
Academic Editor: Ping-Feng Pai

Received: 4 July 2025

Revised: 17 October 2025

Accepted: 21 October 2025

Published: 23 October 2025

Citation: Dey, M.; Rana, S.P.; Patel, P.

System Inertia Cost Forecasting Using

Machine Learning: A Data-Driven

Approach for Grid Energy Trading in

Great Britain. Analytics 2025, 4, 30.

https://doi.org/10.3390/

analytics4040030

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

System Inertia Cost Forecasting Using Machine Learning:
A Data-Driven Approach for Grid Energy Trading in
Great Britain
Maitreyee Dey 1,* , Soumya Prakash Rana 2 and Preeti Patel 1

1 GENESIS Research Lab, Cyber Security Research Centre, London Metropolitan University, 166-220 Holloway
Road, London N7 8DB, UK; p.patel@londonmet.ac.uk

2 School of Engineering, University of Greenwich, Medway Campus, Central Avenue, Chatham ME4 4TB, UK;
s.rana@greenwich.ac.uk

* Correspondence: m.dey@londonmet.ac.uk

Abstract

As modern power systems integrate more renewable and decentralised generation, main-
taining grid stability has become increasingly challenging. This study proposes a data-
driven machine learning framework for forecasting system inertia service costs—a key
yet underexplored variable influencing energy trading and frequency stability in Great
Britain. Using eight years (2017–2024) of National Energy System Operator (NESO) data,
four models—Long Short-Term Memory (LSTM), Residual LSTM, eXtreme Gradient Boost-
ing (XGBoost), and Light Gradient-Boosting Machine (LightGBM)—are comparatively
analysed. LSTM-based models capture temporal dependencies, while ensemble methods
effectively handle nonlinear feature relationships. Results demonstrate that LightGBM
achieves the highest predictive accuracy, offering a robust method for inertia cost estimation
and market intelligence. The framework contributes to strategic procurement planning and
supports market design for a more resilient, cost-effective grid.

Keywords: smart grid; frequency; inertia; market estimation; machine learning

1. Introduction
The National Energy System Operator (NESO) is responsible for the long-term plan-

ning and real-time operation of the electricity and gas systems in Great Britain [1,2]. It
ensures a secure and reliable energy supply, promotes efficient energy transmission and
distribution, and supports the government’s efforts to achieve its net-zero target. NESO
also plays a key role in market operations, system planning, and future-proofing the
energy infrastructure.

NESO regularly publishes reports—such as system performance reports, balancing
services performance monitoring reports, and the GB Electricity System Operator Daily
Reports—that provide data on grid performance and operations [3]. In its operability
strategy report published in December 2022, National Grid stated that its current policy is
to maintain system inertia above 140 GJ. However, by 2025, it aims to maintain a minimum
system inertia of 96 GJ [3]. To balance the system, address forecasted energy requirements,
and ensure system security, NESO engages in energy trading. This includes trading with
third parties to adjust supply and demand and to manage grid constraints.

Inertia in power systems refers to the energy stored in large rotating generators and
certain industrial motors, which enables them to resist changes in rotational speed. This
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stored energy is especially valuable in the event of a large power plant failure, as it can
temporarily compensate for the lost generation [4]. Monitoring system inertia and its
associated costs is essential for maintaining grid balance and minimising balancing costs,
which are ultimately passed on to consumers via energy bills [5].

In recent years, AI and machine learning (ML) have emerged as powerful tools in
the operation and optimisation of modern energy systems. These technologies enable
real-time data processing, anomaly detection, demand forecasting, and market modelling.
In the context of system inertia, ML algorithms can uncover complex temporal patterns and
nonlinear interactions that are often missed by traditional statistical models. By training
models on historical cost and grid performance data, AI-based solutions can predict future
cost fluctuations, identify high-risk scenarios, and support more agile decision-making [6].
Inertia forecasting in particular stands to benefit from sequence learning and gradient-
boosted decision trees, which have shown success in related applications such as energy
demand prediction, electricity price forecasting, and renewable output estimation.

Accurate forecasting of system inertia costs is crucial for operational planning and
market optimisation in low-inertia power grids. While significant work has been con-
ducted on energy price, demand, and renewable generation forecasting, inertia-related
cost prediction remains largely unexplored. The decline in synchronous generation and
growing dependence on inverter-based renewable sources have introduced variability in
system inertia, driving the need for data-driven models capable of anticipating associated
balancing costs.

