. LONDON
- METROPOLITAN
..... * UNIVERSITY

Bio-Inspired Lightweight Polymorphic
Security System for |oT Devices

Dion Miroy Mariyanayagam BEng(Hons) CEng MIET FHEA

A thesis is submitted in fulfilment of the requirements of London Metropolitan University for the
degree of Doctor of Philosophy

April 2025

Abstract

Polymorphism, defined as the ability to dynamically alter form, has long been exploited by viruses
and malware to evade traditional security mechanisms. This thesis proposes a novel application of
polymorphic principles, inspired by biological immune systems, to engineer a lightweight, adaptive,
and resilient security system for resource-constrained Internet of Things (IoT) devices. The Bio-
Inspired Lightweight Polymorphic Security System introduces a comprehensive framework that
detects, rejects, and neutralises unauthorised clients within a secure, encrypted client-server model.
Drawing parallels to innate and adaptive immunity, the system dynamically rotates encryption keys,
session credentials, and network configurations in real-time, ensuring robust defences against

intrusion and desynchronisation threats.

Furthermore, the research identifies a critical limitation in conventional 10T security architectures:
the lack of integrated, adaptive energy management. Addressing this gap, the thesis introduces the
Adaptive Amoeba Battery Curve Mapping Management System (AABCMS), a biologically inspired
subsystem that predicts battery health trajectories and dynamically modulates operational states,
ranging from active processing to ultra-low power sleep modes. The AABCMS mirrors biological
neural energy management, adjusting system behaviour based on real-time energy availability to

maximise device longevity without compromising security.

The entire system was implemented and validated on a custom ESP32-S3 development board and
benchmarked against an ATMEGA328P microcontroller, encompassing extensive cycle, timing,
power, and energy consumption analyses. Testing demonstrated the system's adaptive encryption
selection, session integrity preservation during power fluctuations, desynchronisation recovery

through honeypot redirection, and sustained security under energy-limited conditions.

The thesis concludes by situating this bio-inspired security architecture within broader technological
trends, highlighting its potential synergy with machine learning, large language models (LLMs), and
future quantum-resilient cryptographic methods. By uniting principles from immunology, embedded
systems, cryptography, and adaptive energy management, this research contributes a pioneering

interdisciplinary approach to the sustainable, secure, and autonomous evolution of loT systems.

Acknowledgements
The journey from the beginning of this thesis has truly reflected my love and curiosity for

engineering, and giving back to the engineering community has always been a heartfelt desire. This
thesis was only achievable through my supervisors. Without the trust and support of Dr Pancham
Shukla and Prof Bal Virdee, this research project would not have come to fruition. They have not
only taken me under their wing but also allowed me to become a person of my own through this
research, independent learning, and their advice. Both of my supervisors are the reason why people
want to stay in higher education and pursue a postgraduate degree, as they are not just kind and
welcoming but take time to talk to me weekly about my progress, it shows how much they love what
they do, and it has immensely grown my respect and love for them. Finally, | would like to
acknowledge the Edward Steers Memorial Fund for financially supporting the first year of my

research.

Table of Contents

LY o131 T PP PPV PPTOPRPRR 2
Yol oYY 1=To Pl o Y=Y o (PSP 3
TaDIE OF CONTENESeeiteetee ettt ettt et b e s bt e st st e e bt e b e e b e e sbeesmeesneesnneen 4
Ry o) A I o L= TSP P PO UPTOPPT 8
List of Figures and HIUSTratioNsoiccuiiii it e e st e e s s bt e e s sbeee e s ssnreeessanes 9
List Of ADDIEVIATIONS «..ceuiiiiieiieiee ettt st sttt b et e s bt e saeesae e et e e nbeenneesneeeas 12
I ol =T [V | 4 o] o Y-S 14
Chapter ONe: INtrOTUCTION.......uiiii ettt e e e s st e e e s sabe e e s ssnbeeesesnbeeeeennneens 17
0 R I T B L YT Y= o o PSP 18
B N o[To T oV o) A @ o 1T = i o o 13 PSR 18
1.3 AIMS AN ODJECEIVES......etieee ettt e et e e e et e e e e et e e e e e ba e e e eeabeee e esabeeeeeenbaeeeennsenas 21
1.4 Research Contribution For The Engineering CommuUNItyc.ccccoecieeeiiiiie e e 22
1.5 OVErVIieW Of THE ThESISveieiiiiiiie ettt ettt et e st e e sabe e sbee s sateesabeeesanes 23
2.0 Chapter TWO: LItErature REVIEWcc.uieiiiceiiieeciiee ettt esee e et e e e te e e e s abee e s snbeaeesnbeeeesnreeas 25
2.1 Topic History and DEVEIOPMENTeeiiieiiiee ettt ettt e et e e e eate e e e etae e e e ebeeeeeenaeeeeennes 25
0 R [0N =T o 1=y o] I 11 VPP 25
2.1.2 Network Security Systems through Encryption and Cryptographyccccceecieeeecieeeecnneen. 31
R B o o 1Y/ o T T o] oY 1Y PR 43
2.1.4 Battery Management in 10T SECUNITY SYSTEMSuiiiiiiiiiiiiiiiieeeeerriireeee e siireee e e e s s s sinnes 47

2.2 Focus on Research and Evaluating StUAIeSeeeieviieiieiiee ettt e e irae e e 48
3.0 Chapter Three: BaCKgIrOUNdcoooiiii ittt e e tee e s e tee e e eeabae e e eentee e e enaraeeeeenraeas 52
3.1 CUENT 10T DOAIAS ettt 52
3.2 History of Cloud TEChNOIOZIEScciiuiiieiiiiie et e e s sbae e e s enaaeeaeas 53
S T @ oY o o T={ - o] 1 1V PSRRI 56
0 12T 0 [0 a o] (o = RN 57
3.5 BIOCKCNAIN <.ttt b e bttt et e b e b be e sae e et e eatean 58
3.6 Adaptive Energy Management: Inspiration from Neural Dynamics......cccccveeeeiiveeeiiciveeessceneennn. 60
3.7 Bio-Inspired Communication Networks: Mycelium Systems........ccccccveieiiiieeiciiieee e 61
4.0 Chapter FOUN: FramE@WOIKciiiicuiiieieiieeeeeiieeeseitee e eette e e e stee e e sstteeesebtaeessnsteeessssaeeessaneessnssneessnnes 63
L oY i oo [¥ ot o o TP PSPPSR PU TP 63
4.2 Approved Clients LiSt ProCeSS (ACLP)......coccuiiieeiieee ettt e ettt e e e aree e e eebae e e e eabe e e e eearaeas 66
4.3 Client ConNection LOGIC (CCL) .uviiuriiiiiiiiieeeiiiee e ettt e et e e esivee e eeiree e e s abe e e s e arae e e snbaeeesnraaesennenas 66
4.4 LedZeI PrOCESS (LP) cuveieiieeeiee ettt ettt ettt ettt et e e rtee e e ve e e te e e e tae e e teeesabeesabeeentaeesabaeesseesntaeesaeesareenn 66
4.5 The Adaptive Amoeba CompleXity (AAC)oeeeocuiiee ettt e e e e e e e e e rae e e eeareeas 67
4.6 Adaptive Amoeba Battery Curve Mapping Management Systemcccceeeeeeieecciiiieeeeeeeeeccennns 68

4.7 The FrameWOTK [N PraCliCecooviiiiiiiiiiiieiiieeeeeeeeeeeeeeeeeeeeeeee ettt ettt ettt e e e e e e e e e e e eeeneeeees 73

5.0 Chapter Five: From Theory to Practice (Implementation)........cccceeeeieeiiciiee e 80
5.1 INEFOTUCTION ettt et s et e st e st e s be e e st e e be e e saseesabeeesabeesabeesneeesareeanne 80
5.2 Basic Client and Server 0N 10T DEVICEScoevueieriieriereiieenieeesieeesreeesieeesreesreeesareesreessneeesneeanns 80
5.3 Adaptive Encryption Methods (Adaptive Amoeba Complexity)ccccveeerivieeieiiieiecicieee e, 83
5.4 Encryption between Client and Server Communication Streams.........ccceevveeeeiiieeeeiiieeesecineeens 87
5.5 Reading and Sending Sensor Data via Encryption Communication Streams........cccoccvvveviiveenn. 90
5.6 APProved ClENT LiSt PrOCESS....ccuuiiiiiiiiie ettt eecitee e sstteeesstee e s s sree e s s sabreessssbaeeessnsaeeessnseeessnnsseeenns 92
R A @ 1T o A 0o Y Yo =T d o T i o = [T USSP 94
5.8 Share@d LEAGEI PrOCESS ..cccuviieeeeiitee ettt ettt ettt e e et e e e e tte e e e s tta e e e s satbeeesrssaeeesnsaeeesnsseeeeanssneenan 95
5.9 Implementation of POlyMOrphic SECUILYccccuviiiiiciiie e e e 96

5.9.1 Auto-detection (Immune SUrVEIIANCE)....c.cuuiiiiieiie ettt 97
5.9.2 Auto-ejection (IMmMUNE RESPONSE)cccuuieeieieiiieiiieeeciteeecteeesteesteeesereesbeeesaaeesseeesaeesnseeenns 98
5.9.3 Trigger Ledger (MemOry RESPONSE)....ccuieecieierieeiieeeiieeecteeesteesiteeessseesseeessseessessnssesssesanns 99
5.10 Adaptive Amoeba Battery Curve Mapping Management Systemccccceeevcieeeeecieeeeeenneen. 100

6.0 Chapter Six: Testing and RefiNEMENT..........uiiiiiiiiei et e e e ree e e e eanes 106

6.1 Testing the Efficiency of Encryption Methods Implementedccccovveeeiiiiiiciiiiieeee e, 108
6.1.1 Cycle Testing XOR ENCIYPLiON ...ciiicuiiii ittt et e e st e e s e e e s sbae e e ssbaeeaesanes 108
6.1.2 Cycle Testing Caesar CIPETooiiiie et e e stee e e e bae e e s e beeeeeeanes 109
6.1.3 Cycle Testing ROT13 ENCIYPLION c....vviieiciiiee ettt et e et e e s et e e e e nrae e e eanes 110
6.1.4 Cycle Testing SPECK ENCIYPLiON ..cc..vviiiieiiiee ettt e et e e et e e e vreeaeeanes 111
6.1.4 Cycle Testing SIMON ENCryption.......coiicciiii ittt e e svre e s s sare e e e 113

6.2 Detailed Analysis and Interpretation of Adaptive Amoeba Battery Curve Mapping Management

NV A =] 4 Y =T (o) o g T= Lol USRI 114

6.3 Testing the Auto Detection SYStEM (ADS)oocccuieieeiiiee e e e e ree e e e ebee e e e eareeas 117

6.4 Testing the Auto Ejection SyStem (AES)......ccceeeiiie ettt ettt et 119

6.5 Testing the Trigger System (Hormonal Response) and Shared Ledger (Blockchain) Change of

SECUNTY CreU@NTIAIS ..veeieeiiiee ettt e e e e e e e et e e e s e at e e e eetbeeeeessaeaeenbaeeeennseeeeennrenas 120

6.6 FUIl SYSTEM TOSTING.....eiiiiieiiiie ettt e e e e st e e e st e e e e e et ae e e enbaeeeenaseeeeennseeas 120
6.6.1 Scenario 1: New CONNECLIONccoiviiiiiiiiiiiiiii e 121
6.6.2 Scenario 2: Returning CONNECION .ocveeeeeeieieeeeeeeeeeeeeeeeeeeeeeeee e 123
6.6.3 Scenario 3: Unapproved CONNECLIONcccccuiiiiiiee ettt e et ee e e e e e e ennrr e e e e e e e e eennnnes 124
6.6.4 Scenario 4: Session Handling During Sleep Modeueeeeeiiiicciiieeeee e 124
6.6.5 Scenario 5: Desynchronisation and Honeypot RESPONSEcueveeevviieeicciiiee e 128
6.6.6 SUMmMary and IMPliCatioNS........coiiiiiee e e e ebre e e s e bre e e e eaees 128

7.0 Chapter Seven: Conclusion, Reflection, FUtUre WoOrk.......cc.oeeevciieiiiiiiee e 129

7.1 Summary of Research ContribULIONScccuviiiiiiiiiicciee e 129

7.2 Personal Reflection on the ReSEarch JOUINEYoocciiiiiiiiie ettt e 130
7.3 FULUIE WOTK ..ttt ettt ettt e st e e sab e s bt e e me e e sabeeesabeesabeesabeeesareeennees 131
7.4 Chapter SUMMATIY coioiviiiiiiieeeeieee e esrtee e sttt e e ssabee e s ssasaeeesssaaeeesasstaeeesssbeeeessssaeeesassenesssnsenessnnsens 133
REFEIEINCES ...ttt b e s bttt st et e bt e s bt e s ae e sat e st e e bt e b e e nbeenbeesneeeneeentean 135
FiN oY oT< oY [P Q0 F T} 4o e [V o1 [o] o ORI 141
Appendix 1: Table of consuMer 0T BOardsuiiiiciiiiiiiiiie e sare e 142
Appendix 2: Custom Development BOArdcc.ueeieiiiiiiiiiieiciiee et stree e e ssrae e s srae e e ssnaeaeeas 143
2.1 Circuit Diagram — SChEMALICuuiiiiiciiee e e e e e s ae e e s nnaeeeeas 143

D A O e €114 oY I 1Y USRI 144
2.2.1 BOArd OULIINE c..ceieeeieeeeee ettt st sttt et b e sbe e sae e et e e sbe e saeesane e 144
2.2.2 Bt OM LAY O e aaaaaeaaeens 145
2.2.3 BOttOM Paste Mask LAYEN ...ccuuuieiieiiiie it ceiteee sttt e sttt e e et e e e st e e s sbte e e s sbaeeessbaaeaesnnes 146
2.2.4 BOtEOM SilK LAYEI . uuvviiiiiiiee ettt sttt e e st e e st e e e sbte e e e s bteeessbeeeessnbaeeassssaeassnnes 147
2.2.5 BOttom SOIEr Mask LAYeee ittt ettt e et e e e e tte e e e e bae e e s ebaeeesebeeeaeeanes 148
2.2.6 DOCUMEBNT...ceiiiiiitiee ettt e s e e s be e e s s et e e s sraeeessbeeeeseanes 149
D A & o LT P PPTPPRPN 150

2. 2.7 INNEIL - GND oo e e e e e e e s e aaaaaaaeeaaaaens 151
2.2.8INNEI2 = VCC ..ttt sttt e st e e st ee e s s et e e s snee e e s senre e e s nanee 152
2.2.9 MURILAYET ..ttt ettt e ettt e e et e e e e e bt e e e e ebteeeeebteeeeebtaeasesteeeeessneasassnnananses 153

2. 2. 10 TOP LAY O e a e e e e e e e e e e e e e e e e e e e aaaaaaas 154
2.2.11 TOP Paste Mask LAYENeeiiiiiiii ittt et e e e s rte e e s e bae e e s ebeaeaesanes 155
D 7 Vo T« I 1| I 1Y T PRSP 156
2.2.13 TOP SOIAEI IMASK LAYEN ...veeieetiieeeeiieee ettt ettt e e ettt e e e ettt e e e ett e e e e e ebteeeeebteeeeebaeeasesenaasennes 157
2.2.14 GERBER VIBW.....etitiiiiiiiiitiiee ettt ettt e e e e e e ettt e e e e e s e nnbeeeeeeeeseannneeeeeeeeesannnnnes 158
2.2.15 2D PhOtO VIBW....ciiiiiiiieiieeieeeteete ettt ettt st st sttt et sn e saeesine e 159

2.3 BOM = Bill Of MaterialS.....ccveiiiiiiiiieeeee ettt s 160
2.4 IMPIEMENTALION PrOCESS ...viiiiiiiiie ettt e et e s et e e s satr e e e esabaeeessnsaeeeennsseeeens 161
Appendix 3: Basic Server and Client Communication..........cceoeeecciiiieiiei e e 162
I Y= VL Y [o [oo Lo [PPSO PSP 162
3.2 CHENT-SIAE COU...conuiiiiiiiieieeiiecite ettt sttt sttt e b e be e s bt e saeeean e e b e e sbeesnee e 164
Appendix 4: Adaptive AmMoeba CoOmMPIEXITY ...cccciiiiieiiiie e e e e saree e 166
Appendix 5: Encrypted Server and Client Communication...........ccueeeveeiieccciiiieeee e 173
5.1 Server-side code — Lightweight ENCryptionuviiiiiiii it 173
5.2 Client-side code — Lightweight ENCrypltion...........ouviiiiiiii et 177
5.3 Server-side code — Block Cipher ENCryptioncoiviieieiiiieee ettt e et 179

5.4 Client-side code — Block Cipher ENCryptioncc.ueieiciieieeiiieec ettt e e 183

Appendix 6: Sensor Encrypted Communication For Server and Client..........ccccoveeeeiieiieciieee e, 188
6.1 Lightweight Server-side COUEuuiiiiiiiiiiiie e e ree e s e e s b e e e s areeas 188
6.2 Lightweight client-Side COUE ...ouuuiiiiiiiiiice e s e e e 192
6.3 Block Cipher Server-side COUEuiiiiiiiiiiiie e e e e e e abae e s e abae e e e areeas 196
6.4 Block cipher client-Sid@ COUEuuiiiiiiiiiieee et e et e e bee e s e abe e e e e nreeas 200

Appendix 7: Approved Client LiSt PrOCESSciiiciiiiiiiiiieiciiee ettt esitee et e e stee e e ssvae e s ssrae e e ssanaeaeeas 205

Appendix 8: Client CONNECLION LOZIC ..uviiiiciiiiiiiiiieieciiee ettt ee et e st e e s stae e e ssrae e s snbaeeesnanaeeeens 206

Appendix 9: Shared LEAGEr PrOCESS......ciiiciiiiieciiie ettt ettt e e s saae e e s sbae e s ssbaeeesannaeeeean 207

Appendix 10: Auto DeteCtion SYSTEMccccuiiii ettt e rrre e e e rra e e e e b ae e e seanaeeeean 208

Appendix 11: AUt EJECTION SYSTEMoiiiiiiie et e e st e e et e e e et ae e e eeanaeeeean 209

APPENdixX 12: TrigEEI SYSTEIM cuuiiiiiiciiie ettt e e e et e e st e e e e sssbaeeeesssaeeessnsaaeesannreeeean 210

Appendix 13: Cycle Testing For Encryption Methodsc.ceevciiiiiiiiiiiicciiieceeeeeee e 211
13.1 Cycle FUNCLioN fOr XtENSA PrOCESSOIS ...uviiiiiieieiiiieeeeeiiteeeestieeeestteeeesbeeeeessseeeesssnteeeessssaeessnes 211
S I (@] 188 = o ol ¥/ o) (o o [P PPPRt 211
T N - T Y- T @]] o 1= USRSt 212
13,4 ROTL3 ENCIYPTION 1eeiiiiiiiieeei ittt et e e e ettt e e e e s s st re e e e e e e s s saaababeeeeesesssasnsasaaeeessssssssssaaeeesssnnns 213
13,5 SPECK ENCIYPTION c1eiiiiiiteteee ettt ettt e e e e s sttt e e e e e e s s sttt e e e e e e s s ssababaeeeessssssassssaeeeesssnns 214
i I 11V 1@ NV =X o Tl Y/ o] d T] o FO PPNt 216

Appendix 14: Adaptive Amoeba Battery Curve Mapping Management System.........cccceccvveeeecnneenn. 218

Appendix 15: Full System Without Adaptive Amoeba Battery Curve Mapping Management System

.. 222
T BT =T VT PSPPSR PP P OTPPPOPPRTON 222
15.2 CHENT ..ttt ettt b e s bt e sht e s ab e et e et e e bt e sbeesateeab e e bt e bt e bt e nbeeeaeesaeeentean 232

16,0 SEIVEL oeviiiiiiiiii ittt e e s saae 240
16.2 CHENT ..ottt ettt sttt et e bt e s b e e sae e s an e s bt e bt e b e e nreesreesaneenreen 250
Appendix 17: Encryption Power Performance SUMMArYccccueeeeciiieeeeciieeeecieeeeecieeeeeevreeeessneeeean 262
17.1 ESP32 Encryption POWEr PerformManCeuciiicuiieeeeiiee ettt ettt et e e e eree e e e earae e 262
17.2 ATMEGA328 Encryption Power Performancecccoecuveeeieciiieceiiiee et ceivee e svtee e eireee e 265

List of Tables

Table 1: 10T Devices Installed WorldWiIide[L16]eeiievieiiiieeeieeeeieiiiieeeeee e eeeiireee e e e e eessraeeeeeeeeesnnannes 30
Table 2: Properties of adaptive immune responses according to Functions and Disorders of the

IMIMUNE SYSTEM[2] ceriiiiiiieeeeieeee et e e e et e e e e e e e e et reeeeee e e e e s braaeeeaeeeasassssaaeesaeesasasssssseeaaenannas 43
Table 3: Key features of 10T devices that contribute to the design of an loT devicecccvveeecunnennn. 52
Table 4: Essential Characteristics of Cloud COMPUING[S57] .eveviviiiiiiiiiiieieciieee e 55
Table 5: Conceptual diagram showing parallels between brain wave states and the Adaptive Amoeba
Battery Curve Mapping Management System (AABCMS).cooiiiiiieiiiee e et e e 61
Table 6: Comparative Features of Bio-Inspired Communication Systems........cccccveeviiieeeriiieeeiniveeens 62
Table 7: Encryption Performance COMPAariSONcccccuueeeeiiieeeeiieeeeeiieeeeeree e eeiveeeeenreeesesareeeeenaneeas 115
Table 8: Bill of Materials For Custom Development Boardccccceeecveeeeiiieee e e 160

List of Figures and lllustrations

Figure 1.1: TOP-DOWN OVEIVIEW ..ccciiiiiiiiiiiiiiiiiiiieeieieteieeeeeeeeeeeteteeesesesesesesesesesesesesessesseseessesesesesesesessseeen 19
Figure 1.2: The process for how clients are approVed........ccueeeeciieeeeciieeecciiee e 19
FIBUIE 1.3 LEAGEI PrOCESS . .vviiiiiiiiie ettt ettt ettt e ettt e sttt e s st e e s s atae e e s abaeeessseeeesssaeeesansseeesnnsseeesnn 20
Figure 1.4: Client CONNECLION LOZIC ..ocvviieieiiiieceitee ettt ettt e et e e e ta e e esaar e e e seata e e e snnsaeeesnnnneeaean 20
Figure 2.1: General Life Cycle fOr 0T DeVICES.....cuuiiiiiciiieeciiie ettt scire e st e ssare e e e e ssnsreeessnreeaens 27
Figure 2.2: Average cost of loT sensors - Taken from the 2019 Manufacturing Trends Report by
o g0 XY o) i PO UUTUPUT RPNt 29
Figure 2.3: Global 10T end-user spending worldwide 2017-2025 [17] ...ccovcvieieriiveeeriiieeesiireeeenineeeens 31
Figure 2.4: Layers of the OSI and TCP/IP models - Taken from [Charles M. Kozierok]..........cccceeeeveennne 32
Figure 2.5: ECB encryption and decryption flow chart, taken from “Recommendations for Block
Cipher Modes of Operation Methods and Techniques” [21]cccovceviiriieeiiciier e 37
Figure 2.6: CBC encryption and decryption flow chart, taken from “Recommendations for Block
Cipher Modes of Operation Methods and Techniques” [21]ueeeeeeeeccciiieeeeee e eeecrrree e e e 38
Figure 2.7: CFB encryption and decryption flow chart, taken from “Recommendations for Block
Cipher Modes of Operation Methods and Techniques” [21]ccooceeiiiiieecccciee e 39
Figure 2.8: OFB encryption and decryption flow chart, taken from “Recommendations for Block
Cipher Modes of Operation Methods and Techniques” [21]ccooceeiiiiiie e e 40
Figure 2.9: CTR encryption and decryption flow chart, taken from “Recommendations for Block
Cipher Modes of Operation Methods and Techniques” [21]ccovceviiriieeiiciier e 41
Figure 2.10: Types of adaptive immunity - image taken from[2]cccoeeeeiiiiiieiiieeecee e 44
Figure 3.1: Early Timeline of Cloud Computing - Taken from BCS (https://www.bcs.org/content-
hUb/histOry-0f-the-ClOUA/)[56] ... uuieerieeirie ettt ettt ettt et e e e e et e e be e e eteeesabeeebeeensaeeebeeenns 53
Figure 3.2: Current Timeline of Cloud Computing - Taken from BCS (https://www.bcs.org/content-
NUB/NiStOrY-0f-The-ClOUA/)[56]vveieerieitie ettt ettt ettt etee et e et e e teeebesesareeetesenseeesresenns 53
Figure 4.1: Framework for the Bio-inspired Lightweight polymorphic security system for loT devices
.. 65
Figure 4.2: Block diagram for Adaptive Amoeba Battery Curve Mapping Management System 70
Figure 4.3: Generic 10T Client ReSpoNSibilities........ccciciiiiieciiie e 74
Figure 4.4: Generic 10T Server ReSponSibilities.......ccocciiieiiciiieiiie e 74
Figure 4.5: Visualisation of INnCOMINg NEW CONNECLIONc.vviiiiiiiiiieciiee et 75
Figure 4.6: Visualisation of session block list ChecK..........cccuviiiiiiiicceece e 76
Figure 4.7: Visualisation of the credentials Checkooiviiiiiiiiii e 76
Figure 4.8: Visualisation of the flag CheCKEroo i e 77
Figure 4.9: Visualisation of the Approved Client (UUID) LiSt......ccceeecieeriieeiiieeiieeccieeesreecvee e e sree s 77
Figure 4.10: Visualisation of a successful integration of a new connection.......ccccccoeevveeeiiciieeecicineeenn, 78
Figure 5.1: Dynamic Encryption Mode Selection Embedded and Automated within the Adaptive
Amoeba Battery Curve Mapping Management System in C....c.ooeivciiiiiiciiiee e 86
Figure 5.2: Implementation of Sensor Data Preparation in C.........ccccccveeeeciiieeeciieee e 91
Figure 5.3: Implementation of SPECK Encryption Process in C.........ccccueeeeciieeeeciiieeeecieeeeeeireeeeenneeens 91
Figure 5.4: Implementation of the Data Transmission Process for Secure Sensor Data Exchange in

o3 00] o =Te [o [=T o N PSRRI 91
Figure 5.5: Implementation of the Decryption at the Server Process in C.......cccccvvevviveeeciciveeeeicneennn. 91
Figure 5.6: Implementation of Approved Client List Process Generating and Approving UUID and
SY=E1 oY a1 T Vot o T -3 [I S 93
Figure 5.7: Implements the Client Connection Logic from the server to set session expiration time in
C ettt et e —e e —eeet—e e e ——e e ——e et —ee ettt eaatee e —ee ettt eantee ettt enteeanbeeeanteeateeeareeeateeeareeeanteeenreeeanreenn 94

Figure 5.8: Implementation of the battery management system adapts the client's behaviour based

on the battery percentage fUNCLION iN C....ooooiiiiiiiiee e e ree e 95
Figure 5.9: Implementation of Client-side ledger update function in C.........cccccovveeiiiieeeciiiiee e, 95
Figure 5.10: Implementation of the server-side ledger notification function in C..........cccccvvveennennnn. 96
Figure 5.11: Implementation to check for any approved client desynchronisation functionin C....... 97
Figure 5.12: Implementation of the auto ejection system through the handle compromised
credentials FUNCEION IN C ... e e e e s ee e e s sbe e e s s sbee e e esnbeeeeennreens 99
Figure 5.13: Implementation of the trigger for the ledger function in C........cccooovvvviviieiinciien e, 100
Figure 5.14: Implementation of the Battery Voltage function in C........cccocovieiiiciei e, 101
Figure 5.15: Implementation of the initial battery percentage mapping piecewise functionin C.....101
Figure 5.16: Implementation of the Storing Battery Data function in C.........ccceecvveeeiiiieeecciee e, 102
Figure 5.17: Implementation of the Predicting Battery Percentage using a non-linear interpolation

L0 gToxdTo T o 1 o TN G PRSP 103
Figure 5.18: Implementation of the predictive battery health functionin C..........cccccevieieinennnnen. 103
Figure 5.19: Implementation of the sleep mode function in C........cccccvviiiiiiiiincie e, 104
Figure 6.1: Otii Power Analysis Demonstrating Baseline Power Consumption for the ESP32-S3
Running the Control AIGOMITNM.ooc i e e ree e et e e e e abe e e e e nre e e e eearenas 107
Figure 6.2: Otii Power Analysis Demonstrating Baseline Power Consumption for the ATMEGA328P
.. 107
Figure 6.3: ESP32-S3 XOR cycle testing serial print OULPULccccviieeiiiiie e 108
Figure 6.4: ATMEGA328P XOR cycle testing serial print oUtpULt.......ccccviiiiiiiiii i, 108
Figure 6.5: ESP32-S3 Caesar cycle testing serial print oUtPULcoeeeciiiieiiiiee e, 109
Figure 6.6: ATMEGA328P Casear cycle testing serial print output.......cccceevviieieiiiiee i, 110
Figure 6.7: ESP32-S3 ROT13 cycle testing serial print oUtpUL.......c..evviiiiiiiiiiiee e, 110
Figure 6.8: ATMEGA328P ROT13 cycle testing serial print oUtpUL......ccceeeeiiieiicciieeeeee e, 110
Figure 6.9: ESP32-S3 SPECK cycle testing serial print oUtpULtccevvvveeiiiiiiie e, 112
Figure 6.10: ATMEGA328P SPECK cycle testing serial print oUtpULt........ccceecvieeeeiiiee e, 112
Figure 6.11: ESP32-S3 SIMON cycle testing serial print OUTPUL........ccccoiiiieiiieeeccee e, 113
Figure 6.12: ATMEGA328P SIMON cycle testing serial print outputcccoocvieiiiiiieeicee e, 113
Figure 6.13: Modified code for the encryption cycle testing for easy selection picking per method 114
Figure 6.14: Function for handleNewConnection on the server side to accept new connections.....122
Figure 6.15: Function for enterAdaptiveSleepMode on the client sideccceecvveeiiciiie e, 125
Figure Appendix 1.1: Table of consumer 10T DOArdscccueeeeciiiiieeciiiee e 142
Figure Appendix 2.1: Circuit Diagram SChematiC.......ccccueiiiiiiiiiiiiiee e 143
Figure Appendix 2.2: PCB Gerber Layer for the Board Qutline.........ccccuvveeeiiieiecciiee e, 144
Figure Appendix 2.3: PCB Gerber layer for the Bottom Layer........ccccccviveeeciieeeccieee e, 145
Figure Appendix 2.4: PCB Gerber Layer for the Bottom Paste Mask Layer.......ccccceeevviveeeccieeeeennen. 146
Figure Appendix 2.5: PCB Gerber Layer for the Bottom Silk Layer.........cccoecveeeeeiiiiiceciiee e, 147
Figure Appendix 2.6: PCB Gerber Layer for the Bottom Solder Mask Layerccccceevvveeeecveeeeenneen. 148
Figure Appendix 2.7: PCB Gerber Layer for the DOCUMENtcccviieiiiiieiiiiee e 149
Figure Appendix 2.8: PCB Gerber Layer for the Hole........cccuviiieeiiiie et 150
Figure Appendix 2.9: PCB Gerber Layer for the Innerl - GNDcoeevcvieeiiiiiee e e 151
Figure Appendix 2.10: PCB Gerber Layer for the INnner2 - VCC........ccoooieeeeciieeecceee e 152
Figure Appendix 2.11: PCB Gerber Layer for the Multi-Layerccccccvveeiiiieiecciieeecee e, 153
Figure Appendix 2.12: PCB Gerber Layer for the TOp Layercccveeeeecieeeiciieee et 154
Figure Appendix 2.13: PCB Gerber Layer for the Top Paste Mask Layer........cccccccveeeecieiececvieeceenneen. 155
Figure Appendix 2.14: PCB Gerber Layer for the Top Silk Layer......cccccouveeeeiiieiecciiieeeceee e, 156
Figure Appendix 2.15: PCB Gerber Layer for the Top Solder Mask Layer..........ccccoveeevieeeeecvereeenneen. 157

Figure Appendix 2.16: PCB Gerber Layer for the GERBER VIEWcccccuvieiiiiiieeiiiiee e 158

Figure Appendix 2.17: PCB Gerber Layer for the 2D Photo VIEWccccveiiiiiiieiiniiiee e, 159
Figure Appendix 2.18: IMplementation PrOCESS.......ccccuiiieciiiieecieee ettt e e e e be e e e 161
Figure Appendix 17.1: Idel ESP32 Encryption Power Performance.........cccoccuveeecciieeecciieeecciiee e, 262
Figure Appendix 17.2: XOR ESP32 Encryption Power Performanceccccocvveeeevcieeeiniieeeeesciees e e 262
Figure Appendix 17.3: Caesar ESP32 Encryption Power Performance........ccccceeecvveeiecieeeccccieee e, 263
Figure Appendix 17.4: ROT13 ESP32 Encryption Power Performanceccccccceevcieeeiviieeeeccciiee e, 263
Figure Appendix 17.5: SPECK ESP32 Encryption Power Performance.....ccccccceeevcveeeiviieeeeesineeeessneen. 264
Figure Appendix 17.6: SIMON ESP32 Encryption Power Performancecccccoeevveeeecieeeecccviee e, 264
Figure Appendix 17.7: Idel ATMEGA328 Encryption Power Performancec.cccccceeevvieeeeniieeeeennneen. 265
Figure Appendix 17.8: XOR ATMEGA328 Encryption Power Performanceccccceeevvveeeecveeeeenneen. 265
Figure Appendix 17.9: Caesar ATMEGA328 Encryption Power Performanceccccccveeeecvveeeennneen. 266
Figure Appendix 17.10: ROT13 ATMEGA328 Encryption Power Performancecccccccevevcveeeennnenn. 266
Figure Appendix 17.11: SPECK ATMEGA328 Encryption Power Performanceccccccceeeecvveeeennneen. 267
Figure Appendix 17.12: SPECK ATMEGA328 Encryption Power Performancecccccceveeiieeeinnnnn. 267

11

List of Abbreviations

Abbreviations

Definitions

AABCMS Adaptive Amoeba Battery Curve Mapping Management System
AAC Adaptive Amoeba Complexity
ACLP Approved Clients List Process

ADC Analogue-to-Digital Converter

ADS Auto Detection System

AES Auto Ejection System

Al Artificial Intelligence

API Application Programming Interface
AR Augmented Reality

BFT Byzantine Fault Tolerance

BLE Bluetooth Low Energy

CBC Cipher Block Chaining

CCL Client Connection Logic

CFB Cipher Feedback

CHF Cryptographic Hash Function

CPU Central Processing Unit

CTR Counter

DAGs Directed Acyclic Graphs

DQON Deep Q Networks

ECB Electronic Codebook

GDPR General Data Protection Regulation
HAL Hardware Abstraction Layer

HTTP Hypertext Transfer Protocol

laaS Infrastructure as a Service

lloT Industrial Internet of Things

loT Internet of Things

LLC Logical Link Control

LLM Large Language Models

LP Ledger Process

M2M Machine-to-Machine

MAC Media Access Control

ML Machine Learning

MR Mixed Reality

NIST National Institute of Standards and Technology
NK Natural Killer

NSA National Security Agency

OFB Output Feedback

(0N Open Systems Interconnection
OTA Over-The-Air

OWASP Open Worldwide Application Security Project
Paa$S Platform as a Service

PBFT Practical Byzantine Fault Tolerance
PCB Printed Circuit Board

PKC Public key cryptography

12

PoS Proof of Stake

PoW Proof of Work

PQC Post-Quantum Cryptographic

RAM Static Random Access Memory

RL Reinforcement Learning

RTOS Real-Time Operating System

Saa$ Software as a Service

SKC Symmetric Key Cryptography

SLP Shared Ledger Process

SME Small and Medium Enterprises

TCP/IP Transmission Control Protocol/Internet Protocol
TD Thing Descriptions

UDP User Datagram Protocol

ULP Ultra Low Power

uuID Universally Unique Identifier

VR Virtual Reality

WEEE Waste Electrical and Electronic Equipment
Wi-Fi Wireless Fidelity

WoT Web of Things

13

List of Equations

Equation 2.1: General Equation for Encryption and Decryptionccccceeecuveeeeiiieeesccieee e 35
Equation 2.2: Electronic Codebook (ECB) Encryption EQUAtioNccceeeeciieeeeiiiieeecciieeesciree e 36
Equation 2.3: Electronic Codebook (ECB) Decryption EQUAtiONceccveeeciieeiieeecieecreeceeevee e 36
Equation 2.4: Cipher Block Chaining (CBC) Encryption EQUAtioNncccccevciieeeiiiieee i 37
Equation 2.5: Cipher Block Chaining (CBC) Decryption EQUatioNccccueeeciieeiieeeciie e ceeeveee e 37
Equation 2.6: Cipher Feedback (CFB) Encryption EQUAtioNccceecveeeviiesiiieeciee e evee e 38
Equation 2.7: Cipher Feedback (CFB) Decryption EQUatioN........ccceeevciieeeeiiiiee e e e e eceeee e 38
Equation 2.8: Output Feedback (OFB) Encryption EQUAtioNccccceeeviieiiiie it eee e 39
Equation 2.9: Output Feedback (OFB) Decryption EQUAtioNceeeviiiiieeiiiiee e 40
Equation 2.10: Counter (CTR) Mode Encryption EQUAtioNcccveieeiiieiecciiee e 41
Equation 2.11: Counter (CTR) Mode Decryption EQUAtiON.........cceeecveeeeieeciieeciee e ecre et e e e evee s 41
Equation 3.1: General Formula for Polymorphic Transformation of Encryption Methodologies........ 58
Equation 3.2: General Formula for Dynamic Update and Propagation of Security Credentials through

Y 4T =T =T F Yo PSPPSR 59
Equation 4.1: Mapping for Encryption and Battery PErcentagesccccceeeeeveeeeeiiieeeecirieeeecvveeeeeineee e 72
Equation 5.1: Server WiFi INitialisSation.......cuveiieciiieicciiie e saae e 80
EQUAtION 5.2: SErVEr WIFi POIT....ccviiiiiiiiiiiiiiiieeeteeeceeeeeee et ee e e e e e e e e e e e eeeeeeseeeeeseeeseseeseeeeseseeeeessesseseeesesennes 81
Equation 5.3: Server INitialiSationc...eeiiciiiiiccec e e are e e 81
Equation 5.4: Server Checking for Client CONNECLIONScccuviieiiiiiiiieiiie e 81
Equation 5.5: Server Reading Incoming CHent Dataccccuvieieciiiieeciiee et 81
Equation 5.6: Sending HTTP Response from Server to ClieNnt........cccovciieeieiiiiei e 81
Equation 5.7: Closing Client CONNECLIONScccccuiiiieeiiiie et et e et ectee e e e srre e e s saraeeesentaeeesnaneeeaens 81
Equation 5.8: Client WiFi INitialisSation........cueeiiiiiiii ettt e e e e sanee e e 81
Equation 5.9: Client Connecting with Server [P and POrtcooociiiiiiiiieiecciie e 82
Equation 5.10: Client SENING Data 10 SEIVENuiiiiiiiieeeceee ettt e et e et e e estr e e e e erae e e senr e e e eenreeaean 82
Equation 5.11: Client Awaiting for Server RESPONSEcccccuuvieiiciiieeiiiiee e cciee e e e s sire e e ssrre e e esareee s 82
Equation 5.12: Server [P ASSISNMENT....ccuiii ittt ettt e st e e e e s s ssirbeeeeeeessssabaseaeeesssssnssssnns 82
Equation 5.13: Client [P ASSISNMENT.......coiiiiiieieiiee ettt ecrte e e e e e e e re e e e esatr e e e e araeeesansseeeennneeeaaan 82
Equation 5.14: Server POrt LiSTENING.ottt e e s saree e e e e s s s s siaaaeeeeessssssnnnnns 82
Equation 5.15 Client CONNECtiON AtLEMPT......cciiciiiieeciiie ettt e et e e et e e e e etre e e senbreeeesaneeeaens 82
Equation 5.16: Data Transmission (CHENT tO SEIVEI)cecccuiieeeciiieeeciee et earee e 83
Equation 5.17: Data Reception and Response (Server to CHENt)cccccveeeceeeiieeccee e eciee e 83
Equation 5.18: Connection TermMiNatioN.......ciiiiiiiiiiiiiiiieieeeeeeeeeeeee e e e e eeeeeeeeeeerereeeeeeeeeeeseeseeseesseeeens 83
Equation 5.19: Measuring Available IMEMOIYoiiiiiiiiciiiie ettt e e e saree e 83
Equation 5.20: Encryption for XOR with Constant KeY.......ccueeiviiiiiiiiiiiiiciiie e 84
Equation 5.21: Encryption for Caesar with a Fixed Number of Positions..........cccceeevcieeeeiiieeecccineeenn. 84
Equation 5.22: ENcryption for ROTL3cco ittt et e e et e e e aer e e e e saaa e e e sneaeeesnanneeaenn 84
Equation 5.23: SPECK and SIMON General Equation for Bitwise Operations, Additions, and Rotations

.. 84
Equation 5.24: For Each ROUNA 1N SPECKcii ittt ere e et e e sser e e e s e e e ssneae e e snanaeeaens 84
Equation 5.25: For Each Round IN SIMONuuiiiiiiie ettt e e e e e s e e e e s svaae e e e e e e e e ennrnees 84
Equation 5.26: Choice of Encryption Method Based on Available Memoryccccccoccvvveiicieeeccineennn. 85
Equation 5.27: Monitoring Time Taken for Each ENCryption.........ccoovciieeeiciiiee e 85
Equation 5.28: General Encryption with Data and Key Variables........cccceoevecciiiieeiie s 87
Equation 5.29: General XOR Encryption with Data and Key Variables..........ccccoecveiiiiiieeeicciiec e, 87
Equation 5.30: Client Sending Encrypted Data to Server OVer TCP/IPcceecveeeceeeeeeeecreeeeeee e 87

Equation 5.31:
Equation 5.32:
Equation 5.33:
Equation 5.34:
Equation 5.35:
Equation 5.36:
Equation 5.37:
Equation 5.38:
Equation 5.39:
Equation 5.40:
Equation 5.41:
Equation 5.42:
Equation 5.43:
Equation 5.44:
Equation 5.45:
Equation 5.46:
Equation 5.47:
Equation 5.48:
Equation 5.49:
Equation 5.50:
Equation 5.51:
Equation 5.52:
Equation 5.53:
Equation 5.54:
Equation 5.55:
Equation 5.56:
Equation 5.57:
Equation 5.58:
Equation 5.59:
Equation 5.60:
Equation 5.61:

Equation 6.1:
Equation 6.2:
Equation 6.3:
Equation 6.4:
Equation 6.5:
Equation 6.6:
Equation 6.7:
Equation 6.8:
Equation 6.9:
Equation 6.10
Equation 6.11
Equation 6.12
Equation 6.13
Equation 6.14
Equation 6.15
Equation 7.1:

Server Decrypting Response From CHeNntcoovciiee et 87
Receiving Encrypted Data from Client.........coiivciiei i 88
Lightweight Decrypting Received Data from Clientcccceeeciiieeciiiee e 88
Server Generating Lightweight Encrypted ReSpOoNSecceccuveeeeeiiieeeciiiee e, 88
Server Sending ENCrypted RESPONSEuviieiiiiiiieciiieeeeiite e esree e svee e e siree e s ereee s enareeas 88
Client Preparation for Encryption BlOck Size......cc.ueveeiiieiiiiiiieicieeeceee e 88
Client Concatenating Encrypted BlOCKS.........uvviiiiiiiiriiiee et 89
Client Decrying Blocks into PainteXt.......ccovciiiiiiiiiiiieiiee e 89
Server Receiving Multiple Encrypted BlOCKSccvveeeiiiieieiiiiee e, 89
Server Decrypting Multiple Encrypted BIOCKSc.vvvveiiiiiiiiriiieceee e, 89
Server Preparing and ENcrypting RESPONSEcoeecviiieiiiiiiee ettt 89
Server Sending ENCrypted RESPONSEuviieeciiieieeiiiee e et e eerre e esvr e e e eiaee e e enraee e eareeas 89
General Arithmetic Operations for XOR and Caesarccccveeeeeeeeeccciiieeeeeeeececnvveeeenn. 89
General Block Representation for SPECK and SIMONccccoiiiiiiieeecciiee e, 89
Block Functions with Multiple Rounds of Operations.........cccecvveveirciieiiiciee e 90
Standard Model of ENCrYPLioN ...ccevveiiiciiiecccee ettt 92
Formulating Session EXpiration TiMEccueeeieciiieeieiiee et ecttee e e eree e e s enree e e eanes 94
Formulating Battery PErcentageccvevveuieei ittt e e 94
Formulating SIEEP DUFAtionceeiicuiiiiiciieee ettt e e e re e e e nre e e e eanes 94
General Expression for Shared Ledger ProCessceccuveeeeeciieecccieee et e 95
Client Status DeteCtion LOGIC.....ccuiiiiiiiiieieciiieeeeiieee e eciree et e e e sre e e ssasae e e s srae e e snaeaeeaeas 98
AULO EJection LOZIC SYSTOMI...eee e 99
Ledger SYNChronisationciiiciiie i e e e e s saaeeeeas 100
Updating All Approved CHENTScoccuiie ittt e e e e sseaee e 100
Formulation for Voltage Battery Mappingccccceeeecieeeeciiiee e eceeee e 101
Estimation of Battery PErcentageccccceccvieeieciiie ettt 101
Circular Buffer With Dynamic EEPROM Managementccccceeccveeeeecveeeeecveeeeeenneen. 101
Non-Linear Interpolation for Battery Percentage Prediction..........ccccceeeeeciveeeecinennnn. 102
Formulation for Battery Healthc.coooiiiiicciii e 103
Formulation for Adaptive SIeep MOAEScccocueiieeiiiee ettt 104
General Formulations for Power Managementccccceeveciieeiiciieeeccieee e 105
Calculation for Clock Ticks required to Execute Instruction for XORcccccccvvevennenn. 109
L0 LT [a1 A oYU 111
ROTL3 SHIfHING .eeeveieiieeiiie ettt sttt ettt et e s e e e st e e sabe e sateesabaeenes 111
Cycle Count for Instruction ThroUghPUL..........ueeeeiiiiieeee e 116
General Formulation for Calculating ENEIgYcoccveeeeeiieeeeeciiee et 116
Formulation for Adaptive Sleep Mode FUNCLIONScooovciiiiiiiiiiieeccieee e 116
Formulation for Brute Forcing MAC at 1GHz........ccoocviiiiiciiieceieeeeceee e 117
Formulation for Vrute Forcing UUID at 1GHzZ.......ccoociiiiiiciiiiiecieee e 117
ADS DEteCION LOGIC coveeeeeieeeieieieieeeeeeeeereeeeeeeeeeeee e ee e e e e eeee e e e e e s e e e s e e eeeseseseeseeessssansnsnansenas 119
: Ejection Policy BiNary RESPONSE ..ccccccueeiiiiiiiee ettt e e e e e e e e e e e e e e eannnes 119
B I =To F 0T G Yo 1) 4 o= o =4[SRS 120
1 SeSSION HaNdShake PrOCESSciiiiiiiiiiiiee ettt e s s 123
: Rejection LOGIC fOr UUID.....ouiiii ettt ettt e s e sae e s e aae e s e 124
T RECONNECTION LOGIC. i iiiiiieieiiieeieeeeieeeeeeeee s e e e e e e e s e s enesaaessnnnenas 127
1 DesSYyNC Pathway LOZIC coeveeiiiieeee ettt e e e e e e re e e e e e e e enrnees 127
Software Application Of HAL.......cccuiiiiiiiiec ettt e avae e e 132

15

16

Chapter One: Introduction
The biologically inspired lightweight polymorphic security system for loT devices represents an

interdisciplinary approach, merging the domains of embedded systems engineering and
immunological principles from biosciences. This innovative framework introduces a novel capability
in loT security systems, enabling them to emulate biological processes that detect, reject, and retain
the memory of foreign agents. The paragon of this framework lies in its adept translation of immune
mechanisms into embedded programming logic, leveraging adaptive complexities that dynamically

adjust according to hardware configurations.

The Internet of Things (loT), which enables a wide variety of embedded devices, sensors and
actuators (known as smart things) to interconnect and exchange data, is a promising network
scenario for bridging the physical devices and virtual objects in the cyber world. Such smart devices
and sensitive data are vulnerable to security threats. Security is, therefore, the central area of focus
for researchers in the field of 1oT. Consequently, it is essential to develop cryptography technologies
to secure the data from unauthorised access. Moreover, this can be achieved by transforming the
data into an unrecognisable and unrelatable form. It is not easy to find one straightforward
approach that will fit all loT applications. There are various types of devices connected to an loT
network. Some devices can afford heavyweight and high-security methodologies, but most loT
devices are resource-constrained. They need a security solution that acts fast. Simultaneously, it
needs to be simple in its complexity and versatile. Last but not least, the most critical factor is
trusted security. In general, the dedicated cryptographic algorithms need to be lightweight in terms
of area, memory footprint, power and energy consumption. Therefore, the proposed research is

pertinent as security and privacy in the loT are not fully addressed.

Polymorphism is a very uncommon term and a rarely researched topic within the traditional tech,
cybersecurity and engineering industries. Among the computer sciences, the nature of polymorphic
code can change the initial code, but the code’s function produces the same result; for example,

15+2 and 13+4 both have the same result, 17.

The changing form and mutation are more familiar with bypassing security systems in polymorphic
viruses (e.g. malware) than in the security systems[1]. However, this mutating form is well studied
and documented in the human sciences, particularly biology. The notion of this lightweight
polymorphic security system closely follows and resembles the biological functions of the immune
system. In particular, a human white blood cell, due to its ability to detect (intrusion detection),
change (changing encryption keys and passwords) and fight (eject from the network) foreign cells

inside the human body([2].

17

1.1 The Driving Force
Rapid technological development and deployment invariably lead to the emergence of new

vulnerabilities, which malicious actors and unauthorised users may exploit. The Internet of Things
(loT) has diverse applications across various industries, from medical to commercial, industrial to
automotive, and the consumer industries. According to the Information Handling Services (IHS),
there were more than “27 billion connected loT devices in 2017” [3]. Therefore, security is ever
more paramount, especially as the industry grows exponentially due to big data, data analytics, and
understanding consumer trends for effective marketing. As the loT’s demand grows, the value for
these industries is the raw data itself, hence protecting the data from foreign and unauthorised

agents.

