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Abstract—This paper presents a tracking reference design
condition based on a purely discrete-time PID controller aimed at
sampled-data linear systems operating over hybrid time domains.
The proposed method formulates the PID tuning problem as a
convex optimization task based on Differential Linear Matrix
Inequalities (DLMIs), with the specific objective of minimizing
the H2 guaranteed cost of the tracking error signal. Purely
discrete PID gains are obtained automatically without requiring
model reduction or transformation to continuous-time domains.
The resulting controller ensures stability and performance by
imposing an H2 upper limit cost for hybrid systems. Numerical
examples are used to show the effectiveness and practicality of
the proposed method.
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I. INTRODUCTION

REAL-WORLD physical systems commonly used in in-
dustry are typically modeled by continuous-time differ-

ential equations. In early automation processes for these sys-
tems, mechanisms employing mechanical or electronic com-
ponents were used to generate continuous-time control signals,
enabling the design of systems and controllers operating in the
same temporal domain [1]. However, these controllers were
difficult to modify due to their analog construction. With the
transition to digital controllers, two main approaches emerged:
the use of high-performance hardware capable of emulating
continuous-time controllers, which is usually expansive for
the industry, or costless digital controllers used in addition
to analog-to-digital-to-analog converters (usually zero-order
holders) and classical approaches of discretization [2]. How-
ever, the last one, although cheaper than the other, tends to
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fail or experience poor performance when dealing with fast
dynamics or non-linear behavior [1], [3]. This is primarily
because classical control models cannot adequately capture
the inter-sampling information of the continuous-time system.
Other problem that arises from this scenario is the pathological
frequencies that insert into the system uncontrollable unstable
poles for some selected sampling frequencies [4].

To address the aforementioned problems, modern control
theory literature proposes classes of systems capable of de-
scribing the continuous-time physical dynamics, while control
actions are applied at discrete instants. Among others, the
impulsive or hybrid linear system (HLS) approach is based
mainly on the definition of an augmented system composed
of two dynamics: the continuous- and discrete-time evolutions
of the system. As a consequence, the design of filters and
controllers, in the hybrid approach, requires to solve a two-
point boundary value problem (TPBVP) where the differential
equation is associated with the continuous-time dynamic,
and boundary conditions corresponding to the discrete-time
behavior of the system, [3], [5], [6]. Besides the challenge of
obtaining linear conditions to be solved by the tools available
in the literature to date, a great challenge of this approach
is to solve the resulting TPBVP. To address this problem
within a convex optimization framework, Differential Linear
Matrix Inequalities (DLMIs) have gained prominence in recent
years [5], [7], offering a mathematical tool to lead the DLMI
to a convex and tractable formulation to address common
control-related challenges such as system uncertainties, delays,
and performance specifications in the discrete- or continuous-
time domain. Due to the novelty of the method, many of
these problems are still open in the literature. Furthermore,
few papers have been published considering the solution of
DLMIs. In [8] three methods have been proposed: the piece-
wise linear approximation and the approximations considering
truncated Taylor and Fourier series. Other papers, instead of
considering DLMI conditions, propose LMI-based ones that
include approximations in the problem formulation, such as the
piecewise linear approximation, as in [6], or the polynomial
approximation for the Lyapunov matrices as in [9].

Despite this significant development in control theory, clas-
sical approaches are still commonly found in most industries.
Specifically, the families of proportional derivative integral
(PID) action-based control are widely used for reference-
tracking structures, [10], [11], due to its practicality and
simplicity to obtain effective designs. For this reason, a recent
effort is in the direction of designing PID controllers through
modern sampled-data approaches. In [12] and [13], a sampled-
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data PID-based controller is formulated. Therein, the authors
consider the measured output signal as the feedback signal
instead of the error signal. In addition, the derivative action
introduces a delay-based approximation that allows them to
obtain convex conditions for a purely discrete-time controller
design. In [14], a similar approach is used, but considering
only the last two measurements. In this paper, uncertain
systems are also considered through an LMI formulation.
In [15], a nonlinear system is controlled considering an error-
based sampled-data structure for the controller. For the design,
the time-delay and uncertain parameters are considered. In
addition, this approach admits a decay rate constraint, which
can be generalizable as a H2 performance condition. Finally,
[16] tackled the sampled-data reference tracking control with
integrative terms.

