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Abstract 
Polymorphism, defined as the ability to dynamically alter form, has long been exploited by viruses 

and malware to evade traditional security mechanisms. This thesis proposes a novel application of 

polymorphic principles, inspired by biological immune systems, to engineer a lightweight, adaptive, 

and resilient security system for resource-constrained Internet of Things (IoT) devices. The Bio-

Inspired Lightweight Polymorphic Security System introduces a comprehensive framework that 

detects, rejects, and neutralises unauthorised clients within a secure, encrypted client-server model. 

Drawing parallels to innate and adaptive immunity, the system dynamically rotates encryption keys, 

session credentials, and network configurations in real-time, ensuring robust defences against 

intrusion and desynchronisation threats. 

Furthermore, the research identifies a critical limitation in conventional IoT security architectures: 

the lack of integrated, adaptive energy management. Addressing this gap, the thesis introduces the 

Adaptive Amoeba Battery Curve Mapping Management System (AABCMS), a biologically inspired 

subsystem that predicts battery health trajectories and dynamically modulates operational states, 

ranging from active processing to ultra-low power sleep modes. The AABCMS mirrors biological 

neural energy management, adjusting system behaviour based on real-time energy availability to 

maximise device longevity without compromising security. 

The entire system was implemented and validated on a custom ESP32-S3 development board and 

benchmarked against an ATMEGA328P microcontroller, encompassing extensive cycle, timing, 

power, and energy consumption analyses. Testing demonstrated the system's adaptive encryption 

selection, session integrity preservation during power fluctuations, desynchronisation recovery 

through honeypot redirection, and sustained security under energy-limited conditions. 

The thesis concludes by situating this bio-inspired security architecture within broader technological 

trends, highlighting its potential synergy with machine learning, large language models (LLMs), and 

future quantum-resilient cryptographic methods. By uniting principles from immunology, embedded 

systems, cryptography, and adaptive energy management, this research contributes a pioneering 

interdisciplinary approach to the sustainable, secure, and autonomous evolution of IoT systems. 
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Chapter One: Introduction  
The biologically inspired lightweight polymorphic security system for IoT devices represents an 

interdisciplinary approach, merging the domains of embedded systems engineering and 

immunological principles from biosciences. This innovative framework introduces a novel capability 

in IoT security systems, enabling them to emulate biological processes that detect, reject, and retain 

the memory of foreign agents. The paragon of this framework lies in its adept translation of immune 

mechanisms into embedded programming logic, leveraging adaptive complexities that dynamically 

adjust according to hardware configurations. 

The Internet of Things (IoT), which enables a wide variety of embedded devices, sensors and 

actuators (known as smart things) to interconnect and exchange data, is a promising network 

scenario for bridging the physical devices and virtual objects in the cyber world. Such smart devices 

and sensitive data are vulnerable to security threats. Security is, therefore, the central area of focus 

for researchers in the field of IoT. Consequently, it is essential to develop cryptography technologies 

to secure the data from unauthorised access. Moreover, this can be achieved by transforming the 

data into an unrecognisable and unrelatable form. It is not easy to find one straightforward 

approach that will fit all IoT applications. There are various types of devices connected to an IoT 

network. Some devices can afford heavyweight and high-security methodologies, but most IoT 

devices are resource-constrained. They need a security solution that acts fast. Simultaneously, it 

needs to be simple in its complexity and versatile. Last but not least, the most critical factor is 

trusted security. In general, the dedicated cryptographic algorithms need to be lightweight in terms 

of area, memory footprint, power and energy consumption. Therefore, the proposed research is 

pertinent as security and privacy in the IoT are not fully addressed. 

Polymorphism is a very uncommon term and a rarely researched topic within the traditional tech, 

cybersecurity and engineering industries. Among the computer sciences, the nature of polymorphic 

code can change the initial code, but the code’s function produces the same result; for example, 

15+2 and 13+4 both have the same result, 17. 

The changing form and mutation are more familiar with bypassing security systems in polymorphic 

viruses (e.g. malware) than in the security systems[1]. However, this mutating form is well studied 

and documented in the human sciences, particularly biology. The notion of this lightweight 

polymorphic security system closely follows and resembles the biological functions of the immune 

system. In particular, a human white blood cell, due to its ability to detect (intrusion detection), 

change (changing encryption keys and passwords) and fight (eject from the network) foreign cells 

inside the human body[2]. 
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1.1 The Driving Force 
Rapid technological development and deployment invariably lead to the emergence of new 

vulnerabilities, which malicious actors and unauthorised users may exploit. The Internet of Things 

(IoT) has diverse applications across various industries, from medical to commercial, industrial to 

automotive, and the consumer industries. According to the Information Handling Services (IHS), 

there were more than “27 billion connected IoT devices in 2017” [3]. Therefore, security is ever 

more paramount, especially as the industry grows exponentially due to big data, data analytics, and 

understanding consumer trends for effective marketing. As the IoT’s demand grows, the value for 

these industries is the raw data itself, hence protecting the data from foreign and unauthorised 

agents.  

The idea of security systems for IoT is nothing new. Still, it does propose a few limitations compared 

to traditional security architectures as the developers are severely limited to the processing power 

within these devices. Consequently, the need for lightweight ciphers to encrypt communication is 

necessary. This research aims to encrypt the IoT systems’ communication channels and 

automatically change the encryption cipher key and the password required to connect a client to a 

server, hence making it polymorphic.  

Industry and research are interconnected and coupled, two sides of the same coin. That without 

research, the industry will become stagnant and unable to innovate and expand, whereas, on the 

other side of the coin, it does not have the incentive to put forth solutions for today’s problems 

without industry research.  

1.2 Theory of Operations 
Before any terms of aims and objectives are drawn, there needs to be a clear understanding of how 

the lightweight polymorphic system would ideally work. The design and idea of the polymorphic 

security system, like most engineering solutions for world problems, takes inspiration from the most 

aged engineer who is nature herself—in particular, looking at how the immune system (adaptive 

immune responses and innate immune responses[4][5]) in the human body. How the immune 

system fights foreign agents (e.g. viruses and diseases) can be modified (updated for lack of a better 

term) to combat new viruses and infections through vaccines.  

This system’s fundamental nature is on a server and client model, whereby the server and client 

communicate in an encrypted manner. The encryption key is in the ledger (similar to blockchain 

technologies) and shared with authorised clients. Authorised clients are approved depending on 

various factors, such as checking if it's on the block list, having the correct credentials, and the 
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correct UUID. As illustrated in Figure 1.1, the system’s top-down architecture comprises the overall 

system’s approach. 

 

Figure 1.1: Top-Down Overview 

Within the Approved Client List Process, flags can be raised if only authorised clients can connect to 

the server. The Wi-Fi details automatically change if the server detects any foreign clients trying to 

connect. Please refer to Figure 1.2, which shows how clients are approved. 

 

Figure 1.2: The process for how clients are approved 

All authorised clients have the same ledger. This ledger contains two variables as objects, which are 

inside an array. The first object is the Wi-Fi details (password), and the second object includes the 

encryption key to which the client and server communicate. Please refer to Figure 1.3 to visually 

show the ledger’s process.  
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Figure 1.3: Ledger Process 

When any form of intrusion is detected, for example, an unauthorised client successfully connects to 

the server, a signal (trigger) is sent between the server and client to successfully apply the change 

between one polymorphic form to another (A -> B). 

The signal (trigger) is a message which contains a number (randomly chosen) that corresponds to an 

element in the array (ledger) that has the new Wi-Fi details and Encryption Key; this will be its new 

polymorphic form. Please refer to Figure 1.4, which shows the server’s logic when a client connects. 

 

Figure 1.4: Client Connection Logic 

There are, however, some flaws in this system; the first problem is the client’s, which might fall out 

of sync and no longer have the proper signal (trigger); therefore, it cannot connect to the server. The 

second problem is with New clients who are not on the approved client list and those associated 

with clients who are no longer in sync, which reverts to the first problem. Problem one is solved by 

having time-limited Wi-Fi details, which, once joined, give the current signal to bring the client back 

into sync.  

To solve problem two, the server administrator can only accomplish this by updating the server's 

approved client list by physically inputting it into the server. Once added, the client needs to be 

synced, which resolves the problem. 
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In addition to addressing security challenges through polymorphic mechanisms, the proposed 

system also recognises the critical need for energy efficiency in resource-constrained IoT devices. 

Traditional IoT security frameworks often overlook the significant impact of encryption processes on 

battery consumption, particularly when devices are deployed in remote or inaccessible 

environments where energy availability is limited. To overcome this limitation, the framework 

integrates a novel Adaptive Amoeba Battery Curve Mapping Management System (AABCMS), 

inspired by the adaptive behaviours of biological organisms under energy stress. The AABCMS 

dynamically monitors real-time battery performance and system load, adjusting device operational 

modes, including sleep states and encryption method selection, to optimise energy usage without 

compromising security. This integration of energy-aware decision-making within the security 

architecture represents a fundamental departure from conventional static approaches and directly 

addresses the dual challenge of security and sustainability in IoT systems. 

1.3 Aims and Objectives 
The aim of this research is to design, implement, and rigorously evaluate a novel, bio-inspired, 

lightweight polymorphic security system specifically tailored for Internet of Things (IoT) 

environments. The system is grounded in principles from immunology and adaptive energy 

management. It is engineered to provide resilient, energy-aware protection against evolving 

cybersecurity threats, while remaining feasible for real-world deployment on power-constrained 

embedded devices. The aims and objectives of this research closely follow the system overview as 

the bio-inspired lightweight polymorphic security system for IoT needs to achieve:  

• To architect and implement a modular client-server security framework for IoT devices, 

utilising polymorphic encryption strategies that adapt in real time to resource constraints. 

• To model and simulate biologically inspired security responses, including detection, 

rejection, and memory, based on principles from immunology. 

• To develop a synchronised, lightweight shared ledger mechanism for dynamic credential 

management across networked devices. 

• To design and integrate the Adaptive Amoeba Battery Curve Mapping Management System 

(AABCMS) for real-time optimisation of device sleep modes, encryption selection, and 

battery health monitoring. 

• To quantitatively benchmark and compare multiple lightweight encryption schemes on both 

high-power and low-power embedded platforms. 

• To validate the robustness and resilience of the system through scenario-based 

experimental testing, including simulations of desynchronisation, session expiration, low-

battery operation, and security breach responses. 
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1.4 Research Contribution For The Engineering Community 
There are several research contributions to the engineering community regarding IoT security, 

Intrusion Detection, Polymorphic Engines, viruses and worms. However, there is a gap, a sort of 

goldilocks zone, whereby a lightweight system for an IoT network can act in a polymorphic way to 

change and adapt accordingly when an unauthorised client connects. Nonetheless, there are some 

suitable papers from which this research can definitely avail and learn.   

“Polymorphic Algorithm of JavaScript Code Protection”[6] focuses on web-based security for the 

shared dynamic web, developing a language called JavaScript. The JavaScript code does not compile 

as they have to be executed by the web browsers even if it is uncompiled. Therefore, it results in the 

source code presented into bytes or binary codes, making data extraction from JavaScript somewhat 

vulnerable without additional encryption. This study develops an algorithm using the polymorphic 

viruses’ reference design to make random encryption for Web page encryption and a Web-based 

information security system. The study’s strengths focus on defending against polymorphic attacks 

using a reference design system to make random encryptions on a JavaScript Web-based system. 

This detection system allows the security system not to always be running in the background and 

only employs encryption when necessary, therefore, saving resources of the web server until it is 

necessary. However, weaknesses do arise; this is not a lightweight system, as the web server (even 

though they have intensive processing power) must do live encryption. This research paper will 

incorporate this research into the responsive encryption that only reacts when it detects suspicious 

flags. 

“Design of the late-model key exchange algorithm based on the polymorphic cipher” [7] proposes a 

new polymorphic cipher method created by C.B. Roellgen in 2004 opened up a whole new area for 

the study of irregular symmetrical cryptography theory as an asymmetrical cipher algorithm. The 

polymorphic cipher is characteristic of randomness; the newly proposed method uses a Pseudo-

random Number Generator to construct the polymorphic virtual S-box. The polymorphic cipher 

design’s purpose makes the session keys immune to attacks. This study’s strength is an efficient 

polymorphic key exchange algorithm based on the session key exchange protocol. However, 

similarly to the previous research is resource-intensive with the Pseudo-random Number Generator, 

and the design cost of the agreement is high. The author concentrated on low powered systems with 

a lightweight polymetric algorithm for this proposed research. 

“Webpage Encryption Based on Polymorphic JavaScript Algorithm.” [8] Looks into protecting HTML 

code encryption based on polymorphic JavaScript programs, which can transmute and defend 

themselves like polymorphic viruses. The study’s critical point is that both encrypted HTML codes 
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and polymorphic JavaScript programs are difficult to be cracked. Therefore, the webpage content is 

protected. This study’s strength is that the nature of HTML encryption uses compression, 

permutation, and check digits to enhance the security effect. However, the system can crack by 

using a JavaScript debugger to show the memory locations of when and where the Polymorphic 

JavaScript Algorithm is activated. In this proposed research, IoT based and not a web-based system; 

therefore, software debugging would be challenging to reverse engineer, especially using a logic 

analyser. 

Overall, the proposed research will add to the contributed knowledge by developing a lightweight 

polymorphic system on an IoT device that can detect when a new client connects to the server for 

authorisation from a predetermined database that authorises clients. Once the server has identified 

the unauthorised client, it will reset the shared SSID password and share the randomly chosen new 

password to the trusted authorised clients. Additionally, communication between the server and 

authorised clients is encrypted. Therefore, if the unauthorised client manages to collect some 

communication data, it will not be compromised or used to reverse the system.  

The latter chapters of this research paper will pay closer attention to a broad spectrum of research 

papers. To cover a considerable breadth of related topics, analysed to see what has previously been 

accomplished, what is adaptable to this research and what this research paper can contribute and 

“boldly go where no [person] has gone before”. 

1.5 Overview of The Thesis 
This thesis is systematically structured to present the development, implementation, and evaluation 

of the Bio-Inspired Lightweight Polymorphic Security System for IoT Devices. The seven main 

chapters, along with comprehensive appendices, progressively guide the reader through the 

research problem, conceptual foundation, technical design, and experimental validation of the 

proposed system. 

Chapter One introduces the thesis, presenting the motivation behind the research, the theoretical 

underpinnings inspired by biological immunology, and the technical rationale for a polymorphic and 

lightweight security system. It outlines the core aims and objectives, as well as the broader 

significance of the research to the engineering community, particularly within the contexts of 

embedded systems and cybersecurity. 

Chapter Two provides an extensive literature review, covering the historical development and state-

of-the-art research in the Internet of Things (IoT), network security, cryptography, and 

polymorphism. This chapter also introduces battery management strategies for IoT and evaluates 

related studies in these areas. It lays the theoretical groundwork by identifying existing gaps in 
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integrating security with adaptive energy management, a key motivation for the development of this 

thesis. 

Chapter Three offers the technical and theoretical background necessary to contextualise the 

research. It surveys IoT hardware platforms, the evolution of cloud computing, the fundamentals of 

cryptography, the biological mechanisms of immunity, and blockchain concepts and introduces the 

conceptual linkage between brainwave modulation, energy adaptation and bio-inspired 

communication networks such as mycelium systems, establishing the interdisciplinary basis for the 

proposed system. 

Chapter Four outlines the core framework of the proposed system, detailing the Approved Clients 

List Process (ACLP), Client Connection Logic (CCL), Ledger Process (LP), Adaptive Amoeba Complexity 

(AAC), and the novel Adaptive Amoeba Battery Curve Mapping Management System (AABCMS). This 

chapter discusses the bio-inspired parallels and system logic in detail, supported by high-level 

architecture diagrams. 

Chapter Five transitions from conceptual design to practical implementation. It details the full 

deployment of the system on a custom ESP32-S3 development board, and includes the construction 

of client-server architecture, implementation of multiple lightweight and block cipher encryption 

methods, secure communication logic, session handling, and the integration of AABCMS. Code 

snippets and mathematical models are used to demonstrate key system functions. 

Chapter Six presents the testing and refinement process. It evaluates encryption efficiency through 

cycle and power analysis on both ESP32-S3 and ATMEGA328P platforms. It further assesses the 

auto-detection, auto-ejection, and trigger mechanisms by simulating various attack and 

synchronisation scenarios. The full system is tested across multiple scenarios, including session 

handling during low-power states and desynchronisation recovery via honeypot mechanisms. 

Detailed results validate the system’s responsiveness, security, and power optimisation capabilities. 

Chapter Seven concludes the thesis by synthesising the key findings, reflecting on the personal and 

technical journey of the research, and proposing directions for future work. It explores how the 

system may be extended through AI integration, post-quantum cryptography, decentralised ledgers, 

and biologically-inspired models for next-generation cyber-physical security. 

Finally, the Appendices provide detailed schematics of the hardware, complete implementation 

code, test data, and supplementary tables and diagrams. These materials support the 

reproducibility, transparency, and practical applicability of the research. 



 

25 
 

2.0 Chapter Two: Literature Review 
Chapter two will cover various topics that encompass this research. It spans from the Internet of 

Things (IoT) devices, Security Systems within networks and the ideology of polymorphism from the 

aspect of a changing system. To further understand how each topic and its subtopics are related to 

one another and how they could collaborate. Understanding each topic’s history and how other 

researchers have contributed to the overall industry would further develop knowledge for this 

research.  

2.1 Topic History and Development 

2.1.1 Internet of Things 

2.1.1.1 Brief History of the Internet of Things  

IoT (Internet of Things) is a term coined in 1999 by Kevin Ashton, who is a British technology pioneer 

who co-founded the Auto-ID Centre at the Massachusetts Institute of Technology (MIT)[9]. A general 

explanation for IoT, according to McKinsey, is that IoT is “sensors and actuators embedded in 

physical objects, from roadways to pacemakers, are linked through wired and wireless networks, 

often using the same Internet Protocol (IP) that connects the Internet.”[10].  

However, due to IoT being a relatively new industry, there is no universally comprehensive definition 

as various industries adopt IoT for their unique needs. Therefore, they may label IoT as something 

else. For example, Intel originally called it the Embedded Internet, whereas Cisco preferred the term 

Internet of Everything (IoE). Various industries also use other terms, as they all have slightly different 

meanings, such as: 

• Industry 4.0 

• Pervasive Computing 

• Smart Systems 

• Intelligent Systems 

• M2M (Machine-to-Machine) Communication 

• Industrial Internet of Things (IIoT) 

• Web of Things (WoT) 

Industry 4.0, also known as the Fourth Industrial Revolution, emphasises the industrial practices of 

implementing technology through automation, as well as its real-world applications, including 

Virtual Reality (VR), Augmented Reality (AR), Mixed Reality (MR), and 3D printing. This approach and 

the term itself originated in 2011 from the German government to incorporate a high-technology 

strategy that implements the computerisation of manufacturing[11].  
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Pervasive computing is the precursor to IoT, as it establishes principles for a connected world, 

primarily targeting the telecommunications industry for mobile communications. Nonetheless, 

Pervasive computing fundamentals follow IoT methodologies such as decentralisation, 

diversification, connectivity, and simplicity[12].   

Both Smart Systems and Intelligent Systems are intertwined as they focus on how systems interact 

with the physical human-facing side that has dynamic physical and social environments. For 

example, assistive robotics, medical care, education, entertainment, visual surveillance, and 

biometric human identification. 

Machine-to-Machine (M2M) communication allows communication between other devices through 

a network system, either wired or wireless, via an IP network system. M2M sets the foundation for 

Industrial Internet of Things (IoT) and Industry 4.0.  

Lastly, the Web of Things (WoT) represents a conceptual and architectural evolution of the IoT by 

extending its integration directly into the web ecosystem. While IoT is primarily concerned with 

connecting devices through embedded sensors and network protocols, the Web of Things focuses on 

standardising the interaction with these devices using established web protocols such as HTTP, 

WebSockets, and RESTful APIs. This web-centric approach aims to simplify the interoperability of 

heterogeneous systems by making “things” accessible and manageable through uniform web 

interfaces. 

Technically, WoT introduces the concept of Thing Descriptions (TDs), which serve as metadata 

models that describe the capabilities, properties, and communication endpoints of IoT devices. 

These TDs are typically written in JSON-LD and aligned with semantic web technologies, allowing 

machines to interpret and reason about device behaviour automatically. As a result, WoT supports 

not only human-centric interactions but also machine-to-machine interactions within a web-based 

framework. 

For example, a smart thermostat in a WoT environment may expose its temperature sensor, 

operating range, and control functions via a RESTful interface. These capabilities can then be 

accessed from any compatible application or device using standard web protocols, eliminating the 

need for proprietary software stacks or middleware. 

In summary, the Web of Things builds upon the Internet of Things by leveraging the web as a 

unifying medium for connecting, describing, and interacting with smart devices. Its emphasis on 

open standards, semantic modelling, and resource-based architectures contributes significantly to 

the scalability and maintainability of large-scale IoT deployments.  
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2.1.1.2 Generic Life-Cycle for IoT Devices 

Every product has a life cycle from the initial development phase to its growth, maturity and decline. 

To understand how businesses are implementing IoT devices, first, there needs to be an 

understanding of the generic life cycle for IoT devices. There are five main stages (Please refer to 

Figure 2.1 General Life Cycle for IoT Devices) for the IoT product life cycle: (Re)Construction, 

Deployment, Growth, Manage, and Decommission/Recycle. 

 

Figure 2.1: General Life Cycle for IoT Devices 

The first stage (Re)Construction begins with constructing the device hardware and software, or 

reconstructing hardware components and updating software, like security and firmware[13]. This 

stage’s development encompasses the specification, requirements, business needs, and constraints, 

as the product must consider the end-use and life cycle. Some of the things to consider are what 

type of data this device will gather, designing the appropriate circuit to allow external sensors, 

powering the device, and implementing and testing the product to determine if the specification is 

accomplished.  

The second stage, Deployment, is a multipart process that requires the production/manufacturing 

and installation of the device. Due to the yearly cost reduction of manufacturing sensors, the ability 

to mass-produce these IoT devices is relatively cheap. In the first part of this stage, the devices are 

mass-produced. Each IoT device is given a unique ID or unique universal ID (UUID), and the initial 

software with an over-the-air (OTA) programming ability can also include certificates or encryption 

keys[14]. The second part is the physical installation of the IoT devices in their environment, such as 

buildings, vehicles, and equipment. The installation may include factors for powering the device, as if 

(Re)Consturction

Deployment

GrowthManage

Decommision/Recycle
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the device is in a building with electricity, and it can be connected directly to the electrical network. 

An IoT device is placed somewhere remote or mobile, like a weather station, which needs a mobile 

power source and debugging features with limited human intervention. Geolocation might be 

implemented to track the device and find the device; for example, if a weather station is 

implemented in the desert and an intense sand storm may have displaced the sensor or damaged it, 

human intervention is required to repair it. 

The second stage directly influences the third stage, growth, which utilises the product by pairing 

the sensor with the control server to verify communication streams. After the pairing is successful, 

the device is registered as a connected device in the field, and data communication to the server 

begins. The importance of registering connected devices is to keep track of what devices are active 

and ensure legitimacy. 

The fourth stage, Manage, is about monitoring, maintaining, and updating the IoT devices. The 

central server that enables remote monitoring of connected devices includes operating status, 

battery level, configuration settings, and software version. Additionally, the configuration of the 

alerts determines whether the IoT product is working as expected or if any suspicious activity occurs. 

For example, suppose the IoT device is a part of a BotNet. In that case, it will transmit an enormous 

amount of data, which can raise an alert to the central server to reset the device to its factory 

settings, therefore, no longer infected with the malware. Another common type of alert is examining 

the transmitted data to see if it is erroneous. One of the advantages of IoT devices is their ability to 

be mobile. However, this poses a challenge for updating, as the manufacturer cannot recall all the 

products to update. The solution is to have over-the-air (OTA) updates to allow the connected device 

to be remotely updated, configured, and recalibrated. OTA is also the primary solution for 

maintenance operations if the device can be repaired with software; otherwise, physical activity is 

considered. 

The fifth and last stage of the cycle is decommissioning/recycling. At the end of the IoT device life 

cycle, the need for significant upgrades to more recent hardware, or the end of gathering a 

particular dataset, is apparent. The secure removal of the connected device from its platform for 

decommissioning is set forth. In addition to decommissioning the connection and permissions 

between IoT devices and servers, they are revoked through securely unpairing the IoT device[14]. 

Decommissioning is achieved through a final software update. The IoT device is physically removed 

from the environment to protect the environment by recycling, and to prevent data loss and data 

theft. Since 2018 (an updated version of the 2013 regulation of the same name), the regulation for 

waste electrical and electronic equipment (WEEE) requires manufacturers to conduct or outsource 
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electronic recycling and waste recovery in a safe and environmentally responsible manner. However, 

for recycling IoT systems (if not obsolete), most devices and sensors are redesigned to create new 

models, thereby saving future project costs. 

2.1.1.3 The Present to the Future 

Over the past decade, IoT progression has been exponential as sensors’ manufacturing costs have 

decreased. Therefore, incorporating IoT sensors for projects is limited to large enterprises and SME’s 

(Small and Medium Enterprises). According to the “2019 manufacturing trends report” by Microsoft 

[15]. The average price in 2005 was $1.30, compared to 2020, the cost was $0.38, which is a 49.4% 

decrease in price. Please see Figure 2.2 for a cost trends graph from 2004 to 2020. 

 

Figure 2.2: Average cost of IoT sensors - Taken from the 2019 Manufacturing Trends Report by Microsoft 

Due to IoT devices’ cost-effectiveness, the range of applications is only limited by the product’s 

design specifications. Thus, the accelerated rate at which the digital and physical are becoming ever 

more interconnected. For example, to name a couple of types of IoT applications would be:  

• Applications within commercial IoT, as the Transport industry uses monitoring systems for 

trains and vehicle communication to avoid traffic in smart and electronic cars. Additionally, 

the Healthcare industry, using Pacemakers and automated insulin pumps. 

• Consumer IoT is more apparent as it includes home applications such as a smart fridge, 

personal assistance like Alexa or Google Home. Wearable technologies communicate with a 

smartphone via an application, such as a smartwatch. 
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• The sector of military, government or intelligence agencies could use IoT through 

surveillance and facial recognition to track and digitally follow suspects. Implementation of 

biometrics for combat training to further understand how a subject reacts to a specific 

scenario. 

• Smart agriculture, control systems, and industrial big data for statistical evaluation all come 

under the industrial IoT. Especially within the agricultural industries, there is a need to 

expand to feed the world's growing population without taking too much space and having an 

ecological footprint. Due to this demand, more inner-city farms (or vertical farms) are 

operating closer to the seller and growing plants in a more closed and controlled 

environment, therefore, resulting in saving costs for pesticides, transport and storage. 

• Lastly, the notion of smart cities, which comes under infrastructure IoT, enables an 

ecosystem for interconnected devices and services. 

The question that arises from the low-cost adaptability and the highly adaptable implementations of 

IoT devices is How many IoT devices are there? What are users spending on IoT devices? Which 

industries are adopting IoT? 

Table 1 shows the number of installed IoT devices from 2018 to 2020, then an estimate for 2021 and 

2025. 

Table 1: IoT Devices Installed Worldwide[16] 

Year Number of Devices Worldwide (in Billions) 

2018 7 

2019 26.66 

2020 31 

2021 35* 

2025 >75* 

 

Figure 2.3 shows a forecast of end-user spending on IoT solutions worldwide from 2017 to 2025. The 

IoT industry “reached 100 billion dollars in market revenue for the first time in 2017, and forecasts 

suggest that this figure will grow to around 1.6 trillion by 2025.”[17] 
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Figure 2.3: Global IoT end-user spending worldwide 2017-2025 [17] 

2.1.2 Network Security Systems through Encryption and Cryptography 

2.1.2.1 Basic Network Systems 

Before delving into the security side of networking, encryption, and cryptography, one needs to 

understand how network systems are structured and organised. The structure layers are the basis 

for the Open Systems Interconnection (OSI) and Transmission Control Protocol/Internet Protocol 

(TCP/IP) models.  

This chapter will briefly discuss the differences and similarities between the OSI and TCP/IP 

reference models and then discuss each of the layers in more detail; please see Figure 2.4, which 

shows a basic outline of the layers between the OSI and TCP/IP models.  



 

32 
 

 

Figure 2.4: Layers of the OSI and TCP/IP models - Taken from [Charles M. Kozierok] 

There are a few differences between the OSI and TCP/IP reference models; for example, the OSI 

model has seven individual layers (vertical approach) at its face value. In contrast, the TCP/IP has 

four (horizontal); this is mainly because the TCP/IP model is a protocol-oriented standard. For 

example, the Hypertext Transfer Protocol (HTTP) is in the application layer, and Transmission Control 

Protocol (TCP) and User Datagram Protocol (UDP) are in the transport layer. The OSI model is more 

logical and conceptually based on each layer’s functionalities. The OSI model distinguishes three 

concepts: protocols, interfaces, and services that help standardise motherboards, routers, switches, 

and other hardware. In contrast, TCP/IP helps establish a connection between different types of 

computers.  

However, the similarities of the two are that both reference models divide data into packets, and 

each packet may take a unique route from the source to the end-user destination. Another similarity 

is that the layers are compatible with each other. The physical layer and the data link layer of the OSI 

model and the TCP/IP model correspond. The same goes for both the network and transport layers.  
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The differences and similarities between the layers have been discussed previously, but what are 

their functionalities?  

Starting from the bottom, the physical layer has the critical responsibilities of signalling and 

encoding. Therefore, physically transmitting the data through electrical or light signals sent between 

local devices, as the data type handled by this layer is in bits. The physical layer is where the 

hardware specifications, topology and design of the entire network begin.  

The data-link layer focuses on low-level data messages between local devices; these local devices are 

directly connected nodes that perform node-to-node data transfer, where the data is packaged into 

frames. The Data-link layer has the responsibilities of media access control (MAC), data framing and 

handling the frames, logical link control (LLC), error detection, handling, addressing, and defining the 

previous physical link layer requirements. 

The Network layer handles data types of datagrams and packets; it is responsible for receiving 

frames from the previous data link layer. The Network layer’s primary responsibilities are logical 

addressing, routing, datagram encapsulation, fragmentation and reassembly, error handling, and 

diagnostics. The network layer’s scope is the messages between local or remote devices.  

Managing the delivery and the error checking of the data packets is the main factor of the transport 

layer. The data type handles datagrams and segments in the transport layer, as it functions as a 

multiplexer and demultiplexer, providing process-level addressing, connections, segmentation and 

reassembly, acknowledgements and retransmissions, and flow control. The transport layer’s scope is 

the communication between software processes, such as TCP and UDP. 

The Session layer is responsible for session establishment, management and termination, as it 

controls the communications between different computers and machines. The data type that the 

session layer handles is sessions, as the scope of this layer focuses on sessions between local or 

remote devices, such as sockets or NetBIOS.  

The presentation layer (sometimes also called the syntax layer) is responsible for data translation, 

compression, and encryption. The data type handled in this layer is encoded user data in the scope 

of application data representations. A few examples of standard protocols and technologies in this 

layer are SSL and MIME. 

Lastly, there is the application layer, whereby the end-user interacts directly with the software 

application, and it handles the user data and application data. The standard protocols and 

technologies used in this layer are DNS, SNMP, HTTP, Telnet, FTP, DHCP, and more.  
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2.1.2.2 Network Security with Encryption and Cryptography 

The fundamental nature of encryption derives from the need to communicate and send messages 

back and forth securely. As technology is a tree that branches new inventions to birth instead of 

miraculously spawning into existence, the history of encryption comes from linguistics. Linguistics is 

“the scientific study of languages, how they evolve and are structured” [18].  

The simplest form of encryption in the linguistic field is when two individuals in a group of people 

have a private conversation by whispering, as this form of communication is secure to a small area of 

effect of hearing.  

Another example is when two people speak another language that is not the commonly spoken 

tongue for that country, te respicere post tergum? Most readers of this research paper may not 

know the sentence; hence, it is secure only for those who know, although due to the existence of 

online translators, deciphering the unknown language is not a challenge.  

Throughout history, encryption has evolved; the aim has remained the same: to communicate with 

the intended recipient securely. However, the methodology changed and became more complicated 

due to the volume of data that needed to be secured faster; this demand led to the study of 

cryptography.  

“Cryptography is the science [art] of keeping secrets” [19], especially in telecommunications, is 

necessary when communicating over any unsecured devices and platforms; this includes any 

networks, including the internet, as the internet is a network of networks. There are five main 

functions cryptography has to offer[9]:  

• Privacy and confidentiality: Ensuring that no one can read the message except the intended 

receiver. Therefore, information that only the intended person can access. 

• Authentication identifies who the sender and receiver are, as well as the origin and 

destination of the information. 

• Integrity is the method of assuring the receiver that the received message has not been 

altered in any way from the original. 

• The implementation of non-repudiation to prove that the sender was the originator of the 

sent message. 

• Key exchange is the method by which crypto keys are shared between the receiver and the 

sender.  

Before cryptography, all data started with unencrypted data, which refers to plaintext. The plaintext 

is encrypted into ciphertext, which will, in turn, be decrypted back into usable plaintext using a key. 
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The encryption and decryption are based upon the type of cryptography scheme employed and 

some form of a key, this process is written as: 

Equation 2.1: General Equation for Encryption and Decryption 

𝐶 =  𝐸𝑘(𝑃) 

𝑃 =  𝐷𝑘(𝐶) 

P = plaintext, C = ciphertext, E = the encryption method, D = the decryption method, and k = the key 

[9] 

There are three types of algorithms for cryptography:  

• Symmetric Key Cryptography or Secret Key Cryptography: Uses a single cryptographic 

key for both encryption of plaintext and decryption of ciphertext.  

• Asymmetric Key Cryptography or Public Key Cryptography (PKC): Uses one key for 

encryption and another for decryption. 

• Hash Functions or Hash Key Cryptography: Has no key within the algorithm but uses a 

fixed-length calculated based on the plain text. 

2.1.2.3 Symmetric Key Cryptography (SKC) 

Symmetric Key Cryptography (SKC) uses duplicate cryptographic keys for both encryption of 

plaintext and decryption of ciphertext. Once the encrypted text is received, the receiver applies the 

same key to decrypt the message and recover the original plaintext. 

With this cryptography, both the sender and the receiver must have the same key: the secret. The 

most considerable difficulty with this approach is the distribution of the key. Symmetric key 

cryptography schemes are categorised into either stream ciphers or block ciphers. 

Stream ciphers are a type of symmetric-key cipher that continually converts a byte of the plain text 

to encrypted data. Stream ciphers come in several variations; self-synchronising stream ciphers 

calculate each bit in the keystream as a function of the previous n bits. It is also called self-

synchronising because the decryption process can stay synchronised with the encryption process by 

knowing the length of the n-bit keystream. 

One problem is error propagation; a misplaced/unsynchronised bit in transmission will result in an 

absent bit at the receiving side, resulting in a separate message when decrypting the text. An 

essential feature of synchronous stream ciphers is that they assure only the confidentiality of data 

but not its integrity. An active attacker can flip the ciphertext’s bits, which converts the 

corresponding plaintext bits. To prevent active attacks, one needs a message authentication code 

(MAC).[20] 
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Synchronous stream ciphers generate the keystream independent of the message stream but use 

the same keystream generation function at sender and receiver. At the same time, stream ciphers 

do not propagate transmission errors. However, due to being periodic, the keystream will eventually 

repeat, and any errors will be overridden. 

A block cipher encrypts one fixed-size block of data at a time. A block cipher is a given plaintext block 

that will always encrypt to the same ciphertext when using the same key, whereas the same 

plaintext will encrypt to the different ciphertext in a stream cipher. 

Block ciphers can operate in several modes: Electronic Codebook, Cipher Block Chaining, Cipher 

Feedback, Output Feedback, and Control Mode. 

The Electronic Codebook (ECB) mode uses the secret key to encrypt the plaintext block to form a 

ciphertext block. It is the simplest operation model as the plain text message is divided into 64-bit 

blocks, and each block is encrypted independently, but uses the same key for the encryption 

process. When transmitting a single bit error, ECB could result in a mistake for the entire decrypted 

plaintext. It is susceptible to brute force attacks, deletion and insertion attacks due to the lack of 

diffusion. The formula is as follows, and a flowchart is provided in Figure 2.5. 

Equation 2.2: Electronic Codebook (ECB) Encryption Equation 

𝐶𝑗 = 𝐶𝐼𝑃𝐻𝐾(𝑃𝑗)  

Equation 2.3: Electronic Codebook (ECB) Decryption Equation   

𝑃𝑗 = 𝐶𝐼𝑃𝐻
−1
𝐾(𝐶𝑗)  

C = ciphertext, P = plaintext, CIPHK(X) = the forward cipher function, CIPH-1 K(X) = Inverse cipher 

function, K = the secret key, and j is the sequence of the data from left to right.[21] 
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Figure 2.5: ECB encryption and decryption flow chart, taken from “Recommendations for Block Cipher Modes of Operation 
Methods and Techniques” [21] 

Cipher Block Chaining (CBC) adds a feedback loop for cryptography. CBC is achieved by first 

encrypting the plaintext using an XOR cipher in the initialisation vector, then its encrypted again 

using a key, and this output is XOR also into another key and so on. This chaining destroys any 

sequential patterning and is protected against brute force, deletion and insertion attacks; however, 

a single bit error in the ciphertext will still cause the entire block to produce the wrong plaintext. The 

flowchart in Figure 2.6 follows the formula for CBC.  

Equation 2.4: Cipher Block Chaining (CBC) Encryption Equation 

𝐶1 = 𝐶𝐼𝑃𝐻𝐾(𝑃1⊕ 𝐼𝑉);  

𝐶𝑗 = 𝐶𝐼𝑃𝐻𝐾(𝑃𝑗⊕ 𝐶𝑗−1) 

Equation 2.5: Cipher Block Chaining (CBC) Decryption Equation 

𝑃1 = 𝐶𝐼𝑃𝐻
−1
𝐾(𝐶1) ⊕  𝐼𝑉; 

𝑃𝑗 = 𝐶𝐼𝑃𝐻
−1
𝐾(𝐶𝑗) ⊕ 𝐶𝑗−1 

C = ciphertext, P = plaintext, CIPHK(X) = the forward cipher function, CIPH-1 K(X) = Inverse cipher 

function, K = the secret key, j is the second data of the sequence from left to right, C1 is the first data 

from the sequence, X⊕Y bitwise exclusive-OR of two strings X and Y must be of the same length, IV 

is the Initialisation vector.[21] 
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Figure 2.6: CBC encryption and decryption flow chart, taken from “Recommendations for Block Cipher Modes of Operation 
Methods and Techniques” [21] 

 

Cipher Feedback (CFB) mode is a block cipher implementation as a self-synchronising stream cipher. 

This block cipher is very similar to CBC but performed in reverse. The reversal single bit error in the 

ciphertext affects both this block and the following one. Please refer to Figure 2.7 for the flowchart, 

and the defined formula for CFB mode follows:   

Equation 2.6: Cipher Feedback (CFB) Encryption Equation 

𝐼1 = 𝐼𝑉; 

𝐼𝑗 = 𝐿𝑆𝐵𝑏−𝑠(𝐼𝑗−1)|𝐶
#
𝑗−1 

𝑂𝑗 = 𝐶𝐼𝑃𝐻𝐾(𝐼𝑗) 

𝐶#𝑗 = 𝑃
#
𝑗⊕𝑀𝑆𝐵𝑠(𝑂𝑗)  

Equation 2.7: Cipher Feedback (CFB) Decryption Equation 

𝐼1 = 𝐼𝑉; 

𝐼𝑗 = 𝐿𝑆𝐵𝑏−𝑠(𝐼𝑗−1)|𝐶
#
𝑗−1  

𝑂𝑗 = 𝐶𝐼𝑃𝐻𝐾(𝐼𝑗) 

𝑃#𝑗 = 𝐶
#
𝑗⊕𝑀𝑆𝐵𝑠(𝑂𝑗) 
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C = ciphertext, P = plaintext, CIPHK(X) = the forward cipher function, CIPH-1 K(X) = Inverse cipher 

function, K = the secret key, j is the second data of the sequence from left to right, C1 is the first data 

from the sequence, X⊕Y bitwise exclusive-OR of two strings X and Y must be of the same length, IV 

is the Initialisation vector, I is the input block, LSB is the Least Significant Bit, MSB is the Most 

Significant Bit, X|Y is the concatenation of X and Y, b is the block size in bits, s is the number of bits in 

a data segment, and O is the output, # is the segment of a block.[21] 

 

Figure 2.7: CFB encryption and decryption flow chart, taken from “Recommendations for Block Cipher Modes of Operation 
Methods and Techniques” [21] 

Output Feedback (OFB) mode is a block cipher implementation conceptually like a synchronous 

stream cipher. OFB prevents the plaintext block from generating the same cipher text block by using 

a feedback system to generate the keystream independently of both the cipher text bitstreams and 

plaintext. The single-bit error in the cipher text would only produce a single bit error in the 

decrypted text. Please refer to Figure 2.8 for the flowchart. 

Equation 2.8: Output Feedback (OFB) Encryption Equation 

𝐼1 = 𝐼𝑉; 

𝐼𝑗 = 𝑂𝑗−1 

𝑂𝑗 = 𝐶𝐼𝑃𝐻𝐾(𝐼𝑗) 

𝐶𝑗 = 𝑃𝑗⊕𝑂𝑗 

𝐶∗𝑛 = 𝑃
∗
𝑛⊕𝑀𝑆𝐵𝑢(𝑂𝑛) 
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Equation 2.9: Output Feedback (OFB) Decryption Equation 

𝐼1 = 𝐼𝑉; 

𝐼𝑗 = 𝑂𝑗−1 

𝑂𝑗 = 𝐶𝐼𝑃𝐻𝐾(𝐼𝑗) 

𝑃𝑗 = 𝐶𝑗⊕𝑂𝑗 

𝑃∗𝑛 = 𝐶
∗
𝑛⊕𝑀𝑆𝐵𝑢(𝑂𝑛) 

C = ciphertext, P = plaintext, CIPHK(X) = the forward cipher function, j is the second data of the 

sequence from left to right, I1 is the first data from the sequence from the Input, X⊕Y bitwise 

exclusive-OR of two strings X and Y must be of the same length, IV is the Initialisation vector, I is the 

input block, MSB is the Most Significant Bit, O is the output, P* last block of the plain text, n is the 

number of data blocks or data segments in the plaintext, and u is the number of bits in the last 

plaintext or ciphertext block.[21] 

 

Figure 2.8: OFB encryption and decryption flow chart, taken from “Recommendations for Block Cipher Modes of Operation 
Methods and Techniques” [21] 

Counter (CTR) mode operates on the blocks as a stream cipher and serves on the individual block like 

ECB. However, CTR uses various key inputs to unique blocks to prevent the same ciphertext from 

occurring. Additionally, each block of ciphertext has a specific location within the encrypted 

message. Then, CTR mode allows blocks to be processed in parallel, therefore offering performance 
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advantages when parallel processing and multiple processors are available. It is not susceptible to 

ECB’s brute-force, deletion, and insertion attacks. Please refer to Figure 2.9 for the flowchart. 

Equation 2.10: Counter (CTR) Mode Encryption Equation 

𝑂𝑗 = 𝐶𝐼𝑃𝐻𝐾(𝑇𝑗)  

𝐶𝑗 = 𝑃𝑗⊕𝑂𝑗  

𝐶∗𝑛 = 𝑃
∗
𝑛⊕𝑀𝑆𝐵𝑢(𝑂𝑛) 

Equation 2.11: Counter (CTR) Mode Decryption Equation 

𝑂𝑗 = 𝐶𝐼𝑃𝐻𝐾(𝑇𝑗) 

𝑃𝑗 = 𝐶𝑗⊕𝑂𝑗 

𝑃∗𝑛 = 𝐶
∗
𝑛⊕𝑀𝑆𝐵𝑢(𝑂𝑛) 

C = ciphertext, P = plaintext, CIPHK(X) = the forward cipher function, j is the second data of the 

sequence from left to right, X⊕Y bitwise exclusive-OR of two strings X and Y must be of the same 

length, MSB is the Most Significant Bit, O is the output, P* last block of the plain text, n is the number 

of data blocks or data segments in the plaintext, and T is the counter block.[21] 

 

 

Figure 2.9: CTR encryption and decryption flow chart, taken from “Recommendations for Block Cipher Modes of Operation 
Methods and Techniques” [21] 
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2.1.2.4 Public key cryptography (PKC) 

Public key cryptography (PKC) was first publicised in, 1976 at Stanford University by Professor Martin 

Hellman and graduate student Whitfield Diffie. PKC depends on mathematical functions that are 

easy to compute, but the operation’s inverse would be challenging to calculate; these produce a 

one-way process. [22] In essence, PKC uses keys, Public keys that can be shared widely and a Private 

key that is only known to the owner. Therefore, using the receiver’s public key, anyone can encrypt a 

message, but the message’s decryption is achieved only using the receiver’s private key. 

