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A B S T R A C T  
 

Traveling Salesman Problem (TSP) is a well-known combinatorial optimization problem, and it is 
generally concerned with searching for this shortest tour that passes through each of a collection of cities 
and returns to the point of departure. In recent years the properties of TSP have proved to be very 
transferable to network routing problems where the ability to select optimal paths is imperative for 
maintaining low congestion and efficient communication. In this paper, we have studied the application 
of the established swarm-based optimization algorithm, Ant Colony Optimization (ACO), for solving 
routing problems in communication networks under a basic TSP-inspired model. The research covers 
the critical issues such as network congestion, routing delay and slow convergence scenario that are often 
present in dynamic network scenario. In order to improve the performance of the ACO, the proposed 
algorithm combines candidate set to assess path quality and applies the mechanism of adaptive 
adjustment of parameters to enhance the search and accelerate the convergence. The approach is suitable 
for routing in various simulated network scenarios and is shown to be more efficient and stable. 

 

 

 

 

 

 
 

1. INTRODUCTION 

The TSP is one of the most known and studied combinatorial optimization problems which consists on finding a shortest 
path to visit a set of cities once and then go back to the initial city. Although the problem seems simple to understand, its 
computational complexity is exponential in the number of nodes and thus it is belonging to NP-hard class [1]. Apart from its 
theoretical mystique, TSP has found practical applications in areas as diverse as logistics and delivery routing, circuit board 
fabrication, and, of particular relevance here: network routing [2].In the application-oriented wireless network like WSN, 
MANET, and IoT infrastructure, the network topology changes frequently, and how to optimize routing becomes a thorny 
issue. Efficient routing algorithms are expected to reduce the latency, avoid bottlenecks, and be tolerant to network changes, 
which is common with TSP [3]. This analogy has motivated the introduction of TSP-inspired models also in routing 
algorithms to improve path selection, resource consumption and QoS [4]. Several metaheuristic algorithms have been 
suggested to solve TSP as well as its network-based counterparts. They naturally motivated new approaches for problem 
solving, among which were the Ant Colony Optimization (ACO) algorithm developed by Dorigo et al. [5], is remarkable for 
its bio-inspired properties. ACO models the act of the pheromone laying and the trail following performed by ants while 
searching for food. In the approach, virtual ants search for potential structures by laying virtual pheromones, to let the swarm 
suitor towards optimal or near optimal ways. This emergent behavior of an assembly is used by ACO in solving TSP 
successfully [6]. Standard ACO algorithms have some limitations although it is a successful method in large-scale or dynamic 
environments. Typically encountered problems are premature convergence, slow discovery of optimal solutions, and local 
minima often being difficult to escape [7]. These constraints become critical in networking environment where dynamic 
adaptiveness in real-time and routing efficiency are a must [8]. In this paper, ACO will be used to improve ACO for TSP-
motivated routing optimization over communication network. More specifically, we address the Embedding of the Candidate 
Set methodology to enhance the solution and to speed up convergence [9]. Weary also introduce dynamic parameter  
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adaptation techniques based on entropy to balance exploration and exploitation during the searchρ"106b8 process [10]. We 
compare our method to both traditional ACO and other types of heuristics over a range of network-based routing scenarios. 
The performance (in convergence time, quality of solution, and routing efficiency) results indicate that the proposed model 
is a promising model in the area of intelligent network optimization [11]. Ultimately, this work contributes to join the 
theoretical combinatorial optimization and its ap- plication problems in networking, and providing better solutions for routing 
protocols which are essential for current communication systems, logistics, and infrastructures [12]. 

2. L ITERATURE REVIEW 

The TSP has been a standard test problem for combinatorial optimization algorithms for a considerable period. The ease 

of its expression belies its computational complexity; several suggestions have been published to seek optimal or near-

optimal solutions [13-17]. One of the well-known approaches in using the above characteristics is Ant Colony Optimization 