Considering the PID structure applied to systems with a
performance optimization, [17] a PID structure is designed
considering the performance otimization based on H∞ norm
considering the continuous-time domain. To the knowledge
of the authors, there is no work in the literature that con-
siders the optimization performance based on the H2 norm
considering a PID structure and the hybrid time domain. In
this context, we propose a purely discrete-time PID controller
design that minimizes the H2 norm for sampled-data system.
The design conditions are presented through the DLMIs. The
main contribution lies in the minimization of an upper bound
of the H2 norm of the output tracking error. Unlike traditional
tuning methods, which often neglect the combined effects of
sampling, delays, and hybrid dynamics, the proposed approach
provides convex conditions that ensure quadratic stability and
robust performance under digital constraints. The design pro-
cedure automatically computes the discrete PID gains KP , KI ,
and KD by explicitly solving a convex optimization problem
in terms of DLMIs, avoiding the need for continuous-time
approximations or heuristic search strategies. The effectiveness
and computational efficiency of the method are validated
through numerical simulations.

Notation: The notation is standard. N, R, and R+ represent
the set of natural, real, and non-negative real numbers, respec-
tively. Matrices are represented by capital letters, and vectors
and scalars are represented by small letters. Given a matrix M
and a vector v, their transpositions are M⊤ and v⊤, respec-
tively. For block matrices, the symmetric block is represented
by ⋆. Let M ∈ Rnm×nm a square matrix, the symmetric sum
is given by Her[M ] = M + M⊤. Let S a symmetric square
matrix, it is denoted by S ∈ Sn. Block diagonal matrices are
represented by diag(M,N). Positive (negative) definiteness
conditions of symmetric matrices P ∈ Rnp×np are denoted
by P ≻ 0 (P ≺ 0). For any continuous-time function f(t),
we set f [k] = f(tk) for k ∈ N. The symbol 1n×m denotes a
matrix full of ones of dimension n by m.

II. PROBLEM DESCRIPTION

Consider an uncertain continuous-time system in the form

ẋ(t) = A(α)x(t) +B(α)u(t) + E(α)w(t), (1)

where x(t) ∈ Rnx is the state vector, u(t) ∈ Rnu is the
regulated input vector, and w(t) ∈ Rnw is the exogenous input

vector. The system matrices belong to an uncertain domain
represented by the simplex Λα ∈ RN such that

(A,B,E)(α) =

N∑
i=1

αi(Ai, Bi, Ei), (2)

where Λα := {α = [α1, . . . , αN ] :
∑N

i=1 αi = 1, αi ≥ 0}.
This system is one of the blocks of the sampled-data controlled
system illustrated in Fig. 1, which aims to track a constant
reference r[k] ∈ Rnr , nr ≥ nx. Consider that the state vector
x(t) is submitted to an ideal sampler, which produces x[k] =
x(tk) for all t ∈ [tk, tk+1), k ∈ N, where tk+1−tk = h > 0 is
called the sampling period, with t0 = 0, generating a sequence
of sampling instants {tk}∀k∈N.

Assuming that the state vector is available for measurement,
we define

e[k] = r[k]− Crx[k], (3)

as the tracking error signal, which assumes that the signal
to be tracked is in the form of ζ(t) = Crx[k], for all t ∈
[tk, tk+1), for each k ∈ N. In this definition, the y-th row
of Cr ∈ Rnr×nx corresponds to the j-th row of the identity
matrix of dimension nx. Moreover, the controlled input signal
u[k] = u(tk) for all t ∈ [tk, tk+1), k ∈ N is given by a general
PID controller in the form,

u[k] =Kxx[k] +Kuu[k − 1]

+Kpe[k] +Kde∆[k] +KieΣ[k], (4)

where e∆[k] ∈ Rnr and eΣ[k] ∈ Rnr are the difference and
the accumulation of the error signal, defined as

e∆[k] = e[k]− e[k − 1], (5)
eΣ[k] = e[k] + eΣ[k − 1]. (6)