This research addresses that gap by proposing a comparative machine learning frame-
work for daily system inertia cost forecasting. The study systematically evaluates four
models—Long Short-Term Memory (LSTM), Residual LSTM, eXtreme Gradient Boosting
(XGBoost), and Light Gradient-Boosting Machine (LightGBM)—using operational data
from the National Energy System Operator (NESO) between 2017 and 2024. These mod-
els are selected for their complementary strengths: LSTM architectures capture temporal
dependencies, while ensemble learning methods like XGBoost and LightGBM efficiently
model nonlinear feature interactions. The framework’s performance is assessed using
RMSE and MAE to identify the most suitable approach for operational forecasting and
market participation.

This paper is organised as follows. Section 2 reviews related work on energy trading
in smart grids, with a focus on incentive models, optimisation techniques, and recent
applications of machine learning. Section 3 outlines the methodology, including data pre-
processing, model architecture, and evaluation metrics. Section 4 presents the experimental
results, highlighting cost trends and model performance comparisons. Section 5 discusses
the implications of accurate inertia cost forecasting for energy trading and system planning.
Finally, Section 6 concludes the paper with a summary of key findings and outlines future
research directions.

2. Literature Review
Energy trading in smart grids has evolved significantly with the integration of dis-

tributed generation, storage systems, and advanced communication technologies [7,8].
While several studies and reports explore smart grid performance and design, compre-
hensive analyses based on real-world data are still scarce. One notable example is the UK
Energy Research Centre’s report Building a Resilient UK Energy System, which outlines
key challenges and opportunities in smart energy systems [9].

A taxonomy for energy trading models in smart grids—adapted from Aggarwal
et al. [10]—categorises research into Incentive-Based, Mathematical, and Simulation ap-
proaches, which often overlap in practice, shown in Figure 1. Incentive mechanisms fre-
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quently use mathematical formulations and simulation validation to optimise participation
and efficiency in energy markets.

(a) (b)

Figure 1. (a) Taxonomy of energy trading modelling approaches in smart grids, (b) illustrating the
interaction between Incentive-Based, Mathematical, and Simulation frameworks.

Incentive mechanisms are central to promoting active participation in decentralised
energy systems, motivating prosumers to generate, store, and exchange electricity effi-
ciently. Peer-to-peer (P2P) energy trading leverages these incentives by enabling direct
transactions between energy producers and consumers—often households equipped with
solar panels or battery storage. Recent studies have shown that integrating P2P trading
with real-time pricing and demand response strategies can significantly reduce energy
costs for participants by encouraging adaptive consumption and trading behaviour [11].
Furthermore, Islam et al. highlighted that auction-based and pricing-driven frameworks
are essential for ensuring fairness and transparency in P2P markets, allowing prosumers to
engage and benefit equitably from local energy exchanges [12].

Beyond P2P trading frameworks, incentive-based mechanisms have also been ex-
plored in broader market settings to address issues of information asymmetry, fairness,
and participation efficiency. These approaches are particularly important in coordinating
interactions between heterogeneous market actors, such as small-scale electricity suppliers
and consumers, where trust, risk, and optimisation under uncertainty play a key role [13].
Zhang et al. [14] introduced a contract-theoretic trading model between small-scale elec-
tricity suppliers (SESs) and energy consumers (ECs) under asymmetric information. Their
contract game formulation supported optimal strategies for both short-term and long-term
market conditions, validated through simulation. Similarly, Wang et al. [15] proposed a
green energy trading market for residential users with solar panels, employing incentive
algorithms to address energy supply–demand mismatches and ensure fairness among
non-cooperative participants. Timilsina and Silvestri [16] utilised reinforcement learning to
develop automated pricing mechanisms for P2P energy trading, enabling sellers to optimise
profits while accounting for user behaviour under uncertainty. Their approaches include a
Q-learning-based model and a scalable deep Q-network (ProDQN) that incorporates risk
sensitivity through a prospect theory-informed loss function.

Mathematical optimisation techniques have also been widely adopted in the energy
trading literature. Wu et al. [17] presented a two-layered optimisation framework for local
energy trading in smart microgrids, where both consumers and providers interact with a
local trading manager (LTM). Their approach dynamically adjusted local trading decisions
and pricing strategies, demonstrating effective benefit distribution and profitability through
simulation. Zhong et al. [18] extended this line of research by designing auction-based
mechanisms for multi-energy districts, incorporating electricity, gas, and heating. Their
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mechanisms optimised social welfare in both day-ahead and real-time markets and ensured
economic efficiency, truthfulness, and individual rationality.