2.1.2.5 Cryptographic Hash Function (CHF) 

Cryptographic Hash Function (CHF) is a mathematical algorithm that maps data of a message’s 

arbitrary size to a string of bits of a fixed size (this is called the hash), a one-way function. One of the 

vital properties of CHF is that the output of the process must look random; this is determined by a 

series of behaviours and conditions that the CHF must satisfy:  

• First preimage resistance: Essentially, given an arbitrary hash code, it is computationally 

impossible to find an input that the hash function maps to that hash code (one-way 

function). 

• Second preimage resistance: Like the first preimage resistance as given input to the hash 

function, it would be computationally impossible to find a second input that provides 

the same hash code. 

• Collision resistance: When a hash function is collision-resistant, it is computationally 

impossible to find two inputs that give the same hash code. 

• Indistinguishable from random: A hash function is indistinguishable from a random 

process if an attacker cannot tell the difference between the hash function and a 

function chosen entirely at random from all the tasks with the same input/output 

characteristics as the hash function. A hash function can only be indistinguishable from 

random if there is a key.[23] 

Due to the CHF properties of looking random, the slightest change of a letter in a word would result 

in drastic changes in the output result. 
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2.1.3 Polymorphism 
Polymorphism has multiple denotations according to the various industries and fields. For this 

research, both the information technology industry and the biological field will cross-pollinate, as 

human immunology translates to a novel security system for IoT devices.  

In biology, polymorphism is the “discontinuous genetic variation which results in the occurrence of 

several different forms or types of individual among the members of a single species”[24]. These 

variations do not alter the individuals into sub-species from the original. An example would be the 

different blood types in humans and the smooth graduation of heights among the human 

population. Please note that if there are many polymorphic variations within a species, it can persist 

over many generations, especially if the variation is advantageous in natural selection. Therefore, 

some polymorphic variation could be advantageous to a species’ survival. 

Humans have an innate and adaptive immunity in terms of immunology. Innate immunity responds 

and recognises generic targets on foreign agents (pathogens), whereas adaptive immunity 

recognises specific targets using “randomly generated receptors that have a virtually unlimited 

recognition repertoire”[25]. There are two different types of adaptive immunity called humoral 

immunity and cell-mediated immunity, and please see Figure 2.10 for a visual representation. The 

properties of adaptive immune responses are specificity, diversity, memory, clonal expansion, 

specialisation, contraction and homeostasis, and nonreactivity of self[2]. 

Table 2: Properties of adaptive immune responses according to Functions and Disorders of the immune system[2] 

Feature Function 

Specificity To ensure the targeted foreign agents (antigens1) get the appropriate 
responses 

Diversity To have a large variety of responses for a large variety of antigens 

Memory To know which response was the most effective in protecting against 
future exposure to the same foreign agent 

Clonal expansion Increases the number of antigen-specific lymphocytes2 from a small 
number of naive lymphocytes, allowing for a higher concentration-
response as more cells are aware of the antigen 

Specialisation Specialisation gives the ability to generate a more specific defence against 
different microbes and antigens 

Contraction and 
homeostasis 

The ability to respond to an unknown or newly encountered antigen 

Nonreactivity of self Not to harm the host during the response to an antigen. 

 

 
1 Any type of toxin or foregin substance that induces a immune response in the body. 
2 B Lymphocytes produce proteins called antibodies which mediates an humoral immunity response. 
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Figure 2.10: Types of adaptive immunity - image taken from[2] 

To translate and reverse engineer the biology of adaptive immunity into the focus of cybersecurity, 

there needs to be a breakdown comparison of each of these features to the next best thing in the 

cybersecurity industry. Specificity ensures the targeted antigens get the correct response from 

antivirus programs, and they scan files and code to see if it has a similar signature to known malware 

and viruses. If a known virus is detected, then the directed response will quarantine the file and then 

delete the program[26]. 

The function of diversity, memory and specialisation is the adaptive immune system’s ability to 

respond to different antigens and remember which responses are most responsive and efficient. In a 
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nutshell, this is also known as a threat database in the cybersecurity field. The threat database aims 

to log current virus events with their signatures and repel those viruses from computer systems. 

Clonal expansion is the adaptive immune system’s ability to alert nearby cells to an active virus. For 

an electronic system to imitate clonal expansion, each device needs to be within an interconnected 

network like a mesh network, server and client or other connected topologies to allow the data of 

threats to be shared with all connected devices. The advantage of having all connected devices 

aware of a virus in the system is to reduce its spread and take appropriate measures according to 

pre-written protocols.  

Usually, an infected machine is isolated and quarantined from the rest of the system to avoid 

malware from reproducing and spreading. Stopping this spread is the main feature of the 

contraction and homeostasis function, which aims to respond to unknown or newly encountered 

antigens. The difficulty with unknown viruses with minimal data would be the severity of the issue 

they pose to any given system. Therefore, the best approach is to contain the virus and then study it 

as a signature to see if any other systems have the same virus. 

Lastly, the ability to be nonreactive to oneself during the response to an antigen is a crucial 

application in any security system. Suppose an interconnected system, such as a server with many 

clients, is infected. In that case, the best approach, depending on the severity of the issue, might 

limit communication streams to non-infected clients to avoid further spread and then to remotely 

factory reset the infected clients to a previous image of the system that does not have a virus. 

Additionally, suppose a scheduled backup is a commonality within a system. In that case, the 

recovery of the most recent backup that does not have the virus is the best option to restore the 

client’s functionality and eject the system’s virus.  

For programmers and engineers alike, adaptive immunity seems like an intrusion detection system 

with a database for known security risks. The detection of a foreign agent that correlates to a known 

security risk can then be subject to a specifically targeted response. It is also relatively common to 

block known incoming threats by either allowing specific sites, applications or communication 

streams or blocklisting threats known to the host/organisation.   

Polymorphism within computer science and programming comes from the notion of type theory, 

which is a system that every term has a type that defines the operations, meanings and how it 

performs[27]. An example of type theory in programming is when a name (variable) might denote 

different instances of many different classes as long as they have a common superclass. Therefore, 

any object denoted by the same variable can respond to a standard set of operations differently. The 
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expected output through various operations; this type of polymorphism is called inclusion 

polymorphism[28].  

Another primary class of polymorphism is ad hoc polymorphism, described by Strachey[29], who 

stated that symbols used in programming, such as plus (+), could also be defined to mean different 

things. This concept is also known as overloading. Object-oriented programming languages like C++ 

could declare functions having the same names, as long as they have different invocations. For 

example, there could exist two functions (also known as methods or subroutines) called “Addition”, 

whereby one of these functions could return an integer by taking in two integer variables as 

parameters and adding the integer value (2+2 will return 4). However, the other function called with 

the same name can return a string by taking in two string variables from the parameter and 

concatenating the values as a return statement (“hello,”, “there” will return “hello, there”). 

Lastly, parametric polymorphism allows a data type or a function to be written generically; 

therefore, it can handle values uniformly without depending on their data type[30]. Handling values 

uniformly allows the language to be more expressive while maintaining the complete static type-

safety to prevent type errors. 

Nonetheless, polymorphism within the cybersecurity field is an amalgamation of both how biological 

viruses mutate and the different classes of polymorphism. In cybersecurity, polymorphic viruses are 

a self-replicating piece of code that uses a polymorphic engine (also called a mutation engine) to 

mutate while keeping the algorithmic output result intact. There are two ways a polymorphic engine 

works: either encrypting the code by using a cypher to make it harder for antivirus systems to detect 

the signature of the virus through the code, or by using an obfuscation technique to prevent 

tampering, reverse engineering, and detection of its true purpose. 

This research aims to produce a security system with human immunology’s logic operations while 

deterring and deceiving invasive unauthorised clients using polymorphic techniques such as 

inclusion, ad hoc, and parametric polymorphism to protect approved clients within the network 

system. The next chapter will propose a framework for how a polymorphic security system is 

implemented on commercial IoT devices, therefore tackling intrusive attacks and working within 

microcontrollers’ limited processing power. 

Furthermore, the Adaptive Amoeba Battery Curve Mapping Management System (AABCMS) draws 

conceptual inspiration not only from immunology but also from neurophysiology. In biological 

organisms, particularly in the human brain, different states of activity are characterised by varying 

frequencies of brain waves: Beta waves dominate during active thinking and stress, while Delta 
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waves are predominant during deep sleep. Similarly, the AABCMS dynamically transitions the IoT 

device between high-processing (active) and low-power (sleep) states based on real-time battery 

health predictions. This parallels how biological systems conserve energy during periods of low 

activity and expend more resources during critical functional demands. Such bio-inspired adaptation 

enables IoT devices to maximise operational longevity while ensuring readiness to respond when 

necessary, thereby offering a novel paradigm for battery-aware security systems. 

2.1.4 Battery Management in IoT Security Systems 
Despite extensive research into IoT security protocols, comparatively limited attention has been 

given to the intersection of battery management and secure communication frameworks in IoT 

environments. Existing lightweight cryptographic approaches, while optimised for computational 

efficiency [31]. Often fail to account for the dynamic energy profiles of devices operating under 

variable loads and environmental conditions. Studies such as [32] highlight that energy-aware 

communication protocols have been proposed independently of security considerations, yet 

comprehensive frameworks that synchronise cryptographic adaptability with battery curve 

monitoring remain scarce. This gap motivates the development of the Adaptive Amoeba Battery 

Curve Mapping Management System (AABCMS), which uniquely combines real-time battery health 

prediction, adaptive encryption strength selection, and sleep cycle optimisation to maintain the 

operational longevity and security resilience of IoT devices. By integrating power management 

directly into the core security model, this system extends beyond conventional designs that treat 

energy management and cybersecurity as isolated concerns. 

While traditional IoT energy management strategies often focus solely on static sleep intervals or 

power gating techniques, the Adaptive Amoeba Battery Curve Mapping Management System 

(AABCMS) advances the paradigm by drawing conceptual inspiration from biological neural systems. 

In particular, human brainwave activity provides a relevant analogue: different cognitive and 

physiological states are associated with distinct electrical patterns. Beta waves (13–30 Hz) dominate 

during active thought, stress, and problem-solving, associated with heightened glucose consumption 

and energy demand [33], whereas Delta waves (0.5–4 Hz) predominate during deep sleep phases, 

associated with significant energy conservation and restoration [34]. 

The AABCMS dynamically transitions IoT devices between high-processing active modes and low-

power sleep states according to real-time battery health predictions. This mirrors how biological 

systems strategically allocate energy, upregulating activity during high cognitive load and 

downregulating it during rest. In the context of IoT systems, such dynamic adaptation allows devices 

not merely to conserve battery life but to operate with biological-like resilience, maintaining 

operational readiness during critical demands while minimising unnecessary energy expenditure 
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during idle periods. By integrating bio-inspired adaptive behaviour, the AABCMS ensures optimised 

longevity without compromising functional responsiveness, positioning it as a novel contribution to 

energy-aware security system design. 

2.2 Focus on Research and Evaluating Studies 
This sub-chapter aims to go over a few related studies to discuss their findings, appreciate their 

contributions, and see how they can benefit this thesis.  

“Tree-Chain: A fast lightweight consensus algorithm for IoT application”[35] proposes a new way to 

implement blockchain on low processing power devices such as IoT devices. The main reason 

blockchain is challenging to implement on IoT platforms is the expensive computational power 

required for the validation and consensus algorithms which would cause significant transaction 

delays between clients. This paper, written by Ali Dorri and Raja Jurdak, proposes a scalable tree-

chain for fast blockchain installation that introduces two randomisation levels in the validator. One 

of the randomisation levels are in the transaction level, where the validator of each transaction is 

selected randomly based on the most significant characters of the hash function output (known as 

consensus code), and the other in the blockchain level where the validator is randomly allocated to a 

particular consensus code based on the hash of their public key. The authors also implemented the 

tree-chain to work with parallel chain branches; therefore, each validator’s corresponding 

transactions are in an individual ledger. The paper gives a novel solution for blockchain within IoT 

platforms that will allow low-power processors to perform blockchain interactions. 

Additionally, due to the blockchain implementation, there were a few security benefits against 

attacks, such as a denial of service attack. The denial of service attack (DOS) as the validators in the 

network monitors the cumulative number of transactions generated within a particular consensus 

code range and the number of such transactions. If this threshold is surpassed, the validators will 

choose a new validator for the corresponding consensus code. Hence, the DOS was ineffective for 

this tree-chain approach. A tree-chain approach would prove fruitful for the lightweight polymorphic 

security system as it integrates a shared ledger between the server and client to share 

predetermined encryption keys and passwords for approved clients while being effective against 

common attacks like DOS. 

Effy Raja Naru et al. wrote a paper to review recent lightweight cryptography in IoT[36]. Though a 

short paper, the table of comparison between lightweight cryptography related works in IoT is 

beneficial as it gives pros and cons for each technique used. However, the paper does argue a 

challenge that all of these lightweight cryptography techniques have in common, which is the 

physical security for IoT. The notion of physical security and hardware trojans is a common threat 



 

49 
 

against IoT devices; therefore, some protection against these types of attacks is considered in this 

thesis, especially in the testing phase. 

Directly related to the previous paper, “Hardware-assisted Cybersecurity for IoT devices”[37], it puts 

forth a solution to IoT’s hardware-related cybersecurity issues on top of the software only solutions 

to layer the security for IoT devices. This study’s hardware-based methods give leverage to the 

hardware modules by collecting micro-architecture information to analyse prevailing software level 

threats and vulnerabilities. Some of the hardware-based methods include a runtime micro-

architectural event monitor, side-channel information, trusted platform modules, and a security-

aware design. This study’s most exciting integration is the discreet trusted platform module chip, 

which allows cryptographic keys tied to specific platform measurements and are protected from 

disclosure to any untrusted hardware components, processes, or software. Such hardware 

implementation is manufactured by companies like Intel’s Software Guard Extention[38] and ARM 

with their TrustZone chip[39] that can be incorporated into existing modules during the 

development phase. 

Further exploring hardware related subjects, a review article by Mingfu Xue et al. called “Ten years 

of hardware Trojans: a survey from the attacker’s perspective”[40] gives invaluable insight into how 

hardware trojans were executed in various stages of the product lifecycle. There are five stages 

within the supply chain: design, synthesis and verification, fabrication, testing, and distribution, 

where the attackers have opportunities to attack. In the design phase, attackers (in-house design 

team attackers) can use flexible methods to implement any malicious function and create a side-

challenge/covert communication channel leakage. In the synthesis and verification stage, the 

attackers will be 3PIP vendor attackers who implement malicious functions with flexibility by 

modifying the IP design at the RTL netlist or other specification levels. Fabrication stage attackers try 

to change the netlist in the layout or modify the manufacturing process. During the testing phase, 

the attackers directly modify the hardware trojan’s detection results or modify the test data to 

mislead the detection results. Lastly, in the distribution phase, the reverse- engineering a chip to 

pirate the design or directly replace it with a trojan inserted version during the transportation.  

Designing with a vision for the future helps devices be in service for longer, as the device can be 

upgraded through software and modified by adding additional hardware. The paper “lattice-based 

cryptography for IoT in a quantum world: are we ready?”[41] shows how current FPGA’s and other 

IoT platforms could implement lattice-based cryptography. In order to implement lattice-based 

cryptography in an IoT platform, there are a few challenges. One of the challenges is communication 

bandwidth, as most embedded processors are memory-constrained, therefore only suited for minor 
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security parameters, such as IoT applications with limited transmission bandwidth (through Wi-Fi). 

Security strength often balances performance and security, as any brute-force cryptanalytic efforts 

require more computational resources, increasingly for the required search on a block cipher such as 

AES-128 and other similar ciphers. However, the trade-off between performance and the required 

security is generally less desirable due to the associated overhead. This paper gives an excellent 

overview of what IoT devices are lacking. However, it does open a Pandora's box to a more 

significant impact on quantum computing and its ability to crack modern security systems with ease. 

One of the challenging issues in IoT devices is the tampering of firmware, as it is challenging to 

detect and recover from the tampered firmware. The paper “ChainVeri: blockchain-based firmware 

verification system for IoT environment”[42] proposes a new blockchain-based firmware verification 

system that used a shared palette (ledger) to check the devices to see any firmware tampering have 

been made. The palette comprises the block header, which encompasses the block hash, block size, 

block version, previous block hash, time, difficulty, and nonce. The palette also has another module 

called the verification information, verifying the device model, firmware version, verifier, and 

identification. Having these functions in the palette allows the blockchain to know the block’s 

version when the structure of the palette changes. It can also verify the device through a universally 

unique identifier and check and verify its firmware.  

Due to IoT devices and storage’s limited computational power, traditional off-the-shelf solutions are 

resource contained on these devices and therefore not recommended for security implementation. 

The paper “Pseudo-Random Number Generator and Hash Function for Embedded 

Microprocessors”[43] puts forth a solution to overcome this problem by implementing lightweight 

techniques for efficient Pseudo-Random Number Generator and Hash function to reduce memory 

consumption and accelerate performance. The reason behind using a pseudo-random number 

generator is to build and generate harder to break keys and other secret parameters on embedded 

processors. This paper does propose a relatively efficient way to harden existing security methods 

such as AES by implementing a pseudo-random number generator; therefore, not too much change 

needs to occur on the broader system for integration. 

“Lightweight Cryptography Algorithms for resource-constrained IoT devices: A Review, Comparison 

and Research Opportunities”[44] is an excellent paper that provides a holistic view and compares 

various lightweight cryptography algorithms that are available in the market. The critical common 

challenges with conventional IoT based cryptography are limited memory (RAM, ROM, and 

registers), limited computational power, the small surface area of the device, lower battery power 

(no battery power with RFID tags), and real-time operations. The way this paper compares the 
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different cryptography algorithms is by three characteristics: physical, which is the physical area, 

memory and battery power. Performance, which determines the computing power (latency and 

throughput); lastly, the security characteristic measures the minimum security strength in bits, 

attack models, and side-channel and fault-injection attacks. With these various parameters, the 

thesis can benefit by paying closer attention to what is valued in this paper's comparisons of 

different lightweight cryptography algorithms.  

There is a comprehensive and detailed thought for what type of IoT devices should be implemented 

in an IoT platform in any IoT system development. Therefore, a study compares and “Reviews Low-

End, Middle-End, High-End IoT devices”[45]. The way the IoT devices are classified are as follows: 

Low-end devices (such as at ATTINY85) are classified as having less than 50kB of RAM, less than 

250kB of Flash, devices that do not support an RTOS to devices with RTOS, communication protocols 

range from gateway communication, lightweight protocols such as Constrained Application Protocol 

(CoAP), and communication protocols such as HTTP. Lastly, security vulnerabilities whereby data is 

compromised, causing a medium to a high threat. Middle-End devices (like the ESP8266 and ESP32) 

provide more outstanding features and processing capabilities such as more RAM, Flash, higher clock 

speeds, and various communication protocols like Wi-Fi, Bluetooth and Bluetooth Low Energy (BLE). 

High-end devices (Raspberry Pi, PandaBoard, HummingBoard, and more) typically are single-board 

computers with powerful processing units and plenty of RAM to provide a graphical user interface or 

even the ability to run custom operating systems like Windows 10 IoT, Ubuntu, Linux, and Raspberry 

OS. The main reason why this study is essential for this IoT development is that it helps developers 

to decide which board to use for a particular functionality. Such as if there is a requirement to gather 

air pollution data in a given environment, there isn’t a need to use a high-end device as they are 

more expensive for scaling up, instead of using a middle-end device would prove fruitful as they 

have enough processing power and a communication protocol to gather the data and send it to a 

server.  
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3.0 Chapter Three: Background 
Chapter three covers the history and theory of operations on the various topics prevalent in this 

research, such as IoT boards, Cloud computing, Cryptography, immunology and blockchain. 

3.1 Current IoT boards  
There are thousands of IoT boards in the market that use various microprocessors and expansion 

modules to enable connectivity. However, when looking for the correct IoT board for a project, the 

consumer must first understand the project requirements and then find an appropriate board to 

continue development for either personal use or a client. Typically when researching the appropriate 

board for an IoT based project, there are a couple of things to keep in mind. The main hardware 

selection criteria are summarised in Table 3 for different features and why they are essential when 

designing an IoT product. 

Table 3: Key features of IoT devices that contribute to the design of an IoT device 

Feature Reasoning 

Clock Speed The clock speed is how fast the data is transferred between the microprocessor 
and between the microprocessor and memory, which must be 
synchronised.[46] 
The importance is that the faster the clock speed, the higher the power 
consumption; therefore, for mobile IoT devices, it is critical to lower and slow 
down the clock speed to improve the battery lifetime.  
A similar approach is also achieved by using deep sleep/sleep modes. 

Power 
Consumption 

Most IoT devices are connected directly to a constant power source. However, 
it is increasingly common to find more IoT devices that are mobile and battery-
powered.  
There are many aspects that contribute to power consumption, from clock 
speed, the microprocessor, type of connectivity, sleep modes, effective 
programming (e.g. how many cycles it takes to do specific functions), and the 
number of connected sensors. 

Connectivity  How does the IoT board transfer data between all points of the ecosystem?  
Does it use short-range communication such as Bluetooth Classic, Bluetooth 
Low Energy (BLE), or Radio Frequency Identification (RFID)?  
Mid-range communication traditionally falls under Wi-Fi, but Zigbee, MQTT and 
other mesh protocols for home automation are also common. 
For long-range communication, it is typical to use Low Power Wide Area 
Networks (LPWANs) like NB-IoT, LTE-M, LoRa, Sigfox, and cellular connections. 

Communication What communication protocols (I/O interfacing) does the microprocessor use? 
UART, USART, USB, I2C, SPI, CAN, and so on are crucial as some sensors can 
only transfer data using specific protocols. 

 

The common IoT manufacturers are usually well-established manufacturers who typically sell the 

same microcontrollers to different board designers who make specific selling points. The common 

manufacturers for IoT microcontrollers are ARM with their Cortex series[47], [48], [49], Atmel with 
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their AVR processors[50], Espressif is leading the charge for the all in one IoT chip[51], Nordic 

Semiconductors [52], and Broadcom[53]. 

3.2 History of Cloud Technologies 
In a pithy manner, cloud computing can be described as “a style of computing in which scalable and 

elastic IT-enabled capabilities are delivered as a service using Internet technologies.”[54]. However, 

a more concise definition of cloud computing from Thomas Erl is “Cloud computing is a specialised 

form of distributed computing that introduces utilisation models for remotely provisioning scalable 

and measured resources.”[55]. Cloud computing is not a new technology, as the idea was primarily 

developed to be a military mainframe in the 1950s to connect computer terminals across an internal 

matrix and have a decentralised storage technology. The term cloud computing was coined by the 

Compaq company in an internal document in 1996, but was popularised by Amazon.com after it 

released its Elastic Compute Cloud in 2006. The evolution of cloud computing is depicted in Figures 

3.1 and 3.2. 

 

Figure 3.1: Early Timeline of Cloud Computing - Taken from BCS (https://www.bcs.org/content-hub/history-of-the-
cloud/)[56] 

 

Figure 3.2: Current Timeline of Cloud Computing - Taken from BCS (https://www.bcs.org/content-hub/history-of-the-
cloud/)[56] 

The National Institute of Standards and Technology (NIST) made three models for cloud-computing 

providers: Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service 

(SaaS).[57]  

https://www.bcs.org/content-hub/history-of-the-cloud/
https://www.bcs.org/content-hub/history-of-the-cloud/
https://www.bcs.org/content-hub/history-of-the-cloud/
https://www.bcs.org/content-hub/history-of-the-cloud/
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IaaS, or Infrastructure as a Service, is the lowest level in the network infrastructure, encompassing 

physical computing resources, scaling, backups, security, memory, partitioning, and more. At the 

IaaS level, a hypervisor will run all the virtual machines as guests within a cloud operating system. 

Therefore, it can support large numbers of virtual machines and allows the users to scale up and 

down according to their usage and demand. The NIST definition for IaaS is for the “the consumer is 

to provision processing,  storage, networks, and other fundamental computing resources where the 

consumer [can] deploy and run arbitrary software, which can include operating systems and 

applications.”[57] However, the users are not in control of the underlying cloud infrastructure, and 

they only control the operating system, storage, deployment applications, and have limited control 

over networking components.  

PaaS offer the consumers a development environment to the application developers to deploy unto 

the cloud infrastructure, either consumer-created or acquired applications created using 

programming languages, libraries, services, and tools supported by the cloud provider. 

Cloud providers manage the infrastructure and platform that runs the application/ software for 

SaaS, allowing the consumers to gain access to the application software and databases. The NIST 

definition is “The capability provided to the consumer is to use the provider’s applications running 

on a cloud infrastructure”[57] that can be accessed through various client devices, either through a 

web browser, programming interface, or a thin client interface.  

Cloud infrastructure is the collection of hardware and software which enables the five essential 

characteristics of cloud computing, shown in Table 4. The cloud infrastructure contains both the 

physical and abstract layers (in that order, as the abstraction layer sits on top of the physical layer). 

The physical layer consists of the hardware resources essential for the cloud service, such as the 

server, network components and storage. The abstraction layer consists of the software deployed 

across the physical layer, which gives the cloud its characteristics. 
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Table 4: Essential Characteristics of Cloud Computing[57] 

Essential Characteristics of Cloud Computing 

Characteristics Definition 

On-demand self-service A consumer can unilaterally provision 
computing capabilities, such as server time and 
network storage, as needed automatically 
without requiring human interaction with each 
service provider. 

Broad network access Capabilities are available over the network and 
accessed through standard mechanisms that 
promote use by heterogeneous thin or thick 
client platforms (e.g., mobile phones, tablets, 
laptops, and workstations). 

Resource pooling The provider’s computing resources are pooled 
to serve multiple consumers using a multi-
tenant model, with different physical and 
virtual resources dynamically assigned and 
reassigned according to consumer demand. 
There is a sense of location independence in 
that the customer generally has no control or 
knowledge over the exact location of the 
provided resources, but may be able to specify 
location at a higher level of abstraction (e.g., 
country, state, or datacenter). Examples of 
resources include storage, processing, memory, 
and network bandwidth. 

Rapid elasticity Capabilities can be elastically provisioned and 
released, in some cases automatically, to scale 
rapidly outward and inward commensurate 
with demand. To the consumer, the capabilities 
available for provisioning often appear 
unlimited and can be appropriated in any 
quantity at any time. 

Measured service Cloud systems automatically control and 
optimise resource use by leveraging a metering 
capability (usually pay-per-use) at some level of 
abstraction appropriate to the type of service 
(e.g., storage, processing, bandwidth, and 
active user accounts). Resource usage can be 
monitored, controlled, and reported, providing 
transparency for both the provider and 
consumer of the utilised service 

 

 

 

 



 

56 
 

3.3 Cryptography 
Cryptography, fundamentally, is the science of encoding and decoding information to maintain 

confidentiality, integrity, and authenticity in communication systems [58]. Historically, cryptography 

dates back to ancient times, with primitive encryption techniques, such as the Caesar cipher, used 

predominantly in secure military communications [59]. Modern cryptographic methods are broadly 

categorised as symmetric-key cryptography, asymmetric-key cryptography, and cryptographic hash 

functions [60]. In symmetric cryptography, a single private key is shared between the sender and 

receiver to encrypt and decrypt data, offering computational simplicity and speed. However, the 

challenge with symmetric encryption lies in secure key distribution and management [61]. 

Asymmetric cryptography, conversely, employs a pair of keys (public and private), eliminating the 

key distribution dilemma by openly distributing the public key, yet requiring significantly greater 

computational resources due to its algorithmic complexity [60]. 

In the context of the Internet of Things (IoT), conventional cryptographic algorithms, designed 

primarily for traditional computing environments, often become computationally prohibitive due to 

hardware limitations and stringent power constraints [62]. Consequently, lightweight cryptography 

has emerged as a pivotal domain specifically tailored for resource-constrained devices prevalent 

within IoT ecosystems. Lightweight cryptographic algorithms are optimised to operate efficiently on 

limited hardware, low memory footprints, and minimal processing power while providing a 

satisfactory security threshold suitable for most IoT applications [63]. Notable lightweight encryption 

algorithms include SPECK and SIMON, both block cipher algorithms developed by the United States 

National Security Agency (NSA) to ensure robust security while reducing computational overhead on 

constrained devices [64]. Such lightweight algorithms effectively balance between cryptographic 

strength and resource efficiency, enabling integration into microcontroller-based IoT devices such as 

ESP32 and ATMEGA328P, as demonstrated in this thesis. 

Adaptive cryptography further extends the concept of lightweight cryptography by dynamically 

adjusting cryptographic strategies in response to evolving environmental conditions, threat 

landscapes, and resource availability [65]. This dynamic adaptability is critical for IoT devices, given 

their exposure to varying operational contexts and constrained battery resources. Adaptive 

cryptographic methods assess device-specific parameters such as battery voltage, processor cycles, 

and available memory to select the optimal encryption method that ensures security without 

exceeding energy budgets [66]. This methodology parallels biological systems, notably the adaptive 

immune system, which dynamically adjusts defensive strategies in response to varying pathogen 

threats [67]. 
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In the presented Bio-Inspired Lightweight Polymorphic Security System for IoT devices, adaptive 

cryptography is embedded within the Adaptive Amoeba Complexity subsystem, where encryption 

strength dynamically varies depending upon real-time device battery levels and processor 

constraints. When the battery level is high, computationally robust block cipher algorithms, such as 

SPECK and SIMON, can be implemented to maximise security. Conversely, as battery power 

decreases, computationally simpler encryption methods, such as XOR, Caesar cipher, or ROT13, are 

selected to conserve energy resources while still maintaining baseline encryption standards. Thus, 

the system ensures an optimal trade-off between security strength and power consumption, 

underpinning both operational efficiency and security resilience within resource-limited IoT 

environments. 

3.4 Immunology 
Immunology is the branch of biomedical science concerned with the study of the immune system, its 

physiological functioning in health, and its malfunctions in disease states. At its core, the immune 

system is a highly dynamic, adaptive, and decentralised network that protects the organism against 

pathogenic threats by distinguishing between self and non-self entities [67]. This selective and rapid-

response capability forms the fundamental biological inspiration for the design of the Bio-Inspired 

Lightweight Polymorphic Security System for IoT devices presented in this thesis. 

The immune system is traditionally divided into two major branches: the innate immune system and 

the adaptive immune system [68]. The innate immune system provides the first line of defence, 

characterised by non-specific, immediate responses against invading organisms. Mechanisms such as 

macrophage phagocytosis, neutrophil activation, and natural killer (NK) cell-mediated cytotoxicity 

represent innate immunity’s swift but generalised approach [69]. By contrast, the adaptive immune 

system demonstrates specificity and memory, capable of tailoring immune responses to particular 

antigens via the generation of antigen-specific B and T lymphocytes [70]. A hallmark of adaptive 

immunity is immunological memory, whereby previous encounters with pathogens are 

"remembered," allowing for faster and stronger responses upon subsequent exposures. 

Drawing inspiration from these biological principles, the proposed polymorphic IoT security 

framework emulates key immune system functionalities. Auto-detection of clients mirrors innate 

immune surveillance, wherein every incoming client connection is rapidly assessed against a 

predefined list of approved clients (analogous to the immune system's recognition of self-antigens). 

Clients that fail initial authentication undergo a secondary scrutiny process analogous to antigen 

presentation and adaptive immune activation. If identified as foreign or untrustworthy, the system 

initiates an auto-ejection response akin to the cytotoxic response mounted against pathogens. 
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Furthermore, the shared ledger mechanism within the security system is comparable to 

immunological memory, maintaining a dynamic record of approved credentials to enable swift 

reacquisition of trusted clients and facilitate prompt defence against desynchronised or rogue 

agents. 

At a molecular level, biological immune systems employ receptor diversity and mutational 

adaptability to counter evolving pathogenic threats [71]. Similarly, the polymorphic security system 

dynamically alters encryption methods, session identifiers, and access credentials upon detecting 

anomalous behaviour. This process ensures that even if an attacker compromises one instance of 

the security environment, future iterations become increasingly difficult to predict or penetrate, 

reflecting the adaptive immune system's principle of clonal expansion and somatic hypermutation 

[72]. 

In mathematical terms, the diversity generated by the immune system can be conceptualised by 

calculating the possible combinations of antigen receptor genes through combinatorial joining and 

junctional diversity, estimated to be in the order of 10121012 (1012) unique receptors [73]. 

Analogously, in the proposed system, the dynamic rekeying process ensures a large cryptographic 

search space, increasing exponentially with each adaptive response cycle and significantly enhancing 

system resilience. The polymorphic transformation of encryption methodologies can be expressed 

mathematically as: 

Equation 3.1: General Formula for Polymorphic Transformation of Encryption Methodologies 

𝑆𝑛𝑒𝑤 = 𝑓(𝑆𝑜𝑙𝑑, 𝐸𝑘) 

Where 𝑆𝑛𝑒𝑤 represents the updated session environment, 𝑆𝑜𝑙𝑑 is the existing session structure, and 

𝐸𝑘 is a dynamically selected encryption transformation function from a set of polymorphic 

candidates. 

The adaptive mechanisms of the immune system serve as an elegant and efficient model for 

cybersecurity in highly dynamic and resource-constrained environments such as the IoT. By applying 

immunological principles of detection, ejection, and memory to the engineering of IoT security, this 

research bridges interdisciplinary concepts and presents a novel framework for achieving 

autonomous, energy-efficient, and resilient security architectures. 

3.5 Blockchain 
Blockchain technology is a decentralised and distributed ledger system designed to record 

transactions securely, transparently, and immutably across a network of participants [74]. Initially 

conceptualised as the foundational architecture behind Bitcoin by Nakamoto [75], Blockchain has 

since evolved into a powerful general-purpose framework applicable to a wide range of domains, 
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including finance, healthcare, supply chain management, and, increasingly, cybersecurity for 

Internet of Things (IoT) environments. 

At its core, blockchain operates by aggregating transactions into blocks, which are then 

cryptographically linked to form a continuous chain. Each block contains a cryptographic hash of the 

previous block, a timestamp, and transaction data. The chaining mechanism ensures the integrity 

and immutability of the historical record: altering any single block retroactively would require the 

alteration of all subsequent blocks, an endeavour computationally infeasible for large networks [76]. 

The consensus protocols employed within blockchain systems, such as Proof of Work (PoW) or Proof 

of Stake (PoS), serve as trust mechanisms among otherwise untrusted entities [77]. These consensus 

algorithms guarantee that all participants reach agreement on the state of the ledger without the 

need for a centralised authority, thus enabling secure decentralisation. Mathematically, blockchain’s 

resilience can be represented through Byzantine Fault Tolerance (BFT), where a system of 3000 

nodes remains reliable if fewer than 1000 (up to one-third) of the nodes are compromised [78]. 

In the context of this thesis, the principles of blockchain have inspired the design of the Shared 

Ledger Process (SLP) within the Bio-Inspired Lightweight Polymorphic Security System for IoT 

devices. The ledger maintains synchronised, tamper-evident records of authorised clients, their 

credentials, encryption methods, and session histories. Much like blockchain nodes maintain a copy 

of the distributed ledger to ensure consensus and detect anomalies, each client device synchronises 

its local ledger upon connection or after a detected security event, ensuring consistency and 

integrity across the network. 

The dynamic update and propagation of security credentials through the shared ledger can be 

formally modelled as: 

Equation 3.2: General Formula for Dynamic Update and Propagation of Security Credentials through Shared Ledgers 

𝐿𝑛+1 = 𝐻(𝐿𝑛 ∥ 𝐶𝑛) 

where 𝐿𝑛+1 represents the new ledger state, 𝐿𝑛 is the previous ledger entry, 𝐶𝑛 is the new client 

credential data, and 𝐻 denotes a cryptographic hash function ensuring data integrity. This approach 

ensures that any tampering or desynchronisation becomes immediately apparent, akin to the 

cryptographic immutability principle in blockchain systems. 

Moreover, just as blockchain systems possess the ability to fork and re-synchronise in the event of 

network partitions or attacks, the proposed framework includes a desynchronisation detection and 

recovery mechanism via the Adaptive Honeypot Response. In cases where legitimate clients lose 

synchronisation (e.g., through power failure or malicious interference), the system transitions into a 
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controlled honeypot environment, allowing only verified UUIDs to retrieve updated ledger data 

while isolating potential threats. 

The lightweight nature of the proposed shared ledger, tailored for resource-constrained IoT devices, 

represents a crucial departure from traditional blockchains, which typically involve high 

computational and storage overhead. By optimising the ledger entries to essential security 

information and using efficient hash-based authentication rather than full consensus protocols, the 

system balances security, performance, and energy efficiency. 

The conceptual parallelism between blockchain’s decentralised integrity model and the security 

framework presented herein thus provides a robust, scalable, and resilient foundation for 

autonomous, self-healing IoT security systems in heterogeneous environments. 

3.6 Adaptive Energy Management: Inspiration from Neural Dynamics 
As IoT devices become increasingly ubiquitous in critical applications, from healthcare monitoring to 

industrial control systems, the demand for optimised energy management alongside robust security 

has intensified. Traditional battery management systems focus predominantly on voltage monitoring 

and simple low-power state transitions [79]. However, these approaches often lack integration with 

the security frameworks of devices, leading to inefficiencies where cryptographic operations drain 

battery reserves unpredictably [80].  

The Adaptive Amoeba Battery Curve Mapping Management System (AABCMS) developed in this 

research addresses this limitation by fusing battery health prediction, dynamic energy mapping, and 

adaptive sleep modes with real-time security communication protocols. Through techniques such as 

quadratic curve fitting to battery voltage profiles and dynamic adjustment of encryption complexity 

based on available energy reserves, AABCMS offers a biologically inspired, fully integrated model. 

This ensures not only the prolongation of device lifespan but also sustained operational integrity 

under stringent energy constraints, a necessity for the next generation of resilient IoT deployments. 

The energy management techniques employed by the AABCMS mirror biological neural systems, 

where operational modes adaptively shift between high-energy consumption (e.g., Beta wave 

activity during cognitive stress) and low-energy conservation (e.g., Delta wave activity during deep 

sleep), aligning technological adaptation with proven biological efficiency models [81]. 

The development of the Adaptive Amoeba Battery Curve Mapping Management System (AABCMS) is 

informed not only by immunological models but also by the adaptive energy dynamics observed in 

biological neural systems. During periods of intense cognitive activity, humans exhibit Beta wave 
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patterns, indicative of increased energy utilisation, while during states of rest or sleep, Delta wave 

patterns emerge, associated with reduced energy consumption[33], [34]. 

In parallel, the AABCMS enables IoT devices to dynamically adapt their operational modes according 

to available energy resources, actively shifting between processing-intensive and energy-conserving 

states. This biologically inspired approach ensures that devices operate maximally efficiently, 

analogous to biological systems' prioritising energy expenditure according to functional demand. 

Consequently, the AABCMS extends the bio-inspired framework beyond immunology into broader 

biological adaptive strategies, reinforcing the holistic bio-mimetic underpinnings of the system. 

Please see the table below for the conceptual diagram showing parallels between brain wave states 

and the Adaptive Amoeba Battery Curve Mapping Management System (AABCMS). Both systems 

dynamically adapt energy expenditure according to operational demands, ensuring survival and 

functional longevity. In the neural system, different brainwave frequencies correspond to cognitive 

loads, while in the AABCMS, varying operational modes are triggered based on real-time battery 

health estimations. 

Table 5: Conceptual diagram showing parallels between brain wave states and the Adaptive Amoeba Battery Curve 
Mapping Management System (AABCMS). 

Comparison between Brain Energy Adaptation and IoT Adaptive Amoeba Battery Curve 
Management 

Biological Neural System IoT Adaptive System (AABCMS) 

High Cognitive Load (Beta Waves, 13–
30 Hz) 

Active Processing Mode (ESP32 full power, secure 
communication) 

Moderate Activity (Alpha Waves, 8–12 
Hz) 

Light Sleep Mode (moderate power conservation, faster 
wake-ups) 

Low Activity / Drowsiness (Theta 
Waves, 4–7 Hz) 

Deep Sleep Mode (aggressive power saving, longer wake 
intervals) 

Deep Sleep (Delta Waves, 0.5–4 Hz) ULP (Ultra-Low Power) Mode (battery preservation, 
minimal operation) 

 

3.7 Bio-Inspired Communication Networks: Mycelium Systems 
In addition to immune system paradigms and blockchain architectures, biological networks such as 

mycelium offer compelling models for adaptive, decentralised communication. Mycelium networks, 

formed by underground fungal hyphae, exhibit sophisticated resource distribution, threat detection, 

and environmental responsiveness without reliance on a centralised command structure. This 

decentralised sensing and signalling is facilitated through electrochemical gradients and molecular 

exchanges that parallel, in principle, how distributed IoT devices might coordinate authentication, 

threat detection, and energy conservation [82]. 
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In recent studies, mycelium networks have been shown to exhibit patterns of electrical spiking 

behaviour reminiscent of neuronal or computational signalling [83]. Such properties suggest that 

future iterations of bio-inspired IoT frameworks could draw upon mycelial strategies for optimising 

communication efficiency under conditions of environmental uncertainty or infrastructural 

instability. The self-healing and redundancy features inherent in fungal networks could provide 

useful heuristics for designing resilient IoT systems operating in hostile or resource-constrained 

settings. 

Thus, just as the Adaptive Amoeba Battery Curve Mapping Management System dynamically 

reallocates energy based on available resources, a mycelium-inspired model might further enhance 

system resilience through localised decision-making, distributed threat signalling, and adaptive load 

balancing. Table 6 compares key features across biological analogies, underlining the broader 

potential of cross-disciplinary biomimicry in advancing the design of future intelligent systems. 

Table 6: Comparative Features of Bio-Inspired Communication Systems 

Comparison between Immune Systems, Blockchain, and Mycelium Networks for Bio-Inspired 
Communication 

Feature Immune System Blockchain Mycelium Network 

Architecture Distributed, adaptive Distributed, consensus-
driven 

Distributed, 
decentralised 

Communication 
Method 

Cytokine signalling, 
antigen presentation 

Cryptographic validation, 
block propagation 

Electrochemical 
signalling, nutrient 
transfer 

Threat Detection Foreign pathogen 
recognition 

Transaction tampering 
detection 

Environmental hazard 
sensing 

Response to Threat Rapid, targeted 
immune response 

Forking or invalidating 
chains 

Redirecting resources, 
avoiding threats 

Memory 
Functionality 

Immunological 
memory (e.g., 
memory T-cells) 

Immutable ledger of 
historical transactions 

Long-term memory via 
persistent hyphal 
structures 

Fault Tolerance High, redundant 
detection pathways 

High, redundancy 
through multiple nodes 

Extremely high, 
regenerative growth 
patterns 

Energy Efficiency Context-dependent 
(can be costly) 

Moderate (depends on 
consensus mechanism) 

Highly efficient resource 
distribution 

Self-Healing Replacement of 
damaged cells 

Chain recovery via 
honest nodes 

Regrowth of broken 
hyphae, rerouting 
signals 

 

 

 



 

63 
 

4.0 Chapter Four: Framework 

4.1 Introduction 
Chapter four proposes how the lightweight polymorphic security system would work and details 

each subroutine’s various stages and methods, such as intrusion detection to detect any unapproved 

clients, a shared ledger for all approved clients, and the ability to change encryption keys and 

passwords. Additionally, this framework also introduces a novel adaptive amoeba battery curve 

mapping management system that any mobile IoT system can use. 

A quick overview of the security system is as follows: the security system has a server that an 

approved client can connect to using the SSID of the server and a password. Once connected, the 

server will give the approved client a ledger shared between all approved clients. The 

communication between the server and the client is encrypted using a shared encryption key. This 

ledger shared a two-dimensional array containing new passwords to allow the client to connect to 

the server and new encryption keys to secure communication between client and server. If the 

server detects an unauthorised client trying to connect to the system, the server will send out a 

trigger to all approved clients. The trigger contains a number that corresponds to an element in the 

two-dimensional array. Therefore, all of the clients and the server change to the new password and 

a new encryption key, resulting in the unapproved client not knowing the new password or 

encryption keys. 

Looking back at the previous chapter, the human immune system can detect foreign agents by using 

a known threat database, and if those known threats are detected, an immune response is activated. 

In cybersecurity, this is called a blocklist. In an IoT platform, the manufacturer or the person who is 

the system administrator would know the number of IoT clients that would be connected to the 

server. Therefore, instead of using a blocklist to reject any known incoming threats, using an allow 

list only to allow communication between the known IoT clients is a more straightforward approach. 

Hence, having an allow list approach covers how to detect any unapproved clients. However, 

suppose an unapproved client manages to get into the system by knowing the network’s password. 

In that case, the trigger activates, allowing all approved clients to change to the new password and 

encryption key. This detection of unapproved clients (pathogens) is the immune response for this 

polymorphic security system.  

