a rule-based approach to score attributes and analyze links between identities using a
graph-based method. The majority of the previous researches are rules-based techniques
that can be very time-consuming to create a set of rules for big data.

Therefore, in this research, a fuzzy approach to identity resolution has been intro-
duced that uses an iterative search with cascaded string similarity algorithms (Soundex
code and Jaro-Winkler distance) to generate an aggregate score for the name variation.
The fuzzy approach utilizes minimal attributes to retrieve the matching records from
the dataset. The matched records then go through clustering processes to group similar
records into clusters. For further analysis, the matching of these records is done by seg-
mentation and graph analysis. This research carries forward previous work of [19] by
using string similarity techniques with clustering, segmentation, and graph analysis.

3 Problem Definition for Identity Resolution

In the entity and identity resolution process, record matching and de-duplication is a
difficult task to identify duplicates due to different attribute values. The techniques that
require a human expert for manual tuning are good but unfeasible for large databdd&.
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Such databases can be referred to as big data. It is difficult to use different techniques to
train data samples for generating desired results from big data. One of the other issues
is the quality of data and there are not enough techniques available or capable enough
to utilize a combination of string similarity metrics to complete the matching process.
This leads to unsatisfactory results because every single string similarity metric (fuzzy
matching technique) is domain-specific that solves a certain problem. Missing one or
more similarity metrics does not help to achieve better results. The previous approaches
do not consider the following to achieve better results based on fuzzy matching:

e Use different similarity metrics techniques to calculate a matching score to extract
records.

e Use similarity metric on data at different stages to output better entity matching results
for record linkage and analysis.

e Use the clustering technique with help of segmentation and graph analysis for identity
resolution.

4 The Proposed Fuzzy Approach to Identity Resolution

The fuzzy approach has been applied to identity resolution shown in Fig. 1 by using cas-
caded string similarity techniques toretrieve an approximate entity match. The fuzzy app-
roach utilizes Soudex, Jaro-Winkler algorithms to calculate the aggerate score for names
and Edit-distance to score the other attributes e.g. ethnicity description and address.
The aim is to match names simply by using similarity metrics and analyze retrieved
records for similarities using clustering, segmentation, and graph analysis. This fuzzy
approach is implemented using Python 3.7 using PyCharm (community version) IDE
and the anonymized policing dataset is stored in MS SQL Server Express 2017. Pandas
(Python data analysis library) is used to clean data and store datasets retrieved during
different stages. The NetworkX and matplotlib libraries are used for graph analysis and
visualization.

4.1 Policing Dataset

An anonymized criminal dataset from police has been used in this research. The dataset
consists of 1,146,212 records containing duplicates, typographical errors, incomplete
or missing information. Some records are partial duplicates of other records with only
one or more different attribute values. Each reported crime has a unique crime reference
number and every individual in the dataset has a unique nominal reference number. But
there are individuals with multiple nominal reference numbers. For example, there are
6,032 individuals with 2 or more similar nominal reference numbers assigned. The other
attributes such as forename, surname, date of birth, gender, address, and ethnicity are
representing an individual. In the dataset, there are 309,518 duplicate records based on
similar surname, forename, and date of birth.
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Fig. 1. The block diagram of a fuzzy approach to identity resolution

4.2 Data Pre-processing

The data pre-processing is used to eliminate missing values from the dataset for each
record attribute. In the dataset, street_name, town_name, and district_name and postcode
are four different fields representing the address. But in this research, the three fields
are combined as one address field while keeping the postcode field separate. Similarly,
the surname and forename are combined as the name field. There are records defined
as ‘Unknown’ gender rather than ‘M’ for male’ and ‘F’ for female, so in this fuzzy
approach, these records are considered as missing values. Overall, there is a total of
430,293 missing values that are removed from the dataset. Therefore, the dataset after
data cleaning still has 715,919 records. Considering the upper case and lower case
attribute values in the dataset, all attribute values are converted to lower case. The fuzzy
approach utilizes name, gender, ethnicity description, and address attribute to start the
initial search of records by generating the aggregate name score.