System-level challenges in energy trading have also been discussed in the context of
data integration and platform interoperability. Silva et al. [19] reviewed key concerns related
to Transmission System Operators (TSOs), Distribution System Operators (DSOs), and
third-party aggregators, particularly in handling renewable integration and sensor-based
data streams from IoT devices. Their work highlighted the need for robust architecture
models to manage increasing system complexity.

With the rise of peer-to-peer (P2P) energy trading, game-theoretic and simulation-
based models have gained traction. Yaagoubi et al. [20] proposed a regret matching
algorithm that facilitates energy trading between residential users. Their approach enabled
sellers to profit from stored renewable energy and allowed buyers to save on energy bills
by accessing discounted, clean electricity from neighbours. In a similar vein, simulation-
based reinforcement learning techniques have emerged as powerful tools for adaptive
decision-making. Lu et al. [21] developed a deep reinforcement learning (RL) framework to
enable microgrids (MGs) to autonomously determine trading policies based on predicted
renewable output, power demand, and battery status. Their model, validated using
real-world data, successfully reduced dependence on central power plants and enhanced
overall utility.

Game-theoretic models have been widely applied to improve coordination and partic-
ipation in P2P energy trading systems. Tushar et al. [22] used a cooperative Stackelberg
game where the grid sets prices to encourage prosumer activity during peak hours, with
user utility modelled through logarithmic functions. In [23], a coalition game approach
supports stable group formation by evaluating the collective value of peer coalitions, pro-
moting fair energy sharing. Separately, [24] introduced an auction-based framework in
which participants submit bids, and optimal allocations are computed to balance efficiency
and individual incentives.

Existing research on ancillary service cost forecasting primarily addresses frequency
response, reserve, and balancing markets. However, relatively few studies examine inertia-
specific costs associated with synthetic or fast frequency response services. For example, the
game-theoretical optimisation framework proposed in [25] highlights the role of predictive
intelligence in market pricing and operator decision-making. Our study extends this
perspective to the domain of system inertia, providing a data-driven basis for anticipating
future cost dynamics in evolving low-inertia grids.

While a wide range of approaches has been explored for energy trading in smart
grids, few studies explicitly address the influence of system inertia on market dynamics.
Maintaining grid frequency close to the national standard of 50 Hz is critical for operational
stability and is strongly dependent on available inertia. Traditionally, this inertia was
provided by large rotating generators; however, the increasing integration of renewable
energy sources and decentralised technologies—such as vehicle-to-grid (V2G) systems—has
significantly reduced these conventional sources.

This shift has introduced new challenges in maintaining grid balance, highlighting
the growing importance of inertia forecasting [26]. Accurate prediction of system inertia
is essential not only for stability and control but also for informing strategic decisions in
energy trading and pricing. Despite its importance, this remains an underexplored area in
the existing literature, particularly in terms of real-world data analysis [27].

Recent advancements in short-term forecasting highlight the growing convergence of
traditional time-series and hybrid machine learning approaches. Ali et al. [28] demonstrated
that integrating statistical and data-driven models can substantially improve short-term
load prediction accuracy under renewable variability. Their findings reinforce the motiva-
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tion for the present study, which similarly explores hybrid deep and ensemble learning
frameworks to forecast inertia-related costs in a dynamic smart grid context. In this study,
we address this gap by applying machine learning techniques to real-time system inertia
cost data obtained from the National Energy System Operator (NESO). Our aim is to fore-
cast inertia-related costs and uncover patterns that can support more informed and resilient
energy trading strategies within future smart grids. Through this data-driven approach,
we contribute valuable insights toward market optimisation in an increasingly complex
and dynamic energy landscape.

3. Materials and Methods
Figure 2 illustrates the proposed methodological framework for system inertia cost

forecasting. It begins with data acquisition from NESO, followed by preprocessing and
feature engineering (including temporal and lag features). Machine learning models—
LSTM, Residual LSTM, XGBoost, and LightGBM—are trained and validated using RMSE
and MAE. The resulting forecasts are analysed to support strategic decision-making for
market trading and grid stability management.

Figure 2. The proposed research framework for system inertia cost forecasting, comprising five
stages: (1) data collection from NESO; (2) preprocessing; (3) model training; (4) model validation; and
(5) temporal trend analysis and interpretation for operational and market insights.