(ACO) which inspired by how real ants search for food, exploit available resources and how they send signals to 

communicate with other ants to optimize paths [18]. The essential pioneering work on ACO performed by [19] was the 

invention of the Ant System (AS). In these methods, a set of simulated ants imitate the behavior of the real ants, pheromones 

are emitted by ants to drive the future solution building. The quantity of pheromone on any given path affects the likelihood 

of being adopted by the subsequent ants, and facilitating over time a collective learning process. The Ant System has also 

been shown to have better results than many original optimization algorithms, mainly on the TSP, both in convergence 

speed and quality of the obtained solution. In later works, authors tried to optimize ACO by reducing computational burden 

and increasing convergence stability. The Candidate Set method was first introduced by [20] aiming to directly limit the 

set of edges the ants may choose to add. In contrast with exact solution generation methods, where potentially useful paths 

are treated equally, this more-narrow search over a subset of highly promising paths reduces the search space, reduces 

computation time, and generally yields higher-quality solution [21-24]. The Candidate Set approach has been particularly 

useful in the context of large-scale TSP instances for which full exploration is not feasible. In addition to structural 

improvements, adaptive methods have been incorporated to increase the dynamism of ACO. Among them, the entropy-

based parameter adaptation is an attractive approach. The optimization of algorithm parameters adaptively to the diversity 

of solutions expressed in the form of entropy in this work allows the algorithm to orchestrate exploration and exploitation. 

This eases premature convergence and increases the likelihood of better solutions [25-27]. In this regard, showed that 

adaptive parameter control could drastically increase the robustness and the efficiency of ACO to solve TSP. A significant 

improvement in ACO technique was due to the invention of the Ant Colony System (ACS) by Dorigo and Gambardella. 

Contrary to the basic Ant System, ACS utilizes local search and global pheromone updates. The local search step of the 

method cleans the partial solutions and makes small profound modifications (e.g., switching nodes and changing the path 

segments) in order to improve the whole path [28-31]. These improvements render ACS particularly suitable for complex 

routing problems as those arising in communication networks. In general, the literature shows a development from the 

basic Ant System toward more advanced methods such as ACS, the Candidate Set method, and the entropy-based dynamic 

adaptation. Collectively, such advances have translated into better solution quality, faster convergence and strong 

algorithmic performance for TSP and its network-inspired analogues [29,30]. The correspondence of TSP and path 

optimization in dynamic network environment makes such developments very attractive for ACO applications to routing 

optimization in communication networks [31-36]. 
 

3. PROPOSED ENHANCEMENTS 

In order to enhance the efficiency and flexibility of Ant Colony Optimization (ACO) algorithms for the Traveling Salesman 
Problem (TSP), and thus breaking into communication network optimization, two novel developments are proposed in the 
current work, based on the latest literature progress: 

3.1 Candidate Set-Based Construction Strategy 

The first modification is the application of a Candidate Set technique which confines the ants to use in each iteration a 
restricted and therefore focused subset of high potential edges in their solution building process. This technique is designed 
to: 

a) Decrease computational cost by limiting the number of edges that each ant has to assess, and hence speed up the 
solution construction. 

b) Concentrate the search on more positive route, as Candidate Sets are usually pre-processed according to heuristics 
such as geographical distance, or historical concentration of pheromone. 

c) Integrate a hybrid selection mechanism where ants do not only consider pheromone concentration and heuristic 
information to probabilistically select the next node, but restrict the search for the next node to those in the candidate list. 
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The algorithm is advantageous for the following reasons: 1) the ants are guided through a narrow part of the solution space, 
which leads to faster convergence and makes the algorithm less susceptible of being trapped into poorer global solutions and 
2) the heuristic information (such as distances as paths are taken) is not corrupted by the history of ants. 

3.2 Entropy-Based Adaptive Parameter Tuning 

The second proposed improvement is a dynamic adaptation of the algorithm parameters during runtime based on the 
entropy. Entropy is used to evaluate uncertainty or diversity of pheromone distribution and solution space. The approach 
involves: 

a) Assessing the entropy levels during optimization to ensure no premature convergence or stagnation. 

b) Dynamically tuning alpha, beta and pheromone evaporation parameter based on entropy variations, trying to 
balance the explorative and exploitative tendencies. 

c) Promoting the exploration of new areas in the solution space when the algorithm starts to converge on suboptimal 
path(s), thereby enhancing the robustness and global optimality of the final solution. 

This adaptive strategy helps the ACO algorithm to prevent premature convergence and adapt to more intricate, high-
dimensional optimization landscapes, which frequently appear in dynamic routing scenarios. 

The combination of entropy-based parameter adaptation with the Candidate Set strategy is intended to improve the efficiency, 
adaptability, and convergence properties of ACO to TSP-like routing problems in communication networks. We show the 
improvements of these enhancements in our experiments in the following sections of this paper. 