The idea of security systems for IoT is nothing new. Still, it does propose a few limitations compared
to traditional security architectures as the developers are severely limited to the processing power
within these devices. Consequently, the need for lightweight ciphers to encrypt communication is
necessary. This research aims to encrypt the loT systems’ communication channels and
automatically change the encryption cipher key and the password required to connect a client to a

server, hence making it polymorphic.

Industry and research are interconnected and coupled, two sides of the same coin. That without
research, the industry will become stagnant and unable to innovate and expand, whereas, on the
other side of the coin, it does not have the incentive to put forth solutions for today’s problems

without industry research.

1.2 Theory of Operations
Before any terms of aims and objectives are drawn, there needs to be a clear understanding of how

the lightweight polymorphic system would ideally work. The design and idea of the polymorphic
security system, like most engineering solutions for world problems, takes inspiration from the most
aged engineer who is nature herself—in particular, looking at how the immune system (adaptive
immune responses and innate immune responses[4][5]) in the human body. How the immune
system fights foreign agents (e.g. viruses and diseases) can be modified (updated for lack of a better

term) to combat new viruses and infections through vaccines.

This system’s fundamental nature is on a server and client model, whereby the server and client
communicate in an encrypted manner. The encryption key is in the ledger (similar to blockchain
technologies) and shared with authorised clients. Authorised clients are approved depending on

various factors, such as checking if it's on the block list, having the correct credentials, and the

18

correct UUID. Asillustrated in Figure 1.1, the system’s top-down architecture comprises the overall

system’s approach.

Successful
Approveed Client ECNIECHOT
New Connection Client List | —> | Connection
Process Logic
Failed connection Server Only shared to
Approved Clients
‘? . ¥
Encrypted ! Ledger
Comunication : -
! v
Top Down Client(s)

Figure 1.1: Top-Down Overview
Within the Approved Client List Process, flags can be raised if only authorised clients can connect to

the server. The Wi-Fi details automatically change if the server detects any foreign clients trying to

connect. Please refer to Figure 1.2, which shows how clients are approved.

q i —_— - - Output to Client
{ Listof Check if Client | Bool ;. \E& ion Logic
Approved | —> isinthe ———— Output |
UuID's I‘"‘-‘ Approved List . _7_,./"
Non-repeating and non- False confirmation
sequential Session ID from the server
Compares Gets client’s i
e lerator uuID as Flag True ~ correct False Bn Block Incoming
Approved List Raised? “Credentials; List? Connection

True True

Check if False
Possitive or False
Negative

Approved Clients

7 ew N
List Process

: New
"{Onnection Y

No cennection
established

Raise Flag One|

s

Figure 1.2: The process for how clients are approved
All authorised clients have the same ledger. This ledger contains two variables as objects, which are
inside an array. The first object is the Wi-Fi details (password), and the second object includes the

encryption key to which the client and server communicate. Please refer to Figure 1.3 to visually

show the ledger’s process.

19

Trigger Gets Element >
Input Locate element

from random
Trigger number

y

Returns Element

All Unapproved

clients ejected
Ledger New Credentials and
Encryption Key
Process -

Figure 1.3: Ledger Process

When any form of intrusion is detected, for example, an unauthorised client successfully connects to
the server, a signal (trigger) is sent between the server and client to successfully apply the change

between one polymorphic form to another (A -> B).

The signal (trigger) is a message which contains a number (randomly chosen) that corresponds to an
element in the array (ledger) that has the new Wi-Fi details and Encryption Key; this will be its new

polymorphic form. Please refer to Figure 1.4, which shows the server’s logic when a client connects.

Sentto all

Approved

_ Clients Goes to Ledger
{ send | Process

Add
Compromised

. Credentials to [[{ Random Tri
Client Block List W g
Connection
LOQ|C Credential

Compromised

Recieve Data New Credentials and
True From Clients Encryption Key

l ram server?,
Successful Copy of updated ;“ Check | R::::::-:zuglri‘ewnlllsh
connection Ledger to Clients lFalse / Status ; Three way

input from

| Appi F
Client List’ and Server

connection

Figure 1.4: Client Connection Logic

There are, however, some flaws in this system; the first problem is the client’s, which might fall out
of sync and no longer have the proper signal (trigger); therefore, it cannot connect to the server. The
second problem is with New clients who are not on the approved client list and those associated
with clients who are no longer in sync, which reverts to the first problem. Problem one is solved by
having time-limited Wi-Fi details, which, once joined, give the current signal to bring the client back

into sync.

To solve problem two, the server administrator can only accomplish this by updating the server's
approved client list by physically inputting it into the server. Once added, the client needs to be

synced, which resolves the problem.

20

In addition to addressing security challenges through polymorphic mechanisms, the proposed
system also recognises the critical need for energy efficiency in resource-constrained loT devices.
Traditional loT security frameworks often overlook the significant impact of encryption processes on
battery consumption, particularly when devices are deployed in remote or inaccessible
environments where energy availability is limited. To overcome this limitation, the framework
integrates a novel Adaptive Amoeba Battery Curve Mapping Management System (AABCMS),
inspired by the adaptive behaviours of biological organisms under energy stress. The AABCMS
dynamically monitors real-time battery performance and system load, adjusting device operational
modes, including sleep states and encryption method selection, to optimise energy usage without
compromising security. This integration of energy-aware decision-making within the security
architecture represents a fundamental departure from conventional static approaches and directly

addresses the dual challenge of security and sustainability in 10T systems.

1.3 Aims and Objectives
The aim of this research is to design, implement, and rigorously evaluate a novel, bio-inspired,

lightweight polymorphic security system specifically tailored for Internet of Things (loT)
environments. The system is grounded in principles from immunology and adaptive energy
management. It is engineered to provide resilient, energy-aware protection against evolving
cybersecurity threats, while remaining feasible for real-world deployment on power-constrained
embedded devices. The aims and objectives of this research closely follow the system overview as

the bio-inspired lightweight polymorphic security system for loT needs to achieve:

e To architect and implement a modular client-server security framework for loT devices,
utilising polymorphic encryption strategies that adapt in real time to resource constraints.

e To model and simulate biologically inspired security responses, including detection,
rejection, and memory, based on principles from immunology.

e To develop a synchronised, lightweight shared ledger mechanism for dynamic credential
management across networked devices.

e To design and integrate the Adaptive Amoeba Battery Curve Mapping Management System
(AABCMS) for real-time optimisation of device sleep modes, encryption selection, and
battery health monitoring.

e To quantitatively benchmark and compare multiple lightweight encryption schemes on both
high-power and low-power embedded platforms.

e To validate the robustness and resilience of the system through scenario-based
experimental testing, including simulations of desynchronisation, session expiration, low-

battery operation, and security breach responses.

21

1.4 Research Contribution For The Engineering Community
There are several research contributions to the engineering community regarding loT security,

Intrusion Detection, Polymorphic Engines, viruses and worms. However, there is a gap, a sort of
goldilocks zone, whereby a lightweight system for an loT network can act in a polymorphic way to
change and adapt accordingly when an unauthorised client connects. Nonetheless, there are some

suitable papers from which this research can definitely avail and learn.

“Polymorphic Algorithm of JavaScript Code Protection”[6] focuses on web-based security for the
shared dynamic web, developing a language called JavaScript. The JavaScript code does not compile
as they have to be executed by the web browsers even if it is uncompiled. Therefore, it results in the
source code presented into bytes or binary codes, making data extraction from JavaScript somewhat
vulnerable without additional encryption. This study develops an algorithm using the polymorphic
viruses’ reference design to make random encryption for Web page encryption and a Web-based
information security system. The study’s strengths focus on defending against polymorphic attacks
using a reference design system to make random encryptions on a JavaScript Web-based system.
This detection system allows the security system not to always be running in the background and
only employs encryption when necessary, therefore, saving resources of the web server until it is
necessary. However, weaknesses do arise; this is not a lightweight system, as the web server (even
though they have intensive processing power) must do live encryption. This research paper will
incorporate this research into the responsive encryption that only reacts when it detects suspicious

flags.

“Design of the late-model key exchange algorithm based on the polymorphic cipher” [7] proposes a
new polymorphic cipher method created by C.B. Roellgen in 2004 opened up a whole new area for
the study of irregular symmetrical cryptography theory as an asymmetrical cipher algorithm. The
polymorphic cipher is characteristic of randomness; the newly proposed method uses a Pseudo-
random Number Generator to construct the polymorphic virtual S-box. The polymorphic cipher
design’s purpose makes the session keys immune to attacks. This study’s strength is an efficient
polymorphic key exchange algorithm based on the session key exchange protocol. However,
similarly to the previous research is resource-intensive with the Pseudo-random Number Generator,
and the design cost of the agreement is high. The author concentrated on low powered systems with

a lightweight polymetric algorithm for this proposed research.

“Webpage Encryption Based on Polymorphic JavaScript Algorithm.” [8] Looks into protecting HTML
code encryption based on polymorphic JavaScript programs, which can transmute and defend

themselves like polymorphic viruses. The study’s critical point is that both encrypted HTML codes

22

and polymorphic JavaScript programs are difficult to be cracked. Therefore, the webpage content is
protected. This study’s strength is that the nature of HTML encryption uses compression,
permutation, and check digits to enhance the security effect. However, the system can crack by
using a JavaScript debugger to show the memory locations of when and where the Polymorphic
JavaScript Algorithm is activated. In this proposed research, loT based and not a web-based system;
therefore, software debugging would be challenging to reverse engineer, especially using a logic

analyser.

Overall, the proposed research will add to the contributed knowledge by developing a lightweight
polymorphic system on an loT device that can detect when a new client connects to the server for
authorisation from a predetermined database that authorises clients. Once the server has identified
the unauthorised client, it will reset the shared SSID password and share the randomly chosen new
password to the trusted authorised clients. Additionally, communication between the server and
authorised clients is encrypted. Therefore, if the unauthorised client manages to collect some

communication data, it will not be compromised or used to reverse the system.

The latter chapters of this research paper will pay closer attention to a broad spectrum of research
papers. To cover a considerable breadth of related topics, analysed to see what has previously been
accomplished, what is adaptable to this research and what this research paper can contribute and

“boldly go where no [person] has gone before”.

1.5 Overview of The Thesis
This thesis is systematically structured to present the development, implementation, and evaluation

of the Bio-Inspired Lightweight Polymorphic Security System for loT Devices. The seven main
chapters, along with comprehensive appendices, progressively guide the reader through the
research problem, conceptual foundation, technical design, and experimental validation of the

proposed system.

Chapter One introduces the thesis, presenting the motivation behind the research, the theoretical
underpinnings inspired by biological immunology, and the technical rationale for a polymorphic and
lightweight security system. It outlines the core aims and objectives, as well as the broader
significance of the research to the engineering community, particularly within the contexts of

embedded systems and cybersecurity.

Chapter Two provides an extensive literature review, covering the historical development and state-
of-the-art research in the Internet of Things (loT), network security, cryptography, and
polymorphism. This chapter also introduces battery management strategies for loT and evaluates

related studies in these areas. It lays the theoretical groundwork by identifying existing gaps in

23

integrating security with adaptive energy management, a key motivation for the development of this

thesis.

Chapter Three offers the technical and theoretical background necessary to contextualise the
research. It surveys loT hardware platforms, the evolution of cloud computing, the fundamentals of
cryptography, the biological mechanisms of immunity, and blockchain concepts and introduces the
conceptual linkage between brainwave modulation, energy adaptation and bio-inspired
communication networks such as mycelium systems, establishing the interdisciplinary basis for the

proposed system.

Chapter Four outlines the core framework of the proposed system, detailing the Approved Clients
List Process (ACLP), Client Connection Logic (CCL), Ledger Process (LP), Adaptive Amoeba Complexity
(AAC), and the novel Adaptive Amoeba Battery Curve Mapping Management System (AABCMS). This
chapter discusses the bio-inspired parallels and system logic in detail, supported by high-level

architecture diagrams.

Chapter Five transitions from conceptual design to practical implementation. It details the full
deployment of the system on a custom ESP32-S3 development board, and includes the construction
of client-server architecture, implementation of multiple lightweight and block cipher encryption
methods, secure communication logic, session handling, and the integration of AABCMS. Code

snippets and mathematical models are used to demonstrate key system functions.

Chapter Six presents the testing and refinement process. It evaluates encryption efficiency through
cycle and power analysis on both ESP32-53 and ATMEGA328P platforms. It further assesses the
auto-detection, auto-ejection, and trigger mechanisms by simulating various attack and
synchronisation scenarios. The full system is tested across multiple scenarios, including session
handling during low-power states and desynchronisation recovery via honeypot mechanisms.

Detailed results validate the system’s responsiveness, security, and power optimisation capabilities.

Chapter Seven concludes the thesis by synthesising the key findings, reflecting on the personal and
technical journey of the research, and proposing directions for future work. It explores how the
system may be extended through Al integration, post-quantum cryptography, decentralised ledgers,

and biologically-inspired models for next-generation cyber-physical security.

Finally, the Appendices provide detailed schematics of the hardware, complete implementation
code, test data, and supplementary tables and diagrams. These materials support the

reproducibility, transparency, and practical applicability of the research.

24

2.0 Chapter Two: Literature Review
Chapter two will cover various topics that encompass this research. It spans from the Internet of

Things (loT) devices, Security Systems within networks and the ideology of polymorphism from the
aspect of a changing system. To further understand how each topic and its subtopics are related to
one another and how they could collaborate. Understanding each topic’s history and how other
researchers have contributed to the overall industry would further develop knowledge for this

research.

2.1 Topic History and Development
2.1.1 Internet of Things

2.1.1.1 Brief History of the Internet of Things
loT (Internet of Things) is a term coined in 1999 by Kevin Ashton, who is a British technology pioneer

who co-founded the Auto-ID Centre at the Massachusetts Institute of Technology (MIT)[9]. A general
explanation for loT, according to McKinsey, is that |oT is “sensors and actuators embedded in
physical objects, from roadways to pacemakers, are linked through wired and wireless networks,

often using the same Internet Protocol (IP) that connects the Internet.”[10].

However, due to loT being a relatively new industry, there is no universally comprehensive definition
as various industries adopt loT for their unique needs. Therefore, they may label loT as something

else. For example, Intel originally called it the Embedded Internet, whereas Cisco preferred the term
Internet of Everything (loE). Various industries also use other terms, as they all have slightly different

meanings, such as:

e Industry 4.0

e Pervasive Computing

e Smart Systems

e Intelligent Systems

e M2M (Machine-to-Machine) Communication
e Industrial Internet of Things (lloT)

e Web of Things (WoT)

Industry 4.0, also known as the Fourth Industrial Revolution, emphasises the industrial practices of
implementing technology through automation, as well as its real-world applications, including
Virtual Reality (VR), Augmented Reality (AR), Mixed Reality (MR), and 3D printing. This approach and
the term itself originated in 2011 from the German government to incorporate a high-technology

strategy that implements the computerisation of manufacturing[11].

25

Pervasive computing is the precursor to 10T, as it establishes principles for a connected world,
primarily targeting the telecommunications industry for mobile communications. Nonetheless,
Pervasive computing fundamentals follow loT methodologies such as decentralisation,

diversification, connectivity, and simplicity[12].

Both Smart Systems and Intelligent Systems are intertwined as they focus on how systems interact
with the physical human-facing side that has dynamic physical and social environments. For
example, assistive robotics, medical care, education, entertainment, visual surveillance, and

biometric human identification.

Machine-to-Machine (M2M) communication allows communication between other devices through
a network system, either wired or wireless, via an IP network system. M2M sets the foundation for

Industrial Internet of Things (loT) and Industry 4.0.

Lastly, the Web of Things (WoT) represents a conceptual and architectural evolution of the loT by
extending its integration directly into the web ecosystem. While IoT is primarily concerned with
connecting devices through embedded sensors and network protocols, the Web of Things focuses on
standardising the interaction with these devices using established web protocols such as HTTP,
WebSockets, and RESTful APls. This web-centric approach aims to simplify the interoperability of
heterogeneous systems by making “things” accessible and manageable through uniform web

interfaces.

Technically, WoT introduces the concept of Thing Descriptions (TDs), which serve as metadata
models that describe the capabilities, properties, and communication endpoints of loT devices.
These TDs are typically written in JSON-LD and aligned with semantic web technologies, allowing
machines to interpret and reason about device behaviour automatically. As a result, WoT supports
not only human-centric interactions but also machine-to-machine interactions within a web-based

framework.

For example, a smart thermostat in a WoT environment may expose its temperature sensor,
operating range, and control functions via a RESTful interface. These capabilities can then be
accessed from any compatible application or device using standard web protocols, eliminating the

need for proprietary software stacks or middleware.

In summary, the Web of Things builds upon the Internet of Things by leveraging the web as a
unifying medium for connecting, describing, and interacting with smart devices. Its emphasis on
open standards, semantic modelling, and resource-based architectures contributes significantly to

the scalability and maintainability of large-scale loT deployments.

26

2.1.1.2 Generic Life-Cycle for loT Devices
Every product has a life cycle from the initial development phase to its growth, maturity and decline.

To understand how businesses are implementing loT devices, first, there needs to be an
understanding of the generic life cycle for loT devices. There are five main stages (Please refer to
Figure 2.1 General Life Cycle for loT Devices) for the loT product life cycle: (Re)Construction,

Deployment, Growth, Manage, and Decommission/Recycle.

(Re)Consturction

Decommision/Recycle Deployment

Figure 2.1: General Life Cycle for loT Devices

The first stage (Re)Construction begins with constructing the device hardware and software, or
reconstructing hardware components and updating software, like security and firmware[13]. This
stage’s development encompasses the specification, requirements, business needs, and constraints,
as the product must consider the end-use and life cycle. Some of the things to consider are what
type of data this device will gather, designing the appropriate circuit to allow external sensors,
powering the device, and implementing and testing the product to determine if the specification is

accomplished.

The second stage, Deployment, is a multipart process that requires the production/manufacturing
and installation of the device. Due to the yearly cost reduction of manufacturing sensors, the ability
to mass-produce these loT devices is relatively cheap. In the first part of this stage, the devices are
mass-produced. Each IoT device is given a unique ID or unique universal ID (UUID), and the initial
software with an over-the-air (OTA) programming ability can also include certificates or encryption
keys[14]. The second part is the physical installation of the IoT devices in their environment, such as

buildings, vehicles, and equipment. The installation may include factors for powering the device, as if

27

the device is in a building with electricity, and it can be connected directly to the electrical network.
An loT device is placed somewhere remote or mobile, like a weather station, which needs a mobile
power source and debugging features with limited human intervention. Geolocation might be
implemented to track the device and find the device; for example, if a weather station is
implemented in the desert and an intense sand storm may have displaced the sensor or damaged it,

human intervention is required to repair it.

The second stage directly influences the third stage, growth, which utilises the product by pairing
the sensor with the control server to verify communication streams. After the pairing is successful,
the device is registered as a connected device in the field, and data communication to the server
begins. The importance of registering connected devices is to keep track of what devices are active

and ensure legitimacy.

The fourth stage, Manage, is about monitoring, maintaining, and updating the loT devices. The
central server that enables remote monitoring of connected devices includes operating status,
battery level, configuration settings, and software version. Additionally, the configuration of the
alerts determines whether the 10T product is working as expected or if any suspicious activity occurs.
For example, suppose the loT device is a part of a BotNet. In that case, it will transmit an enormous
amount of data, which can raise an alert to the central server to reset the device to its factory
settings, therefore, no longer infected with the malware. Another common type of alert is examining
the transmitted data to see if it is erroneous. One of the advantages of loT devices is their ability to
be mobile. However, this poses a challenge for updating, as the manufacturer cannot recall all the
products to update. The solution is to have over-the-air (OTA) updates to allow the connected device
to be remotely updated, configured, and recalibrated. OTA is also the primary solution for
maintenance operations if the device can be repaired with software; otherwise, physical activity is

considered.

The fifth and last stage of the cycle is decommissioning/recycling. At the end of the loT device life
cycle, the need for significant upgrades to more recent hardware, or the end of gathering a
particular dataset, is apparent. The secure removal of the connected device from its platform for
decommissioning is set forth. In addition to decommissioning the connection and permissions
between loT devices and servers, they are revoked through securely unpairing the loT device[14].
Decommissioning is achieved through a final software update. The loT device is physically removed
from the environment to protect the environment by recycling, and to prevent data loss and data
theft. Since 2018 (an updated version of the 2013 regulation of the same name), the regulation for

waste electrical and electronic equipment (WEEE) requires manufacturers to conduct or outsource

28

electronic recycling and waste recovery in a safe and environmentally responsible manner. However,
for recycling loT systems (if not obsolete), most devices and sensors are redesigned to create new

models, thereby saving future project costs.

2.1.1.3 The Present to the Future
Over the past decade, loT progression has been exponential as sensors’ manufacturing costs have

decreased. Therefore, incorporating loT sensors for projects is limited to large enterprises and SME’s
(Small and Medium Enterprises). According to the “2019 manufacturing trends report” by Microsoft
[15]. The average price in 2005 was $1.30, compared to 2020, the cost was $0.38, which is a 49.4%

decrease in price. Please see Figure 2.2 for a cost trends graph from 2004 to 2020.

Average cost of loT sensor

$1.50
2004 average cost: $1.30
$1.25
$1.00
$0.75
$0.50

$0.25 2020 average cost forecast. $0.38

$0.00
pAV [z 2006 2008 2010 2012 pA 2016 pA L 2020

Figure 2.2: Average cost of loT sensors - Taken from the 2019 Manufacturing Trends Report by Microsoft

Due to loT devices’ cost-effectiveness, the range of applications is only limited by the product’s
design specifications. Thus, the accelerated rate at which the digital and physical are becoming ever

more interconnected. For example, to name a couple of types of loT applications would be:

e Applications within commercial 10T, as the Transport industry uses monitoring systems for
trains and vehicle communication to avoid traffic in smart and electronic cars. Additionally,
the Healthcare industry, using Pacemakers and automated insulin pumps.

e Consumer loT is more apparent as it includes home applications such as a smart fridge,
personal assistance like Alexa or Google Home. Wearable technologies communicate with a

smartphone via an application, such as a smartwatch.

29

e The sector of military, government or intelligence agencies could use loT through
surveillance and facial recognition to track and digitally follow suspects. Implementation of
biometrics for combat training to further understand how a subject reacts to a specific
scenario.

e Smart agriculture, control systems, and industrial big data for statistical evaluation all come
under the industrial 1oT. Especially within the agricultural industries, there is a need to
expand to feed the world's growing population without taking too much space and having an
ecological footprint. Due to this demand, more inner-city farms (or vertical farms) are
operating closer to the seller and growing plants in a more closed and controlled
environment, therefore, resulting in saving costs for pesticides, transport and storage.

e Lastly, the notion of smart cities, which comes under infrastructure loT, enables an

ecosystem for interconnected devices and services.

The question that arises from the low-cost adaptability and the highly adaptable implementations of
loT devices is How many loT devices are there? What are users spending on loT devices? Which

industries are adopting loT?

Table 1 shows the number of installed IoT devices from 2018 to 2020, then an estimate for 2021 and
2025.

Table 1: IoT Devices Installed Worldwide[16]

Year Number of Devices Worldwide (in Billions)
2018 7

2019 26.66

2020 31

2021 35%*

2025 >75%*

Figure 2.3 shows a forecast of end-user spending on loT solutions worldwide from 2017 to 2025. The
loT industry “reached 100 billion dollars in market revenue for the first time in 2017, and forecasts

suggest that this figure will grow to around 1.6 trillion by 2025.”[17]

30

1750

1 567

1500

1250

000

750

Market size in billion US. dollars

500

250

2017 2018 2019* 2020* 2021* 2022* 2023* 2024* 2025*

Figure 2.3: Global IoT end-user spending worldwide 2017-2025 [17]

2.1.2 Network Security Systems through Encryption and Cryptography

2.1.2.1 Basic Network Systems
Before delving into the security side of networking, encryption, and cryptography, one needs to

understand how network systems are structured and organised. The structure layers are the basis
for the Open Systems Interconnection (OSI) and Transmission Control Protocol/Internet Protocol

(TCP/IP) models.

This chapter will briefly discuss the differences and similarities between the OSI and TCP/IP
reference models and then discuss each of the layers in more detail; please see Figure 2.4, which

shows a basic outline of the layers between the OSI and TCP/IP models.

31

7 Application |

6 Presentation Application

5 Session

4 Transport | (Host-to-Host) Transport
3 Network | Internet

2 DataLink | Network Interface

1 Physical (Hardware)

OSI Model TCP/IP Model

Figure 2.4: Layers of the OSI and TCP/IP models - Taken from [Charles M. Kozierok]

There are a few differences between the OSI and TCP/IP reference models; for example, the OSI
model has seven individual layers (vertical approach) at its face value. In contrast, the TCP/IP has
four (horizontal); this is mainly because the TCP/IP model is a protocol-oriented standard. For
example, the Hypertext Transfer Protocol (HTTP) is in the application layer, and Transmission Control
Protocol (TCP) and User Datagram Protocol (UDP) are in the transport layer. The OSI model is more
logical and conceptually based on each layer’s functionalities. The OSI model distinguishes three
concepts: protocols, interfaces, and services that help standardise motherboards, routers, switches,
and other hardware. In contrast, TCP/IP helps establish a connection between different types of

computers.

However, the similarities of the two are that both reference models divide data into packets, and
each packet may take a unique route from the source to the end-user destination. Another similarity
is that the layers are compatible with each other. The physical layer and the data link layer of the OSI

model and the TCP/IP model correspond. The same goes for both the network and transport layers.

32

The differences and similarities between the layers have been discussed previously, but what are

their functionalities?

Starting from the bottom, the physical layer has the critical responsibilities of signalling and
encoding. Therefore, physically transmitting the data through electrical or light signals sent between
local devices, as the data type handled by this layer is in bits. The physical layer is where the

hardware specifications, topology and design of the entire network begin.

The data-link layer focuses on low-level data messages between local devices; these local devices are
directly connected nodes that perform node-to-node data transfer, where the data is packaged into
frames. The Data-link layer has the responsibilities of media access control (MAC), data framing and
handling the frames, logical link control (LLC), error detection, handling, addressing, and defining the

previous physical link layer requirements.

The Network layer handles data types of datagrams and packets; it is responsible for receiving
frames from the previous data link layer. The Network layer’s primary responsibilities are logical
addressing, routing, datagram encapsulation, fragmentation and reassembly, error handling, and

diagnostics. The network layer’s scope is the messages between local or remote devices.

Managing the delivery and the error checking of the data packets is the main factor of the transport
layer. The data type handles datagrams and segments in the transport layer, as it functions as a
multiplexer and demultiplexer, providing process-level addressing, connections, segmentation and
reassembly, acknowledgements and retransmissions, and flow control. The transport layer’s scope is

the communication between software processes, such as TCP and UDP.

The Session layer is responsible for session establishment, management and termination, as it
controls the communications between different computers and machines. The data type that the
session layer handles is sessions, as the scope of this layer focuses on sessions between local or

remote devices, such as sockets or NetBIOS.

The presentation layer (sometimes also called the syntax layer) is responsible for data translation,
compression, and encryption. The data type handled in this layer is encoded user data in the scope
of application data representations. A few examples of standard protocols and technologies in this

layer are SSL and MIME.

Lastly, there is the application layer, whereby the end-user interacts directly with the software
application, and it handles the user data and application data. The standard protocols and

technologies used in this layer are DNS, SNMP, HTTP, Telnet, FTP, DHCP, and more.

33

2.1.2.2 Network Security with Encryption and Cryptography
The fundamental nature of encryption derives from the need to communicate and send messages

back and forth securely. As technology is a tree that branches new inventions to birth instead of
miraculously spawning into existence, the history of encryption comes from linguistics. Linguistics is

“the scientific study of languages, how they evolve and are structured” [18].

The simplest form of encryption in the linguistic field is when two individuals in a group of people
have a private conversation by whispering, as this form of communication is secure to a small area of

effect of hearing.

Another example is when two people speak another language that is not the commonly spoken
tongue for that country, te respicere post tergum? Most readers of this research paper may not
know the sentence; hence, it is secure only for those who know, although due to the existence of

online translators, deciphering the unknown language is not a challenge.

Throughout history, encryption has evolved; the aim has remained the same: to communicate with
the intended recipient securely. However, the methodology changed and became more complicated

due to the volume of data that needed to be secured faster; this demand led to the study of

cryptography.

“Cryptography is the science [art] of keeping secrets” [19], especially in telecommunications, is
necessary when communicating over any unsecured devices and platforms; this includes any
networks, including the internet, as the internet is a network of networks. There are five main

functions cryptography has to offer[9]:

e Privacy and confidentiality: Ensuring that no one can read the message except the intended
receiver. Therefore, information that only the intended person can access.

e Authentication identifies who the sender and receiver are, as well as the origin and
destination of the information.

e Integrity is the method of assuring the receiver that the received message has not been
altered in any way from the original.

e The implementation of non-repudiation to prove that the sender was the originator of the
sent message.

e Key exchange is the method by which crypto keys are shared between the receiver and the

sender.

Before cryptography, all data started with unencrypted data, which refers to plaintext. The plaintext

is encrypted into ciphertext, which will, in turn, be decrypted back into usable plaintext using a key.

34

The encryption and decryption are based upon the type of cryptography scheme employed and

some form of a key, this process is written as:

Equation 2.1: General Equation for Encryption and Decryption
C = Ek(P)
P = Dk(C)
P = plaintext, C = ciphertext, E = the encryption method, D = the decryption method, and k = the key
(]

There are three types of algorithms for cryptography:

. Symmetric Key Cryptography or Secret Key Cryptography: Uses a single cryptographic
key for both encryption of plaintext and decryption of ciphertext.

. Asymmetric Key Cryptography or Public Key Cryptography (PKC): Uses one key for
encryption and another for decryption.

. Hash Functions or Hash Key Cryptography: Has no key within the algorithm but uses a

fixed-length calculated based on the plain text.

2.1.2.3 Symmetric Key Cryptography (SKC)
Symmetric Key Cryptography (SKC) uses duplicate cryptographic keys for both encryption of

plaintext and decryption of ciphertext. Once the encrypted text is received, the receiver applies the

same key to decrypt the message and recover the original plaintext.

With this cryptography, both the sender and the receiver must have the same key: the secret. The
most considerable difficulty with this approach is the distribution of the key. Symmetric key

cryptography schemes are categorised into either stream ciphers or block ciphers.

Stream ciphers are a type of symmetric-key cipher that continually converts a byte of the plain text
to encrypted data. Stream ciphers come in several variations; self-synchronising stream ciphers
calculate each bit in the keystream as a function of the previous n bits. It is also called self-
synchronising because the decryption process can stay synchronised with the encryption process by

knowing the length of the n-bit keystream.

One problem is error propagation; a misplaced/unsynchronised bit in transmission will result in an
absent bit at the receiving side, resulting in a separate message when decrypting the text. An
essential feature of synchronous stream ciphers is that they assure only the confidentiality of data
but not its integrity. An active attacker can flip the ciphertext’s bits, which converts the
corresponding plaintext bits. To prevent active attacks, one needs a message authentication code

(MAC).[20]

35

Synchronous stream ciphers generate the keystream independent of the message stream but use
the same keystream generation function at sender and receiver. At the same time, stream ciphers
do not propagate transmission errors. However, due to being periodic, the keystream will eventually

repeat, and any errors will be overridden.

A block cipher encrypts one fixed-size block of data at a time. A block cipher is a given plaintext block
that will always encrypt to the same ciphertext when using the same key, whereas the same

plaintext will encrypt to the different ciphertext in a stream cipher.

Block ciphers can operate in several modes: Electronic Codebook, Cipher Block Chaining, Cipher

Feedback, Output Feedback, and Control Mode.

The Electronic Codebook (ECB) mode uses the secret key to encrypt the plaintext block to form a
ciphertext block. It is the simplest operation model as the plain text message is divided into 64-bit
blocks, and each block is encrypted independently, but uses the same key for the encryption
process. When transmitting a single bit error, ECB could result in a mistake for the entire decrypted
plaintext. It is susceptible to brute force attacks, deletion and insertion attacks due to the lack of

diffusion. The formula is as follows, and a flowchart is provided in Figure 2.5.
Equation 2.2: Electronic Codebook (ECB) Encryption Equation
C; = CIPHk(P;)
Equation 2.3: Electronic Codebook (ECB) Decryption Equation
P, = CIPH ()

C = ciphertext, P = plaintext, CIPHk(X) = the forward cipher function, CIPH? «(X) = Inverse cipher
function, K = the secret key, and j is the sequence of the data from left to right.[21]

36

ECB Encryption

ECB Decryption

PLAINTEXT CIPHERTEXT
INPUT BLOCK INPUT BLOCK
CIPH, CIPH ",
OUTPUT BLOCK OUTPUT BLOCK
CIPHERTEXT PLAINTEXT

Figure 2.5: ECB encryption and decryption flow chart, taken from “Recommendations for Block Cipher Modes of Operation
Methods and Techniques” [21]

Cipher Block Chaining (CBC) adds a feedback loop for cryptography. CBC is achieved by first
encrypting the plaintext using an XOR cipher in the initialisation vector, then its encrypted again
using a key, and this output is XOR also into another key and so on. This chaining destroys any
sequential patterning and is protected against brute force, deletion and insertion attacks; however,
a single bit error in the ciphertext will still cause the entire block to produce the wrong plaintext. The

flowchart in Figure 2.6 follows the formula for CBC.

Equation 2.4: Cipher Block Chaining (CBC) Encryption Equation
C; = CIPHg (P, D IV);
C; = CIPHg(P; @ Cj—q)
Equation 2.5: Cipher Block Chaining (CBC) Decryption Equation
P, = CIPH 1y (C) @ 1IV;
P; = CIPH ' (C) @ C;—4
C = ciphertext, P = plaintext, CIPHk(X) = the forward cipher function, CIPH? «(X) = Inverse cipher
function, K = the secret key, j is the second data of the sequence from left to right, C; is the first data

from the sequence, X@Y bitwise exclusive-OR of two strings X and Y must be of the same length, IV

is the Initialisation vector.[21]

37

ENCRYPT
A

DEEQYPT

-

INITIALIZATION
VECTOR

C— 3

| PLAINTEXT 1 |

[PLAINTEXT 2 |

hJ

LN

¥
»i
]
k.

r

INPUT BLOCK 1

INPUT BLOCK 2

CIPH,

CIPH,

OUTPUT BLOCK 1

OUTPUT BLOCK 2

| CIPHERTEXT 1|

| CIPHERTEXT 2 |

| cIPHERTEXT 1]

| CIPHERTEXT 2 |

INPUT BLOCK 1

INPUT BLOCK 2

- 4
CIPH-, CIPH
QUTPUT BLOCK 1 QUTPUT BLOCK 2
—®
INITIALIZATION L
VECTOR | PLAINTEXT1 | | PLAINTEXT2 |

el

2

PLAINTEXT n

b 4

¥
INPUT BLOCK n

CIPH,

QUTPUT BLOCK n

CIPHERTEXT n

CIPHERTEXT n

INPUT BLOCK n

CIPH,

OUTPUT BLOCK n

L

Y

PLAINTEXT n

Figure 2.6: CBC encryption and decryption flow chart, taken from “Recommendations for Block Cipher Modes of Operation
Methods and Techniques” [21]

Cipher Feedback (CFB) mode is a block cipher implementation as a self-synchronising stream cipher.

This block cipher is very similar to CBC but performed in reverse. The reversal single bit error in the

ciphertext affects both this block and the following one. Please refer to Figure 2.7 for the flowchart,

and the defined formula for CFB mode follows:

Equation 2.6: Cipher Feedback (CFB) Encryption Equation

I, =1V;

Ij = LSBy_s(Ii_1)|C*;_4

0; = CIPH,(I))

C* = P*; @ MSBs(0))

Equation 2.7: Cipher Feedback (CFB) Decryption Equation

I, =1V;

Ij = LSBy_s(Ij_1)|C*;_4

0; = CIPH,(I))

P*; = C*; @ MSB,(0;))

38

C = ciphertext, P = plaintext, CIPHk(X) = the forward cipher function, CIPH? «(X) = Inverse cipher

function, K=t

he secret key, j is the second data of the sequence from left to right, C; is the first data

from the sequence, X@Y bitwise exclusive-OR of two strings X and Y must be of the same length, IV

is the Initialisation vector, I is the input block, LSB is the Least Significant Bit, MSB is the Most

Significant Bit,

X|Y is the concatenation of X and Y, b is the block size in bits, s is the number of bits in

a data segment, and O is the output, # is the segment of a block.[21]

INITIALIZATION
VECTOR

l

INPUT BLOCK 1

CIPH,

ENCRYPT
A

OUTPUT BLOCK 1
Select | Discard
s Bits (b-5) Bits

PLAINTEXT 1
s Bits

!

INPUT BLOCK 2
(b-5) Bits | s Bits

CIPH,

OUTPUT ELOCK 2
Select | Discard
sBits | (b-s) Bits

PLAINTEXT 2
s Bits

}

INPUT BLOCK n
[b-5) Bits | s Bits

CIPH,

OUTPUT BELOCK n
Select | Discard
sBits | [b-s)Bits

PLAINTEXT n
5 Bits

CIPHERTEXT n
s Bits

CIPHERTEXT 2

CIPHERTEXT 1

K s Bits s Bits
s NITIALIZATION
VECTOR
3
INPUT BLOCK 2 INPUT BLOCK n
INPUT BLOCK 1 (b-5) Bits | s Bits (b-5) Bits | s Bits
e CIPH, CIPH, CIPH,
=
. OUTPUT BLOCK 1 OUTPUT BLOCK 2 OUTPUT BLOCK n
Q Select ' Discard Select | Discard Select | Discard
I-ID-I sBits ' (b-s) Bits sBits ' (b-s) Bits sBits | (b-s) Bits
CIPHERTEXT 1 CIPHERTEXT 2 CIPHERTEXT n
s Bits s Bits 5 Bits
PLAINTEXT 1 PLAINTEXT 2 PLAINTEXT n
\ s Bits s Bits s Bits

Figure 2.7: CFB encryption and decryption flow chart, taken from “Recommendations for Block Cipher Modes of Operation
Methods and Techniques” [21]

Output Feedback (OFB) mode is a block cipher implementation conceptually like a synchronous
stream cipher. OFB prevents the plaintext block from generating the same cipher text block by using
a feedback system to generate the keystream independently of both the cipher text bitstreams and
plaintext. The single-bit error in the cipher text would only produce a single bit error in the

decrypted text. Please refer to Figure 2.8 for the flowchart.
Equation 2.8: Output Feedback (OFB) Encryption Equation
L =1V;
I; = 0j_4
0; = CIPH (1))
G=P®0;
C'n =P @ MSB,(0p)

39

Equation 2.9: Output Feedback (OFB) Decryption Equation

I = 0;_4
0; = CIPH (1))
P =0®0
P*p =C" @ MSB,(0r)

C = ciphertext, P = plaintext, CIPHk(X) = the forward cipher function, j is the second data of the
sequence from left to right, I; is the first data from the sequence from the Input, X@Y bitwise
exclusive-OR of two strings X and Y must be of the same length, IV is the Initialisation vector, / is the
input block, MSB is the Most Significant Bit, O is the output, P last block of the plain text, n is the

number of data blocks or data segments in the plaintext, and u is the number of bits in the last

plaintext or ciphertext block.[21]

{ INITIALIZATION
VECTOR

|

INPUT BLOCK 1

CIPH,

}

INPUT BLOCK 2

CIPH,

l

i INPUT BELOCK n

CIPH,

NCRYPT

OUTPUT BLOCK n

OUTPUT BLOCK 1 OUTPUT BLOCK 2

CIPHERTEXT 2 CIPHERTEXT n

CIPHERTEXT 1

e INITIALIZATION !
VECTOR 1
!

¥ i ¥

INPUT BLOCK 2

CIPH,

OUTPUT BLOCK 2

INFUT BLOCK 1 INPUT ELOCK n

CIPH,

OUTPUT BLOCK n

CIPH,

OUTPUT BLOCK 1

DE_C;Q_’ PT

CIPHERTEXT 1 CIPHERTEXT 2 CIPHERTEXT n

PLAINTEXT 2

PLAINTEXT 1 PLAINTEXT n

Figure 2.8: OFB encryption and decryption flow chart, taken from “Recommendations for Block Cipher Modes of Operation
Methods and Techniques” [21]

Counter (CTR) mode operates on the blocks as a stream cipher and serves on the individual block like
ECB. However, CTR uses various key inputs to unique blocks to prevent the same ciphertext from
occurring. Additionally, each block of ciphertext has a specific location within the encrypted

message. Then, CTR mode allows blocks to be processed in parallel, therefore offering performance

40

advantages when parallel processing and multiple processors are available. It is not susceptible to

ECB’s brute-force, deletion, and insertion attacks. Please refer to Figure 2.9 for the flowchart.

Equation 2.10: Counter (CTR) Mode Encryption Equation
0j = CIPH(T})
G=F0
C*'n =P, @ MSB,(0,)
Equation 2.11: Counter (CTR) Mode Decryption Equation
0j = CIPH(T})
P =G @0,
P, =C", & MSB,(0,)
C = ciphertext, P = plaintext, CIPHk(X) = the forward cipher function, j is the second data of the

sequence from left to right, X@Y bitwise exclusive-OR of two strings X and Y must be of the same

length, MSB is the Most Significant Bit, O is the output, P" last block of the plain text, n is the number

of data blocks or data segments in the plaintext, and T is the counter block.[21]

(

INPUT BLOCK 1

CIPH,

OUTPUT BLOCK 1

COUNTER 2

INFUT BLOCK 2

COUNTER n

CIPH,

INPUT BLOCK n

OUTPUT BLOCK 2

CIPH,

OUTPUT BLOCK n

ENCRYPT

PLAINTEXT 1 PLAINTEXT 2

CIPHERTEXT 1 CIPHERTEXT n

CIPHERTEXT 2

\
f
INPUT BLOCK 1 INPUT ELOCK 2 INPUT BLOCK n

= = = om
3 CIPH, CIPH, CIPH,
%< QUTPUT BLOCK 1 QUTPUT BLOCK 2 QUTPUT BLOCK n
m _
(o]

CIPHERTEXT 1

B

CIPHERTEXT n

CIPHERTEXT 2

PLAINTEXT 2

h

PLAINTEXT 1
\ (e]

PLAINTEXT n

Figure 2.9: CTR encryption and decryption flow chart, taken from “Recommendations for Block Cipher Modes of Operation

Methods and Techniques” [21]

41

2.1.2.4 Public key cryptography (PKC)
Public key cryptography (PKC) was first publicised in, 1976 at Stanford University by Professor Martin

Hellman and graduate student Whitfield Diffie. PKC depends on mathematical functions that are
easy to compute, but the operation’s inverse would be challenging to calculate; these produce a
one-way process. [22] In essence, PKC uses keys, Public keys that can be shared widely and a Private
key that is only known to the owner. Therefore, using the receiver’s public key, anyone can encrypt a

message, but the message’s decryption is achieved only using the receiver’s private key.

2.1.2.5 Cryptographic Hash Function (CHF)
Cryptographic Hash Function (CHF) is a mathematical algorithm that maps data of a message’s

arbitrary size to a string of bits of a fixed size (this is called the hash), a one-way function. One of the
vital properties of CHF is that the output of the process must look random; this is determined by a

series of behaviours and conditions that the CHF must satisfy:

. First preimage resistance: Essentially, given an arbitrary hash code, it is computationally
impossible to find an input that the hash function maps to that hash code (one-way
function).

. Second preimage resistance: Like the first preimage resistance as given input to the hash
function, it would be computationally impossible to find a second input that provides
the same hash code.

o Collision resistance: When a hash function is collision-resistant, it is computationally
impossible to find two inputs that give the same hash code.

o Indistinguishable from random: A hash function is indistinguishable from a random
process if an attacker cannot tell the difference between the hash function and a
function chosen entirely at random from all the tasks with the same input/output
characteristics as the hash function. A hash function can only be indistinguishable from

random if there is a key.[23]

Due to the CHF properties of looking random, the slightest change of a letter in a word would result

in drastic changes in the output result.

42

2.1.3 Polymorphism
Polymorphism has multiple denotations according to the various industries and fields. For this

research, both the information technology industry and the biological field will cross-pollinate, as

human immunology translates to a novel security system for loT devices.

In biology, polymorphism is the “discontinuous genetic variation which results in the occurrence of
several different forms or types of individual among the members of a single species”[24]. These
variations do not alter the individuals into sub-species from the original. An example would be the
different blood types in humans and the smooth graduation of heights among the human
population. Please note that if there are many polymorphic variations within a species, it can persist
over many generations, especially if the variation is advantageous in natural selection. Therefore,

some polymorphic variation could be advantageous to a species’ survival.

Humans have an innate and adaptive immunity in terms of immunology. Innate immunity responds
and recognises generic targets on foreign agents (pathogens), whereas adaptive immunity
recognises specific targets using “randomly generated receptors that have a virtually unlimited
recognition repertoire”[25]. There are two different types of adaptive immunity called humoral
immunity and cell-mediated immunity, and please see Figure 2.10 for a visual representation. The
properties of adaptive immune responses are specificity, diversity, memory, clonal expansion,

specialisation, contraction and homeostasis, and nonreactivity of self[2].

Table 2: Properties of adaptive immune responses according to Functions and Disorders of the immune system[2]

Feature Function

Specificity To ensure the targeted foreign agents (antigens!) get the appropriate
responses

Diversity To have a large variety of responses for a large variety of antigens

Memory To know which response was the most effective in protecting against
future exposure to the same foreign agent

Clonal expansion Increases the number of antigen-specific lymphocytes? from a small

number of naive lymphocytes, allowing for a higher concentration-
response as more cells are aware of the antigen

Specialisation Specialisation gives the ability to generate a more specific defence against
different microbes and antigens
Contraction and The ability to respond to an unknown or newly encountered antigen

homeostasis

Nonreactivity of self | Not to harm the host during the response to an antigen.

1 Any type of toxin or foregin substance that induces a immune response in the body.
2 B Lymphocytes produce proteins called antibodies which mediates an humoral immunity response.

43

Humoral
immunity

‘Cell-mediated
immunity

-

Microbe

: - ¥y

ytosed | Intracellular microbes

Phagoc : X
microbes that can | (€.9., viruses)

Extracellular

microbes live within ' replicating within
macrophages - infected cell
Responding :
‘Iymphocytesl Helper . Cytotoxic
B lymphocyte | T lymphocyte | Tlymphocyte
Secreted
) . antibody
Effector \
~mechanism & '}%
Block i Killed infected cell
infections f,‘,‘;lf'c‘;g‘;‘,’age
- - . and Kill infected cells
Functions | eliminate Elimination of and eliminate
extracellular| || phagocytosed reservoirs
microbes microbes of infection

Figure 2.10: Types of adaptive immunity - image taken from([2]
To translate and reverse engineer the biology of adaptive immunity into the focus of cybersecurity,
there needs to be a breakdown comparison of each of these features to the next best thing in the
cybersecurity industry. Specificity ensures the targeted antigens get the correct response from
antivirus programs, and they scan files and code to see if it has a similar signature to known malware
and viruses. If a known virus is detected, then the directed response will quarantine the file and then

delete the program([26].

The function of diversity, memory and specialisation is the adaptive immune system’s ability to

respond to different antigens and remember which responses are most responsive and efficient. In a

44

nutshell, this is also known as a threat database in the cybersecurity field. The threat database aims

to log current virus events with their signatures and repel those viruses from computer systems.

Clonal expansion is the adaptive immune system'’s ability to alert nearby cells to an active virus. For
an electronic system to imitate clonal expansion, each device needs to be within an interconnected
network like a mesh network, server and client or other connected topologies to allow the data of
threats to be shared with all connected devices. The advantage of having all connected devices
aware of a virus in the system is to reduce its spread and take appropriate measures according to

pre-written protocols.

Usually, an infected machine is isolated and quarantined from the rest of the system to avoid
malware from reproducing and spreading. Stopping this spread is the main feature of the
contraction and homeostasis function, which aims to respond to unknown or newly encountered
antigens. The difficulty with unknown viruses with minimal data would be the severity of the issue
they pose to any given system. Therefore, the best approach is to contain the virus and then study it

as a signature to see if any other systems have the same virus.

Lastly, the ability to be nonreactive to oneself during the response to an antigen is a crucial
application in any security system. Suppose an interconnected system, such as a server with many
clients, is infected. In that case, the best approach, depending on the severity of the issue, might
limit communication streams to non-infected clients to avoid further spread and then to remotely
factory reset the infected clients to a previous image of the system that does not have a virus.
Additionally, suppose a scheduled backup is a commonality within a system. In that case, the
recovery of the most recent backup that does not have the virus is the best option to restore the

client’s functionality and eject the system’s virus.

For programmers and engineers alike, adaptive immunity seems like an intrusion detection system
with a database for known security risks. The detection of a foreign agent that correlates to a known
security risk can then be subject to a specifically targeted response. It is also relatively common to
block known incoming threats by either allowing specific sites, applications or communication

streams or blocklisting threats known to the host/organisation.

Polymorphism within computer science and programming comes from the notion of type theory,
which is a system that every term has a type that defines the operations, meanings and how it
performs[27]. An example of type theory in programming is when a name (variable) might denote
different instances of many different classes as long as they have a common superclass. Therefore,

any object denoted by the same variable can respond to a standard set of operations differently. The

45

expected output through various operations; this type of polymorphism is called inclusion

polymorphism[28].

Another primary class of polymorphism is ad hoc polymorphism, described by Strachey[29], who
stated that symbols used in programming, such as plus (+), could also be defined to mean different
things. This concept is also known as overloading. Object-oriented programming languages like C++
could declare functions having the same names, as long as they have different invocations. For
example, there could exist two functions (also known as methods or subroutines) called “Addition”,
whereby one of these functions could return an integer by taking in two integer variables as
parameters and adding the integer value (2+2 will return 4). However, the other function called with
the same name can return a string by taking in two string variables from the parameter and

n o«

concatenating the values as a return statement (“hello,”, “there” will return “hello, there”).

Lastly, parametric polymorphism allows a data type or a function to be written generically;
therefore, it can handle values uniformly without depending on their data type[30]. Handling values
uniformly allows the language to be more expressive while maintaining the complete static type-

safety to prevent type errors.