4.3 String Matching and Aggregated Score

This fuzzy approach uses Soundex, Jaro-Winkler similarity techniques to calculate the
aggregate score for name matching. The Soundex code algorithm has been modified by
removing the first character of a name as a constant letter from the code and changing the
length to 6-digits. This generates a numerical Soundex code of 6-digits to help eliminate
the Soundex first character mismatch issue. By increasing the length of the code helps to
reduce many false-positive retrievals as compared to the 4-digits code. Later, the Jaro-
Winkler technique is applied to this Soundex code to get a Soundex fuzzy score (Sscore)
and also calculates the Jaro-Winkler score (JWscore). All these scores are then used to
calculate the aggregate score (AggScore). The aggregate score is normalized betv&llgcszn
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the fuzzy score of 0 and 1. The aggregate score is calculated with the following equation.

Aggscore = (Sscore + IWscore) * 0.5 (1)
4.4 Searching and Matching Criteria

It is very important to establish search and match criteria for retrieving entities by
comparing the calculated score of selected attributes. The fuzzy approach focuses on
eliminating most no-match entities during the initial search, based on aggregate score
and Soundex code match. To find the results as accurately as possible is important
because each record contains different attributes that help to differentiate one entity
from other entities. But if there are issues in the value of the attributes e.g. incomplete
information or typographical error then matching of records becomes difficult. This
fuzzy approach proposes an iterative process by taking three different name variations
as an input for the target entity. The approach also uses gender, ethnicity description,
and address attributes to retrieve records. These selected attributes help to reduce the
number of records retrieved by reducing processing time.

The matching of gender is done by an exact match while matching of ethnicity
description is done by a partial matching of the string. For matching addresses, the edit
distance technique is used to score each address. Each iteration process is a combina-
tion of these selected attributes to generate search results as three data subsets. Once
the iteration process is completed, all three data subsets are merged and compared for
duplicate records to form one resultant dataset. At this stage, all duplicate records are
removed from this retrieved dataset. At this stage, records are retrieved even with the
low aggregate score (e.g. score of 0.50 or 0.60) but have matching Soundex code. This
to make sure any possible or close-matched records are not ignored or dropped during
the initial search.

4.5 Clustering, Segmentation, and Graph Analysis

In this fuzzy approach, the labeling of data from a human expert is not required to group
similar records. For this purpose, the Mean-Shift clustering algorithm has been used
to group similar records based on age, name aggregate score, and address score. Each
record is automatically labeled with a cluster number. These clustered records are then
matched and compared based on the highest name score and address score to create
segments of records. This is to make sure that similar records are linked together even
in different clusters. To do this, records with maximum address scores are extracted
from clustered datasets to form a segment of records. In this segmentation process,
the records are matched for similar addresses from the initial retrieved dataset and the
clustered dataset. The similar segmented records are merged into one dataset and any
other relevant records are kept separate.

For further graph analysis, these segmented records are compared with the clustered
dataset to match the final identity out of all other identities. The graph creation is layer-
based by using different attributes from the dataset. The first graph is created using the
entity name and the clusters label for the entity. This visually list all entities linked to
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each cluster. The second graph is created using the entity name and address from the
segmented dataset. This graph data is then compared with the first graph to find the
matched identity out of other identities and show the matched identity with associated
addresses.

5 Experimental Evaluation

5.1 Target Entity

For this fuzzy approach to identity resolution, it is assumed the police investigating
officer is working on two different criminal cases and during an investigation, he obtained
some basic information about the suspects. The information obtained per case is listed in
Table 1 and investigating officer use this information to search a suspect for each case
using this fuzzy approach. The investigating officer does not know the correct name
spelling of the suspect or believes the dataset has typographical errors, so he inputs
the full name with three different variations. The gender of the suspect is known while
ethnicity description and address details are partially known.

