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About me
 Engineer Degree in Computing (EMP), MSc in Digital Forensics (LMU), MA in 

Academic Practice (University of Liverpool) and PhD in Cyber Security 

Engineering (City, University of London).

 15+ years in the Cyber Security Industry (Law Enforcement and Corporations)

 Certified Expert (CISSP, CPCI, Multi-GIAC Cert. )

 Currently Associate Professor, Director of the Cyber Security Research Centre 

(London Met) and Visiting Associate Professor at the University of Liverpool  

 Senior Advisor on Cyber Resilience (CSbD) in FinTech (former Director – 

Resilience and Security Auditing at KROLL LLC) 



Overview & Agenda
1. Introduction & Motivation
2. What Autonomous Cyber Security is about ?
3. Generative AI and LLMs 
4. LLMs and RAGs in Cyber Security
5. Reinforcement Learning (RL) Fundamentals
6. MDP & POMDP Frameworks in Cybersecurity
7. Challenges in Real-World Cyber Environments
8. Bridging Theory and Practice
9. Conclusion & Future Directions



Current Cyber Security Context



Human Expert in Cyber Security?

• Very hard to define expert as it is subjective 
• Often related to technical expertise and skills and validated through 

certifications (not about Degrees) 
• Shortage of Expert and if found it is a very expensive 
• Only a limited number (<5%) can afford hiring Experts



Cybersecurity in the Age of Adaptive Threats

• Static defences give attackers the upper hand – They have time to 
analyse and exploit vulnerabilities.

• Cyber threats are evolving rapidly – APTs, zero-day attacks, and large-
scale cybercrime are on the rise.

• Traditional security lacks adaptability – once deployed, defences 
remain unchanged for long periods.

• Systems’ unpredictability – continuously changes system configurations 
to disrupt attackers.

• Shifting the balance – MTD helps defenders regain control by making 
attacks harder and riskier.



Autonomous Cyber Security?

• Increasing complexity and volume of cyber 
threats

• Limitations of manual threat detection and 
response

• Need for scalable, real-time, adaptive 
defences

• Benefits of automation: continuous 
monitoring, rapid response, reducing costs 
and minimizing errors



Large Language Models (LLMs) 
 LLMs are a branch of Generative AI 
 Focused specifically on language 

processing. 
 LLMs are built on advanced Deep 

Learning architectures and trained on 
massive text datasets. 

Models are trained on diverse text corpora using neural networks with billions of parameters, 
allowing them to capture complex language structures and subtle meanings.



LLMs in Incident Response 

“LLMs are team player in Cyber Security”



LLMs in Cyber Security 



Trustworthiness, LLMs and Security



Current Research hot topic in LLMs

• Threat Modelling & Dataset Augmentation

• Synthesize polymorphic malware pseudocode and realistic attack narratives for red-team exercises

• Generate high-fidelity phishing exemplars and social engineering templates for training

• Create LLM-augmented datasets to improve anomaly detection and adversarial robustness



Reinforcement Learning 

• Basic Concept: Learning through interaction 
with the environment

• Key Elements: Agent, Environment, Actions, 
Rewards, Policy

• Learning Goal: Maximize cumulative reward



Markov Chains 
and MDP

Markov Chains model dynamic systems where 
the next state depends only on the current state, 
not “past history” (Markov property).

Absorbing Markov Chains have special 
'absorbing' states where the system gets stuck 
permanently.



Partially Observable Markov Decision Process

Real-world cybersecurity environments often have incomplete information
Key Components:

• States (S): System conditions (e.g., secure, under attack, compromised).
• Actions (A): Defender choices (e.g., apply MTD, do nothing)
• Transition Probabilities (T(𝑠𝑠′ ∣ 𝑠𝑠, 𝑎𝑎)): Likelihood of moving between 

states after an action.
• Observations (O): Limited signals instead of knowing the exact attack 

state.
• Observation Model (𝐙𝐙 𝐨𝐨 𝐚𝐚, 𝐬𝐬′)): Links hidden states to observable 

evidence.
• Rewards (R): Immediate Reward & Operational Cost.

Challenges:
• Curse of Dimensionality: Exponentially growth of possible states.
• Curse of History: Increasing memory and processing demands over 

time.



RL in Practice



Adaptive Cyber Security

Dynamic Decision-Making in Uncertainty: Continuous adaptation of the POMDP model ensures 
accurate decision-making.
Three-Stage Methodology:

• Development of POMDP Model: Captures key elements of cyber defence while incorporating 
uncertainty.