Nonetheless, polymorphism within the cybersecurity field is an amalgamation of both how biological
viruses mutate and the different classes of polymorphism. In cybersecurity, polymorphic viruses are
a self-replicating piece of code that uses a polymorphic engine (also called a mutation engine) to
mutate while keeping the algorithmic output result intact. There are two ways a polymorphic engine
works: either encrypting the code by using a cypher to make it harder for antivirus systems to detect
the signature of the virus through the code, or by using an obfuscation technique to prevent

tampering, reverse engineering, and detection of its true purpose.

This research aims to produce a security system with human immunology’s logic operations while
deterring and deceiving invasive unauthorised clients using polymorphic techniques such as
inclusion, ad hoc, and parametric polymorphism to protect approved clients within the network
system. The next chapter will propose a framework for how a polymorphic security system is
implemented on commercial 10T devices, therefore tackling intrusive attacks and working within

microcontrollers’ limited processing power.

Furthermore, the Adaptive Amoeba Battery Curve Mapping Management System (AABCMS) draws
conceptual inspiration not only from immunology but also from neurophysiology. In biological
organisms, particularly in the human brain, different states of activity are characterised by varying

frequencies of brain waves: Beta waves dominate during active thinking and stress, while Delta

46

waves are predominant during deep sleep. Similarly, the AABCMS dynamically transitions the loT
device between high-processing (active) and low-power (sleep) states based on real-time battery
health predictions. This parallels how biological systems conserve energy during periods of low
activity and expend more resources during critical functional demands. Such bio-inspired adaptation
enables loT devices to maximise operational longevity while ensuring readiness to respond when

necessary, thereby offering a novel paradigm for battery-aware security systems.

2.1.4 Battery Management in loT Security Systems
Despite extensive research into loT security protocols, comparatively limited attention has been

given to the intersection of battery management and secure communication frameworks in loT
environments. Existing lightweight cryptographic approaches, while optimised for computational
efficiency [31]. Often fail to account for the dynamic energy profiles of devices operating under
variable loads and environmental conditions. Studies such as [32] highlight that energy-aware
communication protocols have been proposed independently of security considerations, yet
comprehensive frameworks that synchronise cryptographic adaptability with battery curve
monitoring remain scarce. This gap motivates the development of the Adaptive Amoeba Battery
Curve Mapping Management System (AABCMS), which uniquely combines real-time battery health
prediction, adaptive encryption strength selection, and sleep cycle optimisation to maintain the
operational longevity and security resilience of loT devices. By integrating power management
directly into the core security model, this system extends beyond conventional designs that treat

energy management and cybersecurity as isolated concerns.

While traditional loT energy management strategies often focus solely on static sleep intervals or
power gating techniques, the Adaptive Amoeba Battery Curve Mapping Management System
(AABCMS) advances the paradigm by drawing conceptual inspiration from biological neural systems.
In particular, human brainwave activity provides a relevant analogue: different cognitive and
physiological states are associated with distinct electrical patterns. Beta waves (13—-30 Hz) dominate
during active thought, stress, and problem-solving, associated with heightened glucose consumption
and energy demand [33], whereas Delta waves (0.5—4 Hz) predominate during deep sleep phases,

associated with significant energy conservation and restoration [34].

The AABCMS dynamically transitions loT devices between high-processing active modes and low-
power sleep states according to real-time battery health predictions. This mirrors how biological
systems strategically allocate energy, upregulating activity during high cognitive load and
downregulating it during rest. In the context of loT systems, such dynamic adaptation allows devices
not merely to conserve battery life but to operate with biological-like resilience, maintaining

operational readiness during critical demands while minimising unnecessary energy expenditure

47

during idle periods. By integrating bio-inspired adaptive behaviour, the AABCMS ensures optimised
longevity without compromising functional responsiveness, positioning it as a novel contribution to

energy-aware security system design.

2.2 Focus on Research and Evaluating Studies
This sub-chapter aims to go over a few related studies to discuss their findings, appreciate their

contributions, and see how they can benefit this thesis.

“Tree-Chain: A fast lightweight consensus algorithm for loT application”[35] proposes a new way to
implement blockchain on low processing power devices such as loT devices. The main reason
blockchain is challenging to implement on loT platforms is the expensive computational power
required for the validation and consensus algorithms which would cause significant transaction
delays between clients. This paper, written by Ali Dorri and Raja Jurdak, proposes a scalable tree-
chain for fast blockchain installation that introduces two randomisation levels in the validator. One
of the randomisation levels are in the transaction level, where the validator of each transaction is
selected randomly based on the most significant characters of the hash function output (known as
consensus code), and the other in the blockchain level where the validator is randomly allocated to a
particular consensus code based on the hash of their public key. The authors also implemented the
tree-chain to work with parallel chain branches; therefore, each validator’s corresponding
transactions are in an individual ledger. The paper gives a novel solution for blockchain within loT

platforms that will allow low-power processors to perform blockchain interactions.

Additionally, due to the blockchain implementation, there were a few security benefits against
attacks, such as a denial of service attack. The denial of service attack (DOS) as the validators in the
network monitors the cumulative number of transactions generated within a particular consensus
code range and the number of such transactions. If this threshold is surpassed, the validators will
choose a new validator for the corresponding consensus code. Hence, the DOS was ineffective for
this tree-chain approach. A tree-chain approach would prove fruitful for the lightweight polymorphic
security system as it integrates a shared ledger between the server and client to share
predetermined encryption keys and passwords for approved clients while being effective against

common attacks like DOS.

Effy Raja Naru et al. wrote a paper to review recent lightweight cryptography in 10T[36]. Though a
short paper, the table of comparison between lightweight cryptography related works in loT is
beneficial as it gives pros and cons for each technique used. However, the paper does argue a
challenge that all of these lightweight cryptography techniques have in common, which is the

physical security for loT. The notion of physical security and hardware trojans is a common threat

48

against loT devices; therefore, some protection against these types of attacks is considered in this

thesis, especially in the testing phase.

Directly related to the previous paper, “Hardware-assisted Cybersecurity for loT devices”[37], it puts
forth a solution to loT’s hardware-related cybersecurity issues on top of the software only solutions
to layer the security for loT devices. This study’s hardware-based methods give leverage to the
hardware modules by collecting micro-architecture information to analyse prevailing software level
threats and vulnerabilities. Some of the hardware-based methods include a runtime micro-
architectural event monitor, side-channel information, trusted platform modules, and a security-
aware design. This study’s most exciting integration is the discreet trusted platform module chip,
which allows cryptographic keys tied to specific platform measurements and are protected from
disclosure to any untrusted hardware components, processes, or software. Such hardware
implementation is manufactured by companies like Intel’s Software Guard Extention[38] and ARM
with their TrustZone chip[39] that can be incorporated into existing modules during the

development phase.

Further exploring hardware related subjects, a review article by Mingfu Xue et al. called “Ten years
of hardware Trojans: a survey from the attacker’s perspective”[40] gives invaluable insight into how
hardware trojans were executed in various stages of the product lifecycle. There are five stages
within the supply chain: design, synthesis and verification, fabrication, testing, and distribution,
where the attackers have opportunities to attack. In the design phase, attackers (in-house design
team attackers) can use flexible methods to implement any malicious function and create a side-
challenge/covert communication channel leakage. In the synthesis and verification stage, the
attackers will be 3PIP vendor attackers who implement malicious functions with flexibility by
modifying the IP design at the RTL netlist or other specification levels. Fabrication stage attackers try
to change the netlist in the layout or modify the manufacturing process. During the testing phase,
the attackers directly modify the hardware trojan’s detection results or modify the test data to
mislead the detection results. Lastly, in the distribution phase, the reverse- engineering a chip to

pirate the design or directly replace it with a trojan inserted version during the transportation.

Designing with a vision for the future helps devices be in service for longer, as the device can be
upgraded through software and modified by adding additional hardware. The paper “lattice-based
cryptography for loT in a quantum world: are we ready?”[41] shows how current FPGA’s and other
loT platforms could implement lattice-based cryptography. In order to implement lattice-based
cryptography in an loT platform, there are a few challenges. One of the challenges is communication

bandwidth, as most embedded processors are memory-constrained, therefore only suited for minor

49

security parameters, such as loT applications with limited transmission bandwidth (through Wi-Fi).
Security strength often balances performance and security, as any brute-force cryptanalytic efforts
require more computational resources, increasingly for the required search on a block cipher such as
AES-128 and other similar ciphers. However, the trade-off between performance and the required
security is generally less desirable due to the associated overhead. This paper gives an excellent
overview of what loT devices are lacking. However, it does open a Pandora's box to a more

significant impact on quantum computing and its ability to crack modern security systems with ease.

One of the challenging issues in loT devices is the tampering of firmware, as it is challenging to
detect and recover from the tampered firmware. The paper “ChainVeri: blockchain-based firmware
verification system for loT environment”[42] proposes a new blockchain-based firmware verification
system that used a shared palette (ledger) to check the devices to see any firmware tampering have
been made. The palette comprises the block header, which encompasses the block hash, block size,
block version, previous block hash, time, difficulty, and nonce. The palette also has another module
called the verification information, verifying the device model, firmware version, verifier, and
identification. Having these functions in the palette allows the blockchain to know the block’s
version when the structure of the palette changes. It can also verify the device through a universally

unique identifier and check and verify its firmware.

Due to loT devices and storage’s limited computational power, traditional off-the-shelf solutions are
resource contained on these devices and therefore not recommended for security implementation.
The paper “Pseudo-Random Number Generator and Hash Function for Embedded
Microprocessors”[43] puts forth a solution to overcome this problem by implementing lightweight
techniques for efficient Pseudo-Random Number Generator and Hash function to reduce memory
consumption and accelerate performance. The reason behind using a pseudo-random number
generator is to build and generate harder to break keys and other secret parameters on embedded
processors. This paper does propose a relatively efficient way to harden existing security methods
such as AES by implementing a pseudo-random number generator; therefore, not too much change

needs to occur on the broader system for integration.

“Lightweight Cryptography Algorithms for resource-constrained loT devices: A Review, Comparison
and Research Opportunities”[44] is an excellent paper that provides a holistic view and compares
various lightweight cryptography algorithms that are available in the market. The critical common
challenges with conventional loT based cryptography are limited memory (RAM, ROM, and
registers), limited computational power, the small surface area of the device, lower battery power

(no battery power with RFID tags), and real-time operations. The way this paper compares the

50

different cryptography algorithms is by three characteristics: physical, which is the physical area,
memory and battery power. Performance, which determines the computing power (latency and
throughput); lastly, the security characteristic measures the minimum security strength in bits,
attack models, and side-channel and fault-injection attacks. With these various parameters, the
thesis can benefit by paying closer attention to what is valued in this paper's comparisons of

different lightweight cryptography algorithms.

There is a comprehensive and detailed thought for what type of loT devices should be implemented
in an loT platform in any loT system development. Therefore, a study compares and “Reviews Low-
End, Middle-End, High-End IoT devices”[45]. The way the loT devices are classified are as follows:
Low-end devices (such as at ATTINY85) are classified as having less than 50kB of RAM, less than
250kB of Flash, devices that do not support an RTOS to devices with RTOS, communication protocols
range from gateway communication, lightweight protocols such as Constrained Application Protocol
(CoAP), and communication protocols such as HTTP. Lastly, security vulnerabilities whereby data is
compromised, causing a medium to a high threat. Middle-End devices (like the ESP8266 and ESP32)
provide more outstanding features and processing capabilities such as more RAM, Flash, higher clock
speeds, and various communication protocols like Wi-Fi, Bluetooth and Bluetooth Low Energy (BLE).
High-end devices (Raspberry Pi, PandaBoard, HummingBoard, and more) typically are single-board
computers with powerful processing units and plenty of RAM to provide a graphical user interface or
even the ability to run custom operating systems like Windows 10 loT, Ubuntu, Linux, and Raspberry
0S. The main reason why this study is essential for this loT development is that it helps developers
to decide which board to use for a particular functionality. Such as if there is a requirement to gather
air pollution data in a given environment, there isn’t a need to use a high-end device as they are
more expensive for scaling up, instead of using a middle-end device would prove fruitful as they
have enough processing power and a communication protocol to gather the data and send itto a

server.

51

3.0 Chapter Three: Background

Chapter three covers the history and theory of operations on the various topics prevalent in this

research, such as loT boards, Cloud computing, Cryptography, immunology and blockchain.

3.1 Current loT boards
There are thousands of loT boards in the market that use various microprocessors and expansion

modaules to enable connectivity. However, when looking for the correct loT board for a project, the

consumer must first understand the project requirements and then find an appropriate board to

continue development for either personal use or a client. Typically when researching the appropriate

board for an loT based project, there are a couple of things to keep in mind. The main hardware

selection criteria are summarised in Table 3 for different features and why they are essential when

designing an loT product.

Table 3: Key features of loT devices that contribute to the design of an loT device

Feature

Reasoning

Clock Speed

The clock speed is how fast the data is transferred between the microprocessor
and between the microprocessor and memory, which must be
synchronised.[46]

The importance is that the faster the clock speed, the higher the power
consumption; therefore, for mobile loT devices, it is critical to lower and slow
down the clock speed to improve the battery lifetime.

A similar approach is also achieved by using deep sleep/sleep modes.

Power
Consumption

Most loT devices are connected directly to a constant power source. However,
it is increasingly common to find more loT devices that are mobile and battery-
powered.

There are many aspects that contribute to power consumption, from clock
speed, the microprocessor, type of connectivity, sleep modes, effective
programming (e.g. how many cycles it takes to do specific functions), and the
number of connected sensors.

Connectivity

How does the loT board transfer data between all points of the ecosystem?
Does it use short-range communication such as Bluetooth Classic, Bluetooth
Low Energy (BLE), or Radio Frequency Identification (RFID)?

Mid-range communication traditionally falls under Wi-Fi, but Zigbee, MQTT and
other mesh protocols for home automation are also common.

For long-range communication, it is typical to use Low Power Wide Area
Networks (LPWANSs) like NB-loT, LTE-M, LoRa, Sigfox, and cellular connections.

Communication

What communication protocols (I/O interfacing) does the microprocessor use?
UART, USART, USB, 12C, SPI, CAN, and so on are crucial as some sensors can
only transfer data using specific protocols.

The common loT manufacturers are usually well-established manufacturers who typically sell the

same microcontrollers to different board designers who make specific selling points. The common

manufacturers for loT microcontrollers are ARM with their Cortex series[47], [48], [49], Atmel with

52

their AVR processors[50], Espressif is leading the charge for the all in one loT chip[51], Nordic

Semiconductors [52], and Broadcom[53].

3.2 History of Cloud Technologies
In a pithy manner, cloud computing can be described as “a style of computing in which scalable and

elastic IT-enabled capabilities are delivered as a service using Internet technologies.”[54]. However,
a more concise definition of cloud computing from Thomas Erl is “Cloud computing is a specialised
form of distributed computing that introduces utilisation models for remotely provisioning scalable
and measured resources.”[55]. Cloud computing is not a new technology, as the idea was primarily
developed to be a military mainframe in the 1950s to connect computer terminals across an internal
matrix and have a decentralised storage technology. The term cloud computing was coined by the
Compag company in an internal document in 1996, but was popularised by Amazon.com after it

released its Elastic Compute Cloud in 2006. The evolution of cloud computing is depicted in Figures

3.1and 3.2.

Figure 3.1: Early Timeline of Cloud Computing - Taken from BCS (https.//www.bcs.org/content-hub/history-of-the-
cloud/)[56]

Figure 3.2: Current Timeline of Cloud Computing - Taken from BCS (https://www.bcs.org/content-hub/history-of-the-

cloud/)[56]

The National Institute of Standards and Technology (NIST) made three models for cloud-computing
providers: Infrastructure as a Service (laaS), Platform as a Service (PaaS), and Software as a Service

(SaaSs).[57]

53

https://www.bcs.org/content-hub/history-of-the-cloud/
https://www.bcs.org/content-hub/history-of-the-cloud/
https://www.bcs.org/content-hub/history-of-the-cloud/
https://www.bcs.org/content-hub/history-of-the-cloud/

laas, or Infrastructure as a Service, is the lowest level in the network infrastructure, encompassing
physical computing resources, scaling, backups, security, memory, partitioning, and more. At the
laas level, a hypervisor will run all the virtual machines as guests within a cloud operating system.
Therefore, it can support large numbers of virtual machines and allows the users to scale up and
down according to their usage and demand. The NIST definition for laaS is for the “the consumer is
to provision processing, storage, networks, and other fundamental computing resources where the
consumer [can] deploy and run arbitrary software, which can include operating systems and
applications.”[57] However, the users are not in control of the underlying cloud infrastructure, and
they only control the operating system, storage, deployment applications, and have limited control

over networking components.

PaaS offer the consumers a development environment to the application developers to deploy unto
the cloud infrastructure, either consumer-created or acquired applications created using

programming languages, libraries, services, and tools supported by the cloud provider.

Cloud providers manage the infrastructure and platform that runs the application/ software for
Saas, allowing the consumers to gain access to the application software and databases. The NIST
definition is “The capability provided to the consumer is to use the provider’s applications running
on a cloud infrastructure”[57] that can be accessed through various client devices, either through a

web browser, programming interface, or a thin client interface.

Cloud infrastructure is the collection of hardware and software which enables the five essential
characteristics of cloud computing, shown in Table 4. The cloud infrastructure contains both the
physical and abstract layers (in that order, as the abstraction layer sits on top of the physical layer).
The physical layer consists of the hardware resources essential for the cloud service, such as the
server, network components and storage. The abstraction layer consists of the software deployed

across the physical layer, which gives the cloud its characteristics.

54

Table 4: Essential Characteristics of Cloud Computing[57]

Essential Characteristics of Cloud Computing

Characteristics

Definition

On-demand self-service

A consumer can unilaterally provision
computing capabilities, such as server time and
network storage, as needed automatically
without requiring human interaction with each
service provider.

Broad network access

Capabilities are available over the network and
accessed through standard mechanisms that
promote use by heterogeneous thin or thick
client platforms (e.g., mobile phones, tablets,
laptops, and workstations).

Resource pooling

The provider’s computing resources are pooled
to serve multiple consumers using a multi-
tenant model, with different physical and
virtual resources dynamically assigned and
reassigned according to consumer demand.
There is a sense of location independence in
that the customer generally has no control or
knowledge over the exact location of the
provided resources, but may be able to specify
location at a higher level of abstraction (e.g.,
country, state, or datacenter). Examples of
resources include storage, processing, memory,
and network bandwidth.

Rapid elasticity

Capabilities can be elastically provisioned and
released, in some cases automatically, to scale
rapidly outward and inward commensurate
with demand. To the consumer, the capabilities
available for provisioning often appear
unlimited and can be appropriated in any
guantity at any time.

Measured service

Cloud systems automatically control and
optimise resource use by leveraging a metering
capability (usually pay-per-use) at some level of
abstraction appropriate to the type of service
(e.g., storage, processing, bandwidth, and
active user accounts). Resource usage can be
monitored, controlled, and reported, providing
transparency for both the provider and
consumer of the utilised service

55

3.3 Cryptography
Cryptography, fundamentally, is the science of encoding and decoding information to maintain

confidentiality, integrity, and authenticity in communication systems [58]. Historically, cryptography
dates back to ancient times, with primitive encryption techniques, such as the Caesar cipher, used
predominantly in secure military communications [59]. Modern cryptographic methods are broadly
categorised as symmetric-key cryptography, asymmetric-key cryptography, and cryptographic hash
functions [60]. In symmetric cryptography, a single private key is shared between the sender and
receiver to encrypt and decrypt data, offering computational simplicity and speed. However, the
challenge with symmetric encryption lies in secure key distribution and management [61].
Asymmetric cryptography, conversely, employs a pair of keys (public and private), eliminating the
key distribution dilemma by openly distributing the public key, yet requiring significantly greater

computational resources due to its algorithmic complexity [60].

In the context of the Internet of Things (loT), conventional cryptographic algorithms, designed
primarily for traditional computing environments, often become computationally prohibitive due to
hardware limitations and stringent power constraints [62]. Consequently, lightweight cryptography
has emerged as a pivotal domain specifically tailored for resource-constrained devices prevalent
within loT ecosystems. Lightweight cryptographic algorithms are optimised to operate efficiently on
limited hardware, low memory footprints, and minimal processing power while providing a
satisfactory security threshold suitable for most loT applications [63]. Notable lightweight encryption
algorithms include SPECK and SIMON, both block cipher algorithms developed by the United States
National Security Agency (NSA) to ensure robust security while reducing computational overhead on
constrained devices [64]. Such lightweight algorithms effectively balance between cryptographic
strength and resource efficiency, enabling integration into microcontroller-based loT devices such as

ESP32 and ATMEGA328P, as demonstrated in this thesis.

Adaptive cryptography further extends the concept of lightweight cryptography by dynamically
adjusting cryptographic strategies in response to evolving environmental conditions, threat
landscapes, and resource availability [65]. This dynamic adaptability is critical for loT devices, given
their exposure to varying operational contexts and constrained battery resources. Adaptive
cryptographic methods assess device-specific parameters such as battery voltage, processor cycles,
and available memory to select the optimal encryption method that ensures security without
exceeding energy budgets [66]. This methodology parallels biological systems, notably the adaptive
immune system, which dynamically adjusts defensive strategies in response to varying pathogen

threats [67].

56

In the presented Bio-Inspired Lightweight Polymorphic Security System for loT devices, adaptive
cryptography is embedded within the Adaptive Amoeba Complexity subsystem, where encryption
strength dynamically varies depending upon real-time device battery levels and processor
constraints. When the battery level is high, computationally robust block cipher algorithms, such as
SPECK and SIMON, can be implemented to maximise security. Conversely, as battery power
decreases, computationally simpler encryption methods, such as XOR, Caesar cipher, or ROT13, are
selected to conserve energy resources while still maintaining baseline encryption standards. Thus,
the system ensures an optimal trade-off between security strength and power consumption,
underpinning both operational efficiency and security resilience within resource-limited loT

environments.

3.4 Immunology
Immunology is the branch of biomedical science concerned with the study of the immune system, its

physiological functioning in health, and its malfunctions in disease states. At its core, the immune
system is a highly dynamic, adaptive, and decentralised network that protects the organism against
pathogenic threats by distinguishing between self and non-self entities [67]. This selective and rapid-
response capability forms the fundamental biological inspiration for the design of the Bio-Inspired

Lightweight Polymorphic Security System for l1oT devices presented in this thesis.

The immune system is traditionally divided into two major branches: the innate immune system and
the adaptive immune system [68]. The innate immune system provides the first line of defence,
characterised by non-specific, immediate responses against invading organisms. Mechanisms such as
macrophage phagocytosis, neutrophil activation, and natural killer (NK) cell-mediated cytotoxicity
represent innate immunity’s swift but generalised approach [69]. By contrast, the adaptive immune
system demonstrates specificity and memory, capable of tailoring immune responses to particular
antigens via the generation of antigen-specific B and T lymphocytes [70]. A hallmark of adaptive
immunity is immunological memory, whereby previous encounters with pathogens are

"remembered," allowing for faster and stronger responses upon subsequent exposures.

Drawing inspiration from these biological principles, the proposed polymorphic loT security
framework emulates key immune system functionalities. Auto-detection of clients mirrors innate
immune surveillance, wherein every incoming client connection is rapidly assessed against a
predefined list of approved clients (analogous to the immune system's recognition of self-antigens).
Clients that fail initial authentication undergo a secondary scrutiny process analogous to antigen
presentation and adaptive immune activation. If identified as foreign or untrustworthy, the system

initiates an auto-ejection response akin to the cytotoxic response mounted against pathogens.

57

Furthermore, the shared ledger mechanism within the security system is comparable to
immunological memory, maintaining a dynamic record of approved credentials to enable swift
reacquisition of trusted clients and facilitate prompt defence against desynchronised or rogue

agents.

At a molecular level, biological immune systems employ receptor diversity and mutational
adaptability to counter evolving pathogenic threats [71]. Similarly, the polymorphic security system
dynamically alters encryption methods, session identifiers, and access credentials upon detecting
anomalous behaviour. This process ensures that even if an attacker compromises one instance of
the security environment, future iterations become increasingly difficult to predict or penetrate,
reflecting the adaptive immune system's principle of clonal expansion and somatic hypermutation

[72].

In mathematical terms, the diversity generated by the immune system can be conceptualised by
calculating the possible combinations of antigen receptor genes through combinatorial joining and
junctional diversity, estimated to be in the order of 10121012 (10*?) unique receptors [73].
Analogously, in the proposed system, the dynamic rekeying process ensures a large cryptographic
search space, increasing exponentially with each adaptive response cycle and significantly enhancing
system resilience. The polymorphic transformation of encryption methodologies can be expressed

mathematically as:

Equation 3.1: General Formula for Polymorphic Transformation of Encryption Methodologies

Snew = f(Sota, Ex)
Where S,,.,, represents the updated session environment, S,;, is the existing session structure, and
E}, is a dynamically selected encryption transformation function from a set of polymorphic

candidates.

The adaptive mechanisms of the immune system serve as an elegant and efficient model for
cybersecurity in highly dynamic and resource-constrained environments such as the loT. By applying
immunological principles of detection, ejection, and memory to the engineering of loT security, this
research bridges interdisciplinary concepts and presents a novel framework for achieving

autonomous, energy-efficient, and resilient security architectures.

3.5 Blockchain
Blockchain technology is a decentralised and distributed ledger system designed to record

transactions securely, transparently, and immutably across a network of participants [74]. Initially
conceptualised as the foundational architecture behind Bitcoin by Nakamoto [75], Blockchain has

since evolved into a powerful general-purpose framework applicable to a wide range of domains,

58

including finance, healthcare, supply chain management, and, increasingly, cybersecurity for

Internet of Things (IoT) environments.

At its core, blockchain operates by aggregating transactions into blocks, which are then
cryptographically linked to form a continuous chain. Each block contains a cryptographic hash of the
previous block, a timestamp, and transaction data. The chaining mechanism ensures the integrity
and immutability of the historical record: altering any single block retroactively would require the

alteration of all subsequent blocks, an endeavour computationally infeasible for large networks [76].

The consensus protocols employed within blockchain systems, such as Proof of Work (PoW) or Proof
of Stake (PoS), serve as trust mechanisms among otherwise untrusted entities [77]. These consensus
algorithms guarantee that all participants reach agreement on the state of the ledger without the
need for a centralised authority, thus enabling secure decentralisation. Mathematically, blockchain’s
resilience can be represented through Byzantine Fault Tolerance (BFT), where a system of 3000

nodes remains reliable if fewer than 1000 (up to one-third) of the nodes are compromised [78].

In the context of this thesis, the principles of blockchain have inspired the design of the Shared
Ledger Process (SLP) within the Bio-Inspired Lightweight Polymorphic Security System for loT
devices. The ledger maintains synchronised, tamper-evident records of authorised clients, their
credentials, encryption methods, and session histories. Much like blockchain nodes maintain a copy
of the distributed ledger to ensure consensus and detect anomalies, each client device synchronises
its local ledger upon connection or after a detected security event, ensuring consistency and

integrity across the network.

The dynamic update and propagation of security credentials through the shared ledger can be

formally modelled as:

Equation 3.2: General Formula for Dynamic Update and Propagation of Security Credentials through Shared Ledgers

Lyyr =H(Ly Il C)
where L,,, 1 represents the new ledger state, L,, is the previous ledger entry, C,, is the new client
credential data, and H denotes a cryptographic hash function ensuring data integrity. This approach
ensures that any tampering or desynchronisation becomes immediately apparent, akin to the

cryptographic immutability principle in blockchain systems.

Moreover, just as blockchain systems possess the ability to fork and re-synchronise in the event of
network partitions or attacks, the proposed framework includes a desynchronisation detection and
recovery mechanism via the Adaptive Honeypot Response. In cases where legitimate clients lose

synchronisation (e.g., through power failure or malicious interference), the system transitions into a

59

controlled honeypot environment, allowing only verified UUIDs to retrieve updated ledger data

while isolating potential threats.

The lightweight nature of the proposed shared ledger, tailored for resource-constrained loT devices,
represents a crucial departure from traditional blockchains, which typically involve high
computational and storage overhead. By optimising the ledger entries to essential security
information and using efficient hash-based authentication rather than full consensus protocols, the

system balances security, performance, and energy efficiency.

The conceptual parallelism between blockchain’s decentralised integrity model and the security
framework presented herein thus provides a robust, scalable, and resilient foundation for

autonomous, self-healing loT security systems in heterogeneous environments.

3.6 Adaptive Energy Management: Inspiration from Neural Dynamics
As loT devices become increasingly ubiquitous in critical applications, from healthcare monitoring to

industrial control systems, the demand for optimised energy management alongside robust security
has intensified. Traditional battery management systems focus predominantly on voltage monitoring
and simple low-power state transitions [79]. However, these approaches often lack integration with
the security frameworks of devices, leading to inefficiencies where cryptographic operations drain

battery reserves unpredictably [80].

The Adaptive Amoeba Battery Curve Mapping Management System (AABCMS) developed in this
research addresses this limitation by fusing battery health prediction, dynamic energy mapping, and
adaptive sleep modes with real-time security communication protocols. Through techniques such as
guadratic curve fitting to battery voltage profiles and dynamic adjustment of encryption complexity
based on available energy reserves, AABCMS offers a biologically inspired, fully integrated model.
This ensures not only the prolongation of device lifespan but also sustained operational integrity

under stringent energy constraints, a necessity for the next generation of resilient loT deployments.

The energy management techniques employed by the AABCMS mirror biological neural systems,
where operational modes adaptively shift between high-energy consumption (e.g., Beta wave
activity during cognitive stress) and low-energy conservation (e.g., Delta wave activity during deep

sleep), aligning technological adaptation with proven biological efficiency models [81].

The development of the Adaptive Amoeba Battery Curve Mapping Management System (AABCMS) is
informed not only by immunological models but also by the adaptive energy dynamics observed in

biological neural systems. During periods of intense cognitive activity, humans exhibit Beta wave

60

patterns, indicative of increased energy utilisation, while during states of rest or sleep, Delta wave

patterns emerge, associated with reduced energy consumption[33], [34].

In parallel, the AABCMS enables loT devices to dynamically adapt their operational modes according
to available energy resources, actively shifting between processing-intensive and energy-conserving
states. This biologically inspired approach ensures that devices operate maximally efficiently,
analogous to biological systems' prioritising energy expenditure according to functional demand.
Consequently, the AABCMS extends the bio-inspired framework beyond immunology into broader
biological adaptive strategies, reinforcing the holistic bio-mimetic underpinnings of the system.
Please see the table below for the conceptual diagram showing parallels between brain wave states
and the Adaptive Amoeba Battery Curve Mapping Management System (AABCMS). Both systems
dynamically adapt energy expenditure according to operational demands, ensuring survival and
functional longevity. In the neural system, different brainwave frequencies correspond to cognitive
loads, while in the AABCMS, varying operational modes are triggered based on real-time battery

health estimations.

Table 5: Conceptual diagram showing parallels between brain wave states and the Adaptive Amoeba Battery Curve
Mapping Management System (AABCMS).

Comparison between Brain Energy Adaptation and loT Adaptive Amoeba Battery Curve

Management
Biological Neural System loT Adaptive System (AABCMS)
High Cognitive Load (Beta Waves, 13— | Active Processing Mode (ESP32 full power, secure
30 Hz) communication)
Moderate Activity (Alpha Waves, 8—12 | Light Sleep Mode (moderate power conservation, faster
Hz) wake-ups)
Low Activity / Drowsiness (Theta Deep Sleep Mode (aggressive power saving, longer wake
Waves, 4-7 Hz) intervals)
Deep Sleep (Delta Waves, 0.5-4 Hz) ULP (Ultra-Low Power) Mode (battery preservation,
minimal operation)

3.7 Bio-Inspired Communication Networks: Mycelium Systems
In addition to immune system paradigms and blockchain architectures, biological networks such as

mycelium offer compelling models for adaptive, decentralised communication. Mycelium networks,
formed by underground fungal hyphae, exhibit sophisticated resource distribution, threat detection,
and environmental responsiveness without reliance on a centralised command structure. This
decentralised sensing and signalling is facilitated through electrochemical gradients and molecular
exchanges that parallel, in principle, how distributed loT devices might coordinate authentication,

threat detection, and energy conservation [82].

61

In recent studies, mycelium networks have been shown to exhibit patterns of electrical spiking
behaviour reminiscent of neuronal or computational signalling [83]. Such properties suggest that
future iterations of bio-inspired loT frameworks could draw upon mycelial strategies for optimising
communication efficiency under conditions of environmental uncertainty or infrastructural
instability. The self-healing and redundancy features inherent in fungal networks could provide
useful heuristics for designing resilient loT systems operating in hostile or resource-constrained

settings.

Thus, just as the Adaptive Amoeba Battery Curve Mapping Management System dynamically
reallocates energy based on available resources, a mycelium-inspired model might further enhance
system resilience through localised decision-making, distributed threat signalling, and adaptive load
balancing. Table 6 compares key features across biological analogies, underlining the broader

potential of cross-disciplinary biomimicry in advancing the design of future intelligent systems.

Table 6: Comparative Features of Bio-Inspired Communication Systems

Comparison between Immune Systems, Blockchain, and Mycelium Networks for Bio-Inspired
Communication

Feature Immune System Blockchain Mycelium Network
Architecture Distributed, adaptive | Distributed, consensus- Distributed,
driven decentralised
Communication Cytokine signalling, Cryptographic validation, | Electrochemical
Method antigen presentation | block propagation signalling, nutrient
transfer
Threat Detection Foreign pathogen Transaction tampering Environmental hazard
recognition detection sensing
Response to Threat | Rapid, targeted Forking or invalidating Redirecting resources,
immune response chains avoiding threats
Memory Immunological Immutable ledger of Long-term memory via
Functionality memory (e.g., historical transactions persistent hyphal
memory T-cells) structures
Fault Tolerance High, redundant High, redundancy Extremely high,
detection pathways | through multiple nodes regenerative growth
patterns
Energy Efficiency Context-dependent Moderate (depends on Highly efficient resource
(can be costly) consensus mechanism) distribution
Self-Healing Replacement of Chain recovery via Regrowth of broken
damaged cells honest nodes hyphae, rerouting
signals

62

4.0 Chapter Four: Framework

4.1 Introduction
Chapter four proposes how the lightweight polymorphic security system would work and details

each subroutine’s various stages and methods, such as intrusion detection to detect any unapproved
clients, a shared ledger for all approved clients, and the ability to change encryption keys and
passwords. Additionally, this framework also introduces a novel adaptive amoeba battery curve

mapping management system that any mobile loT system can use.

A quick overview of the security system is as follows: the security system has a server that an
approved client can connect to using the SSID of the server and a password. Once connected, the
server will give the approved client a ledger shared between all approved clients. The
communication between the server and the client is encrypted using a shared encryption key. This
ledger shared a two-dimensional array containing new passwords to allow the client to connect to
the server and new encryption keys to secure communication between client and server. If the
server detects an unauthorised client trying to connect to the system, the server will send out a
trigger to all approved clients. The trigger contains a number that corresponds to an element in the
two-dimensional array. Therefore, all of the clients and the server change to the new password and
a new encryption key, resulting in the unapproved client not knowing the new password or

encryption keys.

Looking back at the previous chapter, the human immune system can detect foreign agents by using
a known threat database, and if those known threats are detected, an immune response is activated.
In cybersecurity, this is called a blocklist. In an loT platform, the manufacturer or the person who is
the system administrator would know the number of |oT clients that would be connected to the
server. Therefore, instead of using a blocklist to reject any known incoming threats, using an allow
list only to allow communication between the known loT clients is a more straightforward approach.
Hence, having an allow list approach covers how to detect any unapproved clients. However,
suppose an unapproved client manages to get into the system by knowing the network’s password.
In that case, the trigger activates, allowing all approved clients to change to the new password and
encryption key. This detection of unapproved clients (pathogens) is the immune response for this

polymorphic security system.

The nature of the shared ledger comes from blockchain technology, which, in summary, is a growing
list of records that is resistant to modification of its data and is distributed via a network through

internal node communication. The ledger for this security system follows the same characteristics as

63

the list of records, comprised of passwords and new encryption keys shared between all clients and

the server.

Once all clients have the ledger, the clients will only read the ledger when the trigger is activated.
The trigger is only activated when the server detects an unauthorised client is trying to connect to
the network, meaning that the unauthorised client may have the initial password for the network.
Since this unapproved client is not on the allow list, then the trigger is activated. The trigger is
composed of an integer that relays the next element in the ledger array with new passwords and
encryption keys. Henceforth, all clients receive the trigger and change to the new password and

encryption key accordingly.

In this chapter, the framework visualisation for the polymorphic security system to better
understand each function’s input and output is explored and documented through various stages.

These stages are as follows:

e Server and client model with a peer-to-peer node communication
e The approved client list for the allowed list

e Intrusion Detection

e Shared ledger

e Encrypted communication between client and server

e Synchronised reform from the ledger

Please see the following page for the Framework Overview. Figure 4.1 below will be referenced

throughout the rest of the chapter to explore the various stages stated above. Some functions are
highlighted in blue in the figure, denoting that they are a part of the adaptive amoeba complexity.
The blue functions indicate that these systems can increase or decrease complexity depending on

the hardware used.

64

BN Y P o >
- > //<\ g z bbb
— Aay
JBAIS B} ssaooud 181] Jualo parosdde saniss 8y pue 6oy asje4 10 aniy 1517 Keuy uonay
- wﬁ.ﬁm_mﬂo%m 0} uol9BLUND ay) pue o1fio| uoyoaUL0D uopoBUUDD JUBlD >:Mq__«wq"_“__‘u_h_—ﬂn_oo.mnﬂ B SE Jay)a s)nsal e se Ajjensn ejeg mw_wuc..n_ :D_uMMM:M.__._:EDU uonduossag
q v oARdepY Bunuoour man JUDI|D UMY 2 ol L 0/ | Y21ym Juswajelrs eleq paiois uegjoog peuspaid 191
(shuol (e) ssa00.d 151
LD aup Be|4 asiey pausliqelsa os|ed4 Jo anyISSOd
. " : uolIBUUED ON SS1E4 4190950 SjusliD Um>0-_aﬁ_<
| LopRoUNWOo;
sebpen m i peydAioug
ﬂ ; : i
Sju3||9 panoiddy Y el and|
03 paieys AlUQ Janlag
uoaduuon PALR] 101849 1817 paaocsddy
Buiwosu| %0019 U0, asie g WaLeD “gny) ¥ | %l ainn
S,Jualfo spPn saledwon
Q1 uoissag
-uou pue Buneadai-uoN
! \\. N 3517 paaciddy Lsainn
JoAIag puz Aem ooy { smeg sjuay) 03 Jabpa UOIIBULOD i ¥ : | i
! . — aus
SsII0 pasoddy ! yosu powepdn 10 Adan Inys5099ng | nding |) | parosddy |
Ulm uooeuUCIEY { 1607 uogasuuoy / uesoog juayd i ¥98UD ! 0)81
juep oy nding / ¥ |

sps|ID Wold
ejeq aAalaay

fay uondAlaug
pUE S[elUSpBI) MON

pojaals sjuans
paacaddeun |y

Juawal3 sunay
3 4 Jequinu JaBBuy
Koyl uopdAioug pug WOPUEI WOy
enuapain iy | JUBLUAR 818307
817 |
Jeuc|susw|g oML

(0) ssao0id
1abpan

A

21aA49s WO
uoneULIjUBY,

UaWB|3 $19D

]

ELOTY

7 ™= pejessush eguinu

{ ndu) 1966 wopuey |

e
| 48BBuL !
AN

196611
puag

suelD

panocaddy
lle o} Jueg

pasiwoidwon
|efjuapaig

| uonosuuoy
T TSrTYeE |

0} S[eRuapaly
pesiwoadwoy
PPY

(g) 01607

usid

$921A9(10|
ul A}1IN23g 40} YJomawea 4
paqidsuj-oig ay] JO M3IAIBAQ UY

Figure 4.1: Framework for the Bio-inspired Lightweight polymorphic security system for loT devices

65

4.2 Approved Clients List Process (ACLP)
The beginning of the client journey starts with a new connection. The approved client list is the first

line of defence against any unapproved clients. Additionally, the approved client list also acts as a
RADIUS Server. The new client connection flows into the incoming connection function, where it is
given a session ID that is non-repeating and non-sequential. Once given the session ID, the process
then checks if the client has the correct credentials to connect to the server. The framework checks if
the incoming client is on the block list and raises a flag if true. The purpose of the block list is to protect
against denial-of-service attacks. If the credentials are incorrect, then there is no connection
established between the incoming client and the server. If the credentials are valid, the server will
check if the flag has been raised to see if there was a false positive or a false negative (the raised flag
might occur due to failed resyncing). Then, it moves on to request the client’s UUID to be compared
using an iterator (a search function) with the approved UUID addresses. The iterator function will
return and output either a “true” or “false” whether the UUID address is on the list or not. Referring
back to the properties of adaptive immune responses, the ACLP deeply reflects features such as
specificity, diversity, memory and specialisation.

4.3 Client Connection Logic (CCL)

The return output from the approved client list becomes an input variable to the client connection
logic, as this function will react accordingly depending on the variable. If the variable is “true” (the
connected client is on the UUID address list), this is considered a successful connection, and the server
gives a copy of the ledger with the element location for the current password and encryption key. At
this stage, the client and the server have successfully connected and can communicate with other
clients and the server when necessary. Contrariwise, if the variable returns a “false”, then the
implication is that the current server credentials are compromised, and this unapproved client knows
the password to connect. As soon as the “false” variable returns, the credentials used are added to
the block list, and a trigger (composed from a random number generator) is sent to all approved
connected clients. When a client receives the trigger value immediately, it will locate the ledger’s
element corresponding to the trigger value. The primary purpose of CCL is to reflect features of

adaptive immunity, such as nonreactivity to self and contraction and homeostasis.

4.4 Ledger Process (LP)
The ledger, only shared between approved clients, contains a database comprised of a two-

dimensional list, the password to connect to the server (Wi-Fi credentials) and the encryption key
required to decipher the communication stream between client to client (node and peer-to-peer
communication) and from client to server. The ledger’s returned element allows the approved clients
to reconnect with the new credentials to the server. As a result, all the unapproved clients get

automatically rejected from the system as they do not have the newly updated credentials. When the

66

clients attempt reconnection after the trigger is activated, a three-way handshake is performed, the
server sends a synchronisation, the client syncs to the server synchronisation and acknowledges it,
then the server acknowledges the client’s acknowledgement. After a three-way handshake is
successful, the client gets a copy of the updated ledger with the credentials’ new element location.
However, suppose the three-way handshake is unsuccessful (the server did not acknowledge the
client). In that case, the client is reverted to an incoming connection to double-check if it is in the
approved client list and if it is, it will get a copy of the ledger, and if it is not, it will be rejected. LP
reflects adaptive immunity functions such as contraction and homeostasis and clonal expansion.

The server and client’s communication stream is encrypted using a block cipher (or any encryption
communication) to add additional security against data theft and intrusion, such as a man-in-the-

middle attack or listening or probing intrusions.

4.5 The Adaptive Amoeba Complexity (AAC)
The Adaptive Amoeba Complexity (AAC) is a dynamic memory configuration system that changes the

complexity of various elements of the framework to best suit the processing power of the hardware
on which it is running. There are three main adaptive complexities within this framework; please see
Figure 17 above, highlighted in blue. After a successful connection to the server is established, a
copy of the ledger is given to the client, and the server will run a simple diagnostic check on the

connected device to procure three specific information:

1. Processor Type and Bit Architecture, as this information can often be obtained from
predefined macros or registers specific to each microcontroller family.

2. Memory Usage, which can be determined by reading specific registers or using system
functions provided by the microcontroller's SDK.

3. Processing Power, which is more complex, but basic metrics like CPU usage can be

estimated.

The result of these three pieces of information will directly reflect which encrypted communication
protocol will be used, for example, one of the microprocessors that is connected might be an 8-bit
processor that uses 35% of the memory (SRAM) and 40% of CPU, with this information it would be
best to implement a lower process intensive encrypted communication stream to make sure the loT
device is not drawing too much current resulting in poorer battery life or a memory overflow error

due to a large encryption key.

There are three implementations of the AAC in this framework: the first is Encrypted
Communication, which dynamically changes according to the diagnostic check; the second is the

ACLP, which is updated whenever new devices are added, or the block list is updated; and lastly,

67

within the LP with the dynamic ledger for credentials and encryption keys. Depending on the
network system topology, the AAC can be either set up universally between the server and client, or
it can be individually set up between the broker and clients, as some brokers may have more

connected clients or clients with more processing power than other brokers.

4.6 Adaptive Amoeba Battery Curve Mapping Management System
The primary purpose of the battery mapping system is to intelligently manage the power

consumption of an loT device by accurately predicting the battery's remaining capacity. This is
achieved through continuous monitoring of the battery voltage, dynamic estimation of battery
health, and adaptive adjustment of the device's operation modes to maximise battery life while
maintaining functionality. By predicting battery percentage and adapting power usage based on real-
time data, the system ensures that the loT device can operate efficiently over extended periods,

even in power-constrained environments.

In loT systems (especially mobile), devices are often deployed in remote or difficult-to-access
locations where frequent battery replacement or recharging is not feasible. In some cases, remote
loT devices are connected to solar panels or other forms of green energy to power the system,
whereby power management and battery management are crucial to ensure maximum efficiency.

These devices must operate efficiently for extended periods on limited power reserves.

Therefore, this Adaptive Amoeba Battery Curve Mapping Management System ensures enhanced
energy efficiency by accurately predicting battery levels and dynamically adjusting the device's sleep
modes as the system conserves energy, allowing the device to operate for longer periods without
intervention. The system adjusts sleep intervals based on both battery percentage and health.
Healthier batteries allow for shorter sleep intervals, enabling more frequent updates, while
degraded batteries are managed more conservatively, extending their operational life. This helps
conserve energy and extend the battery life, which is critical for IoT devices operating in the field for
long durations without maintenance. The system ensures operational reliability as the device can
continue functioning in low-power modes even as the battery depletes, preventing unexpected
shutdowns and maintaining service continuity. This is particularly important in applications such as
environmental monitoring, where consistent data collection is crucial. Lastly, the system also
provides insights into the battery’s discharge characteristics over time, enabling predictive and
preventive maintenance. Operators can anticipate when a battery will need replacement or

recharging, thus minimising downtime and ensuring continuous operation.

The novelty of this battery mapping system lies in its adaptive and predictive capabilities through

data-driven adaptation, dynamic sleep management, and a circular buffer for data retention. Unlike

68

traditional fixed mapping systems that use a static relationship between voltage and battery
percentage, this system continuously collects data and refines its predictions over time. The system
becomes more accurate and personalised to the specific battery's characteristics by storing and
analysing past data. The system predicts battery life and uses that prediction to manage the device's
operation modes dynamically. This is akin to a biological system where energy usage is optimised
based on available resources, ensuring that critical functions are maintained even under constrained
power conditions. The system employs a circular buffer to manage data storage in EEPROM,
dynamically overwriting the oldest data points. This ensures that the most relevant data is retained
while optimising memory usage and extending the lifespan of the EEPROM without the risk of
memory overflow. This approach balances data retention with memory constraints, making it

suitable for resource-limited loT devices.

Initially, the battery mapping system operates using a predefined battery curve that estimates the
relationship between voltage and battery percentage. This curve is based on typical battery
discharge characteristics and provides a reasonable starting point for managing power. As the
system operates, it collects real-world data points (voltage and corresponding estimated
percentages). It refines its predictions through non-linear interpolation to more accurately predict
battery percentage based on voltage readings. This approach reflects the non-linear discharge
characteristics of batteries, offering a more precise estimation compared to linear models. The
system estimates the battery's overall health and uses this information to inform power
management decisions. This feature allows the system to trigger maintenance alerts when the
battery is nearing the end of its life, ensuring timely interventions. This approach mimics biological
systems, where organisms continuously gather information from their environment and adjust their

behaviour to optimise survival and resource use.

The system begins by measuring the battery voltage through an ADC and applying an initial mapping
function to estimate the battery percentage. This initial mapping acts as a baseline, similar to how an
organism might assess its energy reserves at the start of a day. As the system collects more data
over time, it shifts from relying on the initial mapping to using a more refined, non-linear
interpolation model. This process mirrors how biological systems adapt and refine their energy
management strategies based on experience and real-time conditions. The system dynamically
adjusts its operation modes (e.g., light sleep, deep sleep, ultra-low power mode) based on the
predicted battery percentage and health. This adaptive behaviour is analogous to how organisms
modulate their activity levels in response to energy availability, conserving energy during times of

scarcity while maintaining essential functions.

69

—» ADC Measurement

Normal Realtime
Operation

Enter Hibernation

Figure 4.2: Block diagram for Adaptive Amoeba Battery Curve Mapping Management System

Enough NO - .
> Data? —_—> Initial Mapping
l YES
Data Storage
Prediction
YES NO isi
Decision (Sleep
=759
€« >=75% ———> Mode)
>50% >=25% <25%
. Ultra Low Power
Light Sleep Deep Sleep Sleep
Light Sleep Deep Sleep
Limit Limit
Y Y Y
No New Data
> Collect Data Store Exisiting Data In
No Limit EEPROM
A 4 Send Stored Data and
P Power Reading
Send Data and <
Diagnostics Acknowledgement For
To Server u-"laintananoa

The block diagram for the Adaptive Amoeba Battery Curve Mapping Management System is shown

in Figure 4.2. The battery management system begins with the ADC Measurement block, which

reads the current battery voltage through the Analogue-to-Digital Converter (ADC). The ADC

converts the analogue battery voltage into a digital value that the microcontroller can process. This

voltage is a critical input for the subsequent steps in the system. Once the battery voltage is

measured, the system evaluates whether sufficient historical data is stored to predict the battery

70

percentage accurately. If enough data is available, the system stores the new measurement data. If

not, the system moves to the Initial Mapping block.

In the Initial Mapping block, the system relies on a predefined voltage-to-percentage mapping to
estimate the battery percentage, especially when there is insufficient data for more accurate
predictions. This initial mapping provides a starting point for the battery status estimation until more
refined data can be gathered. After completing the initial mapping, the system stores the estimated

data and proceeds to the Prediction block.