Table 1. The information available to investigating office about the suspect for each case

First case Second case
Target search (suspect) BECH Jaunette FAROS Abbidah
Available suspect information for input
Name variation 1 back janette abidah firos
Name variation 2 bach janet abiddha feroz
Name variation 3 beck janete abidha firoz
Gender f f
Ethnicity (description) white white
Address town and close brandearth hey

5.2 Searching Results

First Case. Based on the inputs for the first case in Table 1, the initial search and match-
ing criteria produced three datasets. The name first variation retrieved 95 records; the
second variation retrieved 61 records and the third variation retrieved 95 records. It is
worth noting, the first and third name variation generated similar Soundex code (125300)
and the aggregate score (0.70) that retrieved the same number of records. But the second
variation generated a different Soundex code (122530) and retrieved a different number
of records compared to the other name variations. A resultant dataset of 173 records is
generated after merging all three datasets and removing duplicate records.
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Second Case. Based on the inputs for the second case in Table 1, the initial search and
matching criteria produced three datasets. All three name variations retrieved 41 records
and interestingly the resultant dataset of 52 records is generated after merging all three
datasets and removing duplicate records. All these records retrieved have some similarity
or are completely different from one another, but this will be differentiated later in the
next stage.

5.3 Clustering, Segmentation and Graph Analysis Results

The dataset (produced from the searching results) is fed into the clustering algorithm.
This created clusters of records based on age, name aggregate score, and address score.
For the first case, records are grouped into 4 clusters, and records for the second case are
grouped into 5 clusters based on the similarities score of the attributes. The clustering
of records is shown in Figs. 2 and 3 for both cases respectively.

Entities grouped in clusters
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Fig. 2. First case - clustering based on age, name aggregate score, and address score similarity

The clustering of records does not identify the entity but provides a way to label
and group records based on the similarity score of attributes. Some of the records in
clusters have low scores at the y-axis (address score) but these records are still required
for the next stage to make sure not to ignore any matches, related or close matches. After
clustering, the segmentation process picked the address with the highest score for the
first case and second case as 0.83 and 1.0 respectively.

For the first case, 7 records are retrieved with the highest address score and name
aggregate score while 9 other records are retrieved with a similar name, low address score,
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Fig. 3. Second case - clustering based on age, name aggregate score, and address score similarity

and two different dates of birth. So, the final dataset retrieved for the first case contained
16 records with a combination of the same name, two different dates of birth, and different
addresses. These records have some similarities but have unique crime reference numbers
and duplicate nominal reference numbers for the same name associated with different
addresses. For the second case, 16 records are retrieved with the highest address score
and name aggregate score while 6 other records are retrieved with a similar name, low
address score, and three different dates of birth. So, the final dataset retrieved for the
second case contained 22 records with a combination of the same name, three different
dates of birth, and different addresses. These records are with some similarities and have
a unique crime reference number, duplicate nominal reference numbers associated with
different addresses.

For graph analysis, the clustered dataset is used to create the graph with cluster
number as main data points associating several different entities linked to each cluster.
Another graph is created from a segmented dataset based on the name and address. Both
graphs are merged and compared as shown in Fig. 4 for the first case and Fig. 5 for the
second case. The suspect is identified out of other entities and is highlighted with Red
color in the graph that is associated with different addresses.

5.4 Results Summary

The results discussed show that the fuzzy approach to identity resolution successfully
identifies target identity (suspect) out of false identities from a huge dataset. During the
evaluation, the results show the reduced number of records retrievals during the initial
search and passing through different processes a final dataset was reduced significantly
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Entities in Clusters and target Entity identified with linked addresses
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Fig. 4. First case — graph analysis, the suspect identified as “Bech Jaunette” highlighted red and
associated to different addresses

Entities in Clusters and target Entity identified with linked addresses
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Fig. 5. Second case - graph analysis, the suspect identified as “Abbidah Faros™ highlighted red
and associated to different addresses

to make the matching process easier. This ensures law enforcement agencies can easily
identify a suspect out of false or linked identities and can speed up the investigation
process with minimal information in hand.