As a consequence of the discrete behavior of the discrete-
time signals, the system in Fig. 1 can be modeled as an im-
pulsive system (HLS) with an augmented state vector ξ(·)⊤ =[
x(·)⊤ u(·)⊤ e(·)⊤ e∆(·)⊤ eΣ(·)⊤

]
, ξ(·) ∈ Rnξ , with

state-space representation

G :

 ξ̇(t) = F (α)ξ(t) + Jc(α)w(t), ∀t /∈ T ,
ξ(tk) = Hξ(t−k ) + Jdr[k], ∀t ∈ T ,
z(t) = Gξ(t),

(7)

and matrices

F (α) =

 A(α) B(α) 0nx×3nr

0nu×nx 0nu 0nu×3nr

⋆ ⋆ 03nr

 ,

Jc(α)
T =

[
E(α)T 03nr×(nu+3nr)

]
,

along with

H =


Inx

0nx×nu
0nx×nr

0nx×nr
0nx×nr

Kx Ku Kp Kd Ki

−Cr 0nr×nu 0nr×nr 0nr×nr 0nr×nr

−Cr 0nr×nu
−Inr×nr

0nr×nr
0nr×nr

−Cr 0nr×nu
0nr×nr

0nr×nr
Inr×nr

 ,

Jd =

[
0(nx+nu)×nr

13nr×nr

]
, G =

[
Cz Dz Cze

]
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Figure 1: Control structure diagram. The dashed line corresponds to the discrete-time signals, while the solid line represents
the continuous-time signals.

where z(t) ∈ Rnz is the regulated output vector, whose
matrices Cz , Dz , and Cze establish the weights for the state,
the control input, and the error signals, respectively, in the
optimization function.

Remark 1: It is important to notice that, from a continuous-
time perspective, a signal obtained from a discrete-time se-
quence via a zero-order holder can be viewed as a con-
tinuous piecewise function. Specifically, within the interval
t ∈ [tk, tk+1), its derivative can be defined as zero. For
example, when discussing the error signal, it implies that
de(t)
dt = 0 for all t ∈ [tk, tk+1) by setting e(t) = e(tk).

This leads to an interesting outcome when t approaches tk+1,
where a discontinuous jump occurs, instantaneously updating
the signal. By examining the behavior of the error signal, we
observe that

e(tk) = e(t−k+1) ̸= e(tk+1). (8)

A reference tracking structure is designed to align some
system states with a reference signal. In the context of a
PID structure, the internal model principle indicates that,
when a constant signal is used as the reference, the error
signals converges to zero. Consequently, a key challenge is
to minimize the convergence time as much as possible. This
performance is closely related to the H2 cost of a dynamic
system, which aims to reduce the time taken for the system
to converge from its initial state to the origin, assuming no
external inputs are present. In this context, we define the
following objective function.

Definition 1: For a stable HLS system in the form (7), the
H2 performance index is defined as

J2(α) =

nw∑
j=1

||zj ||22 +
nr∑
i=1

||zi||22, (9)

where zj(t), j ≤ nw corresponds to the regulated output when
the system is submitted to a continuous-time impulse in the j-
th channel of w(·), while zi(t), i ≤ nr indicates the regulated

output of the system for the effect of applying a discrete-time
impulse in the i-th channel of r[·].

As a consequence of Definition 1, a guaranteed cost for
the system in (7) for all α ∈ Λα is obtained by calculating
the supremum of J2(α) for all α ∈ Λα. Moreover, it is
important to stress that the H2 optimization problem is a
natural regulation problem for which the system evolves from
any initial condition towards the equilibrium point, usually
the origin of the state space. Moreover, the classical tracking
control problem in an optimization context can be recovered
by enforcing Cz = 0, as well as Kx = 0 and Ku = 0 in (4).
In this case, for the H2 tracking control design problem, it is
necessary to apply an impulsive signal in each channel of the
exogenous input w.

Given the previous definition, we can now state the main
goal of this work, that is, finding a controller as in (4) that
stabilizes the closed-loop system, imposes a guaranteed cost
γ > 0 on the H2 performance index in (9), and guarantees
that the tracking error converges so that

lim
t→∞

e(t) = 0. (10)

This formulation is similar to the one given in [18] for the
mixed H2/H∞ LTI case. In the next section, we will provide
the auxiliary tools for solving this problem.