The Data Storage block plays a crucial role in this system. The newly measured voltage and its
corresponding battery percentage are stored in a circular buffer. This storage method ensures that
the system retains the most recent data points without exceeding memory limits by replacing the
oldest data when the buffer is full. With the data securely stored, the system moves to the
Prediction block, which uses linear interpolation or other predictive methods to refine the battery
percentage estimate based on the stored data. As the system gathers more data, this step becomes

increasingly accurate.

After the prediction is made, the system checks whether the predicted battery percentage is greater
than or equal to 75%. If the battery percentage is 75% or higher, the system continues with regular
real-time operation, avoiding any sleep mode to maintain full functionality. However, if the battery
percentage is below 75%, the system proceeds to the Decision (Sleep Mode) block, determining the

appropriate sleep mode to conserve energy.

In the Decision (Sleep Mode) block, the system selects one of three sleep modes based on the
predicted battery percentage: Light Sleep for battery levels between 50% and 75%, Deep Sleep for
levels between 25% and 50%, and Ultra-Low Power Sleep (ULP) for levels below 25%. These sleep
modes vary in the degree of power conservation and responsiveness, with ULP being the most
energy-efficient but least responsive. After selecting the sleep mode, the system continues to the

Collect Data block.

During the Collect Data phase, the system continues to gather and store data on battery voltage and
other parameters, even while in sleep mode. This ongoing data collection is essential for refining
future predictions and ensuring that the system remains accurate over time. Once the data is
collected, it is sent to a remote server in the Send Data and Diagnostics to Server block. This
transmission allows for remote monitoring and analysis, ensuring the device’s performance and

battery health can be tracked over time.

71

In cases where the system is in ULP mode, it may stop collecting and storing new data to conserve
power, instead relying on the data already stored in EEPROM. Maintenance might be required If the
system has no recharging capabilities and the battery reaches a critically low level. The system sends
all stored data, and the server sends an acknowledgement request for maintenance. If no
maintenance is performed and the battery continues to deplete, the system will enter the
Hibernation block. This final step ensures that the device remains protected and conserves as much

power as possible until the battery can be recharged or replaced.

A key innovation of the Adaptive Amoeba Battery Curve Mapping Management System (AABCMS)
lies in its dynamic selection of encryption methods based on real-time battery availability. This
mechanism, termed the Adaptive Encryption Engine, enables the system to adaptively shift between
lightweight and more complex cryptographic schemes depending on energy constraints. The
decision process is inspired by the metabolic prioritisation observed in biological organisms, where

the immune system modulates its intensity based on physiological reserves.

When energy is scarce, only minimal response mechanisms are engaged; when energy is abundant,
the full spectrum of immunological defence is deployed. In parallel, this system utilises the predicted

battery percentage E;, to map to a corresponding encryption method M as follows:

Equation 4.1: Mapping for Encryption and Battery Percentages

XOR, E, = 15
Caesar, 15<E, <30
M = f(E,) = { ROT13, 30<E, <50
SPECK, 50 <E, <75
SIMON, E, =75
This mapping is directly implemented within the system firmware (see Appendix 16), enabling real-

time responsiveness to energy states. Through this mechanism, the framework not only preserves

battery life but also ensures an optimal balance between computational load and data security.

72

4.7 The Framework In Practice
The Bio-Inspired Lightweight Polymorphic Security System for loT Devices is designed to manage

connections and secure communications in an loT environment dynamically. It mirrors biological
immune system functions such as specificity, memory, and adaptability. It ensures that only
approved clients can communicate with the server while dynamically adjusting its behaviour based

on the capabilities of the hardware in use.
The system is divided into several key components:

e Approved Clients List Process (ACLP): This is the first line of defence. It checks if a connecting
client is approved by comparing its UUID against a list of approved UUIDs. If the client is not
approved, the connection is denied, and the credentials are added to a block list if
necessary.

e C(Client Connection Logic (CCL): This logic handles the connection of approved clients. It
ensures that only clients with the correct credentials and UUIDs can connect and receive the
necessary ledger information for secure communication.

e ledger Process (LP): The ledger is a dynamically updated list shared among approved clients.
It contains the credentials and encryption keys required for secure communication. The
ledger is updated and shared only with approved clients.

e Adaptive Amoeba Complexity (AAC): This component dynamically adjusts the encryption
protocols and other system parameters based on the hardware capabilities of the connected
devices, ensuring that the system remains efficient and secure regardless of the device's

processing power.

Depending on the use case scenario, an loT network system comes in various shapes, sizes and
power requirements. Typically, an loT network will always have a client responsible for some form of
environmental measurement or interaction. The client collects data and either temporarily stores it
locally for edge processing or uploads it to a server for long-term storage. In most applications, the
client collects sensor data and then directly sends it to the server for further processing for end-user

applications. See Figure 4.3.

73

//7 CLIENT \\

SENSOR DATA SERVER

Store Locally A{Proi:gszmg J—)[Upload }

Figure 4.3: Generic loT Client Responsibilities

The server is responsible for long-term storing, processing data and maintaining client updates. In
smaller topologies, the server receives the data from the client to process and display the
information. Refer to Figure 4.4. In more extensive topologies and applications, it is common for the
server also to have a broker (or router) that manages the clients. An example of this is when there
are more clients than the server can handle directly, as it could unintentionally cause a Denial of
Service due to the amount of data the server has to process. Therefore, having a broker alleviates
the server's processing and distributes it. An alternative is to have a distributed system which has

both responsibilities for the client and the server.

//7 SERVER 4\\

CLIENT DATA UPDATES

Long Term Processin Network
Storage 9 Maintenance

N /

Figure 4.4: Generic loT Server Responsibilities

The Bio-inspired Lightweight Polymorphic Security System Framework is best described as a multi-
layered cell wall that performs various checks before allowing a new connection to enter. To help

visualise this process, the following figures describe the framework as a new client connection.

74

SSID: test1
Pass: test1
Encryption: key1

Shared Ledger Server
\l ’T Incoming
Connection

________ New

Broker Conenction
Session ID: 01

E F uuliD: 06
. —» . —» . —> . —> .
Client __"Client __"|Client__" Client__" Client

Qpproved Approved Approved Approved Approvey

Figure 4.5: Visualisation of Incoming new connection

In Figure 4.5, a new connection occurs, requesting the Universally Unique Identifier (UUID) and
creating a non-repeating and non-sequential session ID within this process. In this figure, the cell
wall contains the server, broker, clients, and the shared ledger, which contains the SSID and
password credentials with the encryption key. Currently, the SSID and password are set to “test1”

while the encryption key is set to “key1”.

Implementing non-repeating and non-sequential session IDs significantly enhances the security and
integrity of web applications. These session IDs are crucial in preventing session hijacking and
session fixation attacks by making it difficult for attackers to guess or infer valid session IDs through
brute force or other methods. Additionally, they obscure patterns that attackers could exploit, thus
improving confidentiality. The uniqueness of non-repeating session IDs avoids collisions, ensuring

each session is distinct and secure.

This practice also aligns with regulatory and compliance standards such as OWASP and GDPR,
reducing the risk of penalties and enhancing the organisation's security posture. Furthermore, non-
repeating session IDs offer protection against replay attacks by preventing the reuse of session IDs.

To effectively implement these IDs, cryptographically secure random number generators are used

75

(see the implementation chapter), sufficient length and complexity are ensured, session IDs are

securely stored and transmitted, and periodic rotation is considered.

381D test1
Pass: test1
Encryption: key1

On Block
v List?

™ [Session Black
' Flag: Fal
Shared Ledger Server g False

Broker
e Session ID: 01

Client, "Client, "|Client " Client, ' Client

_Approved Approved Approved Approved Approved

iow
Conenction

uuID: 06

8SID: test1
Pass: test1
Encryption: key1

Server

Shared Ledger

Broker

n

Client,_ Glient " Client . Glient " Client

" Approved Approved Approved Approved Approved

Figure 4.6: Visualisation of session block list check

[Session Block
[Flag: Trua

On Block
List?
________ Now

Conenction
Session ID: 01
uuID: 08

In Figure 4.6, the framework checks if the new connection’s session ID is on the block list; if not, it

can continue to the next stage, and the flag remains false; if the session ID is on the block list, then

the flag is set to true. During the testing stages (see the testing chapter), some connections were

flagged up not because of bad actors but because of resyncing multiple times; due to this, there was

extra implementation to check if the flag was raised and then to confirm a false positive or a false

negative.

S8iD: test1
Pass: test1
Encryption: key1

e Y
Shared Ladger Server Gorract

L F CradantialsT

SSID: testl

- Now
roker
Conenction” page: test1

t

Session 10: 01

1
Client " Glient " Client . Client " Client

' Approved Approved Approved Approwed Anvm.cd}i

SSID: test1
Pass: test1
Encryption: key1

Sharad Ledgar Server

4

Client " Client " Client,_" Client . Client

S Bpproved Approved Approved Approwed Approved

Figure 4.7: Visualisation of the credentials check

SSID: wrong1
Pass: wrong1

Comect
ials?

~ Genenction

Sesslon 10201)b o

In Figure 4.7, the SSID and password credentials are checked. This stage is a precursor to see if there

are any compromised credentials. If the new connection is successful, it will then move into the next

stage; if the credentials are incorrect, then the system will disconnect from the new connection.

76

SSID: test1 SSID: test1
Pass: test1

Encryption: key1

Pass: test1
Encryption: key1

y
Server
Shared Ledger rr

Shared Ladger Server !
Flag Raised? L lj Flag Raised?

evy SSID: testl SSID: testl
Broker Conanct : Broker :
. onenctiot pass: testl Pass: testl
i Session ID; 01 Session D: 01
Client .~ Client " Client " Client, " Client Session Block Client,, " Client .~ Client " Client | " Client Session Block
VN S FlagiFalso N e py—— Fiag: Trun

Figure 4.8: Visualisation of the flag checker

Figure 4.8 examines whether the flag has been raised. If the credentials are validated, the server
verifies the flag status to determine the occurrence of false positives or false negatives, which may
arise due to failed synchronisation attempts. In the case of a false positive, the session block list is
updated, allowing the new connection to retry the process. Conversely, if a false negative is detected
and the new connection fails the credentials check, the connection is rejected. However, if a false
negative is detected and the credentials check is passed, the approved UUID triggers the immune

response.

88ID: test1

B fot SSID: test2
ass: st :
i Check List of Pass: test2
- Check List of
Encryplion; key1 Approved UUID J Encryption: key2 Ap;:vmfugm
4 5 a x
erver ‘
Shared Ledger — Sharad Ladgar Server
v | . L
ow
i " o
Braker Canenction | [SSID: test1 Broker e S5 testi

Pass: test1 Pass: test1

Session ID: 01 . Updated
Sassion 10: 01 Block List

Client/, "|Client, " Client, " Client " Client

ion Block Clien| Clien Client Client Client
| y Ifrfs?‘:“‘ loc! | Session Block
h (et fnpa el A Ch e ag: False ‘ Approved Approved Approved Approved Approved Flag: False

Figure 4.9: Visualisation of the Approved Client (UUID) List

Figure 4.9 illustrates the process of verifying the UUID against the approved client list. The new
connection must provide the UUID, which is then compared to the approved client list, yielding a
boolean result. If the result is true, the client is permitted to pass through the cell wall and register
as a new client. Conversely, if the result is false, the immune response is activated, indicating that
the new connection has bypassed the block list and successfully provided valid credentials,

suggesting that the credentials have been compromised. Upon raising the flag, the session ID and

77

the compromised credentials are updated in the block list and the ledger. Subsequently, a trigger is
sent to the shared ledger, prompting all approved clients to adopt the new credentials and
encryption key, necessitating their reconnection. During this process, the unauthorised new

connection is rejected from the system and automatically added to the session block list.

SSID: test1
Pass: test1
Encryption: key1

‘ Server ‘

y !

Broker

Shared Ledger

Successful
Connection

Client . Client, " Client " Client . Client . Client

pproved Approved Approved Approved Approved Approve:

Figure 4.10: Visualisation of a successful integration of a new connection

Figure 4.10 illustrates the successful integration of a new connection following approval from the
authorised client list. Upon acceptance, depending on the network topology employed, the server or
other clients will disseminate the shared ledger to the new client. It is important to note that the
SSID, password, and encryption key remain unchanged, as no security breach or compromise has
been detected or flagged. This process can be adapted to alter the SSID, password, and encryption
keys either after each new connection or after a predetermined number of connections have been

established with a broker (or server, depending on the topology).

The Bio-Inspired Lightweight Polymorphic Security System for loT devices dynamically manages
connections and ensures secure network communication. The system begins with the Approved
Clients List Process (ACLP), where incoming connections are checked against a list of approved
UUIDs. If the client is approved, the connection is allowed, and the system proceeds to the Client

Connection Logic (CCL). Here, the client is provided with the necessary credentials and encryption

78

keys stored in the ledger, allowing for secure communication. The ledger itself is managed by the
Ledger Process (LP), which updates and distributes the ledger to all approved clients as needed.
Finally, the Adaptive Amoeba Complexity (AAC) ensures that the system's complexity and encryption
protocols are dynamically adjusted based on the hardware capabilities of the connected devices,

ensuring optimal performance and security.

This system reflects the adaptive nature of biological immune systems, with features such as
specificity, memory, and adaptability. The system is designed to be resilient, secure, and efficient,
making it well-suited for use in loT environments where resource constraints and security are

paramount.

79

5.0 Chapter Five: From Theory to Practice (Implementation)

5.1 Introduction
This chapter aims to explore the logical representations and workings from the previous framework

chapter to develop mathematical formulas and the corresponding programming logic needed for
implementation. Every implementation will be written in C due to its programming efficiency, and
the hardware used is a custom development board made with an ESP32-S3 processor, which can be

found in Appendix 2.

The system comprises an loT client-server architecture designed for secure, efficient, and adaptive
communication between loT devices. The server manages multiple client sessions, ensures secure
communication through encryption, and adapts to varying battery levels of loT devices. The key
components of the system include secure session management, adaptive power management, and

encrypted data transmission, all integrated into a shared ledger for synchronisation.

5.2 Basic Client and Server on |loT Devices
The server-client system implemented on the custom development board made with an ESP32-S3

chip is designed to enable wireless communication between two devices over a Wi-Fi network. The
server is responsible for listening to incoming connections, processing client requests, and sending
appropriate responses. Conversely, the client initiates a connection to the server, sends a request,
and then processes the server's response. This system is typical in 1oT applications where multiple
devices need to communicate with one another over a local network or the internet. Please see the
complete code attached in Appendix 3, as it will be continuously referenced throughout this sub-

chapter.

The server-client system described here involves two ESP32-S3 chips: one configured as a server and
the other as a client. Typically, the server would be hosted on dedicated hardware, but for this
implementation, it is essential to see how this system works with limited resources. This system
allows the client to connect to the server over a Wi-Fi network, exchange data, and receive a
response. The communication protocol used here is based on TCP/IP, specifically HTTP over port 80,

a standard setup for lightweight web servers on loT devices.

On the server-side operation, the WiFi connection is initialised as the server first connects to a Wi-Fi

network using the provided SSID and password:

Equation 5.1: Server WiFi Initialisation

Server;p = WiFi.begin(SSID, Password)

80

The server joins the network and is assigned an IP address (“Server_IP”). This IP address is crucial as
clients will use it to connect to the server. Once connected to the Wi-Fi, the server initialises a Wi-Fi
server object on port 80, which is the default port for HTTP communication:

Equation 5.2: Server WiFi Port

Server = WiFiServer(Port)

The server then begins listening for incoming client connections:

Equation 5.3: Server Initialisation
Server.begin()

To listen for client connections, the server enters a loop that continuously checks for incoming client
connections. If a client connects, the server establishes a communication channel with the client:
Equation 5.4: Server Checking for Client Connections

Clientgycker = Server.available()
This function checks if a client is available and returns a “WiFiClient” object representing the client.
Upon connection, the server reads the incoming data from the client line by line:
Equation 5.5: Server Reading Incoming Client Data

Data = Client.read()
The server processes the data, and if it detects an HTTP request (indicated by a blank line), it sends

an HTTP response back to the client:

Equation 5.6: Sending HTTP Response from Server to Client

Client. send(HTT Presponse)
The response includes a simple HTML page, which the client will display if it is capable of rendering
HTML. After sending the response, the server allows the client some time to receive the data and
then closes the connection. This ensures that resources are freed and the server is ready to handle
new connections:
Equation 5.7: Closing Client Connections
Client. stop()

On the client side, the client also begins by connecting to the same Wi-Fi network as the server:

Equation 5.8: Client WiFi Initialisation

Client;p = WiFi.begin(SSID, Password)

81

The client is similarly assigned an IP address (“Client_IP”), although this is typically not directly used
in the communication process. The client attempts to establish a connection with the server using

the server's IP address (Server_IP) and port 80:

Equation 5.9: Client Connecting with Server IP and Port
Connection = Client. connect(Server;p, Port)

If the connection is successful, the client is ready to send and receive data. The client sends a string

of data to the server, which could represent a request or some other information:

Equation 5.10: Client Sending Data to Server

Client.send(Data)
In this example, the string "The quick brown fox jumps over the lazy dog
1234567890! @#5% &*()_+-=[]{}|;";,.<>/?\n\t" is sent to the server as it includes all alphanumeric
characters with a new line and tab blanked space. The client then waits for a response from the

server. The response is read line by line:

Equation 5.11: Client Awaiting for Server Response

Response = Client.readStringUntil(”")
The client processes and displays this response, which, in this case, is an HTML page sent by the
server. Do note that the carriage return “\r” can also be denoted as OxD in Hex; the purpose is to
return to the beginning of the current line without advancing downward. After receiving the
response, the client closes the connection to free up resources. The client is programmed to
periodically reconnect to the server every 10 seconds, allowing it to send new requests or data and
receive updated responses. This ensures ongoing communication between the client and the server,

which can be helpful in applications requiring regular updates.

Overall, the server-client system can be represented mathematically by the following sequence of

events:

Equation 5.12: Server IP Assignment

Server_IP = WiFi.begin(SSID, Password)

Equation 5.13: Client IP Assignment

Client_IP = WiFi.begin(SSID, Password)

Equation 5.14: Server Port Listening

Socket = Server. listen(Port)

Equation 5.15 Client Connection Attempt

Connection = Client. connect(Server_IP, Port)

82

Equation 5.16: Data Transmission (Client to Server)

Client.send(Data)

Equation 5.17: Data Reception and Response (Server to Client)
Response = f(Data)

Client.read(Response)

Equation 5.18: Connection Termination

Client.stop()
The server-client system on the ESP32-S3 chip operates through a well-defined sequence of
connection, communication, and disconnection. The server initialises and continuously listens for
incoming connections while the client attempts to connect, sends data, and processes the server's
responses. This system allows real-time data exchange over a Wi-Fi network, making it suitable for
various loT applications such as remote monitoring, control systems, and simple web-based
interfaces. The mathematical expressions captured the communication flow's essence, illustrating
the process from both the server's and client's perspectives. The periodic reconnection mechanism
implemented in the client ensures that communication remains active and up-to-date, which is

crucial for maintaining the functionality and reliability of the system in a dynamic environment.

5.3 Adaptive Encryption Methods (Adaptive Amoeba Complexity)
The adaptive encryption system is designed to dynamically choose between different encryption

algorithms and configurations based on the available memory and the specific hardware platform
detected. Depending on the resources at hand, the system can deploy both lightweight and more
complex encryption schemes, ensuring optimal security and performance on the ESP32-S3 and other
microcontroller architectures. The system leverages well-known cryptographic algorithms, including
XOR encryption, Caesar cipher, ROT13, and the more sophisticated SPECK and SIMON block ciphers.

For the complete documentation of the code, please refer to Appendix 3.

Upon system initialisation and hardware detection, the system first measures the available memory

on the microcontroller:

Equation 5.19: Measuring Available Memory

Available Memory = freeMemory()
The system then identifies the specific microcontroller architecture (e.g., ESP32, STM32, Arduino
AVR, etc.). This detection allows the system to make informed decisions about which encryption
algorithms to deploy based on the capabilities and constraints of the hardware. For example, if an
ESP32-S3 chip is detected with more than 10,000 bytes of free memory, the system will opt for more

robust encryption schemes, such as the 256-bit configurations of SPECK and SIMON. If less memory

83

is available, the system will downgrade to 128-bit versions of these algorithms or choose more

straightforward encryption methods, such as XOR or ROT13.

The system supports several encryption algorithms, each with specific computational requirements

and security properties:

Each XOR Encryption operation byte of the input data is XORed with a constant key (0xAA). This is a
simple yet fast method of encryption that requires minimal computational resources. The XOR

operation is repeated for each byte in the data string:

Equation 5.20: Encryption for XOR with Constant Key

Encrypted Byte = Data Byte @ 0xAA
Caesar cipher is a classical encryption method where each alphabetical character in the input data is
shifted by a fixed number of positions (in this case, three positions). This method is suitable for

environments with minimal resources:

Equation 5.21: Encryption for Caesar with a Fixed Number of Positions

Encrypted Character = (Character — Of fset + 3)mod26 + Of fset

ROT13 is a specific case of the Caesar cipher, where the shift is fixed at 13 positions. This is a
lightweight, symmetric encryption technique where applying the algorithm twice returns the original

text:
Equation 5.22: Encryption for ROT13

Encrypted Character = (Character — Of fset + 13)mod26 + Of fset

SPECK and SIMON Block ciphers are modern lightweight block ciphers designed for constrained
environments. SPECK and SIMON perform a series of rounds (22 for SPECK-128 and 32 for SIMON-

128, with more rounds for the 256-bit versions) of bitwise operations, additions, and rotations:

Equation 5.23: SPECK and SIMON General Equation for Bitwise Operations, Additions, and Rotations

x=x>8)Pky=H <<3)Dx
Here, x and y are the halves of the plaintext block, and k is the subkey for that round. The number
of rounds r is determined by the key size, with larger keys requiring more rounds to achieve greater

security.

Equation 5.24: For Each Round In SPECK

xl-=(xi—1>> 8)+3’i_1@ki:3’i:(3’i_1<< 3)@)6'1'
Equation 5.25: For Each Round In SIMON

YVi=0i—1>1D)0x-1Lx=(0-1<<1) Dk

84

The system's adaptability is rooted in its ability to choose the most appropriate encryption algorithm
based on the current memory availability. If sufficient memory is available, the system opts for the
more robust 256-bit versions of SPECK or SIMON, which provide a higher level of security due to
increased key size and number of rounds. In contrast, if memory is constrained, the system selects
the 128-bit versions or even falls back to simpler algorithms like XOR, Caesar cipher, or ROT13, which

are less secure but more efficient.

The choice of encryption method can be expressed as a function of available memory M:

Equation 5.26: Choice of Encryption Method Based on Available Memory

SPECK256 & SIMON256 if M > 10000 bytes
Encryption Method = { SPECK128 & SIMON128 if 5000 <M < 10000 bytes
XOR, Caesar,ROT13 if M <5000 bytes

This decision process ensures that the system remains operational and secure regardless of the
specific constraints imposed by the hardware. The system monitors the time taken to perform each

encryption method by capturing the start and end time in microseconds:

Equation 5.27: Monitoring Time Taken for Each Encryption

Time Taken = endjme — Startiime
This measurement allows the system to evaluate the efficiency of each encryption algorithm in real
time, providing insights into the trade-offs between security and performance. The timing

information can be crucial for applications where encryption strength and speed are critical factors.

The adaptive encryption system on the ESP32-S3 chip (which can be applied to any processor)
exemplifies a flexible and efficient approach to securing data in resource-constrained environments.
The system balances security needs with computational efficiency by dynamically selecting the
encryption method based on available memory and hardware capabilities. This adaptability makes it
particularly well-suited for loT devices, where resources are often limited, and security requirements
vary widely depending on the application. The mathematical expressions used to describe the
encryption processes provide a clear framework for understanding how the system operates,

ensuring that it can be optimised and extended as needed.

Building upon the theoretical model described in Chapter 4, the firmware implementation integrates
an if-else cascade that evaluates the current battery percentage and dynamically assigns the
encryption method to be used in the outgoing transmission process. This method assignment is
stored within storedLedger|[0]. encryptionMethod and subsequently executed during the
encryptDecryptData() call. This approach ensures seamless runtime adaptability with minimal

computational overhead.

85

For example, when batteryPercentage falls below 15%, the system automatically defaults to XOR
encryption. As battery reserves increase, progressively more complex methods, Caesar, ROT13,
SPECK, and finally SIMON, are employed. This design aligns with the Amoeba-inspired adaptability
principle of the system, dynamically morphing cryptographic behaviour to align with physiological

(electrical) capacity. Please refer to Figure 5.1.

if (batteryPercentage < 15.0)

{
storedLedger[@].encryptionMethod "XOR";

}
else if (batteryPercentage < 30.0)

{
storedLedger[@].encryptionMethod = "Caesar";

}
else if (batteryPercentage < 50.0)

{

storedLedger[@].encryptionMethod = "ROT13";

}
else if (batteryPercentage < 75.0)

{
storedLedger[@].encryptionMethod "SPECK";

}

else

{
storedLedger[@].encryptionMethod "SIMON";

}

Serial.println("Selected Encryption Method: " + storedlLedger[@].encryptionMethod);

client.println("EncryptionMode: + storedlLedger[@].encryptionMethod);

Figure 5.1: Dynamic Encryption Mode Selection Embedded and Automated within the Adaptive Amoeba Battery Curve
Mapping Management System in C

86

5.4 Encryption between Client and Server Communication Streams
Lightweight encryption is a critical component in resource-constrained environments such as loT

devices. It aims to provide adequate security while minimising computational overhead and power
consumption. The ESP32-S3 chip, being a powerful yet constrained microcontroller, benefits from
such approaches, especially when deployed in a client-server architecture. The goal here is to
encrypt and decrypt data transmitted between the client and server using lightweight encryption

techniques, ensuring data confidentiality without significant performance penalties.

On the client side, the operation is split into three stages: the preparation and encryption of the
data, the transmission to the server, and the receiving and decrypting of the server response. During
the data preparation and encryption stage, the client prepares the data it intends to send to the
server. This data could be a simple message or sensor readings from an loT device. A lightweight

encryption algorithm, such as XOR encryption or a simple Caesar cipher, is applied to the data:

Equation 5.28: General Encryption with Data and Key Variables
EncryptedData = Encrypt(Data, Key)
For XOR encryption, each byte of the data is XORed with a key:
Equation 5.29: General XOR Encryption with Data and Key Variables
EncryptedByte; = Data; @ Key
For a Caesar cipher, each character in the data is shifted by a fixed number of positions in the

alphabet.

The second stage is the transmission to the server, as the encrypted data is then transmitted to the
server over a TCP/IP connection:
Equation 5.30: Client Sending Encrypted Data to Server Over TCP/IP

Client.send(Encrypted_Data)

Lastly, in the receiving and decrypting server response, the client waits for a response from the
server, which is typically also encrypted. Upon receiving the encrypted response, the client decrypts

it using the same algorithm and key used for encryption:

Equation 5.31: Server Decrypting Response From Client

Decrypted_Response = Decrypt(Encrypted_Response, Key)

87

The server-side operations are as follows: receiving and decrypting client data, processing data and
generating a response, and sending the encrypted response. The server receives the encrypted data

from the client:

Equation 5.32: Receiving Encrypted Data from Client
Encrypted_Data = Server.receive()

The server then decrypts this data using the corresponding lightweight decryption algorithm:

Equation 5.33: Lightweight Decrypting Received Data from Client
Decrypted_Data = Decrypt(Encrypted_Data, Key)

After decrypting the data, the server processes it as needed. This could involve logging the data,
triggering a control action, or generating a response. The server then encrypts the response using

the same lightweight encryption algorithm:

Equation 5.34: Server Generating Lightweight Encrypted Response
Encrypted_Response = Encrypt(Response, Key)

Lastly, the encrypted response is sent back to the client:

Equation 5.35: Server Sending Encrypted Response

Server.send(Encrypted_Response)
Block cipher encryption provides a higher level of security compared to lightweight encryption
techniques. It operates on fixed-size blocks of data and uses complex key schedules and multiple
rounds of encryption to ensure data security. In this system, algorithms like SPECK or SIMON may be

used, which are designed for resource-constrained environments but still provide robust encryption.

For both lightweight and block ciphers, the client and server operations remain the same as the
client side. The operation is split into three stages: the preparation and encryption of the data, the
transmission to the server, and the receiving and decrypting of the server response. The client
prepares the data and breaks it into blocks of a fixed size (e.g., 64 bits or 128 bits). Each block of data

is encrypted using a block cipher algorithm such as SPECK or SIMON:

Equation 5.36: Client Preparation for Encryption Block Size
Ciphertext; = Encrypt_Block(Plaintext;, Key_Schedule)

The encryption process involves multiple rounds of operations (e.g., XOR, rotation, and addition)

with subkeys derived from the main key.

At the second stage, the encrypted blocks are concatenated and sent to the server as a single

encrypted message:

88

Equation 5.37: Client Concatenating Encrypted Blocks

Client.send(Encrypted_Message)

Lastly, the client receives the encrypted response from the server, which is also structured in blocks.

Each block is decrypted using the corresponding decryption process:

Equation 5.38: Client Decrying Blocks into Paintext

Plaintext; = Decrypt_Block(Ciphertext;, Key_Schedule)

The server-side operations are as follows: receiving and decrypting client data, processing data and
generating a response, and sending the encrypted response. The server receives the encrypted

message from the client, which is composed of multiple encrypted blocks:

Equation 5.39: Server Receiving Multiple Encrypted Blocks

Encrypted_Message = Server.receive()

The server decrypts each block using the block cipher decryption process:

Equation 5.40: Server Decrypting Multiple Encrypted Blocks
Plaintext; = Decrypt_Block(Ciphertext;, Key_Schedule)
Secondly, the server processes the decrypted data and prepares a response. This response is then
encrypted in blocks using the block cipher encryption:
Equation 5.41: Server Preparing and Encrypting Response
Ciphertext; = Encrypt_Block(Plaintext;, Key_Schedule)

Lastly, the encrypted response blocks are concatenated and sent back to the client:

Equation 5.42: Server Sending Encrypted Response

Server.send(Encrypted_Response)

The mathematical foundation lies in the operations applied to the data during encryption and
decryption in both the lightweight and block cipher encryption systems. The lightweight encryption
methods, such as XOR or Caesar cipher, involve simple arithmetic operations that can be expressed

as:

Equation 5.43: General Arithmetic Operations for XOR and Caesar
Encrypted_Byte = Data_Byte @ Key(XOR)
Encrypted_Character = (Character — Of fset + Shift)mod 26 + Of fset(Caesar Cipher)
For block ciphers like SPECK or SIMON, the encryption of each block can be represented as:
Equation 5.44: General Block Representation for SPECK and SIMON

Ciphertext; = Encrypt_Block(Plaintext;, Key_Schedule)

89

Where the encryption block function involves multiple rounds of operations, including bitwise shifts,

rotations, and modular addition:

Equation 5.45: Block Functions with Multiple Rounds of Operations
X%=x—-1>>8)+y,—1Dk;
Yi=0i—1<<3)Dx
Given the appropriate key, these operations ensure that the ciphertext is a highly secure and non-

reversible transformation of the plaintext.

The adaptive encryption system implemented on the ESP32-S3 chip provides a flexible and secure
communication method between a client and server. By selecting the appropriate encryption
method that is lightweight for resource-constrained scenarios and blocks ciphers for more secure
communication, the system balances security and performance according to the available resources
and the application's needs. The mathematical expressions involved in the encryption and
decryption processes highlight the system's ability to securely handle data in various contexts,

ensuring confidentiality and integrity in client-server communications.

5.5 Reading and Sending Sensor Data via Encryption Communication Streams
Before exploring how the encrypted communication streams work, there needs to be an

understanding of how the system handles different scenarios. When a new client connects to the
server for the first time, the following sequence of operations occurs: Session ID Generation initiates
as the server generates a new session ID and sends it to the client. The client sends identification to
the server, including its UUID, session ID, and processing power information. Server Verification
occurs when the server verifies whether the client's UUID is approved. If approved, the server marks
the session as active and sends the client's encryption method and necessary credentials. Data
Transmission as the client encrypts the sensor data using the specified encryption method and sends

it to the server. The server decrypts the data and confirms the successful receipt.

For a returning client, the process is similar but more streamlined. Session ID Validation checks if the
client sends the previously received session ID and its UUID. The server checks if the session is valid
and the client has reconnected after any ledger updates. Reinitialisation occurs as the client receives
the latest ledger information without generating a new session ID if the session ID is still valid. The

client can then resume regular operation.

Lastly, if a client with an unapproved UUID attempts to connect to the server, the connection is
immediately blocked by stopping communication and marking the session as compromised. No

further data is exchanged.

90

The core functionality of this system revolves around securely transmitting sensor data between the
client and server. Before transmission, the data is encrypted using one of several encryption

methods (XOR, Caesar, ROT13, SPECK, SIMON), depending on the device's processing power.

The sensor data preparation occurs as the client gathers sensor data that needs to be sent to the

server. In this case, the sensor data is represented as a string; please see Figure 5.2.

sensorData[] = "The quick brown fox jumps over the lazy dog 1234567890!@#$%"&* ()_+-=[1{}|;":,.<>/2\n\t";
Figure 5.2: Implementation of Sensor Data Preparation in C

The sensor data is encrypted using a specified encryption method, which could be XOR, Caesar,
ROT13, SPECK, or SIMON. Depending on the Adaptive Encryption Methods provided by the Adaptive
Amoeba Complexity. The client uses the encryption key provided by the server to perform the
encryption. For instance, using the SPECK encryption, the “speckExpand” and “speckEncryptDecrypt”

functions handle the key scheduling and encryption processes, as shown in Figure 5.3.

else if (method == "SPECK")

uint32_t key_schedule H

uint32_t key_words = {0x01020304, 0x85060708, Ox090AOBOC, OxODOEOF1e};
speckExpand(key words, key_ schedule, g

uint32_t block[2];

memcpy(block, data, 8);

speckEncryptDecrypt(block, key_schedule,

memcpy(data, block, 8);

Figure 5.3: Implementation of SPECK Encryption Process in C

After encryption, the client transmits the encrypted data over the network to the server, as shown in

Figure 5.4.

client.println(sensorData);

Figure 5.4: Implementation of the Data Transmission Process for Secure Sensor Data Exchange in Embedded C.

Upon receiving the data, the server decrypts it using the same method and key as the client, which

allows the server to process the decrypted sensor data, as shown in Figure 5.5.

String sensorData = client.readStringUntil('\n');
encryptDecryptData(&sensorData[@], ledger[currentLedgerIndex].encryptionMethod, ledger[currentLedgerIndex].encryptionKey);

Serial.println("Received Decrypted Sensor Data: " + sensorData);
client.println("Sensor data received and decrypted successfully.");

Figure 5.5: Implementation of the Decryption at the Server Process in C

91

Mathematically, the encryption process can be represented as:

Equation 5.46: Standard Model of Encryption
C =Ex(P)

Where:
C is the ciphertext (encrypted data).
P is the plaintext (original sensor data).

Ey is the encryption function with key K.

5.6 Approved Client List Process
When a new device attempts to connect to the server, the client initiates a connection by sending its

UUID and processing power details. The server generates a session ID and verifies the UUID against a
list of approved UUIDs. If the UUID is approved, the session ID is stored along with other session
details. The server then sends the appropriate encryption method, SSID, and password to the client,
enabling it to connect securely. The client, in turn, encrypts its sensor data using the provided

encryption method and key before sending it to the server.

The client uses the stored session ID to re-establish communication with the server for a returning
connection. The server checks the validity and expiration of the session IDs. If valid, the client
continues its operations without reinitialising the session. The server updates any necessary

credentials, and the client resumes its normal operation, including sending encrypted sensor data.

If an unapproved device attempts to connect, the server detects that the UUID is not on the
approved list. The server then blocks the session and refuses further communication. The

unapproved client cannot connect or send data.

The Approved Client List Process ensures that only authenticated and approved devices can
communicate with the server. Each client is identified by a UUID (Universally Unique Identifier), and
its approval status is checked during each connection attempt. The use of a session ID provides
flexibility and security. The session ID is generated dynamically during each connection and is only
valid for a specific session, reducing the risk of replay attacks. Additionally, it allows for session
expiration management, where a session can be invalidated after a certain period of inactivity or
upon detecting suspicious behaviour. Although MAC addresses are unique identifiers for network
devices, they are static and can be spoofed. Using a MAC address alone would make the system
vulnerable to spoofing attacks, where an unauthorised device could impersonate an approved

device.

92

The server maintains a list of approved clients identified by UUIDs. Upon a connection request, the
server checks whether the client's UUID is in the approved list. If the UUID is approved, the server
generates a session ID for that client, which serves as a temporary identifier for managing the
session securely. The use of a session ID instead of a MAC address is crucial for enhancing security
because MAC addresses are static and can be spoofed, while session IDs are dynamic and unique for

each session.

Mathematical Expression: Let UUID, be the client's UUID, and UUIDs be the set of approved UUIDs.
The server checks UUID. € UUID;. If true, the server proceeds to generate a session ID, SID, as
SID = GenerateSessionlID(). This session ID is then stored and associated with the client's UUID.

The figure below shows the implementation of the UUID and Session IDs. Please see Figure 5.6.

String generateSessionID()

{
String sessionID =
for (int i = @; i < 16; i++)

war

sessionID += String(random(@, 16), HEX);
}
return sessionID;

1 isSessionApproved(String sessionID, String clientUUID)

for (int i @; i < sessionCount; i++)
7
L

if (sessions[i].sessionID == sessionID && sessions[i].clientUUID == clientUUID && sessions[i].approved

return true;

1
J

return f:

1 isUUIDApproved(String uuid)

for (int i = @; i < approvedUUIDCount; i++)
{

if (approvedUUIDs[i] == uuid

return true;

1
J

return f:

Figure 5.6: Implementation of Approved Client List Process Generating and Approving UUID and Session ID functions in C

93

5.7 Client Connection Logic
The client connection logic is designed to manage the connection lifecycle effectively, considering

factors like session handling, session expiration, and battery management. The server generates a
session ID for each connection, which is used to authenticate and maintain the session. The session
expiration time is dynamically adjusted based on the client's battery status. If the battery level is
low, the client can enter different sleep modes, and the server adjusts the session expiration time

accordingly.

Within session handling, each client session is associated with a unique session ID generated by the
server. The server tracks the session's validity and expiration. As implemented in Figure 5.7, the

server dynamically sets session expiration times based on battery status.

Equation 5.47: Formulating Session Expiration Time

sessionExpirationTime = currentTime + sessionDuration

for (int i = @; i < sessionCount; i++)

if (sessions[i].approved && millis() > sessions[i].sessionExpirationTime && !sessions[i].isSleeping

Serial.println("Session ID " + sessions[i].sessionID + " expired due to inactivity.");

handleCompromisedCredentials(sessions[i].sessionID, sessions[i].clientUUID);

Figure 5.7: Implements the Client Connection Logic from the server to set session expiration time in C

If the session expires or the client goes into sleep mode, the session is marked as inactive. The
Battery Management system works as the client's battery management system, continuously

monitors the battery voltage, and adjusts the device's operation mode to conserve power:

Equation 5.48: Formulating Battery Percentage

batteryPercentage = f(voltage)
where f(voltage) represents the battery curve mapping function. This function is further explored

in the Adaptive Amoeba Battery Curve Mapping Management System.

Depending on the battery percentage, the client enters different sleep modes to conserve energy:

Equation 5.49: Formulating Sleep Duration
sleepDuration = g(batteryHealth, batteryPercentage)

where g(+) determines the sleep duration based on battery health and remaining capacity. The
dynamic session management operates if the client enters any sleep modes, the server is informed,
and the session expiration time is adjusted accordingly. The session resumes seamlessly when the

client wakes up and reconnects. Please see Figure 5.8 for the code implementation.

94

if (batteryPercentage < 10.0)

{
sendLowBatteryAlert();

storeBatteryData(voltage, batteryPercentage);
enterAdaptiveSleepMode(batteryPercentage, batteryHealth);

Figure 5.8: Implementation of the battery management system adapts the client's behaviour based on the battery
percentage function in C

5.8 Shared Ledger Process

The shared ledger process ensures that both the server and client maintain synchronised data
regarding the network credentials and encryption methods. The server sends updated ledger
information to the client, and the client updates its stored ledger accordingly. The Mathematical
Expression: Let Lgg,p,er represent the server's ledger and L.j;0nt represent the client's ledger.

Synchronisation ensures:
Equation 5.50: General Expression for Shared Ledger Process

Lclient < Lserver

Where L jjen: is updated to match Lgg,p,er-- Figure 5.9 represents the client-slide ledger update.

for (i 9; i < 5; i++)
{

storedLedger[i].ssid = client.readStringUntil('\n");
].password = client.readStringUntil('\n");
]

.encryptionKey = client.readStringUntil('\n");

[
storedLedger| i
storedLedger| i

storedLedger|

].encryptionMethod = client.readStringUntil('\n');
storedLedgerCount++;

Figure 5.9: Implementation of Client-side ledger update function in C

Figure 5.10 below shows the server-side ledger notification function.

95

d notifyApprovedClients()
{

for (int 1 = @; 1 < sessionCount; i++)

if (sessions[i].approved && sessions[i].clientConnection.connected()

sessions[i].clientConnection.println("Ledger Update");

sessions[i].clientConnection.println(currentLedgerIndex);
sessions[i].clientConnection.println(ledger|[currentLedgerIndex].ssid);
sessions[i].clientConnection.println(ledger|currentLedgerIndex].password);
sessions[i].clientConnection.println(ledger[currentlLedgerIndex].encryptionKey);
sessions[i].clientConnection.println(ledger|currentLedgerIndex].encryptionMethod);

Figure 5.10: Implementation of the server-side ledger notification function in C
5.9 Implementation of Polymorphic Security
Polymorphic security within the Bio-Inspired Lightweight Polymorphic Security System for loT
devices is engineered to provide a dynamic and adaptive approach to securing loT communication.
This system emulates the adaptive and responsive characteristics of biological immune systems,
offering a robust mechanism for addressing various security threats, such as unauthorised access,
desynchronised states, and compromised clients. By continuously varying encryption methods,
session handling strategies and utilising a shared ledger system, this security architecture ensures

that the loT network remains resilient against both known and emerging threats.

The loT security system closely parallels the core functionalities of the biological immune system.
The auto-detection system, much like immune cells detecting pathogens, allows the server to
distinguish between approved, unapproved, and desynchronised clients. In a similar vein, the auto-
ejection system acts as a defensive measure, rejecting and disconnecting unapproved or
compromised clients, mirroring the immune system’s role in neutralising threats. Additionally, the
trigger ledger system functions analogously to immunological memory, ensuring that all approved
clients remain aligned with the same security protocols, thereby maintaining a cohesive and secure

network environment.

Both systems emphasise the importance of maintaining a secure and stable environment through
dynamic adaptation to new threats, ensuring consistent communication among trusted entities, and

promptly addressing any potential security breaches.

96

5.9.1 Auto-detection (Immune Surveillance)
The auto-detection system within this security framework functions similarly to the immune

system's ability to recognise and differentiate between self and non-self entities. In this context, the
server continuously monitors incoming connections and determines whether a client is approved,

unapproved, or desynchronised based on predefined criteria.

Approved clients are those with UUIDs that match the entries in the “approvedUUIDs” list. When an
approved client attempts to connect, the server verifies the UUID and checks the session ID to

determine if the client is in sync with the current state of the shared ledger.

Unapproved clients are immediately identified by the server when their UUID does not match any
entry in the “approvedUUIDs” list. These clients are denied access and disconnected to prevent any

potential security breach.

Desynchronised clients are those whose stored credentials (SSID and password) do not match the
current state of the server's ledger. The server detects this by comparing the incoming client data
with the active ledger entry. If a mismatch is found, the server considers the client desynchronised.

Please refer to Figure 5.11 for the desynchronisation function.

void checkDesynchronization(WiFiClient &client, String clientUUID)

{
for (int i = @; i < approvedUUIDCount; i++)
{

if (approvedUUIDs[i] == clientUUID && !uuidConnected[i]

String clientSSID = client.readStringUntil('\n');
String clientPassword = client.readStringUntil('\n');

if (clientSSID != ledger[currentledgerIndex].ssid || clientPassword != ledger[currentlLedgerIndex].password)

{
Serial.println("Desync detected for UUID: " + clientUUID);
client.println("Error: Desync detected. Please reconnect.");
client.stop();
return;

}

uuidConnected[i] = true;

Serial.println("UUID " + clientUUID + " connected successfully.");

Figure 5.11: Implementation to check for any approved client desynchronisation function in C

In this system, the server reads the incoming client data and compares it with the expected data in
the ledger. If the client data does not match, a desynchronisation error is triggered, and the client is

instructed to reconnect.

97

The mathematical representation of the approved client list is as follows. Let UUID, be the UUID of
the connecting client, and let UUI D, represent the set of approved UUIDs in the system. The

detection logic can be represented as:

Equation 5.51: Client Status Detection Logic

Approved if UUID, € UUID,
Status(c) = { Unapproved if UUID, & UUID;
Desynced if (SSID, Password.) # (SSIDs, Passwordy)

Where (SSID., Password,) is the client’s submitted credentials and (SSIDg, Passwordy) is the

current valid entry in the server's ledger.

5.9.2 Auto-ejection (Immune Response)
The auto-ejection system is akin to the immune system's mechanism of eliminating foreign or

harmful entities. This system ensures that any unapproved or compromised clients are automatically
disconnected from the network, maintaining the integrity and security of the loT environment.
Approved clients remain connected as long as they comply with the session management rules, such
as maintaining synchronisation with the server's ledger and responding within the session expiration
time. These clients are automatically ejected as soon as they are detected. Once their unapproved
status is confirmed, the server does not allow them to communicate further. Desynchronised clients
are either instructed to reconnect (if approved but desynchronised) or are ejected from the network

if their desynchronisation cannot be resolved. Please see Figure 5.12.

98

i handleCompromisedCredentials(String sessionID, String clientUUID)

for (int 1 = @; i < sessionCount; i++)

if (sessions[i].sessionID == sessionID && sessions[i].clientUUID == clientUUID

Serial.println(“"Session ID " + sessionID + marked as compromised.");

sessions[i].approved = false;

currentlLedgerIndex = (currentLedgerIndex + 1) % 5;
updateServerCredentials();
notifyApprovedClients();

startHoneypot();

break;

1
J

for (int i = @; 1 < sessionCount; i++)

sessions[i].reconnected = fa
}
Serial.println("All sessions marked as needing reconnection.");

}

Figure 5.12: Implementation of the auto ejection system through the handle compromised credentials function in C

In this implementation, when a session is marked as compromised, the client is effectively ejected by
invalidating the session and updating the server's credentials. The system also notifies all approved

clients of the update and may activate the honeypot to handle any desynchronised clients.

The mathematical representation of the auto ejection system is as follows. Let S(t) represent the

session state at time t. The ejection logic can be expressed as:

Equation 5.52: Auto Ejection Logic System

Ejected if UUID, & UUID; or compromised
S(t + 1) = {Reconnected if UUID, € UUID; and resynchronised
S(t) if session remains valid

5.9.3 Trigger Ledger (Memory Response)
The shared ledger serves as a collective memory within the network, ensuring all approved clients

operate under consistent security credentials. This system is comparable to the immune system's
memory cells, which retain information about previously encountered pathogens for faster response
upon re-exposure. The ledger acts as a source of truth for approved clients, providing up-to-date
credentials and encryption keys that ensure secure communication. Upon any update to the ledger,
all approved clients are notified, and the ledger is synchronised across the network. Unapproved
clients cannot access the ledger and, therefore, cannot synchronise or communicate securely with

the network. Desynchronised clients rely on the ledger to resynchronise their credentials. If a client

99

is desynchronised, the server may provide updated credentials or prompt the client to reconnect

with the correct information.

notifyApprovedClients()
{

for (i =0; i < sessionCount; i++)
,I'

if (sessions[i].approved && sessions[i].clientConnection.connected()

sessions[i].clientConnection.println("Ledger Update");
sessions[i].clientConnection.println(currentLedgerIndex);
sessions[i].clientConnection.println(ledger|currentLedgerIndex].ssid);

sessions[i].clientConnection.println(ledger|currentLedgerIndex].password);
sessions[i].clientConnection.println(ledger[currentLedgerIndex].encryptionkKey);
sessions[i].clientConnection.println(ledger[currentLedgerIndex].encryptionMethod);

Figure 5.13: Implementation of the trigger for the ledger function in C
The server pushes ledger updates to all connected and approved clients, ensuring they have the

latest credentials and encryption methods. Please see Figure 5.13. The ledger synchronisation can be

mathematically expressed as:

Equation 5.53: Ledger Synchronisation
L(t+1) =L(t) + AL
Where L(t) represents the ledger state at the time t and AL represents the change (update) to the

ledger. All approved clients receive this update, represented as:

Equation 5.54: Updating All Approved Clients
Ci(t +1) = Ci(t) U AL

Where Ci(t) represents the credential state for the client i at time ¢, and AL is the ledger update.

5.10 Adaptive Amoeba Battery Curve Mapping Management System
In Figure 4.2, the block diagram for the Adaptive Amoeba Battery Curve Mapping Management

System encapsulates the detailed workings of the battery management system, from initial voltage
measurement through adaptive sleep mode selection and eventual hibernation. This ensures
efficient power usage and extended operational life for loT devices. First, it is crucial to break down

the key processes to program this system for implementation.