3.1. Data Description and Analysis

This dataset was collected from the NESO website over 8 years. It provides estimated
average daily prices (in GBP per GVA·s) for offers in the Balancing Mechanism (BM) that
were tagged as System Inertia actions. The tagging system is intended to identify the most
likely primary reason for each BM action, but it is not perfect, as some actions may serve
multiple purposes simultaneously. The NESO tagging system occasionally assigns multiple
operational purposes to a single balancing mechanism action. To minimise noise introduced
by such overlap, this study aggregates all tagged transactions into daily averages of total
cost per GVA·s. This aggregation smooths out mixed-purpose variations at the individual
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offer level. Days with missing or anomalous data were excluded to ensure consistent
representation of inertia-related balancing activity.

The data are reported at daily intervals. For each day, the average price per GVA·s is
calculated as follows:

• Sum the total cost of all BM offers tagged as System Inertia.
• Sum the total estimated inertia shortfall (in GVA·s) that these offers addressed that day.
• Divide the total cost by the total inertia volume to obtain the average daily cost

per GVA·s.

Figure 3 presents the annual average trend in total System Inertia Cost in Great Britain,
based on data obtained from NESO for the period 2017 to 2024. This cost represents the
expenditure incurred to ensure adequate system inertia and frequency stability across
the grid. The trend shows a steady rise in costs from 2017 to 2021, with a sharp increase
observed between 2020 and 2022. This surge likely reflects growing reliance on flexible,
inertia-providing ancillary services as traditional synchronous generators are displaced by
renewable sources. The cost peaked in 2023, marking the highest expenditure on inertia
services during the study period. However, a noticeable decline is seen in 2024, possibly
due to improved system operability measures, changes in procurement strategies, or the
adoption of more cost-efficient technologies.

Figure 3. Yearly average inertia costing trends for the consecutive eight years.

3.2. Feature Engineering and Preparation

The raw dataset provided by the NESO contains daily estimates of system inertia cost
(in GBP/GVA·s). To enable predictive modelling, several temporal and statistical features
were derived from the time index and cost series, as implemented in the analysis scripts:

• Temporal features: day of week (0–6), month (1–12), and calendar day (1–31) were
extracted from the settlement date to represent cyclic and seasonal variations.

• Lag features: for ensemble learning models (XGBoost and LightGBM), 7 lag variables
(lag1 to lag7) were generated to capture persistence and short-term dependencies in
daily inertia cost.

• Rolling mean: a 7-day moving average (rolling-mean-7) was included to smooth
high-frequency fluctuations and capture weekly market trends.

• Sequence windows: for the LSTM-based models, sequential windows of 30 consecu-
tive days were constructed, with the network trained to predict the next day’s cost.
Each sequence incorporated the four features [Cost, dayofweek, month, day].

• Scaling: all features were normalised to the range [0, 1] using MinMaxScaler to
stabilise training and ensure comparability across feature dimensions.
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• Missing data handling: occasional missing cost entries were interpolated before
feature generation to ensure continuity in lagged and sequential inputs.

This preprocessing yielded a structured feature matrix used uniformly across models.
Deep learning models utilised sequential (3D) data arrays, while ensemble models operated
on flattened tabular features with 7-day lag and rolling components.

3.3. Machine Learning Models

This study employs a combination of deep learning and ensemble learning techniques
to forecast system inertia service costs. The selected models are designed to capture both
the sequential dependencies and the nonlinear feature interactions inherent in the cost time
series data.

3.3.1. Deep Learning Models

LSTM with Temporal Features: Long Short-Term Memory (LSTM) networks are a
class of recurrent neural networks specifically designed to model temporal dependencies.
In this work, the LSTM input is augmented with engineered temporal features such as day
of the week, month, and day of the month to capture periodic cost patterns.

The LSTM unit relies on a series of gating mechanisms to regulate the flow of information:

it = σ(Wixt + Uiht−1 + bi) (1)

ot = σ(Woxt + Uoht−1 + bo) (2)

C̃t = tanh(Wcxt + Ucht−1 + bc) (3)

Ct = ft ⊙ Ct−1 + it ⊙ C̃t (4)

ht = ot ⊙ tanh(Ct) (5)

The hidden state ht is passed through a fully connected layer to predict the cost at each
time step. The base LSTM architecture consists of two stacked LSTM layers with 64 hidden
units each, ReLU activation, and a dropout rate of 0.2 to prevent overfitting, followed by a
dense output layer. Training uses the Adam optimiser (learning rate = 0.001) and Mean
Squared Error (MSE) as the loss function.