III. H2 PERFORMANCE PRELIMINARY RESULTS

First, consider the abuse of the notation Fα = F (α) for all
α ∈ Λα to simplify the readability of the proof in this section,
which seeks to adapt the current results regarding stability
analysis of the HLS in the context of sampled-data systems.
Some works to refer to are [5], [19], [20] and the references
herein, where the optimality in sampled-data systems is studied
considering different contexts. In these works, the authors
stated a stability analysis condition based on LMIs, which is
adapted below.



Lemma 1: Given h > 0, if there exists a symmetric positive
matrix P : [0, h) 7→ Snξ that satisfies

F⊤
α P (t) + P (t)Fα +

∂P (t)

∂t
+G⊤

αGα ≺ 0, (11)

with boundary conditions

P (h) ⪰ H⊤P (0)H, P (0) ≻ 0, (12)

for all t ∈ [0, h), and for all α ∈ Λα, then the next statements
hold true.

(i) For with w ≡ 0 and r ≡ 0, the system (7) is globally
asymptotically stable for every α ∈ Λα.

(ii) For w(·) and r[·] given as in Definition 1, it follows that

J2(α) ≤ sup
α∈Λα

{
tr(J⊤

αcP (h)Jαc) + tr(J⊤
d P (0)Jd)

}
(13)

subject to (11)-(12), for every α ∈ Λα.
(iii) By taking r[·] as a constant reference, we get that the

tracking condition (10) holds for every α ∈ Λα.

Proof 1: Let h > 0 be given.
(i): Consider each subsystem parametrized by α ∈ Λα and

its corresponding system in (7) with w ≡ 0 and r ≡ 0. Then
the asymptotic stability is a consequence of the feasibility
of (11) and (12) as proved in [5] for a unique Lyapunov
functional for all subsystems.
(ii): Considering the performance index in Definition 1

which corresponds to apply a continuous-time impulse on the
j-th channel of w(·), j ≤ nw occurring at t−0 , and a discrete-
time impulse in the i-th channel of r[·], i ≤ nr, it follows
from Corollary 4.1 of [5] that,

J2(α) ≤ tr(J⊤
αcP (h)Jαc) + tr(J⊤

d P (0)Jd) (14)

for all α ∈ Λα. Therefore, by taking the supremum over α,
we get (13).
(iii): Finally considering r[k] as a constant reference, we

get that (10) holds as a consequence of the system closed-loop
stability, as discussed in [16]. □

Therefore, the goal of this problem can be rewritten as
follows:

inf
P (·),K,γ

γ (15)

subject to (11)-(12), along with

tr(J⊤
αcP (h)Jαc) + tr(J⊤

d P (0)Jd) ≺ γ (16)

for all α ∈ Λα, where K = (Kx,Ku,Kp,Kd,Ki), and γ >
0 is a guaranteed cost. We note that (15) is hard to solve
due to the products involving variables P (·) and K, so that
the resulting problem is non-convex. In the next section, we
provide a convex formulation that can be solved with off-the-
shelf software.

IV. H2 CONTROL DESIGN CONDITIONS

The design condition for obtaining a minimized H2 guar-
anteed cost for a sampled-data system with control law as in
(4) can be performed by the following theorem.

Theorem 1: Given h > 0, if there exists a time-varying
symmetric positive matrix W : [0, h) 7→ Rnξ , positive definite
matrices Mc and Md, and matrix Y ∈ Rnu×3nr that satisfies[

W (t)F⊤
α + FαW (t)− ∂W (t)

∂t ⋆
GαW (t) −Inr

]
≺ 0, (17)

for all t ∈ [0, h), and for all α ∈ Λα, with the boundary
conditions [

W (h) ⋆
H̄W (h) + C̄Y W (0)

]
≻ 0, (18)

along with [
Mc ⋆
Jcα W (h)

]
≻ 0,

[
Md ⋆
Jd W (0)

]
≻ 0 (19)

and

tr(Mc) + tr(Md) ≺ γ (20)

where

C̄ =
[
0nu×nx

Inu
0nu×3nr

]⊤
(21)