The nature of the shared ledger comes from blockchain technology, which, in summary, is a growing 

list of records that is resistant to modification of its data and is distributed via a network through 

internal node communication. The ledger for this security system follows the same characteristics as 
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the list of records, comprised of passwords and new encryption keys shared between all clients and 

the server.  

Once all clients have the ledger, the clients will only read the ledger when the trigger is activated. 

The trigger is only activated when the server detects an unauthorised client is trying to connect to 

the network, meaning that the unauthorised client may have the initial password for the network. 

Since this unapproved client is not on the allow list, then the trigger is activated. The trigger is 

composed of an integer that relays the next element in the ledger array with new passwords and 

encryption keys. Henceforth, all clients receive the trigger and change to the new password and 

encryption key accordingly.  

In this chapter, the framework visualisation for the polymorphic security system to better 

understand each function’s input and output is explored and documented through various stages. 

These stages are as follows:  

• Server and client model with a peer-to-peer node communication 

• The approved client list for the allowed list 

• Intrusion Detection 

• Shared ledger 

• Encrypted communication between client and server 

• Synchronised reform from the ledger 

Please see the following page for the Framework Overview. Figure 4.1 below will be referenced 

throughout the rest of the chapter to explore the various stages stated above. Some functions are 

highlighted in blue in the figure, denoting that they are a part of the adaptive amoeba complexity. 

The blue functions indicate that these systems can increase or decrease complexity depending on 

the hardware used. 
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Figure 4.1: Framework for the Bio-inspired Lightweight polymorphic security system for IoT devices 
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4.2 Approved Clients List Process (ACLP) 
The beginning of the client journey starts with a new connection. The approved client list is the first 

line of defence against any unapproved clients. Additionally, the approved client list also acts as a 

RADIUS Server. The new client connection flows into the incoming connection function, where it is 

given a session ID that is non-repeating and non-sequential. Once given the session ID, the process 

then checks if the client has the correct credentials to connect to the server. The framework checks if 

the incoming client is on the block list and raises a flag if true. The purpose of the block list is to protect 

against denial-of-service attacks. If the credentials are incorrect, then there is no connection 

established between the incoming client and the server. If the credentials are valid, the server will 

check if the flag has been raised to see if there was a false positive or a false negative (the raised flag 

might occur due to failed resyncing). Then, it moves on to request the client’s UUID to be compared 

using an iterator (a search function) with the approved UUID addresses. The iterator function will 

return and output either a “true” or “false” whether the UUID address is on the list or not. Referring 

back to the properties of adaptive immune responses, the ACLP deeply reflects features such as 

specificity, diversity, memory and specialisation. 

4.3 Client Connection Logic (CCL) 
The return output from the approved client list becomes an input variable to the client connection 

logic, as this function will react accordingly depending on the variable. If the variable is “true” (the 

connected client is on the UUID  address list), this is considered a successful connection, and the server 

gives a copy of the ledger with the element location for the current password and encryption key. At 

this stage, the client and the server have successfully connected and can communicate with other 

clients and the server when necessary. Contrariwise, if the variable returns a “false”, then the 

implication is that the current server credentials are compromised, and this unapproved client knows 

the password to connect. As soon as the “false” variable returns, the credentials used are added to 

the block list, and a trigger (composed from a random number generator) is sent to all approved 

connected clients. When a client receives the trigger value immediately, it will locate the ledger’s 

element corresponding to the trigger value. The primary purpose of CCL is to reflect features of 

adaptive immunity, such as nonreactivity to self and contraction and homeostasis. 

4.4 Ledger Process (LP) 
The ledger, only shared between approved clients, contains a database comprised of a two-

dimensional list, the password to connect to the server (Wi-Fi credentials) and the encryption key 

required to decipher the communication stream between client to client (node and peer-to-peer 

communication) and from client to server. The ledger’s returned element allows the approved clients 

to reconnect with the new credentials to the server. As a result, all the unapproved clients get 

automatically rejected from the system as they do not have the newly updated credentials. When the 
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clients attempt reconnection after the trigger is activated, a three-way handshake is performed, the 

server sends a synchronisation, the client syncs to the server synchronisation and acknowledges it, 

then the server acknowledges the client’s acknowledgement. After a three-way handshake is 

successful, the client gets a copy of the updated ledger with the credentials’ new element location. 

However, suppose the three-way handshake is unsuccessful (the server did not acknowledge the 

client). In that case, the client is reverted to an incoming connection to double-check if it is in the 

approved client list and if it is, it will get a copy of the ledger, and if it is not, it will be rejected. LP 

reflects adaptive immunity functions such as contraction and homeostasis and clonal expansion. 

The server and client’s communication stream is encrypted using a block cipher (or any encryption 

communication) to add additional security against data theft and intrusion, such as a man-in-the-

middle attack or listening or probing intrusions. 

4.5 The Adaptive Amoeba Complexity (AAC) 
The Adaptive Amoeba Complexity (AAC) is a dynamic memory configuration system that changes the 

complexity of various elements of the framework to best suit the processing power of the hardware 

on which it is running. There are three main adaptive complexities within this framework; please see 

Figure 17 above, highlighted in blue. After a successful connection to the server is established, a 

copy of the ledger is given to the client, and the server will run a simple diagnostic check on the 

connected device to procure three specific information:  

1. Processor Type and Bit Architecture, as this information can often be obtained from 

predefined macros or registers specific to each microcontroller family. 

2. Memory Usage, which can be determined by reading specific registers or using system 

functions provided by the microcontroller's SDK. 

3. Processing Power, which is more complex, but basic metrics like CPU usage can be 

estimated. 

The result of these three pieces of information will directly reflect which encrypted communication 

protocol will be used, for example, one of the microprocessors that is connected might be an 8-bit 

processor that uses 35% of the memory (SRAM) and 40% of CPU, with this information it would be 

best to implement a lower process intensive encrypted communication stream to make sure the IoT 

device is not drawing too much current resulting in poorer battery life or a memory overflow error 

due to a large encryption key. 

There are three implementations of the AAC in this framework: the first is Encrypted 

Communication, which dynamically changes according to the diagnostic check; the second is the 

ACLP, which is updated whenever new devices are added, or the block list is updated; and lastly, 
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within the LP with the dynamic ledger for credentials and encryption keys. Depending on the 

network system topology, the AAC can be either set up universally between the server and client, or 

it can be individually set up between the broker and clients, as some brokers may have more 

connected clients or clients with more processing power than other brokers. 

4.6 Adaptive Amoeba Battery Curve Mapping Management System 
The primary purpose of the battery mapping system is to intelligently manage the power 

consumption of an IoT device by accurately predicting the battery's remaining capacity. This is 

achieved through continuous monitoring of the battery voltage, dynamic estimation of battery 

health, and adaptive adjustment of the device's operation modes to maximise battery life while 

maintaining functionality. By predicting battery percentage and adapting power usage based on real-

time data, the system ensures that the IoT device can operate efficiently over extended periods, 

even in power-constrained environments. 

In IoT systems (especially mobile), devices are often deployed in remote or difficult-to-access 

locations where frequent battery replacement or recharging is not feasible. In some cases, remote 

IoT devices are connected to solar panels or other forms of green energy to power the system, 

whereby power management and battery management are crucial to ensure maximum efficiency. 

These devices must operate efficiently for extended periods on limited power reserves.  

Therefore, this Adaptive Amoeba Battery Curve Mapping Management System ensures enhanced 

energy efficiency by accurately predicting battery levels and dynamically adjusting the device's sleep 

modes as the system conserves energy, allowing the device to operate for longer periods without 

intervention. The system adjusts sleep intervals based on both battery percentage and health. 

Healthier batteries allow for shorter sleep intervals, enabling more frequent updates, while 

degraded batteries are managed more conservatively, extending their operational life. This helps 

conserve energy and extend the battery life, which is critical for IoT devices operating in the field for 

long durations without maintenance. The system ensures operational reliability as the device can 

continue functioning in low-power modes even as the battery depletes, preventing unexpected 

shutdowns and maintaining service continuity. This is particularly important in applications such as 

environmental monitoring, where consistent data collection is crucial. Lastly, the system also 

provides insights into the battery’s discharge characteristics over time, enabling predictive and 

preventive maintenance. Operators can anticipate when a battery will need replacement or 

recharging, thus minimising downtime and ensuring continuous operation. 

The novelty of this battery mapping system lies in its adaptive and predictive capabilities through 

data-driven adaptation, dynamic sleep management, and a circular buffer for data retention. Unlike 
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traditional fixed mapping systems that use a static relationship between voltage and battery 

percentage, this system continuously collects data and refines its predictions over time. The system 

becomes more accurate and personalised to the specific battery's characteristics by storing and 

analysing past data. The system predicts battery life and uses that prediction to manage the device's 

operation modes dynamically. This is akin to a biological system where energy usage is optimised 

based on available resources, ensuring that critical functions are maintained even under constrained 

power conditions. The system employs a circular buffer to manage data storage in EEPROM, 

dynamically overwriting the oldest data points. This ensures that the most relevant data is retained 

while optimising memory usage and extending the lifespan of the EEPROM without the risk of 

memory overflow. This approach balances data retention with memory constraints, making it 

suitable for resource-limited IoT devices. 

Initially, the battery mapping system operates using a predefined battery curve that estimates the 

relationship between voltage and battery percentage. This curve is based on typical battery 

discharge characteristics and provides a reasonable starting point for managing power. As the 

system operates, it collects real-world data points (voltage and corresponding estimated 

percentages). It refines its predictions through non-linear interpolation to more accurately predict 

battery percentage based on voltage readings. This approach reflects the non-linear discharge 

characteristics of batteries, offering a more precise estimation compared to linear models. The 

system estimates the battery's overall health and uses this information to inform power 

management decisions. This feature allows the system to trigger maintenance alerts when the 

battery is nearing the end of its life, ensuring timely interventions. This approach mimics biological 

systems, where organisms continuously gather information from their environment and adjust their 

behaviour to optimise survival and resource use. 

The system begins by measuring the battery voltage through an ADC and applying an initial mapping 

function to estimate the battery percentage. This initial mapping acts as a baseline, similar to how an 

organism might assess its energy reserves at the start of a day. As the system collects more data 

over time, it shifts from relying on the initial mapping to using a more refined, non-linear 

interpolation model. This process mirrors how biological systems adapt and refine their energy 

management strategies based on experience and real-time conditions. The system dynamically 

adjusts its operation modes (e.g., light sleep, deep sleep, ultra-low power mode) based on the 

predicted battery percentage and health. This adaptive behaviour is analogous to how organisms 

modulate their activity levels in response to energy availability, conserving energy during times of 

scarcity while maintaining essential functions. 
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Figure 4.2: Block diagram for Adaptive Amoeba Battery Curve Mapping Management System 

The block diagram for the Adaptive Amoeba Battery Curve Mapping Management System is shown 

in Figure 4.2. The battery management system begins with the ADC Measurement block, which 

reads the current battery voltage through the Analogue-to-Digital Converter (ADC). The ADC 

converts the analogue battery voltage into a digital value that the microcontroller can process. This 

voltage is a critical input for the subsequent steps in the system. Once the battery voltage is 

measured, the system evaluates whether sufficient historical data is stored to predict the battery 
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percentage accurately. If enough data is available, the system stores the new measurement data. If 

not, the system moves to the Initial Mapping block. 

In the Initial Mapping block, the system relies on a predefined voltage-to-percentage mapping to 

estimate the battery percentage, especially when there is insufficient data for more accurate 

predictions. This initial mapping provides a starting point for the battery status estimation until more 

refined data can be gathered. After completing the initial mapping, the system stores the estimated 

data and proceeds to the Prediction block. 

The Data Storage block plays a crucial role in this system. The newly measured voltage and its 

corresponding battery percentage are stored in a circular buffer. This storage method ensures that 

the system retains the most recent data points without exceeding memory limits by replacing the 

oldest data when the buffer is full. With the data securely stored, the system moves to the 

Prediction block, which uses linear interpolation or other predictive methods to refine the battery 

percentage estimate based on the stored data. As the system gathers more data, this step becomes 

increasingly accurate. 

After the prediction is made, the system checks whether the predicted battery percentage is greater 

than or equal to 75%. If the battery percentage is 75% or higher, the system continues with regular 

real-time operation, avoiding any sleep mode to maintain full functionality. However, if the battery 

percentage is below 75%, the system proceeds to the Decision (Sleep Mode) block, determining the 

appropriate sleep mode to conserve energy. 

In the Decision (Sleep Mode) block, the system selects one of three sleep modes based on the 

predicted battery percentage: Light Sleep for battery levels between 50% and 75%, Deep Sleep for 

levels between 25% and 50%, and Ultra-Low Power Sleep (ULP) for levels below 25%. These sleep 

modes vary in the degree of power conservation and responsiveness, with ULP being the most 

energy-efficient but least responsive. After selecting the sleep mode, the system continues to the 

Collect Data block. 

During the Collect Data phase, the system continues to gather and store data on battery voltage and 

other parameters, even while in sleep mode. This ongoing data collection is essential for refining 

future predictions and ensuring that the system remains accurate over time. Once the data is 

collected, it is sent to a remote server in the Send Data and Diagnostics to Server block. This 

transmission allows for remote monitoring and analysis, ensuring the device’s performance and 

battery health can be tracked over time. 
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In cases where the system is in ULP mode, it may stop collecting and storing new data to conserve 

power, instead relying on the data already stored in EEPROM. Maintenance might be required If the 

system has no recharging capabilities and the battery reaches a critically low level. The system sends 

all stored data, and the server sends an acknowledgement request for maintenance. If no 

maintenance is performed and the battery continues to deplete, the system will enter the 

Hibernation block. This final step ensures that the device remains protected and conserves as much 

power as possible until the battery can be recharged or replaced.  

A key innovation of the Adaptive Amoeba Battery Curve Mapping Management System (AABCMS) 

lies in its dynamic selection of encryption methods based on real-time battery availability. This 

mechanism, termed the Adaptive Encryption Engine, enables the system to adaptively shift between 

lightweight and more complex cryptographic schemes depending on energy constraints. The 

decision process is inspired by the metabolic prioritisation observed in biological organisms, where 

the immune system modulates its intensity based on physiological reserves.  

When energy is scarce, only minimal response mechanisms are engaged; when energy is abundant, 

the full spectrum of immunological defence is deployed. In parallel, this system utilises the predicted 

battery percentage 𝐸𝑏 to map to a corresponding encryption method 𝑀 as follows: 

Equation 4.1: Mapping for Encryption and Battery Percentages 

𝑀 = 𝑓(𝐸𝑏) =

{
 
 

 
 

𝑋𝑂𝑅,              𝐸𝑏 ≥ 15
𝐶𝑎𝑒𝑠𝑎𝑟, 15 ≤ 𝐸𝑏 < 30
𝑅𝑂𝑇13, 30 ≤ 𝐸𝑏 < 50
𝑆𝑃𝐸𝐶𝐾, 50 ≤ 𝐸𝑏 < 75
𝑆𝐼𝑀𝑂𝑁, 𝐸𝑏 ≥ 75

 

This mapping is directly implemented within the system firmware (see Appendix 16), enabling real-

time responsiveness to energy states. Through this mechanism, the framework not only preserves 

battery life but also ensures an optimal balance between computational load and data security. 
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4.7 The Framework In Practice 
The Bio-Inspired Lightweight Polymorphic Security System for IoT Devices is designed to manage 

connections and secure communications in an IoT environment dynamically. It mirrors biological 

immune system functions such as specificity, memory, and adaptability. It ensures that only 

approved clients can communicate with the server while dynamically adjusting its behaviour based 

on the capabilities of the hardware in use. 

The system is divided into several key components: 

• Approved Clients List Process (ACLP): This is the first line of defence. It checks if a connecting 

client is approved by comparing its UUID against a list of approved UUIDs. If the client is not 

approved, the connection is denied, and the credentials are added to a block list if 

necessary. 

• Client Connection Logic (CCL): This logic handles the connection of approved clients. It 

ensures that only clients with the correct credentials and UUIDs can connect and receive the 

necessary ledger information for secure communication. 

• Ledger Process (LP): The ledger is a dynamically updated list shared among approved clients. 

It contains the credentials and encryption keys required for secure communication. The 

ledger is updated and shared only with approved clients. 

• Adaptive Amoeba Complexity (AAC): This component dynamically adjusts the encryption 

protocols and other system parameters based on the hardware capabilities of the connected 

devices, ensuring that the system remains efficient and secure regardless of the device's 

processing power. 

Depending on the use case scenario, an IoT network system comes in various shapes, sizes and 

power requirements. Typically, an IoT network will always have a client responsible for some form of 

environmental measurement or interaction. The client collects data and either temporarily stores it 

locally for edge processing or uploads it to a server for long-term storage. In most applications, the 

client collects sensor data and then directly sends it to the server for further processing for end-user 

applications. See Figure 4.3. 
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Figure 4.3: Generic IoT Client Responsibilities 

The server is responsible for long-term storing, processing data and maintaining client updates. In 

smaller topologies, the server receives the data from the client to process and display the 

information. Refer to Figure 4.4. In more extensive topologies and applications, it is common for the 

server also to have a broker (or router) that manages the clients. An example of this is when there 

are more clients than the server can handle directly, as it could unintentionally cause a Denial of 

Service due to the amount of data the server has to process. Therefore, having a broker alleviates 

the server's processing and distributes it. An alternative is to have a distributed system which has 

both responsibilities for the client and the server. 

 

Figure 4.4: Generic IoT Server Responsibilities 

The Bio-inspired Lightweight Polymorphic Security System Framework is best described as a multi-

layered cell wall that performs various checks before allowing a new connection to enter. To help 

visualise this process, the following figures describe the framework as a new client connection. 
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Figure 4.5: Visualisation of Incoming new connection 

In Figure 4.5, a new connection occurs, requesting the Universally Unique Identifier (UUID) and 

creating a non-repeating and non-sequential session ID within this process. In this figure, the cell 

wall contains the server, broker, clients, and the shared ledger, which contains the SSID and 

password credentials with the encryption key. Currently, the SSID and password are set to “test1” 

while the encryption key is set to “key1”. 

Implementing non-repeating and non-sequential session IDs significantly enhances the security and 

integrity of web applications. These session IDs are crucial in preventing session hijacking and 

session fixation attacks by making it difficult for attackers to guess or infer valid session IDs through 

brute force or other methods. Additionally, they obscure patterns that attackers could exploit, thus 

improving confidentiality. The uniqueness of non-repeating session IDs avoids collisions, ensuring 

each session is distinct and secure.  

This practice also aligns with regulatory and compliance standards such as OWASP and GDPR, 

reducing the risk of penalties and enhancing the organisation's security posture. Furthermore, non-

repeating session IDs offer protection against replay attacks by preventing the reuse of session IDs. 

To effectively implement these IDs, cryptographically secure random number generators are used 
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(see the implementation chapter), sufficient length and complexity are ensured, session IDs are 

securely stored and transmitted, and periodic rotation is considered.  

 

Figure 4.6: Visualisation of session block list check 

In Figure 4.6, the framework checks if the new connection’s session ID is on the block list; if not, it 

can continue to the next stage, and the flag remains false; if the session ID is on the block list, then 

the flag is set to true. During the testing stages (see the testing chapter), some connections were 

flagged up not because of bad actors but because of resyncing multiple times; due to this, there was 

extra implementation to check if the flag was raised and then to confirm a false positive or a false 

negative. 

 

 

Figure 4.7: Visualisation of the credentials check 

In Figure 4.7, the SSID and password credentials are checked. This stage is a precursor to see if there 

are any compromised credentials. If the new connection is successful, it will then move into the next 

stage; if the credentials are incorrect, then the system will disconnect from the new connection. 
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Figure 4.8: Visualisation of the flag checker 

Figure 4.8 examines whether the flag has been raised. If the credentials are validated, the server 

verifies the flag status to determine the occurrence of false positives or false negatives, which may 

arise due to failed synchronisation attempts. In the case of a false positive, the session block list is 

updated, allowing the new connection to retry the process. Conversely, if a false negative is detected 

and the new connection fails the credentials check, the connection is rejected. However, if a false 

negative is detected and the credentials check is passed, the approved UUID triggers the immune 

response. 

 

 

Figure 4.9: Visualisation of the Approved Client (UUID) List 

Figure 4.9 illustrates the process of verifying the UUID against the approved client list. The new 

connection must provide the UUID, which is then compared to the approved client list, yielding a 

boolean result. If the result is true, the client is permitted to pass through the cell wall and register 

as a new client. Conversely, if the result is false, the immune response is activated, indicating that 

the new connection has bypassed the block list and successfully provided valid credentials, 

suggesting that the credentials have been compromised. Upon raising the flag, the session ID and 
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the compromised credentials are updated in the block list and the ledger. Subsequently, a trigger is 

sent to the shared ledger, prompting all approved clients to adopt the new credentials and 

encryption key, necessitating their reconnection. During this process, the unauthorised new 

connection is rejected from the system and automatically added to the session block list. 

 

Figure 4.10: Visualisation of a successful integration of a new connection 

Figure 4.10 illustrates the successful integration of a new connection following approval from the 

authorised client list. Upon acceptance, depending on the network topology employed, the server or 

other clients will disseminate the shared ledger to the new client. It is important to note that the 

SSID, password, and encryption key remain unchanged, as no security breach or compromise has 

been detected or flagged. This process can be adapted to alter the SSID, password, and encryption 

keys either after each new connection or after a predetermined number of connections have been 

established with a broker (or server, depending on the topology). 

The Bio-Inspired Lightweight Polymorphic Security System for IoT devices dynamically manages 

connections and ensures secure network communication. The system begins with the Approved 

Clients List Process (ACLP), where incoming connections are checked against a list of approved 

UUIDs. If the client is approved, the connection is allowed, and the system proceeds to the Client 

Connection Logic (CCL). Here, the client is provided with the necessary credentials and encryption 
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keys stored in the ledger, allowing for secure communication. The ledger itself is managed by the 

Ledger Process (LP), which updates and distributes the ledger to all approved clients as needed. 

Finally, the Adaptive Amoeba Complexity (AAC) ensures that the system's complexity and encryption 

protocols are dynamically adjusted based on the hardware capabilities of the connected devices, 

ensuring optimal performance and security. 

This system reflects the adaptive nature of biological immune systems, with features such as 

specificity, memory, and adaptability. The system is designed to be resilient, secure, and efficient, 

making it well-suited for use in IoT environments where resource constraints and security are 

paramount. 
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5.0 Chapter Five: From Theory to Practice (Implementation) 

5.1 Introduction 
This chapter aims to explore the logical representations and workings from the previous framework 

chapter to develop mathematical formulas and the corresponding programming logic needed for 

implementation. Every implementation will be written in C due to its programming efficiency, and 

the hardware used is a custom development board made with an ESP32-S3 processor, which can be 

found in Appendix 2.  

The system comprises an IoT client-server architecture designed for secure, efficient, and adaptive 

communication between IoT devices. The server manages multiple client sessions, ensures secure 

communication through encryption, and adapts to varying battery levels of IoT devices. The key 

components of the system include secure session management, adaptive power management, and 

encrypted data transmission, all integrated into a shared ledger for synchronisation. 

5.2 Basic Client and Server on IoT Devices 
The server-client system implemented on the custom development board made with an ESP32-S3 

chip is designed to enable wireless communication between two devices over a Wi-Fi network. The 

server is responsible for listening to incoming connections, processing client requests, and sending 

appropriate responses. Conversely, the client initiates a connection to the server, sends a request, 

and then processes the server's response. This system is typical in IoT applications where multiple 

devices need to communicate with one another over a local network or the internet. Please see the 

complete code attached in Appendix 3, as it will be continuously referenced throughout this sub-

chapter.  

The server-client system described here involves two ESP32-S3 chips: one configured as a server and 

the other as a client. Typically, the server would be hosted on dedicated hardware, but for this 

implementation, it is essential to see how this system works with limited resources.  This system 

allows the client to connect to the server over a Wi-Fi network, exchange data, and receive a 

response. The communication protocol used here is based on TCP/IP, specifically HTTP over port 80, 

a standard setup for lightweight web servers on IoT devices.  

On the server-side operation, the WiFi connection is initialised as the server first connects to a Wi-Fi 

network using the provided SSID and password: 

Equation 5.1: Server WiFi Initialisation 

𝑆𝑒𝑟𝑣𝑒𝑟𝐼𝑃 = 𝑊𝑖𝐹𝑖. 𝑏𝑒𝑔𝑖𝑛(𝑆𝑆𝐼𝐷, 𝑃𝑎𝑠𝑠𝑤𝑜𝑟𝑑) 



 

81 
 

The server joins the network and is assigned an IP address (“Server_IP”). This IP address is crucial as 

clients will use it to connect to the server. Once connected to the Wi-Fi, the server initialises a Wi-Fi 

server object on port 80, which is the default port for HTTP communication: 

Equation 5.2: Server WiFi Port 

𝑆𝑒𝑟𝑣𝑒𝑟 = 𝑊𝑖𝐹𝑖𝑆𝑒𝑟𝑣𝑒𝑟(𝑃𝑜𝑟𝑡) 

The server then begins listening for incoming client connections: 

Equation 5.3: Server Initialisation 

𝑆𝑒𝑟𝑣𝑒𝑟. 𝑏𝑒𝑔𝑖𝑛() 

To listen for client connections, the server enters a loop that continuously checks for incoming client 

connections. If a client connects, the server establishes a communication channel with the client: 

Equation 5.4: Server Checking for Client Connections 

𝐶𝑙𝑖𝑒𝑛𝑡𝑆𝑜𝑐𝑘𝑒𝑡 = 𝑆𝑒𝑟𝑣𝑒𝑟. 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒() 

This function checks if a client is available and returns a “WiFiClient” object representing the client. 

Upon connection, the server reads the incoming data from the client line by line: 

Equation 5.5: Server Reading Incoming Client Data 

𝐷𝑎𝑡𝑎 = 𝐶𝑙𝑖𝑒𝑛𝑡. 𝑟𝑒𝑎𝑑() 

The server processes the data, and if it detects an HTTP request (indicated by a blank line), it sends 

an HTTP response back to the client: 

Equation 5.6: Sending HTTP Response from Server to Client 

𝐶𝑙𝑖𝑒𝑛𝑡. 𝑠𝑒𝑛𝑑(𝐻𝑇𝑇𝑃𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒) 

The response includes a simple HTML page, which the client will display if it is capable of rendering 

HTML. After sending the response, the server allows the client some time to receive the data and 

then closes the connection. This ensures that resources are freed and the server is ready to handle 

new connections: 

Equation 5.7: Closing Client Connections 

𝐶𝑙𝑖𝑒𝑛𝑡. 𝑠𝑡𝑜𝑝() 

On the client side, the client also begins by connecting to the same Wi-Fi network as the server: 

Equation 5.8: Client WiFi Initialisation 

𝐶𝑙𝑖𝑒𝑛𝑡𝐼𝑃 = 𝑊𝑖𝐹𝑖. 𝑏𝑒𝑔𝑖𝑛(𝑆𝑆𝐼𝐷, 𝑃𝑎𝑠𝑠𝑤𝑜𝑟𝑑) 
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The client is similarly assigned an IP address (“Client_IP”), although this is typically not directly used 

in the communication process. The client attempts to establish a connection with the server using 

the server's IP address (Server_IP) and port 80: 

Equation 5.9: Client Connecting with Server IP and Port 

𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 = 𝐶𝑙𝑖𝑒𝑛𝑡. 𝑐𝑜𝑛𝑛𝑒𝑐𝑡(𝑆𝑒𝑟𝑣𝑒𝑟𝐼𝑃 , 𝑃𝑜𝑟𝑡) 

If the connection is successful, the client is ready to send and receive data. The client sends a string 

of data to the server, which could represent a request or some other information: 

Equation 5.10: Client Sending Data to Server 

𝐶𝑙𝑖𝑒𝑛𝑡. 𝑠𝑒𝑛𝑑(𝐷𝑎𝑡𝑎) 

In this example, the string "The quick brown fox jumps over the lazy dog 

1234567890!@#$%^&*()_+-=[]{}|;':,.<>/?\n\t" is sent to the server as it includes all alphanumeric 

characters with a new line and tab blanked space. The client then waits for a response from the 

server. The response is read line by line: 

Equation 5.11: Client Awaiting for Server Response 

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 𝐶𝑙𝑖𝑒𝑛𝑡. 𝑟𝑒𝑎𝑑𝑆𝑡𝑟𝑖𝑛𝑔𝑈𝑛𝑡𝑖𝑙(’’˚) 

The client processes and displays this response, which, in this case, is an HTML page sent by the 

server. Do note that the carriage return “\r” can also be denoted as 0xD in Hex; the purpose is to 

return to the beginning of the current line without advancing downward. After receiving the 

response, the client closes the connection to free up resources. The client is programmed to 

periodically reconnect to the server every 10 seconds, allowing it to send new requests or data and 

receive updated responses. This ensures ongoing communication between the client and the server, 

which can be helpful in applications requiring regular updates.  

Overall, the server-client system can be represented mathematically by the following sequence of 

events: 

Equation 5.12: Server IP Assignment 

𝑆𝑒𝑟𝑣𝑒𝑟_𝐼𝑃 = 𝑊𝑖𝐹𝑖. 𝑏𝑒𝑔𝑖𝑛(𝑆𝑆𝐼𝐷, 𝑃𝑎𝑠𝑠𝑤𝑜𝑟𝑑) 

Equation 5.13: Client IP Assignment 

𝐶𝑙𝑖𝑒𝑛𝑡_𝐼𝑃 = 𝑊𝑖𝐹𝑖. 𝑏𝑒𝑔𝑖𝑛(𝑆𝑆𝐼𝐷, 𝑃𝑎𝑠𝑠𝑤𝑜𝑟𝑑) 

Equation 5.14: Server Port Listening 

𝑆𝑜𝑐𝑘𝑒𝑡 = 𝑆𝑒𝑟𝑣𝑒𝑟. 𝑙𝑖𝑠𝑡𝑒𝑛(𝑃𝑜𝑟𝑡) 

Equation 5.15 Client Connection Attempt 

𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 = 𝐶𝑙𝑖𝑒𝑛𝑡. 𝑐𝑜𝑛𝑛𝑒𝑐𝑡(𝑆𝑒𝑟𝑣𝑒𝑟_𝐼𝑃, 𝑃𝑜𝑟𝑡) 
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Equation 5.16: Data Transmission (Client to Server) 

𝐶𝑙𝑖𝑒𝑛𝑡. 𝑠𝑒𝑛𝑑(𝐷𝑎𝑡𝑎) 

Equation 5.17: Data Reception and Response (Server to Client) 

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 𝑓(𝐷𝑎𝑡𝑎) 

𝐶𝑙𝑖𝑒𝑛𝑡. 𝑟𝑒𝑎𝑑(𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒) 

Equation 5.18: Connection Termination 

𝐶𝑙𝑖𝑒𝑛𝑡. 𝑠𝑡𝑜𝑝() 

The server-client system on the ESP32-S3 chip operates through a well-defined sequence of 

connection, communication, and disconnection. The server initialises and continuously listens for 

incoming connections while the client attempts to connect, sends data, and processes the server's 

responses. This system allows real-time data exchange over a Wi-Fi network, making it suitable for 

various IoT applications such as remote monitoring, control systems, and simple web-based 

interfaces. The mathematical expressions captured the communication flow's essence, illustrating 

the process from both the server's and client's perspectives. The periodic reconnection mechanism 

implemented in the client ensures that communication remains active and up-to-date, which is 

crucial for maintaining the functionality and reliability of the system in a dynamic environment. 

5.3 Adaptive Encryption Methods (Adaptive Amoeba Complexity) 
The adaptive encryption system is designed to dynamically choose between different encryption 

algorithms and configurations based on the available memory and the specific hardware platform 

detected. Depending on the resources at hand, the system can deploy both lightweight and more 

complex encryption schemes, ensuring optimal security and performance on the ESP32-S3 and other 

microcontroller architectures. The system leverages well-known cryptographic algorithms, including 

XOR encryption, Caesar cipher, ROT13, and the more sophisticated SPECK and SIMON block ciphers. 

For the complete documentation of the code, please refer to Appendix 3. 

Upon system initialisation and hardware detection, the system first measures the available memory 

on the microcontroller: 

Equation 5.19: Measuring Available Memory 

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑀𝑒𝑚𝑜𝑟𝑦 = 𝑓𝑟𝑒𝑒𝑀𝑒𝑚𝑜𝑟𝑦() 

The system then identifies the specific microcontroller architecture (e.g., ESP32, STM32, Arduino 

AVR, etc.). This detection allows the system to make informed decisions about which encryption 

algorithms to deploy based on the capabilities and constraints of the hardware. For example, if an 

ESP32-S3 chip is detected with more than 10,000 bytes of free memory, the system will opt for more 

robust encryption schemes, such as the 256-bit configurations of SPECK and SIMON. If less memory 
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is available, the system will downgrade to 128-bit versions of these algorithms or choose more 

straightforward encryption methods, such as XOR or ROT13. 

The system supports several encryption algorithms, each with specific computational requirements 

and security properties: 

Each XOR Encryption operation byte of the input data is XORed with a constant key (0xAA). This is a 

simple yet fast method of encryption that requires minimal computational resources. The XOR 

operation is repeated for each byte in the data string:  

Equation 5.20: Encryption for XOR with Constant Key 

𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 𝐵𝑦𝑡𝑒 = 𝐷𝑎𝑡𝑎 𝐵𝑦𝑡𝑒 ⊕ 0𝑥𝐴𝐴 

Caesar cipher is a classical encryption method where each alphabetical character in the input data is 

shifted by a fixed number of positions (in this case, three positions). This method is suitable for 

environments with minimal resources: 

Equation 5.21: Encryption for Caesar with a Fixed Number of Positions 

𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟 = (𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟 − 𝑂𝑓𝑓𝑠𝑒𝑡 + 3)𝑚𝑜𝑑26 + 𝑂𝑓𝑓𝑠𝑒𝑡 

ROT13 is a specific case of the Caesar cipher, where the shift is fixed at 13 positions. This is a 

lightweight, symmetric encryption technique where applying the algorithm twice returns the original 

text: 

Equation 5.22: Encryption for ROT13 

𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟 = (𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟 − 𝑂𝑓𝑓𝑠𝑒𝑡 + 13)𝑚𝑜𝑑26 + 𝑂𝑓𝑓𝑠𝑒𝑡 

SPECK and SIMON Block ciphers are modern lightweight block ciphers designed for constrained 

environments. SPECK and SIMON perform a series of rounds (22 for SPECK-128 and 32 for SIMON-

128, with more rounds for the 256-bit versions) of bitwise operations, additions, and rotations: 

Equation 5.23: SPECK and SIMON General Equation for Bitwise Operations, Additions, and Rotations 

𝑥 = (𝑥 >>  8)⊕ 𝑘, 𝑦 = (𝑦 <<  3) ⊕ 𝑥 

Here, 𝑥 and 𝑦 are the halves of the plaintext block, and 𝑘 is the subkey for that round. The number 

of rounds 𝑟 is determined by the key size, with larger keys requiring more rounds to achieve greater 

security. 

Equation 5.24: For Each Round In SPECK 

𝑥𝑖 = (𝑥𝑖 − 1 >> 8) + 𝑦𝑖 − 1⊕ 𝑘𝑖, 𝑦𝑖 = (𝑦𝑖 − 1 << 3)⊕ 𝑥𝑖 

Equation 5.25: For Each Round In SIMON 

𝑦𝑖 = (𝑦𝑖 − 1 >> 1)⊕ 𝑥𝑖 − 1, 𝑥𝑖 = (𝑥𝑖 − 1 << 1)⊕ 𝑘𝑖 
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The system's adaptability is rooted in its ability to choose the most appropriate encryption algorithm 

based on the current memory availability. If sufficient memory is available, the system opts for the 

more robust 256-bit versions of SPECK or SIMON, which provide a higher level of security due to 

increased key size and number of rounds. In contrast, if memory is constrained, the system selects 

the 128-bit versions or even falls back to simpler algorithms like XOR, Caesar cipher, or ROT13, which 

are less secure but more efficient. 

The choice of encryption method can be expressed as a function of available memory 𝑀: 

Equation 5.26: Choice of Encryption Method Based on Available Memory 

𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 𝑀𝑒𝑡ℎ𝑜𝑑 = {

𝑆𝑃𝐸𝐶𝐾256 & 𝑆𝐼𝑀𝑂𝑁256 𝑖𝑓 𝑀 > 10000 𝑏𝑦𝑡𝑒𝑠
𝑆𝑃𝐸𝐶𝐾128 & 𝑆𝐼𝑀𝑂𝑁128 𝑖𝑓 5000 < 𝑀 ≤ 10000 𝑏𝑦𝑡𝑒𝑠
𝑋𝑂𝑅, 𝐶𝑎𝑒𝑠𝑎𝑟, 𝑅𝑂𝑇13 𝑖𝑓 𝑀 ≤ 5000 𝑏𝑦𝑡𝑒𝑠

} 

This decision process ensures that the system remains operational and secure regardless of the 

specific constraints imposed by the hardware. The system monitors the time taken to perform each 

encryption method by capturing the start and end time in microseconds: 

Equation 5.27: Monitoring Time Taken for Each Encryption 

𝑇𝑖𝑚𝑒 𝑇𝑎𝑘𝑒𝑛 = 𝑒𝑛𝑑𝑡𝑖𝑚𝑒 − 𝑠𝑡𝑎𝑟𝑡𝑡𝑖𝑚𝑒 

This measurement allows the system to evaluate the efficiency of each encryption algorithm in real 

time, providing insights into the trade-offs between security and performance. The timing 

information can be crucial for applications where encryption strength and speed are critical factors.  

The adaptive encryption system on the ESP32-S3 chip (which can be applied to any processor) 

exemplifies a flexible and efficient approach to securing data in resource-constrained environments. 

The system balances security needs with computational efficiency by dynamically selecting the 

encryption method based on available memory and hardware capabilities. This adaptability makes it 

particularly well-suited for IoT devices, where resources are often limited, and security requirements 

vary widely depending on the application. The mathematical expressions used to describe the 

encryption processes provide a clear framework for understanding how the system operates, 

ensuring that it can be optimised and extended as needed. 

Building upon the theoretical model described in Chapter 4, the firmware implementation integrates 

an if-else cascade that evaluates the current battery percentage and dynamically assigns the 

encryption method to be used in the outgoing transmission process. This method assignment is 

stored within 𝑠𝑡𝑜𝑟𝑒𝑑𝐿𝑒𝑑𝑔𝑒𝑟[0]. 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛𝑀𝑒𝑡ℎ𝑜𝑑 and subsequently executed during the 

𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝐷𝑎𝑡𝑎() call. This approach ensures seamless runtime adaptability with minimal 

computational overhead. 
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For example, when batteryPercentage falls below 15%, the system automatically defaults to XOR 

encryption. As battery reserves increase, progressively more complex methods, Caesar, ROT13, 

SPECK, and finally SIMON, are employed. This design aligns with the Amoeba-inspired adaptability 

principle of the system, dynamically morphing cryptographic behaviour to align with physiological 

(electrical) capacity. Please refer to Figure 5.1. 

 

Figure 5.1: Dynamic Encryption Mode Selection Embedded and Automated within the Adaptive Amoeba Battery Curve 
Mapping Management System in C 
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5.4 Encryption between Client and Server Communication Streams 
Lightweight encryption is a critical component in resource-constrained environments such as IoT 

devices. It aims to provide adequate security while minimising computational overhead and power 

consumption. The ESP32-S3 chip, being a powerful yet constrained microcontroller, benefits from 

such approaches, especially when deployed in a client-server architecture. The goal here is to 

encrypt and decrypt data transmitted between the client and server using lightweight encryption 

techniques, ensuring data confidentiality without significant performance penalties. 

On the client side, the operation is split into three stages: the preparation and encryption of the 

data, the transmission to the server, and the receiving and decrypting of the server response. During 

the data preparation and encryption stage, the client prepares the data it intends to send to the 

server. This data could be a simple message or sensor readings from an IoT device. A lightweight 

encryption algorithm, such as XOR encryption or a simple Caesar cipher, is applied to the data: 

Equation 5.28: General Encryption with Data and Key Variables 

𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝐷𝑎𝑡𝑎 = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝐷𝑎𝑡𝑎, 𝐾𝑒𝑦) 

For XOR encryption, each byte of the data is XORed with a key: 

Equation 5.29: General XOR Encryption with Data and Key Variables 

𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝐵𝑦𝑡𝑒𝑖 = 𝐷𝑎𝑡𝑎𝑖⊕𝐾𝑒𝑦 

For a Caesar cipher, each character in the data is shifted by a fixed number of positions in the 

alphabet.  

The second stage is the transmission to the server, as the encrypted data is then transmitted to the 

server over a TCP/IP connection: 

Equation 5.30: Client Sending Encrypted Data to Server Over TCP/IP 

𝐶𝑙𝑖𝑒𝑛𝑡. 𝑠𝑒𝑛𝑑(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑_𝐷𝑎𝑡𝑎) 

Lastly, in the receiving and decrypting server response, the client waits for a response from the 

server, which is typically also encrypted. Upon receiving the encrypted response, the client decrypts 

it using the same algorithm and key used for encryption: 

Equation 5.31: Server Decrypting Response From Client 

𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑒𝑑_𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 𝐷𝑒𝑐𝑟𝑦𝑝𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑_𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒, 𝐾𝑒𝑦) 
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The server-side operations are as follows: receiving and decrypting client data, processing data and 

generating a response, and sending the encrypted response. The server receives the encrypted data 

from the client:  

Equation 5.32: Receiving Encrypted Data from Client 

𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑_𝐷𝑎𝑡𝑎 = 𝑆𝑒𝑟𝑣𝑒𝑟. 𝑟𝑒𝑐𝑒𝑖𝑣𝑒() 

The server then decrypts this data using the corresponding lightweight decryption algorithm: 

Equation 5.33: Lightweight Decrypting Received Data from Client 

𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑒𝑑_𝐷𝑎𝑡𝑎 = 𝐷𝑒𝑐𝑟𝑦𝑝𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑_𝐷𝑎𝑡𝑎, 𝐾𝑒𝑦) 

After decrypting the data, the server processes it as needed. This could involve logging the data, 

triggering a control action, or generating a response. The server then encrypts the response using 

the same lightweight encryption algorithm: 

Equation 5.34: Server Generating Lightweight Encrypted Response 

𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑_𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒, 𝐾𝑒𝑦) 

Lastly, the encrypted response is sent back to the client: 

Equation 5.35: Server Sending Encrypted Response 

𝑆𝑒𝑟𝑣𝑒𝑟. 𝑠𝑒𝑛𝑑(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑_𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒) 

Block cipher encryption provides a higher level of security compared to lightweight encryption 

techniques. It operates on fixed-size blocks of data and uses complex key schedules and multiple 

rounds of encryption to ensure data security. In this system, algorithms like SPECK or SIMON may be 

used, which are designed for resource-constrained environments but still provide robust encryption. 

For both lightweight and block ciphers, the client and server operations remain the same as the 

client side. The operation is split into three stages: the preparation and encryption of the data, the 

transmission to the server, and the receiving and decrypting of the server response. The client 

prepares the data and breaks it into blocks of a fixed size (e.g., 64 bits or 128 bits). Each block of data 

is encrypted using a block cipher algorithm such as SPECK or SIMON: 

Equation 5.36: Client Preparation for Encryption Block Size 

𝐶𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡𝑖 = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡_𝐵𝑙𝑜𝑐𝑘(𝑃𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡𝑖, 𝐾𝑒𝑦_𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒) 

The encryption process involves multiple rounds of operations (e.g., XOR, rotation, and addition) 

with subkeys derived from the main key. 

At the second stage, the encrypted blocks are concatenated and sent to the server as a single 

encrypted message: 
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Equation 5.37: Client Concatenating Encrypted Blocks 

𝐶𝑙𝑖𝑒𝑛𝑡. 𝑠𝑒𝑛𝑑(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑_𝑀𝑒𝑠𝑠𝑎𝑔𝑒) 

Lastly, the client receives the encrypted response from the server, which is also structured in blocks. 