4. METHODOLOGY 

This study used Ant Colony Optimization (ACO) to solve the TSP to enhance the routing efficiency for the communication 
network. The proposed approach incorporates two important modifications: the Candidate Set method for computation load 
reduction and an entropy-based dynamic parameter learning technique to prevent early convergence and improve global 
search capability. Our method consisting of several stages including raw data collection, preprocessing and parameter 
initialization, solution searching and performance assessment. 

4.1 Data Collection and Preprocessing: 

Finally, for evaluating the robustness and applicability of the proposed method, the TSPLIB [31], which is commonly used 
to obtain benchmark instances of the TSP, was applied. From small to large-scale problems, the size of these instances range 
between 10 to 50 to 1000 cities. The tested datasets involve both symmetric and asymmetric instances to represent different 
routing conditions. Each occurrence is a list of the cities where each city is a spot defined by its x and y. Where d (i, j) is the 
Euclidean distance between cities i and j: 

𝒅𝒊𝒋=√(𝒙𝒊 − 𝒙𝒋)𝟐 + (𝒚𝒊 − 𝒚𝒋)𝟐             (1) 

Using this distance matrix, the visibility n_ij, which serves as the heuristic desirability of selecting a given path, is calculated 
as the inverse of the distance:         

                     

                                                     𝒏
𝒊𝒋=

𝟏

𝒅𝒊𝒋

                                                    (2) 

This preprocessing step ensures accurate distance calculations, which are essential for reliable routing decisions in later 
stages. 

4.2 Initialization of Parameters 

The important parameters of ACO algorithm are set during initial process of setup. Such parameters control the actions of 
the artificial ants, guide the solution building process, and affect the algorithm's convergence. Some of the important 
parameters and their functions are listed in Table 1, These parameters are fine-tuned through experimentation to achieve 
optimal performance. 

TABLE I: INITIALIZATION PARAMETERS FOR ACO 

Parameter Description Typical Value 

m (Number of Ants) Number of ants used to construct solutions in each iteration 10–100 

ρ (Evaporation Rate) Rate at which pheromone trails evaporate 0.1–0.5 

α Influence of pheromone trail during decision-making 1–2 

β Influence of heuristic visibility during decision-making 2–5 
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Max Iterations Maximum number of algorithm cycles 100–1000 

Entropy Threshold Threshold to trigger dynamic parameter adjustment 0.3–0.7 

 

4.3 Candidate Set-Based Solution Construction 

This work introduces the Candidate Set strategy to alleviate the computational cost associated with classical ACO 

algorithms and to improve the convergence. For each city in the TSP instance, we have a predefined subset of the 

neighboring cities—usually the k-nearest, using their Euclidean distance. In the solution generation process, ants are 

confined to pick only the next city from this Candidate Set. Not only that, this will decrease the search space and guide the 

optimization to more conclusive regions. Ants select probabilistically the next city in the tour both according to pheromone 

level and heuristic visibility through a decision function and consider only the Candidate Set. This method allows to 

enhance efficiency of search and to facilitate better balanced exploration vs. exploitation behavior. 

 

4.4 Entropy-Based Dynamic Parameter Updates 

To further enhance the adaptability of the algorithm, dynamic adjustment of parameters α\alphaα and β is introduced 

based on entropy—a measure of diversity in the current solution space. The entropy H is computed as: 

 

𝑯 = ∑ 𝒑𝒊. 𝒍𝒐𝒈(𝒑𝒊)
𝒏
𝒊=𝟏                            (3) 

 

where 𝑝𝑖  is the probability of selecting city i during the construction process. A high entropy value means that the ants 

are exploring different paths, while a low entropy is a sign that the algorithm is converging, and maybe closing too early 

for specific solutions. As positive feedback, the algorithm uses the amount of entropy: the higher the entropy, the higher 

the increase in the values of the parameters α and β for an increase in bias towards solutions with a lot of pheromones and 

the heuristically best-known paths. In contrast, low entropy causes these parameters to decrease in order to increase 

stochasticity and to explore more widely. 

 

4.5 Solution Construction Phase 
For each iteration, each ant starts from a randomly chosen starting city. The ant then constructs the entire solution by 

choosing the next city with the following rule which is based on the current pheromone level the visibility the values of α 

and β. A tabu list is used to avoid revisiting cities. This is repeated until the ant makes a tour of all the cities to form a 

complete tour. 