Firstly, there needs to be a conversion of an analogue-to-digital converter (ADC) reading to a

corresponding voltage value:

100

Equation 5.55: Formulation for Voltage Battery Mapping

Vbattery = map(ADC value, 0,4095,0,5000)

The ADC value is the raw reading from the ADC pin (0 to 4095 for a 12-bit ADC). Vpgtrery is the

battery voltage in millivolts. When programming the formula in C, please see Figure 5.14.

uint32_t getBatteryVoltage()
{

adcValue = analogRead()8

uint32_t voltage = map(adcValue, 9, 4095, @, 5000);
return voltage;

}

Figure 5.14: Implementation of the Battery Voltage function in C

Secondly, the initial battery percentage mapping can provide an initial estimate of the battery

percentage based on the voltage, which can be represented as a piecewise function:

Equation 5.56: Estimation of Battery Percentage

100.0 if Vbattery > 4200 \
75.0 + 0.25 X (Vpartery — 4000) if 4000 < Vpgrrery < 4200
50.0 + 0.125 X (Vyatrery — 3800) if 4000 < Vpgrrery < 4000
Pinitial =9 25.0 4 0.125 x (Vpattery — 3600) if 4000 < Vyarzery < 3800
0.125 X (Vpatery — 3400) if 4000 < Vpartery < 3600
(0.0 if Voattery < 3400

~~

When programming this piecewise function in C, please see Figure 5.15.

initialMapBatteryCurve(uint32_t voltage)

if (voltage > 4200)

return 16.0;
else if (voltage > 4060)

return 75.0 + (voltage - 4000) * 0.25;
else if (voltage > 3800)

return 50.0 + (voltage - 38@6) * 0.125;
else if (voltage > 3600)

return 25.09 + (voltage - 3600) * ©.125;
else if (voltage > 3400)

return (voltage - 3408) * 0.125;
else

return 0.0;

Figure 5.15: Implementation of the initial battery percentage mapping piecewise function in C
The next feature is to store the battery data using a circular buffer with a dynamic EEPROM
management approach to store the battery voltage and corresponding percentage:
Equation 5.57: Circular Buffer With Dynamic EEPROM Management

batteryDatali]. voltage = Vyattery

101

batteryDatali]. precentage = P.yrrent
batteryDatali — 1] = batteryDatali]
The oldest data will be overwritten if the buffer reaches its maximum capacity. Please see Figure

5.16 for the function represented in C.

storeBatteryData(uint32 t voltage, percentage)

if (dataPointsCount <

i
L

batteryData|dataPointsCount].voltage = voltage;
batteryData|dataPointsCount]|.percentage = percentage;
dataPointsCount++;

}

else

{

i=1; 1< ;3 i++

batteryData[i - 1] = batteryData[i];

batteryData - 1].voltage = voltage;
batteryData - 1|.percentage = percentage;

EEPROM.put(0©, batteryData);
EEPROM. put(batteryData), dataPointsCount);
EEPROM. commit();

Figure 5.16: Implementation of the Storing Battery Data function in C

Once the battery data is stored, it can be loaded from the EEPROM anytime the data needs to be
used, especially in the next feature, which will be used to predict the battery percentage. The system

uses non-linear interpolation for a more accurate battery percentage prediction:

Equation 5.58: Non-Linear Interpolation for Battery Percentage Prediction

p _ Vbattery — 3400

2
) x 100

102

Where Vpqttery is normalised between 3400mV and 4200mV. The normalised value is squared to
apply a quadratic mapping, resulting in a non-linear curve that better reflects typical battery

discharge behaviour. Please see Figure 5.17 for the function represented in C.

nonLinearInterpolation(uint32 t voltage)

voltageNormalized = ()(voltage - 3480) / (4200 - 3400);
return pow(voltageNormalized, 2) * 100.0;

}

Figure 5.17: Implementation of the Predicting Battery Percentage using a non-linear interpolation function in C

Additionally, this system looks at the battery health based on the voltage once the system is fully

charged or what it reads as its maximum voltage:

Equation 5.59: Formulation for Battery Health

L0 if Vharrery > 4200

0.75 if 4000 < Vpgerery < 4200
Hpaetery =4 0-5 if 3800 < Viaprery < 4000

0.25 if 3600 < Vpgerery < 3800

0.10 if Vpartery < 3600

Where Hpqttery is the battery health factor, ranging from 0.1 (poor health) to 1.0 (excellent health).

Please see Figure 5.18 for the function represented in C.

estimateBatteryHealth(uint32 t voltage)

if (voltage > 4200)
return 1.0;

else if (voltage > 4000)
return ©.75;

else if (voltage > 3800)
return 0.5;

else if (voltage > 3600)
return 0.25;

else

return 0.1;

Figure 5.18: Implementation of the predictive battery health function in C

Lastly, the implementation of the adaptive sleep mode duration based on the battery percentage

and health, which can be easily configurable depending on the desired threshold levels:

103

Equation 5.60: Formulation for Adaptive Sleep Modes

107 if Ppredgictea > 75.0 (normal operation)
2 X107 X Hygerery if 50.0 < Ppregictea < 75.0 (lighth sleep)
4 x 107 X Hpgetery if 25.0 < Pyregictea < 50.0 (deep sleep)
6 % 107 X Hbattery if Ppredicted <250 (ULP)

Sleep Mode =

Which can be represented by the following function in Figure 5.19.

enterAdaptiveSleepMode(batteryPercentage, batteryHealth)

uint64_t sleepDuration;

if (batteryPercentage > 75.0)

Serial.println("Battery sufficient, normal operation.");
sleepDuration = 10606000;

else if (batteryPercentage > 50.9)

Serial.println("Entering light sleep mode.");
sleepDuration = batteryHealth * 20000000;
esp_sleep_enable_timer_wakeup(sleepDuration);
esp_light sleep_start();

}

else if (batteryPercentage > 25.9)

{
Serial.println("Entering deep sleep mode.");
sleepDuration = batteryHealth * 40000000;
esp_sleep enable timer wakeup(sleepDuration);
esp_deep_sleep_start();

}

else

{
Serial.println("Entering ULP mode, maximizing battery life.");
sleepDuration = batteryHealth * 60000000;
esp_sleep_enable_timer_wakeup(sleepDuration);

esp_deep_sleep_start();

Figure 5.19: Implementation of the sleep mode function in C
Do note that the difference between deep sleep and ultra-low power mode is that the time in
microseconds can also be adapted to wake up only after certain other conditions are met, such as
waking on LAN for connected devices or only waking up when the sensor data is significantly

different. With every loop cycle, the system performs the following:

e Measure the current battery voltage Vy,qttery = map(ADC value).
e Predict the current battery percentage Ppregictea USing either the initial map or non-linear
interpolation from stored data.

e Estimates the battery health Hyq¢tery-

104

e Store the voltage and predicted percentage in EEPROM.

e Dynamically adjusts the device's operation mode based on Ppregictea aNd Hpattery
determining Teep-

e Enter the appropriate sleep mode if needed.

e Loops back after the delay or other normal operations for the next reading and adjustment.

Overall, the code systematically adjusts the power management of an loT device by mapping the
ADC voltage reading to a battery percentage, refining the prediction through non-linear

interpolation, and dynamically managing sleep durations based on battery health:

Equation 5.61: General Formulations for Power Management

Voltage to Precentate Mapping: Pyregictea = f(Vbattery)
Battery Health Estimation: Hpaetery = 9(Vpattery)
Adaptive Sleep Duration: Tgeep = h(Ppredictedr Hpattery)

Where f represents the initial mapping and non-linear interpolation functions. g represents the
battery health estimation function. h represents the function determining adaptive sleep duration
based on Pyregictea aNd Hpgetery- This process ensures that the device adapts its power
consumption based on real-time battery data, continuously refining its understanding of the
battery's discharge curve through data collection and interpolation. Please see Appendix 14 for the

complete documentation of the Adaptive Amoeba Battery Curve Mapping Management System.

The encryption switching logic embedded within the AABCMS serves not only as a power-saving
technique but also as a security modulation system. As lighter algorithms are more susceptible to
attack, their use is reserved strictly for low-energy conditions where computational economy is
prioritised over resilience. Conversely, in high-energy states, algorithms such as SPECK and SIMON
offer superior cryptographic robustness, mirroring the strategic deployment of full immune
responses in organisms under stress. This hierarchical cryptographic adaptation embodies a form of

bio-inspired polymorphic security behaviour.

105

6.0 Chapter Six: Testing and Refinement

The preceding chapter demonstrated the full implementation of the bio-inspired lightweight
polymorphic security system for loT devices, both through C programming and the corresponding
mathematical models. This chapter is dedicated to the comprehensive testing and refinement of the
system, focusing on elucidating the reasoning behind key design decisions. It presents a systematic
evaluation of the system's performance across diverse operational scenarios, offering an in-depth
analysis of its framework and responsiveness to varying conditions. Special attention is given to
assessing the efficiency and functionality of critical subsystems, with a particular focus on the
Adaptive Amoeba Battery Curve Mapping Management System. Power analysis tools are employed
to rigorously examine the system’s energy consumption and optimisation, underscoring its
effectiveness and resilience in environments constrained by power. The primary testing will be
conducted using the ESP32-S3 development board, a 32-bit microcontroller (detailed in Appendix 3),
with comparative analysis against a lower-grade 8-bit ATMEGA328P microcontroller, demonstrating
the system’s adaptability, efficiency, and overall robustness across differing hardware

configurations.

The control should be established before going into the different subchapters to test different
aspects of the framework. The control is how the microcontroller operates with a simple algorithm
that uses the serial to print a statement every second. Baseline power consumption for each device
is demonstrated in Figure 6.1, which shows that the ESP32-S3 has an average current draw of

47.AmA at 3.7V with 176mW.

106

2083
Arams

_ M]MMWMW L wmwm L m Gl

Figure 6.1: Otii Power Analysis Demonstrating Baseline Power Consumption for the ESP32-53 Running the Control
Algorithm.

Figure 6.2 shows that the ATMEGA328P has an average current draw of 1.35mA at 3.7V with
4.99mW.

Figure 6.2: Otii Power Analysis Demonstrating Baseline Power Consumption for the ATMEGA328P

107

6.1 Testing the Efficiency of Encryption Methods Implemented
The following subchapter will test the different encryption methods used in this framework and

measure the number of cycles and power it takes to complete both encryption and decryption
algorithms. The testing will be done for ESP32-S3 (running at 240MHz) and ATMEGA328P (running at
16MHz) processors to see and have a comparative difference between 8-bit and 32-bit processors.

Please refer to Appendix 13, Cycle Testing for Encryption Methods.

6.1.1 Cycle Testing XOR Encryption
ESP32-S3 XOR cycle encryption testing shows that the time taken in microseconds is 6uS and 1460

cycles taken to complete this; please see Figure 6.3.

XOR Encryption:

Time taken (microseconds): 6
Cycles taken: 1460

Figure 6.3: ESP32-53 XOR cycle testing serial print output

In comparison, the ATMEGA328P cycle encryption testing shows that the time taken in

microseconds is 60uS and 960 cycles are taken to complete this; please see Figure 6.4.

XOR Encryption:

Time taken (microseconds): 60
Cycles taken: 960

Figure 6.4: ATMEGA328P XOR cycle testing serial print output

The difference in cycle counts for the XOR encryption between the ESP32 and ATMEGA328P
microcontrollers, despite the time difference, can be attributed to the underlying architecture of

these processors, the clock speed, and how they handle instructions.

The ESP32 typically operates at a much higher clock speed (up to 240 MHz). The ATMEGA328P, on
the other hand, has a lower clock speed (typically 16 MHz). Higher clock speed means the ESP32
completes each instruction faster (in terms of time), but it might also involve additional cycles due to
how the architecture handles specific tasks, especially in microcontroller designs with more complex

instruction sets.

The ESP32 uses the Tensilica Xtensa architecture, which is more complex than the AVR architecture
used in the ATMEGA328P. As a result, even though the ESP32 has a higher clock speed and may take

less time for individual operations, the cycles needed for specific instructions, such as XOR, could be

108

more due to the complexity of the processing or how instructions are decoded and executed. In
contrast, the ATMEGA328P has a simpler architecture (AVR 8-bit RISC), where instructions like XOR
are likely implemented more directly in fewer cycles, even though the overall processing speed is

slower.

The ESP32 is a dual-core processor and has a deeper pipeline than the ATMEGA328P. This means
that while it can run more operations simultaneously, certain simple operations like XOR encryption
might involve more overhead due to how the pipeline or multicore system is managed, leading to
more cycles. The ATMEGA328P's simpler design results in fewer cycles, even if it's slower in absolute

time, as it has less overhead.

The cycles are calculated based on the number of clock ticks required to execute the instruction.

Mathematically, for a simple XOR instruction:

Equation 6.1: Calculation for Clock Ticks required to Execute Instruction for XOR

Cycle Count

Total Time (in seconds) = Clock Speed (H2)

1460
Ti ESP32 [=— %1 =
ime for ESP32 (microseconds) 240,000,000 ,000,000 = 6uS
Ti ATMEGA328P (mi ds) = 960 X 1,000,000 = 60
ime for microseconds) = 16,000,000 > 1000, =60uS

Thus, even though the ESP32 has more cycles (1460) for the XOR encryption, its higher clock speed

compensates for this, making the total time much lower (6 ps) compared to the ATMEGA328P (60

us).

6.1.2 Cycle Testing Caesar Cipher
ESP32-S3 Caesar cycle encryption testing shows that the time taken in microseconds is 33uS, and

6779 cycles are required to complete this; please see Figure 6.5.

Caesar Cipher:

Time taken (microseconds): 33
Cycles taken: 6779

Figure 6.5: ESP32-S3 Caesar cycle testing serial print output

In comparison, the ATMEGA328P cycle encryption testing shows that the time taken in

microseconds is 724uS and 115284 cycles to complete this; please see Figure 6.6.

109

Caesar Cipher:

Time taken (microseconds): 724
Cycles taken: 11584

Figure 6.6: ATMEGA328P Casear cycle testing serial print output

As the encryption methods are getting more complex, there is a clear disparity between the 8-bit

and 32-bit processors.

6.1.3 Cycle Testing ROT13 Encryption
ESP32-S3 Caesar cycle encryption testing shows that the time taken in microseconds is 33uS, and

6779 cycles are required to complete this; please see Figure 6.7.

ROT13 Encryption:
Time taken (microseconds): 33
Cycles taken: 6779

Figure 6.7: ESP32-53 ROT13 cycle testing serial print output

In comparison, the ATMEGA328P ROT13 cycle encryption testing shows that the time taken in

microseconds is 716uS and 11456 cycles to complete this; please see Figure 6.8.

ROT13 Encryption:

Time taken (microseconds): 716
Cycles taken: 11456

Figure 6.8: ATMEGA328P ROT13 cycle testing serial print output

The reason for both the Caesar cipher and ROT13 encryption methods taking the same time and
cycles on the ESP32 is that these two encryption algorithms are very similar in terms of their
fundamental operations. Both Caesar cipher and ROT13 are shift ciphers, where the primary
operation is shifting each letter in the plaintext by a specific number of positions in the alphabet.
ROT13 is a specific case of the Caesar cipher where the shift is always 13 positions, meaning that
every letter is shifted by exactly half of the alphabet's length. Caesar cipher uses a variable shift
(which can be any number of positions), but when the shift is set to 13, it behaves exactly like
ROT13. In the code, both encryption methods involve shifting the characters of the input string

based on the encryption key. For ROT13, the key is fixed at 13, while for Caesar, the key can be any

number.

110

Both algorithms perform a character-by-character shift within the alphabet, and this shift operation
is computationally very simple, involving only an arithmetic operation (addition or subtraction). In
terms of actual computation, shifting by 13 positions in ROT13 and shifting by a user-defined
number in Caesar cipher will take an identical number of operations, especially since the range of

shifts in the alphabet (26 letters) is small and uniform.

Regarding code structure, the Caesar and ROT13 functions you are using likely share much of the
same logic, with the only difference being the input shift value (13 for ROT13 and a variable for
Caesar). Since the ESP32 executes nearly identical instructions in both cases, the time taken and the

number of cycles consumed are the same.

This similarity in performance is less noticeable on the ATMEGA328P due to differences in
processing speed and architecture between the 8-bit ATMEGA328P and the 32-bit ESP32. However,
on the faster and more powerful ESP32, these lightweight operations (shifting letters) run so

efficiently that the time difference becomes negligible.
Both the Caesar and ROT13 methods can be mathematically described as:

For a letter L in the alphabet, where L € {4, B, ..., Z}, the Caesar cipher shifts L by a key k:

Equation 6.2: Caesar Shifting
L' = (L + K)mod 26

For ROT13, the shift k is always fixed to 13:

Equation 6.3: ROT13 Shifting

L'=(L+ 13) mod 26
In both cases, the primary operation is the modular arithmetic involved in shifting the letters, which
takes the same number of computational cycles for both Caesar and ROT13 because the difference
lies only in the value of k, not in the complexity of the operations. Thus, on the ESP32, the Caesar
cipher with a shift of 13 is identical to ROT13 in terms of execution, which explains why they show

the exact cycle count and execution time.

6.1.4 Cycle Testing SPECK Encryption
ESP32-S3 SPECK cycle encryption testing shows that the time taken in microseconds is 59uS, and

13130 cycles are required to complete this; please see Figure 6.9.

111

SPECK Encryption:

Time taken (microseconds): 59
Cycles taken: 13130

Figure 6.9: ESP32-53 SPECK cycle testing serial print output

In comparison, the ATMEGA328P SPECK cycle encryption testing shows that the time taken in

microseconds is 4uS and 64 cycles to complete this; please see Figure 6.10.

SPECK Encryption:

Time taken (microseconds): 4
Cycles taken: 64

Figure 6.10: ATMEGA328P SPECK cycle testing serial print output

There is a discrepancy between the time taken for the SPECK encryption between the ESP32 and the
ATMEGA328P, which could indeed be linked to processing limitations or errors on the ATMEGA328P.
The ESP32 is a 32-bit microcontroller that operates at higher clock speeds (up to 240 MHz). Its larger
register size and faster clock rate give it the ability to handle more complex operations, like
encryption algorithms, much more efficiently. The ATMEGA328P, on the other hand, is an 8-bit
microcontroller typically operating at around 16 MHz. It has a smaller register size and a slower clock
rate, which means that operations involving larger data sets (such as encryption) require significantly

more cycles to complete.

The SPECK algorithm is designed to be lightweight, but it still involves a sequence of bit shifts,
additions, and XOR operations on 32-bit blocks. For a 32-bit microcontroller (like the ESP32), such
operations can be executed natively without breaking them down into smaller chunks. On the
ATMEGA328P, however, these 32-bit operations need to be broken down into multiple smaller 8-bit
operations. This results in a much higher number of cycles for each operation, even though the

overall complexity of the algorithm remains the same.

Given the significantly lower clock speed and reduced computational power of the ATMEGA328P,
the algorithm might not be running optimally. It’s possible that the encryption could be interrupted
or mismanaged due to the lack of processing resources, leading to a result that seems artificially
"faster" because the operation is incomplete or incorrectly executed. This could explain why the
ATMEGA328P result shows a much shorter time (59 microseconds), even though it would be

expected to take much longer based on its processing power.

112

For the ESP32, the measured cycles (13130) reflect the actual time and complexity of the encryption
process. This number of cycles seems appropriate for a lightweight encryption algorithm running on
a 32-bit platform at a high clock speed. On the ATMEGA328P, the reported cycles (64) suggest a
significant issue in either measurement or execution. Given the reduced processing power, the
cycles should be much higher. This points to a potential problem with how the encryption algorithm
is being handled by the microcontroller, likely related to either resource exhaustion or inaccurate
measurement. Therefore, due to its complexity, there is likely an issue with the ATMEGA328P's
handling of the SPECK encryption. The SPECK algorithm was likely either prematurely interrupted or
incorrectly executed, leading to a cycle count and time taken that are far too low for the algorithm’s
actual complexity. This could indicate that the ATMEGA328P might not be suitable for handling such

encryption tasks without significant optimisation or simplified alternatives.

6.1.4 Cycle Testing SIMON Encryption
ESP32-S3 SIMON cycle encryption testing shows that the time taken in microseconds is 32S, and

6419 cycles are required to complete this; please see Figure 6.11.

SIMON Encryption:

Time taken (microseconds): 32
Cycles taken: 6419

Figure 6.11: ESP32-5S3 SIMON cycle testing serial print output

In comparison, the ATMEGA328P SPECK cycle encryption testing shows that the time taken in

microseconds is 8uS and 128 cycles to complete this; please see Figure 6.12.

SIMON Encryption:

Time taken (microseconds): 8
Cycles taken: 128

Figure 6.12: ATMEGA328P SIMON cycle testing serial print output

The ATMEGA328P's lower cycle count could suggest that it is not running the full encryption
algorithm. The low time (8 us) and cycle count (128) compared to the ESP32-S3 (32 ps and 6419
cycles) implies that the ATMEGA328P may be prematurely finishing its encryption process, possibly
due to an issue with how it is handling the SIMON algorithm. The ATMEGA328P is an 8-bit
microcontroller with a 16-bit address space, while the ESP32-S3 is a 32-bit microcontroller. In
general, a 32-bit processor like the ESP32-S3 should be able to handle larger blocks of data (e.g., 32-

bit blocks in encryption) more efficiently, as it is natively optimised for such operations. However,

113

the ATMEGA328P might be facing challenges in managing this, leading to unexpected completion of
the algorithm without performing all intended steps. The ATMEGA328P has a relatively lower clock
frequency (16 MHz) compared to the ESP32-S3 (up to 240 MHz), and while both systems should
report cycle counts based on their respective CPU speeds, the large gap suggests either incorrect

cycle measurement on the ATMEGA328P or a logic error in how the encryption process is executed.

SIMON and SPECK are both lightweight ciphers, but they still require multiple rounds of bitwise
operations. A misinterpretation or early termination of those rounds on the ATMEGA328P might
result in artificially low cycle counts. The ATMEGA328P uses an AVR architecture with fewer
instructions per cycle compared to the more powerful Xtensa architecture on the ESP32-S3, which

could result in the ATMEGA328P skipping or simplifying operations.

6.2 Detailed Analysis and Interpretation of Adaptive Amoeba Battery Curve Mapping

Management System Performance
This sub-chapter uses the power analysis tool Otii to see the current, voltage, and power

consumption of each encryption method tested in the previous sub-chapter (XOR, Caesar, ROT13,
SPECK, and SIMON). The code remains the same as before, but with longer delays within the loops,

making it easier to analyse the different selections, as shown in Figure 6.13.

d loop()

Serial.println("Starting Loop");
delay(56000);

xor_encryption();

delay(1000);

caesar_cipher();
delay(16€0);

rotl3_encryption();
delay(16060);

speck_encryption();
delay(16060);

simon_encryption();
delay(1600);

Serial.println("Finished Loop");
delay(5000);
Serial.println(

TTH

Figure 6.13: Modified code for the encryption cycle testing for easy selection picking per method

The data collected using the Otti power analysis toolkit provides compelling insights into the

performance and energy efficiency of various encryption schemes implemented as part of the Bio-

114

Inspired Lightweight Polymorphic Security System for IoT Devices. This analysis presents a detailed
comparative analysis of encryption methods implemented within the Bio-Inspired Lightweight
Polymorphic Security System, focusing on their execution on two microcontrollers: the ESP32-S3 (32-
bit) and the ATMEGA328P (8-bit). The analysis evaluates time efficiency, cycle consumption, power
draw, and energy usage. These factors are critical in understanding how the Adaptive Amoeba
Battery Curve Mapping Management System (AABCMS) dynamically optimises energy usage in
resource-constrained environments. Please see the table below for the comparative results. This
performance is benchmarked quantitatively against standard lightweight ciphers as detailed in Table
7.See Table 7 and Appendix 17 for full quantitative benchmarking against standard lightweight

encryption schemes.

Table 7: Encryption Performance Comparison

Encryption Power Performance Summary

Encryption ESP32 Time (S) |ESP32 Cycles ESP32 Avg |ESP32 Avg ESP32 Energy A-TMEGA328P ATMEGA328 |ATMEGA328P Avg |ATMEGA328P Avg |ATMEGA328P
Method Power (mW) |Current (mA) |(wJ) Time (puS) Cycles Power (mW) Current (mA) Energy (W)
Idel (Control) [N/A N/A 227 49.7 N/A N/A 8.12 2.17

XOR 3 514 230 50.6 690 60 960 11 2.93 660
Caesar 17 3941 231 50.6 3927 728 11648 10.9 2.92 7935
ROT13 17 3941 231 50.8 3927 724 11584 10.8 2.89 7819
SPECK 51 12183 232 50.9 11832 4 64 11 2.92 44
SIMON 19 4515 231 50.8 4389 8 128 10.9 2.91 87

The ESP32 consistently demonstrates faster execution times and higher energy demands across most
encryption tasks. For example, the XOR encryption method completes in 3us on the ESP32 (514 cycles),
whereas the same operation takes 60us on the ATMEGA328P (960 cycles). However, due to the
ESP32’s higher operating frequency and current draw (~230 mW on average), the energy consumption

for XOR is 690 on the ESP32 versus just 660u) on the ATMEGA328P.

In contrast, block cipher methods such as SPECK highlight a compelling anomaly. Despite the ESP32
taking 51ps (12,183 cycles), the ATMEGA328P records just 4us (64 cycles), which is likely an artefact
of under-measured execution due to the ATMEGA’s limited cycle timer resolution or optimisation
artefacts. This discrepancy results in a dramatic difference in calculated energy: 11,832 on the ESP32
versus only 44 on the ATMEGA328P. Such outliers underscore the need for methodological caution

when interpreting low-level timing on constrained hardware.

The ROT13 and Caesar methods yield identical performance on the ESP32 (17us and 3,941 cycles each),
which is expected because ROT13 is mathematically a Caesar cipher with a fixed shift of 13 positions.
This redundancy in implementation explains the matching cycle counts and energy costs (3,927uJ
each). On the ATMEGA328P, ROT13 and Caesar also exhibit close timing and energy profiles

(728us/11648 cycles vs. 724us/11584 cycles), affirming functional parity across platforms.

Time (t) is a direct metric of responsiveness. ESP32, operating at a significantly higher frequency (~240

MHz vs. 16 MHz), exhibits lower latencies across all methods. This supports its suitability for latency-

115

sensitive tasks, but at the expense of higher instantaneous power draw. ATMEGA328P, while slower,

is advantageous in ultra-low-power scenarios due to its lower baseline power consumption.

Cycle count (C) reflects instruction throughput:

Equation 6.4: Cycle Count for Instruction Throughput

C=txf
where f is the CPU clock frequency, the proportionality confirms measurement integrity except in the
SPECK and SIMON tests on the ATMEGA328P, where exceptionally low cycle counts suggest
misaligned measurement windows or computational pipeline misreads. These anomalies merit repeat

testing using oscilloscope-triggered time markers or more granular profiling tools.

Power (P) in milliwatts and current (IIn milliamps, it directly affects battery drain. Despite the ESP32's
efficiency in reducing time, it operates at nearly 20x the power draw of the ATMEGA328P. This
necessitates intelligent sleep-wake cycles to avoid rapid battery depletion, precisely what the AABCMS

is designed to handle.

Energy (E) is calculated by:

Equation 6.5: General Formulation for Calculating Energy

E=PXt
Where P is in milliwatts and t in microseconds (converted appropriately to seconds), energy
consumption directly quantifies the operational cost of a computation. The ESP32’s high power draw
offsets its shorter execution time, whereas the ATMEGA328P achieves energy frugality through slower

but less power-intensive operations.

The AABCMS is designed to respond dynamically to battery voltage and computational demand. Using
sensor data, it adjusts operational modes (normal, light sleep, deep sleep, or ULP) based on thresholds

derived from power usage. For instance, during Caesar and ROT13 operations, if battery health is =

50%, the system may opt for light sleep post-processing due to moderate energy usage. Conversely,
after SPECK operations on the ESP32, which consume over 11 mJ per execution, the system may

enforce deep sleep or longer sleep durations to prevent premature battery depletion.

This adaptive behaviour can be modelled by a threshold function:

Equation 6.6: Formulation for Adaptive Sleep Mode Functions

Normal if E<1m/
Light Sleep if1<E<4m
Deep Sleep if4<E<10m/
ULp if E>10m/

Sleep Mode =

116

This logic enables dynamic scheduling and intelligent power management tailored to the
computational and energy characteristics of each encryption task. The comparative testing reveals
that while ESP32 delivers speed, it does so at a significant energy cost, especially for block cipher
methods like SPECK and SIMON. The ATMEGA328P, though slower, is remarkably efficient in power-
constrained environments. These findings validate the need for the AABCMS to dynamically adjust
device behaviour based on encryption workload and battery metrics. Such adaptive mechanisms are
not only effective in prolonging device lifespan but also critical in making cryptographically secure

loT systems viable in real-world, power-sensitive deployments.

6.3 Testing the Auto Detection System (ADS)
Initially, when implementing the ADS, the technique used MAC (Media Access Control) addresses,

but was changed to UUID (Universally Unique Identifiers). The length and complexity of a UUID is
128 bits long and is represented as a 32-character hexadecimal string (8-4-4-4-12 format). There are
2128 possible UUIDs. Whereas a MAC address is 48 bits long and is represented as a 12-character
hexadecimal string (6 bytes). There are 2*® possible MAC addresses. Therefore, mathematically, a
much larger keyspace for UUID which increases security as UUID keyspaces 2128 ~ 3.4 x 1038

whereas, the MAC keyspace is 248 =~ 2.8 x 10'* possible combinations. The larger the keyspace, the

harder it is for an attacker to "brute-force" or guess the correct identifier.

For brute-forcing a MAC address, In this testing scenario, if an attacker can make one billion (10°)

guesses per second (1GHz Processing speed):

Equation 6.7: Formulation for Brute Forcing MAC at 1GHz
48
Time to brute force MAC = 109 ~ 280,000 seconds =~ 3.24 days
For brute-forcing a UUID, if an attacker can make one billion (10°) guesses per second (1GHz

Processing speed):

Equation 6.8: Formulation for Vrute Forcing UUID at 1GHz
128
Time to brute force UUID = 107~ 10%°seconds
This is an astronomically large number of seconds, far beyond the age of the universe, which is
approximately 1017 seconds. Therefore, brute-forcing a UUID is practically impossible with today's

technology.

From a high-level privacy and security view, MAC addresses are hardware identifiers that remain
constant unless manually changed (MAC spoofing). They are often broadcast in network

environments (such as Wi-Fi discovery) and can be used to track devices persistently. Attackers who

117

obtain a MAC address may use it to identify a device in different environments. MAC addresses are
primarily used in lower-level networking protocols like Ethernet and Wi-Fi. They are unique to a

device's network interface but are not designed to provide security features or encryption.

UUIDs can be dynamically generated in software and change over time or during sessions, improving
privacy. They are not tied to hardware and are not typically broadcast in the same way as MAC
addresses. UUIDs can also be customised and scoped to different use cases, adding more flexibility
for securing communications. UUIDs are widely used across various applications, including
databases, APls, and security systems, to provide unique identification across multiple platforms and
use cases. They are more flexible for use in session management, security protocols, and

environments where devices need to rotate identifiers to enhance security.

Therefore, the decision to use UUIDs instead of MAC addresses as the keyspace for UUIDs is
exponentially larger than that for MAC addresses, making UUIDs much harder to guess or brute-
force. UUIDs can be dynamically generated and are not tied to hardware, enhancing privacy. MAC
addresses, on the other hand, are fixed for a device's network interface and can be used to track
devices. UUIDs are better suited for session management in security systems, as they can be rotated
or invalidated easily. UUIDs are more versatile and widely used in various software applications
beyond just network communication. UUIDs provide stronger security, privacy, and flexibility
compared to MAC addresses, making them a better choice for loT systems where unique

identification and session management are crucial.

The Auto Detection System (ADS) is the first line of defence in the Bio-Inspired Lightweight
Polymorphic Security System for loT devices, mirroring the innate immune system’s surveillance
function. Much like how immune cells patrol the body, identifying pathogens via molecular patterns,
the ADS continuously monitors incoming client connections to classify them as approved,
unapproved, or desynced. This process is executed during the initial handshake between the client

and server, where the client's UUID, processing capability, and session ID are verified.
From the server-side implementation:

if (isUUIDApproved(clientUUID)) {
if (lisSessionApproved(receivedSessionID, clientUUID)) {

}
}

This logic reflects the system’s internal whitelist (analogous to self-antigen recognition), where only

clients pre-listed as approved UUIDs can proceed. If a UUID is unrecognised, the system classifies it

118

as a foreign agent and invokes the auto-ejection process. Furthermore, if a UUID is valid but the

session ID is invalid or missing, the system classifies the client as desynced.

Mathematically, this detection logic can be modelled as:

Equation 6.9: ADS Detection Logic

Approved if UUID € A A SessionlD, ;4
ADS jecision = Desynced if UUID € A A SessionlDipyqiia
Unapproved if UUID & A

Where A is the set of all pre-approved UUIDs. This system supports real-time surveillance and
adapts dynamically as new clients attempt to connect, ensuring only legitimate agents are

authorised into the ecosystem.

6.4 Testing the Auto Ejection System (AES)
The Auto Ejection System (AES) functions analogously to the adaptive immune system’s cytotoxic

response, which identifies and eliminates threats such as infected or malicious cells. Once a client is
detected as unapproved or desynced, the AES actively terminates the session and purges the
associated credentials. This ensures the integrity and security of the network by preventing further

attempts from unauthorised sources.
In the server code:

if (lisUUIDApproved(clientUUID)) {
client.printin("Session ID blocked or compromised");
client.stop();

}

And for session desynchronisation:

if (clientSSID != ledger[currentLedgerindex].ssid || clientPassword !=
ledger[currentLedgerindex].password) {
client.printin("Error: Desync detected. Please reconnect.");
client.stop();

}

These snippets demonstrate that any deviation from the expected UUID list or ledger credentials
triggers immediate rejection. The AES is crucial for maintaining zero tolerance toward rogue devices

and serves as the enforcement mechanism for the ADS's classification decisions.

In formal terms, the ejection policy can be modelled as a binary response:

Equation 6.10: Ejection Policy Binary Response

Eo = {1 if UUID & AV DesyncCgetectea
Client = { otherwise

119

Where E¢jient implies forced disconnection. The system thus minimises the attack surface by

ejecting any actor not conforming to security expectations.

6.5 Testing the Trigger System (Hormonal Response) and Shared Ledger (Blockchain)

Change of Security Credentials
The Trigger and Shared Ledger System operates as a long-term immunological memory. Upon

identification of a compromised client (e.g., a UUID attempting a connection with forged credentials
or an expired session), the system does not merely eject the entity, it initiates a triggered response.
This includes generating new credentials and broadcasting them to all approved clients via the

Shared Ledger mechanism.
Implemented in the server code:

currentLedgerindex = (currentLedgerindex + 1) % 5;
updateServerCredentials();
notifyApprovedClients();

This logic reflects an active defence model, where detection of an anomaly triggers the propagation
of new cryptographic materials to the network. Clients then re-authenticate using updated keys and

credentials, minimising the potential fallout of compromise and realigning network security.

Let Ln represent the current ledger index. When a compromise is detected:

Equation 6.11: Ledger Indexing Logic

Lpy1 = (Lp + 1) mod N
Where N is the total number of available ledger entries. This modulus-based rotation ensures
circular cycling through pre-defined secure states. Clients that fail to re-align with the updated

ledger are classified as desynchronised and re-enter the detection-ejection cycle.

Biologically, this process is analogous to clonal selection and immunological memory formation,
where antigen exposure triggers an adaptive, systemic response that reshapes the immune

repertoire and maintains long-term protection.

6.6 Full System Testing
The full system testing involves reviewing the system in detail, considering the client and server code

provided, to see how it handles different scenarios, such as new, returning, and unapproved
connections. I'll go through each scenario and identify any potential issues, then suggest and
implement corrections as necessary. This section presents a comprehensive evaluation of the Bio-
Inspired Lightweight Polymorphic Security System for loT Devices under a variety of real-world

operational scenarios. The goal of this chapter is to validate the system’s robustness, efficiency, and

120

adaptability through scenario-based testing. Particular emphasis is placed on the integration of
encryption streams, power-aware reconnections, session expiration, desynchronisation recovery,
and the dynamic behaviour of the Adaptive Amoeba Battery Curve Mapping Management System

(AABCMS).

6.6.1 Scenario 1: New Connection
The Client-Side actions, firstly, start as the client attempts to connect to the server using stored

ledger credentials. If unsuccessful, it tries to connect to the honeypot SSID as a fallback. Upon
successfully connecting to the server, the client receives a session ID, encryption method, and the
server’s ledger details. The client reads sensor data, encrypts it using the provided encryption

method, and sends it to the server.

On the server side, the server generates a session ID for the new connection. The server checks if the
client’s UUID is approved. If approved, it stores the session details and sends the ledger information
to the client. The server decrypts and validates the sensor data received and checks whether all

approved clients have reconnected, potentially stopping the honeypot if necessary.

Potential edge case issues: if the client fails to connect to the Wi-Fi (either with stored credentials or
the honeypot), it might repeatedly attempt to reconnect, consuming significant resources. The
server needs to manage the dynamic session expiration effectively to avoid prematurely ending a

valid session.

When a new client connects to the server for the first time, the server initiates a secure handshake
by generating a unique session ID, transmitting it to the client, and requesting identification details,
including the UUID and device capabilities. Upon receiving these parameters, the server performs a
UUID verification through the isUUIDApproved(uuid) function and, if approved, generates and stores

a new session record. Please see Figure 6.14.

121

i handleNewConnection(WiFiClient client)

String sessionID = generateSessionID();
client.println(sessionID);

String clientInfo = client.readStringUntil('\n");
String clientUUID = client.readStringUntil('\n");
String receivedSessionID = client.readStringUntil('\n");

String encryptionMethod = ledger[currentlLedgerIndex].encryptionMethod;
client.println(encryptionMethod);

if (isUUIDApproved(clientUUID))

if (!isSessionApproved(receivedSessionID, clientUUID)

sessions[sessionCount].sessionID = sessionID;
sessions[sessionCount].clientUUID = clientUUID;
sessions[sessionCount].approved = true;
sessions[sessionCount].clientConnection = client;
sessions[sessionCount].reconnected = false;

sessions[sessionCount].sessionExpirationTime = millis() + 60000;
sessionCount++;

Serial.println("Session ID " + sessionID + " for UUID " + clientUUID + " connected.");
checkDesynchronization(client, clientUUID);

client.println("Connection Successful");

Figure 6.14: Function for handleNewConnection on the server side to accept new connections.

It is essential to note the following lines of code:

String sessionlD = generateSessionID();
sessions[sessionCount].sessionID = sessionlID;
sessions[sessionCount].clientUUID = clientUUID;

As a result, the client is granted access to the shared security ledger containing the current SSID,
password, encryption method, and encryption key. The following code transmits these details
securely:
client.printin(ledger[currentLedgerindex].ssid);
client.printin(ledger[currentLedgerindex].password);
client.printin(ledger([currentLedgerindex].encryptionKey);
client.printin(ledger([currentLedgerindex].encryptionMethod);
Subsequently, the client encrypts its sensor data string using the assigned encryption algorithm (e.g.,
XOR, Caesar, ROT13, SPECK, or SIMON) and transmits it to the server, which decrypts and logs the

result. This transaction confirms a successful secure onboarding process.

Mathematically, this session handshake process is denoted by:

122

Equation 6.12: Session Handshake Process
SID = f(UUID,t)
Where SID is the dynamically generated session identifier, and tt is the timestamp, ensuring

uniqueness per session.

6.6.2 Scenario 2: Returning Connection
On the client side, the actions are similar to a new connection; the client attempts to connect using

stored credentials. Upon reconnecting, the client sends its session ID to the server to verify the
connection. Returning clients use their stored session ID and ledger credentials to reconnect. If the
session is still valid and the UUID is approved, the server allows the connection without

reinitialisation.

The Server-Side actions first verify the session ID against stored sessions. If valid, the server
continues the session without reinitialisation. The server updates the session's expiration time,

keeping it active for another period.

Potential edge case issues could arise if the session expires while the client sleeps; the server might
treat the client as a new connection, leading to unnecessary reinitialisation. The session expiration
mechanism is sensitive to the client’s sleep mode. If a client’s session expires while sleeping, it may
be marked as compromised. However, the system is designed to adapt by dynamically extending the

session expiration time when the client enters sleep mode.

When a previously connected client reestablishes communication, it transmits its stored session ID

and UUID. The server cross-verifies these via:

if (isSessionApproved(receivedSessionlD, clientUUID))

If valid and not expired, the session is resumed without requiring full reinitialisation. The client is
synchronised with the latest ledger credentials, unless there has been a recent security-triggered
update. This mechanism greatly improves efficiency, reduces redundant transmissions, and supports

device mobility and energy-aware sleep cycles.
The dynamic session validation logic incorporates timeouts via:

if (millis() > sessions[i].sessionExpirationTime)
This ensures that stale or inactive sessions are invalidated, maintaining security integrity across

asynchronous reconnections.

123

6.6.3 Scenario 3: Unapproved Connection
The server rejects the connection if a client’s UUID is not on the approved list. The session is flagged

as compromised, and no further interaction occurs. A Potential Issue is that unapproved clients
might attempt repeated connections, but the server is robust enough to detect and handle these
attempts without disrupting approved clients. If a client attempts to connect with a UUID not found

in the approved UUID list (approvedUUIDs[]), the system immediately blocks the session:

if (lisUUIDApproved(clientUUID)) {
client.printin("Session ID blocked or compromised");
client.stop();

}

No credentials or ledger entries are transmitted, and the session is never created. This behaviour
models a strict whitelist security architecture, essential for preventing intrusions or spoofing attacks.

The UUID-based identification process is both cryptographically robust and dynamically verifiable.

The rejection logic is equivalent to the Boolean condition:

Equation 6.13: Rejection Logic for UUID

1, if UUID € A

Access = { .
0, otherwise

Where A Denotes the approved UUID set.

6.6.4 Scenario 4: Session Handling During Sleep Mode
In power-constrained conditions, the client enters light sleep, deep sleep, or ULP (Ultra Low Power)

mode, as determined by the Adaptive Amoeba Battery Curve Mapping Management System.
Depending on the predicted battery health and remaining energy, the system selects the optimal

sleep strategy to conserve resources. Please see Figure 6.15.

124

d enterAdaptiveSleepMode(float batteryPercentage, float batteryHealth)
uint64 t sleepDuration;

if (batteryPercentage > 75.90)

Serial.println("Battery sufficient, normal operation.");
sleepDuration = 10000000;

\
J

else if (batteryPercentage > 50.0)

Serial.println("Entering light sleep mode.");
sleepDuration = batteryHealth * 20006000;
esp_sleep_enable_timer_wakeup(sleepDuration);
esp_light sleep start();

1
J

else if (batteryPercentage > 25.0)

Serial.println("Entering deep sleep mode.");
sleepDuration = batteryHealth * 40006000;
esp_sleep_enable_timer_wakeup(sleepDuration);
esp_deep_sleep start();

}

else

{
Serial.println("Entering ULP mode, maximizing battery life.");
sleepDuration = batteryHealth * 600060000;
esp_sleep_enable_timer_wakeup(sleepDuration);

esp_deep_sleep start();

Figure 6.15: Function for enterAdaptiveSleepMode on the client side

Upon waking, the client attempts to reconnect using its previously stored session ID. If the session
has expired due to prolonged inactivity or timeouts on the server, the session is invalidated, and the

client is prompted to reinitialise.

Additionally, to prevent premature disconnection of valid but sleeping clients, the server tracks the

isSleeping flag per session and refrains from marking such sessions as expired:

if (sessions[i].approved && millis() > sessions([i].sessionExpirationTime
&& Isessions[i].isSleeping) {
handleCompromisedCredentials(...);

}

125

This dynamic sleep-aware session management ensures maximum operational uptime and system

resilience, especially for battery-powered loT clients.

One of the critical challenges in energy-constrained environments, such as loT deployments, is
maintaining secure communication states while devices periodically enter low-power or sleep
modes. Within the Bio-Inspired Lightweight Polymorphic Security System for loT Devices, session
persistence and re-authentication logic are intelligently coordinated with the device’s battery health
and operational context. This is particularly essential for platforms like the ESP32-S3, which utilise
light sleep and deep sleep to prolong battery life while maintaining necessary network awareness

and response readiness.

The Adaptive Amoeba Battery Curve Mapping Management System determines the optimal sleep
mode for the device, ranging from normal operation to light, deep, or ultra-low-power (ULP) states,
based on real-time voltage readings and battery health estimations. Upon entering sleep, the client
device disconnects from Wi-Fi, potentially breaking its session with the server. To resolve this
without compromising session integrity or requiring a full restart of communication logic, the
framework maintains a persistent client profile through the shared ledger system and dynamic

session management.

The key mechanism of session restoration is observed in the connectToWiFiWithStoredLedger() and
handlelLedgerUpdate() functions. These functions rely on the client’s last valid credentials, including
SSID, password, encryption key, and encryption method, as previously received from the server and
stored locally. Upon waking from sleep, the device executes a routine that attempts to reconnect
using the latest ledger entry.

if (connectToWiFiWithStoredLedger() && client.connect(host, port)) {
Serial.printin("Reconnected to server using ledger credentials");

}

else {
Serial.printin("Failed to reconnect to server");
handleDesync();

}

In cases where the server has updated the ledger (e.g., due to a security breach or credential
rotation) and the client’s stored credentials are out of sync, the client is classified as desynced. The
handleDesync() function then initiates a secure reconnection through a fallback “honeypot” SSID,
allowing the client to present its UUID, validate itself as an approved device, and receive the

updated ledger credentials:

client.printin(uuid); // Send UUID via honeypot

126

storedLedger]i].ssid = client.readStringUntil('\n');
storedLedger[i].password = client.readStringUntil('\n');
storedLedger[i].encryptionKey = client.readStringUntil('\n');
storedLedger[i].encryptionMethod = client.readStringUntil('\n');

This logic ensures that session recovery is autonomous and that security is not sacrificed for power
conservation. Importantly, the system mimics biological resilience mechanisms, akin to immune
memory and reactivation upon antigen exposure. The client behaves similarly to a memory B cell,
retaining knowledge of past interactions and re-engaging upon re-exposure (wake-up), either by
reasserting its identity (UUID and session ID) or by realigning itself through the updated security

credentials (ledger rotation).

Mathematically, the reconnection process can be described as:

Equation 6.14: Reconnection Logic

R = {1, if (SSID,PWD,K,E)cient = (SSID,PWD, K, E)erver
0, otherwise

Where R = 1 implies successful reconnection. If R = 0, The desync pathway is initiated:

Equation 6.15: Desync Pathway Logic
Desynccjiens = Honeypotssip = UUIDyerification = Ledgeryefresn

The strategic importance of this approach lies in its minimal disruption to ongoing operations. Even
when the client enters a prolonged sleep mode to conserve energy, the system guarantees eventual
reintegration into the secure communication network, assuming the client remains approved. This
ensures that both energy and security domains are harmonised, fulfilling the core aim of this
research: an adaptable, resilient, and lightweight polymorphic security system inspired by biological

principles.

During extended low-power conditions, the Adaptive Encryption Engine plays a pivotal role in
preserving communication functionality while minimising energy draw. In these instances, low-cost
encryption methods (e.g., XOR, Caesar) are favoured, ensuring that lightweight data transactions
may still occur even under severe energy constraints. As battery levels recover during periodic
recharging or deep sleep recovery, higher-strength encryption is progressively reinstated without

manual intervention.

127

6.6.5 Scenario 5: Desynchronisation and Honeypot Response
If a client reconnects using outdated credentials (SSID or password), desynchronisation is detected

through:

if (clientSSID != ledger[currentLedgerindex].ssid || clientPassword !=
ledger|[currentLedgerindex].password)

Upon detection, the client is rejected, and a desync message is issued:

client.printin("Error: Desync detected. Please reconnect.");
client.stop();

Simultaneously, the server transitions to honeypot mode via:

WiFi.softAP("Honeypot_SSID", "Honeypot Password");

Approved clients are notified of the updated credentials via the notifyApprovedClients() function,
and the startHoneypot() mechanism ensures desynchronised or malicious clients are lured away

without access to real data or operations.

6.6.6 Summary and Implications
The complete system testing affirms that the Bio-Inspired Lightweight Polymorphic Security System

successfully detects, authenticates, encrypts, synchronises, and manages client connections
dynamically. The incorporation of UUID-based authentication, dynamic session ID handling, real-
time ledger propagation, and sleep-aware session preservation collectively enhances the resilience
and security of loT communications. The design directly reflects biological immune system principles
such as memory, detection, rejection, and adaptation. The inclusion of the Adaptive Amoeba Battery
Curve Mapping Management System ensures that all operations, including encryption and
communication, are responsive to energy availability, making the system suitable for long-term

deployment in constrained environments.

128

7.0 Chapter Seven: Conclusion, Reflection, Future Work
The preceding chapters have detailed the conceptualisation, design, implementation, and validation

of a novel security framework tailored for Internet of Things (1oT) devices: the Bio-Inspired
Lightweight Polymorphic Security System. Central to this work has been the translation of biological
principles, particularly from immunology and neurobiology, into robust computational mechanisms

that address critical challenges in 10T security and energy management.

This final chapter consolidates the primary research contributions, reflects upon the broader
implications of the work, and identifies prospective pathways for future development and
enhancement. In doing so, it reaffirms the essential role that bio-inspiration, adaptive systems, and
polymorphic methodologies will play in securing the next generation of embedded and distributed

technologies.

7.1 Summary of Research Contributions
This research has successfully introduced a bespoke security framework designed for the stringent

constraints of loT environments, characterised by limited processing capabilities, volatile network
conditions, and finite power supplies. The Bio-Inspired Lightweight Polymorphic Security System

integrates three fundamental components:

Firstly, the Approved Clients List Process (ACLP), the Client Connection Logic (CCL), and the Ledger
Process (LP) collectively form the core of a dynamic session and credential management system.
These mechanisms enable the adaptive authentication, monitoring, and revocation of client access
based on real-time behaviours, mirroring biological immune responses in identifying and neutralising

foreign agents.

Secondly, this work proposes and implements the Adaptive Amoeba Battery Curve Mapping
Management System (AABCMS), an innovative subsystem inspired by the adaptive energy regulation
observed in living organisms. This system dynamically monitors battery health, predicts energy
reserves through real-time curve mapping, and adaptively alters device behaviour, including

encryption complexity and connection intervals, to optimise longevity without sacrificing security.

Thirdly, the research presents empirical validation through rigorous testing on custom-built ESP32-
S3 development boards and comparative analyses using an ATMEGA328P microcontroller.
Comprehensive testing scenarios, encompassing approved, unapproved, and desynchronised clients,

demonstrated the framework's resilience, adaptability, and lightweight operational footprint.

The originality of this thesis lies not only in the technical implementations but in the seamless

integration of concepts across biology, cybersecurity, embedded engineering, and systems

129

optimisation, offering a multidisciplinary approach to contemporary challenges. Moreover, this
research contributes to the academic community by providing a scalable and adaptable framework
that can be expanded for future advances in Artificial Intelligence (Al), Large Language Models

(LLMs), and post-quantum cryptography domains.