Each block is decrypted using the corresponding decryption process: 

Equation 5.38: Client Decrying Blocks into Paintext 

𝑃𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡𝑖 = 𝐷𝑒𝑐𝑟𝑦𝑝𝑡_𝐵𝑙𝑜𝑐𝑘(𝐶𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡𝑖, 𝐾𝑒𝑦_𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒) 

The server-side operations are as follows: receiving and decrypting client data, processing data and 

generating a response, and sending the encrypted response. The server receives the encrypted 

message from the client, which is composed of multiple encrypted blocks: 

Equation 5.39: Server Receiving Multiple Encrypted Blocks 

𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑_𝑀𝑒𝑠𝑠𝑎𝑔𝑒 = 𝑆𝑒𝑟𝑣𝑒𝑟. 𝑟𝑒𝑐𝑒𝑖𝑣𝑒() 

The server decrypts each block using the block cipher decryption process: 

Equation 5.40: Server Decrypting Multiple Encrypted Blocks 

𝑃𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡𝑖 = 𝐷𝑒𝑐𝑟𝑦𝑝𝑡_𝐵𝑙𝑜𝑐𝑘(𝐶𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡𝑖 , 𝐾𝑒𝑦_𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒) 

Secondly, the server processes the decrypted data and prepares a response. This response is then 

encrypted in blocks using the block cipher encryption: 

Equation 5.41: Server Preparing and Encrypting Response 

𝐶𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡𝑖 = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡_𝐵𝑙𝑜𝑐𝑘(𝑃𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡𝑖, 𝐾𝑒𝑦_𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒) 

Lastly, the encrypted response blocks are concatenated and sent back to the client:  

Equation 5.42: Server Sending Encrypted Response 

𝑆𝑒𝑟𝑣𝑒𝑟. 𝑠𝑒𝑛𝑑(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑_𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒) 

The mathematical foundation lies in the operations applied to the data during encryption and 

decryption in both the lightweight and block cipher encryption systems. The lightweight encryption 

methods, such as XOR or Caesar cipher, involve simple arithmetic operations that can be expressed 

as: 

Equation 5.43: General Arithmetic Operations for XOR and Caesar 

𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑_𝐵𝑦𝑡𝑒 = 𝐷𝑎𝑡𝑎_𝐵𝑦𝑡𝑒 ⊕ 𝐾𝑒𝑦(𝑋𝑂𝑅) 

𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑_𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟 = (𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟 − 𝑂𝑓𝑓𝑠𝑒𝑡 + 𝑆ℎ𝑖𝑓𝑡)𝑚𝑜𝑑  26 + 𝑂𝑓𝑓𝑠𝑒𝑡(𝐶𝑎𝑒𝑠𝑎𝑟 𝐶𝑖𝑝ℎ𝑒𝑟) 

For block ciphers like SPECK or SIMON, the encryption of each block can be represented as: 

Equation 5.44: General Block Representation for SPECK and SIMON 

𝐶𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡𝑖 = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡_𝐵𝑙𝑜𝑐𝑘(𝑃𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡𝑖, 𝐾𝑒𝑦_𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒) 
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Where the encryption block function involves multiple rounds of operations, including bitwise shifts, 

rotations, and modular addition: 

Equation 5.45: Block Functions with Multiple Rounds of Operations 

𝑥𝑖 = (𝑥𝑖 − 1 >> 8) + 𝑦𝑖 − 1⊕ 𝑘𝑖 

𝑦𝑖 = (𝑦𝑖 − 1 << 3)⊕ 𝑥𝑖  

Given the appropriate key, these operations ensure that the ciphertext is a highly secure and non-

reversible transformation of the plaintext. 

The adaptive encryption system implemented on the ESP32-S3 chip provides a flexible and secure 

communication method between a client and server. By selecting the appropriate encryption 

method that is lightweight for resource-constrained scenarios and blocks ciphers for more secure 

communication, the system balances security and performance according to the available resources 

and the application's needs. The mathematical expressions involved in the encryption and 

decryption processes highlight the system's ability to securely handle data in various contexts, 

ensuring confidentiality and integrity in client-server communications. 

5.5 Reading and Sending Sensor Data via Encryption Communication Streams 
Before exploring how the encrypted communication streams work, there needs to be an 

understanding of how the system handles different scenarios. When a new client connects to the 

server for the first time, the following sequence of operations occurs: Session ID Generation initiates 

as the server generates a new session ID and sends it to the client. The client sends identification to 

the server, including its UUID, session ID, and processing power information. Server Verification 

occurs when the server verifies whether the client's UUID is approved. If approved, the server marks 

the session as active and sends the client's encryption method and necessary credentials. Data 

Transmission as the client encrypts the sensor data using the specified encryption method and sends 

it to the server. The server decrypts the data and confirms the successful receipt. 

For a returning client, the process is similar but more streamlined. Session ID Validation checks if the 

client sends the previously received session ID and its UUID. The server checks if the session is valid 

and the client has reconnected after any ledger updates. Reinitialisation occurs as the client receives 

the latest ledger information without generating a new session ID if the session ID is still valid. The 

client can then resume regular operation. 

Lastly, if a client with an unapproved UUID attempts to connect to the server, the connection is 

immediately blocked by stopping communication and marking the session as compromised. No 

further data is exchanged. 
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The core functionality of this system revolves around securely transmitting sensor data between the 

client and server. Before transmission, the data is encrypted using one of several encryption 

methods (XOR, Caesar, ROT13, SPECK, SIMON), depending on the device's processing power. 

The sensor data preparation occurs as the client gathers sensor data that needs to be sent to the 

server. In this case, the sensor data is represented as a string; please see Figure 5.2. 

 

Figure 5.2: Implementation of Sensor Data Preparation in C 

The sensor data is encrypted using a specified encryption method, which could be XOR, Caesar, 

ROT13, SPECK, or SIMON. Depending on the Adaptive Encryption Methods provided by the Adaptive 

Amoeba Complexity. The client uses the encryption key provided by the server to perform the 

encryption. For instance, using the SPECK encryption, the “speckExpand” and “speckEncryptDecrypt” 

functions handle the key scheduling and encryption processes, as shown in Figure 5.3. 

 

Figure 5.3: Implementation of SPECK Encryption Process in C 

After encryption, the client transmits the encrypted data over the network to the server, as shown in 

Figure 5.4. 

 

Figure 5.4: Implementation of the Data Transmission Process for Secure Sensor Data Exchange in Embedded C. 

Upon receiving the data, the server decrypts it using the same method and key as the client, which 

allows the server to process the decrypted sensor data, as shown in Figure 5.5. 

 

Figure 5.5: Implementation of the Decryption at the Server Process in C 
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Mathematically, the encryption process can be represented as: 

Equation 5.46: Standard Model of Encryption 

𝐶 = 𝐸𝐾(𝑃)  

Where: 

𝐶 is the ciphertext (encrypted data). 

𝑃 is the plaintext (original sensor data). 

𝐸𝐾 is the encryption function with key 𝐾. 

5.6 Approved Client List Process 
When a new device attempts to connect to the server, the client initiates a connection by sending its 

UUID and processing power details. The server generates a session ID and verifies the UUID against a 

list of approved UUIDs. If the UUID is approved, the session ID is stored along with other session 

details. The server then sends the appropriate encryption method, SSID, and password to the client, 

enabling it to connect securely. The client, in turn, encrypts its sensor data using the provided 

encryption method and key before sending it to the server. 

The client uses the stored session ID to re-establish communication with the server for a returning 

connection. The server checks the validity and expiration of the session IDs. If valid, the client 

continues its operations without reinitialising the session. The server updates any necessary 

credentials, and the client resumes its normal operation, including sending encrypted sensor data. 

If an unapproved device attempts to connect, the server detects that the UUID is not on the 

approved list. The server then blocks the session and refuses further communication. The 

unapproved client cannot connect or send data. 

The Approved Client List Process ensures that only authenticated and approved devices can 

communicate with the server. Each client is identified by a UUID (Universally Unique Identifier), and 

its approval status is checked during each connection attempt. The use of a session ID provides 

flexibility and security. The session ID is generated dynamically during each connection and is only 

valid for a specific session, reducing the risk of replay attacks. Additionally, it allows for session 

expiration management, where a session can be invalidated after a certain period of inactivity or 

upon detecting suspicious behaviour. Although MAC addresses are unique identifiers for network 

devices, they are static and can be spoofed. Using a MAC address alone would make the system 

vulnerable to spoofing attacks, where an unauthorised device could impersonate an approved 

device. 
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The server maintains a list of approved clients identified by UUIDs. Upon a connection request, the 

server checks whether the client's UUID is in the approved list. If the UUID is approved, the server 

generates a session ID for that client, which serves as a temporary identifier for managing the 

session securely. The use of a session ID instead of a MAC address is crucial for enhancing security 

because MAC addresses are static and can be spoofed, while session IDs are dynamic and unique for 

each session. 

Mathematical Expression: Let 𝑈𝑈𝐼𝐷𝐶 be the client's UUID, and 𝑈𝑈𝐼𝐷𝑆 be the set of approved UUIDs. 

The server checks 𝑈𝑈𝐼𝐷𝐶 ∈ 𝑈𝑈𝐼𝐷𝑆. If true, the server proceeds to generate a session ID, SID, as 

𝑆𝐼𝐷 = 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑆𝑒𝑠𝑠𝑖𝑜𝑛𝐼𝐷(). This session ID is then stored and associated with the client's UUID. 

The figure below shows the implementation of the UUID and Session IDs. Please see Figure 5.6. 

 

Figure 5.6: Implementation of Approved Client List Process Generating and Approving UUID and Session ID functions in C 
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5.7 Client Connection Logic 
The client connection logic is designed to manage the connection lifecycle effectively, considering 

factors like session handling, session expiration, and battery management. The server generates a 

session ID for each connection, which is used to authenticate and maintain the session. The session 

expiration time is dynamically adjusted based on the client's battery status. If the battery level is 

low, the client can enter different sleep modes, and the server adjusts the session expiration time 

accordingly. 

Within session handling, each client session is associated with a unique session ID generated by the 

server. The server tracks the session's validity and expiration. As implemented in Figure 5.7, the 

server dynamically sets session expiration times based on battery status. 

Equation 5.47: Formulating Session Expiration Time 

𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝐸𝑥𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑒 + 𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 

 

Figure 5.7: Implements the Client Connection Logic from the server to set session expiration time in C 

If the session expires or the client goes into sleep mode, the session is marked as inactive. The 

Battery Management system works as the client's battery management system, continuously 

monitors the battery voltage, and adjusts the device's operation mode to conserve power: 

Equation 5.48: Formulating Battery Percentage 

𝑏𝑎𝑡𝑡𝑒𝑟𝑦𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 = 𝑓(𝑣𝑜𝑙𝑡𝑎𝑔𝑒) 

where 𝑓(𝑣𝑜𝑙𝑡𝑎𝑔𝑒) represents the battery curve mapping function. This function is further explored 

in the Adaptive Amoeba Battery Curve Mapping Management System. 

Depending on the battery percentage, the client enters different sleep modes to conserve energy: 

Equation 5.49: Formulating Sleep Duration 

𝑠𝑙𝑒𝑒𝑝𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑔(𝑏𝑎𝑡𝑡𝑒𝑟𝑦𝐻𝑒𝑎𝑙𝑡ℎ, 𝑏𝑎𝑡𝑡𝑒𝑟𝑦𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒) 

where 𝑔(⋅) determines the sleep duration based on battery health and remaining capacity. The 

dynamic session management operates if the client enters any sleep modes, the server is informed, 

and the session expiration time is adjusted accordingly. The session resumes seamlessly when the 

client wakes up and reconnects. Please see Figure 5.8 for the code implementation. 
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Figure 5.8: Implementation of the battery management system adapts the client's behaviour based on the battery 
percentage function in C 

5.8 Shared Ledger Process 
The shared ledger process ensures that both the server and client maintain synchronised data 

regarding the network credentials and encryption methods. The server sends updated ledger 

information to the client, and the client updates its stored ledger accordingly. The Mathematical 

Expression: Let 𝐿𝑠𝑒𝑟𝑣𝑒𝑟  represent the server's ledger and 𝐿𝑐𝑙𝑖𝑒𝑛𝑡 represent the client's ledger. 

Synchronisation ensures: 

Equation 5.50: General Expression for Shared Ledger Process 

𝐿𝑐𝑙𝑖𝑒𝑛𝑡 ← 𝐿𝑠𝑒𝑟𝑣𝑒𝑟  

Where 𝐿𝑐𝑙𝑖𝑒𝑛𝑡 is updated to match 𝐿𝑠𝑒𝑟𝑣𝑒𝑟. Figure 5.9 represents the client-slide ledger update.  

 

Figure 5.9: Implementation of Client-side ledger update function in C 

Figure 5.10 below shows the server-side ledger notification function. 
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Figure 5.10: Implementation of the server-side ledger notification function in C 

5.9 Implementation of Polymorphic Security  
Polymorphic security within the Bio-Inspired Lightweight Polymorphic Security System for IoT 

devices is engineered to provide a dynamic and adaptive approach to securing IoT communication. 

This system emulates the adaptive and responsive characteristics of biological immune systems, 

offering a robust mechanism for addressing various security threats, such as unauthorised access, 

desynchronised states, and compromised clients. By continuously varying encryption methods, 

session handling strategies and utilising a shared ledger system, this security architecture ensures 

that the IoT network remains resilient against both known and emerging threats. 

The IoT security system closely parallels the core functionalities of the biological immune system. 

The auto-detection system, much like immune cells detecting pathogens, allows the server to 

distinguish between approved, unapproved, and desynchronised clients. In a similar vein, the auto-

ejection system acts as a defensive measure, rejecting and disconnecting unapproved or 

compromised clients, mirroring the immune system’s role in neutralising threats. Additionally, the 

trigger ledger system functions analogously to immunological memory, ensuring that all approved 

clients remain aligned with the same security protocols, thereby maintaining a cohesive and secure 

network environment. 

Both systems emphasise the importance of maintaining a secure and stable environment through 

dynamic adaptation to new threats, ensuring consistent communication among trusted entities, and 

promptly addressing any potential security breaches. 
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5.9.1 Auto-detection (Immune Surveillance) 
The auto-detection system within this security framework functions similarly to the immune 

system's ability to recognise and differentiate between self and non-self entities. In this context, the 

server continuously monitors incoming connections and determines whether a client is approved, 

unapproved, or desynchronised based on predefined criteria. 

Approved clients are those with UUIDs that match the entries in the “approvedUUIDs” list. When an 

approved client attempts to connect, the server verifies the UUID and checks the session ID to 

determine if the client is in sync with the current state of the shared ledger. 

Unapproved clients are immediately identified by the server when their UUID does not match any 

entry in the “approvedUUIDs” list. These clients are denied access and disconnected to prevent any 

potential security breach. 

Desynchronised clients are those whose stored credentials (SSID and password) do not match the 

current state of the server's ledger. The server detects this by comparing the incoming client data 

with the active ledger entry. If a mismatch is found, the server considers the client desynchronised. 

Please refer to Figure 5.11 for the desynchronisation function. 

 

Figure 5.11: Implementation to check for any approved client desynchronisation function in C 

In this system, the server reads the incoming client data and compares it with the expected data in 

the ledger. If the client data does not match, a desynchronisation error is triggered, and the client is 

instructed to reconnect. 
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The mathematical representation of the approved client list is as follows. Let 𝑈𝑈𝐼𝐷𝑐 be the UUID of 

the connecting client, and let 𝑈𝑈𝐼𝐷𝑠 represent the set of approved UUIDs in the system. The 

detection logic can be represented as: 

Equation 5.51: Client Status Detection Logic 

𝑆𝑡𝑎𝑡𝑢𝑠(𝑐) = {

𝐴𝑝𝑝𝑟𝑜𝑣𝑒𝑑 𝑖𝑓 𝑈𝑈𝐼𝐷𝑐  ∈  𝑈𝑈𝐼𝐷𝑠
𝑈𝑛𝑎𝑝𝑝𝑟𝑜𝑣𝑒𝑑 𝑖𝑓 𝑈𝑈𝐼𝐷𝑐  ∉  𝑈𝑈𝐼𝐷𝑠
𝐷𝑒𝑠𝑦𝑛𝑐𝑒𝑑 𝑖𝑓(𝑆𝑆𝐼𝐷𝑐, 𝑃𝑎𝑠𝑠𝑤𝑜𝑟𝑑𝑐) ≠ (𝑆𝑆𝐼𝐷𝑠, 𝑃𝑎𝑠𝑠𝑤𝑜𝑟𝑑𝑠)

} 

Where (𝑆𝑆𝐼𝐷𝑐 , 𝑃𝑎𝑠𝑠𝑤𝑜𝑟𝑑𝑐) is the client’s submitted credentials and (𝑆𝑆𝐼𝐷𝑠, 𝑃𝑎𝑠𝑠𝑤𝑜𝑟𝑑𝑠) is the 

current valid entry in the server's ledger. 

5.9.2 Auto-ejection (Immune Response) 
The auto-ejection system is akin to the immune system's mechanism of eliminating foreign or 

harmful entities. This system ensures that any unapproved or compromised clients are automatically 

disconnected from the network, maintaining the integrity and security of the IoT environment. 

Approved clients remain connected as long as they comply with the session management rules, such 

as maintaining synchronisation with the server's ledger and responding within the session expiration 

time. These clients are automatically ejected as soon as they are detected. Once their unapproved 

status is confirmed, the server does not allow them to communicate further. Desynchronised clients 

are either instructed to reconnect (if approved but desynchronised) or are ejected from the network 

if their desynchronisation cannot be resolved. Please see Figure 5.12. 
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Figure 5.12: Implementation of the auto ejection system through the handle compromised credentials function in C 

In this implementation, when a session is marked as compromised, the client is effectively ejected by 

invalidating the session and updating the server's credentials. The system also notifies all approved 

clients of the update and may activate the honeypot to handle any desynchronised clients.  

The mathematical representation of the auto ejection system is as follows. Let 𝑆(𝑡) represent the 

session state at time 𝑡. The ejection logic can be expressed as: 

Equation 5.52: Auto Ejection Logic System 

𝑆(𝑡 + 1) = {

𝐸𝑗𝑒𝑐𝑡𝑒𝑑 𝑖𝑓 𝑈𝑈𝐼𝐷𝑐 ∉ 𝑈𝑈𝐼𝐷𝑠 𝑜𝑟 𝑐𝑜𝑚𝑝𝑟𝑜𝑚𝑖𝑠𝑒𝑑
𝑅𝑒𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑖𝑓 𝑈𝑈𝐼𝐷𝑐 ∈ 𝑈𝑈𝐼𝐷𝑠 𝑎𝑛𝑑 𝑟𝑒𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑠𝑒𝑑

𝑆(𝑡) 𝑖𝑓 𝑠𝑒𝑠𝑠𝑖𝑜𝑛 𝑟𝑒𝑚𝑎𝑖𝑛𝑠 𝑣𝑎𝑙𝑖𝑑
} 

5.9.3 Trigger Ledger (Memory Response) 
The shared ledger serves as a collective memory within the network, ensuring all approved clients 

operate under consistent security credentials. This system is comparable to the immune system's 

memory cells, which retain information about previously encountered pathogens for faster response 

upon re-exposure. The ledger acts as a source of truth for approved clients, providing up-to-date 

credentials and encryption keys that ensure secure communication. Upon any update to the ledger, 

all approved clients are notified, and the ledger is synchronised across the network. Unapproved 

clients cannot access the ledger and, therefore, cannot synchronise or communicate securely with 

the network. Desynchronised clients rely on the ledger to resynchronise their credentials. If a client 
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is desynchronised, the server may provide updated credentials or prompt the client to reconnect 

with the correct information. 

 

Figure 5.13: Implementation of the trigger for the ledger function in C 

The server pushes ledger updates to all connected and approved clients, ensuring they have the 

latest credentials and encryption methods. Please see Figure 5.13. The ledger synchronisation can be 

mathematically expressed as: 

Equation 5.53: Ledger Synchronisation 

𝐿(𝑡 + 1) = 𝐿(𝑡) + 𝛥𝐿 

Where 𝐿(𝑡) represents the ledger state at the time 𝑡 and 𝛥𝐿 represents the change (update) to the 

ledger. All approved clients receive this update, represented as: 

Equation 5.54: Updating All Approved Clients 

𝐶𝑖(𝑡 + 1) = 𝐶𝑖(𝑡) ∪ 𝛥𝐿 

Where 𝐶𝑖(𝑡) represents the credential state for the client 𝑖 at time 𝑡, and 𝛥𝐿 is the ledger update. 

5.10 Adaptive Amoeba Battery Curve Mapping Management System 
In Figure 4.2, the block diagram for the Adaptive Amoeba Battery Curve Mapping Management 

System encapsulates the detailed workings of the battery management system, from initial voltage 

measurement through adaptive sleep mode selection and eventual hibernation. This ensures 

efficient power usage and extended operational life for IoT devices. First, it is crucial to break down 

the key processes to program this system for implementation.  

Firstly, there needs to be a conversion of an analogue-to-digital converter (ADC) reading to a 

corresponding voltage value: 
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Equation 5.55: Formulation for Voltage Battery Mapping 

𝑉𝑏𝑎𝑡𝑡𝑒𝑟𝑦 = 𝑚𝑎𝑝(𝐴𝐷𝐶 𝑣𝑎𝑙𝑢𝑒, 0,4095,0,5000) 

The ADC value is the raw reading from the ADC pin (0 to 4095 for a 12-bit ADC). 𝑉𝑏𝑎𝑡𝑡𝑒𝑟𝑦 is the 

battery voltage in millivolts. When programming the formula in C, please see Figure 5.14. 

 

Figure 5.14: Implementation of the Battery Voltage function in C 

Secondly, the initial battery percentage mapping can provide an initial estimate of the battery 

percentage based on the voltage, which can be represented as a piecewise function: 

Equation 5.56: Estimation of Battery Percentage 

  𝑃𝑖𝑛𝑖𝑡𝑖𝑎𝑙 =

{
  
 

  
 
100.0 𝑖𝑓 𝑉𝑏𝑎𝑡𝑡𝑒𝑟𝑦 > 4200

75.0 + 0.25 × (𝑉𝑏𝑎𝑡𝑡𝑒𝑟𝑦 − 4000) 𝑖𝑓 4000 <  𝑉𝑏𝑎𝑡𝑡𝑒𝑟𝑦 ≤ 4200

50.0 + 0.125 × (𝑉𝑏𝑎𝑡𝑡𝑒𝑟𝑦 − 3800) 𝑖𝑓 4000 <  𝑉𝑏𝑎𝑡𝑡𝑒𝑟𝑦 ≤ 4000

25.0 + 0.125 × (𝑉𝑏𝑎𝑡𝑡𝑒𝑟𝑦 − 3600) 𝑖𝑓 4000 <  𝑉𝑏𝑎𝑡𝑡𝑒𝑟𝑦 ≤ 3800

0.125 × (𝑉𝑏𝑎𝑡𝑡𝑒𝑟𝑦 − 3400) 𝑖𝑓 4000 <  𝑉𝑏𝑎𝑡𝑡𝑒𝑟𝑦 ≤ 3600

0.0 𝑖𝑓 𝑉𝑏𝑎𝑡𝑡𝑒𝑟𝑦 ≤ 3400 }
  
 

  
 

 

When programming this piecewise function in C, please see Figure 5.15. 

 

Figure 5.15: Implementation of the initial battery percentage mapping piecewise function in C 

The next feature is to store the battery data using a circular buffer with a dynamic EEPROM 

management approach to store the battery voltage and corresponding percentage: 

Equation 5.57: Circular Buffer With Dynamic EEPROM Management 

𝑏𝑎𝑡𝑡𝑒𝑟𝑦𝐷𝑎𝑡𝑎[𝑖]. 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 = 𝑉𝑏𝑎𝑡𝑡𝑒𝑟𝑦 
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𝑏𝑎𝑡𝑡𝑒𝑟𝑦𝐷𝑎𝑡𝑎[𝑖]. 𝑝𝑟𝑒𝑐𝑒𝑛𝑡𝑎𝑔𝑒 = 𝑃𝑐𝑢𝑟𝑟𝑒𝑛𝑡 

𝑏𝑎𝑡𝑡𝑒𝑟𝑦𝐷𝑎𝑡𝑎[𝑖 − 1] = 𝑏𝑎𝑡𝑡𝑒𝑟𝑦𝐷𝑎𝑡𝑎[𝑖] 

The oldest data will be overwritten if the buffer reaches its maximum capacity. Please see Figure 

5.16 for the function represented in C. 

 

Figure 5.16: Implementation of the Storing Battery Data function in C 

Once the battery data is stored, it can be loaded from the EEPROM anytime the data needs to be 

used, especially in the next feature, which will be used to predict the battery percentage. The system 

uses non-linear interpolation for a more accurate battery percentage prediction: 

Equation 5.58: Non-Linear Interpolation for Battery Percentage Prediction 

𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = (
𝑉𝑏𝑎𝑡𝑡𝑒𝑟𝑦 − 3400

4200 − 3400
)
2

× 100 
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Where 𝑉𝑏𝑎𝑡𝑡𝑒𝑟𝑦 is normalised between 3400mV and 4200mV. The normalised value is squared to 

apply a quadratic mapping, resulting in a non-linear curve that better reflects typical battery 

discharge behaviour. Please see Figure 5.17 for the function represented in C. 

 

Figure 5.17: Implementation of the Predicting Battery Percentage using a non-linear interpolation function in C 

Additionally, this system looks at the battery health based on the voltage once the system is fully 

charged or what it reads as its maximum voltage: 

Equation 5.59: Formulation for Battery Health 

  𝐻𝑏𝑎𝑡𝑡𝑒𝑟𝑦 =

{
 
 

 
 
1.0 𝑖𝑓 𝑉𝑏𝑎𝑡𝑡𝑒𝑟𝑦 > 4200

0.75 𝑖𝑓 4000 <  𝑉𝑏𝑎𝑡𝑡𝑒𝑟𝑦 ≤ 4200

0.5 𝑖𝑓 3800 <  𝑉𝑏𝑎𝑡𝑡𝑒𝑟𝑦 ≤ 4000

0.25 𝑖𝑓 3600 <  𝑉𝑏𝑎𝑡𝑡𝑒𝑟𝑦 ≤ 3800

0.10 𝑖𝑓 𝑉𝑏𝑎𝑡𝑡𝑒𝑟𝑦 ≤ 3600 }
 
 

 
 

 

Where 𝐻𝑏𝑎𝑡𝑡𝑒𝑟𝑦 is the battery health factor, ranging from 0.1 (poor health) to 1.0 (excellent health). 

Please see Figure 5.18 for the function represented in C. 

 

Figure 5.18: Implementation of the predictive battery health function in C 

Lastly, the implementation of the adaptive sleep mode duration based on the battery percentage 

and health, which can be easily configurable depending on the desired threshold levels: 
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Equation 5.60: Formulation for Adaptive Sleep Modes 

𝑆𝑙𝑒𝑒𝑝 𝑀𝑜𝑑𝑒 =

{
 
 

 
 
107 𝑖𝑓 𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 > 75.0 (𝑛𝑜𝑟𝑚𝑎𝑙 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛)

2 × 107 ×𝐻𝑏𝑎𝑡𝑡𝑒𝑟𝑦 𝑖𝑓 50.0 <  𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 ≤ 75.0 (𝑙𝑖𝑔ℎ𝑡ℎ 𝑠𝑙𝑒𝑒𝑝)

4 × 107 ×𝐻𝑏𝑎𝑡𝑡𝑒𝑟𝑦 𝑖𝑓 25.0 < 𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 ≤ 50.0 (𝑑𝑒𝑒𝑝 𝑠𝑙𝑒𝑒𝑝)

6 × 107 ×𝐻𝑏𝑎𝑡𝑡𝑒𝑟𝑦 𝑖𝑓 𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 ≤ 25.0 (𝑈𝐿𝑃) }
 
 

 
 

 

Which can be represented by the following function in Figure 5.19. 

 

Figure 5.19: Implementation of the sleep mode function in C 

Do note that the difference between deep sleep and ultra-low power mode is that the time in 

microseconds can also be adapted to wake up only after certain other conditions are met, such as 

waking on LAN for connected devices or only waking up when the sensor data is significantly 

different. With every loop cycle, the system performs the following: 

• Measure the current battery voltage 𝑉𝑏𝑎𝑡𝑡𝑒𝑟𝑦 = 𝑚𝑎𝑝(𝐴𝐷𝐶 𝑣𝑎𝑙𝑢𝑒). 

• Predict the current battery percentage 𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 Using either the initial map or non-linear 

interpolation from stored data. 

• Estimates the battery health 𝐻𝑏𝑎𝑡𝑡𝑒𝑟𝑦. 
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• Store the voltage and predicted percentage in EEPROM. 

• Dynamically adjusts the device's operation mode based on 𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 and 𝐻𝑏𝑎𝑡𝑡𝑒𝑟𝑦 

determining 𝑇𝑠𝑙𝑒𝑒𝑝. 

• Enter the appropriate sleep mode if needed. 

• Loops back after the delay or other normal operations for the next reading and adjustment. 

Overall, the code systematically adjusts the power management of an IoT device by mapping the 

ADC voltage reading to a battery percentage, refining the prediction through non-linear 

interpolation, and dynamically managing sleep durations based on battery health: 

Equation 5.61: General Formulations for Power Management 

𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝑡𝑜 𝑃𝑟𝑒𝑐𝑒𝑛𝑡𝑎𝑡𝑒 𝑀𝑎𝑝𝑝𝑖𝑛𝑔: 𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = 𝑓(𝑉𝑏𝑎𝑡𝑡𝑒𝑟𝑦) 

𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐻𝑒𝑎𝑙𝑡ℎ 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛: 𝐻𝑏𝑎𝑡𝑡𝑒𝑟𝑦 = 𝑔(𝑉𝑏𝑎𝑡𝑡𝑒𝑟𝑦) 

𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒 𝑆𝑙𝑒𝑒𝑝 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛: 𝑇𝑠𝑙𝑒𝑒𝑝 = ℎ(𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 , 𝐻𝑏𝑎𝑡𝑡𝑒𝑟𝑦) 

Where 𝑓 represents the initial mapping and non-linear interpolation functions. 𝑔 represents the 

battery health estimation function. ℎ represents the function determining adaptive sleep duration 

based on 𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 and 𝐻𝑏𝑎𝑡𝑡𝑒𝑟𝑦. This process ensures that the device adapts its power 

consumption based on real-time battery data, continuously refining its understanding of the 

battery's discharge curve through data collection and interpolation. Please see Appendix 14 for the 

complete documentation of the Adaptive Amoeba Battery Curve Mapping Management System. 

The encryption switching logic embedded within the AABCMS serves not only as a power-saving 

technique but also as a security modulation system. As lighter algorithms are more susceptible to 

attack, their use is reserved strictly for low-energy conditions where computational economy is 

prioritised over resilience. Conversely, in high-energy states, algorithms such as SPECK and SIMON 

offer superior cryptographic robustness, mirroring the strategic deployment of full immune 

responses in organisms under stress. This hierarchical cryptographic adaptation embodies a form of 

bio-inspired polymorphic security behaviour.  
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6.0 Chapter Six: Testing and Refinement 
The preceding chapter demonstrated the full implementation of the bio-inspired lightweight 

polymorphic security system for IoT devices, both through C programming and the corresponding 

mathematical models. This chapter is dedicated to the comprehensive testing and refinement of the 

system, focusing on elucidating the reasoning behind key design decisions. It presents a systematic 

evaluation of the system's performance across diverse operational scenarios, offering an in-depth 

analysis of its framework and responsiveness to varying conditions. Special attention is given to 

assessing the efficiency and functionality of critical subsystems, with a particular focus on the 

Adaptive Amoeba Battery Curve Mapping Management System. Power analysis tools are employed 

to rigorously examine the system’s energy consumption and optimisation, underscoring its 

effectiveness and resilience in environments constrained by power. The primary testing will be 

conducted using the ESP32-S3 development board, a 32-bit microcontroller (detailed in Appendix 3), 

with comparative analysis against a lower-grade 8-bit ATMEGA328P microcontroller, demonstrating 

the system’s adaptability, efficiency, and overall robustness across differing hardware 

configurations. 

The control should be established before going into the different subchapters to test different 

aspects of the framework. The control is how the microcontroller operates with a simple algorithm 

that uses the serial to print a statement every second. Baseline power consumption for each device 

is demonstrated in Figure 6.1, which shows that the ESP32-S3 has an average current draw of 

47.4mA at 3.7V with 176mW. 
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Figure 6.1: Otii Power Analysis Demonstrating Baseline Power Consumption for the ESP32-S3 Running the Control 
Algorithm. 

Figure 6.2 shows that the ATMEGA328P has an average current draw of 1.35mA at 3.7V with 

4.99mW.  

 

Figure 6.2: Otii Power Analysis Demonstrating Baseline Power Consumption for the ATMEGA328P  
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6.1 Testing the Efficiency of Encryption Methods Implemented 
The following subchapter will test the different encryption methods used in this framework and 

measure the number of cycles and power it takes to complete both encryption and decryption 

algorithms. The testing will be done for ESP32-S3 (running at 240MHz) and ATMEGA328P (running at 

16MHz) processors to see and have a comparative difference between 8-bit and 32-bit processors. 

Please refer to Appendix 13, Cycle Testing for Encryption Methods. 

6.1.1 Cycle Testing XOR Encryption 
ESP32-S3 XOR cycle encryption testing shows that the time taken in microseconds is 6µS and 1460 

cycles taken to complete this; please see Figure 6.3. 

 

Figure 6.3: ESP32-S3 XOR cycle testing serial print output 

In comparison, the ATMEGA328P cycle encryption testing shows that the time taken in 

microseconds is 60µS and 960 cycles are taken to complete this; please see Figure 6.4. 

 

Figure 6.4: ATMEGA328P XOR cycle testing serial print output 

The difference in cycle counts for the XOR encryption between the ESP32 and ATMEGA328P 

microcontrollers, despite the time difference, can be attributed to the underlying architecture of 

these processors, the clock speed, and how they handle instructions. 

The ESP32 typically operates at a much higher clock speed (up to 240 MHz). The ATMEGA328P, on 

the other hand, has a lower clock speed (typically 16 MHz). Higher clock speed means the ESP32 

completes each instruction faster (in terms of time), but it might also involve additional cycles due to 

how the architecture handles specific tasks, especially in microcontroller designs with more complex 

instruction sets. 

The ESP32 uses the Tensilica Xtensa architecture, which is more complex than the AVR architecture 

used in the ATMEGA328P. As a result, even though the ESP32 has a higher clock speed and may take 

less time for individual operations, the cycles needed for specific instructions, such as XOR, could be 
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more due to the complexity of the processing or how instructions are decoded and executed. In 

contrast, the ATMEGA328P has a simpler architecture (AVR 8-bit RISC), where instructions like XOR 

are likely implemented more directly in fewer cycles, even though the overall processing speed is 

slower. 

The ESP32 is a dual-core processor and has a deeper pipeline than the ATMEGA328P. This means 

that while it can run more operations simultaneously, certain simple operations like XOR encryption 

might involve more overhead due to how the pipeline or multicore system is managed, leading to 

more cycles. The ATMEGA328P's simpler design results in fewer cycles, even if it’s slower in absolute 

time, as it has less overhead. 

The cycles are calculated based on the number of clock ticks required to execute the instruction. 

Mathematically, for a simple XOR instruction: 

Equation 6.1: Calculation for Clock Ticks required to Execute Instruction for XOR 

𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒 (𝑖𝑛 𝑠𝑒𝑐𝑜𝑛𝑑𝑠) =
𝐶𝑦𝑐𝑙𝑒 𝐶𝑜𝑢𝑛𝑡

𝐶𝑙𝑜𝑐𝑘 𝑆𝑝𝑒𝑒𝑑 (𝐻𝑧)
 

𝑇𝑖𝑚𝑒 𝑓𝑜𝑟 𝐸𝑆𝑃32 (𝑚𝑖𝑐𝑟𝑜𝑠𝑒𝑐𝑜𝑛𝑑𝑠) =
1460

240,000,000
× 1,000,000 = 6µ𝑆 

𝑇𝑖𝑚𝑒 𝑓𝑜𝑟 𝐴𝑇𝑀𝐸𝐺𝐴328𝑃 (𝑚𝑖𝑐𝑟𝑜𝑠𝑒𝑐𝑜𝑛𝑑𝑠) =
960

16,000,000
× 1,000,000 = 60µ𝑆 

Thus, even though the ESP32 has more cycles (1460) for the XOR encryption, its higher clock speed 

compensates for this, making the total time much lower (6 µs) compared to the ATMEGA328P (60 

µs). 

6.1.2 Cycle Testing Caesar Cipher 
ESP32-S3 Caesar cycle encryption testing shows that the time taken in microseconds is 33µS, and 

6779 cycles are required to complete this; please see Figure 6.5. 

 

Figure 6.5: ESP32-S3 Caesar cycle testing serial print output 

In comparison, the ATMEGA328P cycle encryption testing shows that the time taken in 

microseconds is 724µS and 115284 cycles to complete this; please see Figure 6.6. 
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Figure 6.6: ATMEGA328P Casear cycle testing serial print output 

As the encryption methods are getting more complex, there is a clear disparity between the 8-bit 

and 32-bit processors. 

6.1.3 Cycle Testing ROT13 Encryption 
ESP32-S3 Caesar cycle encryption testing shows that the time taken in microseconds is 33µS, and 

6779 cycles are required to complete this; please see Figure 6.7.  

 

Figure 6.7: ESP32-S3 ROT13 cycle testing serial print output 

In comparison, the ATMEGA328P ROT13 cycle encryption testing shows that the time taken in 

microseconds is 716µS and 11456 cycles to complete this; please see Figure 6.8. 

 

Figure 6.8: ATMEGA328P ROT13 cycle testing serial print output 

The reason for both the Caesar cipher and ROT13 encryption methods taking the same time and 

cycles on the ESP32 is that these two encryption algorithms are very similar in terms of their 

fundamental operations. Both Caesar cipher and ROT13 are shift ciphers, where the primary 

operation is shifting each letter in the plaintext by a specific number of positions in the alphabet. 

ROT13 is a specific case of the Caesar cipher where the shift is always 13 positions, meaning that 

every letter is shifted by exactly half of the alphabet's length. Caesar cipher uses a variable shift 

(which can be any number of positions), but when the shift is set to 13, it behaves exactly like 

ROT13. In the code, both encryption methods involve shifting the characters of the input string 

based on the encryption key. For ROT13, the key is fixed at 13, while for Caesar, the key can be any 

number. 
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Both algorithms perform a character-by-character shift within the alphabet, and this shift operation 

is computationally very simple, involving only an arithmetic operation (addition or subtraction). In 

terms of actual computation, shifting by 13 positions in ROT13 and shifting by a user-defined 

number in Caesar cipher will take an identical number of operations, especially since the range of 

shifts in the alphabet (26 letters) is small and uniform. 

Regarding code structure, the Caesar and ROT13 functions you are using likely share much of the 

same logic, with the only difference being the input shift value (13 for ROT13 and a variable for 

Caesar). Since the ESP32 executes nearly identical instructions in both cases, the time taken and the 

number of cycles consumed are the same. 

This similarity in performance is less noticeable on the ATMEGA328P due to differences in 

processing speed and architecture between the 8-bit ATMEGA328P and the 32-bit ESP32. However, 

on the faster and more powerful ESP32, these lightweight operations (shifting letters) run so 

efficiently that the time difference becomes negligible. 

Both the Caesar and ROT13 methods can be mathematically described as: 

For a letter 𝐿 in the alphabet, where 𝐿 ∈ {𝐴, 𝐵,… , 𝑍}, the Caesar cipher shifts 𝐿 by a key 𝑘: 

Equation 6.2: Caesar Shifting 

𝐿′ = (𝐿 + 𝐾) 𝑚𝑜𝑑 26 

For ROT13, the shift 𝑘 is always fixed to 13: 

Equation 6.3: ROT13 Shifting 

𝐿′ = (𝐿 + 13) 𝑚𝑜𝑑 26 

In both cases, the primary operation is the modular arithmetic involved in shifting the letters, which 

takes the same number of computational cycles for both Caesar and ROT13 because the difference 

lies only in the value of 𝑘, not in the complexity of the operations. Thus, on the ESP32, the Caesar 

cipher with a shift of 13 is identical to ROT13 in terms of execution, which explains why they show 

the exact cycle count and execution time. 

6.1.4 Cycle Testing SPECK Encryption 
ESP32-S3 SPECK cycle encryption testing shows that the time taken in microseconds is 59µS, and 

13130 cycles are required to complete this; please see Figure 6.9.  
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Figure 6.9: ESP32-S3 SPECK cycle testing serial print output 

In comparison, the ATMEGA328P SPECK cycle encryption testing shows that the time taken in 

microseconds is 4µS and 64 cycles to complete this; please see Figure 6.10. 

 

Figure 6.10: ATMEGA328P SPECK cycle testing serial print output 

There is a discrepancy between the time taken for the SPECK encryption between the ESP32 and the 

ATMEGA328P, which could indeed be linked to processing limitations or errors on the ATMEGA328P. 

The ESP32 is a 32-bit microcontroller that operates at higher clock speeds (up to 240 MHz). Its larger 

register size and faster clock rate give it the ability to handle more complex operations, like 

encryption algorithms, much more efficiently. The ATMEGA328P, on the other hand, is an 8-bit 

microcontroller typically operating at around 16 MHz. It has a smaller register size and a slower clock 

rate, which means that operations involving larger data sets (such as encryption) require significantly 

more cycles to complete. 

The SPECK algorithm is designed to be lightweight, but it still involves a sequence of bit shifts, 

additions, and XOR operations on 32-bit blocks. For a 32-bit microcontroller (like the ESP32), such 

operations can be executed natively without breaking them down into smaller chunks. On the 

ATMEGA328P, however, these 32-bit operations need to be broken down into multiple smaller 8-bit 

operations. This results in a much higher number of cycles for each operation, even though the 

overall complexity of the algorithm remains the same. 

Given the significantly lower clock speed and reduced computational power of the ATMEGA328P, 

the algorithm might not be running optimally. It’s possible that the encryption could be interrupted 

or mismanaged due to the lack of processing resources, leading to a result that seems artificially 

"faster" because the operation is incomplete or incorrectly executed. This could explain why the 

ATMEGA328P result shows a much shorter time (59 microseconds), even though it would be 

expected to take much longer based on its processing power. 
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For the ESP32, the measured cycles (13130) reflect the actual time and complexity of the encryption 

process. This number of cycles seems appropriate for a lightweight encryption algorithm running on 

a 32-bit platform at a high clock speed. On the ATMEGA328P, the reported cycles (64) suggest a 

significant issue in either measurement or execution. Given the reduced processing power, the 

cycles should be much higher. This points to a potential problem with how the encryption algorithm 

is being handled by the microcontroller, likely related to either resource exhaustion or inaccurate 

measurement. Therefore, due to its complexity, there is likely an issue with the ATMEGA328P's 

handling of the SPECK encryption. The SPECK algorithm was likely either prematurely interrupted or 

incorrectly executed, leading to a cycle count and time taken that are far too low for the algorithm’s 

actual complexity. This could indicate that the ATMEGA328P might not be suitable for handling such 

encryption tasks without significant optimisation or simplified alternatives. 

6.1.4 Cycle Testing SIMON Encryption 
ESP32-S3 SIMON cycle encryption testing shows that the time taken in microseconds is 32µS, and 

6419 cycles are required to complete this; please see Figure 6.11.  

 

Figure 6.11: ESP32-S3 SIMON cycle testing serial print output 

In comparison, the ATMEGA328P SPECK cycle encryption testing shows that the time taken in 

microseconds is 8µS and 128 cycles to complete this; please see Figure 6.12. 

 

Figure 6.12: ATMEGA328P SIMON cycle testing serial print output 

The ATMEGA328P's lower cycle count could suggest that it is not running the full encryption 

algorithm. The low time (8 µs) and cycle count (128) compared to the ESP32-S3 (32 µs and 6419 

cycles) implies that the ATMEGA328P may be prematurely finishing its encryption process, possibly 

due to an issue with how it is handling the SIMON algorithm. The ATMEGA328P is an 8-bit 

microcontroller with a 16-bit address space, while the ESP32-S3 is a 32-bit microcontroller. In 

general, a 32-bit processor like the ESP32-S3 should be able to handle larger blocks of data (e.g., 32-

bit blocks in encryption) more efficiently, as it is natively optimised for such operations. However, 



 

114 
 

the ATMEGA328P might be facing challenges in managing this, leading to unexpected completion of 

the algorithm without performing all intended steps. The ATMEGA328P has a relatively lower clock 

frequency (16 MHz) compared to the ESP32-S3 (up to 240 MHz), and while both systems should 

report cycle counts based on their respective CPU speeds, the large gap suggests either incorrect 

cycle measurement on the ATMEGA328P or a logic error in how the encryption process is executed. 

SIMON and SPECK are both lightweight ciphers, but they still require multiple rounds of bitwise 

operations. A misinterpretation or early termination of those rounds on the ATMEGA328P might 

result in artificially low cycle counts. The ATMEGA328P uses an AVR architecture with fewer 

instructions per cycle compared to the more powerful Xtensa architecture on the ESP32-S3, which 

could result in the ATMEGA328P skipping or simplifying operations. 

6.2 Detailed Analysis and Interpretation of Adaptive Amoeba Battery Curve Mapping 

Management System Performance 
This sub-chapter uses the power analysis tool Otii to see the current, voltage, and power 

consumption of each encryption method tested in the previous sub-chapter (XOR, Caesar, ROT13, 

SPECK, and SIMON). The code remains the same as before, but with longer delays within the loops, 

making it easier to analyse the different selections, as shown in Figure 6.13. 