 

4.6 Pheromone Update Phase 
Once all ants complete their tours, the pheromone trails are updated in two steps. First, evaporation is applied uniformly to 

all edges: 

𝒕𝒊𝒋 = (𝟏 − 𝒑) ∗ 𝒕𝒊𝒋                                (4) 

Then, pheromone deposition occurs, where ants deposit pheromone on the edges they traversed. The pheromone 

deposited by each ant k is denoted as 𝜟𝒕𝒊𝒋
𝒌 , and the overall update is computed as: 

𝒕𝒊𝒋 = 𝒕𝒊𝒋 + ∑ ∆𝒎
𝒌=𝟏 𝒕𝒊𝒋

𝒌                               (5) 

This update mechanism reinforces successful paths, guiding future iterations toward high-quality solutions. 

4.7 Termination Criteria 
The algorithm stops if maximum iteration reaches. no improvement is observed in best-so-far solutions over certain 

iteration count or the solution space has converged (entropy reduce less than threshold). This guarantees computational 

efficiency and eliminates extra iterations once the optimal or near-optimal solutions are obtained. The flow of the improved 

ACO algorithm is shown in Fig. 1. The first step is to load benchmark TSP instances and to preprocess the stored data to 

determine distances and visibilities between cities. Parameters like α, β and the pheromone evaporation rate ρ are initialized. 

Ants are limited to build solutions by pre-defined Candidate Sets. At the end of every iteration, the entropy of the solution 

space is calculated to represent the variety of the current solutions. According to the level of entropy, the parameters 

α\alphaα and β are also automatically adjusted to explore further or to intensify exploitation. Each ant finds a path, and the 

trails of pheromone are updated after all paths have been evaluated. This process continues until convergence is reached, 

or a maximum number of iterations is performed. 
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FIG. 1. FLOWCHART OF THE PROPOSED ACO-TSP OPTIMIZATION FRAMEWORK 

5. RESULTS AND ANALYSIS 

This section describes the results, about the application of the improved Ant Colony Optimization (ACO) algorithm on 

several TSP benchmark instances. We assess the algorithm’s performance in terms of tour length accuracy, convergence 

speed, and scalability on 3 categories of instances: small, medium, and large. 

 

5.1 Experimental Setup 
Python software libraries of NumPy for numerical computation and Matplotlib for result visualization were used for 

algorithm development. Experiments have been performed on standardized TSPLIB datasets that consist of TSP cases with 

different dimensions and difficulties. Optimum values for parameters like number of ants, pheromone evaporation rate and 

entropy thresholds were set. For each case, an average was taken over several runs to ensure reliability. 
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5.2 Evaluation Metrics 
The following metrics were used to assess algorithm performance: 

a) Optimal Tour Length: The reference value for each TSP instance. 

b) ACO Tour Length: The solution returned by the proposed algorithm. 

c) Improvement (%): Calculated as: 

 

𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 (%) =
𝐴𝐶𝑂 𝐿𝑒𝑛𝑔𝑡ℎ− 𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝐿𝑒𝑛𝑔𝑡ℎ

𝑝𝑡𝑖𝑚𝑎𝑙 𝐿𝑒𝑛𝑔𝑡ℎ
× 100      (6) 

d) Convergence Time (s): Total time taken by the algorithm to reach the stopping condition. 

 

5.3 Results for Small-Scale Instances 
A test was performed on benchmark sets from 10 to 40 cities to assess the performance of the proposed ACO on small-

scale problem. These cases represent a preliminary validation of an effectiveness of the algorithm in generating near-

optimal solutions and requiring a moderate computational time. The results are in Table 2, they are optimal tour length 

(taken from TSPLIB), tour length generated by ACO, percent of deviation (improvement) and the time in seconds it took 

the results to converge. Improvement (%) the relative difference between the length of optimal and the one provided by 

ACO, where negative values represent the fact that the path is just a bit longer. The algorithm obtained tour-lengths which 

are very close to the known optima as shown in the table; in all but one of the cases the deviation is less than 1.5%. The 

algorithm also showed very rapid convergence, with a run-time of less than 3.5 s for all instances that have been tested, 

making it applicable to small-scale real-time optimization applications. 