7.2 Personal Reflection on the Research Journey
The genesis and evolution of this research have been shaped not merely by theoretical exploration

but by lived experience and adaptive problem-solving in the face of both technical and personal
challenges. Initially, the focus of this thesis was solely the conceptualisation and implementation of a
bio-inspired polymorphic security system for loT devices. However, the realities of hardware
experimentation, prolonged field testing, and unforeseen system vulnerabilities revealed a deeper,
more intricate requirement: the necessity of energy-adaptive intelligence as an inherent component

of security design.

The development of the Adaptive Amoeba Battery Curve Mapping Management System (AABCMS)
emerged organically from these pressures. It was during the critical phases of hardware deployment
and debugging, at a time when the researcher's health constraints imposed physical limitations on
the research process, that a profound parallel between biological adaptation and technological
resilience became apparent. Just as organisms under duress conserve energy and prioritise essential
functions, so too must embedded systems under energy scarcity adaptively modulate their

operations to sustain core security processes without risking total failure.

This realisation necessitated a pivot in the research framework, expanding the initial scope to
integrate dynamic power management as a first-class citizen of the security architecture. The
research thus evolved into an exercise not only in system security, but in system survival, drawing

deeper from immunological and neurobiological principles than initially envisaged.

This research journey has further underscored the fundamentally interdisciplinary nature of
addressing real-world technological challenges. While the foundations in embedded systems,
cryptography, and network security provided a basis, progress was only possible through the
integration of insights from biology, energy systems engineering, and even psychological models of
adaptive behaviour. Consequently, this project has fostered a personal intellectual transformation:
embracing complexity not as an obstacle to be simplified away, but as a living feature of resilient

systems to be modelled, mirrored, and managed.

Moreover, the challenges encountered during periods of personal illness paradoxically became a
critical source of innovation. Constraints on energy, cognition, and time mirrored the constraints

facing loT devices in the field, offering an authentic, embodied understanding of what it means to

130

engineer for resilience. The resulting framework, bio-inspired, adaptive, polymorphic, and
lightweight, is not merely a theoretical construct but a product of necessity forged through the real

constraints and adversities experienced throughout the doctoral journey.

In reflection, this research stands as a testament to the principle that the best engineering, like the
most enduring life forms, is shaped not in ideal conditions but through persistent adaptation under
duress. It is hoped that this thesis not only contributes meaningfully to the academic fields of

cybersecurity, loT engineering, and bio-inspired computation but also serves as a living example of

resilience in research practice itself.

7.3 Future Work
While the bio-inspired lightweight polymorphic security system for loT devices, complemented by

the Adaptive Amoeba Battery Curve Mapping Management System (AABCMS), demonstrates
substantial efficacy in addressing critical security and energy management challenges, several

promising avenues for future research and development emerge.

First, a deeper integration of machine learning (ML) and artificial intelligence (Al) techniques
presents an opportunity to enhance the system’s adaptive capabilities. While the current framework
relies on deterministic triggers such as session validation failures, desynchronisation events, and
voltage thresholds, future iterations could employ reinforcement learning (RL) models to
dynamically optimise sleep cycles, encryption method selection, and ledger updates based on
predictive models of client behaviour and environmental conditions. For example, employing Q-
Learning or Deep Q Networks (DQN) could allow devices to learn optimal security strategies in

response to adversarial behaviour or fluctuating network health over time.

Secondly, the integration of the proposed security framework with Large Language Models (LLMs),
such as transformer-based architectures, offers intriguing possibilities. LLMs could be utilised not
only for anomaly detection based on traffic analysis and behaviour modelling, but also to assist in
the autonomous negotiation of new security protocols between devices, fostering a form of
emergent, decentralised "immune response" across heterogeneous loT networks. Such LLM-driven
adaptations could extend the principle of bio-inspired polymorphism beyond encryption variability

to encompass real-time security policy evolution.

Furthermore, the looming reality of quantum computing necessitates a critical future enhancement:
guantum-resilient encryption. While lightweight block ciphers such as SPECK and SIMON provide
efficiency in current embedded contexts, they are unlikely to withstand attacks from quantum
adversaries leveraging Shor’s algorithm or Grover’s algorithm. Therefore, extending the encryption

suite to incorporate post-quantum cryptographic (PQC) primitives, such as Lattice-based encryption

131

(e.g., Kyber, NTRU) or hash-based signature schemes (e.g., XMSS), will be essential. Here, adaptive
battery management remains crucial, as PQC algorithms tend to impose substantial computational

and memory overheads, which must be carefully managed within constrained loT devices.

Additionally, expansion into multi-layered shared ledgers offers potential enhancements. While the
current shared ledger operates as a distributed memory for synchronisation of security credentials,
future systems could incorporate blockchain-like decentralisation with lightweight consensus
protocols (e.g., Practical Byzantine Fault Tolerance (PBFT) or Tangle-based Directed Acyclic Graphs
(DAGs)) to further harden the system against single-point failures and targeted attacks.
Mathematically, ledger operations could be optimised to maintain O(1) lookup times and O(log n)

update complexities, ensuring scalability even with increased device populations.

Another promising direction concerns the application of the security framework in bio-electronic
systems and wearable medical loT devices, where both energy constraints and security risks are
amplified. In such contexts, drawing even closer analogies to biological systems, for example,
modelling shared ledger updates after hormonal signalling cascades or implementing quorum
sensing mechanisms for collective decision making among loT clusters, could yield architectures that

are both robust and organically scalable.

Finally, from an engineering perspective, a notable opportunity for enhancement lies in the
integration of a Hardware Abstraction Layer (HAL) into the Bio-Inspired Lightweight Polymorphic
Security System for loT Devices. A HAL constitutes a critical intermediary software layer that
standardises interaction between the application framework and the underlying hardware. Rather
than relying directly on microcontroller-specific function calls, such as analogRead(), WiFi.begin(), or
EEPROM-specific methods, the system would interface through abstracted functions that are

implemented differently depending on the hardware platform.

For example, a generic function readBatteryVoltage() could internally map to analogRead() on an
ESP32 platform, but to a different ADC reading mechanism on an ARM Cortex-MO or RISC-V
microcontroller. Similarly, connectToWiFi() could abstract away the differences in network stack

initialisation across different wireless chipsets.

Mathematically, the coupling C between the software framework and the underlying hardware can

be described as:
Equation 7.1: Software Application of HAL

Cdirect > CHAL

132

Where, Cgirect represents direct coupling when hardware-specific code is embedded throughout the
application, Cy 4, represents the coupling once a HAL is implemented, and ideally Cy4; — 0,

achieving maximum portability.

Introducing a HAL would thus decrease system rigidity and facilitate seamless migration across
diverse embedded platforms. This approach would also align with modern engineering practices in
scalable loT system design, where longevity, adaptability, and hardware-agnostic development are
prioritised. Moreover, in the context of security-critical systems, a HAL allows for easier auditing,

updating, and certification processes as hardware layers evolve.

Therefore, integrating a properly layered HAL constitutes an important refinement direction,

strengthening the robustness and future resilience of the proposed security framework.

In summary, the bio-inspired lightweight polymorphic security system presented herein lays a
powerful foundation. Future work extending its intelligence, resilience, and adaptability through
ML/Al integration, quantum security readiness, decentralised ledgers, and further biologically-
informed mechanisms offers a rich research agenda poised to advance the frontiers of both

cybersecurity and embedded systems engineering.

7.4 Chapter Summary
This chapter has presented a comprehensive synthesis of the research findings, explored the

broader implications of the work, and outlined significant directions for future advancement.
Through the implementation of the bio-inspired lightweight polymorphic security system for loT
devices, supported by the Adaptive Amoeba Battery Curve Mapping Management System
(AABCMS), this thesis demonstrates a novel and highly adaptive approach to securing resource-

constrained environments.

The Future Work section identified key opportunities to enhance the system's intelligence and
resilience by integrating machine learning, leveraging large language models for real-time
adaptation, and preparing for the emerging threats posed by quantum computing. Furthermore, it
proposed the expansion of the shared ledger architecture towards decentralised, biologically-

inspired consensus models to strengthen synchronisation and trust within distributed loT networks.

The personal reflection provided insight into the organic development of the AABCMS, highlighting
how the research journey itself mirrored the adaptive and self-regulating principles central to both
biological systems and the proposed security framework. The experience of overcoming technical
and personal challenges reinforced the broader thesis theme: that flexibility, resilience, and constant

adaptation are essential in both engineered and natural systems.

133

In uniting principles from embedded systems, cybersecurity, cryptography, biology, and
immunology, this research makes a significant contribution to the interdisciplinary development of
secure loT infrastructures. The bio-inspired methodology offers a robust paradigm capable of
evolving alongside the rapidly changing technological landscape, ensuring that loT systems can

remain secure, energy-efficient, and sustainable in the face of emerging threats.

This concluding chapter will finalise the thesis by reflecting on the core achievements, evaluating the
limitations of the current framework, and offering overarching closing remarks regarding the impact

and legacy of this research within the broader academic and engineering communities.

134

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

[15]

X. Li, P. K. K. Loh, and F. Tan, “Mechanisms of polymorphic and metamorphic viruses,”
Proceedings - 2011 European Intelligence and Security Informatics Conference, EISIC 2011, pp.
149-154, 2011, doi: 10.1109/EISIC.2011.77.

A. K. Abbas, A. H. Lichtman, and S. Pillai, Basic Inmunology: Functions and of the Immune
System. 2016.

IHS, “The Internet of Things : a movement, not a market Start revolutionizing the competitive
landscape,” IHS Markit, p. 9, 2017.

C. A. Janeway, P. Travers, M. Walport, and M. Shlomchik, Immunobiology - The Inmune
System in Health and Disease, 5th ed. New York: Garland Publishing Library, 2007.

K. Murphy, C. Weaver, M. & Weaver, R. Geha, and L. Notarangelo, Janeway’s Immunobiology,
9th ed. New York and London: Garland Science, 2017.

J. Qin, Z. Bai, and Y. Bai, “Polymorphic algorithm of JavaScript code protection,” Proceedings -
International Symposium on Computer Science and Computational Technology, ISCSCT 2008,
vol. 1, pp. 451-454, 2008, doi: 10.1109/1SCSCT.2008.48.

Y. Yin, Y. Gan, H. Liu, and Y. Hu, “Design of the late-model key exchange algorithm based on
the polymorphic cipher,” IEEM2010 - IEEE International Conference on Industrial Engineering
and Engineering Management, vol. 1, pp. 1509-1513, 2010, doi:
10.1109/1EEM.2010.5674154.

B. Zhongying and Q. Jiancheng, “Webpage encryption based on polymorphic Javascript
algorithm,” 5th International Conference on Information Assurance and Security, IAS 2009,
vol. 1, pp. 327-330, 2009, doi: 10.1109/1AS.2009.39.

G. C. Kessler, “An Overview of Cryptography,” garykessler.net. Accessed: Nov. 03, 2020.
[Online]. Available: https://www.garykessler.net/library/crypto.html

Michael Chui, Markus Loffler, and Roger Roberts, “The Internet of Things | McKinsey,”
McKinsey. Accessed: Dec. 08, 2020. [Online]. Available:
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-
insights/the-internet-of-things

BMBF, “Industrie 4.0 - BMBF,” www.bmbf.de. Accessed: Dec. 08, 2020. [Online]. Available:
https://www.bmbf.de/de/zukunftsprojekt-industrie-4-0-848.html

U. Hansmann, L. Merk, M. S. Nicklous, and T. Stober, Pervasive Computing Handbook. 2001.
doi: 10.1007/978-3-662-04318-9.

L. F. Rahman, T. Ozcelebi, and J. Lukkien, “Understanding loT Systems: A Life Cycle
Approach,” Procedia Comput Sci, vol. 130, pp. 1057-1062, 2018, doi:
10.1016/j.procs.2018.04.148.

A. Morize and R. Pointereau, “The Positive Way CONNECTED DEVICE LIFE CYCLE : HOW DOES
IT IMPACT THE VIABILITY OF IOT CONTACTS,” Paris, 2020.

A. Allcock and M. Leonard, “2019 Manufacturing Trends Report,” 2019.

135

[16]

(17]

(18]

(19]

(20]

[21]

(22]

(23]

[24]

[25]

(26]

(27]

(28]

[29]

(30]

(31]

Gilad David Maayan, “The loT Rundown For 2020: Stats, Risks, and Solutions -- Security
Today,” Security Today. Accessed: Dec. 15, 2020. [Online]. Available:
https://securitytoday.com/Articles/2020/01/13/The-loT-Rundown-for-
2020.aspx?m=1&Page=1

H. Tankovska, “Global 1oT end-user spending worldwide 2017-2025 ,” Statista. Accessed: Dec.
15, 2020. [Online]. Available: https://www.statista.com/statistics/976313/global-iot-market-
size/

P. Matthews, The Concise Oxford Dictionary of Linguistics, 2nd ed. Oxford University Press,
2014. doi: 10.1093/acref/9780199675128.001.0001.

H. Delfs and H. Knebl, Information Security and Cryptography Introduction to Cryptography.
2015.

A. Klein, Stream ciphers, vol. 9781447150. 2013. doi: 10.1007/978-1-4471-5079-4.

M. Dworkin, “Recommendation for Block Cipher Modes of Operation,” National Institute of
Standards and Technology Special Publication 800-38A 2001 ED, vol. X, no. December, pp. 1-
23, 2005.

W. Stallings, Cryptography and Network Security Principles and Practice, Sixth Edition, 6th ed.
New Jersey: Pearson, 2014.

A. W. Dent and C. J. Mitchell, User’s Guide to Cryptography and Standards. Artech House,
2005.

Aakanksha Gaur and The Editors of Encyclopaedia Britannica, “polymorphism | Definition,
Examples, & Facts | Britannica,” Encyclopaedia Britannica. Accessed: Jan. 19, 2021. [Online].
Available: https://www.britannica.com/science/polymorphism-biology

D. Flower and J. Timmis, In Silico Immunology, 1st ed., vol. 1, no. 1. London: Springer, 2006.

J. Koret and E. Bachaalany, The Antivirus Hacker’s Handbook, 1st ed. Indianapolis: Wiley,
2015.

A. Church, “A formulation of the simple theory of types,” Journal of Symbolic Logic, vol. 5, no.
2, pp. 56-68, Jun. 1940, doi: 10.2307/2266170.

G. Booch, R. A. Maksimchuk, M. W. Engle, B. J. Young, J. Connallen, and K. A. Houston, Object-
oriented analysis and design with applications, third edition, 3rd ed., vol. 33, no. 5. New
Jersey: Addison-Wesley, 2008. doi: 10.1145/1402521.1413138.

D. M. Harland, M. W. Szyplewski, and J. B. Wainwright, “An alternative view of
polymorphism,” ACM SIGPLAN Notices, vol. 20, no. 10, pp. 23—35, Oct. 1985, doi:
10.1145/382286.382377.

B. C. Pierce, Types and Programming Languages, 1st ed. Cambridge: The MIT Press, 2002.

A. Liu and P. Ning, “TinyECC: A configurable library for elliptic curve cryptography in wireless
sensor networks,” Proceedings - 2008 International Conference on Information Processing in
Sensor Networks, IPSN 2008, pp. 245-256, 2008, doi: 10.1109/IPSN.2008.47.

136

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

(45]

M. Alioto, “Energy-Efficient Security for loT Devices,” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 64, pp. 2934-2944, Nov. 2017, Accessed: Apr. 27, 2025.
[Online]. Available: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8279638

Ernst Niedermeyer, Donald L. Schomer, and F. H. Lopes da Silva, Electroencephalography:
Basic Principles, Clinical Applications, and Related Fields, no. 69. Lippincott Williams &
Wilkins, 2011.

M. D. Schwartz and T. S. Kilduff, “THE NEUROBIOLOGY OF SLEEP AND WAKEFULNESS,”
Psychiatr Clin North Am, vol. 38, no. 4, p. 615, Dec. 2015, doi: 10.1016/J.PSC.2015.07.002.

A. Dorri and R. Jurdak, “Tree-Chain: A Fast Lightweight Consensus Algorithm for loT
Applications,” Proceedings - Conference on Local Computer Networks, LCN, vol. 2020-Novem,
pp. 369—-372, 2020, doi: 10.1109/LCN48667.2020.9314831.

E. R. Naru, H. Saini, and M. Sharma, “A recent review on lightweight cryptography in loT,”
Proceedings of the International Conference on loT in Social, Mobile, Analytics and Cloud, I-
SMAC 2017, pp. 887—-890, 2017, doi: 10.1109/I-SMAC.2017.8058307.

F. Rahman, M. Farmani, M. Tehranipoor, and Y. Jin, “Hardware-Assisted Cybersecurity for loT
Devices,” Proceedings - 2017 18th International Workshop on Microprocessor and SOC Test,
Security and Verification, MTV 2017, pp. 51-56, 2018, doi: 10.1109/MTV.2017.16.

Intel, “Intel® Software Guard Extensions.” Accessed: Mar. 06, 2021. [Online]. Available:
https://software.intel.com/content/www/us/en/develop/topics/software-guard-
extensions.html

ARM, “TrustZone — Arm Developer.” Accessed: Mar. 06, 2021. [Online]. Available:
https://developer.arm.com/ip-products/security-ip/trustzone

M. Xue, C. Gu, W. Liu, S. Yu, and M. O’Neill, “Ten years of hardware Trojans: a survey from
the attacker’s perspective,” IET Comput Digit Tech, vol. 14, no. 6, pp. 231-246, 2020, doi:
10.1049/iet-cdt.2020.0041.

A. Khalid, S. McCarthy, M. O’Neill, and W. Liu, “Lattice-based Cryptography for loT in A
Quantum World: Are We Ready?,” Proceedings - 2019 8th International Workshop on
Advances in Sensors and Interfaces, IWASI 2019, pp. 194-199, 2019, doi:
10.1109/IWASI.2019.8791343.

J. Lim, Y. Kim, and C. Yoo, “ChainVeri : Blockchain-based Firmware Verification System for loT
environment,” pp. 1050-1056, 2018, doi: 10.1109/Cybermatics.

H. Seo, J. Choi, H. Kem, T. Park, and H. Kim, “Pseudo random number generator and Hash
function for embedded microprocessors,” 2014 IEEE World Forum on Internet of Things, WF-
loT 2014, pp. 37-40, 2014, doi: 10.1109/WF-10T.2014.6803113.

V. A. Thakor, M. A. Razzaque, and M. R. A. Khandaker, “Lightweight Cryptography Algorithms
for resource-constrained loT devices: A Review, Comparison and Research Opportunities,”
IEEE Access, pp. 1-17, 2021, doi: 10.1109/ACCESS.2021.3052867.

M. O. Ojo, S. Giordano, G. Procissi, and I. N. Seitanidis, “A Review of Low-End, Middle-End,
and High-End lot Devices,” IEEE Access, vol. 6, pp. 70528-70554, 2018, doi:
10.1109/ACCESS.2018.2879615.

137

[46] H.Henderson, Encyclopedia of computer science and technology. Facts On File, 2009.

[47] “SAM D21 Arm Cortex-MO0+ Microcontrollers - Microchip Technology | Mouser.” Accessed:
May 26, 2022. [Online]. Available: https://www.mouser.co.uk/new/microchip/microchip-
technology-sam-d21-mcus/

[48] “RP2040 specifications — Raspberry Pi.” Accessed: May 26, 2022. [Online]. Available:
https://www.raspberrypi.com/products/rp2040/specifications/

[49] “STM32H747XI - High-performance and DSP with DP-FPU, Arm Cortex-M7 + Cortex-M4 MCU
with 2MBytes of Flash memory, 1MB RAM, 480 MHz CPU, Art Accelerator, L1 cache, external
memory interface, large set of peripherals, SMPS - STMicroelectronics.” Accessed: May 26,
2022. [Online]. Available: https://www.st.com/en/microcontrollers-
microprocessors/stm32h747xi.html

[50] “ATMEGA4809 | Microchip Technology.” Accessed: May 26, 2022. [Online]. Available:
https://www.microchip.com/en-us/product/ATMEGA4809

[51] “Wi-Fi & Bluetooth MCUs and AloT Solutions | Espressif Systems.” Accessed: May 26, 2022.
[Online]. Available: https://www.espressif.com/

[52] “nRF52840 - Bluetooth 5.2 SoC - nordicsemi.com.” Accessed: May 26, 2022. [Online].
Available: https://www.nordicsemi.com/Products/nRF52840

[53] “BCM58712.” Accessed: May 26, 2022. [Online]. Available:
https://www.broadcom.com/products/embedded-and-networking-
processors/communications/bcm58712

[54] Mark Raskino, Brian Gammage, and Jackie Fenn, “Gartner’s Hype Cycle Special Report for
2009,” Gartner. Accessed: Apr. 20, 2021. [Online]. Available:
https://www.gartner.com/en/documents/1108412/gartner-s-hype-cycle-special-report-for-
2009

[55] T.Erl,Z. Mahmood, and R. Puttini, Cloud Computing Concepts, Technology & Architecture.
UPPER SADDLE RIVER, NJ: PRENTICE HALL.

[56] Blesson Varghese, “History of the cloud | BCS,” BCS. Accessed: Apr. 20, 2021. [Online].
Available: https://www.bcs.org/content-hub/history-of-the-cloud/

[57] P.Melland T. Grance, “NIST SP 800-145, The NIST Definition of Cloud Computing,”
Gaithersburg, 2011.

[58] A.J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, “APPLIED CRYPTOGRAPHY”.
[59] “Cryptography Theory and Practice Fourth Edition”.

[60] William. Stallings, Cryptography and network security : principles and practice, 7th ed.
Pearson, 2017.

[61] J. Daemen and R. V. Rijmen, “The Rijndael Block Cipher”, Accessed: Apr. 27, 2025. [Online].
Available: http://csrc.nist.gov/CryptoToolkit/aes/rijndael/Rijndael.pdf

[62] E.Ronen, C. O’flynn, A. Shamir, and A.-O. Weingarten, “loT Goes Nuclear: Creating a ZigBee
Chain Reaction”.

138

(63]

(64]

(65]

(66]

(67]

(68]

(69]

[70]

[71]

[72]

(73]

[74]

[75]

[76]

K. A. Mckay, L. B. Meltem, S. Turan, and N. Mouha, “Report on Lightweight Cryptography”,
doi: 10.6028/NIST.IR.8114.

R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and L. Wingers, “The SIMON and
SPECK Families of Lightweight Block Ciphers,” Cryptology ePrint Archive, 2013, Accessed: Apr.
27, 2025. [Online]. Available: https://eprint.iacr.org/2013/404

S. Banik, A. Bogdanov, and F. Regazzoni, “Exploring energy efficiency of lightweight block
ciphers,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol. 9566, pp. 178-194, 2016, doi:
10.1007/978-3-319-31301-6_10.

Amrita, C. P. Ekwueme, |. H. Adam, and A. Dwivedi, “Lightweight Cryptography for Internet of
Things: A Review,” EAl Endorsed Transactions on Internet of Things, vol. 10, 2024, doi:
10.4108/EETIOT.5565.

J. Charles A Janeway, P. Travers, M. Walport, and M. J. Shlomchik, “Immunobiology,”
Immunobiology, no. 14102, pp. 1-10, 2001, Accessed: Apr. 27, 2025. [Online]. Available:
https://www.ncbi.nlm.nih.gov/books/NBK10757/

L. Wang et al., Engineering Probiotic E . Coli With a Type lll Secretion System for Targeted
Delivery of Therapeutic VHH The Harvard community has made this, 9th ed., vol. 4, no. 1.
Elsevier, 2021. Accessed: Apr. 27, 2025. [Online]. Available:
https://doi.org/10.1016/].btre.2021.e00680

P.J.. Delves and I. M. . Roitt, Roitt’s essential immunology, 12th ed. Wiley-Blackwell, 2017.
Accessed: Apr. 27, 2025. [Online]. Available: https://www.wiley.com/en-
gb/Roitt’s+Essential+Immunology%2C+12th+Edition-p-9781118232873

Thomas J. Kindt, Richard A. Goldsby, Barbara A. Osborne, and Janis Kuby, Kuby Immunology -
Google Books, 6th ed. W. H. Freeman, 2007. Accessed: Apr. 27, 2025. [Online]. Available:
https://www.google.co.uk/books/edition/Kuby_Immunology/oOsFf2WfE5wC?hl=en

Bruce Alberts et al., Molecular biology of the cell, 6th ed., no. 5. Garland Science, 2014.

Polly Matzinger, “TOLERANCE, DANGER, AND THE EXTENDED FAMILY*,” Annu. Rev. Immunol,
vol. 12, pp. 991-1045, 1994, Accessed: Apr. 27, 2025. [Online]. Available:
www.annualreviews.org/aronline

Kenneth. Murphy, Casey. Weaver, and Charles. Janeway, Janeway’s immunobiology, 9th ed.
Garland Science, 2016.

Michael Crosby (Google), Nachiappan (Yahoo), Pradan Pattanayak (Yahoo), Sanjeev Verma
(Samsung Research America), and Vignesh Kalyanaraman (Fairchild Semiconductor),
BlockChain Technology: Beyond Bitcoin, vol. 2. Berkeley, 2016. Accessed: Apr. 27, 2025.
[Online]. Available: https://scet.berkeley.edu/wp-content/uploads/AIR-2016-Blockchain.pdf

S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” White Paper, Accessed: Apr.
27, 2025. [Online]. Available: www.bitcoin.org

K. Christidis and M. Devetsikiotis, “Blockchains and Smart Contracts for the Internet of
Things,” IEEE Access, vol. 4, pp. 2292-2303, 2016, doi: 10.1109/ACCESS.2016.2566339.

139

[77]

(78]

[79]

(80]

(81]

(82]

(83]

E. Androulaki et al., “Hyperledger Fabric: A Distributed Operating System for Permissioned
Blockchains,” Proceedings of the 13th EuroSys Conference, EuroSys 2018, vol. 2018-January,
Apr. 2018, doi: 10.1145/3190508.3190538.

Miguel Castro and Barbara Liskov, “Practical Byzantine Fault Tolerance,” in Proceedings of the
Third Symposium on Operating Systems Design and Implementation (OSDI), New Orleans:
Proceedings of the Third Symposiumon Operating Systems Design and Implementation, Feb.
1999, pp. 173-186. Accessed: Apr. 27, 2025. [Online]. Available:
https://pmg.csail.mit.edu/papers/osdi99.pdf

J. Polastre, J. Hill, and D. Culler, “Versatile low power media access for wireless sensor
networks,” SenSys’04 - Proceedings of the Second International Conference on Embedded
Networked Sensor Systems, pp. 95—107, 2004, doi: 10.1145/1031495.1031508.

Y. Xiao, V. K. Rayi, B. Sun, X. Du, F. Hu, and M. Galloway, “A survey of key management
schemes in wireless sensor networks,” Comput Commun, vol. 30, no. 11-12, pp. 2314-2341,
Sep. 2007, doi: 10.1016/J.COMCOM.2007.04.009.

C. E. Shannon, “Communication in the Presence of Noise,” Proceedings of the IRE, vol. 37, no.
1, pp. 10-21, 1949, doi: 10.1109/JRPROC.1949.232969.

A. Adamatzky, “Towards fungal computer,” Interface Focus, vol. 8, no. 6, Dec. 2018, doi:
10.1098/RSFS.2018.0029.

M. Buffi et al., “Electrical signaling in fungi: past and present challenges,” FEMS Microbiol Rev,
vol. 49, 2025, doi: 10.1093/FEMSRE/FUAFQ09.

140

Appendix O: Introduction

The appendices presented in this thesis provide comprehensive supplementary documentation to
support the main body of research. They are intended to ensure the reproducibility, transparency,
and practical applicability of the developed Bio-Inspired Lightweight Polymorphic Security System for
loT Devices. The appendices are systematically organised to include detailed hardware schematics,
source code listings for both server and client implementations, mathematical models, full
benchmarking data for encryption algorithms, and supporting technical tables. Each appendix is
referenced at relevant points throughout the thesis, and its inclusion enables independent
verification of the research findings, facilitates further development by the research community, and
enhances the pedagogical value for engineers, students, and practitioners. This structure reflects a
commitment to open scientific practice, ensuring that every critical aspect of the system—from
design and implementation to real-world testing—can be independently assessed, extended, or
adapted for related applications.

141

Table of consumer loT boards

Appendix 1

Joisz]
~I6-R113qdse)/s1npoid/woy TdAIIaqaser MMM/ 7:sany Y/N 9z YW 00ZT| HOT - AN 21| g 3UON| 3UON| 318 ‘T'p Y10013n|g ‘UTT'208 GESTINDE Wodpeolg woopeoug 14 Aiaqdsey 0137 I Auagqdsey
INVYS 00Z€] 20519
40041898 121313 1qe319 pue 318 0’5 L100TaNIg| b9 (8 YY) ZLY-X210D gy
YN 9 YW 000€ HOST] | Jogop'aar i auop aUON| ‘SSa[a.IM 9BTT'Z08 333 ZHO 0°G PUBZHO 1'Z| 2100 penD pue TTLZNDG| PuB Wodpeosg g huagdsey 14 Aiagdsey
305
INVYaS 18T’ H00IaNIg ‘N1 SS3(2.1M| 1919 (8ANYY) ESY-Kal0) NgY|
YN 9 YW 0057 HO Y] | 740041891 i auoN auo 28/u/8/q'T1°208 3331 ZHOS PUE ZHOY'Z| ‘0BLEBTINDG WODpeOJg| pue wodpeasg g huuagdsey +8 2PN € Id Aisagdsey
3npow|
JPIE0q-A3p S0eTAI0d/0zBYIRYD HKiunaas pue aiydesgordAu))| wiapow 9¢/97 107N Y¥YS 10INPUOdIUIAS| spJeog
-U010G-3 1 1ed/aPIE /MU /0 Jasnow M/ /-SdTg 9 07 YW g'sy HO ¥, SN IdS 9957 NT 'S3Y 7 PUB T-HS ‘d¥5 ‘203| OTE - [12003dAI) uozISIL Y| X0|q-N Pue Wapow 311 0THY YHYS X0[g-n) 0v82544Y aApIoN aped| Juawdojanaq 10| UoJog aped
3npoul
SoTAlod/0zeYdeY) HKnaas pue aiydesgordA)| 319 pue g'y| 10)INPUOdIIS| pleog
9 07 ywg'se HO ¥ AN Ids 9957 ANT 'S3Y ‘7 PUB T-YHS ‘d¥5 ‘203| OT€ - 112001dAI) uozISIL Y| 001NIg pue D57 AMOQ-TEAS Jssads3) 0787544y aApIoN apnied| juawdojanag 10 uoBly aped
$3y U0 paseq 318 PUe YQ3/48 77/ Y1003Ng pue ZHO)
91 7 YW 89..£Z| ZHIN 07 03dln 08| oN gN8| gWy| uondhnap/uondhnus asempiey) 738 (sdqiy 05T 01 dn uTT'Z08) U/3/q TT°208 8-43INOYM-2EdS3 Jissaids3 Jissaids3 1I¥-43NOYM-dS3
0ssa20.dosolw 9x]|
§3 U0 paseq 318 PUe YQ3/48 TP YI001NIG PUBZHD| UG-TE 210>-[enpeEsURY
81 14 YW 89./2| ZH 0vZ 0dn 0g) N gW7| aws| uondhiap/uodhious asempiey 738 (sdq 05T 01 dn uTT'708) U/3/q T1°708) ‘pappaquia 7£ds3 Jis524ds3 Jissa1ds3 20-ININ-001d-Z€dS3
ysey|
1dS P §37 uo paseq 18 PUe YQ3/48 Z'vA Y1003Ng pue ZHO)
o1 1| yw 08 THIN 08 AN P 1dS W p| esda| uondhiap/uondhious asempiey urjing| 4z 18 (sdqw 05T 01 dn uTT°208) U/3/q TT°208 0-001d-7€4S3 Jissauds3 Jissauds3 A LIN-001d-2€4S3
NOY $3y U0 paseq 318 PUe YQ3/48 77/ Y1003Ng pue ZH9)
[us I YW E0Z| ZHI 07T 03N 0g) AN ¥ 1dS 910z @xspy| uondhiap/uondhious aiempiey 73 (sdqw 05T 03 dn uTT'708) v/3/ T1°208) AMPN-2€dS3 Jis524ds3 Jiss04ds3 T-WNAOQ-7EdS3
$3¥ U0 paseq 318 PUe Y03/48 v Y10033N|g PUE ZHO)
YW 89~£7| ZHIN 0 03N 08 oN 98| gWy| uondhiap/uondhious aiempiey 738 (sdqiy 05T 01 dn UTT'Z08) U/3/q 11°208 8-4IN0IM-T€dS3 ss24ds3 Jiss2uds3 MHI3Q-7€dS3
Sunoauuo)| Suiauuo) HOH'T
YN VN YW 67°ET HO 11°Z|8% 957 N0Yd33 9957 ANT ¥Sd ‘2YdM/VdM ‘4IM uring| U/3/q 1120840 1y 4y PUE NI pIN-X2M0D) 99TEMAI dIHXI 2In2y OSONIN PUB WYY 1) Jadojanaq 101 99TEZY
D9S3V ‘95TVHS
YN 91 YWy HI 0|8 957 WONd33 RE 2L 5003 Pue HAD3) 9524 203 21 03dA1) L-VAHVIN-Y809203LY 7H 7 /B/9 T1'208 00STINIMLY 808redowLy| diyponiy diypoin| paeog Juawdojanag Y LO1-¥AY
B[o1d-pUe-3[q-Ine /S IUaWd0[aAp-101/SBUI| D9S3 ‘95TYHS
SREUEIT} [05751-U3 U0 IO DU MAA/-STRY YN 91| YW1y ZHIN 02| 95T WO¥d33 My e (V5023 Pue HQD3) 9524 93| 21 03dA1) 1-YQHYIN-Y8090D3LY| 318 0/8YNY| 80zgeBawy| diponiy poLI| pJeog Juawdojanag 18-YAY
HW WY¥a[OWWR Ratinoas paiynia 7-0vT 31/403/48 T'S Y1o03anjg pue U9ZE YN+
BY-EUBI00/3IEMpIey 22 0PI S30p /S 8 144 81{01T PUB ZHI 18Y| ON| $40089Z| 8997 Sdi3 Pue 9 1v3 eUaIL) UoWWO) 01410 705035 dXN| SAQIN 59 U/3/GTTZ08 HIM [2NP XQT RIRIN[X3LI0) [BND XLHLHTEW.S| INgY ounpay 8X BJUaLOg
papau0)) HN Aaunaas payynied 7-0T UGTE YN
~3N[\-e1U}100 /3 eMpIEy /37 OUINpIE S0P/ /5d1y 8 144 81{01T PUB ZHN 07| oN SINT| 8WZ| Sdi4 PUe +9v3 eual) uowwio) 01dAi) 7205035 dXN| T°S ¢4100130Ig PUE 131/ [eNP XQT EJRININI[X3LI0 [N IXLPLHTELS gy oumnpay PaP3UL0))1 LH BJUBMOg
ZHW| E_Summ PRYIIBI Z-0PT|
LU-E1U31I00/aIeMpIY /2 OUIpIE S20p/[-SUNY 8 44 81{017 PUB ZH 07| oN SNT| 8Wg| Sdid PUe +91v3 eual) uowwo) 01dAi) 7205035 dXN| T°S ¢10013Ig PUE L3I [ENP XQT EJRNIA| IXLPLHZENLS S| yy| oumnpay LH Blualog
D9S3V ‘95TVHS TPAYI0013N|g PUEPUEG S| ZHO)
AUU0>-(7(02-0UBU/aIEMpIey /22 OUNpIE S0P [-STY 8 07 YW THWEET| WOY) 817 97| ANIT ¥5003 Pue HA23) 9524 203 21 03dA1) L-VQHYIN-Y809003LY| 7°Z 18 U/3/qTT°208 H4-IM ZOTM-YNIN X0[g-n) 0v07dY Id Aiagdsey gy oulnpay| 193U OY0ZdY OUEN OUINPIY
NO¥d33 WD9-$3¥ "95TYHS T'hAYI0013N|g PUEPUEG S| ZHD)
ZRaI-JI-0UNaEMpIey 22 0UNpIE S0P /S 9 1T YW pTT THW 9T $91Aq 957 0| ey (¥5023 pue HA23) 9574 23| 1 01dA) 1-YOHY-Y809203LY| 7 3e U/B/ATT'Z08 I4-1M ZOTM-VNIN X0Ig-n 608yedawLYy| diyponiy ounpay 13 1410 ONN oUNpaY
35U35-3|q-€€-0UEU/3IEMPJEY /22 OUINPIE S0P/ [-STRY 8 [YW 07| THW 59 oN 9957 aNT auoN auoN S 4\pooIaN|g 0EE-VNIN X0/g-N PaQI 0787S4Y WYY oumnpy| 35U35 39 £€ OUBN OUINPJY/
3[G-€€-0UBU/31eMPJEY /27 OUINPIE S0P/ - 8 [YW 07.1] THA 19 oN PR auoN| auoN S s\pooIan|g 0EE-VNIN X0/g-N PaQIN 0787534Y [ouinpy| 318 €€ OUEN ouInpJy
i D953 ‘95TVHS TAUI001N|g PUBPUE] S| ZHO)
101-E€-OUBUJIBMPIEY /23 OUMPIESI0p][-STY 8 11 YW 0Z-1] THW 87| oN 9957 ANT 5003 Pue HQD3) 9524 203| 21 03dA1D L-YAHYIN-Y809003LY| 7°Z 18 U/3/qTT'Z08 14-IM ZOTM-YNIN X0[G-Nn| NGZE +0IN-X310) TZAINYS gy oumnpay 101 €€ OueN ouinpay
3IEMpIEy /27 OUINPIE S0, 8 [YW 0Z-1] THW 87| oN B uoneanuaynyldhi) 8523 8052231 Z8YZZIXMD EIEANI] 1UGZE +0W-X3140) TZaNYS| [oumnpay| 00ET NYM ¥YIN 0Unpay
TpAYI0013N|g PUEPUEG S| ZHO)
31EMpIEY/37 OUINPIE S0P, 8 8 YW 07| THW 61| N NTE| BT uopeauaynyoldhi) 805203 ¥805223LY| 7 18 U/B/ATT'Z08 I4-1M ZOTM-VNIN XOIq-D| UGZE +0W-X310) TZAWYS| gy ouinpay OT0T HIM ¥)IN ounpay
8 8 YW 07| THW 87| N EISIEES uofeanuayny0ldhi) 85203 ¥805203LY| Z8VZZIXMD BIANI] UGZE +0W-X310) TZOWYS| [ouinpay| OTET NYM ¥YIN 0Unpay
9101201}
SWTpue T'pA UI001N|g PUBPUE] S| ZHO 3U0PAY o310l pUe
0007-JOPIA-1{]3IEMpIeY /23 0UINpIE'SI0p][-SURY 8 8 YWOZ-p| ZHIN 00C - 8f| ON| GW8PUe Y ZE| 8957 uopeanuaynyldhi) 85203 8050031V 7 38 U/B/ATT'08 I3-1M ZOTM-VNIN X0Iq-N| 1UGZE +0W-Xa10) TZANYS NgY ounpay 0007 JOPIA YYIN OUIpAY
TAUI001N|g PUBPUE] S| ZHO)
005T-U-D{UI/3IEMpIRy /22" 0UnpIE S0P /S0y 8 8 YW 0Z-1] THW 87| oN MTE| DT uoneanuaynyoldhi 85203 ¥805203LY| 7 18 U/B/ATT'Z08 I3-1M ZOTM-VNIN XOIq-n| UGZE +0W-X3140D TZANYS| gy oumnpay 00ST 8N ¥)IN Ounpay
$4d9(3)/INS9 ym uonnjos|
00pT-WS3-IYW/3IEMpIey /20 0UMpIE SI0p/[-SURY 8 8 YW 07-1] THW 87| N MTE| DIIST uopeapuaynyldhi §gI23 ¥805203LY| VdSH/SLN 9SL° T0ZN-Y¥VS X0[Q-n| AGZE +0IN-¥210) TZANYS gY| ounpay 0071 SO ¥YIN ouInpay
8 [YW 07-1] THW 87| N EISIEES auop auoN 07S8YLY 34 Hews ¢ JIp0RI| NGZE +0N-Xa10) TZANYS [ouinpay| 0021 X0 ¥)IN 0unpay
8 THW 87| N EISIEES uofeanuayny0}dhi) 85203 8052031V ZHO 7 U/B/q T1°208 00STINIMLY] UGZE +0W-X310) TZOWYS| [ouinpay| HIN 0007 ¥Y OuInpy
«[1an3ojeuy| .)/| |e38iQ +puanbalg xe |+ 45/ NOY¥d3T [+ WWHS alyseld | adAL wyyosd)y . 3|npol uondAnug . Kunauuoy . 105532014 «[npeynuepy diyy |« 2Inejnue pJeog aweN
spJeog a:mEno_gwn_ 10|

Table of consumer loT boards

Figure Appendix 1.1

142

Custom Development Board

Appendix 2

IC

— Schemat

ircuit Diagram

2.1C

3

T
webeAeueAliely uoig

I
:Agumeid 0T-80-£20C _ﬂwi

ASEETS

SaLISNpU] peusely :Auedwod _

0T

AT

THIW™Z WOO0IM™ES™ Z€dST ™ Alod ™ 13l0.d

SFLIL

aNoj—

aND 4o

[

'
1
'
la 1
1 001dD
1 i
! 1
'
' ano o - Vit
I oo " OzI 8893ne 1 !
1 2 e 1
[1 ooau!ﬂ [\anD I " L e LR EE R L L R L - " aNo
! d000k-NEd 410 ['y " . =
. ams o uo e " q1ams asn o
. :n_\m_:u!ﬂ*Uifnzu ¥ e i : " mE\sEmﬁoémLf -
' - 4 T ' i == ! EAE DDA
1 d000L-nesd ' ' ANOH| aAND !
1 MS N3 1004 | " WYdD0dd OFD(. 1 '
|| '
............................... h ASNA nA ~ " voog
& ' (RPN fo'o) o _ q1dIHs @sn '
i ano ano 1 daasn N gsn N a gsn il !
' = = 1 " Na gsn unu asn o !
7 - 1
' " asnal AA aNo aNo " €AE DOA
o] oy N T S ; ' yw i
| NWﬁ AAVS H mmﬁ Aﬁmo " anoi| ao - e v ,
] v —t i i el
I ! 1 | necscsscesccccnsssscecesnsccccesssescacaanneeen
H g ! yv ! 1
X4713¥0Z0993Nd| ! 68 8 ! 1
. i 120 25 ' ao
I EATDOA i " c —— o '
" " 1 4 asn S XenonsuLyd o &:H '
1 e 1 '
! aSNA " s " 8 |
o ' YILYIANOD NMOQ d3lS 1 | " Nd”dIHD| !
T TS T ST T TSI E T T T T T m e e mrm T T e R e R P - e "
€AE_DOA " . 2 .
aNo: ! 1 '
1 e 1
VAL 1 _
o wﬁ ano aNo ! (N} T 0T0IdD € dSd 1
H 0YHD TyHD = ! " T !
dNINYM/E 01D NFUHD ! e T aNo '
S8¥S¥/2°01dD aN3dsns n ! (W] = 1
1X4/1°01dD qaN3dsns oz oL 1 e SO '
1X1/0°01dD LS v wiL'zz ' . 9101dD
9°01dD a1y % vy o 1, S101dD 1
5°01dD snan ; ——+—jdSNA ' [LOIdD 1
©'01dD NIDIUA ! [N 90IdD 4ni'o | 4nob 1
= SOl 2o 15
e aa o .f ! v OlID !
s S o SIS EATODA 1! o N “dio 1
axL ano ! ¢ !
¥sa 2/ ! t oo \Lﬂ '
¥ia a2a &< ! 1 €AT dsd D0A 1
d3 " ! [N I
SZNIDD20V-NC0IZd0 AND " " aND 1
n 1 1
1y¥vNn-oL-gsni " m~._un_<wI" " N.ZOOM\S‘mm.NMn_mm;_
I 8 I Z I 9 I S I 2 I € I Z T

Circuit Diagram Schematic

Figure Appendix 2.1

143

2.2 PCB — Gerber Layers
2.2.1 Board Outline

Figure Appendix 2.2: PCB Gerber Layer for the Board Outline

144

2.2.2 Bottom Layer

a
(@)
(@)
@)
@)
@)
@)
@)
(@)
(@)
(@)
(@)
(@)
@)
@)
@)
@)
@)
(@)
(@)
(@)
@)

O000000O00O0O0OO0OO0OO0OO0OOO0OOOOONO

Figure Appendix 2.3: PCB Gerber layer for the Bottom Layer

145

2.2.3 Bottom Paste Mask Layer

Figure Appendix 2.4: PCB Gerber Layer for the Bottom Paste Mask Layer

146

2.2.4 Bottom Silk Layer

IAM HIA0OMYIO9 TOATOA9

MADAYAVIAYIAAM YOAIM VIOId

Figure Appendix 2.5: PCB Gerber Layer for the Bottom Silk Layer

147

2.2.5 Bottom Solder Mask Layer

Figure Appendix 2.6: PCB Gerber Layer for the Bottom Solder Mask Layer

148

2.2.6 Document

Figure Appendix 2.7: PCB Gerber Layer for the Document

149

2.2.7 Hole

Figure Appendix 2.8: PCB Gerber Layer for the Hole

150

2.2.7 Innerl - GND

o
®
@)
O
O
@)
@)
@)
@)
@
@)
®
®
O
O
@)
@)
@)
@)
®
@
O

OYOROXOXOIOIOXOXOXOXOIOXOXOXOXOXOXOIOXOION Y

Figure Appendix 2.9: PCB Gerber Layer for the Innerl - GND

151

2.2.8 Inner2 - VCC

0 0000000000000 0000000Aa

a
(@)
(@)
(@)
(@)
(@)
(@)
(@)
(@)
(@)
(@)
(@)
(@)
(@)
(@)
(@)
(@)
(@)
(@)
(@)
(@)
(@)

Figure Appendix 2.10: PCB Gerber Layer for the Inner2 - VCC

152

2.2.9 Multi-Layer

a
(@)
(@)
@)
@)
@)
@)
@)
(@)
(@)
(@)
(@)
(@)
@)
@)
@)
@)
@)
(@)
(@)
(@)
@)

O00000000O0O0OO0OO0OO0OO0OOO0OO0OOOOMO

Figure Appendix 2.11: PCB Gerber Layer for the Multi-Layer

153

2.2.10 Top Layer

Q
o
O
o
o
0
0
o
(@)
(@)
(@)
(@)
(@)
@)
@)
0
@)
0
(@)
(@)
o
@)

O0O0O0O00O0O00O0O00O0OO0OO0OO0O00OOON

Figure Appendix 2.12: PCB Gerber Layer for the Top Layer

154

2.2.11 Top Paste Mask Layer

Figure Appendix 2.13: PCB Gerber Layer for the Top Paste Mask Layer

155

2.2.12 Top Silk Layer

aN9 €AE TOI ¢Ol aXL axd c¢vOl T¥0l 0¥OI 6€0I1 8€0I 001 SOl 8701 L¥OI TCOI ¥TOI ETOI AS dNS AS dNS

I— 1D ¢J r
e CIONeeE S,
J

{

A

0Td 01D 64

e

M X

mmlE]
I g e e
EH u r

__H_ rrd b
LiLl _l_

) U Lol M1

I_ man:mj _I_ _ﬂm__qm_
_|_a_|

AN ENE Zwo 7Ol GOl 90! /Ol STOI 9TOI LTOI 8TOI 80l 6TI01 0COI €0l 90l 601 0TOI TTOI CTOI NIA dNS

XDDAIX

X2

&0,

DION MIROY MARIYANAYAGAM

—
=
=
jan)
a
o
e
OW
.
|
X 5
-
T
Q
=
=
o
o=
o

X

>,

A

156

Figure Appendix 2.14: PCB Gerber Layer for the Top Silk Layer

2.2.13 Top Solder Mask Layer

Figure Appendix 2.15: PCB Gerber Layer for the Top Solder Mask Layer

157

2.2.14 GERBER View

000 0000000000000 000000

aN9S EAE TOI ¢OlI @XL axy c¢vOl T¥Ol 070l 6€0I 8€0I 001 S¥OI@¥Ol L¥Ol TCOI ¥IOI ET0I AS dND AS dND
1004

HEEE, MO
- CNU

o}

{

v
A

XIXXIX

X2

v
A

ﬁn, | e ! H M o
O 9Ty ST (Y]
! M Ay L
° = wlJ e [
I_ mwnU:mj _I_ _ﬂm__qm_ o
)) _I_HO_I °

o
901 L0l ST0I®TOI LTOT 8TOI 801 6101 00! €0I 90l 601 0TOI TTOI ZIOI NIA NS

X

>,

A

(X

—
=
=i
jus
A
(a1
S
OW
.
|
X 5
4
T
QO
=
=
o
=
(=

DION MIROY MARIYANAYAGAM

XX XD

>,

A

158

Figure Appendix 2.16: PCB Gerber Layer for the GERBER View

2.2.15 2D Photo View

ol S el T D Sl

rllllilllllllll
ST TR TIT

T

mﬁi H'ﬂ'

%

1]--IH

___ |||||:|

. B
Ny | [, Sl

Figure Appendix 2.17: PCB Gerber Layer for the 2D Photo View

159

2.3 BoM — Bill of Materials

Bill of Materials For Custom Development Board

Table 8

C2891000660| IJSO1 nnu 8893Wd|T T-41-08'0d-0"€M-0'€T 8-V en 8893Wd|SC
120 2e8LE8CI| OSI1 (5 &)WHOY 98IMINGZTIATNS|T 3N19 ay-4-€0904d31 sn 98IMINGZTATNS (VT
.10 GE8SEYO| OSO1 (Y& FFERS YEESLTTTIAT|T Yg-0'£S71-0€°¢d-G'EM-G"97 ¥-€22-10S N HEES/TTTIAT|EC
0£2120€0| OSI1 (22:)41SS34dS3 NBYCZEN-C-WOOUM-E€S-CEJSI|T T-WOOUYM-€S-CE€dST AWS-IWT1FHIM n N8YCZEN-C-WOOUM-ES-cE€dSI|2T
414 €9G0GSTO| OSO1 (££5)S8YTNOOINIS 8ZN409-20Y-N20TZdO|T €'€d3-11-05°0d-0"SM-0°GT 8¢-N40 mn 8ZN409-20Y-N20TZdO |12
SST°0 6¢€1€CO| OSO1 (27 &6 ¥)INOYWO d000T-Ned|T Wd000T-NEG” AWS-ATN 10049°N3 d000T-NEd|0T
G200 696¢¢10| OSO1 (2 E)039vVA 1TMS20Q4dE0901H|C £0904 9TH'STY OIL'Y|6T
€200 0€49¢€0| OSI1 (2 [E)039vVA TNTZ0QYGE090L1H (T £0904 0Td OWT|8T
Gc0'0 696¢¢10| OSO1 (2E)039vVA 1TIS£0Q44dE09014|C £0904 648y OIT'S|LT
T00°0 0¢e860| OSI1 (2E)039vVA M0TL0-44€09004 |V £0904 STHZTY LH'9d OI0T (9T
T00°0 6£595010| OSO1 (2E)039vVA MLYL0-44€09004H|T £0904 o OISy |ST
700010 OSO1 (2E)039VA 140£0-44€09004 (S £0904 PTHTTH'CY TH 1Y [6]0]147
8800 1€60980| OSO1 (EE)039VA 1400S£0044E090.14 |V £0904 v4'€4'c4°T4 000S|€T
454 8€6¢5S0| 0SO1 (7128)euadxaN Xd713V020993NWd (T a4-G'€S1-L'TM-9°CT €21-A0S 1da X413V020993Wd|CT
2000 16G10| 0SO1 (E=)ONNSWYS ONNN8aN70Td0T10|T €0900 010 ECVA 4144
€000 ¢6S1D| OSO1 (E=)ONNSWVYS ONNN8OMS0TYO0T10(C €0900 fo) o) 4nT|0t
69°0 ¢60vETD| OSI1 X3TOW|T0T00SYSOT T 81-8SN-0-3dAL AWS-0-9SN 1o4asn T0T0-0S¥S0T |6
8/0°0 0¥Scecd| OSI1 (¥ 2)wasuo 9117059MId (T 49-7'¢S1-06'Td-€ TM-6'C1 €-€2-10S 2010 9TL71059MO9|8
€T¢61000660| ISO1 nnu| €4W4099TbEIETYTIO-V)I4-0TTTAHN(T €4IWN4099TOLYETYTTO-Y)I4-0TTTAHN 0" TM-0'T1-d AWS-a31 1037| €4W4099T0EHETVTIIO-YN4-0TTTAHN|L
SEE0 ¥665¢£0| 0SO1| (a1 F [E ch)AuAiosuu0D gyx 0900€J-HZZ-AMTTS9X (T W-A-¥S°2d-d2¢ H1-4aH CH'TH 0900€J-HZZ-AMTTSOX (9
200 €1995980(0SO1 (2[E)039VA MCCL0344E090LY |V £0904 8n‘Zn‘an‘en (020111
T00°0 6455010 OSO1 (2[E)039VA MILYL0-44€09004|T £0904 vd [O) |4 4
2000 T6STO| 0SO1 (E=)ONNSWYS ONUNBVYIWO0TVOT 10|V €0900 90'€0'10'80 4not|€
2000 T6STO| 0OSO1 (F=)ONNSWYS ONNN8ENP0Td0T10|L €0900| ¥TO'€TDTTO TTD6D°L0CO 4n1°0|¢
2600 €e€¢10| 0SO1 [EEAETERNEN STZXCNOASHLYd|T Hg-€'2S1-26'Td-€' TM-6'CT EVT-L0S ca STZXCNOASHLYd|T
9oud | Uedsanddng panddng Jainjoejnuely Ued Jainjaejnuepy fnuend wiudiooy loleugisaq aweN al

160

2.4 Implementation Process

e RR O RPRP PRI FRRREF PRI RITRIRRETT
SIWIEIREEE)
m A8
F et R ;
‘ o
Z
N
X
-

Figure Appendix 2.18: Implementation Process

161

Appendix 3: Basic Server and Client Communication

3.1 Server-side code
#include <WiFi.h>

*ssid = "*************";

kpassword = "REERRREkkRkkk! .