LSTM with Residual Modelling: To improve predictive accuracy, a residual learning
framework is employed. A base LSTM model first generates the primary prediction ŷLSTM

t ,
and the residual error is computed as

rt = yt − ŷLSTM
t (6)

A second LSTM model is trained to learn the residual sequence, producing r̂t. The
final prediction is obtained by combining both outputs:

ŷt = ŷLSTM
t + r̂t (7)

The Residual LSTM employs three layers with 128 hidden units each, trained under the
same conditions. The rationale for residual modelling is that inertia cost sequences exhibit
irregular volatility and occasional step changes. The first LSTM captures long-term patterns,
while the second network learns the residual error series—effectively modelling transient
fluctuations that the base network underestimates. This two-stage approach improves
tracking of dynamic cost variations without increasing network depth excessively.

The use of LSTM architectures is motivated by the temporal nature of system inertia
costs, which exhibit sequential dependencies and recurring fluctuations. Empirical auto-
correlation analysis of the NESO dataset revealed significant day-to-day persistence and
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weekly periodicity, suggesting that memory-based sequence models are well-suited for
capturing these dynamics.

3.3.2. Ensemble Learning Models

XGBoost: XGBoost is a gradient boosting framework that constructs an ensemble of
decision trees in a stage-wise manner. At each iteration t, the model minimises a regularised
objective function:

L(t) =
n

∑
i=1

[
l(yi, ŷ(t−1)

i + ft(xi))
]
+ Ω( ft) (8)

Here, ft represents the newly added tree, and Ω( ft) = γT + 1
2 λ∥w∥2 penalises model

complexity based on the number of leaves T and the leaf weights w. The optimisation uses
a second-order Taylor expansion of the loss function.

LightGBM: LightGBM is another gradient boosting framework optimised for speed
and scalability. Unlike traditional level-wise tree growth, LightGBM employs a leaf-wise
strategy and integrates two key techniques: (1) Gradient-based One-Side Sampling (GOSS),
which prioritises samples with large gradients; (2) Exclusive Feature Bundling (EFB), which
reduces feature dimensionality by combining mutually exclusive features.

The gain from splitting a node is calculated as

Gain =
1
2

[
G2

L
HL + λ

+
G2

R
HR + λ

− (GL + GR)
2

HL + HR + λ

]
− γ (9)

where G and H denote the sum of gradients and Hessians for the left (L) and right (R) child
nodes, respectively. This mechanism enables LightGBM to demonstrate high predictive
performance while maintaining computational efficiency.

For LightGBM, hyperparameter tuning was performed using GridSearchCV with a pa-
rameter grid of numleaves = [20, 40, 60], maxdepth = [5, 10, 15], learningrate = [0.01, 0.05, 0.1],
nestimators = [100, 200, 300], and mindata−in−lea f = [10, 20, 30]. A TimeSeriesSplit with 5 folds
was used instead of standard k-fold cross-validation to preserve temporal dependencies.
Optimal parameters achieved balance between low bias and high stability.

3.4. Model Validation—Evaluation Metrics

To assess the predictive performance of the developed models, we employed two
standard regression evaluation metrics: Root Mean Squared Error (RMSE) and Mean
Absolute Error (MAE).

Root Mean Squared Error (RMSE): The RMSE measures the square root of the average
squared differences between predicted and actual values. It penalises larger errors more
heavily and is given by

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 (10)

where yi is the actual value, ŷi is the predicted value, and n is the number of data points.
Lower RMSE indicates better model performance.

Mean Absolute Error (MAE): The MAE quantifies the average absolute deviation
between predicted and actual values:

MAE =
1
n

n

∑
i=1

|yi − ŷi| (11)

Unlike RMSE, MAE gives equal weight to all errors, making it more robust to outliers.
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Each model was configured using architecture and training parameters consistent
with its design principles and prior literature. Deep learning models employed moderate
network sizes (64–128 units) and limited epochs to prevent overfitting given the dataset
length, whereas ensemble models (XGBoost and LightGBM) were optimised via grid
search to balance depth and regularisation. This ensures that each model operates near its
empirically optimal configuration, allowing meaningful comparison of predictive accuracy
rather than computational efficiency.

4. Results
4.1. Temporal Trends Analysis

This temporal analysis provides a critical foundation for the machine learning-based
forecasting models developed in this study, facilitating the prediction of future inertia-
related costs and supporting strategic decision-making in smart grid energy trading and
system planning.