 

Figure 6.13: Modified code for the encryption cycle testing for easy selection picking per method 

The data collected using the Otti power analysis toolkit provides compelling insights into the 

performance and energy efficiency of various encryption schemes implemented as part of the Bio-
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Inspired Lightweight Polymorphic Security System for IoT Devices. This analysis presents a detailed 

comparative analysis of encryption methods implemented within the Bio-Inspired Lightweight 

Polymorphic Security System, focusing on their execution on two microcontrollers: the ESP32-S3 (32-

bit) and the ATMEGA328P (8-bit). The analysis evaluates time efficiency, cycle consumption, power 

draw, and energy usage. These factors are critical in understanding how the Adaptive Amoeba 

Battery Curve Mapping Management System (AABCMS) dynamically optimises energy usage in 

resource-constrained environments. Please see the table below for the comparative results. This 

performance is benchmarked quantitatively against standard lightweight ciphers as detailed in Table 

7. See Table 7 and Appendix 17 for full quantitative benchmarking against standard lightweight 

encryption schemes. 

Table 7: Encryption Performance Comparison 

 

The ESP32 consistently demonstrates faster execution times and higher energy demands across most 

encryption tasks. For example, the XOR encryption method completes in 3µs on the ESP32 (514 cycles), 

whereas the same operation takes 60µs on the ATMEGA328P (960 cycles). However, due to the 

ESP32’s higher operating frequency and current draw (~230 mW on average), the energy consumption 

for XOR is 690µJ on the ESP32 versus just 660µJ on the ATMEGA328P. 

In contrast, block cipher methods such as SPECK highlight a compelling anomaly. Despite the ESP32 

taking 51µs (12,183 cycles), the ATMEGA328P records just 4µs (64 cycles), which is likely an artefact 

of under-measured execution due to the ATMEGA’s limited cycle timer resolution or optimisation 

artefacts. This discrepancy results in a dramatic difference in calculated energy: 11,832µJ on the ESP32 

versus only 44µJ on the ATMEGA328P. Such outliers underscore the need for methodological caution 

when interpreting low-level timing on constrained hardware. 

The ROT13 and Caesar methods yield identical performance on the ESP32 (17µs and 3,941 cycles each), 

which is expected because ROT13 is mathematically a Caesar cipher with a fixed shift of 13 positions. 

This redundancy in implementation explains the matching cycle counts and energy costs (3,927µJ 

each). On the ATMEGA328P, ROT13 and Caesar also exhibit close timing and energy profiles 

(728µs/11648 cycles vs. 724µs/11584 cycles), affirming functional parity across platforms. 

Time (𝑡) is a direct metric of responsiveness. ESP32, operating at a significantly higher frequency (~240 

MHz vs. 16 MHz), exhibits lower latencies across all methods. This supports its suitability for latency-

Encryption 

Method
ESP32 Time (µS) ESP32 Cycles

ESP32 Avg 

Power (mW)

ESP32 Avg 

Current (mA)

ESP32 Energy 

(µJ)

ATMEGA328P 

Time (µS)

ATMEGA328 

Cycles

ATMEGA328P Avg 

Power (mW)

ATMEGA328P Avg 

Current (mA)

ATMEGA328P 

Energy (µJ)

Idel (Control) N/A N/A 227 49.7 N/A N/A 8.12 2.17

XOR 3 514 230 50.6 690 60 960 11 2.93 660

Caesar 17 3941 231 50.6 3927 728 11648 10.9 2.92 7935

ROT13 17 3941 231 50.8 3927 724 11584 10.8 2.89 7819

SPECK 51 12183 232 50.9 11832 4 64 11 2.92 44

SIMON 19 4515 231 50.8 4389 8 128 10.9 2.91 87

Encryption Power Performance Summary
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sensitive tasks, but at the expense of higher instantaneous power draw. ATMEGA328P, while slower, 

is advantageous in ultra-low-power scenarios due to its lower baseline power consumption. 

Cycle count (𝐶) reflects instruction throughput: 

Equation 6.4: Cycle Count for Instruction Throughput 

𝐶 = 𝑡 × 𝑓 

where 𝑓 is the CPU clock frequency, the proportionality confirms measurement integrity except in the 

SPECK and SIMON tests on the ATMEGA328P, where exceptionally low cycle counts suggest 

misaligned measurement windows or computational pipeline misreads. These anomalies merit repeat 

testing using oscilloscope-triggered time markers or more granular profiling tools. 

Power (𝑃) in milliwatts and current (𝐼In milliamps, it directly affects battery drain. Despite the ESP32's 

efficiency in reducing time, it operates at nearly 20x the power draw of the ATMEGA328P. This 

necessitates intelligent sleep-wake cycles to avoid rapid battery depletion, precisely what the AABCMS 

is designed to handle. 

Energy (𝐸) is calculated by: 

Equation 6.5: General Formulation for Calculating Energy 

𝐸 = 𝑃 × 𝑡 

Where P is in milliwatts and t in microseconds (converted appropriately to seconds), energy 

consumption directly quantifies the operational cost of a computation. The ESP32’s high power draw 

offsets its shorter execution time, whereas the ATMEGA328P achieves energy frugality through slower 

but less power-intensive operations. 

The AABCMS is designed to respond dynamically to battery voltage and computational demand. Using 

sensor data, it adjusts operational modes (normal, light sleep, deep sleep, or ULP) based on thresholds 

derived from power usage. For instance, during Caesar and ROT13 operations, if battery health is ≥

50%, the system may opt for light sleep post-processing due to moderate energy usage. Conversely, 

after SPECK operations on the ESP32, which consume over 11 mJ per execution, the system may 

enforce deep sleep or longer sleep durations to prevent premature battery depletion. 

This adaptive behaviour can be modelled by a threshold function: 

Equation 6.6: Formulation for Adaptive Sleep Mode Functions 

𝑆𝑙𝑒𝑒𝑝 𝑀𝑜𝑑𝑒 = {

𝑁𝑜𝑟𝑚𝑎𝑙           𝑖𝑓 𝐸 < 1𝑚𝐽
𝐿𝑖𝑔ℎ𝑡 𝑆𝑙𝑒𝑒𝑝           𝑖𝑓 1 ≤ 𝐸 < 4𝑚𝐽
𝐷𝑒𝑒𝑝 𝑆𝑙𝑒𝑒𝑝             𝑖𝑓 4 ≤ 𝐸 < 10𝑚𝐽

𝑈𝐿𝑃                  𝑖𝑓 𝐸 ≥ 10𝑚𝐽 
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This logic enables dynamic scheduling and intelligent power management tailored to the 

computational and energy characteristics of each encryption task. The comparative testing reveals 

that while ESP32 delivers speed, it does so at a significant energy cost, especially for block cipher 

methods like SPECK and SIMON. The ATMEGA328P, though slower, is remarkably efficient in power-

constrained environments. These findings validate the need for the AABCMS to dynamically adjust 

device behaviour based on encryption workload and battery metrics. Such adaptive mechanisms are 

not only effective in prolonging device lifespan but also critical in making cryptographically secure 

IoT systems viable in real-world, power-sensitive deployments. 

6.3 Testing the Auto Detection System (ADS) 
Initially, when implementing the ADS, the technique used MAC (Media Access Control) addresses, 

but was changed to UUID (Universally Unique Identifiers). The length and complexity of a UUID is 

128 bits long and is represented as a 32-character hexadecimal string (8-4-4-4-12 format). There are 

2128 possible UUIDs. Whereas a MAC address is 48 bits long and is represented as a 12-character 

hexadecimal string (6 bytes). There are 248 possible MAC addresses. Therefore, mathematically, a 

much larger keyspace for UUID which increases security as UUID keyspaces 2128 ≈ 3.4 × 1038 

whereas, the MAC keyspace is 248 ≈ 2.8 × 1014 possible combinations. The larger the keyspace, the 

harder it is for an attacker to "brute-force" or guess the correct identifier. 

For brute-forcing a MAC address, In this testing scenario, if an attacker can make one billion (109) 

guesses per second (1GHz Processing speed): 

Equation 6.7: Formulation for Brute Forcing MAC at 1GHz 

𝑇𝑖𝑚𝑒 𝑡𝑜 𝑏𝑟𝑢𝑡𝑒 𝑓𝑜𝑟𝑐𝑒 𝑀𝐴𝐶 =
248

109
≈ 280,000 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 ≈ 3.24 𝑑𝑎𝑦𝑠 

For brute-forcing a UUID, if an attacker can make one billion (109) guesses per second (1GHz 

Processing speed): 

Equation 6.8: Formulation for Vrute Forcing UUID at 1GHz 

𝑇𝑖𝑚𝑒 𝑡𝑜 𝑏𝑟𝑢𝑡𝑒 𝑓𝑜𝑟𝑐𝑒 𝑈𝑈𝐼𝐷 =
2128

109
≈ 1029𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

This is an astronomically large number of seconds, far beyond the age of the universe, which is 

approximately 1017 seconds. Therefore, brute-forcing a UUID is practically impossible with today's 

technology. 

From a high-level privacy and security view, MAC addresses are hardware identifiers that remain 

constant unless manually changed (MAC spoofing). They are often broadcast in network 

environments (such as Wi-Fi discovery) and can be used to track devices persistently. Attackers who 
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obtain a MAC address may use it to identify a device in different environments. MAC addresses are 

primarily used in lower-level networking protocols like Ethernet and Wi-Fi. They are unique to a 

device's network interface but are not designed to provide security features or encryption. 

UUIDs can be dynamically generated in software and change over time or during sessions, improving 

privacy. They are not tied to hardware and are not typically broadcast in the same way as MAC 

addresses. UUIDs can also be customised and scoped to different use cases, adding more flexibility 

for securing communications. UUIDs are widely used across various applications, including 

databases, APIs, and security systems, to provide unique identification across multiple platforms and 

use cases. They are more flexible for use in session management, security protocols, and 

environments where devices need to rotate identifiers to enhance security. 

Therefore, the decision to use UUIDs instead of MAC addresses as the keyspace for UUIDs is 

exponentially larger than that for MAC addresses, making UUIDs much harder to guess or brute-

force. UUIDs can be dynamically generated and are not tied to hardware, enhancing privacy. MAC 

addresses, on the other hand, are fixed for a device's network interface and can be used to track 

devices. UUIDs are better suited for session management in security systems, as they can be rotated 

or invalidated easily. UUIDs are more versatile and widely used in various software applications 

beyond just network communication. UUIDs provide stronger security, privacy, and flexibility 

compared to MAC addresses, making them a better choice for IoT systems where unique 

identification and session management are crucial. 

The Auto Detection System (ADS) is the first line of defence in the Bio-Inspired Lightweight 

Polymorphic Security System for IoT devices, mirroring the innate immune system’s surveillance 

function. Much like how immune cells patrol the body, identifying pathogens via molecular patterns, 

the ADS continuously monitors incoming client connections to classify them as approved, 

unapproved, or desynced. This process is executed during the initial handshake between the client 

and server, where the client's UUID, processing capability, and session ID are verified. 

From the server-side implementation: 

if (isUUIDApproved(clientUUID)) { 

if (!isSessionApproved(receivedSessionID, clientUUID)) { 

... 

} 

} 

This logic reflects the system’s internal whitelist (analogous to self-antigen recognition), where only 

clients pre-listed as approved UUIDs can proceed. If a UUID is unrecognised, the system classifies it 
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as a foreign agent and invokes the auto-ejection process. Furthermore, if a UUID is valid but the 

session ID is invalid or missing, the system classifies the client as desynced. 

Mathematically, this detection logic can be modelled as: 

Equation 6.9: ADS Detection Logic 

𝐴𝐷𝑆𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = {

𝐴𝑝𝑝𝑟𝑜𝑣𝑒𝑑  𝑖𝑓 𝑈𝑈𝐼𝐷 ∈ 𝒜 ∧ 𝑆𝑒𝑠𝑠𝑖𝑜𝑛𝐼𝐷𝑣𝑎𝑙𝑖𝑑
𝐷𝑒𝑠𝑦𝑛𝑐𝑒𝑑  𝑖𝑓 𝑈𝑈𝐼𝐷 ∈ 𝒜 ∧ 𝑆𝑒𝑠𝑠𝑖𝑜𝑛𝐼𝐷𝑖𝑛𝑣𝑎𝑙𝑖𝑑

𝑈𝑛𝑎𝑝𝑝𝑟𝑜𝑣𝑒𝑑  𝑖𝑓 𝑈𝑈𝐼𝐷 ∉ 𝒜
 

Where 𝒜 is the set of all pre-approved UUIDs. This system supports real-time surveillance and 

adapts dynamically as new clients attempt to connect, ensuring only legitimate agents are 

authorised into the ecosystem. 

6.4 Testing the Auto Ejection System (AES) 
The Auto Ejection System (AES) functions analogously to the adaptive immune system’s cytotoxic 

response, which identifies and eliminates threats such as infected or malicious cells. Once a client is 

detected as unapproved or desynced, the AES actively terminates the session and purges the 

associated credentials. This ensures the integrity and security of the network by preventing further 

attempts from unauthorised sources. 

In the server code: 

if (!isUUIDApproved(clientUUID)) { 

    client.println("Session ID blocked or compromised"); 

    client.stop(); 

} 

And for session desynchronisation: 

if (clientSSID != ledger[currentLedgerIndex].ssid || clientPassword != 

ledger[currentLedgerIndex].password) { 

    client.println("Error: Desync detected. Please reconnect."); 

    client.stop(); 

} 

These snippets demonstrate that any deviation from the expected UUID list or ledger credentials 

triggers immediate rejection. The AES is crucial for maintaining zero tolerance toward rogue devices 

and serves as the enforcement mechanism for the ADS's classification decisions. 

In formal terms, the ejection policy can be modelled as a binary response: 

Equation 6.10: Ejection Policy Binary Response 

𝐸𝐶𝑙𝑖𝑒𝑛𝑡 = {
1         𝑖𝑓 𝑈𝑈𝐼𝐷 ∉ 𝒜 ∨ 𝐷𝑒𝑠𝑦𝑛𝑐𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑
0         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Where 𝐸𝐶𝑙𝑖𝑒𝑛𝑡 implies forced disconnection. The system thus minimises the attack surface by 

ejecting any actor not conforming to security expectations. 

6.5 Testing the Trigger System (Hormonal Response) and Shared Ledger (Blockchain) 

Change of Security Credentials 
The Trigger and Shared Ledger System operates as a long-term immunological memory. Upon 

identification of a compromised client (e.g., a UUID attempting a connection with forged credentials 

or an expired session), the system does not merely eject the entity, it initiates a triggered response. 

This includes generating new credentials and broadcasting them to all approved clients via the 

Shared Ledger mechanism. 

Implemented in the server code: 

currentLedgerIndex = (currentLedgerIndex + 1) % 5; 

updateServerCredentials(); 

notifyApprovedClients(); 

This logic reflects an active defence model, where detection of an anomaly triggers the propagation 

of new cryptographic materials to the network. Clients then re-authenticate using updated keys and 

credentials, minimising the potential fallout of compromise and realigning network security. 

Let 𝐿𝑛 represent the current ledger index. When a compromise is detected: 

Equation 6.11: Ledger Indexing Logic 

𝐿𝑛+1 = (𝐿𝑛 + 1) 𝑚𝑜𝑑 𝑁 

Where 𝑁 is the total number of available ledger entries. This modulus-based rotation ensures 

circular cycling through pre-defined secure states. Clients that fail to re-align with the updated 

ledger are classified as desynchronised and re-enter the detection-ejection cycle. 

Biologically, this process is analogous to clonal selection and immunological memory formation, 

where antigen exposure triggers an adaptive, systemic response that reshapes the immune 

repertoire and maintains long-term protection. 

6.6 Full System Testing  
The full system testing involves reviewing the system in detail, considering the client and server code 

provided, to see how it handles different scenarios, such as new, returning, and unapproved 

connections. I'll go through each scenario and identify any potential issues, then suggest and 

implement corrections as necessary. This section presents a comprehensive evaluation of the Bio-

Inspired Lightweight Polymorphic Security System for IoT Devices under a variety of real-world 

operational scenarios. The goal of this chapter is to validate the system’s robustness, efficiency, and 



 

121 
 

adaptability through scenario-based testing. Particular emphasis is placed on the integration of 

encryption streams, power-aware reconnections, session expiration, desynchronisation recovery, 

and the dynamic behaviour of the Adaptive Amoeba Battery Curve Mapping Management System 

(AABCMS). 

6.6.1 Scenario 1: New Connection 
The Client-Side actions, firstly, start as the client attempts to connect to the server using stored 

ledger credentials. If unsuccessful, it tries to connect to the honeypot SSID as a fallback. Upon 

successfully connecting to the server, the client receives a session ID, encryption method, and the 

server’s ledger details. The client reads sensor data, encrypts it using the provided encryption 

method, and sends it to the server. 

On the server side, the server generates a session ID for the new connection. The server checks if the 

client’s UUID is approved. If approved, it stores the session details and sends the ledger information 

to the client. The server decrypts and validates the sensor data received and checks whether all 

approved clients have reconnected, potentially stopping the honeypot if necessary. 

Potential edge case issues: if the client fails to connect to the Wi-Fi (either with stored credentials or 

the honeypot), it might repeatedly attempt to reconnect, consuming significant resources. The 

server needs to manage the dynamic session expiration effectively to avoid prematurely ending a 

valid session. 

When a new client connects to the server for the first time, the server initiates a secure handshake 

by generating a unique session ID, transmitting it to the client, and requesting identification details, 

including the UUID and device capabilities. Upon receiving these parameters, the server performs a 

UUID verification through the isUUIDApproved(uuid) function and, if approved, generates and stores 

a new session record. Please see Figure 6.14. 



 

122 
 

 

Figure 6.14: Function for handleNewConnection on the server side to accept new connections. 

It is essential to note the following lines of code: 

String sessionID = generateSessionID(); 

sessions[sessionCount].sessionID = sessionID; 

sessions[sessionCount].clientUUID = clientUUID; 

As a result, the client is granted access to the shared security ledger containing the current SSID, 

password, encryption method, and encryption key. The following code transmits these details 

securely: 

client.println(ledger[currentLedgerIndex].ssid); 

client.println(ledger[currentLedgerIndex].password); 

client.println(ledger[currentLedgerIndex].encryptionKey); 

client.println(ledger[currentLedgerIndex].encryptionMethod); 

Subsequently, the client encrypts its sensor data string using the assigned encryption algorithm (e.g., 

XOR, Caesar, ROT13, SPECK, or SIMON) and transmits it to the server, which decrypts and logs the 

result. This transaction confirms a successful secure onboarding process. 

Mathematically, this session handshake process is denoted by: 
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Equation 6.12: Session Handshake Process 

𝑆𝐼𝐷 = 𝑓(𝑈𝑈𝐼𝐷, 𝑡) 

Where 𝑆𝐼𝐷 is the dynamically generated session identifier, and tt is the timestamp, ensuring 

uniqueness per session. 

6.6.2 Scenario 2: Returning Connection 
On the client side, the actions are similar to a new connection; the client attempts to connect using 

stored credentials. Upon reconnecting, the client sends its session ID to the server to verify the 

connection. Returning clients use their stored session ID and ledger credentials to reconnect. If the 

session is still valid and the UUID is approved, the server allows the connection without 

reinitialisation. 

The Server-Side actions first verify the session ID against stored sessions. If valid, the server 

continues the session without reinitialisation. The server updates the session's expiration time, 

keeping it active for another period. 

Potential edge case issues could arise if the session expires while the client sleeps; the server might 

treat the client as a new connection, leading to unnecessary reinitialisation. The session expiration 

mechanism is sensitive to the client’s sleep mode. If a client’s session expires while sleeping, it may 

be marked as compromised. However, the system is designed to adapt by dynamically extending the 

session expiration time when the client enters sleep mode. 

When a previously connected client reestablishes communication, it transmits its stored session ID 

and UUID. The server cross-verifies these via: 

if (isSessionApproved(receivedSessionID, clientUUID)) 

If valid and not expired, the session is resumed without requiring full reinitialisation. The client is 

synchronised with the latest ledger credentials, unless there has been a recent security-triggered 

update. This mechanism greatly improves efficiency, reduces redundant transmissions, and supports 

device mobility and energy-aware sleep cycles. 

The dynamic session validation logic incorporates timeouts via: 

if (millis() > sessions[i].sessionExpirationTime) 

This ensures that stale or inactive sessions are invalidated, maintaining security integrity across 

asynchronous reconnections. 
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6.6.3 Scenario 3: Unapproved Connection 
The server rejects the connection if a client’s UUID is not on the approved list. The session is flagged 

as compromised, and no further interaction occurs. A Potential Issue is that unapproved clients 

might attempt repeated connections, but the server is robust enough to detect and handle these 

attempts without disrupting approved clients. If a client attempts to connect with a UUID not found 

in the approved UUID list (approvedUUIDs[]), the system immediately blocks the session: 

if (!isUUIDApproved(clientUUID)) { 

  client.println("Session ID blocked or compromised"); 

  client.stop(); 

} 

No credentials or ledger entries are transmitted, and the session is never created. This behaviour 

models a strict whitelist security architecture, essential for preventing intrusions or spoofing attacks. 

The UUID-based identification process is both cryptographically robust and dynamically verifiable. 

The rejection logic is equivalent to the Boolean condition: 

Equation 6.13: Rejection Logic for UUID 

𝐴𝑐𝑐𝑒𝑠𝑠 = {
1, 𝑖𝑓 𝑈𝑈𝐼𝐷 ∈ 𝒜
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Where 𝒜 Denotes the approved UUID set. 

6.6.4 Scenario 4: Session Handling During Sleep Mode 
In power-constrained conditions, the client enters light sleep, deep sleep, or ULP (Ultra Low Power) 

mode, as determined by the Adaptive Amoeba Battery Curve Mapping Management System. 

Depending on the predicted battery health and remaining energy, the system selects the optimal 

sleep strategy to conserve resources. Please see Figure 6.15. 
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Figure 6.15: Function for enterAdaptiveSleepMode on the client side 

Upon waking, the client attempts to reconnect using its previously stored session ID. If the session 

has expired due to prolonged inactivity or timeouts on the server, the session is invalidated, and the 

client is prompted to reinitialise. 

Additionally, to prevent premature disconnection of valid but sleeping clients, the server tracks the 

isSleeping flag per session and refrains from marking such sessions as expired: 

if (sessions[i].approved && millis() > sessions[i].sessionExpirationTime 

&& !sessions[i].isSleeping) { 

  handleCompromisedCredentials(...); 

} 
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This dynamic sleep-aware session management ensures maximum operational uptime and system 

resilience, especially for battery-powered IoT clients. 

One of the critical challenges in energy-constrained environments, such as IoT deployments, is 

maintaining secure communication states while devices periodically enter low-power or sleep 

modes. Within the Bio-Inspired Lightweight Polymorphic Security System for IoT Devices, session 

persistence and re-authentication logic are intelligently coordinated with the device’s battery health 

and operational context. This is particularly essential for platforms like the ESP32-S3, which utilise 

light sleep and deep sleep to prolong battery life while maintaining necessary network awareness 

and response readiness. 

The Adaptive Amoeba Battery Curve Mapping Management System determines the optimal sleep 

mode for the device, ranging from normal operation to light, deep, or ultra-low-power (ULP) states, 

based on real-time voltage readings and battery health estimations. Upon entering sleep, the client 

device disconnects from Wi-Fi, potentially breaking its session with the server. To resolve this 

without compromising session integrity or requiring a full restart of communication logic, the 

framework maintains a persistent client profile through the shared ledger system and dynamic 

session management. 

The key mechanism of session restoration is observed in the connectToWiFiWithStoredLedger() and 

handleLedgerUpdate() functions. These functions rely on the client’s last valid credentials, including 

SSID, password, encryption key, and encryption method, as previously received from the server and 

stored locally. Upon waking from sleep, the device executes a routine that attempts to reconnect 

using the latest ledger entry. 

if (connectToWiFiWithStoredLedger() && client.connect(host, port)) { 

    Serial.println("Reconnected to server using ledger credentials"); 

} 

else { 

    Serial.println("Failed to reconnect to server"); 

    handleDesync(); 

} 

In cases where the server has updated the ledger (e.g., due to a security breach or credential 

rotation) and the client’s stored credentials are out of sync, the client is classified as desynced. The 

handleDesync() function then initiates a secure reconnection through a fallback “honeypot” SSID, 

allowing the client to present its UUID, validate itself as an approved device, and receive the 

updated ledger credentials: 

client.println(uuid);  // Send UUID via honeypot 
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... 

storedLedger[i].ssid = client.readStringUntil('\n'); 

storedLedger[i].password = client.readStringUntil('\n'); 

storedLedger[i].encryptionKey = client.readStringUntil('\n'); 

storedLedger[i].encryptionMethod = client.readStringUntil('\n'); 

This logic ensures that session recovery is autonomous and that security is not sacrificed for power 

conservation. Importantly, the system mimics biological resilience mechanisms, akin to immune 

memory and reactivation upon antigen exposure. The client behaves similarly to a memory B cell, 

retaining knowledge of past interactions and re-engaging upon re-exposure (wake-up), either by 

reasserting its identity (UUID and session ID) or by realigning itself through the updated security 

credentials (ledger rotation). 

Mathematically, the reconnection process can be described as: 

Equation 6.14: Reconnection Logic 

𝑅 = {
1, 𝑖𝑓 (𝑆𝑆𝐼𝐷, 𝑃𝑊𝐷,𝐾, 𝐸)𝑐𝑙𝑖𝑒𝑛𝑡 = (𝑆𝑆𝐼𝐷, 𝑃𝑊𝐷,𝐾, 𝐸)𝑠𝑒𝑟𝑣𝑒𝑟
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Where 𝑅 = 1 implies successful reconnection. If 𝑅 = 0, The desync pathway is initiated: 

Equation 6.15: Desync Pathway Logic 

𝐷𝑒𝑠𝑦𝑛𝑐𝑐𝑙𝑖𝑒𝑛𝑡 → 𝐻𝑜𝑛𝑒𝑦𝑝𝑜𝑡𝑆𝑆𝐼𝐷 → 𝑈𝑈𝐼𝐷𝑣𝑒𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 → 𝐿𝑒𝑑𝑔𝑒𝑟𝑟𝑒𝑓𝑟𝑒𝑠ℎ 

The strategic importance of this approach lies in its minimal disruption to ongoing operations. Even 

when the client enters a prolonged sleep mode to conserve energy, the system guarantees eventual 

reintegration into the secure communication network, assuming the client remains approved. This 

ensures that both energy and security domains are harmonised, fulfilling the core aim of this 

research: an adaptable, resilient, and lightweight polymorphic security system inspired by biological 

principles. 

During extended low-power conditions, the Adaptive Encryption Engine plays a pivotal role in 

preserving communication functionality while minimising energy draw. In these instances, low-cost 

encryption methods (e.g., XOR, Caesar) are favoured, ensuring that lightweight data transactions 

may still occur even under severe energy constraints. As battery levels recover during periodic 

recharging or deep sleep recovery, higher-strength encryption is progressively reinstated without 

manual intervention. 
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6.6.5 Scenario 5: Desynchronisation and Honeypot Response 
If a client reconnects using outdated credentials (SSID or password), desynchronisation is detected 

through: 

if (clientSSID != ledger[currentLedgerIndex].ssid || clientPassword != 

ledger[currentLedgerIndex].password) 

Upon detection, the client is rejected, and a desync message is issued: 

client.println("Error: Desync detected. Please reconnect."); 

client.stop(); 

Simultaneously, the server transitions to honeypot mode via: 

WiFi.softAP("Honeypot_SSID", "Honeypot_Password"); 

Approved clients are notified of the updated credentials via the notifyApprovedClients() function, 

and the startHoneypot() mechanism ensures desynchronised or malicious clients are lured away 

without access to real data or operations. 

6.6.6 Summary and Implications 
The complete system testing affirms that the Bio-Inspired Lightweight Polymorphic Security System 

successfully detects, authenticates, encrypts, synchronises, and manages client connections 

dynamically. The incorporation of UUID-based authentication, dynamic session ID handling, real-

time ledger propagation, and sleep-aware session preservation collectively enhances the resilience 

and security of IoT communications. The design directly reflects biological immune system principles 

such as memory, detection, rejection, and adaptation. The inclusion of the Adaptive Amoeba Battery 

Curve Mapping Management System ensures that all operations, including encryption and 

communication, are responsive to energy availability, making the system suitable for long-term 

deployment in constrained environments. 
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7.0 Chapter Seven: Conclusion, Reflection, Future Work 
The preceding chapters have detailed the conceptualisation, design, implementation, and validation 

of a novel security framework tailored for Internet of Things (IoT) devices: the Bio-Inspired 

Lightweight Polymorphic Security System. Central to this work has been the translation of biological 

principles, particularly from immunology and neurobiology, into robust computational mechanisms 

that address critical challenges in IoT security and energy management. 

This final chapter consolidates the primary research contributions, reflects upon the broader 

implications of the work, and identifies prospective pathways for future development and 

enhancement. In doing so, it reaffirms the essential role that bio-inspiration, adaptive systems, and 

polymorphic methodologies will play in securing the next generation of embedded and distributed 

technologies. 

7.1 Summary of Research Contributions 
This research has successfully introduced a bespoke security framework designed for the stringent 

constraints of IoT environments, characterised by limited processing capabilities, volatile network 

conditions, and finite power supplies. The Bio-Inspired Lightweight Polymorphic Security System 

integrates three fundamental components: 

Firstly, the Approved Clients List Process (ACLP), the Client Connection Logic (CCL), and the Ledger 

Process (LP) collectively form the core of a dynamic session and credential management system. 

These mechanisms enable the adaptive authentication, monitoring, and revocation of client access 

based on real-time behaviours, mirroring biological immune responses in identifying and neutralising 

foreign agents. 

Secondly, this work proposes and implements the Adaptive Amoeba Battery Curve Mapping 

Management System (AABCMS), an innovative subsystem inspired by the adaptive energy regulation 

observed in living organisms. This system dynamically monitors battery health, predicts energy 

reserves through real-time curve mapping, and adaptively alters device behaviour, including 

encryption complexity and connection intervals, to optimise longevity without sacrificing security. 

Thirdly, the research presents empirical validation through rigorous testing on custom-built ESP32-

S3 development boards and comparative analyses using an ATMEGA328P microcontroller. 

Comprehensive testing scenarios, encompassing approved, unapproved, and desynchronised clients, 

demonstrated the framework's resilience, adaptability, and lightweight operational footprint. 

The originality of this thesis lies not only in the technical implementations but in the seamless 

integration of concepts across biology, cybersecurity, embedded engineering, and systems 
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optimisation, offering a multidisciplinary approach to contemporary challenges. Moreover, this 

research contributes to the academic community by providing a scalable and adaptable framework 

that can be expanded for future advances in Artificial Intelligence (AI), Large Language Models 

(LLMs), and post-quantum cryptography domains. 

7.2 Personal Reflection on the Research Journey 
The genesis and evolution of this research have been shaped not merely by theoretical exploration 

but by lived experience and adaptive problem-solving in the face of both technical and personal 

challenges. Initially, the focus of this thesis was solely the conceptualisation and implementation of a 

bio-inspired polymorphic security system for IoT devices. However, the realities of hardware 

experimentation, prolonged field testing, and unforeseen system vulnerabilities revealed a deeper, 

more intricate requirement: the necessity of energy-adaptive intelligence as an inherent component 

of security design. 

The development of the Adaptive Amoeba Battery Curve Mapping Management System (AABCMS) 

emerged organically from these pressures. It was during the critical phases of hardware deployment 

and debugging, at a time when the researcher's health constraints imposed physical limitations on 

the research process, that a profound parallel between biological adaptation and technological 

resilience became apparent. Just as organisms under duress conserve energy and prioritise essential 

functions, so too must embedded systems under energy scarcity adaptively modulate their 

operations to sustain core security processes without risking total failure. 

This realisation necessitated a pivot in the research framework, expanding the initial scope to 

integrate dynamic power management as a first-class citizen of the security architecture. The 

research thus evolved into an exercise not only in system security, but in system survival, drawing 

deeper from immunological and neurobiological principles than initially envisaged. 

This research journey has further underscored the fundamentally interdisciplinary nature of 

addressing real-world technological challenges. While the foundations in embedded systems, 

cryptography, and network security provided a basis, progress was only possible through the 

integration of insights from biology, energy systems engineering, and even psychological models of 

adaptive behaviour. Consequently, this project has fostered a personal intellectual transformation: 

embracing complexity not as an obstacle to be simplified away, but as a living feature of resilient 

systems to be modelled, mirrored, and managed. 

Moreover, the challenges encountered during periods of personal illness paradoxically became a 

critical source of innovation. Constraints on energy, cognition, and time mirrored the constraints 

facing IoT devices in the field, offering an authentic, embodied understanding of what it means to 
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engineer for resilience. The resulting framework, bio-inspired, adaptive, polymorphic, and 

lightweight, is not merely a theoretical construct but a product of necessity forged through the real 

constraints and adversities experienced throughout the doctoral journey. 

In reflection, this research stands as a testament to the principle that the best engineering, like the 

most enduring life forms, is shaped not in ideal conditions but through persistent adaptation under 

duress. It is hoped that this thesis not only contributes meaningfully to the academic fields of 

cybersecurity, IoT engineering, and bio-inspired computation but also serves as a living example of 

resilience in research practice itself. 

7.3 Future Work 
While the bio-inspired lightweight polymorphic security system for IoT devices, complemented by 

the Adaptive Amoeba Battery Curve Mapping Management System (AABCMS), demonstrates 

substantial efficacy in addressing critical security and energy management challenges, several 

promising avenues for future research and development emerge. 

First, a deeper integration of machine learning (ML) and artificial intelligence (AI) techniques 

presents an opportunity to enhance the system’s adaptive capabilities. While the current framework 

relies on deterministic triggers such as session validation failures, desynchronisation events, and 

voltage thresholds, future iterations could employ reinforcement learning (RL) models to 

dynamically optimise sleep cycles, encryption method selection, and ledger updates based on 

predictive models of client behaviour and environmental conditions. For example, employing Q-

Learning or Deep Q Networks (DQN) could allow devices to learn optimal security strategies in 

response to adversarial behaviour or fluctuating network health over time. 

Secondly, the integration of the proposed security framework with Large Language Models (LLMs), 

such as transformer-based architectures, offers intriguing possibilities. LLMs could be utilised not 

only for anomaly detection based on traffic analysis and behaviour modelling, but also to assist in 

the autonomous negotiation of new security protocols between devices, fostering a form of 

emergent, decentralised "immune response" across heterogeneous IoT networks. Such LLM-driven 

adaptations could extend the principle of bio-inspired polymorphism beyond encryption variability 

to encompass real-time security policy evolution. 

Furthermore, the looming reality of quantum computing necessitates a critical future enhancement: 

quantum-resilient encryption. While lightweight block ciphers such as SPECK and SIMON provide 

efficiency in current embedded contexts, they are unlikely to withstand attacks from quantum 

adversaries leveraging Shor’s algorithm or Grover’s algorithm. Therefore, extending the encryption 

suite to incorporate post-quantum cryptographic (PQC) primitives, such as Lattice-based encryption 
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(e.g., Kyber, NTRU) or hash-based signature schemes (e.g., XMSS), will be essential. Here, adaptive 

battery management remains crucial, as PQC algorithms tend to impose substantial computational 

and memory overheads, which must be carefully managed within constrained IoT devices. 

Additionally, expansion into multi-layered shared ledgers offers potential enhancements. While the 

current shared ledger operates as a distributed memory for synchronisation of security credentials, 

future systems could incorporate blockchain-like decentralisation with lightweight consensus 

protocols (e.g., Practical Byzantine Fault Tolerance (PBFT) or Tangle-based Directed Acyclic Graphs 

(DAGs)) to further harden the system against single-point failures and targeted attacks. 

Mathematically, ledger operations could be optimised to maintain 𝑂(1) lookup times and 𝑂(𝑙𝑜𝑔 𝑛) 

update complexities, ensuring scalability even with increased device populations. 

Another promising direction concerns the application of the security framework in bio-electronic 

systems and wearable medical IoT devices, where both energy constraints and security risks are 

amplified. In such contexts, drawing even closer analogies to biological systems, for example, 

modelling shared ledger updates after hormonal signalling cascades or implementing quorum 

sensing mechanisms for collective decision making among IoT clusters, could yield architectures that 

are both robust and organically scalable. 

Finally, from an engineering perspective, a notable opportunity for enhancement lies in the 

integration of a Hardware Abstraction Layer (HAL) into the Bio-Inspired Lightweight Polymorphic 

Security System for IoT Devices. A HAL constitutes a critical intermediary software layer that 

standardises interaction between the application framework and the underlying hardware. Rather 

than relying directly on microcontroller-specific function calls, such as analogRead(), WiFi.begin(), or 

EEPROM-specific methods, the system would interface through abstracted functions that are 

implemented differently depending on the hardware platform. 

For example, a generic function readBatteryVoltage() could internally map to analogRead() on an 

ESP32 platform, but to a different ADC reading mechanism on an ARM Cortex-M0 or RISC-V 

microcontroller. Similarly, connectToWiFi() could abstract away the differences in network stack 

initialisation across different wireless chipsets. 

Mathematically, the coupling C between the software framework and the underlying hardware can 

be described as: 

Equation 7.1: Software Application of HAL 

𝐶𝑑𝑖𝑟𝑒𝑐𝑡 > 𝐶𝐻𝐴𝐿 
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Where, 𝐶𝑑𝑖𝑟𝑒𝑐𝑡 represents direct coupling when hardware-specific code is embedded throughout the 

application, 𝐶𝐻𝐴𝐿 represents the coupling once a HAL is implemented, and ideally 𝐶𝐻𝐴𝐿 → 0, 

achieving maximum portability. 

Introducing a HAL would thus decrease system rigidity and facilitate seamless migration across 

diverse embedded platforms. This approach would also align with modern engineering practices in 

scalable IoT system design, where longevity, adaptability, and hardware-agnostic development are 

prioritised. Moreover, in the context of security-critical systems, a HAL allows for easier auditing, 

updating, and certification processes as hardware layers evolve. 

Therefore, integrating a properly layered HAL constitutes an important refinement direction, 

strengthening the robustness and future resilience of the proposed security framework. 

In summary, the bio-inspired lightweight polymorphic security system presented herein lays a 

powerful foundation. Future work extending its intelligence, resilience, and adaptability through 

ML/AI integration, quantum security readiness, decentralised ledgers, and further biologically-

informed mechanisms offers a rich research agenda poised to advance the frontiers of both 

cybersecurity and embedded systems engineering. 

7.4 Chapter Summary 
This chapter has presented a comprehensive synthesis of the research findings, explored the 

broader implications of the work, and outlined significant directions for future advancement. 

Through the implementation of the bio-inspired lightweight polymorphic security system for IoT 

devices, supported by the Adaptive Amoeba Battery Curve Mapping Management System 

(AABCMS), this thesis demonstrates a novel and highly adaptive approach to securing resource-

constrained environments. 

The Future Work section identified key opportunities to enhance the system's intelligence and 

resilience by integrating machine learning, leveraging large language models for real-time 

adaptation, and preparing for the emerging threats posed by quantum computing. Furthermore, it 

proposed the expansion of the shared ledger architecture towards decentralised, biologically-

inspired consensus models to strengthen synchronisation and trust within distributed IoT networks. 

The personal reflection provided insight into the organic development of the AABCMS, highlighting 

how the research journey itself mirrored the adaptive and self-regulating principles central to both 

biological systems and the proposed security framework. The experience of overcoming technical 

and personal challenges reinforced the broader thesis theme: that flexibility, resilience, and constant 

adaptation are essential in both engineered and natural systems. 
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In uniting principles from embedded systems, cybersecurity, cryptography, biology, and 

immunology, this research makes a significant contribution to the interdisciplinary development of 

secure IoT infrastructures. The bio-inspired methodology offers a robust paradigm capable of 

evolving alongside the rapidly changing technological landscape, ensuring that IoT systems can 

remain secure, energy-efficient, and sustainable in the face of emerging threats. 