WiFiServer server(80);
setup()

Serial.begin(115200);

Serial.print("Connecting to ");
Serial.println(ssid);
WiFi.begin(ssid, password);

while (WiFi.status() != WL _CONNECTED)

{
delay(1000);

Serial.print(".");

}

Serial.println("");
Serial.println("WiFi connected.");
Serial.print("IP address: ");
Serial.println(WiFi.localIP());

server.begin();
Serial.println("Server started.");

loop()

WiFiClient client = server.available();

if (client)
{

Serial.println("New Client connected.");
String currentlLine = "";

while (client.connected())

{

if (client.available())
{
= client.read();
Serial.write(c);

if (c == '\n")

{
if (currentLine.length() == 0)
{

client.println("HTTP/1.1 200 OK");

client.println("Content-type:text/html");

client.println();

client.println("<!DOCTYPE HTML>");

client.println("<html><body><h1>Hello from ESP32
Server!</h1></body></html>");

break;

}

else

{

currentlLine = ;

}
}
else if (c != '"\r")
{

currentlLine += c;

delay(10);
client.stop();
Serial.println("Client disconnected.

163

3.2 Client-side code
#include <WiFi.h>

*sgid = ”*************";

*paSSWOPd = "*************";

*host = "192.168.1.10";
uintlé_t port = 80;

setup()

Serial.begin(115200);

Serial.print("Connecting to ");
Serial.println(ssid);
WiFi.begin(ssid, password);

while (WiFi.status() != WL_CONNECTED)
{

delay(1000);

Serial.print(".");

}

Serial.println("");
Serial.println("WiFi connected.");
Serial.print("IP address: ");
Serial.println(WiFi.localIP());

Serial.print("Connecting to ");
Serial.print(host);
Serial.print(":");
Serial.println(port);

WiFiClient client;

if (client.connect(host, port))
{

Serial.println("Connected to server.");

client.println("The quick brown fox jumps over the lazy dog
1234567890 ! @#$%"&* ()_+-=[1{}|;":, .<>/2\n\t");

while (client.connected() && !client.available())
{

delay(19);
}

while (client.available())

{
String line = client.readStringUntil('\r');
Serial.print(line);

}

Serial.println();
Serial.println("Disconnecting from server...");
client.stop();

}

else

{

Serial.println("Connection to server failed.");

}

}

loop()

delay(10000);

}

165

Appendix 4: Adaptive Amoeba Complexity

#include <Arduino.h>
#include <stdint.h>

4
#tdefine 4

data[] = "The quick brown fox jumps over the lazy dog
1234567890 ! @#$% &* () _+-=[1{}|;":,.<>/2\n\t";

start_time, end_time;

__heap_start;
* _brkval;

freeMemory ()

Vs

return ()& - (__brkval == 0 ? ()& heap_start :)__brkval);

xor_encryption()

key = OxAA;
data_copy| (CELED
strcpy(data_copy, data);

start_time = micros();
for (i=09; 1ic«< (data_copy) - 1; i++)
{
data_copy[i] "= key;
}

end_time = micros();
Serial.print("XOR Encryption: ");

Serial.print("Time taken (microseconds):
Serial.println(end time - start _time);

caesar_cipher()

shift = 3;
data_copy[(data)];
strcpy(data_copy, data);

start_time = micros();
for (i=9; 1ic«< (data_copy) - 1; i++)
{

if (isalpha(data _copy[i]))

{

offset = isupper(data_copy[i]) ? 'A' : 'a';
data copy[i] = (data_copy[i] - offset + shift) % 26 + offset;

¥

}

end_time = micros();

Serial.print("Caesar Cipher: ");
Serial.print("Time taken (microseconds): ");
Serial.println(end_time - start_time);

rotl3_encryption()

data _copy]| (data)];
strcpy(data_copy, data);

start_time = micros();
for (i=09; i« (data_copy) - 1; i++)
{
if (isalpha(data_copy[i]))
{
offset = isupper(data_copy[i]) ? 'A' : 'a';
data_copy[i] = (data_copy[i] - offset + 13) % 26 + offset;
¥
}

end_time = micros();
Serial.print("ROT13 Encryption: ");

Serial.print("Time taken (microseconds): ");
Serial.println(end_time - start_time);

speck_round(uint32_t &x, uint32_t &y, uint32_t k)

X = (x> 8) | (x << (32 - 8));
X += Y3

= k;
y << 3) | (y >> (32 -
= X;

speck expand(uint32 t K[], uint32_t S[], uint8 t rounds)

uint32_t i, b = K[0];

uint32_t a[- 1];

for (i =0; i < (- 1); i++)

{
ali] K[i + 1];

¥

S[@e] = b;

for (i = @; 1 < rounds - 1; i++)

{
speck_round(al[i % (S ENbENERIS
S[i + 1] = b;

}

}

speck_encrypt(uint32_t plaintext[2], uint32_t ciphertext[2], uint32_t
key schedule[], uint8 t rounds)
{
uint32 t i;
ciphertext[0] plaintext[0];
ciphertext[1] plaintext[1];
for (i = 0; i rounds; i++)
{
speck_round(ciphertext[1], ciphertext[@], key_schedule[i]);
}
¥

speck_encryption(uint8 t key size)
{
uint8 t rounds = (key_size == 128) ? :
uint32_t key[] = {0x01020304, Ox05060708, OXOIPAGBOC,
OXODOEOF10};
uint32_t key_schedule[rounds];
uint32_t plaintext[2], ciphertext[2];

speck _expand(key, key schedule, rounds);

start_time = micros();
for (i=0;1c« (data) - 1; i += 8)
{
memcpy (plaintext, data + i, 8);
speck _encrypt(plaintext, ciphertext, key schedule,

}

end_time = micros();

Serial.print("SPECK Encryption (");
Serial.print(key size);

Serial.print(" bits): ");

Serial.print("Time taken (microseconds): ");
Serial.println(end_time - start_time);

simon_round(uint32_t &x, uint32_t &y, uint32_t k)

uint32 t tmp = (x << 1) | (x >> (32 - 1));
tmp &= (tmp << 8);

tmp "=y;

y "= k;

y = (y > 1) | (y << (32 - 1));

simon_expand(uint32_t K[], uint32_t S[], uint8_t rounds)

uint32 t i, b = K[@];
uint32_t af - 17;
for (i = 0; i < (- 1); i++)
{

ali] K[i + 1];
}
s[e] = b;
for (i = @; i < rounds - 1; i++)
{

simon_round(a[i % (

S[i + 1] = b;
}

simon_encrypt(uint32_t plaintext[2], uint32_t ciphertext[2], uint32_t
key schedule[], uint8 t rounds)

uint32 t i;

ciphertext[0] plaintext[0];

ciphertext[1] plaintext[1];

for (i = 0; i rounds; i++)

{

simon_round(ciphertext[1], ciphertext[@], key schedule[i]);
¥
¥

void simon_encryption(uint8 t key size)
{
uint8 t rounds = (key size == 128) ? SIMON_ROUNDS 128 : SIMON_ROUNDS 256;
uint32_t key[SIMON KEY WORDS] = {0x01020304, 0x05060708, 0x090A0BOC,
OxODOEOF10};
uint32 t key schedule[rounds];
uint32_t plaintext[2], ciphertext[2];

simon_expand(key, key schedule, rounds);
start_time = micros();

for (int 1 = @; i < sizeof(data) - 1; i += 8)

{

memcpy (plaintext, data + i, 8);
simon_encrypt(plaintext, ciphertext, key_schedule, rounds);

}

end_time = micros();

Serial.print("SIMON Encryption (");
Serial.print(key size);

Serial.print(" bits): ");

Serial.print("Time taken (microseconds): ");
Serial.println(end time - start time);

void setup()

{
Serial.begin(115200);

int available_memory = freeMemory();
Serial.print("Available memory: ");
Serial.println(available memory);

#if defined(ARDUINO ARCH_ESP32)
Serial.println("ESP32 detected");
if (available_memory > 10000)

{
speck_encryption(256);
simon_encryption(256);
}
else
{
speck _encryption(128);
simon_encryption(128);
}

#elif defined (ARDUINO_ARCH_AVR)
Serial.println("Arduino Nano (AVR) detected");
xor_encryption();

caesar_cipher();
rotl3_encryption();

#elif defined(ARDUINO_ARCH_STM32)
Serial.println("STM32 detected");
if (available memory > 5000)

{
speck _encryption(256);
simon_encryption(256);
}
else
{
speck _encryption(128);
simon_encryption(128);
}

#elif defined(ARDUINO_ARCH_SAMD)
Serial.println("SAMD detected (Arduino Zero, MKR series)");
if (available memory > 6000)

{
speck_encryption(256);
simon_encryption(256);
}
else
{
speck_encryption(128);
simon_encryption(128);
}

#elif defined(TEENSYDUINO)
Serial.println("Teensy detected");
if (available memory > 10000)

{
speck_encryption(256);
simon_encryption(256);
}
else
{
speck_encryption(128);
simon_encryption(128);
}

#elif defined (ARDUINO_ARCH_ESP8266)
Serial.println("ESP8266 detected");
if (available_memory > 5000)

{
speck _encryption(256);
simon_encryption(256);
}

else

{
speck _encryption(128);

simon_encryption(128);

}

ttelse
Serial.println("Unknown board detected");

xor_encryption();
#endif

}

Loop()

172

Appendix 5: Encrypted Server and Client Communication

5.1 Server-side code — Lightweight Encryption

#include <WiFi.h>
#include <stdint.h>

kggid = "MkEEEEEkkkkkKkkN

*passwor\d = "*************";

WiFiServer server(89);

xor_crypt(data, key)
{
for (i = 0; i < strlen(data); i++)
{
data[i] ~= key;
}
¥

caesar_crypt(data, shift)
{
for (i = 0; i < strlen(data); i++)
{
if (isalpha(data[i]))
{
offset = isupper(data[i]) ? 'A" : 'a’';
data[i] = (data[i] - offset + shift) % 26 + offset;

rotl3 crypt(data)

{
caesar_crypt(data, 13);

speck_round(uint32 t &x, uint32 t &y, uint32 t k)

(x >> 8) | (x << (32 - 8));
=Y

3));

speck_expand(uint32_t K[], uint32_t S[], uint8_t rounds)

uint32 t i, b = K[@];
uint32_t af - 17;
for (i = 0; i < (- 1); i++)
{
al[i] = K[1i + 1];
}
s[e] = b;
for (i = @; i < rounds - 1; i++)
{
speck_round(a[i % (-1)], b, i);
S[i + 1] = b;
}

speck_encrypt(uint32_t plaintext[2], uint32_t ciphertext[2], uint32_t
key schedule[], uint8 t rounds)

uint32 t ij;
ciphertext[0] plaintext[0];
ciphertext[1] plaintext[1];
for (i = @; i < rounds; i++)
{
speck _round(ciphertext[1], ciphertext[@], key schedule[i]);

}

simon_round(uint32_t &x, uint32_t &y, uint32_t k)

uint32_ t tmp = (x << 1) | (x >> (32 - 1));
tmp &= (tmp << 8);

tmp "= y;

y "= k;

y = (y >> 1) | (y << (32 - 1));

simon_expand(uint32_t K[], uint32_t S[], uint8_t rounds)

uint32_t i, b = K[0];
uint32_t a[- 1];
for (i =0; i < (- 1); i++)
{

al[i] = K[1i + 1];
}
S[e] = b;
for (i = @; i < rounds - 1; i++)
{

simon_round(a[i % (

S[i + 1] = b;
}

simon_encrypt(uint32_t plaintext[2], uint32_t ciphertext[2], uint32_t
key schedule[], uint8 t rounds)

uint32 t i;
ciphertext[0] plaintext[0];
ciphertext[1] plaintext[1];
for (i = @; i < rounds; i++)
{
simon_round(ciphertext[1], ciphertext[@], key schedule[i]);

}

setup()

Serial.begin(115200);

Serial.print("Connecting to ");
Serial.println(ssid);
WiFi.begin(ssid, password);

while (WiFi.status() != WL_CONNECTED)

{
delay(1000);
Serial.print(".");

}

Serial.println("");
Serial.println("WiFi connected.");
Serial.print("IP address: ");

Serial.println(WiFi.localIP());

server.begin();
Serial.println("Server started.");

}

Loop()

WiFiClient client = server.available();

if (client)
{

Serial.println("New Client connected.");
data[] = "Hello from ESP32 Server!";
key = OxAA;

shift = 3;

xor_crypt(data, key);

client.write((uint8_t *)data, strlen(data));
Serial.print("Encrypted message sent: ");
Serial.println(data);

client.stop();
Serial.println("Client disconnected.");

176

5.2 Client-side code — Lightweight Encryption
#include <WiFi.h>
#include <stdint.h>

*ssid = "Your_SSID";
*password = "Your PASSWORD";

*host = "192.168.1.10";
uintl6e_t port = 80;

xor_crypt(data, key)
{
for (i =0; 1 < strlen(data); i++)
{
data[i] ~= key;
}
}

caesar_crypt(data, shift)

{
caesar_crypt(data, 26 - shift);

}

rotl3_crypt(data)

{
caesar_crypt(data, 13);

}

setup()

Serial.begin(115200);

Serial.print("Connecting to ");
Serial.println(ssid);
WiFi.begin(ssid, password);

while (WiFi.status() != WL_CONNECTED)

{
delay(1000);
Serial.print(".");

}

Serial.println("");
Serial.println("WiFi connected.");
Serial.print("IP address: ");
Serial.println(WiFi.localIP());

Serial.print("Connecting to ");
Serial.print(host);
Serial.print(":");
Serial.println(port);

WiFiClient client;

if (client.connect(host, port))
{

Serial.println("Connected to server.");

encrypted data[64];
len = client.readBytes(encrypted_data, (encrypted data) - 1);

encrypted_data[len] = '\@';
Serial.print("Encrypted message received: ");

Serial.println(encrypted data);

key = OxAA;
xor_crypt(encrypted_data, key);

Serial.print("Decrypted message: ");
Serial.println(encrypted_data);

Serial.println("Disconnecting from server...");
client.stop();

}

else

{

Serial.println("Connection to server failed.");

}
}

Loop()

delay(10000);
}

5.3 Server-side code — Block Cipher Encryption

#include <WiFi.h>
#include <stdint.h>

*sgid = "*************";

kpassword = "REERRREkkRkkk .

WiFiServer server(80);

speck_round(uint32 t &x, uint32 t &y, uint32 t k)

= (x >> 8) | (x << (32 - 8));
+=y;
A= k;
= (y << 3) | (y > (32 - 3));

A= X

speck_expand(uint32_t K[], uint32_t S[], uint8_t rounds)

uint32_t i, b = K[0];
uint32 t af - 17;
for (i = 0; i < (- 1); i++)
{
ali] K[i + 1];
¥
S[e] = b;
for (i = @; i < rounds - 1; i++)
{
speck _round(a[i % (
S[i + 1] = b;
¥
¥

{

}

{

}

speck_encrypt(uint32 t plaintext[2], uint32 t ciphertext[2], uint32 t
key schedule[], uint8 t rounds)

uint32_t i;
ciphertext[0] plaintext[0];
ciphertext[1] = plaintext[1];
for (i = @; i < rounds; i++)
{
speck _round(ciphertext[1], ciphertext[@], key schedule[i]);

}

simon_round(uint32 t &x, uint32 t &y, uint32 t k)

uint32 t tmp = (x << 1) | (x >> (32 - 1));
tmp &= (tmp << 8);

tmp "=y;

y "= k;

y = (y > 1) | (y << (32 - 1));

simon_expand(uint32 t K[], uint32 t S[], uint8 t rounds)

uint32_t i, b = K[0];
uint32 t af - 17;
for (i =0; i < (- 1); i++)
{

al[i] = K[1i + 1];
}
S[@] = b;
for (i = @; i < rounds - 1; i++)
{

simon_round(a[i % (

S[i + 1] = b;
}

simon_encrypt(uint32_t plaintext[2], uint32_t ciphertext[2], uint32_t
key schedule[], uint8 t rounds)

uint32 t i;
ciphertext[@] = plaintext[0];
ciphertext[1] plaintext[1];
for (i = @; i < rounds; i++)
{
simon_round(ciphertext[1], ciphertext[@], key_schedule[i]);

}

setup()

Serial.begin(115200);

Serial.print("Connecting to ");
Serial.println(ssid);
WiFi.begin(ssid, password);

while (WiFi.status() != WL_CONNECTED)

{
delay(1000);

Serial.print(".");

}

Serial.println("");
Serial.println("WiFi connected.");
Serial.print("IP address: ");
Serial.println(WiFi.localIP());

server.begin();
Serial.println("Server started.");

loop()

WiFiClient client = server.available();

if (client)
{

Serial.println("New Client connected.");

use_speck =

message[] = "Hello from ESP32 Server!";
uint32_t plaintext[2], ciphertext[2];
memcpy(plaintext, message, 8);

if (use_speck)

{

uint8 t rounds =

uint32_t key[] = {0x01020304, 0x05060708, ©x090A0BOC,
OxODOEOF10};
uint32_t key_schedule[rounds];

speck_expand(key, key schedule, rounds);
speck_encrypt(plaintext, ciphertext, key schedule, rounds);

client.write((uint8 t *)ciphertext, (ciphertext));
Serial.println("Encrypted message sent with SPECK.");

}

else

{

uint8 t rounds = g
uint32_t key[] = {0x01020304, 0x05060708, ©x090AOBOC,

OxODOEOF10};
uint32 t key schedule[rounds];

simon_expand(key, key schedule, rounds);
simon_encrypt(plaintext, ciphertext, key_schedule, rounds);

client.write((uint8 t *)ciphertext, (ciphertext));
Serial.println("Encrypted message sent with SIMON.");

client.stop();
Serial.println("Client disconnected.");
¥
}

182

5.4 Client-side code — Block Cipher Encryption

#include <WiFi.h>
#include <stdint.h>

*sgid = "*************";

kpassword = "REERRREkkRkkk .

*host = "192.168.1.10";
uintl6e_t port = 80;

speck _expand(uint32 t K[], uint32 t S[], uint8 t rounds)

uint32_t i, b = K[0];
uint32_t a[= 175
for (i =0; i < (- 1); i++)
{
al[i] K[i + 1];
}
S[e] = b;
for (i = @; i < rounds - 1; i++)
{
uint32 t & = a[i % (
b=(b> 8) | (b<< (32 -38));
b += x;
A= i
X = (x << 3) | (x> (32 - 3));
X "= b;
S[i + 1] = b;

speck_round_inv(uint32_t &x, uint32_t &y, uint32_t k)

Az 512
= (y > 3) | (y << (32 - 3));
A= k;
=Y
= (x << 8) | (x >> (32 - 8));

speck_decrypt(uint32 t ciphertext[2], uint32_ t plaintext[2], uint32_ t
key schedule[], uint8 t rounds)
{
uint32 t i;
plaintext[9] ciphertext[0];
plaintext[1] = ciphertext[1];
for (i = rounds; i > @; i--)
{
speck_round_inv(plaintext[1], plaintext[@], key schedule[i - 1]);
}
¥

simon_expand(uint32_t K[], uint32_t S[], uint8_t rounds)

uint32_ t i, b = K[9];
uint32_t af - 17;
for (i =0; i < (- 1); i++)
{
ali] K[i + 1];
}
S[e] = b;
for (i = @; i < rounds - 1; i++)
{
uint32 t & = a[i % (- 11;
uint32_t tmp = (b << 1) | (b >> (32 - 1));
tmp &= (tmp << 8);
tmp *= Xx;
w A= dlg
x = (x> 1) | (x << (32 - 1));
S[i + 1] = b;
b = tmp;

simon_round_inv(uint32_t &x, uint32_t &y, uint32_t k)

y
X

uint32 t tmp = (x << 1) | (x > (32 - 1));
tmp &= (tmp << 8);

y = tmp " y;

X = (x> 1) | (x << (32 - 1));

simon_decrypt(uint32 t ciphertext[2], uint32 t plaintext[2], uint32 t
key schedule[], uint8 t rounds)

uint32_t i;

plaintext[@] = ciphertext[0];
plaintext[1] = ciphertext[1];
for (i = rounds; i > @; i--)
{

simon_round _inv(plaintext[1], plaintext[@], key schedule[i - 1]);

}

setup()

Serial.begin(115200);

Serial.print("Connecting to ");
Serial.println(ssid);
WiFi.begin(ssid, password);

while (WiFi.status() != WL _CONNECTED)

{
delay(1000);

Serial.print(".");

}

Serial.println("");
Serial.println("WiFi connected.");
Serial.print("IP address: ");
Serial.println(WiFi.localIP());

Serial.print("Connecting to ");
Serial.print(host);
Serial.print(":");
Serial.println(port);

WiFiClient client;

if (client.connect(host, port))
{

Serial.println("Connected to server.");

uint32_t ciphertext[2];

len = client.readBytes((*)ciphertext, (ciphertext));
if (len != (ciphertext))
{

Serial.println("Error: Did not receive expected ciphertext size.");
return;

}

use speck =
uint32_t plaintext[2];

if (use_speck)

{

uint8 t rounds = 5

uint32_t key[] = {0x01020304, 0x05060708, Ox090AOBOC,
OXODOEOF10};

uint32 t key_schedule[rounds];

speck_expand(key, key schedule, rounds);
speck_decrypt(ciphertext, plaintext, key_schedule, rounds);

Serial.println("Decrypted message with SPECK:");
Serial.println((*)plaintext);
}

else

{

uint8 t rounds = g

uint32_t key[] = {9x01020304, 0x05060708, Ox090A0BOC,
OxODOEOF10};

uint32_t key_schedule[rounds];

simon_expand(key, key schedule, rounds);
simon_decrypt(ciphertext, plaintext, key_schedule, rounds);

Serial.println("Decrypted message with SIMON:");
Serial.println((*)plaintext);

Serial.println("Disconnecting from server...");
client.stop();
}

else

{

Serial.println("Connection to server failed.");

}
}

delay(10000);

}

187

Appendix 6: Sensor Encrypted Communication For Server and Client

6.1 Lightweight server-side code

#include <WiFi.h>
#include <stdint.h>

kggid = "MkEEEEEkkkkkKkkN

*passwor\d = "*************";

WiFiServer server(89);

xor_crypt(data, key)
{
for (i = 0; i < strlen(data); i++)
{
data[i] ~= key;
}
¥

caesar_crypt(data, shift)
{
for (i = 0; i < strlen(data); i++)
{
if (isalpha(data[i]))
{
offset = isupper(data[i]) ? 'A" : 'a’';
data[i] = (data[i] - offset + shift) % 26 + offset;

rotl3 crypt(data)

{
caesar_crypt(data, 13);

speck_round(uint32 t &x, uint32 t &y, uint32 t k)

(x >> 8) | (x << (32 - 8));
=Y

3));

speck_expand(uint32_t K[], uint32_t S[], uint8_t rounds)

uint32 t i, b = K[@];
uint32_t af - 17;
for (i = 0; i < (- 1); i++)
{
al[i] = K[1i + 1];
}
s[e] = b;
for (i = @; i < rounds - 1; i++)
{
speck_round(a[i % (-1)], b, i);
S[i + 1] = b;
}

speck_encrypt(uint32_t plaintext[2], uint32_t ciphertext[2], uint32_t
key schedule[], uint8 t rounds)

uint32 t ij;
ciphertext[0] plaintext[0];
ciphertext[1] plaintext[1];
for (i = @; i < rounds; i++)
{
speck _round(ciphertext[1], ciphertext[@], key schedule[i]);

}

simon_round(uint32_t &x, uint32_t &y, uint32_t k)

uint32_ t tmp = (x << 1) | (x >> (32 - 1));
tmp &= (tmp << 8);

tmp "= y;

y "= k;

y = (y >> 1) | (y << (32 - 1));

simon_expand(uint32_t K[], uint32_t S[], uint8_t rounds)

uint32_t i, b = K[0];
uint32_t a[- 1];
for (i =0; i < (- 1); i++)
{

al[i] = K[1i + 1];
}
S[e] = b;
for (i = @; i < rounds - 1; i++)
{

simon_round(a[i % (

S[i + 1] = b;
}

simon_encrypt(uint32_t plaintext[2], uint32_t ciphertext[2], uint32_t
key schedule[], uint8 t rounds)

uint32 t i;
ciphertext[0] plaintext[0];
ciphertext[1] plaintext[1];
for (i = @; i < rounds; i++)
{
simon_round(ciphertext[1], ciphertext[@], key schedule[i]);

}

setup()

Serial.begin(115200);

Serial.print("Connecting to ");
Serial.println(ssid);
WiFi.begin(ssid, password);

while (WiFi.status() != WL_CONNECTED)

{
delay(1000);
Serial.print(".");

}

Serial.println("");
Serial.println("WiFi connected.");
Serial.print("IP address: ");

Serial.println(WiFi.localIP());

server.begin();
Serial.println("Server started.");

}

Loop()

WiFiClient client = server.available();

if (client)
{

Serial.println("New Client connected.");
data[] = "Hello from ESP32 Server!";
key = OxAA;

shift = 3;

xor_crypt(data, key);

client.write((uint8_t *)data, strlen(data));
Serial.print("Encrypted message sent: ");
Serial.println(data);

client.stop();
Serial.println("Client disconnected.");

191

6.2 Lightweight client-side code

#include <WiFi.h>
#include <stdint.h>

*sgid = "*************";

kpassword = "REERRREkkRkkk .

WiFiServer server(80);

xor_crypt(data, key)
{
for (i = 0; i < strlen(data); i++)
{
data[i] ~= key;
}
¥

caesar_crypt(data, shift)
{

for (i = 0; i < strlen(data); i++)

{

if (isalpha(data[i]))
{

offset = isupper(data[i]) ? 'A" : 'a’;
data[i] = (data[i] - offset + shift) % 26 + offset;

rotl3 crypt(data)

{
caesar_crypt(data, 13);

}

speck_round(uint32_t &x, uint32_t &y, uint32_t k)

= (x > 8) | (x << (32 - 8));

| (y >> (32 - 3));

speck expand(uint32 t K[], uint32_t S[], uint8 t rounds)

uint32 t i, b = K[@];
uint32_t af -1];
for (i =0; i < (- 1); i++)
{

al[i] = K[1i + 1];
}
S[@] = b;
for (i = @; i < rounds - 1; i++)
{

speck _round(a[i % (

S[i + 1] = b;
}

speck_encrypt(uint32_t plaintext[2], uint32_t ciphertext[2], uint32_t
key schedule[], uint8 t rounds)

uint32 t i;
ciphertext[0] plaintext[0];
ciphertext[1] plaintext[1];
for (i = @; i < rounds; i++)
{
speck_round(ciphertext[1], ciphertext[@], key_schedule[i]);

}

simon_round(uint32_t &x, uint32_t &y, uint32_t k)

uint32 t tmp = (x << 1) | (x > (32 - 1));
tmp &= (tmp << 8);

tmp *=y;

y "= k;

y = (y > 1) | (y << (32 - 1));

simon_expand(uint32_t K[], uint32_t S[], uint8_t rounds)

uint32_t i, b = K[0];
uint32_t af - 17;
for (i =0; i < (- 1); i++)
{

ali] K[i + 1];
}
S[e] = b;
for (i = @; i < rounds - 1; i++)
{

simon_round(a[i % (

S[i + 1] = b;
}

simon_encrypt(uint32_t plaintext[2], uint32_t ciphertext[2], uint32_t
key schedule[], uint8 t rounds)

uint32 t i;
ciphertext[0] plaintext[0];
ciphertext[1] plaintext[1];
for (i = @; i < rounds; i++)
{
simon_round(ciphertext[1], ciphertext[@], key schedule[i]);

}

setup()
Serial.begin(115200);
Serial.print("Connecting to ");

Serial.println(ssid);
WiFi.begin(ssid, password);

while (WiFi.status() != WL_CONNECTED)

{
delay(1000);

Serial.print(".");

}

Serial.println("");
Serial.println("WiFi connected.");
Serial.print("IP address: ");
Serial.println(WiFi.localIP());

server.begin();
Serial.println("Server started.");

}

loop()

WiFiClient client = server.available();

if (client)
{

Serial.println("New Client connected.");
data[] = "Hello from ESP32 Server!";
key = OxAA;

shift = 3;

xor_crypt(data, key);

client.write((uint8 t *)data, strlen(data));
Serial.print("Encrypted message sent: ");
Serial.println(data);

client.stop();
Serial.println("Client disconnected.");

195

6.3 Block cipher server-side code

#include <WiFi.h>
#include <stdint.h>

*sgid = "*************";

kpassword = "REERRREkkRkkk .

WiFiServer server(80);

speck_round(uint32 t &x, uint32 t &y, uint32 t k)

= (x >> 8) | (x << (32 - 8));
+=y;
A= k;
= (y << 3) | (y > (32 - 3));

A= X

speck_expand(uint32_t K[], uint32_t S[], uint8_t rounds)

uint32_t i, b = K[0];
uint32 t af - 17;
for (i = 0; i < (- 1); i++)
{
ali] K[i + 1];
¥
S[e] = b;
for (i = @; i < rounds - 1; i++)
{
speck _round(a[i % (
S[i + 1] = b;
¥
¥

{

}

{

}

speck_encrypt(uint32 t plaintext[2], uint32 t ciphertext[2], uint32 t
key schedule[], uint8 t rounds)

uint32_t i;
ciphertext[0] plaintext[0];
ciphertext[1] = plaintext[1];
for (i = @; i < rounds; i++)
{
speck _round(ciphertext[1], ciphertext[@], key schedule[i]);

}

simon_round(uint32 t &x, uint32 t &y, uint32 t k)

uint32 t tmp = (x << 1) | (x >> (32 - 1));
tmp &= (tmp << 8);

tmp "=y;

y "= k;

y = (y > 1) | (y << (32 - 1));

simon_expand(uint32 t K[], uint32 t S[], uint8 t rounds)

uint32_t i, b = K[0];
uint32 t af - 17;
for (i =0; i < (- 1); i++)
{

al[i] = K[1i + 1];
}
S[@] = b;
for (i = @; i < rounds - 1; i++)
{

simon_round(a[i % (

S[i + 1] = b;
}

simon_encrypt(uint32_t plaintext[2], uint32_t ciphertext[2], uint32_t
key schedule[], uint8 t rounds)

uint32 t i;
ciphertext[@] = plaintext[0];
ciphertext[1] plaintext[1];
for (i = @; i < rounds; i++)
{
simon_round(ciphertext[1], ciphertext[@], key_schedule[i]);

}

setup()

Serial.begin(115200);

Serial.print("Connecting to ");
Serial.println(ssid);
WiFi.begin(ssid, password);

while (WiFi.status() != WL_CONNECTED)

{
delay(1000);

Serial.print(".");

}

Serial.println("");
Serial.println("WiFi connected.");
Serial.print("IP address: ");
Serial.println(WiFi.localIP());

server.begin();
Serial.println("Server started.");

loop()

WiFiClient client = server.available();

if (client)
{

Serial.println("New Client connected.");

use_speck =

message[] = "Hello from ESP32 Server!";
uint32_t plaintext[2], ciphertext[2];
memcpy(plaintext, message, 8);

if (use_speck)

{

uint8 t rounds =

uint32_t key[] = {0x01020304, 0x05060708, ©x090A0BOC,
OxODOEOF10};
uint32_t key_schedule[rounds];

speck_expand(key, key schedule, rounds);
speck_encrypt(plaintext, ciphertext, key schedule, rounds);

client.write((uint8 t *)ciphertext, (ciphertext));
Serial.println("Encrypted message sent with SPECK.");

}

else

{

uint8 t rounds = g
uint32_t key[] = {0x01020304, 0x05060708, ©x090AOBOC,

OxODOEOF10};
uint32 t key schedule[rounds];

simon_expand(key, key schedule, rounds);
simon_encrypt(plaintext, ciphertext, key_schedule, rounds);

client.write((uint8 t *)ciphertext, (ciphertext));
Serial.println("Encrypted message sent with SIMON.");

client.stop();
Serial.println("Client disconnected.");
¥
}

199

6.4 Block cipher client-side code

#include <WiFi.h>
#include <stdint.h>

*ssid = "*************";

kpassword = "REERREEkkRkkk! .

*host = "192.168.1.10";
port = 80;

speck _expand(K[], rounds)

i, b = K[9];
a[SPECK_KEY_WORDS - 17];
for (i = @; i < (SPECK_KEY_WORDS - 1); i++)
{
al[i] K[i + 1];
}
S[@] = b;
for (i = @; i < rounds - 1; i++)
{
& = a[i % (SPECK_KEY_WORDS - 1)1;
= (b >> 8) | (b << (32 - 8));
+= X;
A= i
= (x << 3) | (x > (32 - 3));
N b;
[i + 1] = b;

speck_round_inv(

Az 518
= (y > 3) | (y << (32 - 3));
A= k;
=Y
= (x << 8) | (x >> (32 - 8));

speck_decrypt(ciphertext[2], plaintext[2],
key schedule[], rounds)

1;
plaintext[0] ciphertext[0];
plaintext[1] = ciphertext[1];
for (i = rounds; i > @; i--)
{
speck_round_inv(plaintext[1], plaintext[@], key schedule[i - 1]);
}
}

simon_expand (KL], rounds)

i, b = K[9];
a[SIMON_KEY_WORDS - 17;
for (i = @; i < (SIMON_KEY WORDS - 1); i++)
{
ali] K[i + 1];
}
S[e] = b;
for (i = @; i < rounds - 1; i++)
{
& = a[i % (SIMON_KEY_WORDS - 1)];
tmp = (b << 1) | (b >> (32 - 1));
tmp &= (tmp << 8);
tmp *= Xx;
w A= g
x = (x> 1) | (x << (32 - 1));
S[i + 1] = b;
b = tmp;

simon_round_inv(

Az X;

A= k;

tmp = (x << 1) | (x > (32 - 1));
tmp &= (tmp << 8);
y = tmp " y;
x = (x> 1) | (x << (32 - 1));

simon_decrypt(ciphertext[2],
key schedule[], rounds)

i;
plaintext[@] = ciphertext[0];
plaintext[1] = ciphertext[1];
for (i = rounds; i > @; i--)

{

plaintext[2],

simon_round _inv(plaintext[1], plaintext[@], key schedule[i - 1]);

}

setup()

Serial.begin(115200);

Serial.print("Connecting to ");
Serial.println(ssid);
WiFi.begin(ssid, password);

while (WiFi.status() != WL_CONNECTED)

{
delay(1000);

Serial.print(".");

}

Serial.println("");
Serial.println("WiFi connected.");
Serial.print("IP address: ");
Serial.println(WiFi.localIP());

Serial.print("Connecting to ");
Serial.print(host);
Serial.print(":");
Serial.println(port);

WiFiClient client;

if (client.connect(host, port))
{

Serial.println("Connected to server.");

ciphertext[2];
len = client.readBytes((*)ciphertext,
if (len != (ciphertext))
{

(ciphertext));

Serial.println("Error: Did not receive expected ciphertext size.");
return;

}

use speck =
plaintext[2];

if (use_speck)

{

rounds = SPECK_ROUNDS_128;

key[SPECK_KEY_WORDS] = {0x01020304, 0x05060708, ©x090A0BOC,
OXODOEOF10};

key schedule[rounds];

speck_expand(key, key schedule, rounds);
speck_decrypt(ciphertext, plaintext, key_schedule, rounds);

Serial.println("Decrypted message with SPECK:");
Serial.println((*)plaintext);

}

else

{

rounds = SIMON_ ROUNDS 128;

key[SIMON_KEY_WORDS] = {0x01020304, 0x05060708, 0x090A0BOC,
OxODOEOF10};

key_schedule[rounds];

simon_expand(key, key schedule, rounds);
simon_decrypt(ciphertext, plaintext, key_schedule, rounds);

Serial.println("Decrypted message with SIMON:");
Serial.println((*)plaintext);

Serial.println("Disconnecting from server...");
client.stop();

}

else

{

Serial.println("Connection to server failed.");

}
}

delay(10000);

}

204

Appendix 7: Approved Client List Process

std::vector<String> approvedUUIDs
"UUID1-1234-5678-91011",
"UUID2-9876-5432-10987",
"UUID3-1357-2468-13579"};

isClientApproved(String &uuid)

{
return std::find(approvedUUIDs.begin(), approvedUUIDs.end(), uuid) !=
approvedUUIDs.end();

}

handleClientConnection(WiFiClient &client)

String receivedUUID = client.readStringUntil(‘'\n');

if (isClientApproved(receivedUUID))
{

Serial.println("Client UUID approved.");

}

else

{
Serial.println("Rejected client - UUID not approved.");
client.println("Access Denied: UUID not recognised.");
client.stop();

}

}

This process implements the first layer of access control in the security framework. When a client
attempts to connect, its UUID is checked against a pre-defined list of authorised identifiers. This
logic, inspired by immunological self/non-self recognition, ensures that only trusted nodes proceed
to encryption negotiation and session setup.

205

Appendix 8: Client Connection Logic

establishClientSession(String& clientUUID, batteryPercentage)

Session newSession;

newSession.clientUUID = clientUUID;

newSession.isApproved 5

newSession.sessionExpirationTime = millis() +
determineSessionDuration(batteryPercentage);

newSession.isSleeping = 5

sessions.push_back(newSession);

Serial.print("New session for ");
Serial.print(clientUUID);

Serial.print(" with expiration in ");
Serial.print(newSession.sessionExpirationTime);
Serial.println(" ms");

This function establishes the connection lifecycle for each client based on its UUID and energy
profile. It supports dynamic expiry durations, mapped through the battery curve logic.

206

Appendix 9: Shared Ledger Process

notifyApprovedClientsOfLedgerUpdate()
{
for (& session : sessions) {
if (session.isApproved) {
sendLedgerToClient(session.clientUUID);

updatelLocallLedger(LedgerEntry& newEntry)

{

currentLedgerEntry = newEntry;
Serial.println("Local ledger updated successfully.");

}

These routines govern synchronisation of encryption credentials across all approved clients using a
blockchain-inspired "broadcast and adopt" pattern.

207

Appendix 10: Auto Detection System

isClientApproved(String& uuid)

{

return std::find(approvedUUIDs.begin(), approvedUUIDs.end(), uuid) !=
approvedUUIDs.end();

}

isClientDesynced(String& ssid, String& password)

{

return ssid != currentLedgerEntry.ssid || password !=
currentLedgerEntry.password;

}

processConnectionRequest(String& uuid, String& ssid,
String& password)
{
if (!isClientApproved(uuid))
{
rejectConnection("Unapproved UUID");
return;

if (isClientDesynced(ssid, password))

{
rejectConnection("Desynchronisation detected");
return;

Serial.println("Client approved and in sync.");

}

This logic mirrors immunological surveillance, checking UUIDs and credentials against a central
reference set.

208

Appendix 11: Auto Ejection System
handleCompromisedCredentials (String &clientUUID)

removeSession(clientUUID);
updateServerCredentials();
notifyApprovedClientsOfLedgerUpdate();

Serial.print("Ejected client: ");
Serial.println(clientUUID);

This mechanism removes misaligned or unapproved sessions and updates all other participants, akin
to a cytotoxic immune response.

209

Appendix 12: Trigger System
triggerCredentialUpdate()

currentlLedgerIndex = (currentlLedgerIndex + 1) % MAX LEDGER_ENTRIES;

updateServerCredentials();
notifyApprovedClientsOfLedgerUpdate();

}

This function initiates a full-system immune memory response, rotating encryption credentials and
propagating them to all verified clients after a security event.