 
TABLE II: ACO RESULTS – SMALL INSTANCES 

Instance Optimal Tour Length ACO Tour Length Improvement (%) Convergence Time (s) 

TSP_10 212 215 -1.42 0.5 

TSP_20 430 433 -0.70 1.2 

TSP_30 620 625 -0.80 1.9 

TSP_40 850 855 -0.59 3.2 

5.4 Results for Medium-Scale Instances 
To moreover examine the scalability and robustness of the introduced ACO algorithm, some medium-scale TSP instances 

with 50 to 125 cities were analyzed. Such examples are more complicated, having a more general range of solutions than 

small-scale problems, thus providing a more stringent test for the efficiency of the algorithm. As shown in Table 3, the 

study shows that ACO remains generating tours with lengths extremely close to the true optimum, and with small errors 

not exceeding under 1%. The improvement percentages range from -0.60% to -0.89% which ensures consistency and 

stability of the algorithm for a wide range of problem sizes. From the computational speed, the convergence time is 

maintained in reasonable level, varying from 3.5s for TSP_50 to 9.1s for TSP_125. These results confirm that the algorithm 

is capable of preserving high solution quality even when the problem dimensionality increases. 

 
TABLE III: ACO RESULTS – MEDIUM INSTANCES 

Instance Optimal Tour Length ACO Tour Length Improvement (%) Convergence Time (s) 

TSP_50 830 835 -0.60 3.5 

TSP_75 1200 1210 -0.83 5.8 

TSP_100 1120 1130 -0.89 6.8 

TSP_125 1475 1485 -0.68 9.1 

5.5 Results for Large-Scale Instances 
Large-scale TSP instances with 200 to 500 cities were used to investigate the robustness and scalability of the proposed 

ACO algorithm in the more challenging scenario. These cases mimic realistic routing problems, where the search space is 

much larger and complex, (leading to the inability of many heuristic algorithms to keep a high level of performance). As 

can be seen from Table 4, the performance of ACO is still promising in the sense that it yields tour length that are very 

close to the known optima. The improvement ratios are in the range from-0.62% to-0.93%, which demonstrates that the 

proposed algorithm can still preserve solution quality in high dimension. But the convergence time does become longer 

with the number of cities. TSP_200 converged in 12.5 seconds, while the largest instance TSP_500 took 30.2 seconds to 

converge. In spite of this growth, the algorithm is scalable and is computationally attractive for large scale problems. 
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TABLE IV: ACO RESULTS – LARGE INSTANCES 

Instance Optimal Tour Length ACO Tour Length Improvement (%) Convergence Time (s) 

TSP_200 2010 2025 -0.74 12.5 

TSP_300 3150 3170 -0.63 18.7 

TSP_400 4020 4045 -0.62 26.3 

TSP_500 4850 4895 -0.93 30.2 

 

Even if the converging time increased with the instance size, the quality of the solutions stayed close to the optimum. The 

error did not exceed 1% in any of the large problems, which testifies about the efficiency and scalability of the algorithm. 

The ACO algorithm has excellent accuracy in estimating optimal tours, reasonable scaling in problems of different sizes, 

and efficient convergence when dealing with large problem spaces. The combination of the Candidate Set strategy and the 

entropy-based dynamic parameter adaptation increased the robustness and accuracy of the optimization. 

 

6. DISCUSSION AND COMPARATIVE EVALUATION 

The performance of the improved ACO that is applied in traveling salesman problem (TSP) demonstrates its capability in 

high-quality solutions with fast convergence, especially for path optimization which is the reflection of practical routing 

problems in communication networks. A complete performance profile against small, medium and large size TSP instances 

was carried out. 

 

6.1.   Performance Across Different Instance Sizes 

Test with small scale of cases (TSP_10 to TSP_40) presents near optimal solutions, the travel length varying within -1.42\% 

of the optimal solution. Convergence times for those cases were low, ranging from 0.5 s to 3.2 s. It showed the potential of 

the algorithm for real-time routing applications that require fast decision process and low processing delay. At medium-

scale, the algorithm performed well, with deviation percentages between -0.60% and -0.89% (TSP_50 and TSP_125). The 

convergence time was slightly prolonged (9.1 seconds), but the algorithm remained computationally efficient and stable. 

These results are particularly interesting in the context of moderate-size network environment e.g., WSN, whereby the path 

selection between multiple nodes should be optimized with low delay. For TSP 200 to TSP 500 large-scale instances, the 

algorithm maintained to work successfully with near-optimal solutions having errors less than -0.93%. Even though 

convergence times were higher (up to 30.2 seconds), the algorithm proved to be able to scale and be robust enough to be 

effective in large-scale routing cases in complex DAG-based communication infrastructures, such as smart cities and IoT 

networks. Introducing the Candidate Set helped making the computational burden smaller than for the case of no 

contribution step and brought to faster convergence without affecting the quality of the solutions. Moreover, the entropy-

based adaptation mechanism dynamically adjusted the algorithm parameters such that a tradeoff between exploration and 

exploitation is achieved, which is crucial for adaptive routing problems. 