This concluding chapter will finalise the thesis by reflecting on the core achievements, evaluating the 

limitations of the current framework, and offering overarching closing remarks regarding the impact 

and legacy of this research within the broader academic and engineering communities. 
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Appendix 0: Introduction 
The appendices presented in this thesis provide comprehensive supplementary documentation to 

support the main body of research. They are intended to ensure the reproducibility, transparency, 

and practical applicability of the developed Bio-Inspired Lightweight Polymorphic Security System for 

IoT Devices. The appendices are systematically organised to include detailed hardware schematics, 

source code listings for both server and client implementations, mathematical models, full 

benchmarking data for encryption algorithms, and supporting technical tables. Each appendix is 

referenced at relevant points throughout the thesis, and its inclusion enables independent 

verification of the research findings, facilitates further development by the research community, and 

enhances the pedagogical value for engineers, students, and practitioners. This structure reflects a 

commitment to open scientific practice, ensuring that every critical aspect of the system—from 

design and implementation to real-world testing—can be independently assessed, extended, or 

adapted for related applications. 
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Appendix 1: Table of consumer IoT boards 
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Figure Appendix 1.1: Table of consumer IoT boards 
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Appendix 2: Custom Development Board 

2.1 Circuit Diagram – Schematic  

 

Figure Appendix 2.1: Circuit Diagram Schematic 
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2.2 PCB – Gerber Layers 

2.2.1 Board Outline 

 

Figure Appendix 2.2: PCB Gerber Layer for the Board Outline 
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2.2.2 Bottom Layer 

 

Figure Appendix 2.3: PCB Gerber layer for the Bottom Layer 
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2.2.3 Bottom Paste Mask Layer 

 

Figure Appendix 2.4: PCB Gerber Layer for the Bottom Paste Mask Layer 
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2.2.4 Bottom Silk Layer 

 

Figure Appendix 2.5: PCB Gerber Layer for the Bottom Silk Layer 

 



 

148 
 

2.2.5 Bottom Solder Mask Layer 

 

Figure Appendix 2.6: PCB Gerber Layer for the Bottom Solder Mask Layer 
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2.2.6 Document 

 

Figure Appendix 2.7: PCB Gerber Layer for the Document 
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2.2.7 Hole 

 

Figure Appendix 2.8: PCB Gerber Layer for the Hole 
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2.2.7 Inner1 - GND 

 

Figure Appendix 2.9: PCB Gerber Layer for the Inner1 - GND 
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2.2.8 Inner2 - VCC 

 

Figure Appendix 2.10: PCB Gerber Layer for the Inner2 - VCC 
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2.2.9 Multi-Layer 

 

Figure Appendix 2.11: PCB Gerber Layer for the Multi-Layer 
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2.2.10 Top Layer 

 

Figure Appendix 2.12: PCB Gerber Layer for the Top Layer 
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2.2.11 Top Paste Mask Layer 

 

Figure Appendix 2.13: PCB Gerber Layer for the Top Paste Mask Layer 
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2.2.12 Top Silk Layer 

 

Figure Appendix 2.14: PCB Gerber Layer for the Top Silk Layer 
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2.2.13 Top Solder Mask Layer 

 

Figure Appendix 2.15: PCB Gerber Layer for the Top Solder Mask Layer 
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2.2.14 GERBER View 

 

Figure Appendix 2.16: PCB Gerber Layer for the GERBER View 
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2.2.15 2D Photo View 

 

Figure Appendix 2.17: PCB Gerber Layer for the 2D Photo View 
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2.3 BoM – Bill of Materials 
Table 8: Bill of Materials For Custom Development Board 
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2.4 Implementation Process 

 

Figure Appendix 2.18: Implementation Process 
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Appendix 3: Basic Server and Client Communication  

3.1 Server-side code 

#include <WiFi.h> 

 

// Replace with your network credentials 

const char *ssid = "*************"; 

const char *password = "*************"; 

 

// Server settings 

WiFiServer server(80); // Port 80 is the default HTTP port 

 

void setup() 

{ 

  Serial.begin(115200); 

 

  // Connect to Wi-Fi network 

  Serial.print("Connecting to "); 

  Serial.println(ssid); 

  WiFi.begin(ssid, password); 

 

  while (WiFi.status() != WL_CONNECTED) 

  { 

    delay(1000); 

    Serial.print("."); 

  } 

 

  Serial.println(""); 

  Serial.println("WiFi connected."); 

  Serial.print("IP address: "); 

  Serial.println(WiFi.localIP()); 

 

  // Start the server 

  server.begin(); 

  Serial.println("Server started."); 

} 

 

void loop() 

{ 

  // Check if a client has connected 

  WiFiClient client = server.available(); 

 

  if (client) 

  { 

    Serial.println("New Client connected."); 

    String currentLine = ""; 

 

    while (client.connected()) 

    { 
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      if (client.available()) 

      { 

        char c = client.read(); 

        Serial.write(c); // Display the data received from the client 

 

        if (c == '\n') 

        { 

          if (currentLine.length() == 0) 

          { 

            // Respond to the client 

            client.println("HTTP/1.1 200 OK"); 

            client.println("Content-type:text/html"); 

            client.println(); 

            client.println("<!DOCTYPE HTML>"); 

            client.println("<html><body><h1>Hello from ESP32 

Server!</h1></body></html>"); 

            break; 

          } 

          else 

          { 

            currentLine = ""; 

          } 

        } 

        else if (c != '\r') 

        { 

          currentLine += c; 

        } 

      } 

    } 

 

    // Give the client time to receive the data 

    delay(10); 

    client.stop(); 

    Serial.println("Client disconnected."); 

  } 

} 
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3.2 Client-side code 

#include <WiFi.h> 

 

// Replace with your network credentials 

const char *ssid = "*************"; 

const char *password = "*************"; 

 

// Server IP and Port (Replace with the server IP address and port) 

const char *host = "192.168.1.10"; // Replace with your server's IP address 

const uint16_t port = 80; 

 

void setup() 

{ 

  Serial.begin(115200); 

 

  // Connect to Wi-Fi network 

  Serial.print("Connecting to "); 

  Serial.println(ssid); 

  WiFi.begin(ssid, password); 

 

  while (WiFi.status() != WL_CONNECTED) 

  { 

    delay(1000); 

    Serial.print("."); 

  } 

 

  Serial.println(""); 

  Serial.println("WiFi connected."); 

  Serial.print("IP address: "); 

  Serial.println(WiFi.localIP()); 

 

  // Connect to the server 

  Serial.print("Connecting to "); 

  Serial.print(host); 

  Serial.print(":"); 

  Serial.println(port); 

 

  WiFiClient client; 

 

  if (client.connect(host, port)) 

  { 

    Serial.println("Connected to server."); 

 

    // Send a request to the server 

    client.println("The quick brown fox jumps over the lazy dog 

1234567890!@#$%^&*()_+-=[]{}|;':,.<>/?\n\t"); 

 

    // Wait for the server response 
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    while (client.connected() && !client.available()) 

    { 

      delay(10); 

    } 

 

    while (client.available()) 

    { 

      String line = client.readStringUntil('\r'); 

      Serial.print(line); 

    } 

 

    Serial.println(); 

    Serial.println("Disconnecting from server..."); 

    client.stop(); 

  } 

  else 

  { 

    Serial.println("Connection to server failed."); 

  } 

} 

 

void loop() 

{ 

  // Add code here to periodically connect and communicate with the server 

  delay(10000); // Wait 10 seconds between connections 

} 
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Appendix 4: Adaptive Amoeba Complexity  
#include <Arduino.h> 

#include <stdint.h> 

 

// Definitions for various encryption configurations 

#define SPECK_ROUNDS_128 22 

#define SPECK_ROUNDS_256 32 

#define SIMON_ROUNDS_128 32 

#define SIMON_ROUNDS_256 44 

 

// Define key sizes in 32-bit words for SPECK and SIMON 

#define SPECK_KEY_WORDS 4 // SPECK uses 4 words (128 bits key) 

#define SIMON_KEY_WORDS 4 // SIMON uses 4 words (128 bits key) 

 

char data[] = "The quick brown fox jumps over the lazy dog 

1234567890!@#$%^&*()_+-=[]{}|;':,.<>/?\n\t"; 

unsigned long start_time, end_time; 

 

extern unsigned int __heap_start; 

extern void *__brkval; 

 

int freeMemory() 

{ 

  int v; 

  return (int)&v - (__brkval == 0 ? (int)&__heap_start : (int)__brkval); 

} 

 

// XOR Encryption 

void xor_encryption() 

{ 

  char key = 0xAA; 

  char data_copy[sizeof(data)]; 

  strcpy(data_copy, data); 

 

  start_time = micros(); 

  for (int i = 0; i < sizeof(data_copy) - 1; i++) 

  { 

    data_copy[i] ^= key; 

  } 

  end_time = micros(); 

 

  Serial.print("XOR Encryption: "); 

  Serial.print("Time taken (microseconds): "); 

  Serial.println(end_time - start_time); 

} 

 

// Caesar Cipher 

void caesar_cipher() 
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{ 

  int shift = 3; 

  char data_copy[sizeof(data)]; 

  strcpy(data_copy, data); 

 

  start_time = micros(); 

  for (int i = 0; i < sizeof(data_copy) - 1; i++) 

  { 

    if (isalpha(data_copy[i])) 

    { 

      char offset = isupper(data_copy[i]) ? 'A' : 'a'; 

      data_copy[i] = (data_copy[i] - offset + shift) % 26 + offset; 

    } 

  } 

  end_time = micros(); 

 

  Serial.print("Caesar Cipher: "); 

  Serial.print("Time taken (microseconds): "); 

  Serial.println(end_time - start_time); 

} 

 

// ROT13 Encryption 

void rot13_encryption() 

{ 

  char data_copy[sizeof(data)]; 

  strcpy(data_copy, data); 

 

  start_time = micros(); 

  for (int i = 0; i < sizeof(data_copy) - 1; i++) 

  { 

    if (isalpha(data_copy[i])) 

    { 

      char offset = isupper(data_copy[i]) ? 'A' : 'a'; 

      data_copy[i] = (data_copy[i] - offset + 13) % 26 + offset; 

    } 

  } 

  end_time = micros(); 

 

  Serial.print("ROT13 Encryption: "); 

  Serial.print("Time taken (microseconds): "); 

  Serial.println(end_time - start_time); 

} 

 

// SPECK Encryption 

void speck_round(uint32_t &x, uint32_t &y, uint32_t k) 

{ 

  x = (x >> 8) | (x << (32 - 8)); 

  x += y; 
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  x ^= k; 

  y = (y << 3) | (y >> (32 - 3)); 

  y ^= x; 

} 

 

void speck_expand(uint32_t const K[], uint32_t S[], uint8_t rounds) 

{ 

  uint32_t i, b = K[0]; 

  uint32_t a[SPECK_KEY_WORDS - 1]; 

  for (i = 0; i < (SPECK_KEY_WORDS - 1); i++) 

  { 

    a[i] = K[i + 1]; 

  } 

  S[0] = b; 

  for (i = 0; i < rounds - 1; i++) 

  { 

    speck_round(a[i % (SPECK_KEY_WORDS - 1)], b, i); 

    S[i + 1] = b; 

  } 

} 

 

void speck_encrypt(uint32_t plaintext[2], uint32_t ciphertext[2], uint32_t 

const key_schedule[], uint8_t rounds) 

{ 

  uint32_t i; 

  ciphertext[0] = plaintext[0]; 

  ciphertext[1] = plaintext[1]; 

  for (i = 0; i < rounds; i++) 

  { 

    speck_round(ciphertext[1], ciphertext[0], key_schedule[i]); 

  } 

} 

 

void speck_encryption(uint8_t key_size) 

{ 

  uint8_t rounds = (key_size == 128) ? SPECK_ROUNDS_128 : SPECK_ROUNDS_256; 

  uint32_t key[SPECK_KEY_WORDS] = {0x01020304, 0x05060708, 0x090A0B0C, 

0x0D0E0F10}; 

  uint32_t key_schedule[rounds]; 

  uint32_t plaintext[2], ciphertext[2]; 

 

  speck_expand(key, key_schedule, rounds); 

 

  start_time = micros(); 

  for (int i = 0; i < sizeof(data) - 1; i += 8) 

  { 

    memcpy(plaintext, data + i, 8); 

    speck_encrypt(plaintext, ciphertext, key_schedule, rounds); 
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  } 

  end_time = micros(); 

 

  Serial.print("SPECK Encryption ("); 

  Serial.print(key_size); 

  Serial.print(" bits): "); 

  Serial.print("Time taken (microseconds): "); 

  Serial.println(end_time - start_time); 

} 

 

// SIMON Encryption 

void simon_round(uint32_t &x, uint32_t &y, uint32_t k) 

{ 

  uint32_t tmp = (x << 1) | (x >> (32 - 1)); 

  tmp &= (tmp << 8); 

  tmp ^= y; 

  y ^= k; 

  y = (y >> 1) | (y << (32 - 1)); 

} 

 

void simon_expand(uint32_t const K[], uint32_t S[], uint8_t rounds) 

{ 

  uint32_t i, b = K[0]; 

  uint32_t a[SIMON_KEY_WORDS - 1]; 

  for (i = 0; i < (SIMON_KEY_WORDS - 1); i++) 

  { 

    a[i] = K[i + 1]; 

  } 

  S[0] = b; 

  for (i = 0; i < rounds - 1; i++) 

  { 

    simon_round(a[i % (SIMON_KEY_WORDS - 1)], b, i); 

    S[i + 1] = b; 

  } 

} 

 

void simon_encrypt(uint32_t plaintext[2], uint32_t ciphertext[2], uint32_t 

const key_schedule[], uint8_t rounds) 

{ 

  uint32_t i; 

  ciphertext[0] = plaintext[0]; 

  ciphertext[1] = plaintext[1]; 

  for (i = 0; i < rounds; i++) 

  { 

    simon_round(ciphertext[1], ciphertext[0], key_schedule[i]); 

  } 

} 
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void simon_encryption(uint8_t key_size) 

{ 

  uint8_t rounds = (key_size == 128) ? SIMON_ROUNDS_128 : SIMON_ROUNDS_256; 

  uint32_t key[SIMON_KEY_WORDS] = {0x01020304, 0x05060708, 0x090A0B0C, 

0x0D0E0F10}; 

  uint32_t key_schedule[rounds]; 

  uint32_t plaintext[2], ciphertext[2]; 

 

  simon_expand(key, key_schedule, rounds); 

 

  start_time = micros(); 

  for (int i = 0; i < sizeof(data) - 1; i += 8) 

  { 

    memcpy(plaintext, data + i, 8); 

    simon_encrypt(plaintext, ciphertext, key_schedule, rounds); 

  } 

  end_time = micros(); 

 

  Serial.print("SIMON Encryption ("); 

  Serial.print(key_size); 

  Serial.print(" bits): "); 

  Serial.print("Time taken (microseconds): "); 

  Serial.println(end_time - start_time); 

} 

 

void setup() 

{ 

  Serial.begin(115200); 

 

  int available_memory = freeMemory(); 

  Serial.print("Available memory: "); 

  Serial.println(available_memory); 

 

#if defined(ARDUINO_ARCH_ESP32) 

  Serial.println("ESP32 detected"); 

  if (available_memory > 10000) 

  { 

    speck_encryption(256); 

    simon_encryption(256); 

  } 

  else 

  { 

    speck_encryption(128); 

    simon_encryption(128); 

  } 

#elif defined(ARDUINO_ARCH_AVR) 

  Serial.println("Arduino Nano (AVR) detected"); 

  xor_encryption(); 
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  caesar_cipher(); 

  rot13_encryption(); 

#elif defined(ARDUINO_ARCH_STM32) 

  Serial.println("STM32 detected"); 

  if (available_memory > 5000) 

  { 

    speck_encryption(256); 

    simon_encryption(256); 

  } 

  else 

  { 

    speck_encryption(128); 

    simon_encryption(128); 

  } 

#elif defined(ARDUINO_ARCH_SAMD) 

  Serial.println("SAMD detected (Arduino Zero, MKR series)"); 

  if (available_memory > 6000) 

  { 

    speck_encryption(256); 

    simon_encryption(256); 

  } 

  else 

  { 

    speck_encryption(128); 

    simon_encryption(128); 

  } 

#elif defined(TEENSYDUINO) 

  Serial.println("Teensy detected"); 

  if (available_memory > 10000) 

  { 

    speck_encryption(256); 

    simon_encryption(256); 

  } 

  else 

  { 

    speck_encryption(128); 

    simon_encryption(128); 

  } 

#elif defined(ARDUINO_ARCH_ESP8266) 

  Serial.println("ESP8266 detected"); 

  if (available_memory > 5000) 

  { 

    speck_encryption(256); 

    simon_encryption(256); 

  } 

  else 

  { 

    speck_encryption(128); 
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    simon_encryption(128); 

  } 

#else 

  Serial.println("Unknown board detected"); 

  // Default to simple encryption method 

s 

  xor_encryption(); 

#endif 

} 

 

void loop() 

{ 

  // Not needed for this test 

} 
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Appendix 5: Encrypted Server and Client Communication  

5.1 Server-side code – Lightweight Encryption 

#include <WiFi.h> 

#include <stdint.h> 

 

// Replace with your network credentials 

const char *ssid = "*************"; 

const char *password = "*************"; 

 

// Server settings 

WiFiServer server(80); // Port 80 is the default HTTP port 

 

// Definitions for various encryption configurations 

#define SPECK_ROUNDS_128 22 

#define SPECK_ROUNDS_256 32 

#define SIMON_ROUNDS_128 32 

#define SIMON_ROUNDS_256 44 

 

// Define key sizes in 32-bit words for SPECK and SIMON 

#define SPECK_KEY_WORDS 4 // SPECK uses 4 words (128 bits key) 

#define SIMON_KEY_WORDS 4 // SIMON uses 4 words (128 bits key) 

 

// XOR Encryption/Decryption 

void xor_crypt(char *data, char key) 

{ 

  for (int i = 0; i < strlen(data); i++) 

  { 

    data[i] ^= key; 

  } 

} 

 

// Caesar Cipher Encryption/Decryption 

void caesar_crypt(char *data, int shift) 

{ 

  for (int i = 0; i < strlen(data); i++) 

  { 

    if (isalpha(data[i])) 

    { 

      char offset = isupper(data[i]) ? 'A' : 'a'; 

      data[i] = (data[i] - offset + shift) % 26 + offset; 

    } 

  } 

} 

 

// ROT13 Encryption/Decryption 

void rot13_crypt(char *data) 

{ 

  caesar_crypt(data, 13); 
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} 

 

// SPECK Encryption 

void speck_round(uint32_t &x, uint32_t &y, uint32_t k) 

{ 

  x = (x >> 8) | (x << (32 - 8)); 

  x += y; 

  x ^= k; 

  y = (y << 3) | (y >> (32 - 3)); 

  y ^= x; 

} 

 

void speck_expand(uint32_t const K[], uint32_t S[], uint8_t rounds) 

{ 

  uint32_t i, b = K[0]; 

  uint32_t a[SPECK_KEY_WORDS - 1]; 

  for (i = 0; i < (SPECK_KEY_WORDS - 1); i++) 

  { 

    a[i] = K[i + 1]; 

  } 

  S[0] = b; 

  for (i = 0; i < rounds - 1; i++) 

  { 

    speck_round(a[i % (SPECK_KEY_WORDS - 1)], b, i); 

    S[i + 1] = b; 

  } 

} 

 

void speck_encrypt(uint32_t plaintext[2], uint32_t ciphertext[2], uint32_t 

const key_schedule[], uint8_t rounds) 

{ 

  uint32_t i; 

  ciphertext[0] = plaintext[0]; 

  ciphertext[1] = plaintext[1]; 

  for (i = 0; i < rounds; i++) 

  { 

    speck_round(ciphertext[1], ciphertext[0], key_schedule[i]); 

  } 

} 

 

// SIMON Encryption 

void simon_round(uint32_t &x, uint32_t &y, uint32_t k) 

{ 

  uint32_t tmp = (x << 1) | (x >> (32 - 1)); 

  tmp &= (tmp << 8); 

  tmp ^= y; 

  y ^= k; 

  y = (y >> 1) | (y << (32 - 1)); 
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} 

 

void simon_expand(uint32_t const K[], uint32_t S[], uint8_t rounds) 

{ 

  uint32_t i, b = K[0]; 

  uint32_t a[SIMON_KEY_WORDS - 1]; 

  for (i = 0; i < (SIMON_KEY_WORDS - 1); i++) 

  { 

    a[i] = K[i + 1]; 

  } 

  S[0] = b; 

  for (i = 0; i < rounds - 1; i++) 

  { 

    simon_round(a[i % (SIMON_KEY_WORDS - 1)], b, i); 

    S[i + 1] = b; 

  } 

} 

 

void simon_encrypt(uint32_t plaintext[2], uint32_t ciphertext[2], uint32_t 

const key_schedule[], uint8_t rounds) 

{ 

  uint32_t i; 

  ciphertext[0] = plaintext[0]; 

  ciphertext[1] = plaintext[1]; 

  for (i = 0; i < rounds; i++) 

  { 

    simon_round(ciphertext[1], ciphertext[0], key_schedule[i]); 

  } 

} 

 

void setup() 

{ 

  Serial.begin(115200); 

 

  // Connect to Wi-Fi network 

  Serial.print("Connecting to "); 

  Serial.println(ssid); 

  WiFi.begin(ssid, password); 

 

  while (WiFi.status() != WL_CONNECTED) 

  { 

    delay(1000); 

    Serial.print("."); 

  } 

 

  Serial.println(""); 

  Serial.println("WiFi connected."); 

  Serial.print("IP address: "); 
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  Serial.println(WiFi.localIP()); 

 

  // Start the server 

  server.begin(); 

  Serial.println("Server started."); 

} 

 

void loop() 

{ 

  // Check if a client has connected 

  WiFiClient client = server.available(); 

 

  if (client) 

  { 

    Serial.println("New Client connected."); 

    char data[] = "Hello from ESP32 Server!"; 

    char key = 0xAA; // Key for XOR 

    int shift = 3;   // Shift for Caesar Cipher 

 

    // Example: Encrypt the message using XOR 

    xor_crypt(data, key); 

 

    // Send the encrypted message to the client 

    client.write((const uint8_t *)data, strlen(data)); 

    Serial.print("Encrypted message sent: "); 

    Serial.println(data); 

 

    // Disconnect the client 

    client.stop(); 

    Serial.println("Client disconnected."); 

  } 

} 
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5.2 Client-side code – Lightweight Encryption 

#include <WiFi.h> 

#include <stdint.h> 

 

// Replace with your network credentials 

const char *ssid = "Your_SSID"; 

const char *password = "Your_PASSWORD"; 

 

// Server IP and Port (Replace with the server IP address and port) 

const char *host = "192.168.1.10"; // Replace with your server's IP address 

const uint16_t port = 80; 

 

// XOR Decryption 

void xor_crypt(char *data, char key) 

{ 

  for (int i = 0; i < strlen(data); i++) 

  { 

    data[i] ^= key; 

  } 

} 

 

// Caesar Cipher Decryption 

void caesar_crypt(char *data, int shift) 

{ 

  caesar_crypt(data, 26 - shift); 

} 

 

// ROT13 Decryption 

void rot13_crypt(char *data) 

{ 

  caesar_crypt(data, 13); 

} 

 

void setup() 

{ 

  Serial.begin(115200); 

 

  // Connect to Wi-Fi network 

  Serial.print("Connecting to "); 

  Serial.println(ssid); 

  WiFi.begin(ssid, password); 

 

  while (WiFi.status() != WL_CONNECTED) 

  { 

    delay(1000); 

    Serial.print("."); 

  } 
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  Serial.println(""); 

  Serial.println("WiFi connected."); 

  Serial.print("IP address: "); 

  Serial.println(WiFi.localIP()); 

 

  // Connect to the server 

  Serial.print("Connecting to "); 

  Serial.print(host); 

  Serial.print(":"); 

  Serial.println(port); 

 

  WiFiClient client; 

 

  if (client.connect(host, port)) 

  { 

    Serial.println("Connected to server."); 

 

    // Receive the encrypted message from the server 

    char encrypted_data[64]; 

    int len = client.readBytes(encrypted_data, sizeof(encrypted_data) - 1); 

    encrypted_data[len] = '\0'; 

 

    Serial.print("Encrypted message received: "); 

    Serial.println(encrypted_data); 

 

    // Example: Decrypt the message using XOR 

    char key = 0xAA; // Key for XOR 

    xor_crypt(encrypted_data, key); 

 

    Serial.print("Decrypted message: "); 

    Serial.println(encrypted_data); 

 

    Serial.println("Disconnecting from server..."); 

    client.stop(); 

  } 

  else 

  { 

    Serial.println("Connection to server failed."); 

  } 

} 

 

void loop() 

{ 

  // Add code here to periodically connect and communicate with the server 

  delay(10000); // Wait 10 seconds between connections 

} 
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5.3 Server-side code – Block Cipher Encryption 

#include <WiFi.h> 

#include <stdint.h> 

 

// Replace with your network credentials 

const char *ssid = "*************"; 

const char *password = "*************"; 

 

// Server settings 

WiFiServer server(80); // Port 80 is the default HTTP port 

 

// Definitions for various encryption configurations 

#define SPECK_ROUNDS_128 22 

#define SPECK_ROUNDS_256 32 

#define SIMON_ROUNDS_128 32 

#define SIMON_ROUNDS_256 44 

 

// Define key sizes in 32-bit words for SPECK and SIMON 

#define SPECK_KEY_WORDS 4 // SPECK uses 4 words (128 bits key) 

#define SIMON_KEY_WORDS 4 // SIMON uses 4 words (128 bits key) 

 

// SPECK Encryption Functions 

void speck_round(uint32_t &x, uint32_t &y, uint32_t k) 

{ 

  x = (x >> 8) | (x << (32 - 8)); 

  x += y; 

  x ^= k; 

  y = (y << 3) | (y >> (32 - 3)); 

  y ^= x; 

} 

 

void speck_expand(uint32_t const K[], uint32_t S[], uint8_t rounds) 

{ 

  uint32_t i, b = K[0]; 

  uint32_t a[SPECK_KEY_WORDS - 1]; 

  for (i = 0; i < (SPECK_KEY_WORDS - 1); i++) 

  { 

    a[i] = K[i + 1]; 

  } 

  S[0] = b; 

  for (i = 0; i < rounds - 1; i++) 

  { 

    speck_round(a[i % (SPECK_KEY_WORDS - 1)], b, i); 

    S[i + 1] = b; 

  } 

} 
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void speck_encrypt(uint32_t plaintext[2], uint32_t ciphertext[2], uint32_t 

const key_schedule[], uint8_t rounds) 

{ 

  uint32_t i; 

  ciphertext[0] = plaintext[0]; 

  ciphertext[1] = plaintext[1]; 

  for (i = 0; i < rounds; i++) 

  { 

    speck_round(ciphertext[1], ciphertext[0], key_schedule[i]); 

  } 

} 

 

// SIMON Encryption Functions 

void simon_round(uint32_t &x, uint32_t &y, uint32_t k) 

{ 

  uint32_t tmp = (x << 1) | (x >> (32 - 1)); 

  tmp &= (tmp << 8); 

  tmp ^= y; 

  y ^= k; 

  y = (y >> 1) | (y << (32 - 1)); 

} 

 

void simon_expand(uint32_t const K[], uint32_t S[], uint8_t rounds) 

{ 

  uint32_t i, b = K[0]; 

  uint32_t a[SIMON_KEY_WORDS - 1]; 

  for (i = 0; i < (SIMON_KEY_WORDS - 1); i++) 

  { 

    a[i] = K[i + 1]; 

  } 

  S[0] = b; 

  for (i = 0; i < rounds - 1; i++) 

  { 

    simon_round(a[i % (SIMON_KEY_WORDS - 1)], b, i); 

    S[i + 1] = b; 

  } 

} 

 

void simon_encrypt(uint32_t plaintext[2], uint32_t ciphertext[2], uint32_t 

const key_schedule[], uint8_t rounds) 

{ 

  uint32_t i; 

  ciphertext[0] = plaintext[0]; 

  ciphertext[1] = plaintext[1]; 

  for (i = 0; i < rounds; i++) 

  { 

    simon_round(ciphertext[1], ciphertext[0], key_schedule[i]); 

  } 
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} 

 

void setup() 

{ 

  Serial.begin(115200); 

 

  // Connect to Wi-Fi network 

  Serial.print("Connecting to "); 

  Serial.println(ssid); 

  WiFi.begin(ssid, password); 

 

  while (WiFi.status() != WL_CONNECTED) 

  { 

    delay(1000); 

    Serial.print("."); 

  } 

 

  Serial.println(""); 

  Serial.println("WiFi connected."); 

  Serial.print("IP address: "); 

  Serial.println(WiFi.localIP()); 

 

  // Start the server 

  server.begin(); 

  Serial.println("Server started."); 

} 

 

void loop() 

{ 

  // Check if a client has connected 

  WiFiClient client = server.available(); 

 

  if (client) 

  { 

    Serial.println("New Client connected."); 

 

    // Choose encryption method 

    bool use_speck = true; // Set to false to use SIMON 

 

    char message[] = "Hello from ESP32 Server!"; 

    uint32_t plaintext[2], ciphertext[2]; 

    memcpy(plaintext, message, 8); // Encrypt the first 8 bytes for simplicity 

 

    if (use_speck) 

    { 

      // SPECK Encryption 

      uint8_t rounds = SPECK_ROUNDS_128; 
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      uint32_t key[SPECK_KEY_WORDS] = {0x01020304, 0x05060708, 0x090A0B0C, 

0x0D0E0F10}; 

      uint32_t key_schedule[rounds]; 

 

      speck_expand(key, key_schedule, rounds); 

      speck_encrypt(plaintext, ciphertext, key_schedule, rounds); 

 

      client.write((const uint8_t *)ciphertext, sizeof(ciphertext)); 

      Serial.println("Encrypted message sent with SPECK."); 

    } 

    else 

    { 

      // SIMON Encryption 

      uint8_t rounds = SIMON_ROUNDS_128; 

      uint32_t key[SIMON_KEY_WORDS] = {0x01020304, 0x05060708, 0x090A0B0C, 

0x0D0E0F10}; 

      uint32_t key_schedule[rounds]; 

 

      simon_expand(key, key_schedule, rounds); 

      simon_encrypt(plaintext, ciphertext, key_schedule, rounds); 

 

      client.write((const uint8_t *)ciphertext, sizeof(ciphertext)); 

      Serial.println("Encrypted message sent with SIMON."); 

    } 

 

    // Disconnect the client 

    client.stop(); 

    Serial.println("Client disconnected."); 

  } 

} 
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5.4 Client-side code – Block Cipher Encryption 

#include <WiFi.h> 

#include <stdint.h> 

 

// Replace with your network credentials 

const char *ssid = "*************"; 

const char *password = "*************"; 

 

// Server IP and Port (Replace with the server IP address and port) 

const char *host = "192.168.1.10"; // Replace with your server's IP address 

const uint16_t port = 80; 

 

// Definitions for various encryption configurations 

#define SPECK_ROUNDS_128 27 // Correct rounds for SPECK-128/128 

#define SIMON_ROUNDS_128 44 // Correct rounds for SIMON-128/128 

#define SPECK_KEY_WORDS 4   // SPECK uses 4 words (128 bits key) 

#define SIMON_KEY_WORDS 4   // SIMON uses 4 words (128 bits key) 

 

// SPECK Key Expansion 

void speck_expand(uint32_t const K[], uint32_t S[], uint8_t rounds) 

{ 

  uint32_t i, b = K[0]; 

  uint32_t a[SPECK_KEY_WORDS - 1]; 

  for (i = 0; i < (SPECK_KEY_WORDS - 1); i++) 

  { 

    a[i] = K[i + 1]; 

  } 

  S[0] = b; 

  for (i = 0; i < rounds - 1; i++) 

  { 

    uint32_t &x = a[i % (SPECK_KEY_WORDS - 1)]; 

    b = (b >> 8) | (b << (32 - 8)); 

    b += x; 

    b ^= i; 

    x = (x << 3) | (x >> (32 - 3)); 

    x ^= b; 

    S[i + 1] = b; 

  } 

} 

 

// SPECK Decryption Functions 

void speck_round_inv(uint32_t &x, uint32_t &y, uint32_t k) 

{ 

  y ^= x; 

  y = (y >> 3) | (y << (32 - 3)); 

  x ^= k; 

  x -= y; 

  x = (x << 8) | (x >> (32 - 8)); 
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} 

 

void speck_decrypt(uint32_t ciphertext[2], uint32_t plaintext[2], uint32_t 

const key_schedule[], uint8_t rounds) 

{ 

  uint32_t i; 

  plaintext[0] = ciphertext[0]; 

  plaintext[1] = ciphertext[1]; 

  for (i = rounds; i > 0; i--) 

  { 

    speck_round_inv(plaintext[1], plaintext[0], key_schedule[i - 1]); 

  } 

} 

 

// SIMON Key Expansion 

void simon_expand(uint32_t const K[], uint32_t S[], uint8_t rounds) 

{ 

  uint32_t i, b = K[0]; 

  uint32_t a[SIMON_KEY_WORDS - 1]; 

  for (i = 0; i < (SIMON_KEY_WORDS - 1); i++) 

  { 

    a[i] = K[i + 1]; 

  } 

  S[0] = b; 

  for (i = 0; i < rounds - 1; i++) 

  { 

    uint32_t &x = a[i % (SIMON_KEY_WORDS - 1)]; 

    uint32_t tmp = (b << 1) | (b >> (32 - 1)); 

    tmp &= (tmp << 8); 

    tmp ^= x; 

    x ^= i; 

    x = (x >> 1) | (x << (32 - 1)); 

    S[i + 1] = b; 

    b = tmp; 

  } 

} 

 

// SIMON Decryption Functions 

void simon_round_inv(uint32_t &x, uint32_t &y, uint32_t k) 

{ 

  y ^= x; 

  x ^= k; 

  uint32_t tmp = (x << 1) | (x >> (32 - 1)); 

  tmp &= (tmp << 8); 

  y = tmp ^ y; 

  x = (x >> 1) | (x << (32 - 1)); 

} 
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void simon_decrypt(uint32_t ciphertext[2], uint32_t plaintext[2], uint32_t 

const key_schedule[], uint8_t rounds) 

{ 

  uint32_t i; 

  plaintext[0] = ciphertext[0]; 

  plaintext[1] = ciphertext[1]; 

  for (i = rounds; i > 0; i--) 

  { 

    simon_round_inv(plaintext[1], plaintext[0], key_schedule[i - 1]); 

  } 

} 

 

void setup() 

{ 

  Serial.begin(115200); 

 

  // Connect to Wi-Fi network 

  Serial.print("Connecting to "); 

  Serial.println(ssid); 

  WiFi.begin(ssid, password); 

 

  while (WiFi.status() != WL_CONNECTED) 

  { 

    delay(1000); 

    Serial.print("."); 

  } 

 

  Serial.println(""); 

  Serial.println("WiFi connected."); 

  Serial.print("IP address: "); 

  Serial.println(WiFi.localIP()); 

 

  // Connect to the server 

  Serial.print("Connecting to "); 

  Serial.print(host); 

  Serial.print(":"); 

  Serial.println(port); 

 

  WiFiClient client; 

 

  if (client.connect(host, port)) 

  { 

    Serial.println("Connected to server."); 

 

    uint32_t ciphertext[2]; 

    int len = client.readBytes((char *)ciphertext, sizeof(ciphertext)); 

    if (len != sizeof(ciphertext)) 

    { 
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      Serial.println("Error: Did not receive expected ciphertext size."); 

      return; 

    } 

 

    // Choose decryption method 

    bool use_speck = true; // Set to false to use SIMON 

 

    uint32_t plaintext[2]; 

 

    if (use_speck) 

    { 

      // SPECK Decryption 

      uint8_t rounds = SPECK_ROUNDS_128; 

      uint32_t key[SPECK_KEY_WORDS] = {0x01020304, 0x05060708, 0x090A0B0C, 

0x0D0E0F10}; 

      uint32_t key_schedule[rounds]; 

 

      speck_expand(key, key_schedule, rounds); 

      speck_decrypt(ciphertext, plaintext, key_schedule, rounds); 

 

      Serial.println("Decrypted message with SPECK:"); 

      Serial.println((char *)plaintext); 

    } 

    else 

    { 

      // SIMON Decryption 

      uint8_t rounds = SIMON_ROUNDS_128; 

      uint32_t key[SIMON_KEY_WORDS] = {0x01020304, 0x05060708, 0x090A0B0C, 

0x0D0E0F10}; 

      uint32_t key_schedule[rounds]; 

 

      simon_expand(key, key_schedule, rounds); 

      simon_decrypt(ciphertext, plaintext, key_schedule, rounds); 

 

      Serial.println("Decrypted message with SIMON:"); 

      Serial.println((char *)plaintext); 

    } 

 

    Serial.println("Disconnecting from server..."); 

    client.stop(); 

  } 

  else 

  { 

    Serial.println("Connection to server failed."); 

  } 

} 

 

void loop() 
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{ 

  // Add code here to periodically connect and communicate with the server 

  delay(10000); // Wait 10 seconds between connections 

} 
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Appendix 6: Sensor Encrypted Communication For Server and Client  

6.1 Lightweight server-side code 

#include <WiFi.h> 

#include <stdint.h> 

 

// Replace with your network credentials 

const char *ssid = "*************"; 

const char *password = "*************"; 

 

// Server settings 

WiFiServer server(80); // Port 80 is the default HTTP port 

 

// Definitions for various encryption configurations 

#define SPECK_ROUNDS_128 22 

#define SPECK_ROUNDS_256 32 

#define SIMON_ROUNDS_128 32 

#define SIMON_ROUNDS_256 44 

 

// Define key sizes in 32-bit words for SPECK and SIMON 

#define SPECK_KEY_WORDS 4 // SPECK uses 4 words (128 bits key) 

#define SIMON_KEY_WORDS 4 // SIMON uses 4 words (128 bits key) 

 

// XOR Encryption/Decryption 

void xor_crypt(char *data, char key) 

{ 

  for (int i = 0; i < strlen(data); i++) 

  { 

    data[i] ^= key; 

  } 

} 

 

// Caesar Cipher Encryption/Decryption 

void caesar_crypt(char *data, int shift) 

{ 

  for (int i = 0; i < strlen(data); i++) 

  { 

    if (isalpha(data[i])) 

    { 

      char offset = isupper(data[i]) ? 'A' : 'a'; 

      data[i] = (data[i] - offset + shift) % 26 + offset; 

    } 

  } 

} 

 

// ROT13 Encryption/Decryption 

void rot13_crypt(char *data) 

{ 

  caesar_crypt(data, 13); 



 

189 
 

} 

 

// SPECK Encryption 

void speck_round(uint32_t &x, uint32_t &y, uint32_t k) 

{ 

  x = (x >> 8) | (x << (32 - 8)); 

  x += y; 

  x ^= k; 

  y = (y << 3) | (y >> (32 - 3)); 

  y ^= x; 

} 

 

void speck_expand(uint32_t const K[], uint32_t S[], uint8_t rounds) 

{ 

  uint32_t i, b = K[0]; 

  uint32_t a[SPECK_KEY_WORDS - 1]; 

  for (i = 0; i < (SPECK_KEY_WORDS - 1); i++) 

  { 

    a[i] = K[i + 1]; 

  } 

  S[0] = b; 

  for (i = 0; i < rounds - 1; i++) 

  { 

    speck_round(a[i % (SPECK_KEY_WORDS - 1)], b, i); 

    S[i + 1] = b; 

  } 

} 

 

void speck_encrypt(uint32_t plaintext[2], uint32_t ciphertext[2], uint32_t 

const key_schedule[], uint8_t rounds) 

{ 

  uint32_t i; 

  ciphertext[0] = plaintext[0]; 

  ciphertext[1] = plaintext[1]; 

  for (i = 0; i < rounds; i++) 

  { 

    speck_round(ciphertext[1], ciphertext[0], key_schedule[i]); 

  } 

} 

 

// SIMON Encryption 

void simon_round(uint32_t &x, uint32_t &y, uint32_t k) 

{ 

  uint32_t tmp = (x << 1) | (x >> (32 - 1)); 

  tmp &= (tmp << 8); 

  tmp ^= y; 

  y ^= k; 

  y = (y >> 1) | (y << (32 - 1)); 
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} 

 

void simon_expand(uint32_t const K[], uint32_t S[], uint8_t rounds) 

{ 

  uint32_t i, b = K[0]; 

  uint32_t a[SIMON_KEY_WORDS - 1]; 

  for (i = 0; i < (SIMON_KEY_WORDS - 1); i++) 

  { 

    a[i] = K[i + 1]; 

  } 

  S[0] = b; 

  for (i = 0; i < rounds - 1; i++) 

  { 

    simon_round(a[i % (SIMON_KEY_WORDS - 1)], b, i); 

    S[i + 1] = b; 

  } 

} 

 

void simon_encrypt(uint32_t plaintext[2], uint32_t ciphertext[2], uint32_t 

const key_schedule[], uint8_t rounds) 

{ 

  uint32_t i; 

  ciphertext[0] = plaintext[0]; 

  ciphertext[1] = plaintext[1]; 

  for (i = 0; i < rounds; i++) 

  { 

    simon_round(ciphertext[1], ciphertext[0], key_schedule[i]); 

  } 

} 

 

void setup() 

{ 

  Serial.begin(115200); 

 

  // Connect to Wi-Fi network 

  Serial.print("Connecting to "); 

  Serial.println(ssid); 

  WiFi.begin(ssid, password); 

 

  while (WiFi.status() != WL_CONNECTED) 

  { 

    delay(1000); 

    Serial.print("."); 

  } 

 

  Serial.println(""); 

  Serial.println("WiFi connected."); 

  Serial.print("IP address: "); 
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  Serial.println(WiFi.localIP()); 

 

  // Start the server 

  server.begin(); 

  Serial.println("Server started."); 

} 

 

void loop() 

{ 

  // Check if a client has connected 

  WiFiClient client = server.available(); 

 

  if (client) 

  { 

    Serial.println("New Client connected."); 

    char data[] = "Hello from ESP32 Server!"; 

    char key = 0xAA; // Key for XOR 

    int shift = 3;   // Shift for Caesar Cipher 

 

    // Example: Encrypt the message using XOR 

    xor_crypt(data, key); 

 

    // Send the encrypted message to the client 

    client.write((const uint8_t *)data, strlen(data)); 

    Serial.print("Encrypted message sent: "); 

    Serial.println(data); 

 

    // Disconnect the client 

    client.stop(); 

    Serial.println("Client disconnected."); 

  } 

} 
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6.2 Lightweight client-side code 

#include <WiFi.h> 

#include <stdint.h> 

 

// Replace with your network credentials 

const char *ssid = "*************"; 

const char *password = "*************"; 

 

// Server settings 

WiFiServer server(80); // Port 80 is the default HTTP port 

 

// Definitions for various encryption configurations 

#define SPECK_ROUNDS_128 22 

#define SPECK_ROUNDS_256 32 

#define SIMON_ROUNDS_128 32 

#define SIMON_ROUNDS_256 44 

 

// Define key sizes in 32-bit words for SPECK and SIMON 

#define SPECK_KEY_WORDS 4 // SPECK uses 4 words (128 bits key) 

#define SIMON_KEY_WORDS 4 // SIMON uses 4 words (128 bits key) 

 

// XOR Encryption/Decryption 

void xor_crypt(char *data, char key) 

{ 

  for (int i = 0; i < strlen(data); i++) 

  { 

    data[i] ^= key; 

  } 

} 

 

// Caesar Cipher Encryption/Decryption 

void caesar_crypt(char *data, int shift) 

{ 

  for (int i = 0; i < strlen(data); i++) 

  { 

    if (isalpha(data[i])) 

    { 

      char offset = isupper(data[i]) ? 'A' : 'a'; 

      data[i] = (data[i] - offset + shift) % 26 + offset; 

    } 

  } 

} 

 

// ROT13 Encryption/Decryption 

void rot13_crypt(char *data) 

{ 

  caesar_crypt(data, 13); 

} 
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// SPECK Encryption 

void speck_round(uint32_t &x, uint32_t &y, uint32_t k) 

{ 

  x = (x >> 8) | (x << (32 - 8)); 

  x += y; 

  x ^= k; 

  y = (y << 3) | (y >> (32 - 3)); 

  y ^= x; 

} 

 

void speck_expand(uint32_t const K[], uint32_t S[], uint8_t rounds) 

{ 

  uint32_t i, b = K[0]; 

  uint32_t a[SPECK_KEY_WORDS - 1]; 

  for (i = 0; i < (SPECK_KEY_WORDS - 1); i++) 

  { 

    a[i] = K[i + 1]; 

  } 

  S[0] = b; 

  for (i = 0; i < rounds - 1; i++) 

  { 

    speck_round(a[i % (SPECK_KEY_WORDS - 1)], b, i); 

    S[i + 1] = b; 

  } 

} 

 

void speck_encrypt(uint32_t plaintext[2], uint32_t ciphertext[2], uint32_t 

const key_schedule[], uint8_t rounds) 

{ 

  uint32_t i; 

  ciphertext[0] = plaintext[0]; 

  ciphertext[1] = plaintext[1]; 

  for (i = 0; i < rounds; i++) 

  { 

    speck_round(ciphertext[1], ciphertext[0], key_schedule[i]); 

  } 

} 

 

// SIMON Encryption 

void simon_round(uint32_t &x, uint32_t &y, uint32_t k) 

{ 

  uint32_t tmp = (x << 1) | (x >> (32 - 1)); 

  tmp &= (tmp << 8); 

  tmp ^= y; 

  y ^= k; 

  y = (y >> 1) | (y << (32 - 1)); 

} 
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void simon_expand(uint32_t const K[], uint32_t S[], uint8_t rounds) 

{ 

  uint32_t i, b = K[0]; 

  uint32_t a[SIMON_KEY_WORDS - 1]; 

  for (i = 0; i < (SIMON_KEY_WORDS - 1); i++) 

  { 

    a[i] = K[i + 1]; 

  } 

  S[0] = b; 

  for (i = 0; i < rounds - 1; i++) 

  { 

    simon_round(a[i % (SIMON_KEY_WORDS - 1)], b, i); 

    S[i + 1] = b; 

  } 

} 

 

void simon_encrypt(uint32_t plaintext[2], uint32_t ciphertext[2], uint32_t 

const key_schedule[], uint8_t rounds) 

{ 

  uint32_t i; 

  ciphertext[0] = plaintext[0]; 

  ciphertext[1] = plaintext[1]; 

  for (i = 0; i < rounds; i++) 

  { 

    simon_round(ciphertext[1], ciphertext[0], key_schedule[i]); 

  } 

} 

 

void setup() 

{ 

  Serial.begin(115200); 

 

  // Connect to Wi-Fi network 

  Serial.print("Connecting to "); 

  Serial.println(ssid); 

  WiFi.begin(ssid, password); 

 

  while (WiFi.status() != WL_CONNECTED) 

  { 

    delay(1000); 

    Serial.print("."); 

  } 

 

  Serial.println(""); 

  Serial.println("WiFi connected."); 

  Serial.print("IP address: "); 

  Serial.println(WiFi.localIP()); 
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  // Start the server 

  server.begin(); 

  Serial.println("Server started."); 

} 

 

void loop() 

{ 

  // Check if a client has connected 

  WiFiClient client = server.available(); 

 

  if (client) 

  { 

    Serial.println("New Client connected."); 

    char data[] = "Hello from ESP32 Server!"; 

    char key = 0xAA; // Key for XOR 

    int shift = 3;   // Shift for Caesar Cipher 

 

    // Example: Encrypt the message using XOR 

    xor_crypt(data, key); 

 

    // Send the encrypted message to the client 

    client.write((const uint8_t *)data, strlen(data)); 

    Serial.print("Encrypted message sent: "); 

    Serial.println(data); 

 

    // Disconnect the client 

    client.stop(); 

    Serial.println("Client disconnected."); 

  } 

} 
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6.3 Block cipher server-side code 

#include <WiFi.h> 

#include <stdint.h> 

 

// Replace with your network credentials 

const char *ssid = "*************"; 

const char *password = "*************"; 

 

// Server settings 

WiFiServer server(80); // Port 80 is the default HTTP port 

 

// Definitions for various encryption configurations 

#define SPECK_ROUNDS_128 22 

#define SPECK_ROUNDS_256 32 

#define SIMON_ROUNDS_128 32 

#define SIMON_ROUNDS_256 44 

 

// Define key sizes in 32-bit words for SPECK and SIMON 

#define SPECK_KEY_WORDS 4 // SPECK uses 4 words (128 bits key) 

#define SIMON_KEY_WORDS 4 // SIMON uses 4 words (128 bits key) 

 

// SPECK Encryption Functions 

void speck_round(uint32_t &x, uint32_t &y, uint32_t k) 

{ 

  x = (x >> 8) | (x << (32 - 8)); 

  x += y; 

  x ^= k; 

  y = (y << 3) | (y >> (32 - 3)); 

  y ^= x; 

} 

 

void speck_expand(uint32_t const K[], uint32_t S[], uint8_t rounds) 

{ 

  uint32_t i, b = K[0]; 

  uint32_t a[SPECK_KEY_WORDS - 1]; 

  for (i = 0; i < (SPECK_KEY_WORDS - 1); i++) 

  { 

    a[i] = K[i + 1]; 

  } 

  S[0] = b; 

  for (i = 0; i < rounds - 1; i++) 

  { 

    speck_round(a[i % (SPECK_KEY_WORDS - 1)], b, i); 

    S[i + 1] = b; 

  } 

} 
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void speck_encrypt(uint32_t plaintext[2], uint32_t ciphertext[2], uint32_t 

const key_schedule[], uint8_t rounds) 