6 Conclusion

Identity resolution is a very important and crucial task for the law enforcement agency
to identify the real identity of a suspect. This research introduced a fuzzy approach
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to identity resolution using string similarity techniques with a combination of clus-
tering, segmentation of records, and graph analysis. This research is conducted on an
anonymized policing dataset of 1,146,212 records and after data cleaning, a dataset
of 715,919 complete records was obtained. The other main feature of this approach is
minimal information available for selected attributes e.g. full name, gender, ethnicity
description, and part of the address. The similarity algorithms are used in a cascaded
manner to calculate the full name aggregate score. The iterative search retrieved records
based on the name variation and matching of selected attributes. These records are
merged into one dataset and duplicates are removed making the dataset for clustering
of records using the Mean-Shift algorithm. Based on the experiment, the search for two
suspects created 4 and 5 clusters for records respectively. Later, the segmentation pro-
cess picked the records with the highest address score to search for similar addresses
from the clustered dataset and initial search generated dataset. This process ensured to
pick any relevant records that may have missed during the initial search for the suspect’s
identity. The graph analysis linked all identities on basis of selected attributes and after
comparing graphs the suspect identity was identified associated with different addresses.
Considering overall results, the fuzzy approach to identity resolution can be very handy
for law enforcement agencies to find real identity using minimal information available
about any suspect.

In future research, this fuzzy approach can be improved by introducing a weighting
system for attribute scores and complete the incomplete records with available infor-
mation in the dataset or complete records with predicted information for better identity
resolution. It will be worth using machine learning techniques to generate a knowledge
base that grows with each identity search and simplifies the future search process.
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Appendix (B)

I. Python Programming Language

Python is a programming language that is very simple to use and offers excellent features
compared to other high-level programming languages. The Python language syntax is
straightforward, allowing a programmer to focus on the task rather than the
programming syntax complication and making the program development easy. Most
importantly, the Python program is much shorter to code than other computer
programming languages for many reasons, as a single statement is required to express
complex operations. No starting and ending brackets are required for the statements,
but they only need indentation to group them. In contrast, the variable declaration is

not required (Docs.python.org, 2017).

Il. PyCharm IDE

There are many programming editors that a programmer can use to code in Python.
However, PyCharm is simple to use and full of features. PyCharm IDE provides many
features for developers to use the essential tools for an easy and smooth program
development process. It was developed by JetBrains, a software development company
known for creating powerful development tools. According to (Jetbrains.com., 2017),

there are two versions available to download:

o The Community Edition is free and provides many features for Python program
development. However, it has limited features available to the programmer
because this edition is primarily for academic staff and students.

o The Professional Edition is not free and requires a licence to be purchased. It is
for a professional programmer and provides a full-featured IDE with robust
program development, especially web development, by supporting other

frameworks and toolkits on top of those supported in the Community edition.
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PyCharm provides a wide range of features to enhance productivity, code quality, and

collaboration for Python programmers, making it one of the most popular choices

among developers. As an application, it has hardware system requirements for both

editions that require at least the following:

A minimum of 1 GB RAM, but 2 GB RAM is recommended,

1024x768 minimum screen resolution,

Microsoft Windows 10/8/7 (incl.64-bit),

At least Python 2.4 or higher installed

The JRE1.8 is required, but it is integrated into the package, so there is no need

to install a separate version of Java (Jetbrains.com., 2017)

< Key Features of PyCharm

Code Editor - PyCharm offers a feature-rich code editor with syntax highlighting,
code completion, formatting, and navigation tools. It supports intelligent code

suggestions and auto-completion, which saves time and reduces coding errors.

Code Inspection and Refactoring - PyCharm performs code inspections and
provides suggestions for improving code quality and adhering to Python best
practices. It offers various automated refactoring options to improve code
maintainability, such as renaming variables, extracting methods, and optimizing

imports.

Debugger - PyCharm includes a powerful debugger that allows developers to
step through code, inspect variables and set breakpoints to troubleshoot and fix

issues efficiently.