H̄ =


Inx

0nx×nu
0nx×nr

0nx×nr
0nx×nr

0nu×nx
0nu

0nu×nr
0nu×nr

0nu×nr

−Cr 0nr×nu
0nr×nr

0nr×nr
0nr×nr

−Cr 0nr×nu −Inr×nr 0nr×nr 0nr×nr

−Cr 0nr×nu 0nr×nr 0nr×nr Inr×nr

 ,

(22)

then by setting

K =
[
Kx Ku Kp Kd Ki

]
= YW (h)−1, (23)

the system (7) is globally asymptotically stable with J2(α) <
γ and (10) holds.

Proof 2: First, by applying Schur’s complement on (17) one
obtains

W (t)F⊤
α + FαW (t)− ∂W (t)

∂t
+W (t)G⊤

αGαW (t) ≺ 0.

(24)

Pre- and post-multiplying (24) by W−1(t) yields

F⊤
α W−1(t) +W−1(t)Fα −W−1(t)

∂W (t)

∂t
W−1(t) ≺ 0,

(25)

which becomes (12) by defining W−1 = P (t) noting that
∂P (t)
∂t = −W−1(t)∂W (t)

∂t W−1(t).
Concerning to (18), called that Y = KW (h), the

lower-left term (and its symmetric) can be re-written as(
H̄ + C̄K

)
W (h) = HW (h), so that[

W (h) ⋆
HW (h) W (0)

]
≻ 0. (26)

Apply Schur’s complement and later pre- and post-multiplying
it by W−1(h), lead to

W−1(h)W (h)W−1(h)−H⊤W−1(0)H ≻ 0, (27)



which match (12) by considering P (h) = W−1(h). Finally,
by applying the Schur complement to (19), the trace operator
in the resulting inequality, and considering (20), we get (16),
concluding the proof. □

Note that the variable change Y = KW (h) is the key
tool for retrieving the controller gains. This change variable is
responsible for incorporating conservatism, as it is necessary
to apply the inverse of W (t) to recover the control vector.
However, thanks to this formulation, the extension from a
robust gains vector to a gains-scheduled control vector depends
on the definition of Y → Yα, which can be useful for certain
applications.

At this moment, it is worth noting that the control law given
in (4) is not a classical formulation of a PID because this
does not employ the integral and derivative actions directly;
instead, it uses the cumulative and difference actions. A closer-
to-classical formulation can be represented by the following
control law

u[k] = Kxx[k] +Kuu[k − 1] +Kpe[k] +Kd
1

h
e∆[k] +KiheΣ[k],

(28)

by considering the integral and derivative approximation as
ê∆[k] =

e[k+1]−e[k]
h and êΣ[k] = he[k] + êΣ[k − 1], respec-

tively. The next corollary considers this case.
Corollary 1: Given h > 0, the system (7) is globally

asymptotically stable by applying the control law (28), if there
exists a symmetric positive matrix W : [0, h) 7→ Rnξ and the
matrix Y ∈ Rnu×3nr that satisfies (11)-(12) with re-definition
of H̄ by Ĥ as

Ĥ =


Inx

0nx×nu
0nx×nr

0nx×nr
0nx×nr

0nu×nx 0nu 0nu×nr 0nu×nr 0nu×nr

−Cr 0nr×nu 0nr×nr 0nr×nr 0nr×nr

− 1
hCr 0nr×nu

− 1
hInr×nr

0nr×nr
0nr×nr

−hCr 0nr×nu
0nr×nr

0nr×nr
Inr×nr

 ,

(29)

and J⊤
d by Ĵ⊤

d =
[
0nr×(nx+nu) 1nr

1
h1nr h1nr

]
, with

guaranteed cost given by (13).
This formulation can yield different results compared to

Theorem 1. In particular, since Corollary 1 explicitly includes
the sampling period, the results may encounter numerical
issues for sufficiently high values of the sampling period;
therefore, it must be used with caution.