Figure 4 presents a year-wise distribution of daily inertia costs using box plots for
2017–2024. This visualisation captures both the central tendency (median) and spread
(interquartile range and outliers) of daily cost data across each year. It clearly demonstrates
the evolution of the system’s operational cost burden over time. A distinct increase in both
median costs and variability is observed from 2020 onwards, peaking in 2022, before taper-
ing off slightly in 2023 and 2024. The high number of outliers in recent years underscores
the frequent occurrence of extreme cost events, which reflect operational volatility and
potentially strained grid conditions.

Figure 4. Year-wise distribution of daily inertia service costs from 2017 to 2024.

Figure 5 meanwhile provides a complementary temporal perspective by plotting the
daily cost trends across the same period. This allows for a more granular view of how those
outliers and cost escalations manifest over time—highlighting temporal clusters, seasonal
spikes, or the impact of operational events that a box plot alone cannot reveal. For instance,
the increased frequency and amplitude of spikes in 2021 and 2022 align with the widening
spread seen in the corresponding box plots. Similarly, the visual flattening of cost spikes in
2024 corresponds to a narrowing of the box and fewer extreme outliers.

Figure 4 quantifies the statistical characteristics of cost distributions across years.
Figure 5 contextualises these statistics by illustrating the timing, persistence, and temporal
patterns of cost events. This combined analysis is important for system operators and policy-
makers, as it enables both strategic planning (via trend observation) and risk management
(via distribution analysis). It not only validates the potential impact of policy interventions
and market mechanisms introduced in later years—evidenced by statistical compression
and reduced spike volatility—but also highlights the dynamic and evolving nature of
inertia costs. The temporal disaggregation reveals critical shifts in operational conditions
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and reinforces the need for predictive models. These evolving patterns underscore the
complexity of maintaining frequency stability amid the increase in renewable integration
and motivate the use of machine learning techniques for cost forecasting, anomaly detection,
and smart grid optimisation.

Figure 5. Monthly inertia service cost trends from 2017 to 2024 as recorded by the NESO. Each subplot
represents a full calendar year, capturing daily cost variations associated with procuring inertia to
support grid stability.

4.2. Model Comparison Analysis

The forecasting pipeline includes two deep learning models and two ensemble learning
models, each contributing distinct advantages to cost prediction. Figure 6 presents the
predicted versus actual system inertia cost trends for four forecasting models: (a) LSTM
with temporal features, (b) LSTM with residual modelling, (c) XGBoost, and (d) LightGBM.

The LSTM with Temporal Features model uses two stacked LSTM layers (64 units
each) with dropout to prevent overfitting. Trained for 20 epochs with a batch size of 32 on
an 80/20 train–test split, it captures overall cost trends but tends to underestimate sharp
spikes, producing smoother outputs than the actual data. Whereas to enhance accuracy, a
Residual LSTM architecture is applied using a deeper LSTM with three layers of 128 units
each. Also trained for 20 epochs, this two-stage setup captures more complex temporal
patterns missed by the base model.
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(a)

(b)

(c)

(d)
Figure 6. The actual vs prediction outcome for inertia cost forecasting analysis and comparison for
four different models: (a) LSTM with temporal features. (b) LSTM with residuals. (c) XGBoost with
lag features. (d) LightGBM with parameter hypertunning.
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XGBoost, using lag features (1–7 days) and a rolling mean, is the fastest to train. It is
configured with 100 estimators, a max depth of 5, and a learning rate of 0.01, demonstrating
efficient results with moderate accuracy. LightGBM, with the same feature set, undergoes
extensive hyperparameter tuning via GridSearchCV. It outperforms all other models in
predictive accuracy, benefiting from optimised boosting and regularisation.

This combination of deep learning for capturing temporal dynamics and ensemble
models for fast and robust prediction is a crucial aspect of the forecasting strategy, enabling
both accuracy and efficiency in modelling highly variable cost data. Residual LSTM im-
proves upon the base LSTM by learning from its prediction errors, offering better tracking
of mid-range fluctuations, though it still underestimates extreme cost spikes. XGBoost
performs well in stable regions but lacks responsiveness to sharp changes, often under-
predicting peaks. LightGBM shows the closest alignment with actual values, effectively
capturing both baseline trends and volatility, leading to the best overall performance. While
LSTM models leverage temporal patterns, LightGBM emerges as the most reliable model
for forecasting system inertia costs in this study.