Testing and Profiling - PyCharm integrates seamlessly with popular testing
frameworks like unittest, pytest, and doctest. It provides built-in tools for
running tests, viewing test results, and profiling code to identify performance

bottlenecks.
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e Version Control Integration - PyCharm supports version control systems like Git,
Mercurial, and Subversion, allowing developers to manage code repositories
directly from the IDE. It provides visual diff and merge tools to simplify code

collaboration and merging changes.

e Database Tools - PyCharm offers tools to connect and interact with databases,

allowing developers to query and visualize data within the IDE.

e Web Development Support - PyCharm includes support for web development
with frameworks like Django, Flask, and Pyramid. It provides code completion,

templates, and other features tailored for web development.

e Scientific Tools Integration - PyCharm integrates with tools and libraries like
NumPy, SciPy, and Matplotlib, making it suitable for data analysis and scientific

computing projects.

e Remote Development - PyCharm allows developers to work on remote projects

by connecting to a remote server or a virtual machine.

lll. Pandas Python Library

Pandas is an open-source Python data analysis tool that provides fast, flexible and
robust data analysis and manipulation features. It is one of Python's most popular data
manipulation and analysis libraries. Currently, it provides some of the main features of
Python language. It displays data in a tabular format like an SQL table or Excel
spreadsheet. It easily handles missing data that is typically displayed as NaN. It allows
new columns to be added or deleted from the table called “DataFrame” in Pandas, which
provides a powerful “group by” functionality (Pandas.pydata.org., 2017). It is built on
top of the NumPy library and also offers additional data structures and functionalities
tailored for handling structured data efficiently. Pandas library is widely used in various
domains, including data science, machine learning, finance, economics, and social

sciences, due to its ease of use, flexibility, and performance.
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Key Features of Pandas

There are several different features that Pandas offer (McKinney, 2013; VanderPlas,

2017):

Data Structures - Pandas provides the following two primary data structures.

o Series: A one-dimensional labelled array containing various data types,
including integers, floats, strings, and Python objects. It has an index

(labels) and a corresponding array of values, allowing for data alignment.

o DataFrame: A two-dimensional labelled data structure resembling a
table, where data is organised in rows and columns. Each column in a
“DataFrame” is a Series. DataFrame provides a flexible and powerful way

to work with tabular data.

Data Manipulation - Pandas offers a rich set of functions and methods for data
manipulation tasks, such as filtering, sorting, merging, grouping, reshaping, and
aggregating data. Data can be easily sliced, diced, and transformed to meet the

requirements of specific data analysis tasks.

Missing Data Handling - Pandas provides various methods to handle missing
data, including dropping missing values or filling them with appropriate values

using interpolation or imputation techniques.

Data Alignment - One of the strengths of Pandas is its ability to automatically
align data based on the labels of the data structures. This alignment simplifies

performing operations on different datasets with different indices.

Time Series Functionality - Pandas offers robust support for time series data,
making it suitable for working with time-based data, such as financial data, stock
prices, and sensor readings. It provides date/time indexing, resampling, time

shifting, and frequency conversion functionalities.
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e Data I/O - Pandas supports reading and writing data in various formats, such as
CSV, Excel, SQL databases, JSON, and more. It allows for seamless data

integration and sharing between different data sources.

e Integration with NumPy and Matplotlib - Pandas is built on top of NumPy,
enabling seamless integration with NumPy arrays and functions. It also works
well with Matplotlib, a popular data visualization library, making insightful plots

and charts from Pandas data easy.

Alongside Pandas, the other approximate string-matching packages are used in this

framework.

IV. FuzzyWuzzy Python Library

FuzzyWuzzy is a string-matching similarity metric Python library. It offers various fuzzy
string-matching algorithms to compare strings and calculate the similarity by using the
Levenshtein distance (edit distance) to convert one string into another by calculating the
distance. It is open-source and was developed by SeatGeek in 2011. It has been designed
to solve the labelling of different events for sports and concert tickets from the internet.
Nothing extra software is required as FuzzyWuzzy uses “difflib” from the Python
standard library (Bonzanini, 2017). FuzzyWuzzy is particularly useful when dealing with
strings with slight variations, typos, or misspellings, as it allows for approximate string

matching.