V. NUMERICAL EXAMPLES

To illustrate the performance of the proposal, a numerical
example is presented, which was adapted from [15]. The
model corresponds to a mechanical system represented by the
following matrices

Aα =

[
0 1

−mαlg
2G 0

]
, B =

[
0
1
G

]
, Cr =

[
1 0

]
, Ec =

[
0
0.1

]
(30)

Cz =

[
0.1 0.1
0 0

]
, Dz =

[
0
0

]
, Crz =

[
0 0 0
0 0 1

]
, (31)

where mα ∈
[
1.5 2.5

]
kg, l = 1 m, G = 1, and g = 9.8

m/s2. Note that the regulated output prioritizes performance
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Figure 2: Temporal response in a time interval from 0 s to
30 s. The dashed red line ( ) is the reference signal r(tk).
In contrast, the solid lines are the trajectory of the objective
state when the proposed control is applied (orange line
for Theorem 1, the blue line for Corollary 1) and the
comparison control is used (cyan line for [15]).

in terms of accumulated error, as determined by the choice of
Czr, and the selection of Cz helps to avoid overshoot, offering
a trade-off between tracking convergence time and overshoot
in the states. By using Theorem 1 with a sampling period
h = 0.01s, the obtained control gain matrices are

Kx =
[
−1180.2 −45.2311

]
, Ku =

[
0.2470

]
,

Kp =
[
0.0428

]
, Kd =

[
−0.00711

]
, Ki =

[
138.5139

]
,

with H2 guaranteed cost γ = 0.0868. On the other hand, by
solving Corollary 1, the controller obtained is

Kx =
[
−55.4464 −19.7997

]
, Ku =

[
0.0330

]
,

Kp =
[
16.7307

]
, Kd =

[
−0.0145

]
, Ki =

[
155.1681

]
,

with H2 guaranteed cost γ = 0.5255. For comparison, the
controller offered in [15] is considered, where the numerical
values are Kx = Ku = 0, and

Kp =
[
59.0900

]
, Kd =

[
19.7540

]
, Ki =

[
22.6660

]
.

This controller does not appear to offer a guaranteed cost,
but it employs a decay rate constraint as a performance
metric, which enables comparison with H2 performance. By
considering the controller in [15] as input in Lemma 1, and
solving (13), a guaranteed cost γ = 2.8659 was obtained,
which is a higher cost than that obtained from the proposal.
A temporal simulation is used to show the behavior along the
time when a disturbance signal w(t) = 0.5, a reference signal
r(tk) = 0.5 for t ≤ 10s, r(tk) = 1 for 10s < t ≤ 20s and
r(tk) = 1+sin (tk) for 20s < t, and initial condition ξ(0) = 0
were employed. For the construction of the simulation, the
nominal model (α1 = α2 = 0.5) is used for a fair compar-
ison with [15]. As illustrated Fig. 2, the proposed structure
offers better temporal performance than the alternatives in the
literature, apparently with zero error in steady-state, at least
for a constant reference signal (as illustrated until t = 20 s).
Although for sinusoidal-like reference, the zero error cannot
be guaranteed, it is apparent that the tracking error is lower
for the proposal, such that is shown from t > 30 s. This better



transient behavior of the proposal can be explained since it
incorporates the measurement of the states and the previous
input signal in the computation of the control signal, which is
information that other alternatives do not include. To quantify
this improvement, a Γ cost of the regulated output concerning
the temporal simulation was obtained, where

Γ =

∫ 30 s

0

||z(t)||22dt,

where z(t) is associated with each temporal signal in Fig. 2
under the same condition and reference signal. The cost
associated with the Theorem 1 is 30.51, while the cost that
corresponds with Corollary 1 is 64.11, and the cost for the
literature controller is 84.53.

VI. CONCLUSION

The proposed design conditions provide a method for
obtaining a sampled-data PID controller that minimizes the
H2 guaranteed cost using a DLMI-based formulation. In
the numerical example, the resulting controllers exhibited
improved temporal performance, as indicated by a lower cost.
Specifically, the performance associated with Theorem 1 was
64% better than the PID controllers found in the literature
and 52% better than those based on Corollary 1. The latter
offered an improvement of 24% over the option available in
the existing literature.

The next step in this line of research could involve formu-
lating a sampled-data PID controller that does not rely on state
variables or previous control signals, making it more suitable
for direct implementation in conventional devices.
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