{ 

  uint32_t i; 

  ciphertext[0] = plaintext[0]; 

  ciphertext[1] = plaintext[1]; 

  for (i = 0; i < rounds; i++) 

  { 

    speck_round(ciphertext[1], ciphertext[0], key_schedule[i]); 

  } 

} 

 

// SIMON Encryption Functions 

void simon_round(uint32_t &x, uint32_t &y, uint32_t k) 

{ 

  uint32_t tmp = (x << 1) | (x >> (32 - 1)); 

  tmp &= (tmp << 8); 

  tmp ^= y; 

  y ^= k; 

  y = (y >> 1) | (y << (32 - 1)); 

} 

 

void simon_expand(uint32_t const K[], uint32_t S[], uint8_t rounds) 

{ 

  uint32_t i, b = K[0]; 

  uint32_t a[SIMON_KEY_WORDS - 1]; 

  for (i = 0; i < (SIMON_KEY_WORDS - 1); i++) 

  { 

    a[i] = K[i + 1]; 

  } 

  S[0] = b; 

  for (i = 0; i < rounds - 1; i++) 

  { 

    simon_round(a[i % (SIMON_KEY_WORDS - 1)], b, i); 

    S[i + 1] = b; 

  } 

} 

 

void simon_encrypt(uint32_t plaintext[2], uint32_t ciphertext[2], uint32_t 

const key_schedule[], uint8_t rounds) 

{ 

  uint32_t i; 

  ciphertext[0] = plaintext[0]; 

  ciphertext[1] = plaintext[1]; 

  for (i = 0; i < rounds; i++) 

  { 

    simon_round(ciphertext[1], ciphertext[0], key_schedule[i]); 

  } 
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} 

 

void setup() 

{ 

  Serial.begin(115200); 

 

  // Connect to Wi-Fi network 

  Serial.print("Connecting to "); 

  Serial.println(ssid); 

  WiFi.begin(ssid, password); 

 

  while (WiFi.status() != WL_CONNECTED) 

  { 

    delay(1000); 

    Serial.print("."); 

  } 

 

  Serial.println(""); 

  Serial.println("WiFi connected."); 

  Serial.print("IP address: "); 

  Serial.println(WiFi.localIP()); 

 

  // Start the server 

  server.begin(); 

  Serial.println("Server started."); 

} 

 

void loop() 

{ 

  // Check if a client has connected 

  WiFiClient client = server.available(); 

 

  if (client) 

  { 

    Serial.println("New Client connected."); 

 

    // Choose encryption method 

    bool use_speck = true; // Set to false to use SIMON 

 

    char message[] = "Hello from ESP32 Server!"; 

    uint32_t plaintext[2], ciphertext[2]; 

    memcpy(plaintext, message, 8); // Encrypt the first 8 bytes for simplicity 

 

    if (use_speck) 

    { 

      // SPECK Encryption 

      uint8_t rounds = SPECK_ROUNDS_128; 
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      uint32_t key[SPECK_KEY_WORDS] = {0x01020304, 0x05060708, 0x090A0B0C, 

0x0D0E0F10}; 

      uint32_t key_schedule[rounds]; 

 

      speck_expand(key, key_schedule, rounds); 

      speck_encrypt(plaintext, ciphertext, key_schedule, rounds); 

 

      client.write((const uint8_t *)ciphertext, sizeof(ciphertext)); 

      Serial.println("Encrypted message sent with SPECK."); 

    } 

    else 

    { 

      // SIMON Encryption 

      uint8_t rounds = SIMON_ROUNDS_128; 

      uint32_t key[SIMON_KEY_WORDS] = {0x01020304, 0x05060708, 0x090A0B0C, 

0x0D0E0F10}; 

      uint32_t key_schedule[rounds]; 

 

      simon_expand(key, key_schedule, rounds); 

      simon_encrypt(plaintext, ciphertext, key_schedule, rounds); 

 

      client.write((const uint8_t *)ciphertext, sizeof(ciphertext)); 

      Serial.println("Encrypted message sent with SIMON."); 

    } 

 

    // Disconnect the client 

    client.stop(); 

    Serial.println("Client disconnected."); 

  } 

} 
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6.4 Block cipher client-side code 

#include <WiFi.h> 

#include <stdint.h> 

 

// Replace with your network credentials 

const char *ssid = "*************"; 

const char *password = "*************"; 

 

// Server IP and Port (Replace with the server IP address and port) 

const char *host = "192.168.1.10"; // Replace with your server's IP address 

const uint16_t port = 80; 

 

// Definitions for various encryption configurations 

#define SPECK_ROUNDS_128 27 // Correct rounds for SPECK-128/128 

#define SIMON_ROUNDS_128 44 // Correct rounds for SIMON-128/128 

#define SPECK_KEY_WORDS 4   // SPECK uses 4 words (128 bits key) 

#define SIMON_KEY_WORDS 4   // SIMON uses 4 words (128 bits key) 

 

// SPECK Key Expansion 

void speck_expand(uint32_t const K[], uint32_t S[], uint8_t rounds) 

{ 

  uint32_t i, b = K[0]; 

  uint32_t a[SPECK_KEY_WORDS - 1]; 

  for (i = 0; i < (SPECK_KEY_WORDS - 1); i++) 

  { 

    a[i] = K[i + 1]; 

  } 

  S[0] = b; 

  for (i = 0; i < rounds - 1; i++) 

  { 

    uint32_t &x = a[i % (SPECK_KEY_WORDS - 1)]; 

    b = (b >> 8) | (b << (32 - 8)); 

    b += x; 

    b ^= i; 

    x = (x << 3) | (x >> (32 - 3)); 

    x ^= b; 

    S[i + 1] = b; 

  } 

} 

 

// SPECK Decryption Functions 

void speck_round_inv(uint32_t &x, uint32_t &y, uint32_t k) 

{ 

  y ^= x; 

  y = (y >> 3) | (y << (32 - 3)); 

  x ^= k; 

  x -= y; 

  x = (x << 8) | (x >> (32 - 8)); 
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} 

 

void speck_decrypt(uint32_t ciphertext[2], uint32_t plaintext[2], uint32_t 

const key_schedule[], uint8_t rounds) 

{ 

  uint32_t i; 

  plaintext[0] = ciphertext[0]; 

  plaintext[1] = ciphertext[1]; 

  for (i = rounds; i > 0; i--) 

  { 

    speck_round_inv(plaintext[1], plaintext[0], key_schedule[i - 1]); 

  } 

} 

 

// SIMON Key Expansion 

void simon_expand(uint32_t const K[], uint32_t S[], uint8_t rounds) 

{ 

  uint32_t i, b = K[0]; 

  uint32_t a[SIMON_KEY_WORDS - 1]; 

  for (i = 0; i < (SIMON_KEY_WORDS - 1); i++) 

  { 

    a[i] = K[i + 1]; 

  } 

  S[0] = b; 

  for (i = 0; i < rounds - 1; i++) 

  { 

    uint32_t &x = a[i % (SIMON_KEY_WORDS - 1)]; 

    uint32_t tmp = (b << 1) | (b >> (32 - 1)); 

    tmp &= (tmp << 8); 

    tmp ^= x; 

    x ^= i; 

    x = (x >> 1) | (x << (32 - 1)); 

    S[i + 1] = b; 

    b = tmp; 

  } 

} 

 

// SIMON Decryption Functions 

void simon_round_inv(uint32_t &x, uint32_t &y, uint32_t k) 

{ 

  y ^= x; 

  x ^= k; 

  uint32_t tmp = (x << 1) | (x >> (32 - 1)); 

  tmp &= (tmp << 8); 

  y = tmp ^ y; 

  x = (x >> 1) | (x << (32 - 1)); 

} 
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void simon_decrypt(uint32_t ciphertext[2], uint32_t plaintext[2], uint32_t 

const key_schedule[], uint8_t rounds) 

{ 

  uint32_t i; 

  plaintext[0] = ciphertext[0]; 

  plaintext[1] = ciphertext[1]; 

  for (i = rounds; i > 0; i--) 

  { 

    simon_round_inv(plaintext[1], plaintext[0], key_schedule[i - 1]); 

  } 

} 

 

void setup() 

{ 

  Serial.begin(115200); 

 

  // Connect to Wi-Fi network 

  Serial.print("Connecting to "); 

  Serial.println(ssid); 

  WiFi.begin(ssid, password); 

 

  while (WiFi.status() != WL_CONNECTED) 

  { 

    delay(1000); 

    Serial.print("."); 

  } 

 

  Serial.println(""); 

  Serial.println("WiFi connected."); 

  Serial.print("IP address: "); 

  Serial.println(WiFi.localIP()); 

 

  // Connect to the server 

  Serial.print("Connecting to "); 

  Serial.print(host); 

  Serial.print(":"); 

  Serial.println(port); 

 

  WiFiClient client; 

 

  if (client.connect(host, port)) 

  { 

    Serial.println("Connected to server."); 

 

    uint32_t ciphertext[2]; 

    int len = client.readBytes((char *)ciphertext, sizeof(ciphertext)); 

    if (len != sizeof(ciphertext)) 

    { 
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      Serial.println("Error: Did not receive expected ciphertext size."); 

      return; 

    } 

 

    // Choose decryption method 

    bool use_speck = true; // Set to false to use SIMON 

 

    uint32_t plaintext[2]; 

 

    if (use_speck) 

    { 

      // SPECK Decryption 

      uint8_t rounds = SPECK_ROUNDS_128; 

      uint32_t key[SPECK_KEY_WORDS] = {0x01020304, 0x05060708, 0x090A0B0C, 

0x0D0E0F10}; 

      uint32_t key_schedule[rounds]; 

 

      speck_expand(key, key_schedule, rounds); 

      speck_decrypt(ciphertext, plaintext, key_schedule, rounds); 

 

      Serial.println("Decrypted message with SPECK:"); 

      Serial.println((char *)plaintext); 

    } 

    else 

    { 

      // SIMON Decryption 

      uint8_t rounds = SIMON_ROUNDS_128; 

      uint32_t key[SIMON_KEY_WORDS] = {0x01020304, 0x05060708, 0x090A0B0C, 

0x0D0E0F10}; 

      uint32_t key_schedule[rounds]; 

 

      simon_expand(key, key_schedule, rounds); 

      simon_decrypt(ciphertext, plaintext, key_schedule, rounds); 

 

      Serial.println("Decrypted message with SIMON:"); 

      Serial.println((char *)plaintext); 

    } 

 

    Serial.println("Disconnecting from server..."); 

    client.stop(); 

  } 

  else 

  { 

    Serial.println("Connection to server failed."); 

  } 

} 

 

void loop() 
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{ 

  // Add code here to periodically connect and communicate with the server 

  delay(10000); // Wait 10 seconds between connections 

} 
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Appendix 7: Approved Client List Process 
// Server-side: Approved UUID list (this mimics immunological "whitelist") 

std::vector<String> approvedUUIDs = { 

    "UUID1-1234-5678-91011", 

    "UUID2-9876-5432-10987", 

    "UUID3-1357-2468-13579"}; 

 

// Function to check if a client is on the approved list 

bool isClientApproved(const String &uuid) 

{ 

  return std::find(approvedUUIDs.begin(), approvedUUIDs.end(), uuid) != 

approvedUUIDs.end(); 

} 

 

// Handler invoked on incoming client connection 

void handleClientConnection(WiFiClient &client) 

{ 

  String receivedUUID = client.readStringUntil('\n'); 

 

  if (isClientApproved(receivedUUID)) 

  { 

    Serial.println("Client UUID approved."); 

    // Proceed with session setup, encryption negotiation, etc. 

  } 

  else 

  { 

    Serial.println("Rejected client – UUID not approved."); 

    client.println("Access Denied: UUID not recognised."); 

    client.stop(); 

  } 

} 
 

This process implements the first layer of access control in the security framework. When a client 

attempts to connect, its UUID is checked against a pre-defined list of authorised identifiers. This 

logic, inspired by immunological self/non-self recognition, ensures that only trusted nodes proceed 

to encryption negotiation and session setup. 
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Appendix 8: Client Connection Logic 
// Function to handle session setup based on client UUID and battery state 

void establishClientSession(const String& clientUUID, float batteryPercentage) 

{ 

  Session newSession; 

  newSession.clientUUID = clientUUID; 

  newSession.isApproved = true; 

  newSession.sessionExpirationTime = millis() + 

determineSessionDuration(batteryPercentage); 

  newSession.isSleeping = false; 

  sessions.push_back(newSession); 

 

  Serial.print("New session for "); 

  Serial.print(clientUUID); 

  Serial.print(" with expiration in "); 

  Serial.print(newSession.sessionExpirationTime); 

  Serial.println(" ms"); 

} 

 
 

This function establishes the connection lifecycle for each client based on its UUID and energy 

profile. It supports dynamic expiry durations, mapped through the battery curve logic. 
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Appendix 9: Shared Ledger Process 
// Server-side function to broadcast ledger changes 

void notifyApprovedClientsOfLedgerUpdate()  

{ 

  for (auto& session : sessions) { 

    if (session.isApproved) { 

      sendLedgerToClient(session.clientUUID); 

    } 

  } 

} 

 

// Client-side function to receive updated credentials 

void updateLocalLedger(const LedgerEntry& newEntry)  

{ 

  currentLedgerEntry = newEntry; 

  Serial.println("Local ledger updated successfully."); 

} 

 
 

These routines govern synchronisation of encryption credentials across all approved clients using a 

blockchain-inspired "broadcast and adopt" pattern. 
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Appendix 10: Auto Detection System 
bool isClientApproved(const String& uuid)  

{ 

  return std::find(approvedUUIDs.begin(), approvedUUIDs.end(), uuid) != 

approvedUUIDs.end(); 

} 

 

bool isClientDesynced(const String& ssid, const String& password)  

{ 

  return ssid != currentLedgerEntry.ssid || password != 

currentLedgerEntry.password; 

} 

 

void processConnectionRequest(const String& uuid, const String& ssid, const 

String& password)  

{ 

  if (!isClientApproved(uuid))  

  { 

    rejectConnection("Unapproved UUID"); 

    return; 

  } 

 

  if (isClientDesynced(ssid, password))  

  { 

    rejectConnection("Desynchronisation detected"); 

    return; 

  } 

 

  Serial.println("Client approved and in sync."); 

} 
 

This logic mirrors immunological surveillance, checking UUIDs and credentials against a central 

reference set. 
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Appendix 11: Auto Ejection System 
void handleCompromisedCredentials(const String &clientUUID) 

{ 

  removeSession(clientUUID); 

  updateServerCredentials(); 

  notifyApprovedClientsOfLedgerUpdate(); 

 

  Serial.print("Ejected client: "); 

  Serial.println(clientUUID); 

} 

 
 

This mechanism removes misaligned or unapproved sessions and updates all other participants, akin 

to a cytotoxic immune response. 
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Appendix 12: Trigger System 
void triggerCredentialUpdate() 

{ 

  currentLedgerIndex = (currentLedgerIndex + 1) % MAX_LEDGER_ENTRIES; 

  updateServerCredentials(); 

  notifyApprovedClientsOfLedgerUpdate(); 

} 
 

This function initiates a full-system immune memory response, rotating encryption credentials and 

propagating them to all verified clients after a security event. 
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Appendix 13: Cycle Testing For Encryption Methods 

13.1 Cycle Function for Xtensa Processors 

uint64_t read_cycles() 

{ 

  return (uint64_t)esp_cpu_get_ccount(); // Returns current CPU cycle count 

} 
 

13.2 XOR Encryption 

void xor_encryption() 

{ 

  char key = 0xAA; // Simple XOR key 

 

  char data_copy[sizeof(data)]; 

  strcpy(data_copy, data); 

 

  start_time = micros(); 

  start_cycles = read_cycles(); 

 

  for (int i = 0; i < sizeof(data_copy) - 1; i++) 

  { 

    data_copy[i] ^= key; 

  } 

 

  end_cycles = read_cycles(); 

  end_time = micros(); 

 

  Serial.println("XOR Encryption:"); 

  Serial.print("Time taken (microseconds): "); 

  Serial.println(end_time - start_time); 

  Serial.print("Cycles taken: "); 

  Serial.println(end_cycles - start_cycles); 

} 
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13.3 Caesar Cipher 

void caesar_cipher() 

{ 

  int shift = 3; // Caesar Cipher shift 

 

  char data_copy[sizeof(data)]; 

  strcpy(data_copy, data); 

 

  start_time = micros(); 

  start_cycles = read_cycles(); 

 

  for (int i = 0; i < sizeof(data_copy) - 1; i++) 

  { 

    if (isalpha(data_copy[i])) 

    { 

      char offset = isupper(data_copy[i]) ? 'A' : 'a'; 

      data_copy[i] = (data_copy[i] - offset + shift) % 26 + offset; 

    } 

  } 

 

  end_cycles = read_cycles(); 

  end_time = micros(); 

 

  Serial.println("Caesar Cipher:"); 

  Serial.print("Time taken (microseconds): "); 

  Serial.println(end_time - start_time); 

  Serial.print("Cycles taken: "); 

  Serial.println(end_cycles - start_cycles); 

} 
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13.4 ROT13 Encryption 

void rot13_encryption() 

{ 

  char data_copy[sizeof(data)]; 

  strcpy(data_copy, data); 

 

  start_time = micros(); 

  start_cycles = read_cycles(); 

 

  for (int i = 0; i < sizeof(data_copy) - 1; i++) 

  { 

    if (isalpha(data_copy[i])) 

    { 

      char offset = isupper(data_copy[i]) ? 'A' : 'a'; 

      data_copy[i] = (data_copy[i] - offset + 13) % 26 + offset; 

    } 

  } 

 

  end_cycles = read_cycles(); 

  end_time = micros(); 

 

  Serial.println("ROT13 Encryption:"); 

  Serial.print("Time taken (microseconds): "); 

  Serial.println(end_time - start_time); 

  Serial.print("Cycles taken: "); 

  Serial.println(end_cycles - start_cycles); 

} 
 

 

 

 

 

 

 

 

 

 

 

 

 



 

214 
 

13.5 SPECK Encryption 

void speck_round(uint32_t &x, uint32_t &y, uint32_t k) 

{ 

  x = (x >> 8) | (x << (32 - 8)); 

  x += y; 

  x ^= k; 

  y = (y << 3) | (y >> (32 - 3)); 

  y ^= x; 

} 

 

void speck_expand(uint32_t const K[SPECK_KEY_WORDS], uint32_t S[SPECK_ROUNDS]) 

{ 

  uint32_t i, b = K[0]; 

  uint32_t a[SPECK_KEY_WORDS - 1]; 

 

  for (i = 0; i < (SPECK_KEY_WORDS - 1); i++) 

  { 

    a[i] = K[i + 1]; 

  } 

 

  S[0] = b; 

  for (i = 0; i < SPECK_ROUNDS - 1; i++) 

  { 

    speck_round(a[i % (SPECK_KEY_WORDS - 1)], b, i); 

    S[i + 1] = b; 

  } 

} 

 

void speck_encrypt(uint32_t plaintext[2], uint32_t ciphertext[2], uint32_t 

const key_schedule[SPECK_ROUNDS]) 

{ 

  uint32_t i; 

  ciphertext[0] = plaintext[0]; 

  ciphertext[1] = plaintext[1]; 

  for (i = 0; i < SPECK_ROUNDS; i++) 

  { 

    speck_round(ciphertext[1], ciphertext[0], key_schedule[i]); 

  } 

} 

 

void speck_encryption() 

{ 

  uint32_t key[SPECK_KEY_WORDS] = {0x01020304, 0x05060708, 0x090A0B0C, 

0x0D0E0F10}; 

  uint32_t key_schedule[SPECK_ROUNDS]; 

  uint32_t plaintext[2], ciphertext[2]; 

 

  speck_expand(key, key_schedule); 
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  start_time = micros(); 

  start_cycles = read_cycles(); 

 

  for (int i = 0; i < sizeof(data) - 1; i += 8) 

  { 

    memcpy(plaintext, data + i, 8); 

    speck_encrypt(plaintext, ciphertext, key_schedule); 

  } 

 

  end_cycles = read_cycles(); 

  end_time = micros(); 

 

  Serial.println("SPECK Encryption:"); 

  Serial.print("Time taken (microseconds): "); 

  Serial.println(end_time - start_time); 

  Serial.print("Cycles taken: "); 

  Serial.println(end_cycles - start_cycles); 

} 
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13.6 SIMON Encryption 

void simon_round(uint32_t &x, uint32_t &y, uint32_t k) 

{ 

  uint32_t tmp = (x << 1) | (x >> (32 - 1)); 

  tmp &= (tmp << 8); 

  tmp ^= y; 

  y ^= k; 

  y = (y >> 1) | (y << (32 - 1)); 

} 

 

void simon_expand(uint32_t const K[SIMON_KEY_WORDS], uint32_t S[SIMON_ROUNDS]) 

{ 

  uint32_t i, b = K[0]; 

  uint32_t a[SIMON_KEY_WORDS - 1]; 

 

  for (i = 0; i < (SIMON_KEY_WORDS - 1); i++) 

  { 

    a[i] = K[i + 1]; 

  } 

 

  S[0] = b; 

  for (i = 0; i < SIMON_ROUNDS - 1; i++) 

  { 

    simon_round(a[i % (SIMON_KEY_WORDS - 1)], b, i); 

    S[i + 1] = b; 

  } 

} 

 

void simon_encrypt(uint32_t plaintext[2], uint32_t ciphertext[2], uint32_t 

const key_schedule[SIMON_ROUNDS]) 

{ 

  uint32_t i; 

  ciphertext[0] = plaintext[0]; 

  ciphertext[1] = plaintext[1]; 

  for (i = 0; i < SIMON_ROUNDS; i++) 

  { 

    simon_round(ciphertext[1], ciphertext[0], key_schedule[i]); 

  } 

} 

 

void simon_encryption() 

{ 

  uint32_t key[SIMON_KEY_WORDS] = {0x01020304, 0x05060708, 0x090A0B0C, 

0x0D0E0F10}; 

  uint32_t key_schedule[SIMON_ROUNDS]; 

  uint32_t plaintext[2], ciphertext[2]; 

 

  simon_expand(key, key_schedule); 



 

217 
 

 

  start_time = micros(); 

  start_cycles = read_cycles(); 

 

  for (int i = 0; i < sizeof(data) - 1; i += 8) 

  { 

    memcpy(plaintext, data + i, 8); 

    simon_encrypt(plaintext, ciphertext, key_schedule); 

  } 

 

  end_cycles = read_cycles(); 

  end_time = micros(); 

 

  Serial.println("SIMON Encryption:"); 

  Serial.print("Time taken (microseconds): "); 

  Serial.println(end_time - start_time); 

  Serial.print("Cycles taken: "); 

  Serial.println(end_cycles - start_cycles); 

} 
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Appendix 14: Adaptive Amoeba Battery Curve Mapping Management 

System 
#include <WiFi.h> 

#include <EEPROM.h> 

 

#define ADC_PIN A0 // Adjust to device configured ADC pin 

#define EEPROM_SIZE 512 

 

#define MAX_DATA_POINTS 100 

 

struct BatteryData 

{ 

  uint32_t voltage; 

  float percentage; 

}; 

 

BatteryData batteryData[MAX_DATA_POINTS]; 

int dataPointsCount = 0; 

 

uint32_t getBatteryVoltage() 

{ 

  int adcValue = analogRead(ADC_PIN); 

  // Convert ADC value to voltage (ESP32 ADC is 12-bit, 4095 max value) 

  uint32_t voltage = map(adcValue, 0, 4095, 0, 5000); // Adjust according to 

your ADC reference voltage 

  return voltage; 

} 

 

float initialMapBatteryCurve(uint32_t voltage) 

{ 

  if (voltage > 4200) 

    return 100.0; 

  else if (voltage > 4000) 

    return 75.0 + (voltage - 4000) * 0.25; 

  else if (voltage > 3800) 

    return 50.0 + (voltage - 3800) * 0.125; 

  else if (voltage > 3600) 

    return 25.0 + (voltage - 3600) * 0.125; 

  else if (voltage > 3400) 

    return (voltage - 3400) * 0.125; 

  else 

    return 0.0; 

} 

 

// Non-linear interpolation for more accurate prediction 

float nonLinearInterpolation(uint32_t voltage) 

{ 
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  float voltageNormalized = (float)(voltage - 3400) / (4200 - 3400); // 

Normalize voltage 

  return pow(voltageNormalized, 2) * 100.0;                          // 

Quadratic non-linear mapping 

} 

 

// Dynamic EEPROM Management 

void storeBatteryData(uint32_t voltage, float percentage) 

{ 

  if (dataPointsCount < MAX_DATA_POINTS) 

  { 

    // Add data until max capacity is reached 

    batteryData[dataPointsCount].voltage = voltage; 

    batteryData[dataPointsCount].percentage = percentage; 

    dataPointsCount++; 

  } 

  else 

  { 

    // Overwrite oldest data Circular Buffer Approach 

    for (int i = 1; i < MAX_DATA_POINTS; i++) 

    { 

      batteryData[i - 1] = batteryData[i]; 

    } 

    batteryData[MAX_DATA_POINTS - 1].voltage = voltage; 

    batteryData[MAX_DATA_POINTS - 1].percentage = percentage; 

  } 

 

  EEPROM.put(0, batteryData); 

  EEPROM.put(sizeof(batteryData), dataPointsCount); 

  EEPROM.commit(); 

} 

 

// Predictive Maintenance and Battery Health Estimation 

float estimateBatteryHealth(uint32_t voltage) 

{ 

  // Simplistic battery health estimation based on voltage range 

  if (voltage > 4200) 

    return 1.0; // Healthy battery 

  else if (voltage > 4000) 

    return 0.75; 

  else if (voltage > 3800) 

    return 0.5; 

  else if (voltage > 3600) 

    return 0.25; 

  else 

    return 0.1; // Battery near end of life 

} 
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void loadBatteryData() 

{ 

  EEPROM.get(0, batteryData); 

  EEPROM.get(sizeof(batteryData), dataPointsCount); 

} 

 

float predictBatteryPercentage(uint32_t voltage) 

{ 

  if (dataPointsCount < 2) 

  { 

    return initialMapBatteryCurve(voltage); 

  } 

 

  // Apply non-linear interpolation using collected data 

  return nonLinearInterpolation(voltage); 

} 

 

// Adaptive Sleep and Wake-Up Intervals 

void enterAdaptiveSleepMode(float batteryPercentage, float batteryHealth) 

{ 

  uint64_t sleepDuration; 

 

  if (batteryPercentage > 75.0) 

  { 

    Serial.println("Battery sufficient, normal operation."); 

    sleepDuration = 10000000; // Normal operation with regular wake-up 

  } 

  else if (batteryPercentage > 50.0) 

  { 

    Serial.println("Entering light sleep mode."); 

    sleepDuration = batteryHealth * 20000000; // Sleep duration adapted based 

on battery health 

    esp_sleep_enable_timer_wakeup(sleepDuration); 

    esp_light_sleep_start(); 

  } 

  else if (batteryPercentage > 25.0) 

  { 

    Serial.println("Entering deep sleep mode."); 

    sleepDuration = batteryHealth * 40000000; // Longer sleep duration for 

lower battery health 

    esp_sleep_enable_timer_wakeup(sleepDuration); 

    esp_deep_sleep_start(); 

  } 

  else 

  { 

    Serial.println("Entering ULP mode, maximizing battery life."); 

    sleepDuration = batteryHealth * 60000000; // Maximize sleep duration in 

ULP mode 
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    esp_sleep_enable_timer_wakeup(sleepDuration); 

    esp_deep_sleep_start(); 

  } 

} 

 

void setup() 

{ 

  Serial.begin(115200); 

  EEPROM.begin(EEPROM_SIZE); 

 

  loadBatteryData(); // Load stored battery data 

 

  Serial.println("Starting battery management system..."); 

} 

 

void loop() 

{ 

  uint32_t voltage = getBatteryVoltage(); 

  float batteryPercentage = predictBatteryPercentage(voltage); 

  float batteryHealth = estimateBatteryHealth(voltage); 

 

  Serial.printf("Battery Voltage: %d mV, Predicted Battery Percentage: %.2f%%, 

Estimated Battery Health: %.2f\n", voltage, batteryPercentage, batteryHealth); 

 

  storeBatteryData(voltage, batteryPercentage); // Store the new data point 

 

  enterAdaptiveSleepMode(batteryPercentage, batteryHealth); // Enter 

appropriate adaptive sleep mode 

 

  delay(10000); // Wait for 10 seconds before the next reading 

} 
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Appendix 15: Full System Without Adaptive Amoeba Battery Curve 

Mapping Management System 

15.1 Server 

#include <WiFi.h> 

#include <stdint.h> 

 

// Constants and Macros 

#define SERVER_PORT 80 

 

#define SPECK_ROUNDS_128 22 

#define SIMON_ROUNDS_128 44 

 

#define SPECK_KEY_WORDS 4 

#define SIMON_KEY_WORDS 4 

 

// Structure Definitions 

struct ClientSession 

{ 

  String sessionID; 

  String clientUUID; 

  bool approved; 

  WiFiClient clientConnection; 

  bool reconnected; 

  unsigned long lastActive; 

}; 

 

struct LedgerEntry 

{ 

  String ssid; 

  String password; 

  String encryptionKey; 

  String encryptionMethod; 

}; 

 

// Global Variables 

WiFiServer server(SERVER_PORT); 

ClientSession sessions[10]; 

int sessionCount = 0; 

LedgerEntry ledger[5] = { 

    {"SSID1", "Password1", "XORKey", "XOR"}, 

    {"SSID2", "Password2", "CaesarKey", "Caesar"}, 

    {"SSID3", "Password3", "ROT13Key", "ROT13"}, 

    {"SSID4", "Password4", "SpeckKey", "SPECK"}, 

    {"SSID5", "Password5", "SimonKey", "SIMON"}}; 

int currentLedgerIndex = 0; 

unsigned long sessionExpiryTime = 120000; // Session expires after 120 seconds 

of inactivity 
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// Honeypot SSID and Password 

String honeypotSSID = "Honeypot_SSID"; 

String honeypotPassword = "Honeypot_Password"; 

bool honeypotActive = false; 

 

// List of approved UUIDs (dummy data) 

String approvedUUIDs[] = { 

    "UUID1-1234-5678-91011", 

    "UUID2-1234-5678-91011", 

    "UUID3-1234-5678-91011"}; 

bool uuidConnected[] = {false, false, false}; 

 

int approvedUUIDCount = sizeof(approvedUUIDs) / sizeof(approvedUUIDs[0]); 

 

// XOR Encryption/Decryption 

void xorEncryptionDecryption(char *data, String key) 

{ 

  for (int i = 0; i < strlen(data); i++) 

  { 

    data[i] ^= key[0]; 

  } 

} 

 

// Caesar Cipher Encryption/Decryption 

void caesarCipherEncryptionDecryption(char *data, int shift) 

{ 

  for (int i = 0; i < strlen(data); i++) 

  { 

    if (isalpha(data[i])) 

    { 

      char offset = isupper(data[i]) ? 'A' : 'a'; 

      data[i] = (data[i] - offset + shift) % 26 + offset; 

    } 

  } 

} 

 

// ROT13 Encryption/Decryption 

void rot13EncryptionDecryption(char *data) 

{ 

  caesarCipherEncryptionDecryption(data, 13); 

} 

 

// SPECK Encryption/Decryption 

void speckRound(uint32_t &x, uint32_t &y, uint32_t k) 

{ 

  x = (x >> 8) | (x << (32 - 8)); 

  x += y; 
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  x ^= k; 

  y = (y << 3) | (y >> (32 - 3)); 

  y ^= x; 

} 

 

void speckExpand(uint32_t const K[], uint32_t S[], uint8_t rounds) 

{ 

  uint32_t i, b = K[0]; 

  uint32_t a[SPECK_KEY_WORDS - 1]; 

  for (i = 0; i < (SPECK_KEY_WORDS - 1); i++) 

  { 

    a[i] = K[i + 1]; 

  } 

  S[0] = b; 

  for (i = 0; i < rounds - 1; i++) 

  { 

    speckRound(a[i % (SPECK_KEY_WORDS - 1)], b, i); 

    S[i + 1] = b; 

  } 

} 

 

void speckEncryptDecrypt(uint32_t data[2], uint32_t const key_schedule[], 

uint8_t rounds) 

{ 

  for (uint8_t i = 0; i < rounds; i++) 

  { 

    speckRound(data[1], data[0], key_schedule[i]); 

  } 

} 

 

// SIMON Encryption/Decryption 

void simonRound(uint32_t &x, uint32_t &y, uint32_t k) 

{ 

  uint32_t tmp = (x << 1) | (x >> (32 - 1)); 

  tmp &= (tmp << 8); 

  tmp ^= y; 

  y ^= k; 

  y = (y >> 1) | (y << (32 - 1)); 

} 

 

void simonExpand(uint32_t const K[], uint32_t S[], uint8_t rounds) 

{ 

  uint32_t i, b = K[0]; 

  uint32_t a[SIMON_KEY_WORDS - 1]; 

  for (i = 0; i < (SIMON_KEY_WORDS - 1); i++) 

  { 

    a[i] = K[i + 1]; 

  } 
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  S[0] = b; 

  for (i = 0; i < rounds - 1; i++) 

  { 

    simonRound(a[i % (SIMON_KEY_WORDS - 1)], b, i); 

    S[i + 1] = b; 

  } 

} 

 

void simonEncryptDecrypt(uint32_t data[2], uint32_t const key_schedule[], 

uint8_t rounds) 

{ 

  for (uint8_t i = 0; i < rounds; i++) 

  { 

    simonRound(data[1], data[0], key_schedule[i]); 

  } 

} 

 

void encryptDecryptData(char *data, const String &method, const String &key) 

{ 

  if (method == "XOR") 

  { 

    xorEncryptionDecryption(data, key); 

  } 

  else if (method == "Caesar") 

  { 

    caesarCipherEncryptionDecryption(data, key.toInt()); 

  } 

  else if (method == "ROT13") 

  { 

    rot13EncryptionDecryption(data); 

  } 

  else if (method == "SPECK") 

  { 

    uint32_t key_schedule[SPECK_ROUNDS_128]; 

    uint32_t key_words[SPECK_KEY_WORDS] = {0x01020304, 0x05060708, 0x090A0B0C, 

0x0D0E0F10}; 

    speckExpand(key_words, key_schedule, SPECK_ROUNDS_128); 

    uint32_t block[2]; 

    memcpy(block, data, 8); 

    speckEncryptDecrypt(block, key_schedule, SPECK_ROUNDS_128); 

    memcpy(data, block, 8); 

  } 

  else if (method == "SIMON") 

  { 

    uint32_t key_schedule[SIMON_ROUNDS_128]; 

    uint32_t key_words[SIMON_KEY_WORDS] = {0x01020304, 0x05060708, 0x090A0B0C, 

0x0D0E0F10}; 

    simonExpand(key_words, key_schedule, SIMON_ROUNDS_128); 
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    uint32_t block[2]; 

    memcpy(block, data, 8); 

    simonEncryptDecrypt(block, key_schedule, SIMON_ROUNDS_128); 

    memcpy(data, block, 8); 

  } 

} 

 

// Function to generate a session ID 

String generateSessionID() 

{ 

  String sessionID = ""; 

  for (int i = 0; i < 16; i++) 

  { 

    sessionID += String(random(0, 16), HEX); 

  } 

  delay(100); // Prevents immediate reuse of session ID 

  return sessionID; 

} 

 

// Function to check if a session ID is approved 

bool isSessionApproved(String sessionID, String clientUUID) 

{ 

  for (int i = 0; i < sessionCount; i++) 

  { 

    if (sessions[i].sessionID == sessionID && sessions[i].clientUUID == 

clientUUID && sessions[i].approved) 

    { 

      return true; 

    } 

  } 

  return false; 

} 

 

// Function to check if a UUID is approved 

bool isUUIDApproved(String uuid) 

{ 

  for (int i = 0; i < approvedUUIDCount; i++) 

  { 

    if (approvedUUIDs[i] == uuid) 

    { 

      return true; 

    } 

  } 

  return false; 

} 

 

// Function to update the server's SSID and password based on the current 

ledger entry 
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void updateServerCredentials() 

{ 

  WiFi.softAPdisconnect(true); 

  WiFi.softAP(ledger[currentLedgerIndex].ssid.c_str(), 

ledger[currentLedgerIndex].password.c_str()); 

  Serial.println("Server SSID and Password updated to:"); 

  Serial.println("SSID: " + ledger[currentLedgerIndex].ssid); 

  Serial.println("Password: " + ledger[currentLedgerIndex].password); 

} 

 

// Function to start the honeypot SSID 

void startHoneypot() 

{ 

  WiFi.softAPdisconnect(true); 

  WiFi.softAP(honeypotSSID.c_str(), honeypotPassword.c_str()); 

  honeypotActive = true; 

  Serial.println("Honeypot SSID and Password activated:"); 

  Serial.println("Honeypot SSID: " + honeypotSSID); 

  Serial.println("Honeypot Password: " + honeypotPassword); 

} 

 

// Function to stop the honeypot SSID 

void stopHoneypot() 

{ 

  WiFi.softAPdisconnect(true); 

  honeypotActive = false; 

  updateServerCredentials(); 

  Serial.println("Honeypot SSID deactivated. Server SSID and Password 

restored."); 

} 

 

// Function to notify all approved clients of a ledger update 

void notifyApprovedClients() 

{ 

  for (int i = 0; i < sessionCount; i++) 

  { 

    if (sessions[i].approved && sessions[i].clientConnection.connected()) 

    { 

      sessions[i].clientConnection.println("Ledger Update"); 

      sessions[i].clientConnection.println(currentLedgerIndex); 

      sessions[i].clientConnection.println(ledger[currentLedgerIndex].ssid); 

      sessions[i].clientConnection.println(ledger[currentLedgerIndex].password

); 

      sessions[i].clientConnection.println(ledger[currentLedgerIndex].encrypti

onKey); 

      sessions[i].clientConnection.println(ledger[currentLedgerIndex].encrypti

onMethod); 

    } 
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  } 

} 

 

// Function to handle compromised credentials and trigger process 

void handleCompromisedCredentials(String sessionID, String clientUUID) 

{ 

  for (int i = 0; i < sessionCount; i++) 

  { 

    if (sessions[i].sessionID == sessionID && sessions[i].clientUUID == 

clientUUID) 

    { 

      Serial.println("Session ID " + sessionID + " marked as compromised."); 

      sessions[i].approved = false; 

      currentLedgerIndex = (currentLedgerIndex + 1) % 5; 

      updateServerCredentials(); 

      notifyApprovedClients(); 

      startHoneypot(); 

      break; 

    } 

  } 

  for (int i = 0; i < sessionCount; i++) 

  { 

    sessions[i].reconnected = false; 

  } 

  Serial.println("All sessions marked as needing reconnection."); 

} 

 

// Function to check for desynchronization and send error code (Only for new 

UUID connections) 

void checkDesynchronization(WiFiClient &client, String clientUUID) 

{ 

  for (int i = 0; i < approvedUUIDCount; i++) 

  { 

    if (approvedUUIDs[i] == clientUUID && !uuidConnected[i]) 

    { 

      String clientSSID = client.readStringUntil('\n'); 

      String clientPassword = client.readStringUntil('\n'); 

 

      if (clientSSID != ledger[currentLedgerIndex].ssid || clientPassword != 

ledger[currentLedgerIndex].password) 

      { 

        Serial.println("Desync detected for UUID: " + clientUUID); 

        client.println("Error: Desync detected. Please reconnect."); 

        client.stop(); 

        return; 

      } 

      uuidConnected[i] = true; 

      Serial.println("UUID " + clientUUID + " connected successfully."); 
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    } 

  } 

} 

 

// Function to handle new incoming connections (Server-side) 

void handleNewConnection(WiFiClient client) 

{ 

  String sessionID = generateSessionID(); 

  client.println(sessionID); 

 

  String clientInfo = client.readStringUntil('\n'); 

  String clientUUID = client.readStringUntil('\n'); 

  String receivedSessionID = client.readStringUntil('\n'); 

 

  String encryptionMethod = ledger[currentLedgerIndex].encryptionMethod; 

  client.println(encryptionMethod); 

 

  if (isUUIDApproved(clientUUID)) 

  { 

    if (!isSessionApproved(receivedSessionID, clientUUID)) 

    { 

      sessions[sessionCount].sessionID = sessionID; 

      sessions[sessionCount].clientUUID = clientUUID; 

      sessions[sessionCount].approved = true; 

      sessions[sessionCount].clientConnection = client; 

      sessions[sessionCount].reconnected = false; 

      sessions[sessionCount].lastActive = millis(); 

      sessionCount++; 

 

      Serial.println("Session ID " + sessionID + " for UUID " + clientUUID + " 

connected."); 

 

      checkDesynchronization(client, clientUUID); 

 

      client.println("Connection Successful"); 

 

      client.println(ledger[currentLedgerIndex].ssid); 

      client.println(ledger[currentLedgerIndex].password); 

      client.println(ledger[currentLedgerIndex].encryptionKey); 

      client.println(ledger[currentLedgerIndex].encryptionMethod); 

 

      for (int i = 0; i < sessionCount; i++) 

      { 

        if (sessions[i].clientConnection == client) 

        { 

          sessions[i].reconnected = true; 

          Serial.println("Session ID " + sessionID + " marked as 

reconnected."); 
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          break; 

        } 

      } 

    } 

    else 

    { 

      Serial.println("Session ID " + receivedSessionID + " is already 

approved. Skipping reinitialization."); 

      client.println("Connection Successful"); 

 

      client.println(ledger[currentLedgerIndex].ssid); 

      client.println(ledger[currentLedgerIndex].password); 

      client.println(ledger[currentLedgerIndex].encryptionKey); 

      client.println(ledger[currentLedgerIndex].encryptionMethod); 

    } 

  } 

  else 

  { 

    Serial.println("Failed connection attempt with Session ID " + sessionID + 

" and UUID " + clientUUID); 

    client.println("Session ID blocked or compromised"); 

    client.stop(); 

  } 

 

  String sensorData = client.readStringUntil('\n'); 

  encryptDecryptData(&sensorData[0], 

ledger[currentLedgerIndex].encryptionMethod, 

ledger[currentLedgerIndex].encryptionKey); 

  Serial.println("Received Decrypted Sensor Data: " + sensorData); 

  client.println("Sensor data received and decrypted successfully."); 

 

  bool allReconnected = true; 

  for (int i = 0; i < approvedUUIDCount; i++) 

  { 

    if (!uuidConnected[i]) 

    { 

      allReconnected = false; 

      Serial.println("UUID " + approvedUUIDs[i] + " has not reconnected 

yet."); 

      break; 

    } 

  } 

  if (allReconnected) 

  { 

    Serial.println("All approved UUIDs have reconnected."); 

    if (honeypotActive) 

    { 

      stopHoneypot(); 



 

231 
 

    } 

  } 

} 

 

// Cleanup expired sessions 

void cleanupExpiredSessions() 

{ 

  unsigned long currentTime = millis(); 

  for (int i = 0; i < sessionCount; i++) 

  { 

    if (sessions[i].approved && (currentTime - sessions[i].lastActive > 

sessionExpiryTime)) 

    { 

      Serial.println("Session ID " + sessions[i].sessionID + " expired due to 

inactivity."); 

      sessions[i].approved = false; 

      sessions[i].clientConnection.stop(); // Close the connection to the 

expired session 

    } 

  } 

} 

 

// Setup function (Server-side) 

void setup() 

{ 

  Serial.begin(115200); 

  WiFi.softAP(ledger[currentLedgerIndex].ssid.c_str(), 

ledger[currentLedgerIndex].password.c_str()); 

  server.begin(); 

 

  Serial.println("Server started with initial SSID and Password:"); 

  Serial.println("SSID: " + ledger[currentLedgerIndex].ssid); 

  Serial.println("Password: " + ledger[currentLedgerIndex].password); 

} 

 

// Main loop (Server-side) 

void loop() 

{ 

  WiFiClient client = server.available(); 

  if (client) 

  { 

    handleNewConnection(client); 

  } 

 

  cleanupExpiredSessions(); // Cleanup expired sessions 

 

  delay(2000); // Delay for demonstration purposes 

} 
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15.2 Client 

#include <WiFi.h> 

#include <stdint.h> 

 

// Server details 

const char *host = "192.168.4.1"; // IP address of the server 

const uint16_t port = 80; 

 

// Constants for encryption 

#define SPECK_ROUNDS_128 22 

#define SIMON_ROUNDS_128 44 

 

#define SPECK_KEY_WORDS 4 

#define SIMON_KEY_WORDS 4 

 

WiFiClient client; 

 

// Ledger entries to store received data 

struct LedgerEntry 

{ 

  String ssid; 

  String password; 

  String encryptionKey; 

  String encryptionMethod; 

}; 

 

LedgerEntry storedLedger[5]; 

int storedLedgerCount = 0; 

 