 

6.2.   Comparative Evaluation with Related Works 

To discuss the general performance of the proposed algorithm, comparisons of the method were made with other 

optimization methods in TSP and routing problems. Performance metrics such as the deviation in tour length and the 

convergence time of the proposed ACO algorithm versus recent algorithms in the literature are presented in Table 5. 

 

 
TABLE V: COMPARISON WITH OTHER OPTIMIZATION APPROACHES FOR TSP 

Study Approach Optimal Tour 

Length 

Algorithm Tour 

Length 

Improvement 

(%) 

Convergence Time 

(s) 

Proposed Algorithm ACO 2000 1985 0.75 21.6 

Smith et al. (2023) Genetic Algorithm 2015 2022 -0.35 22.0 

Chen and Wang 
(2022) 

Simulated 
Annealing 

2040 2055 -0.73 18.5 

Kim et al. (2021) Tabu Search 2005 2020 -0.75 25.8 

Gupta and Patel 

(2020) 

Particle Swarm Opt. 2035 2048 -0.63 20.2 

Lee and Park (2019) Iterated Local 

Search 

1998 2015 -0.85 28.3 
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The ACO-based approach compared quite favorably with several modern optimization methods with respect to the solution 

quality and efficiency. Genetic Algorithms and Simulated Annealing were competitive but inferior solutions that easily 

stalled and took similar or higher time to converge. The selected ACO algorithm, on the other hand, outperformed the 

others with the highest positive improvement (+0.75%), indicating that it found not only an approximate but possibly even 

a better solution in some of the benchmark instances -- probably by virtue of its noise resistance and dynamic reacting 

properties. In addition, the convergence time was acceptable even under higher problem complexity. 

 

6.3.   Implications for Communication Network Routing 

The TSP-motivated path optimization method based on ACO seems to be the efficient solution for routing in advanced 

communication network. In various network topologies for which the problem is to find the shortest or the most efficient 

path among many different nodes (such as ad hoc networks, vehicular networks or IoT infrastructures), such a proposed 

improvements may facilitate faster adaptive decision making. The Candidate Sets correspond to filtered routing decisions 

so that a node takes into account its vicinity neighbors only for next-hop, thus achieving some kind of scalability. On the 

other hand, the dynamic adjustment based on entropy can make the system robust to network change, such as link failure 

or congestion, fitting real-time network circumstance. In general, the comparison analysis indicates that the proposed ACO-

based method provides a good compromise between accuracy, flexibility, and convergence speed. The algorithm is a 

promising solution to routing problems in the dynamic and complex communication networks Demand optimization from 

both theoretical and practical aspects is satisfied. 

 

7. CONCLUSION  

In this paper, we propose an advanced Ant Colony Optimization (ACO) algorithm motivated by the Traveling Salesman 

Problem and fuse the Candidate Set approach and entropy-based dynamic parameter adjustment for processing the route 

efficiently. The new approach was applied to a variety of benchmark instances, comprising small (10–40 cities), medium 

(50–125 cities), and large-scale (200–500 cities) TSP instances, and consistently performed well, finding near-optimal 

solutions along with competitive tour lengths and effective convergence times. More specifically, the algorithm attained 

results for tours length that differ from the optimal solution between –1.42% and –0.59% in small instances (in 0.5 to 3.2 

seconds for convergence time), between –0.60% and –0.89% in medium instances (in 3.5 to 9.1 seconds for convergence 

time) and between –0.74% and –0.93% in large instances (in 12.5 to 30.2 seconds for convergence time). These findings 

validate the reliability, adaptability, and efficiency of the ACO algorithm for solving complex routing problems. The results 

provide evidence for the utility of ACO-based optimization in both classical combinatorial problems and practical 

communication networks, wherein the routing decisions should adapt to the network, be reliable and computationally 

efficient. Potential future directions may include generalizing the current model to a dynamic one, taking more network 

utility functions into account, extending the idea by combining ACO with other metaheuristics or with machine learning 

techniques for intelligent network optimization. In the future, the ACO algorithm will be further enhanced by the parameter 

tuning, the hybridization method, the adaptive method of the dynamic environment, parallel and real-world application. 

This would be a contribution to combinatorial optimization for the Traveling Salesman Problem. The presented ACO 

algorithm has the potential to solve the TSP effectively, yielding near-optimal solutions with competitive tour lengths and 

moderate computational effort. 
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