Figure 7 compares the performance of four models—LSTM, Residual LSTM, XGBoost,
and LightGBM—in predicting system inertia costs using key metrics: Root Mean Squared
Error (RMSE) and Mean Absolute Error (MAE). Both LSTM models yield the highest
RMSE and MAE, indicating a relatively poor fit to the data. XGBoost significantly reduces
prediction error, while LightGBM achieves the lowest RMSE and MAE, highlighting its
superior accuracy.

Figure 7. Performance matrices comparison for four different models.

All models were trained using the same 80/20 train–test split, loss function, and
evaluation metrics to ensure consistent benchmarking. The residual LSTM employed a
larger architecture than the base model to capture secondary temporal dependencies rather
than to increase computational capacity. Although this setup allows fair comparison of
forecasting performance, it remains sensitive to the chosen data partition; future work will
address this by averaging results across multiple runs to improve statistical confidence. The
underperformance of LSTM models during extreme cost spikes is attributed to their smooth
activation functions (tanh and sigmoid), which reduce sensitivity to abrupt cost changes.
Ensemble methods, by contrast, better capture such discontinuities through non-linear
decision boundaries.

Additionally, to improve interpretability of the ensemble learning approach, feature
importance analysis was conducted on the optimised LightGBM model. Figure 8 presents
the top ten features ranked by their contribution to model performance. The results show
that recent cost values, short-term lag features, and weekly rolling averages are dominant
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predictors of system inertia cost. Temporal calendar variables such as day and month also
exhibited notable influence, indicating the presence of periodic and seasonal effects. These
findings confirm that short-term dynamics and cyclical market behaviour jointly determine
the fluctuations in system inertia service costs.

Figure 8. Top 10 feature importance scores derived from the LightGBM model.

5. Discussion
The proposed framework contributes beyond existing energy forecasting literature

by specifically addressing system inertia cost prediction—a variable rarely modelled de-
spite its rising impact on balancing markets. Unlike prior studies focusing solely on
frequency or demand prediction, this work integrates temporal (LSTM-based) and ensem-
ble (boosting-based) models within a unified evaluation framework. This comparative
approach demonstrates that ensemble learning, particularly LightGBM, can provide inter-
pretable, accurate, and computationally efficient forecasts for operational use in real-time
grid management.

5.1. Model Interpretability and Forecasting Effectiveness

Among the forecasting models evaluated, LightGBM consistently outperforms others
due to its efficient tree-building approach and ability to model complex, nonlinear data
patterns. Unlike XGBoost’s level-wise tree growth, LightGBM employs a leaf-wise strat-
egy with depth constraints, enabling it to prioritise the most informative feature splits
and capture sharp cost fluctuations more effectively. Its use of histogram-based training
and native handling of missing values further enhances computational efficiency, while
built-in regularisation mechanisms help mitigate overfitting. These characteristics make
LightGBM particularly well-suited for forecasting high-variance time series such as system
inertia costs.

The empirical evidence of cost autocorrelation supports the use of temporal mod-
els, as inertia procurement costs exhibit strong sequential dependencies driven by daily
operational patterns and renewable output variability. LSTM-based models effectively
capture these structured temporal dynamics, while ensemble methods such as LightGBM
complement them by modelling complex nonlinear feature interactions. The resulting
feature importance analysis demonstrates that LightGBM identifies interpretable and phys-
ically meaningful relationships within the data—where short-term historical behaviour and
temporal patterns are dominant predictors. Together, these findings confirm that machine
learning models can provide both accurate forecasts and transparent insights into the cost
drivers influencing grid stability and market operations.
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More broadly, the findings highlight the strength of machine learning
models—particularly ensemble methods like LightGBM—in capturing temporal and non-
linear dynamics in inertia cost data. Their balance of predictive accuracy, computational
efficiency, and interpretability positions them as practical tools for integration into near-real-
time operational forecasting pipelines. Additionally, models such as the residual-enhanced
LSTM, while less accurate in extreme scenarios, demonstrate utility in capturing mid-range
cost fluctuations, which are critical during transitional grid conditions. These comple-
mentary strengths underscore the value of hybrid modelling strategies in managing the
growing complexity of power systems.

5.2. Operational Implications for Grid Management

System inertia remains a cornerstone of frequency stability in modern power grids.
As traditional synchronous generators are phased out and replaced by renewable and
inverter-based sources, the natural inertia of the grid diminishes. To maintain operability,
system operators now rely on ancillary services to procure synthetic or fast-responding
inertia, often at a substantial and variable cost. These expenses are increasingly visible in
reserve and balancing markets, affecting the cost-efficiency and responsiveness of the grid.