// Honeypot SSID details 

const char *honeypotSSID = "Honeypot_SSID"; 

const char *honeypotPassword = "Honeypot_Password"; 

 

// Sample data to be encrypted and sent 

char data[] = "The quick brown fox jumps over the lazy dog 

1234567890!@#$%^&*()_+-=[]{}|;':,.<>/?\n\t"; 

 

// XOR Encryption/Decryption 

void xorEncryptionDecryption(char *data, String key) 

{ 

  for (int i = 0; i < strlen(data); i++) 

  { 

    data[i] ^= key[0]; 

  } 

} 

 

// Caesar Cipher Encryption/Decryption 

void caesarCipherEncryptionDecryption(char *data, int shift) 
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{ 

  for (int i = 0; i < strlen(data); i++) 

  { 

    if (isalpha(data[i])) 

    { 

      char offset = isupper(data[i]) ? 'A' : 'a'; 

      data[i] = (data[i] - offset + shift) % 26 + offset; 

    } 

  } 

} 

 

// ROT13 Encryption/Decryption 

void rot13EncryptionDecryption(char *data) 

{ 

  caesarCipherEncryptionDecryption(data, 13); 

} 

 

// SPECK Encryption/Decryption 

void speckRound(uint32_t &x, uint32_t &y, uint32_t k) 

{ 

  x = (x >> 8) | (x << (32 - 8)); 

  x += y; 

  x ^= k; 

  y = (y << 3) | (y >> (32 - 3)); 

  y ^= x; 

} 

 

void speckExpand(uint32_t const K[], uint32_t S[], uint8_t rounds) 

{ 

  uint32_t i, b = K[0]; 

  uint32_t a[SPECK_KEY_WORDS - 1]; 

  for (i = 0; i < (SPECK_KEY_WORDS - 1); i++) 

  { 

    a[i] = K[i + 1]; 

  } 

  S[0] = b; 

  for (i = 0; i < rounds - 1; i++) 

  { 

    speckRound(a[i % (SPECK_KEY_WORDS - 1)], b, i); 

    S[i + 1] = b; 

  } 

} 

 

void speckEncryptDecrypt(uint32_t data[2], uint32_t const key_schedule[], 

uint8_t rounds) 

{ 

  for (uint8_t i = 0; i < rounds; i++) 

  { 
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    speckRound(data[1], data[0], key_schedule[i]); 

  } 

} 

 

// SIMON Encryption/Decryption 

void simonRound(uint32_t &x, uint32_t &y, uint32_t k) 

{ 

  uint32_t tmp = (x << 1) | (x >> (32 - 1)); 

  tmp &= (tmp << 8); 

  tmp ^= y; 

  y ^= k; 

  y = (y >> 1) | (y << (32 - 1)); 

} 

 

void simonExpand(uint32_t const K[], uint32_t S[], uint8_t rounds) 

{ 

  uint32_t i, b = K[0]; 

  uint32_t a[SIMON_KEY_WORDS - 1]; 

  for (i = 0; i < (SIMON_KEY_WORDS - 1); i++) 

  { 

    a[i] = K[i + 1]; 

  } 

  S[0] = b; 

  for (i = 0; i < rounds - 1; i++) 

  { 

    simonRound(a[i % (SIMON_KEY_WORDS - 1)], b, i); 

    S[i + 1] = b; 

  } 

} 

 

void simonEncryptDecrypt(uint32_t data[2], uint32_t const key_schedule[], 

uint8_t rounds) 

{ 

  for (uint8_t i = 0; i < rounds; i++) 

  { 

    simonRound(data[1], data[0], key_schedule[i]); 

  } 

} 

 

void encryptDecryptData(char *data, const String &method, const String &key) 

{ 

  if (method == "XOR") 

  { 

    xorEncryptionDecryption(data, key); 

  } 

  else if (method == "Caesar") 

  { 

    caesarCipherEncryptionDecryption(data, key.toInt()); 
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  } 

  else if (method == "ROT13") 

  { 

    rot13EncryptionDecryption(data); 

  } 

  else if (method == "SPECK") 

  { 

    uint32_t key_schedule[SPECK_ROUNDS_128]; 

    uint32_t key_words[SPECK_KEY_WORDS] = {0x01020304, 0x05060708, 0x090A0B0C, 

0x0D0E0F10}; 

    speckExpand(key_words, key_schedule, SPECK_ROUNDS_128); 

    uint32_t block[2]; 

    memcpy(block, data, 8); 

    speckEncryptDecrypt(block, key_schedule, SPECK_ROUNDS_128); 

    memcpy(data, block, 8); 

  } 

  else if (method == "SIMON") 

  { 

    uint32_t key_schedule[SIMON_ROUNDS_128]; 

    uint32_t key_words[SIMON_KEY_WORDS] = {0x01020304, 0x05060708, 0x090A0B0C, 

0x0D0E0F10}; 

    simonExpand(key_words, key_schedule, SIMON_ROUNDS_128); 

    uint32_t block[2]; 

    memcpy(block, data, 8); 

    simonEncryptDecrypt(block, key_schedule, SIMON_ROUNDS_128); 

    memcpy(data, block, 8); 

  } 

} 

 

bool connectToWiFi(const char *ssid, const char *password) 

{ 

  WiFi.begin(ssid, password); 

 

  int attempts = 0; 

  while (WiFi.status() != WL_CONNECTED && attempts < 20) 

  { 

    delay(500); 

    Serial.print("."); 

    attempts++; 

  } 

 

  if (WiFi.status() == WL_CONNECTED) 

  { 

    Serial.println("\nConnected to Wi-Fi"); 

    return true; 

  } 

 

  Serial.println("\nFailed to connect to Wi-Fi"); 
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  return false; 

} 

 

bool connectToWiFiWithStoredLedger() 

{ 

  if (storedLedgerCount > 0) 

  { 

    return connectToWiFi(storedLedger[storedLedgerCount - 1].ssid.c_str(), 

storedLedger[storedLedgerCount - 1].password.c_str()); 

  } 

  return false; 

} 

 

void handleDesync() 

{ 

  Serial.println("Handling desync, attempting to connect to honeypot..."); 

 

  if (connectToWiFi(honeypotSSID, honeypotPassword)) 

  { 

    if (client.connect(host, port)) 

    { 

      Serial.println("Connected to server via honeypot"); 

 

      String uuid = "UUID1-1234-5678-91011"; 

      client.println(uuid); 

 

      for (int i = 0; i < 5; i++) 

      { 

        storedLedger[i].ssid = client.readStringUntil('\n'); 

        storedLedger[i].password = client.readStringUntil('\n'); 

        storedLedger[i].encryptionKey = client.readStringUntil('\n'); 

        storedLedger[i].encryptionMethod = client.readStringUntil('\n'); 

        storedLedgerCount++; 

      } 

 

      Serial.println("Updated ledger received:"); 

      for (int i = 0; i < storedLedgerCount; i++) 

      { 

        Serial.println("SSID: " + storedLedger[i].ssid); 

        Serial.println("Password: " + storedLedger[i].password); 

        Serial.println("Encryption Key: " + storedLedger[i].encryptionKey); 

        Serial.println("Encryption Method: " + 

storedLedger[i].encryptionMethod); 

      } 

 

      if (connectToWiFiWithStoredLedger()) 

      { 
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        Serial.println("Reconnected to server using updated ledger 

credentials"); 

      } 

      else 

      { 

        Serial.println("Failed to reconnect to server after receiving updated 

ledger"); 

      } 

    } 

    else 

    { 

      Serial.println("Failed to connect to server via honeypot"); 

    } 

  } 

  else 

  { 

    Serial.println("Failed to connect to honeypot SSID"); 

  } 

} 

 

void handleLedgerUpdate() { 

    if (client.connected()) { 

        String ledgerUpdate = client.readStringUntil('\n'); 

        if (ledgerUpdate == "Ledger Update") { 

            int newIndex = client.readStringUntil('\n').toInt(); 

            storedLedger[newIndex].ssid = client.readStringUntil('\n'); 

            storedLedger[newIndex].password = client.readStringUntil('\n'); 

            storedLedger[newIndex].encryptionKey = 

client.readStringUntil('\n'); 

            storedLedger[newIndex].encryptionMethod = 

client.readStringUntil('\n'); 

 

            Serial.println("Ledger updated:"); 

            Serial.println("New SSID: " + storedLedger[newIndex].ssid); 

            Serial.println("New Password: " + 

storedLedger[newIndex].password); 

            Serial.println("New Encryption Key: " + 

storedLedger[newIndex].encryptionKey); 

            Serial.println("New Encryption Method: " + 

storedLedger[newIndex].encryptionMethod); 

 

            if (!connectToWiFiWithStoredLedger()) { 

                Serial.println("Error: Desynced from server. Unable to 

reconnect."); 

                handleDesync(); 

            } 

        } else { 
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            Serial.println("Unexpected response during ledger update: " + 

ledgerUpdate); 

        } 

    } else { 

        Serial.println("Client disconnected unexpectedly during ledger 

update."); 

    } 

} 

 

void setup() 

{ 

  Serial.begin(115200); 

 

  if (!connectToWiFiWithStoredLedger()) 

  { 

    Serial.println("Error: Initial connection failed. Desynced from server."); 

    handleDesync(); 

    return; 

  } 

 

  if (client.connect(host, port)) 

  { 

    Serial.println("Connected to server"); 

 

    String sessionID = client.readStringUntil('\n'); 

    Serial.println("Received Session ID: " + sessionID); 

 

    String processingPower = "HIGH"; 

    String uuid = "UUID1-1234-5678-91011"; 

    client.println(processingPower); 

    client.println(uuid); 

    client.println(sessionID); 

 

    String encryptionMethod = client.readStringUntil('\n'); 

    Serial.println("Encryption Method: " + encryptionMethod); 

 

    String response = client.readStringUntil('\n'); 

    Serial.println("Server Response: " + response); 

 

    if (response == "Connection Successful") 

    { 

      for (int i = 0; i < 5; i++) 

      { 

        storedLedger[i].ssid = client.readStringUntil('\n'); 

        storedLedger[i].password = client.readStringUntil('\n'); 

        storedLedger[i].encryptionKey = client.readStringUntil('\n'); 

        storedLedger[i].encryptionMethod = client.readStringUntil('\n'); 

        storedLedgerCount++; 
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      } 

 

      Serial.println("Received full ledger:"); 

      for (int i = 0; i < storedLedgerCount; i++) 

      { 

        Serial.println("SSID: " + storedLedger[i].ssid); 

        Serial.println("Password: " + storedLedger[i].password); 

        Serial.println("Encryption Key: " + storedLedger[i].encryptionKey); 

        Serial.println("Encryption Method: " + 

storedLedger[i].encryptionMethod); 

      } 

 

      encryptDecryptData(data, encryptionMethod, 

storedLedger[0].encryptionKey); 

      client.println(data); 

 

      String confirmation = client.readStringUntil('\n'); 

      Serial.println("Server Confirmation: " + confirmation); 

    } 

  } 

  else 

  { 

    Serial.println("Failed to connect to server"); 

  } 

} 

 

void loop() 

{ 

  if (client.connected()) 

  { 

    handleLedgerUpdate(); 

  } 

  else 

  { 

    Serial.println("Disconnected from server"); 

 

    if (connectToWiFiWithStoredLedger() && client.connect(host, port)) 

    { 

      Serial.println("Reconnected to server using ledger credentials"); 

    } 

    else 

    { 

      Serial.println("Failed to reconnect to server"); 

      handleDesync(); 

    } 

  } 

  delay(5000); 

} 
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Appendix 16: Full System With Adaptive Amoeba Battery Curve 

Mapping Management System 

16.1 Server 

#include <WiFi.h> 

#include <stdint.h> 

 

// Constants and Macros 

#define SERVER_PORT 80 

 

#define SPECK_ROUNDS_128 22 

#define SIMON_ROUNDS_128 44 

#define SPECK_KEY_WORDS 4 

#define SIMON_KEY_WORDS 4 

 

// Structure Definitions 

struct ClientSession 

{ 

  String sessionID; 

  String clientUUID; 

  bool approved; 

  WiFiClient clientConnection; 

  bool reconnected; 

  uint32_t sessionExpirationTime; 

  bool isSleeping; 

}; 

 

struct LedgerEntry 

{ 

  String ssid; 

  String password; 

  String encryptionKey; 

  String encryptionMethod; 

}; 

 

// Global Variables 

WiFiServer server(SERVER_PORT); 

ClientSession sessions[10]; 

int sessionCount = 0; 

LedgerEntry ledger[5] = { 

    {"SSID1", "Password1", "XORKey", "XOR"}, 

    {"SSID2", "Password2", "CaesarKey", "Caesar"}, 

    {"SSID3", "Password3", "ROT13Key", "ROT13"}, 

    {"SSID4", "Password4", "SpeckKey", "SPECK"}, 

    {"SSID5", "Password5", "SimonKey", "SIMON"}}; 

int currentLedgerIndex = 0; 

 

String approvedUUIDs[] = { 
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    "UUID1-1234-5678-91011", 

    "UUID2-1234-5678-91011", 

    "UUID3-1234-5678-91011"}; 

bool uuidConnected[] = {false, false, false}; 

 

int approvedUUIDCount = sizeof(approvedUUIDs) / sizeof(approvedUUIDs[0]); 

 

// XOR Encryption/Decryption 

void xorEncryptionDecryption(char *data, String key) 

{ 

  for (int i = 0; i < strlen(data); i++) 

  { 

    data[i] ^= key[0]; 

  } 

} 

 

// Caesar Cipher Encryption/Decryption 

void caesarCipherEncryptionDecryption(char *data, int shift) 

{ 

  for (int i = 0; i < strlen(data); i++) 

  { 

    if (isalpha(data[i])) 

    { 

      char offset = isupper(data[i]) ? 'A' : 'a'; 

      data[i] = (data[i] - offset + shift) % 26 + offset; 

    } 

  } 

} 

 

// ROT13 Encryption/Decryption 

void rot13EncryptionDecryption(char *data) 

{ 

  caesarCipherEncryptionDecryption(data, 13); 

} 

 

// SPECK Encryption/Decryption 

void speckRound(uint32_t &x, uint32_t &y, uint32_t k) 

{ 

  x = (x >> 8) | (x << (32 - 8)); 

  x += y; 

  x ^= k; 

  y = (y << 3) | (y >> (32 - 3)); 

  y ^= x; 

} 

 

void speckExpand(uint32_t const K[], uint32_t S[], uint8_t rounds) 

{ 

  uint32_t i, b = K[0]; 
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  uint32_t a[SPECK_KEY_WORDS - 1]; 

  for (i = 0; i < (SPECK_KEY_WORDS - 1); i++) 

  { 

    a[i] = K[i + 1]; 

  } 

  S[0] = b; 

  for (i = 0; i < rounds - 1; i++) 

  { 

    speckRound(a[i % (SPECK_KEY_WORDS - 1)], b, i); 

    S[i + 1] = b; 

  } 

} 

 

void speckEncryptDecrypt(uint32_t data[2], uint32_t const key_schedule[], 

uint8_t rounds) 

{ 

  for (uint8_t i = 0; i < rounds; i++) 

  { 

    speckRound(data[1], data[0], key_schedule[i]); 

  } 

} 

 

// SIMON Encryption/Decryption 

void simonRound(uint32_t &x, uint32_t &y, uint32_t k) 

{ 

  uint32_t tmp = (x << 1) | (x >> (32 - 1)); 

  tmp &= (tmp << 8); 

  tmp ^= y; 

  y ^= k; 

  y = (y >> 1) | (y << (32 - 1)); 

} 

 

void simonExpand(uint32_t const K[], uint32_t S[], uint8_t rounds) 

{ 

  uint32_t i, b = K[0]; 

  uint32_t a[SIMON_KEY_WORDS - 1]; 

  for (i = 0; i < (SIMON_KEY_WORDS - 1); i++) 

  { 

    a[i] = K[i + 1]; 

  } 

  S[0] = b; 

  for (i = 0; i < rounds - 1; i++) 

  { 

    simonRound(a[i % (SIMON_KEY_WORDS - 1)], b, i); 

    S[i + 1] = b; 

  } 

} 
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void simonEncryptDecrypt(uint32_t data[2], uint32_t const key_schedule[], 

uint8_t rounds) 

{ 

  for (uint8_t i = 0; i < rounds; i++) 

  { 

    simonRound(data[1], data[0], key_schedule[i]); 

  } 

} 

 

void encryptDecryptData(char *data, const String &method, const String &key) 

{ 

  if (method == "XOR") 

  { 

    xorEncryptionDecryption(data, key); 

  } 

  else if (method == "Caesar") 

  { 

    caesarCipherEncryptionDecryption(data, key.toInt()); 

  } 

  else if (method == "ROT13") 

  { 

    rot13EncryptionDecryption(data); 

  } 

  else if (method == "SPECK") 

  { 

    uint32_t key_schedule[SPECK_ROUNDS_128]; 

    uint32_t key_words[SPECK_KEY_WORDS] = {0x01020304, 0x05060708, 0x090A0B0C, 

0x0D0E0F10}; 

    speckExpand(key_words, key_schedule, SPECK_ROUNDS_128); 

    uint32_t block[2]; 

    memcpy(block, data, 8); 

    speckEncryptDecrypt(block, key_schedule, SPECK_ROUNDS_128); 

    memcpy(data, block, 8); 

  } 

  else if (method == "SIMON") 

  { 

    uint32_t key_schedule[SIMON_ROUNDS_128]; 

    uint32_t key_words[SIMON_KEY_WORDS] = {0x01020304, 0x05060708, 0x090A0B0C, 

0x0D0E0F10}; 

    simonExpand(key_words, key_schedule, SIMON_ROUNDS_128); 

    uint32_t block[2]; 

    memcpy(block, data, 8); 

    simonEncryptDecrypt(block, key_schedule, SIMON_ROUNDS_128); 

    memcpy(data, block, 8); 

  } 

} 

 

// Function to generate a session ID 
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String generateSessionID() 

{ 

  String sessionID = ""; 

  for (int i = 0; i < 16; i++) 

  { 

    sessionID += String(random(0, 16), HEX); 

  } 

  return sessionID; 

} 

 

// Function to check if a session ID is approved 

bool isSessionApproved(String sessionID, String clientUUID) 

{ 

  for (int i = 0; i < sessionCount; i++) 

  { 

    if (sessions[i].sessionID == sessionID && sessions[i].clientUUID == 

clientUUID && sessions[i].approved) 

    { 

      return true; 

    } 

  } 

  return false; 

} 

 

// Function to check if a UUID is approved 

bool isUUIDApproved(String uuid) 

{ 

  for (int i = 0; i < approvedUUIDCount; i++) 

  { 

    if (approvedUUIDs[i] == uuid) 

    { 

      return true; 

    } 

  } 

  return false; 

} 

 

// Function to update the server's SSID and password based on the current 

ledger entry 

void updateServerCredentials() 

{ 

  WiFi.softAPdisconnect(true); 

  WiFi.softAP(ledger[currentLedgerIndex].ssid.c_str(), 

ledger[currentLedgerIndex].password.c_str()); 

  Serial.println("Server SSID and Password updated to:"); 

  Serial.println("SSID: " + ledger[currentLedgerIndex].ssid); 

  Serial.println("Password: " + ledger[currentLedgerIndex].password); 

} 
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// Function to start the honeypot SSID 

void startHoneypot() 

{ 

  WiFi.softAPdisconnect(true); 

  WiFi.softAP("Honeypot_SSID", "Honeypot_Password"); 

  Serial.println("Honeypot SSID and Password activated:"); 

  Serial.println("Honeypot SSID: Honeypot_SSID"); 

  Serial.println("Honeypot Password: Honeypot_Password"); 

} 

 

// Function to stop the honeypot SSID 

void stopHoneypot() 

{ 

  WiFi.softAPdisconnect(true); 

  updateServerCredentials(); 

  Serial.println("Honeypot SSID deactivated. Server SSID and Password 

restored."); 

} 

 

// Function to notify all approved clients of a ledger update 

void notifyApprovedClients() 

{ 

  for (int i = 0; i < sessionCount; i++) 

  { 

    if (sessions[i].approved && sessions[i].clientConnection.connected()) 

    { 

      sessions[i].clientConnection.println("Ledger Update"); 

      sessions[i].clientConnection.println(currentLedgerIndex); 

      sessions[i].clientConnection.println(ledger[currentLedgerIndex].ssid); 

      sessions[i].clientConnection.println(ledger[currentLedgerIndex].password

); 

      sessions[i].clientConnection.println(ledger[currentLedgerIndex].encrypti

onKey); 

      sessions[i].clientConnection.println(ledger[currentLedgerIndex].encrypti

onMethod); 

    } 

  } 

} 

 

// Function to handle compromised credentials and trigger process 

void handleCompromisedCredentials(String sessionID, String clientUUID) 

{ 

  for (int i = 0; i < sessionCount; i++) 

  { 

    if (sessions[i].sessionID == sessionID && sessions[i].clientUUID == 

clientUUID) 

    { 
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      Serial.println("Session ID " + sessionID + " marked as compromised."); 

      sessions[i].approved = false; 

      currentLedgerIndex = (currentLedgerIndex + 1) % 5; 

      updateServerCredentials(); 

      notifyApprovedClients(); 

      startHoneypot(); 

      break; 

    } 

  } 

  for (int i = 0; i < sessionCount; i++) 

  { 

    sessions[i].reconnected = false; 

  } 

  Serial.println("All sessions marked as needing reconnection."); 

} 

 

// Function to check for desynchronization and send error code 

void checkDesynchronization(WiFiClient &client, String clientUUID) 

{ 

  for (int i = 0; i < approvedUUIDCount; i++) 

  { 

    if (approvedUUIDs[i] == clientUUID && !uuidConnected[i]) 

    { 

      String clientSSID = client.readStringUntil('\n'); 

      String clientPassword = client.readStringUntil('\n'); 

 

      if (clientSSID != ledger[currentLedgerIndex].ssid || clientPassword != 

ledger[currentLedgerIndex].password) 

      { 

        Serial.println("Desync detected for UUID: " + clientUUID); 

        client.println("Error: Desync detected. Please reconnect."); 

        client.stop(); 

        return; 

      } 

      uuidConnected[i] = true; 

      Serial.println("UUID " + clientUUID + " connected successfully."); 

    } 

  } 

} 

 

// Function to handle new incoming connections 

void handleNewConnection(WiFiClient client) 

{ 

  String sessionID = generateSessionID(); 

  client.println(sessionID); 

 

  String clientInfo = client.readStringUntil('\n'); 

  String clientUUID = client.readStringUntil('\n'); 
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  String receivedSessionID = client.readStringUntil('\n'); 

 

  String encryptionMethod = ledger[currentLedgerIndex].encryptionMethod; 

  client.println(encryptionMethod); 

 

  if (isUUIDApproved(clientUUID)) 

  { 

    if (!isSessionApproved(receivedSessionID, clientUUID)) 

    { 

      sessions[sessionCount].sessionID = sessionID; 

      sessions[sessionCount].clientUUID = clientUUID; 

      sessions[sessionCount].approved = true; 

      sessions[sessionCount].clientConnection = client; 

      sessions[sessionCount].reconnected = false; 

      sessions[sessionCount].sessionExpirationTime = millis() + 60000; 

      sessionCount++; 

 

      Serial.println("Session ID " + sessionID + " for UUID " + clientUUID + " 

connected."); 

 

      checkDesynchronization(client, clientUUID); 

 

      client.println("Connection Successful"); 

 

      client.println(ledger[currentLedgerIndex].ssid); 

      client.println(ledger[currentLedgerIndex].password); 

      client.println(ledger[currentLedgerIndex].encryptionKey); 

      client.println(ledger[currentLedgerIndex].encryptionMethod); 

 

      for (int i = 0; i < sessionCount; i++) 

      { 

        if (sessions[i].clientConnection == client) 

        { 

          sessions[i].reconnected = true; 

          Serial.println("Session ID " + sessionID + " marked as 

reconnected."); 

          break; 

        } 

      } 

    } 

    else 

    { 

      Serial.println("Session ID " + receivedSessionID + " is already 

approved. Skipping reinitialization."); 

      client.println("Connection Successful"); 

 

      client.println(ledger[currentLedgerIndex].ssid); 

      client.println(ledger[currentLedgerIndex].password); 
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      client.println(ledger[currentLedgerIndex].encryptionKey); 

      client.println(ledger[currentLedgerIndex].encryptionMethod); 

    } 

  } 

  else 

  { 

    Serial.println("Failed connection attempt with Session ID " + sessionID + 

" and UUID " + clientUUID); 

    client.println("Session ID blocked or compromised"); 

    client.stop(); 

  } 

 

  String sensorData = client.readStringUntil('\n'); 

  encryptDecryptData(&sensorData[0], 

ledger[currentLedgerIndex].encryptionMethod, 

ledger[currentLedgerIndex].encryptionKey); 

  Serial.println("Received Decrypted Sensor Data: " + sensorData); 

  client.println("Sensor data received and decrypted successfully."); 

 

  bool allReconnected = true; 

  for (int i = 0; i < approvedUUIDCount; i++) 

  { 

    if (!uuidConnected[i]) 

    { 

      allReconnected = false; 

      Serial.println("UUID " + approvedUUIDs[i] + " has not reconnected 

yet."); 

      break; 

    } 

  } 

 

  if (allReconnected) 

  { 

    Serial.println("All approved UUIDs have reconnected."); 

    stopHoneypot(); 

  } 

} 

 

void setup() 

{ 

  Serial.begin(115200); 

  WiFi.softAP(ledger[currentLedgerIndex].ssid.c_str(), 

ledger[currentLedgerIndex].password.c_str()); 

  server.begin(); 

 

  Serial.println("Server started with initial SSID and Password:"); 

  Serial.println("SSID: " + ledger[currentLedgerIndex].ssid); 

  Serial.println("Password: " + ledger[currentLedgerIndex].password); 
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} 

 

void loop() 

{ 

  WiFiClient client = server.available(); 

  if (client) 

  { 

    handleNewConnection(client); 

  } 

 

  for (int i = 0; i < sessionCount; i++) 

  { 

    if (sessions[i].approved && millis() > sessions[i].sessionExpirationTime 

&& !sessions[i].isSleeping) 

    { 

      Serial.println("Session ID " + sessions[i].sessionID + " expired due to 

inactivity."); 

      handleCompromisedCredentials(sessions[i].sessionID, 

sessions[i].clientUUID); 

    } 

  } 

 

  delay(2000); 

} 
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16.2 Client 

#include <WiFi.h> 

#include <EEPROM.h> 

 

#define ADC_PIN A0 

#define EEPROM_SIZE 512 

 

#define MAX_DATA_POINTS 100 

 

// Server details 

const char *host = "192.168.4.1"; 

const uint16_t port = 80; 

 

// Constants for encryption 

#define SPECK_ROUNDS_128 22 

#define SIMON_ROUNDS_128 44 

#define SPECK_KEY_WORDS 4 

#define SIMON_KEY_WORDS 4 

 

WiFiClient client; 

 

// Ledger entries to store received data 

struct LedgerEntry 

{ 

  String ssid; 

  String password; 

  String encryptionKey; 

  String encryptionMethod; 

}; 

 

LedgerEntry storedLedger[5]; 

int storedLedgerCount = 0; 

 

// Battery Data Structure 

struct BatteryData 

{ 

  uint32_t voltage; 

  float percentage; 

}; 

 

BatteryData batteryData[MAX_DATA_POINTS]; 

int dataPointsCount = 0; 

 

uint32_t getBatteryVoltage() 

{ 

  int adcValue = analogRead(ADC_PIN); 

  uint32_t voltage = map(adcValue, 0, 4095, 0, 5000); 

  return voltage; 
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} 

 

float initialMapBatteryCurve(uint32_t voltage) 

{ 

  if (voltage > 4200) 

    return 100.0; 

  else if (voltage > 4000) 

    return 75.0 + (voltage - 4000) * 0.25; 

  else if (voltage > 3800) 

    return 50.0 + (voltage - 3800) * 0.125; 

  else if (voltage > 3600) 

    return 25.0 + (voltage - 3600) * 0.125; 

  else if (voltage > 3400) 

    return (voltage - 3400) * 0.125; 

  else 

    return 0.0; 

} 

 

float nonLinearInterpolation(uint32_t voltage) 

{ 

  float voltageNormalized = (float)(voltage - 3400) / (4200 - 3400); 

  return pow(voltageNormalized, 2) * 100.0; 

} 

 

void storeBatteryData(uint32_t voltage, float percentage) 

{ 

  if (dataPointsCount < MAX_DATA_POINTS) 

  { 

    batteryData[dataPointsCount].voltage = voltage; 

    batteryData[dataPointsCount].percentage = percentage; 

    dataPointsCount++; 

  } 

  else 

  { 

    for (int i = 1; i < MAX_DATA_POINTS; i++) 

    { 

      batteryData[i - 1] = batteryData[i]; 

    } 

    batteryData[MAX_DATA_POINTS - 1].voltage = voltage; 

    batteryData[MAX_DATA_POINTS - 1].percentage = percentage; 

  } 

 

  EEPROM.put(0, batteryData); 

  EEPROM.put(sizeof(batteryData), dataPointsCount); 

  EEPROM.commit(); 

} 

 

float estimateBatteryHealth(uint32_t voltage) 



 

252 
 

{ 

  if (voltage > 4200) 

    return 1.0; 

  else if (voltage > 4000) 

    return 0.75; 

  else if (voltage > 3800) 

    return 0.5; 

  else if (voltage > 3600) 

    return 0.25; 

  else 

    return 0.1; 

} 

 

void loadBatteryData() 

{ 

  EEPROM.get(0, batteryData); 

  EEPROM.get(sizeof(batteryData), dataPointsCount); 

} 

 

float predictBatteryPercentage(uint32_t voltage) 

{ 

  if (dataPointsCount < 2) 

  { 

    return initialMapBatteryCurve(voltage); 

  } 

 

  return nonLinearInterpolation(voltage); 

} 

 

void enterAdaptiveSleepMode(float batteryPercentage, float batteryHealth) 

{ 

  uint64_t sleepDuration; 

 

  if (batteryPercentage > 75.0) 

  { 

    Serial.println("Battery sufficient, normal operation."); 

    sleepDuration = 10000000; 

  } 

  else if (batteryPercentage > 50.0) 

  { 

    Serial.println("Entering light sleep mode."); 

    sleepDuration = batteryHealth * 20000000; 

    esp_sleep_enable_timer_wakeup(sleepDuration); 

    esp_light_sleep_start(); 

  } 

  else if (batteryPercentage > 25.0) 

  { 

    Serial.println("Entering deep sleep mode."); 



 

253 
 

    sleepDuration = batteryHealth * 40000000; 

    esp_sleep_enable_timer_wakeup(sleepDuration); 

    esp_deep_sleep_start(); 

  } 

  else 

  { 

    Serial.println("Entering ULP mode, maximizing battery life."); 

    sleepDuration = batteryHealth * 60000000; 

    esp_sleep_enable_timer_wakeup(sleepDuration); 

    esp_deep_sleep_start(); 

  } 

} 

 

void sendLowBatteryAlert() 

{ 

  if (client.connected()) 

  { 

    client.println("Low Battery Alert"); 

  } 

} 

 

// XOR Encryption/Decryption 

void xorEncryptionDecryption(char *data, String key) 

{ 

  for (int i = 0; i < strlen(data); i++) 

  { 

    data[i] ^= key[0]; 

  } 

} 

 

// Caesar Cipher Encryption/Decryption 

void caesarCipherEncryptionDecryption(char *data, int shift) 

{ 

  for (int i = 0; i < strlen(data); i++) 

  { 

    if (isalpha(data[i])) 

    { 

      char offset = isupper(data[i]) ? 'A' : 'a'; 

      data[i] = (data[i] - offset + shift) % 26 + offset; 

    } 

  } 

} 

 

// ROT13 Encryption/Decryption 

void rot13EncryptionDecryption(char *data) 

{ 

  caesarCipherEncryptionDecryption(data, 13); 

} 
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// SPECK Encryption/Decryption 

void speckRound(uint32_t &x, uint32_t &y, uint32_t k) 

{ 

  x = (x >> 8) | (x << (32 - 8)); 

  x += y; 

  x ^= k; 

  y = (y << 3) | (y >> (32 - 3)); 

  y ^= x; 

} 

 

void speckExpand(uint32_t const K[], uint32_t S[], uint8_t rounds) 

{ 

  uint32_t i, b = K[0]; 

  uint32_t a[SPECK_KEY_WORDS - 1]; 

  for (i = 0; i < (SPECK_KEY_WORDS - 1); i++) 

  { 

    a[i] = K[i + 1]; 

  } 

  S[0] = b; 

  for (i = 0; i < rounds - 1; i++) 

  { 

    speckRound(a[i % (SPECK_KEY_WORDS - 1)], b, i); 

    S[i + 1] = b; 

  } 

} 

 

void speckEncryptDecrypt(uint32_t data[2], uint32_t const key_schedule[], 

uint8_t rounds) 

{ 

  for (uint8_t i = 0; i < rounds; i++) 

  { 

    speckRound(data[1], data[0], key_schedule[i]); 

  } 

} 

 

// SIMON Encryption/Decryption 

void simonRound(uint32_t &x, uint32_t &y, uint32_t k) 

{ 

  uint32_t tmp = (x << 1) | (x >> (32 - 1)); 

  tmp &= (tmp << 8); 

  tmp ^= y; 

  y ^= k; 

  y = (y >> 1) | (y << (32 - 1)); 

} 

 

void simonExpand(uint32_t const K[], uint32_t S[], uint8_t rounds) 

{ 
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  uint32_t i, b = K[0]; 

  uint32_t a[SIMON_KEY_WORDS - 1]; 

  for (i = 0; i < (SIMON_KEY_WORDS - 1); i++) 

  { 

    a[i] = K[i + 1]; 

  } 

  S[0] = b; 

  for (i = 0; i < rounds - 1; i++) 

  { 

    simonRound(a[i % (SIMON_KEY_WORDS - 1)], b, i); 

    S[i + 1] = b; 

  } 

} 

 

void simonEncryptDecrypt(uint32_t data[2], uint32_t const key_schedule[], 

uint8_t rounds) 

{ 

  for (uint8_t i = 0; i < rounds; i++) 

  { 

    simonRound(data[1], data[0], key_schedule[i]); 

  } 

} 

 

void encryptDecryptData(char *data, const String &method, const String &key) 

{ 

  if (method == "XOR") 

  { 

    xorEncryptionDecryption(data, key); 

  } 

  else if (method == "Caesar") 

  { 

    caesarCipherEncryptionDecryption(data, key.toInt()); 

  } 

  else if (method == "ROT13") 

  { 

    rot13EncryptionDecryption(data); 

  } 

  else if (method == "SPECK") 

  { 

    uint32_t key_schedule[SPECK_ROUNDS_128]; 

    uint32_t key_words[SPECK_KEY_WORDS] = {0x01020304, 0x05060708, 0x090A0B0C, 

0x0D0E0F10}; 

    speckExpand(key_words, key_schedule, SPECK_ROUNDS_128); 

    uint32_t block[2]; 

    memcpy(block, data, 8); 

    speckEncryptDecrypt(block, key_schedule, SPECK_ROUNDS_128); 

    memcpy(data, block, 8); 

  } 
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  else if (method == "SIMON") 

  { 

    uint32_t key_schedule[SIMON_ROUNDS_128]; 

    uint32_t key_words[SIMON_KEY_WORDS] = {0x01020304, 0x05060708, 0x090A0B0C, 

0x0D0E0F10}; 

    simonExpand(key_words, key_schedule, SIMON_ROUNDS_128); 

    uint32_t block[2]; 

    memcpy(block, data, 8); 

    simonEncryptDecrypt(block, key_schedule, SIMON_ROUNDS_128); 

    memcpy(data, block, 8); 

  } 

} 

 

bool connectToWiFi(const char *ssid, const char *password) 

{ 

  WiFi.begin(ssid, password); 

 

  int attempts = 0; 

  while (WiFi.status() != WL_CONNECTED && attempts < 20) 

  { 

    delay(500); 

    Serial.print("."); 

    attempts++; 

  } 

 

  if (WiFi.status() == WL_CONNECTED) 

  { 

    Serial.println("\nConnected to Wi-Fi"); 

    return true; 

  } 

 

  Serial.println("\nFailed to connect to Wi-Fi"); 

  return false; 

} 

 

bool connectToWiFiWithStoredLedger() 

{ 

  if (storedLedgerCount > 0) 

  { 

    return connectToWiFi(storedLedger[storedLedgerCount - 1].ssid.c_str(), 

storedLedger[storedLedgerCount - 1].password.c_str()); 

  } 

  return false; 

} 

 

void handleDesync() 

{ 

  Serial.println("Handling desync, attempting to connect to honeypot..."); 
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  if (connectToWiFi("Honeypot_SSID", "Honeypot_Password")) // Use the actual 

honeypot SSID and Password 

  { 

    if (client.connect(host, port)) 

    { 

      Serial.println("Connected to server via honeypot"); 

 

      String uuid = "UUID1-1234-5678-91011"; 

      client.println(uuid); 

 

      for (int i = 0; i < 5; i++) 

      { 

        storedLedger[i].ssid = client.readStringUntil('\n'); 

        storedLedger[i].password = client.readStringUntil('\n'); 

        storedLedger[i].encryptionKey = client.readStringUntil('\n'); 

        storedLedger[i].encryptionMethod = client.readStringUntil('\n'); 

        storedLedgerCount++; 

      } 

 

      Serial.println("Updated ledger received:"); 

      for (int i = 0; i < storedLedgerCount; i++) 

      { 

        Serial.println("SSID: " + storedLedger[i].ssid); 

        Serial.println("Password: " + storedLedger[i].password); 

        Serial.println("Encryption Key: " + storedLedger[i].encryptionKey); 

        Serial.println("Encryption Method: " + 

storedLedger[i].encryptionMethod); 

      } 

 

      if (connectToWiFiWithStoredLedger()) 

      { 

        Serial.println("Reconnected to server using updated ledger 

credentials"); 

      } 

      else 

      { 

        Serial.println("Failed to reconnect to server after receiving updated 

ledger"); 

      } 

    } 

    else 

    { 

      Serial.println("Failed to connect to server via honeypot"); 

    } 

  } 

  else 

  { 
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    Serial.println("Failed to connect to honeypot SSID"); 

  } 

} 

 

void handleLedgerUpdate() 

{ 

  if (client.connected()) 

  { 

    String ledgerUpdate = client.readStringUntil('\n'); 

    if (ledgerUpdate == "Ledger Update") 

    { 

      int newIndex = client.readStringUntil('\n').toInt(); 

      storedLedger[newIndex].ssid = client.readStringUntil('\n'); 

      storedLedger[newIndex].password = client.readStringUntil('\n'); 

      storedLedger[newIndex].encryptionKey = client.readStringUntil('\n'); 

      storedLedger[newIndex].encryptionMethod = client.readStringUntil('\n'); 

 

      Serial.println("Ledger updated:"); 

      Serial.println("New SSID: " + storedLedger[newIndex].ssid); 

      Serial.println("New Password: " + storedLedger[newIndex].password); 

      Serial.println("New Encryption Key: " + 

storedLedger[newIndex].encryptionKey); 

      Serial.println("New Encryption Method: " + 

storedLedger[newIndex].encryptionMethod); 

 

      if (!connectToWiFiWithStoredLedger()) 

      { 

        Serial.println("Error: Desynced from server. Unable to reconnect."); 

        handleDesync(); 

      } 

    } 

  } 

} 

 

void setup() 

{ 

  Serial.begin(115200); 

  EEPROM.begin(EEPROM_SIZE); 

 

  loadBatteryData(); 

 

  Serial.println("Starting battery management system..."); 

 

  if (!connectToWiFiWithStoredLedger()) 

  { 

    Serial.println("Error: Initial connection failed. Desynced from server."); 

    handleDesync(); 

    return; 
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  } 

 

  if (client.connect(host, port)) 

  { 

    Serial.println("Connected to server"); 

 

    String sessionID = client.readStringUntil('\n'); 

    Serial.println("Received Session ID: " + sessionID); 

 

    String processingPower = "HIGH"; 

    String uuid = "UUID1-1234-5678-91011"; 

    client.println(processingPower); 

    client.println(uuid); 

    client.println(sessionID); 

 

    String encryptionMethod = client.readStringUntil('\n'); 

    Serial.println("Encryption Method: " + encryptionMethod); 

 

    String response = client.readStringUntil('\n'); 

    Serial.println("Server Response: " + response); 

 

    if (response == "Connection Successful") 

    { 

      for (int i = 0; i < 5; i++) 

      { 

        storedLedger[i].ssid = client.readStringUntil('\n'); 

        storedLedger[i].password = client.readStringUntil('\n'); 

        storedLedger[i].encryptionKey = client.readStringUntil('\n'); 

        storedLedger[i].encryptionMethod = client.readStringUntil('\n'); 

        storedLedgerCount++; 

      } 

 

      Serial.println("Received full ledger:"); 

      for (int i = 0; i < storedLedgerCount; i++) 

      { 

        Serial.println("SSID: " + storedLedger[i].ssid); 

        Serial.println("Password: " + storedLedger[i].password); 

        Serial.println("Encryption Key: " + storedLedger[i].encryptionKey); 

        Serial.println("Encryption Method: " + 

storedLedger[i].encryptionMethod); 

      } 

 

      uint32_t voltage = getBatteryVoltage(); 

      float batteryPercentage = predictBatteryPercentage(voltage); 

      float batteryHealth = estimateBatteryHealth(voltage); 

       

      // Dynamic Encryption Mode Selection 

      if (batteryPercentage < 15.0) 
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      { 

        storedLedger[0].encryptionMethod = "XOR"; // Ultra-lightweight 

      } 

      else if (batteryPercentage < 30.0) 

      { 

        storedLedger[0].encryptionMethod = "Caesar"; // Simple shift 

      } 

      else if (batteryPercentage < 50.0) 

      { 

        storedLedger[0].encryptionMethod = "ROT13"; // Moderate cost 

      } 

      else if (batteryPercentage < 75.0) 

      { 

        storedLedger[0].encryptionMethod = "SPECK"; // Stronger 

      } 

      else 

      { 

        storedLedger[0].encryptionMethod = "SIMON"; // Most robust 

      } 

 

      Serial.println("Selected Encryption Method: " + 

storedLedger[0].encryptionMethod); 

       

      client.println("EncryptionMode: " + storedLedger[0].encryptionMethod); 

 

      if (batteryPercentage < 10.0) 

      { 

        sendLowBatteryAlert(); 

      } 

 

      storeBatteryData(voltage, batteryPercentage); 

      enterAdaptiveSleepMode(batteryPercentage, batteryHealth); 

 

      // Sensor data to be encrypted and sent 

      char sensorData[] = "The quick brown fox jumps over the lazy dog 

1234567890!@#$%^&*()_+-=[]{}|;':,.<>/?\n\t"; 

      encryptDecryptData(sensorData, encryptionMethod, 

storedLedger[0].encryptionKey); 

 

      client.println(sensorData); 

 

      String confirmation = client.readStringUntil('\n'); 

      Serial.println("Server Confirmation: " + confirmation); 

    } 

  } 

  else 

  { 

    Serial.println("Failed to connect to server"); 
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  } 

} 

 

void loop() 

{ 

  if (client.connected()) 

  { 

    handleLedgerUpdate(); 

  } 

  else 

  { 

    Serial.println("Disconnected from server"); 

 

    if (connectToWiFiWithStoredLedger() && client.connect(host, port)) 

    { 

      Serial.println("Reconnected to server using ledger credentials"); 

    } 

    else 

    { 

      Serial.println("Failed to reconnect to server"); 

      handleDesync(); 

    } 

  } 

 

  delay(5000); 

} 
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Appendix 17: Encryption Power Performance Summary 

17.1 ESP32 Encryption Power Performance 

 

Figure Appendix 17.1: Idel ESP32 Encryption Power Performance 

 

Figure Appendix 17.2: XOR ESP32 Encryption Power Performance 
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Figure Appendix 17.3: Caesar ESP32 Encryption Power Performance 

 

Figure Appendix 17.4: ROT13 ESP32 Encryption Power Performance 



 

264 
 

 

Figure Appendix 17.5: SPECK ESP32 Encryption Power Performance 

 

Figure Appendix 17.6: SIMON ESP32 Encryption Power Performance 
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17.2 ATMEGA328 Encryption Power Performance 

 

Figure Appendix 17.7: Idel ATMEGA328 Encryption Power Performance 

 

Figure Appendix 17.8: XOR ATMEGA328 Encryption Power Performance 



 

266 
 

 

Figure Appendix 17.9: Caesar ATMEGA328 Encryption Power Performance 

 

Figure Appendix 17.10: ROT13 ATMEGA328 Encryption Power Performance 
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Figure Appendix 17.11: SPECK ATMEGA328 Encryption Power Performance 

 

Figure Appendix 17.12: SPECK ATMEGA328 Encryption Power Performance 