< Key Features of FuzzyWuzzy

e String Similarity Measurement - FuzzyWuzzy provides several algorithms to
calculate the similarity between two strings. The most commonly used
algorithm is the Levenshtein distance, which counts the number of single-
character edits (insertions, deletions, or substitutions) required to transform

one string into another.
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e Ratios and Partial Ratios - FuzzyWuzzy calculates similarity ratios, represented
as percentages, indicating the similarity between two strings. It offers different
ratio types, such as ratio, partial ratio, and token sort ratio, each considering

different aspects of string matching.

e Tokenisation and Sorting - FuzzyWuzzy tokenises strings into individual words
or tokens before performing comparisons. Tokenisation helps to compare
words regardless of their order in the string, and sorting tokens alphabetically

improves matching results in some cases.

e Process and Choices - FuzzyWuzzy provides the “process” and “choices”
functions, allowing easy comparison of a target string with a list of strings. The
“process” function ranks the list of choices based on similarity to the target

string (Datacamp.com).

S Usage of FuzzyWuzzy

e String Matching and Deduplication - FuzzyWuzzy is often used to identify
duplicate records in a dataset, especially when dealing with data from different
sources with inconsistent or slightly different representations of the same

entities.

e Search and Suggestion Systems - FuzzyWuzzy is helpful in search and suggestion
systems, where it can be employed to provide more accurate and robust search

results, especially when users make typos or misspellings.

V. NetworkX Python Library

NetworkX is an open-source Python library for exploring and analysing networks and
network algorithms. The core provides data structures for representing many types of
networks, directed graphs, and graphs with self-loops. The nodes in NetworkX graphs
can be any (hashable) Python, and edges can contain arbitrary data. Simply put, the

nodes represent entities, and the edges represent relationships or connections between
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the entities. This kind of flexibility makes NetworkX ideal for networks in many scientific
fields. In addition to the primary data structures, many algorithms are implemented to
calculate network properties and structure measures, such as shortest paths,
betweenness and distribution, and many more. (Schult, 1943). NetworkX is widely used
in various domains, including social network analysis, biology, physics, transportation,
and computer science, to model and analyze complex systems with interconnected

components (Hagberg, Schult and Swart, 2008).

< Key Features of NetworkX

e Graph Data Structures - NetworkX offers various graph data structures, such as
directed graphs (DiGraphs), undirected graphs (Graphs), and multi-graphs
(MultiGraphs). The library allows for creating, adding, and removing nodes and
edges and attaching attributes to nodes and edges to store additional

information (M.E.J.Newman, 2010).

e Graph Algorithms - NetworkX provides a rich set of graph algorithms, such as
shortest path finding, centrality measures (e.g., degree centrality, betweenness
centrality), clustering coefficient, and community detection (e.g., Louvain
method). These algorithms allow for in-depth analysis and insights into the

structural properties of networks.

e Graph Visualization - NetworkX integrates with Matplotlib for graph
visualization, allowing users to create insightful plots and visualizations of the
networks. It provides options to customize node and edge appearance to

represent various attributes visually (Hanneman and Riddle, 2005).

e Import and Export - NetworkX supports importing and exporting graphs in
various formats, such as GraphML, GML, JSON, and Pajek. It facilitates

interoperability with other network analysis tools.
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e Extensibility - NetworkX is designed with a modular architecture, allowing users
to extend its functionalities by defining custom graph algorithms or graph

classes (Hagberg, Schult and Swart, 2008).

< Usage of NetworkX

e Social Network Analysis (SNA) - NetworkX is commonly used in social network
analysis to study relationships between individuals in a social network, measure

influence, identify key players, and detect communities.

e Transportation and Infrastructure Networks - NetworkX is employed in
modelling transportation systems, such as road, public, and communication

networks, to analyze flow patterns and optimize routes.

e Biological and Molecular Networks - In biology, NetworkX is used to study
molecular interactions, protein-protein interaction networks, gene regulatory

networks, and metabolic pathways.

e Computer Networks - NetworkX is utilized in computer science to analyze

computer networks, communication networks, and data networks.
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