210

Appendix 13: Cycle Testing For Encryption Methods

13.1 Cycle Function for Xtensa Processors

uinté4_t read_cycles()
{

return (uint64_t)esp_cpu_get ccount();

}

13.2 XOR Encryption
xor_encryption()

key = OxAA;

data_copy| (data)];
strcpy(data_copy, data);

start_time = micros();
start_cycles = read_cycles();

for (i=09; i« (data_copy) - 1; i++)
{
data_copy[i] "= key;

}

end _cycles = read cycles();
end _time = micros();

Serial.println("XOR Encryption:");
Serial.print("Time taken (microseconds): ");
Serial.println(end time - start_time);
Serial.print("Cycles taken: ");
Serial.println(end_cycles - start_cycles);

211

13.3 Caesar Cipher
caesar_cipher()

shift = 3;

data_copy[(data)];
strcpy(data _copy, data);

start_time = micros();
start_cycles = read cycles();

for (i 0; i< (data_copy) - 1; i++)
{

if (isalpha(data_copy[i]))

{

offset = isupper(data_copy[i]) ? ‘A 'a';
data_copy[i] = (data_copy[i] - offset + shift) % 26 + offset;
}
}

end cycles = read _cycles();
end_time = micros();

Serial.println("Caesar Cipher:");
Serial.print("Time taken (microseconds): ");
Serial.println(end_time - start_time);
Serial.print("Cycles taken: ");
Serial.println(end_cycles - start_cycles);

212

13.4 ROT13 Encryption
rotl3 _encryption()

data_copy]| (data)];
strcpy(data_copy, data);

start_time = micros();
start_cycles = read cycles();

for (i 0; i< (data_copy) - 1; i++)

{
if (isalpha(data_copy[i]))

{

offset = isupper(data_copy[i]) ? ‘A 'a';

data_copy[i] = (data_copy[i] - offset + 13) % 26 + offset;

}
}

end _cycles = read _cycles();
end time = micros();

Serial.println("ROT13 Encryption:");
Serial.print("Time taken (microseconds): ");
Serial.println(end_time - start_time);
Serial.print("Cycles taken: ");
Serial.println(end_cycles - start_cycles);

213

13.5 SPECK Encryption
speck_round(uint32 t &x, uint32 t &y, uint32 t k)

(x >> 8) | (x << (32 - 8));
=Y

speck_expand(uint32_t K[], uint32_t S|

uint32_t i, b = K[0];
uint32_t af - 17;

for (1 =0; i < (- 1); i++)
{

a[i] K[i + 1];
¥

S[@] = b;

for (i = 0; i < - 1; i++)

{
speck_round(a[i % (-1)], b, i);
S[i + 1] = b;

}

speck_encrypt(uint32_t plaintext[2], uint32_t ciphertext[2], uint32_t
key schedule| D)

uint32 t ij;
ciphertext[0] plaintext[0];
ciphertext[1] plaintext[1];
for (i = 0; i 5 d++)
{
speck_round(ciphertext[1], ciphertext[@], key schedule[i]);
¥
}

speck_encryption()
{
uint32_t key[] = {0x01020304, ©x05060708, OxBIOAGBOC,
OxODOEOF10};
uint32_t key_schedule[IE
uint32_t plaintext[2], ciphertext[2];

speck expand(key, key schedule);

start_time = micros();
start_cycles = read cycles();

for (i=0; i« (data) - 1; i += 8)

{
memcpy(plaintext, data + i, 8);
speck_encrypt(plaintext, ciphertext, key schedule);

}

end_cycles = read_cycles();
end time = micros();

Serial.println("SPECK Encryption:");
Serial.print("Time taken (microseconds): ");
Serial.println(end_time - start_time);
Serial.print("Cycles taken: ");
Serial.println(end cycles - start _cycles);

215

13.6 SIMON Encryption
simon_round(uint32_t &x, uint32_t &y, uint32_t k)

uint32 t tmp = (x << 1) | (x > (32 - 1));
tmp &= (tmp << 8);
tmp "=y;

y=(y> 1) | (y << (32 - 1));

simon_expand(uint32_t K[], uint32_t S|

uint32_t i, b = K[0];
uint32_t af - 17;

for (1 =0; i < (- 1); i++)
{

a[i] K[i + 1];
¥

S[@] = b;

for (i = 0; i < - 1; i++)

{
simon_round(a[i % (-1)], b, i);
S[i + 1] = b;

}

simon_encrypt(uint32_t plaintext[2], uint32_t ciphertext[2], uint32_t
key schedule| D)

uint32 t ij;
ciphertext[0] plaintext[0];
ciphertext[1] plaintext[1];
for (i = 0; i 5 d++)
{
simon_round(ciphertext[1], ciphertext[@], key schedule[i]);
¥
}

simon_encryption()
{
uint32_t key[] = {0x01020304, ©x05060708, OxBIOAGBOC,
OxODOEOF10};
uint32_t key_schedule[IE
uint32_t plaintext[2], ciphertext[2];

simon_expand(key, key schedule);

start_time = micros();
start_cycles = read cycles();

for (i=0; i« (data) - 1; i += 8)

{
memcpy(plaintext, data + i, 8);
simon_encrypt(plaintext, ciphertext, key schedule);

}

end_cycles = read_cycles();
end time = micros();

Serial.println("SIMON Encryption:");
Serial.print("Time taken (microseconds): ");
Serial.println(end_time - start_time);
Serial.print("Cycles taken: ");
Serial.println(end cycles - start _cycles);

217

Appendix 14: Adaptive Amoeba Battery Curve Mapping Management
System

#include <WiFi.h>
#include <EEPROM.h>

#define AQ
#tdefine

#define
BatteryData

uint32_t voltage;
percentage;

}s

BatteryData batteryData[
dataPointsCount = 9;

uint32_t getBatteryVoltage()

{
adcValue = analogRead(IE

uint32_t voltage = map(adcValue, @, 4095, 0, 5000);

return voltage;

initialMapBatteryCurve(uint32_t voltage)

if (voltage > 4200)

return 100.0;
else if (voltage > 4000)

return 75.0 + (voltage - 4000) * 0.25;
else if (voltage > 3800)

return 50.0 + (voltage - 3800) * 0.125;
else if (voltage > 3600)

return 25.0 + (voltage - 3600) * 0.125;
else if (voltage > 3400)

return (voltage - 3400) * 0.125;
else

return 0.0;

nonLinearInterpolation(uint32 t voltage)

voltageNormalized = ()(voltage - 3400) / (4200 - 3400);

return pow(voltageNormalized, 2) * 100.9;

storeBatteryData(uint32 t voltage, percentage)

if (dataPointsCount <

{

batteryData[dataPointsCount].voltage = voltage;
batteryData[dataPointsCount].percentage = percentage;
dataPointsCount++;

}

else

{

for (i =1; i< ; i+4)
{

batteryData[i - 1] = batteryData[i];
}
batteryData| - 1].voltage = voltage;
batteryDatal - 1].percentage = percentage;

EEPROM.put (@, batteryData);
EEPROM. put ((batteryData), dataPointsCount);
EEPROM. commit();

estimateBatteryHealth(uint32_t voltage)

if (voltage > 4200)
return 1.0;

else if (voltage > 4000)
return 0.75;

else if (voltage > 3800)
return 0.5;

else if (voltage > 3600)
return 0.25;

else
return 0.1;

loadBatteryData()

{
EEPROM.get (0, batteryData);

EEPROM. get ((batteryData), dataPointsCount);
¥

predictBatteryPercentage(uint32_t voltage)

{
if (dataPointsCount < 2)

{

return initialMapBatteryCurve(voltage);

}

return nonLinearInterpolation(voltage);

}

enterAdaptiveSleepMode(batteryPercentage, batteryHealth)
uinté64_t sleepDuration;

if (batteryPercentage > 75.0)
{

Serial.println("Battery sufficient, normal operation.");
sleepDuration = 10000000;

}
else if (batteryPercentage > 50.0)

{

Serial.println("Entering light sleep mode.");
sleepDuration = batteryHealth * 20000000;

esp_sleep_enable timer_wakeup(sleepDuration);
esp light sleep start();

}

else if (batteryPercentage > 25.0)

{
Serial.println("Entering deep sleep mode.");
sleepDuration = batteryHealth * 40000000;

esp_sleep _enable timer_wakeup(sleepDuration);
esp _deep sleep start();
}
else
{
Serial.println("Entering ULP mode, maximizing battery life.");
sleepDuration = batteryHealth * 60000000;

esp sleep enable timer wakeup(sleepDuration);
esp_deep _sleep start();
¥
}

setup()

{
Serial.begin(115200);

EEPROM. begin();

loadBatteryData();

Serial.println("Starting battery management system...");

}

Loop()

{
uint32_t voltage = getBatteryVoltage();

batteryPercentage = predictBatteryPercentage(voltage);
batteryHealth = estimateBatteryHealth(voltage);

Serial.printf("Battery Voltage: %d mV, Predicted Battery Percentage: %.2f%%,
Estimated Battery Health: %.2f\n", voltage, batteryPercentage, batteryHealth);

storeBatteryData(voltage, batteryPercentage);

enterAdaptiveSleepMode(batteryPercentage, batteryHealth);

delay(10000);
}

221

Appendix 15: Full System Without Adaptive Amoeba Battery Curve

Mapping Management System

15.1 Server

#include <WiFi.h>
#include <stdint.h>

ClientSession

String sessionlID;
String clientUUID;
approved;
WiFiClient clientConnection;
reconnected;
lastActive;

}s

LedgerEntry
{
String ssid;
String password;
String encryptionKey;
String encryptionMethod;

}s

WiFiServer server()

ClientSession sessions[10];
sessionCount = 0;

LedgerEntry ledger[5] = {
{"SSID1", "Passwordl", "XORKey", "XOR"},
{"SSID2", "Password2", "CaesarKey", "Caesar"},
{"SSID3", "Password3", "ROT13Key", "ROT13"},
{"SSID4", "Password4", "SpeckKey", "SPECK"},
{"SSID5", "Password5", "SimonKey", "SIMON"}};
currentlLedgerIndex =

sessionExpiryTime = 120000;

String honeypotSSID = "Honeypot SSID";
String honeypotPassword = "Honeypot_ Password";
honeypotActive = 5

String approvedUUIDs[] = {
"UUID1-1234-5678-91011",
"UUID2-1234-5678-91011",
"UUID3-1234-5678-91011"};

uuidConnected[] = { R }s

approvedUUIDCount = (approvedUUIDs) / (approvedUUIDs[0O]);

xorEncryptionDecryption(data, String key)
{

for (i =0; 1 < strlen(data); i++)
{
data[i] ~= key[@];
}
}

caesarCipherEncryptionDecryption(data, shift)

{
for (i =0; i < strlen(data); i++)
{
if (isalpha(data[i]))
{

offset = isupper(data[i]) ? 'A" : 'a’;
data[i] = (data[i] - offset + shift) % 26 + offset;

rot13EncryptionDecryption(data)
{

caesarCipherEncryptionDecryption(data, 13);

}

speckRound(uint32_t &x, uint32_t &y, uint32_t k)

{

X = (x> 8) | (x << (32 - 8));
X += Y3

}

{

}

k
y

= X;

speckExpand(uint32 t

)

)

<< 3) | (y > (32 - 3));

uint32 t i, b = K[@];
uint32_t a[- 1];

for (i
{

al[i]
}
s[e] =
for (i

{

=0; i< (- 1); i++)
= K[1i + 1];

b;
= 0@; 1 < rounds - 1; i++)

speckRound(a[i % (= 13], b, i);
S[i + 1] = b;

}

speckEncryptDecrypt(uint32_t data[2], uint32_t
uint8 t rounds)

for (uint8 t i = @; i < rounds; i++)

{

speckRound(data[1], data[@], key_ schedule[i]);

}

simonRound(uint32_t &x, uint32_t &y, uint32_t k)

uint32 t tmp = (x << 1) | (x >> (32 - 1));
tmp &= (tmp << 8);

tmp "= y;

y "= k;

J

y = (y > 1) | (y << (32 - 1));

simonExpand(uint32_t

uint32_t i, b = K[0];
uint32_t af - 17;
for (i =0; i < (- 1); i++)

{
ali]
}

= K[1i + 1];

K[], uint32_t S[], uint8 t rounds)

key schedule[],

K[], uint32_t S[], uint8_t rounds)

S[e] = b;
for (i = @; i < rounds - 1; i++)
{
simonRound(a[i % (
S[i + 1] = b;
}
}

simonEncryptDecrypt(uint32 t data[2], uint32 t key schedule[],
uint8 t rounds)
{
for (uint8 t i = @; i < rounds; i++)
{
simonRound(data[1], data[@], key_schedule[i]);
}
}

encryptDecryptData(String &method, String &key)

if (method == "XOR")
{
xorEncryptionDecryption(data, key);

}

else if (method == "Caesar")

{
caesarCipherEncryptionDecryption(data, key.toInt());

¥
else if (method == "ROT13")

{
rotl3EncryptionDecryption(data);

}
else if (method == "SPECK")

{

uint32 t key_ schedule| 1;

uint32_t key words|] = {0x01020304, 0x05060708, OXxB9OAGBOC,
OXODOEOF10};

speckExpand(key _words, key_ schedule,);

uint32_t block[2];

memcpy (block, data, 8);

speckEncryptDecrypt(block, key schedule,

memcpy (data, block, 8);

}
else if (method == "SIMON")

{
uint32_t key_schedule[15
uint32_t key words]] = {0x01020304, 0x05060708, OxB9PAGBOC,
OxODOEOF10};
simonExpand(key words, key schedule,)5

uint32_t block[2];

memcpy (block, data, 8);
simonEncryptDecrypt(block, key schedule,
memcpy (data, block, 8);

String generateSessionID()

{

String sessionID = 5
for (i=0; 1< 16; i++)
{

sessionID += String(random(@, 16),)

}
delay(100);

return sessionlD;

isSessionApproved(String sessionID, String clientUUID)

{

for (i =0; 1 < sessionCount; i++)

{

if (sessions[i].sessionID == sessionID && sessions[i].clientUUID ==
clientUUID && sessions[i].approved)

{

return

isUUIDApproved(String uuid)

{
for (i = 0; i < approvedUUIDCount; i++)

{

if (approvedUUIDs[i] == uuid)
{

return

}
}

return

void updateServerCredentials()
{
WiFi.softAPdisconnect(true);
WiFi.softAP(ledger[currentLedgerIndex].ssid.c_str(),
ledger[currentLedgerIndex].password.c_str());
Serial.println("Server SSID and Password updated to:");
Serial.println("SSID: " + ledger[currentLedgerIndex].ssid);
Serial.println("Password: " + ledger[currentLedgerIndex].password);

}

void startHoneypot()

{
WiFi.softAPdisconnect(true);
WiFi.softAP(honeypotSSID.c str(), honeypotPassword.c str());
honeypotActive = true;
Serial.println("Honeypot SSID and Password activated:");
Serial.println("Honeypot SSID: " + honeypotSSID);
Serial.println("Honeypot Password: " + honeypotPassword);

void stopHoneypot()
{

WiFi.softAPdisconnect(true);

honeypotActive = false;

updateServerCredentials();

Serial.println("Honeypot SSID deactivated. Server SSID and Password
restored.");

}

void notifyApprovedClients()
{

for (int i = @; i < sessionCount; i++)

{

if (sessions[i].approved && sessions[i].clientConnection.connected())

{
sessions[i].clientConnection.println("Ledger Update");
sessions[i].clientConnection.println(currentLedgerIndex);
sessions[i].clientConnection.println(ledger[currentLedgerIndex].ssid);
sessions[i].clientConnection.println(ledger[currentLedgerIndex].password

)s
sessions[i].clientConnection.println(ledger[currentLedgerIndex].encrypti
onkKey);
sessions[i].clientConnection.println(ledger[currentLedgerIndex].encrypti
onMethod) ;

}

handleCompromisedCredentials(String sessionID, String clientUUID)
{
for (i =09; i < sessionCount; i++)
{
if (sessions[i].sessionID == sessionID && sessions[i].clientUUID ==
clientUUID)
{
Serial.println("Session ID
sessions[i].approved = 5
currentLedgerIndex = (currentLedgerIndex + 1) % 5;
updateServerCredentials();
notifyApprovedClients();
startHoneypot();
break;

}

+ sessionID + " marked as compromised.");

}
for (i =0; i < sessionCount; i++)
{

sessions[i].reconnected =

}

Serial.println("All sessions marked as needing reconnection.");

}

checkDesynchronization(WiFiClient &client, String clientUUID)
{
for (i = 0; i < approvedUUIDCount; i++)
{
if (approvedUUIDs[i] == clientUUID && !uuidConnected[i])
{
String clientSSID = client.readStringUntil('\n");
String clientPassword = client.readStringUntil(‘\n');

if (clientSSID != ledger[currentLedgerIndex].ssid || clientPassword !=
ledger[currentLedgerIndex].password)

{
Serial.println("Desync detected for UUID: " + clientUUID);
client.println("Error: Desync detected. Please reconnect.");
client.stop();
return;

¥

uuidConnected[i] = ;

Serial.println("UUID " + clientUUID + " connected successfully.");

void handleNewConnection(WiFiClient client)
{
String sessionID = generateSessionID();
client.println(sessionID);

String clientInfo = client.readStringUntil('\n');
String clientUUID = client.readStringUntil('\n');
String receivedSessionID = client.readStringUntil('\n');

String encryptionMethod = ledger[currentLedgerIndex].encryptionMethod;
client.println(encryptionMethod);

if (isUUIDApproved(clientUUID))
{

if (!isSessionApproved(receivedSessionID, clientUUID))

{
sessions[sessionCount].sessionID = sessionID;
sessions[sessionCount].clientUUID = clientUUID;
sessions[sessionCount].approved = true;
sessions[sessionCount].clientConnection = client;
sessions[sessionCount].reconnected = false;
sessions[sessionCount].lastActive = millis();
sessionCount++;

+ sessionID + " for UUID " + clientUUID + "

Serial.println("Session ID
connected.");

checkDesynchronization(client, clientUUID);
client.println("Connection Successful");

client.println(ledger[currentLedgerIndex].ssid);
client.println(ledger[currentLedgerIndex].password);
client.println(ledger[currentLedgerIndex].encryptionKey);
client.println(ledger[currentLedgerIndex].encryptionMethod);

for (int i = @; i < sessionCount; i++)
{
if (sessions[i].clientConnection == client)
{
sessions[i].reconnected = true;
Serial.println("Session ID " + sessionID +
reconnected.");

marked as

else

{

Serial.println("Session ID " + receivedSessionID + " is already
approved. Skipping reinitialization.");

client.println("Connection Successful");

client.println(ledger[currentLedgerIndex].ssid);
client.println(ledger[currentLedgerIndex].password);
client.println(ledger[currentLedgerIndex].encryptionKey);
client.println(ledger[currentLedgerIndex].encryptionMethod);

}
¥
else
{
Serial.println("Failed connection attempt with Session ID
" and UUID " + clientUUID);
client.println("Session ID blocked or compromised");
client.stop();

+ sessionID +

String sensorData = client.readStringUntil('\n');

encryptDecryptData(&sensorData[@],
ledger[currentLedgerIndex].encryptionMethod,
ledger[currentLedgerIndex].encryptionKey);

Serial.println("Received Decrypted Sensor Data: + sensorData);

client.println("Sensor data received and decrypted successfully.");

bool allReconnected = true;
for (int i = @; i < approvedUUIDCount; i++)
{
if (luuidConnected[i])
{
allReconnected = false;
Serial.println("UUID " + approvedUUIDs[i] + " has not reconnected
yet.");
break;
}
}
if (allReconnected)
{
Serial.println("All approved UUIDs have reconnected.");
if (honeypotActive)

{
stopHoneypot();

cleanupExpiredSessions()

currentTime = millis();
for (i =09; i < sessionCount; i++)
{
if (sessions[i].approved && (currentTime - sessions[i].lastActive >
sessionExpiryTime))
{
Serial.println("Session ID
inactivity.");
sessions[i].approved = 5
sessions[i].clientConnection.stop();

+ sessions[i].sessionID + " expired due

setup()
{
Serial.begin(115200);
WiFi.softAP(ledger[currentLedgerIndex].ssid.c_str(),
ledger[currentLedgerIndex].password.c_str());
server.begin();

Serial.println("Server started with initial SSID and Password:");
Serial.println("SSID: " + ledger[currentLedgerIndex].ssid);

Serial.println("Password:

}

+ ledger[currentLedgerIndex].password);

Loop()

WiFiClient client = server.available();
if (client)
{

handleNewConnection(client);

}

cleanupExpiredSessions();

delay(2000);

15.2 Client

#include <WiFi.h>
#include <stdint.h>

*host = "192.168.4.1";
uintlé_t port = 80;

WiFiClient client;

LedgerEntry

String ssid;

String password;

String encryptionKey;
String encryptionMethod;

¥
LedgerEntry storedLedger[5];

storedLedgerCount = 0;

*honeypotSSID = "Honeypot SSID";
*honeypotPassword = "Honeypot Password";

data[] = "The quick brown fox jumps over the lazy dog
1234567890 ! @#$% &* () +-=[1{}|;":,.<>/2\n\t";

xorEncryptionDecryption(data, String key)

{
for (i =0; i < strlen(data); i++)
{
data[i] "= key[0];
¥
}

caesarCipherEncryptionDecryption (data, shift)

for (i =0; i < strlen(data); i++)

{
if (isalpha(data[i]))

{
offset = isupper(data[i]) ? 'A' : 'a';
data[i] = (data[i] - offset + shift) % 26 + offset;

}
}

rot13EncryptionDecryption(data)

caesarCipherEncryptionDecryption(data, 13);

speckRound(uint32_t &x, uint32_t &y, uint32_t k)

= (x > 8) | (x << (32 - 8));

+=y;
A= k;

= (y << 3) | (y » (32 - 3));

speckExpand(uint32_t K[], uint32 t S[], uint8 t rounds)

uint32_t i, b = K[0];

uint32_t a[=]

for (i =0; i < (- 1); i++)

{
ali] = K[1i + 17;

¥

S[@] = b;

for (i = @; i < rounds - 1; i++)

{
speckRound(a[i % (- 1)], b, i);
S[i + 1] = b;

¥

¥

speckEncryptDecrypt(uint32_t data[2], uint32 t key_ schedule[],
uint8_t rounds)

{

for (uint8 t i = @; i < rounds; i++)

{

speckRound(data[1], data[@], key schedule[i]);

}
}

simonRound(uint32_t &x, uint32_t &y, uint32_t k)

uint32 t tmp = (x << 1) | (x >> (32 - 1));
tmp &= (tmp << 8);
tmp *=y;

y = (y > 1) | (y << (32 - 1));

simonExpand(uint32 t K[], uint32 t S[], uint8 t rounds)

uint32 t i, b = K[@];
uint32_t af - 17;
for (i =0; i < (- 1); i++)
{
al[i] = K[1i + 1];
}
S[e] = b;
for (i = @; i < rounds - 1; i++)
{
simonRound(a[i % (
S[i + 1] = b;
}
¥

simonEncryptDecrypt(uint32_t data[2], uint32_ t key_schedule[],
uint8 t rounds)
{
for (uint8 t i = @; i < rounds; i++)
{
simonRound(data[1], data[@], key_ schedule[i]);
¥
}

encryptDecryptData(String &method, String &key)

{
if (method == "XOR")

{
xorEncryptionDecryption(data, key);

}

else if (method == "Caesar")

{
caesarCipherEncryptionDecryption(data, key.toInt());

}
else if (method == "ROT13")

{
rot13EncryptionDecryption(data);

}
else if (method == "SPECK")
{
uint32_t key_schedule| 1;
uint32_t key_words|] = {0x01020304, 0x05060708, ©Xx090AOBOC,
OxODOEOF10};
speckExpand(key words, key schedule,)
uint32_t block[2];
memcpy (block, data, 8);
speckEncryptDecrypt(block, key schedule,
memcpy (data, block, 8);

}
else if (method == "SIMON")

{

uint32 t key_schedule| 1;

uint32 t key words|[] = {0x01020304, ©x05060708, Ox090A0BOC,
OxODOEOF10};

simonExpand(key words, key schedule,);

uint32_t block[2];

memcpy (block, data, 8);

simonEncryptDecrypt(block, key schedule,

memcpy(data, block, 8);

connectToWiFi(password)
WiFi.begin(ssid, password);

attempts = 0;
while (WiFi.status() != WL_CONNECTED && attempts < 20)
{
delay(500);
Serial.print(".");
attempts++;

}

if (WiFi.status() == WL_CONNECTED)
{

Serial.println("\nConnected to Wi-Fi");
return 5

Serial.println("\nFailed to connect to Wi-Fi");

return false;

}

bool connectToWiFiWithStoredLedger()

{
if (storedLedgerCount > 9)

{

return connectToWiFi(storedLedger[storedLedgerCount - 1].ssid.c_str(),
storedLedger[storedLedgerCount - 1].password.c_str());

}

return false;

void handleDesync()

{
Serial.println("Handling desync, attempting to connect to honeypot...");

if (connectToWiFi(honeypotSSID, honeypotPassword))

{
if (client.connect(host, port))

{

Serial.println("Connected to server via honeypot");

String uuid = "UUID1-1234-5678-91011";
client.println(uuid);

for (int i = @; i < 5; i++)

{
storedLedger[i].ssid = client.readStringUntil('\n");
storedLedger[i].password = client.readStringUntil('\n");
storedLedger[i].encryptionKey = client.readStringUntil('\n");
storedLedger[i].encryptionMethod = client.readStringUntil('\n");
storedLedgerCount++;

Serial.println("Updated ledger received:");
for (int 1 = @; i < storedLedgerCount; i++)

{

Serial.println("SSID: " + storedLedger[i].ssid);

Serial.println("Password: + storedlLedger[i].password);
Serial.println("Encryption Key: + storedLedger[i].encryptionKey);
Serial.println("Encryption Method: " +

storedLedger[i].encryptionMethod);
¥

if (connectToWiFiWithStoredLedger())
{

Serial.println("Reconnected to server using updated ledger
credentials");

}

else
{
Serial.println("Failed to reconnect to server after receiving updated
ledger");
¥
}

else

{
Serial.println("Failed to connect to server via honeypot");
¥
}

else

{
Serial.println("Failed to connect to honeypot SSID");
}
}

void handlelLedgerUpdate() {
if (client.connected()) {
String ledgerUpdate = client.readStringUntil('\n");
if (ledgerUpdate == "Ledger Update") {
int newIndex = client.readStringUntil('\n").toInt();
storedLedger[newIndex].ssid = client.readStringUntil(‘'\n");
storedLedger[newIndex].password = client.readStringUntil('\n");
storedLedger[newIndex].encryptionKey =
client.readStringUntil('\n");
storedLedger[newIndex].encryptionMethod =
client.readStringUntil('\n");

Serial.println("Ledger updated:");
Serial.println("New SSID: " + storedLedger[newIndex].ssid);

Serial.println("New Password: +
storedLedger[newIndex].password);
Serial.println("New Encryption Key: " +
storedLedger[newIndex].encryptionKey);
Serial.println("New Encryption Method: " +

storedLedger[newIndex].encryptionMethod);

if (!connectToWiFiWithStoredLedger()) {
Serial.println("Error: Desynced from server. Unable to
reconnect.");
handleDesync();

}
} else {

Serial.println("Unexpected response during ledger update:
ledgerUpdate);
¥
} else {
Serial.println("Client disconnected unexpectedly during ledger
update.");
}

void setup()

{
Serial.begin(115200);

if (!connectToWiFiWithStoredLedger())

{
Serial.println("Error: Initial connection failed. Desynced from server.");
handleDesync();
return;

}

if (client.connect(host, port))
{

Serial.println("Connected to server");

String sessionID = client.readStringUntil('\n");
Serial.println("Received Session ID: " + sessionID);

String processingPower = "HIGH";
String uuid = "UUID1-1234-5678-91011";
client.println(processingPower);
client.println(uuid);
client.println(sessionID);

String encryptionMethod = client.readStringUntil('\n");
Serial.println("Encryption Method: " + encryptionMethod);

String response = client.readStringUntil('\n");
Serial.println("Server Response: " + response);

if (response == "Connection Successful")

{
for (int i = @; i < 5; i++)

{

storedLedger[i].ssid = client.readStringUntil('\n");
storedLedger[i].password = client.readStringUntil('\n");
storedLedger[i].encryptionKey = client.readStringUntil(‘\n');
storedLedger[i].encryptionMethod = client.readStringUntil('\n");
storedlLedgerCount++;

Serial.println("Received full ledger:");

for (i =0; i < storedLedgerCount; i++)

{
Serial.println("SSID: " + storedLedger[i].ssid);
Serial.println("Password: " + storedLedger[i].password);
Serial.println("Encryption Key: " + storedLedger[i].encryptionKey);

Serial.println("Encryption Method: +
storedLedger[i].encryptionMethod);

}

encryptDecryptData(data, encryptionMethod,
storedLedger[@].encryptionKey);
client.println(data);

String confirmation = client.readStringUntil('\n");
Serial.println("Server Confirmation: " + confirmation);
}
}

else

{

Serial.println("Failed to connect to server");

}
}

Loop()
{

if (client.connected())

{

handleLedgerUpdate();
}

else

{

Serial.println("Disconnected from server");

if (connectToWiFiWithStoredLedger() && client.connect(host, port))
{

Serial.println("Reconnected to server using ledger credentials");

}

else
{
Serial.println("Failed to reconnect to server");
handleDesync();
}
}
delay(5000);

}

Appendix 16: Full System With Adaptive Amoeba Battery Curve
Mapping Management System

16.1 Server

#include <WiFi.h>
#include <stdint.h>

ClientSession

String sessionID;

String clientUUID;
approved;

WiFiClient clientConnection;
reconnected;

uint32 t sessionExpirationTime;
isSleeping;

}s

LedgerEntry
{
String ssid;
String password;
String encryptionKey;
String encryptionMethod;

}s

WiFiServer server()

ClientSession sessions[10];
sessionCount = 0;

LedgerEntry ledger[5] = {
{"SSID1", "Passwordl", "XORKey", "XOR"},
{"SSID2", "Password2", "CaesarKey", "Caesar"},
{"SSID3", "Password3", "ROT13Key", "ROT13"},
{"SSID4", "Password4", "SpeckKey", "SPECK"},
{"SSID5", "Password5", "SimonKey", "SIMON"}};
currentlLedgerIndex =

String approvedUUIDs[] = {

"UUID1-1234-5678-91011",
"UUID2-1234-5678-91011",
"UUID3-1234-5678-91011"};
uuidConnected[] = { R }s

approvedUUIDCount = (approvedUUIDs) / (approvedUUIDs[0O]);

xorEncryptionDecryption(data, String key)

for (i =0; i < strlen(data); i++)

{
data[i] ~= key[@];

}

caesarCipherEncryptionDecryption(data, shift)

for (i = 0; i < strlen(data); i++)

{
if (isalpha(data[i]))

{
offset = isupper(data[i]) ? 'A" : 'a’;
data[i] = (data[i] - offset + shift) % 26 + offset;
}
}

rot13EncryptionDecryption(data)

caesarCipherEncryptionDecryption(data, 13);

speckRound(uint32_t &x, uint32_t &y, uint32_t k)

= (x > 8) | (x << (32 - 8));
+=Y;
A= k;
= (y << 3) | (y » (32 - 3));

Az X,

speckExpand(uint32_t K[], uint32_t S[], uint8_t rounds)

uint32 t i, b = K[0];

uint32_t af -1];
for (i = 0; i < (- 1); i++)
{
al[i] = K[1i + 1];
¥
s[e] = b;
for (i = @; i < rounds - 1; i++)
{
speckRound(a[i % (
S[i + 1] = b;
¥
}

speckEncryptDecrypt(uint32_t data[2], uint32_t
uint8 t rounds)

{
for (uint8 t i = @; i < rounds; i++)
{
speckRound(data[1], data[@], key_ schedule[i]);

}
}

simonRound(uint32_t &x, uint32_t &y, uint32_t k)
{

uint32 t tmp = (x << 1) | (x >> (32 - 1));
tmp &= (tmp << 8);
tmp *=y;
y "= k;
y = (y > 1) | (y << (32 - 1));
}

key schedule[],

simonExpand(uint32_t K[], uint32 t S[], uint8 t rounds)

uint32 t i, b = K[9];

uint32_t a[=]

for (i =0; i < (- 1); i++)

{
al[i] = K[1 + 1];

}

S[@] = b;

for (i = @; i < rounds - 1; i++)

{
simonRound(a[i % (-1)], b, i);
S[i + 1] = b;

}

}

simonEncryptDecrypt(uint32 t data[2], uint32 t key schedule[],
uint8 t rounds)

{
for (uint8 t i = @; i < rounds; i++)
{
simonRound(data[1], data[@], key schedule[i]);

}
}

encryptDecryptData(String &method, String &key)

if (method == "XOR")

{
xorEncryptionDecryption(data, key);

}

else if (method == "Caesar")

{
caesarCipherEncryptionDecryption(data, key.toInt());

}
else if (method == "ROT13")

{
rotl13EncryptionDecryption(data);

}
else if (method == "SPECK")

{

uint32 t key_ schedule| 1;

uint32_t key words[] = {0x01020304, Ox05060708, Ox090AOBOC,
OXODOEOF10};

speckExpand(key _words, key_ schedule,);

uint32_t block[2];

memcpy (block, data, 8);

speckEncryptDecrypt(block, key schedule,

memcpy (data, block, 8);

}
else if (method == "SIMON")

{

uint32 t key_ schedule[1;

uint32_t key_words|] = {0x01020304, ©x05060708, Ox090A0BOC,
OxODOEOF10};

simonExpand(key words, key schedule,)

uint32_t block[2];

memcpy (block, data, 8);

simonEncryptDecrypt(block, key schedule,

memcpy (data, block, 8);

String generateSessionID()

{

String sessionID = 5
for (i=0; 1< 16; i++)
{

sessionID += String(random(@, 16),);

}

return sessionlD;

isSessionApproved(String sessionID, String clientUUID)

{
for (i =0; 1 < sessionCount; i++)
{
if (sessions[i].sessionID == sessionID && sessions[i].clientUUID ==
clientUUID && sessions[i].approved)

{

return

isUUIDApproved(String uuid)
{

for (i = 0; i < approvedUUIDCount; i++)

{

if (approvedUUIDs[i] == uuid)
{

return

updateServerCredentials()
{
WiFi.softAPdisconnect()5
WiFi.softAP(ledger[currentLedgerIndex].ssid.c_str(),
ledger[currentLedgerIndex].password.c_str());
Serial.println("Server SSID and Password updated to:");
Serial.println("SSID: " + ledger[currentLedgerIndex].ssid);
Serial.println("Password: " + ledger[currentLedgerIndex].password);

}

startHoneypot ()

WiFi.softAPdisconnect();
WiFi.softAP("Honeypot SSID", "Honeypot Password");
Serial.println("Honeypot SSID and Password activated:");
Serial.println("Honeypot SSID: Honeypot SSID");
Serial.println("Honeypot Password: Honeypot Password");

stopHoneypot ()
{
WiFi.softAPdisconnect();
updateServerCredentials();
Serial.println("Honeypot SSID deactivated. Server SSID and Password
restored.");

}

notifyApprovedClients()
{
for (i =0; i < sessionCount; i++)
{
if (sessions[i].approved && sessions[i].clientConnection.connected())
{
sessions[i].clientConnection.println("Ledger Update");
sessions[i].clientConnection.println(currentLedgerIndex);
sessions[i].clientConnection.println(ledger[currentLedgerIndex].ssid);
sessions[i].clientConnection.println(ledger[currentLedgerIndex].password
)
sessions[i].clientConnection.println(ledger[currentLedgerIndex].encrypti
onKey);
sessions[i].clientConnection.println(ledger[currentLedgerIndex].encrypti
onMethod) ;

handleCompromisedCredentials(String sessionID, String clientUUID)

{

for (i = 0; 1 < sessionCount; i++)

{

if (sessions[i].sessionID == sessionID && sessions[i].clientUUID ==
clientUUID)

{

Serial.println("Session ID " + sessionID +
sessions[i].approved = 5
currentLedgerIndex = (currentlLedgerIndex + 1) % 5;
updateServerCredentials();
notifyApprovedClients();

startHoneypot();

break;

}

marked as compromised.");

}
for (i = 0; 1 < sessionCount; i++)
{

sessions[i].reconnected =

}

Serial.println("All sessions marked as needing reconnection.");

}

checkDesynchronization(WiFiClient &client, String clientUUID)
{
for (i = 0; i < approvedUUIDCount; i++)
{
if (approvedUUIDs[i] == clientUUID && !uuidConnected[i])
{
String clientSSID = client.readStringUntil('\n");
String clientPassword = client.readStringUntil('\n');

if (clientSSID != ledger[currentLedgerIndex].ssid || clientPassword !=
ledger[currentLedgerIndex].password)

{
Serial.println("Desync detected for UUID: " + clientUUID);
client.println("Error: Desync detected. Please reconnect.");
client.stop();
return;

¥

uuidConnected[i] = ;

Serial.println("UUID " + clientUUID + " connected successfully.");

handleNewConnection(WiFiClient client)

String sessionID = generateSessionID();
client.println(sessionID);

String clientInfo = client.readStringUntil('\n");
String clientUUID = client.readStringUntil('\n');

String receivedSessionID = client.readStringUntil('\n");

String encryptionMethod = ledger[currentLedgerIndex].encryptionMethod;
client.println(encryptionMethod);

if (isUUIDApproved(clientUUID))
{

if (!isSessionApproved(receivedSessionID, clientUUID))

{
sessions[sessionCount].sessionID = sessionID;
sessions[sessionCount].clientUUID = clientUUID;
sessions[sessionCount].approved = true;
sessions[sessionCount].clientConnection = client;
sessions[sessionCount].reconnected = false;
sessions[sessionCount].sessionExpirationTime = millis() + 60000;
sessionCount++;

Serial.println("Session ID " + sessionID + " for UUID " + clientUUID + "

connected.");
checkDesynchronization(client, clientUUID);
client.println("Connection Successful");

client.println(ledger[currentLedgerIndex].ssid);
client.println(ledger[currentLedgerIndex].password);
client.println(ledger[currentLedgerIndex].encryptionKey);
client.println(ledger[currentLedgerIndex].encryptionMethod);

for (int i = @; i < sessionCount; i++)
{
if (sessions[i].clientConnection == client)
{
sessions[i].reconnected = true;
Serial.println("Session ID "
reconnected.");
break;

+ sessionID + marked as

else
{
Serial.println("Session ID " + receivedSessionID +
approved. Skipping reinitialization.");
client.println("Connection Successful");

is already

client.println(ledger[currentLedgerIndex].ssid);
client.println(ledger[currentLedgerIndex].password);

client.println(ledger[currentLedgerIndex].encryptionKey);
client.println(ledger[currentLedgerIndex].encryptionMethod);

}
}
else
{
Serial.println("Failed connection attempt with Session ID
" and UUID " + clientUUID);
client.println("Session ID blocked or compromised");
client.stop();

+ sessionID +

String sensorData = client.readStringUntil('\n');

encryptDecryptData(&sensorData[@],
ledger[currentLedgerIndex].encryptionMethod,
ledger[currentLedgerIndex].encryptionKey);

Serial.println("Received Decrypted Sensor Data: + sensorData);

client.println("Sensor data received and decrypted successfully.");

bool allReconnected = true;
for (int i = @; i < approvedUUIDCount; i++)
{
if (luuidConnected[i])
{
allReconnected = false;
Serial.println("UUID " + approvedUUIDs[i] + " has not reconnected
yet.");
break;
}
}

if (allReconnected)

{
Serial.println("All approved UUIDs have reconnected.");

stopHoneypot();
}
¥

void setup()

{
Serial.begin(115200);
WiFi.softAP(ledger[currentLedgerIndex].ssid.c_str(),

ledger[currentLedgerIndex].password.c_str());
server.begin();

Serial.println("Server started with initial SSID and Password:");
Serial.println("SSID: " + ledger[currentLedgerIndex].ssid);

Serial.println("Password: + ledger[currentLedgerIndex].password);

loop()
{
WiFiClient client = server.available();
if (client)
{
handleNewConnection(client);

}

for (i =0; 1 < sessionCount; i++)

{

if (sessions[i].approved && millis() > sessions[i].sessionExpirationTime
&& !sessions[i].isSleeping)

{

Serial.println("Session ID " + sessions[i].sessionID + " expired due to
inactivity.");

handleCompromisedCredentials(sessions[i].sessionID,
sessions[i].clientUUID);

}
}

delay(2000);
}

249

16.2 Client

#include <WiFi.h>
#include <EEPROM.h>

Ao

*host = "192.168.4.1";
uintlé_t port = 80;

WiFiClient client;

LedgerEntry

String ssid;

String password;

String encryptionKey;
String encryptionMethod;

}s

LedgerEntry storedLedger[5];
storedLedgerCount = 0;

BatteryData

uint32_ t voltage;
percentage;

}s

BatteryData batteryData|
dataPointsCount = 9;

uint32 t getBatteryVoltage()
{

adcValue = analogRead();

uint32 t voltage = map(adcValue, 0, 4095, 0O,

return voltage;

initialMapBatteryCurve(uint32 t voltage)

if (voltage > 4200)

return 100.0;
else if (voltage > 4000)

return 75.0 + (voltage - 4000) * 0.25;
else if (voltage > 3800)

return 50.0 + (voltage - 3800) * 0.125;
else if (voltage > 3600)

return 25.0 + (voltage - 3600) * 0.125;
else if (voltage > 3400)

return (voltage - 3400) * 0.125;
else

return 0.0;

nonLinearInterpolation(uint32_t voltage)

voltageNormalized = ()(voltage - 3400) / (4200 - 3400);
return pow(voltageNormalized, 2) * 100.9;

storeBatteryData(uint32_t voltage, percentage)

if (dataPointsCount <

{
batteryData[dataPointsCount].voltage = voltage;
batteryData[dataPointsCount].percentage = percentage;
dataPointsCount++;

}

else

{

for (i 3 5 i++)
{
batteryData[i - 1] = batteryData[i];
}
batteryData| - 1].voltage = voltage;
batteryData| - 1].percentage = percentage;

}

EEPROM.put (@, batteryData);
EEPROM. put ((batteryData), dataPointsCount);
EEPROM. commit();

estimateBatteryHealth(uint32 t voltage)

if (voltage > 4200)
return 1.0;

else if (voltage > 4000)
return 0.75;

else if (voltage > 3800)
return 0.5;

else if (voltage > 3600)
return 0.25;

else
return 0.1;

loadBatteryData()

EEPROM.get (0, batteryData);

EEPROM. get ((batteryData), dataPointsCount);
predictBatteryPercentage(uint32_t voltage)

if (dataPointsCount < 2)

{

return initialMapBatteryCurve(voltage);

}

return nonLinearInterpolation(voltage);

enterAdaptiveSleepMode(batteryPercentage,
uint64 t sleepDuration;

if (batteryPercentage > 75.0)
{

batteryHealth)

Serial.println("Battery sufficient, normal operation.");

sleepDuration = 10000000;

}
else if (batteryPercentage > 50.0)

{

Serial.println("Entering light sleep mode.");
sleepDuration = batteryHealth * 20000000;

esp sleep enable timer wakeup(sleepDuration);
esp_light sleep_start();

}
else if (batteryPercentage > 25.0)

{

Serial.println("Entering deep sleep mode.");

sleepDuration = batteryHealth * 40000000;
esp_sleep enable timer_wakeup(sleepDuration);
esp_deep _sleep start();

}

else

{
Serial.println("Entering ULP mode, maximizing battery life.");
sleepDuration = batteryHealth * 60000000;
esp sleep enable timer wakeup(sleepDuration);
esp_deep _sleep start();

sendLowBatteryAlert()
{

if (client.connected())

{
client.println("Low Battery Alert");

}
}

xorEncryptionDecryption(data, String key)
{

for (i = 0; i < strlen(data); i++)
{
data[i] "= key[@];
}
}

caesarCipherEncryptionDecryption(data, shift)

{
for (i = 0; i < strlen(data); i++)

{

if (isalpha(data[i]))
{

offset = isupper(data[i]) ? 'A" : 'a’';
data[i] = (data[i] - offset + shift) % 26 + offset;

rotl13EncryptionDecryption(data)
{

caesarCipherEncryptionDecryption(data, 13);

}

speckRound(uint32_t &x, uint32_t &y, uint32_t k)

= (x > 8) | (x << (32 - 8));

| (y >> (32 - 3));

speckExpand(uint32 t K[], uint32 t S[], uint8 t rounds)

uint32 t i, b = K[@];
uint32_t a[= 175
for (i =0; i < (- 1); i++)
{
al[i] = K[1i + 1];
}
S[e] = b;
for (i = @; i < rounds - 1; i++)
{
speckRound(a[i % (
S[i + 1] = b;
}
}

speckEncryptDecrypt(uint32_t data[2], uint32_ t key_schedule[],
uint8 t rounds)

{
for (uint8 t i = @; i < rounds; i++)
{
speckRound(data[1], data[@], key_ schedule[i]);

}
}

simonRound(uint32_t &x, uint32_t &y, uint32_t k)

uint32 t tmp = (x << 1) | (x > (32 - 1));
tmp &= (tmp << 8);

tmp *=y;

y "= k;

y = (y > 1) | (y << (32 - 1));

simonExpand(uint32_t K[], uint32_t S[], uint8_t rounds)

uint32 t i, b = K[@];

uint32_t af

for (i =0; i < (- 1); i++)

{
ali] K[i + 1];

}

S[e] = b;

for (i = @; i < rounds - 1; i++)

{
simonRound(a[i % (- 1)], b, i);
S[i + 1] = b;

}

¥

simonEncryptDecrypt(uint32_t data[2], uint32_t key schedule[],
uint8 t rounds)
{
for (uint8 t i = @; i < rounds; i++)
{
simonRound(data[1], data[@], key_schedule[i]);
}
}

encryptDecryptData(String &method, String &key)

if (method == "XOR")
{
xorEncryptionDecryption(data, key);

}

else if (method == "Caesar")

{
caesarCipherEncryptionDecryption(data, key.toInt());

}
else if (method == "ROT13")

{
rotl3EncryptionDecryption(data);

}
else if (method == "SPECK")

{

uint32_t key_schedule[15

uint32_t key words]] = {0x01020304, 0x05060708, OXxB9PAGBOC,
OXODOEOF10};

speckExpand(key words, key schedule,);

uint32_t block[2];

memcpy(block, data, 8);

speckEncryptDecrypt(block, key schedule,

memcpy (data, block, 8);

else if (method == "SIMON")
{
uint32_t key_schedule| 1;
uint32_t key_words|] = {0x01020304, 0x05060708, ©x090AOBOC,
OxODOEOF10};
simonExpand(key words, key schedule,);
uint32_t block[2];
memcpy (block, data, 8);
simonEncryptDecrypt(block, key schedule,
memcpy(data, block, 8);

connectToWiFi(password)
WiFi.begin(ssid, password);

attempts = 0;
while (WiFi.status() != WL_CONNECTED && attempts < 20)
{
delay(500);
Serial.print(".");
attempts++;

}

if (WiFi.status() == WL_CONNECTED)
{

Serial.println("\nConnected to Wi-Fi");
return ;

Serial.println("\nFailed to connect to Wi-Fi");
return 5

connectToWiFiWithStoredLedger ()

{
if (storedLedgerCount > 9)

{

return connectToWiFi(storedLedger[storedLedgerCount - 1].ssid.c_str(),
storedLedger[storedLedgerCount - 1].password.c_str());

}

return

handleDesync()
{

Serial.println("Handling desync, attempting to connect to honeypot...");

if (connectToWiFi("Honeypot SSID", "Honeypot Password"))

{
if (client.connect(host, port))

{

Serial.println("Connected to server via honeypot");

String uuid = "UUID1-1234-5678-91011";
client.println(uuid);

for (int i = @; i < 5; i++)

{
storedLedger[i].ssid = client.readStringUntil('\n");
storedLedger[i].password = client.readStringUntil('\n");
storedLedger[i].encryptionKey = client.readStringUntil(‘\n');
storedLedger[i].encryptionMethod = client.readStringUntil('\n");
storedLedgerCount++;

Serial.println("Updated ledger received:");

for (int i = @; i < storedLedgerCount; i++)

{
Serial.println("SSID: " + storedLedger[i].ssid);
Serial.println("Password: " + storedLedger[i].password);
Serial.println("Encryption Key: " + storedLedger[i].encryptionKey);

Serial.println("Encryption Method: +
storedLedger[i].encryptionMethod);

}

if (connectToWiFiWithStoredLedger())
{
Serial.println("Reconnected to server using updated ledger
credentials™);

}

else
{
Serial.println("Failed to reconnect to server after receiving updated
ledger");
¥
¥

else

{

Serial.println("Failed to connect to server via honeypot");

Serial.println("Failed to connect to honeypot SSID");

}
}

void handlelLedgerUpdate()
{

if (client.connected())

{

String ledgerUpdate = client.readStringUntil('\n');

if (ledgerUpdate == "Ledger Update")
{

int newIndex = client.readStringUntil('\n").toInt();
storedLedger[newIndex].ssid = client.readStringUntil('\n");
storedLedger[newIndex].password = client.readStringUntil('\n");
storedLedger[newIndex].encryptionKey = client.readStringUntil('\n");
storedLedger[newIndex].encryptionMethod = client.readStringUntil('\n");

Serial.println("Ledger updated:");

Serial.println("New SSID: " + storedLedger[newIndex].ssid);

Serial.println("New Password:

Serial.println("New Encryption Key: " +
storedLedger[newIndex].encryptionKey);

Serial.println("New Encryption Method: " +
storedLedger[newIndex].encryptionMethod);

if (!connectToWiFiWithStoredLedger())
{

+ storedLedger[newIndex].password);

Serial.println("Error: Desynced from server. Unable to reconnect.");

handleDesync();

void setup()

{
Serial.begin(115200);

EEPROM.begin(EEPROM SIZE);

loadBatteryData();

Serial.println("Starting battery management system...

if (!connectToWiFiWithStoredLedger())

{
Serial.println("Error: Initial connection failed.
handleDesync();
return;

Desynced from server.");

if (client.connect(host, port))
{

Serial.println("Connected to server");

String sessionID = client.readStringUntil('\n");
Serial.println("Received Session ID: " + sessionID);

String processingPower = "HIGH";
String uuid = "UUID1-1234-5678-91011";
client.println(processingPower);
client.println(uuid);
client.println(sessionID);

String encryptionMethod = client.readStringUntil('\n");
Serial.println("Encryption Method: " + encryptionMethod);

String response = client.readStringUntil('\n");
Serial.println("Server Response: " + response);

if (response == "Connection Successful")
{
for (int i = @; i < 5; i++)
{
storedLedger[i].ssid = client.readStringUntil('\n");
storedLedger[i].password = client.readStringUntil('\n");
storedLedger[i].encryptionKey = client.readStringUntil('\n");
storedLedger[i].encryptionMethod = client.readStringUntil('\n");
storedLedgerCount++;

Serial.println("Received full ledger:");
for (int i = @; i < storedlLedgerCount; i++)

{

Serial.println("SSID: " + storedLedger[i].ssid);

Serial.println("Password: + storedlLedger[i].password);
Serial.println("Encryption Key: " + storedLedger[i].encryptionKey);
Serial.println("Encryption Method: " +

storedLedger[i].encryptionMethod);
¥

uint32 t voltage = getBatteryVoltage();
float batteryPercentage = predictBatteryPercentage(voltage);
float batteryHealth = estimateBatteryHealth(voltage);

if (batteryPercentage < 15.0)

{
storedLedger[@].encryptionMethod "XOR";

¥
else if (batteryPercentage < 30.0)

{

storedLedger[0].encryptionMethod "Caesar";
}
else if (batteryPercentage < 50.0)

{
storedLedger[@].encryptionMethod "ROT13";

¥
else if (batteryPercentage < 75.0)

{
storedLedger[0].encryptionMethod "SPECK";
}

else

{
storedLedger[@].encryptionMethod "SIMON";

}

Serial.println("Selected Encryption Method: +
storedLedger[0].encryptionMethod);

client.println("EncryptionMode: + storedLedger[@].encryptionMethod);

if (batteryPercentage < 10.0)

{
sendLowBatteryAlert();

}

storeBatteryData(voltage, batteryPercentage);
enterAdaptiveSleepMode(batteryPercentage, batteryHealth);

sensorData[] = "The quick brown fox jumps over the lazy dog
1234567890 ! @#$% &* () +-=[1{}|;":,.<>/2\n\t";
encryptDecryptData(sensorData, encryptionMethod,
storedLedger[0@].encryptionKey);

client.println(sensorData);

String confirmation = client.readStringUntil('\n");
Serial.println("Server Confirmation: " + confirmation);

}
}

else

{

Serial.println("Failed to connect to server");

loop()
{

if (client.connected())

{
handleLedgerUpdate();

}

else

{

Serial.println("Disconnected from server");

if (connectToWiFiWithStoredLedger() && client.connect(host, port))
{

Serial.println("Reconnected to server using ledger credentials");

}

else

{

Serial.println("Failed to reconnect to server");
handleDesync();

}
}

delay(5000);
¥

261

Appendix 17: Encryption Power Performance Summary
17.1 ESP32 Encryption Power Performance

Main currsnl Are

& Boopwn
sELEGTION

'Mwy-m\\‘ﬁ-a*w e At g s sk o b, o ol LA . o s g st e o oo

Main soltage- Arc

S

ENW\‘M‘M HH WM\II |l| I W M m J|||| fﬂ |\ 'wl.‘ni*w I‘WW,M'W M‘W il 'w \|f| k| ﬂ“ ’\\ n l[l qu Wll lﬂmlwan hl|| Wum Mlmulﬁ‘ ‘u\w“ M

Main pomer-Are

iy et LA e 4 A e A b e I bl
100 s

3 Main pewer-Arc U
«

I unRTl0g Are

Figure Appendix 17.1: Idel ESP32 Encryption Power Performance

em o K Q 4
ROL

Main current Arc

. Main powr-Arc.

LecTIon

r

I uneT g e

Figure Appendix 17.2: XOR ESP32 Encryption Power Performance

262

om
NTROL

ey
Main current Are

& avam
SELECTID)

Main woltogn- Arc

sELECTION

Main power-Arc

3 e powr-Ave
v wall ime:

I unT g arc

Balte

SELEGTION

Main voltagn- A any
anny
seLecTION

Main gomer-Arc
¥ REGOS

M 2020810

UART log-4re.

Figure Appendix 17.4: ROT13 ESP32 Encryption Power Performance

263

om

NTROL

ey
Main current Are

& arm
SELECTIO)

Main woltogn- Arc

sELECTION

Main power-Arc

3 e powr-Ave
v wall ime:

I unT g arc

Balte

Main current Are

SELEGTION

Main voltagn- A any
anny
seLecTIon

Main gomer-Arc
¥ REGOS

M 2020810

UART log-4re.

i
Gaken; 4515
i1

Figure Appendix 17.6: SIMON ESP32 Encryption Power Performance

264

17.2 ATMEGA328 Encryption Power Performance

o | Buttery Frafler | Batter

Main current Are

v Vo e e A ki, e i

© Main power-Ave

6w

Gontext halp

Havar the mauss avar 21 ftam 15
Ioarn ma-s absut i,

Press 7 10 togele this help on
gl

Press H to toggln the uick help.
onand off.

< Shan inis helo ot startus.

v
K Q3 5 Batery Pratier | Battery Validation

Msin curent-Are

OF protaction:
Cut ol

voltage g

Main voltage Are

" Uart

Baudrare
* Main power-Are

SURFMENTS

in current re

I Main o
I ussT

Context help

Hovar the mouss ovar a0 ftar o
Iearn ma-e soeut i

Prass 7 (o gl this hels on

Prass H to tggln the uick hedp.
on and off.

-+ Shsa i hiels 81 startus

Gors: running

Figure Appendix 17.8: XOR ATMEGA328 Encryption Power Performance

265

v
K QG Beltery Lite Estimator | Baitery Prafler

Msin current-Are

Main voltage Are

" Uart

Saudrare:
Main poer-Arc

 MEASURFMFNTS

[Main cuent re

[
I Main oo

I uAT
Context help

Hovar the mouss ovar 20 ftam o
I8a1n ma-e shcut

Prass 7 (o gl this hels on
snd ol

Prass H to tggln the uick hedp.
on and off.

-+ Shsa i hiels 81 startus

- Main currant Are

Main voltage- Arc

* Uart

Anurate:

Main gower Are

LECTION

I UART log-Arc

Centext help

Press ? to tople his help on
snd off

P H Lo gl (o quict bk
o clt

+ Show s helo st startuo

Figure Appendix 17.10: ROT13 ATMEGA328 Encryption Power Performance

266

v
K QG Beltery Lite Estimator | Baitery Prafler

Msin current-Are

Main voltage Are

" Uart

Saudrare:
Main paer-Are

 MEASURFMFNTS

[Main cuent re

[
I Main oo

Context help

Hovar the mouss ovar 30 ftam o
learn maee soeut i

Press 7 (o gl this hels an

andall

Prass H to tggln the uick hedp.
on and off.

-+ Shsa i hiels 81 startus

Main curent Are

iain currer

a0 Msin veltage-Are

Msin poer-are

Context help

Hovar the mouss over 27 ftam 15
lgarn ma-e about i,

Press 7 o togels this help on
sad et

Fress H to toggln the uick help.
on and off.

 Shea i helo st stariun,

Core: running

Figure Appendix 17.12: SPECK ATMEGA328 Encryption Power Performance

267