The findings of this study demonstrate that accurate forecasting of inertia-related costs
can directly enhance grid management. For system operators, the ability to anticipate
cost fluctuations supports proactive procurement strategies, better reserve planning, and
optimal scheduling of inertia-contributing resources. It also allows for more targeted use
of flexible technologies like battery storage or demand-side response, particularly when
high-frequency volatility is expected.

Ultimately, integrating inertia forecasting into grid control frameworks can lead to
more informed operational decisions, contributing to both cost savings and improved
system reliability.

Forecasting accuracy directly influences operational and economic outcomes. Underes-
timating future inertia costs may result in inadequate service procurement, compromising
frequency stability margins. Conversely, overestimation can lead to inflated expenditure
on ancillary services. Thus, even moderate improvements in forecasting precision translate
into tangible savings and reduced system risk for the National Energy System Operator.

5.3. Strategic Benefits for Market Participation and Policy

In addition to its operational advantages, inertia cost forecasting provides meaningful
strategic value for market participants and policymakers. For energy traders, aggregators,
and service providers, predictive insights into inertia pricing enable more effective bidding
in co-optimised energy and ancillary markets. By anticipating volatility, participants
can adjust trading strategies, hedge against cost spikes, and align portfolios with system
conditions—improving both competitiveness and profitability.

From a market design perspective, the ability to forecast inertia-related costs could
inform the development of more dynamic, responsive pricing schemes. Such mecha-
nisms would reflect real-time system needs more accurately and incentivise distributed
energy resources (DERs) to participate in frequency support services. This creates new
value streams for flexible assets and helps ensure that grid-supportive behaviours are
appropriately compensated.

Furthermore, these insights have policy implications. As the energy system continues
to decentralise and decarbonise, regulators and system planners must consider how to main-
tain stability in the absence of conventional inertia. Incorporating predictive tools into plan-
ning and procurement strategies can help bridge this gap. Forecast-informed procurement
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frameworks could be used to prioritise cost-effective inertia services, reduce over-reliance
on fossil-based reserves, and support investment in scalable, non-synchronous solutions.

While this study shows promising results, future work should address challenges
around model explainability, data reliability, and integration with existing control and
trading platforms. Robust validation processes and uncertainty quantification will be
essential for deploying ML-based forecasting tools in high-stakes operational contexts.

6. Conclusions
This study introduced a data-driven framework for forecasting system inertia costs

in Great Britain’s electricity grid using machine learning. Four models—LSTM, Residual
LSTM, XGBoost, and LightGBM—were evaluated on NESO’s 2017–2024 dataset to identify
the most effective forecasting approach. Results show that LightGBM achieved the lowest
RMSE and MAE, outperforming both deep learning and alternative ensemble methods.

The research contributes a clear comparative methodology that connects temporal
sequence learning with gradient-boosted ensemble modelling, offering a practical tool for
system operators and market participants. Accurate inertia cost forecasting enables proac-
tive procurement planning, enhances frequency control, and supports market strategies for
ancillary services.

Accurate inertia cost forecasting is not just a technical task; it provides strategic bene-
fits across multiple layers of the energy system. For system operators, these predictions can
improve procurement decisions, enhance frequency control planning, and reduce depen-
dence on costly reserve services. For market participants, such forecasts support smarter
bidding, hedging strategies, and real-time portfolio optimisation in co-optimised energy
and ancillary markets. Moreover, from a policy perspective, predictive tools like these can
inform market design by enabling inertia-aware pricing schemes and by creating new value
streams for non-synchronous resources such as batteries and inverter-based generation.

As electricity grids continue to decarbonise and decentralise, the ability to anticipate
system dynamics—particularly around frequency stability and inertia—will be critical
for maintaining operational reliability and market efficiency. Machine learning tools,
when properly validated and integrated, have the potential to become key enablers in
this transition.

Limitations and Future Work

While this study provides important insights, several limitations should be addressed
in future research. The models rely solely on historical cost data, which may not fully
capture future market structures or regulatory interventions. Expanding the framework
to higher temporal resolutions—such as intra-day or real-time forecasting—and incor-
porating exogenous variables like grid frequency deviations, weather conditions, and
interconnection flows could enhance predictive accuracy and operational relevance.

Future work should also integrate uncertainty quantification to support risk-aware
decision-making and validate the proposed models across different national or regional
energy systems to test generalisability. Collaboration with system operators will be essential
to ensure that model outputs align with practical operational needs and can be embedded
within real-world control and market dispatch systems.
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published version of the manuscript.
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