• POMDP Planning Phase: Selects and deploys MTD techniques based on updated belief 
states.

• Performance Assessment: Assesses strategy effectiveness and optimizes defensive 
measures.

Iterative Refinement: If objectives aren’t met, the model is recalibrated to enhance accuracy and 
effectiveness.



Exploration vs. Exploitation

Concepts: Balancing learning new strategies (exploration) vs. using known 
effective responses (exploitation)

Challenges:
• High stakes of exploration in live environments
• Safe exploration methods and simulations

Techniques: Model-based RL, risk-sensitive exploration



Challenges in Modelling Cyber Environments

High Dimensionality: Large number of potential states and actions

Dynamic Threat Landscape: Evolving attack patterns

Adversarial Noise: Intentional obfuscation by attackers

Sparse and Delayed Rewards: Difficulty in timely feedback for policy updates



Reward Engineering  and Computational cost

• Reward functions that align with security goals and constraints. 

• Security actions vs operational costs to avoid disruptions.

• Sparse rewards via intrinsic motivation for rare threats.

• Reward shaping and risk-aware objectives for threats.



Moving Target Defence

• MTD was Introduced by NITRD in 2009 – 
Addressing cybersecurity challenges.

• MTD rational – Continuously changes system 
configurations to disrupt attacks.

• Shell Game Analogy – Shuffling system 
components increases uncertainty.

• Dynamic Security Approach – Increases attack 
complexity and costs.



MTD need to mimic Cyber Kill Chain 

• Cyber Kill Chain models the structured steps of an attack. 
• Understanding attack progression helps in applying MTD effectively.



Implementing MTD
MTD is promising but has challenges:

• High resource consumption and system complexity.

• Balancing security and operational manageability is difficult.

• Some MTD techniques may not be fully compatible with each other.

Key research challenge:
• How do we optimize MTD strategies to enhance security while ensuring availability?

• Develop a realistic POMDP to model MTD under uncertainty.

• Optimize system overhead while maximizing security effectiveness and system availability.

• Incorporate risk assessment to guide adaptive MTD decision-making.



MTD Attack
• Flexible Attack Progressions: Allows step skipping. 
• System can progress or stay in place but cannot move backward.
• The transitions occur under the action ’Nil’, representing an undefended system operating normally while 

under attack.

TNil =

PSS PSP PSI PSV PSE 0
0 PPP PPI PPV PPE 0
0 0 PII PIV PIE 0
0 0 0 PVV PVE 0
0 0 0 0 PEE PEF
0 0 0 0 0 1



MTD Defence

The Success Probabilities for each Defence Action:

• Port Hopping (PH): 0.55

• Service Reconfiguration (SR): 2/3

• IP Reconfiguration (IR): 255/256

Ti =

Pdef 0 0 0 0 0
Pdef 0 0 0 0 0
Pdef 0 0 0 0 0
Pdef 0 0 0 0 0
Pdef 0 0 0 0 0

0 0 0 0 0 Pdef

+ 1 − Pdef ∗  TNil



POMDP Solving Partially Observable Monte Carlo Planning (POMCP)
• Online Method
• Uses Monte Carlo Tree Search & Particle Filtering
• Scalable for large state spaces

PERSEUS - Point-Based Value Iteration
• Offline Method
• Improved with Importance Sampling instead of 

uniform sampling 
• Faster convergence & better efficiency
• Randomized Backup: Updates only a subset of 

belief points per iteration → reduces computation 
time

• Focus on High-Impact Beliefs: Prioritizes important 
regions of the belief space → reduces variance in 
updates

• Scalable for Large POMDPs - More efficient 
belief selection improves policy quality



RL and System Validation

Optimal Policy under Perfect “Detection”

• Start State -> Nil Action (N)

• Port Scan -> Port Hopping (PH)

• ICMP Scan -> Port Hopping (PH)

• Vulnerability Scan -> Service Reconfiguration (SR)

• Exploit Launch -> IP Reconfiguration (IR)

• Security Failure -> Nil Action (N)



Performance Assessment

Attack Success Probability (ASP):  𝛙𝛙∗ = 𝛕𝛕𝐍𝐍𝐍𝐍𝐍𝐍
𝛕𝛕∗

× 𝟏𝟏𝟏𝟏𝟏𝟏𝟏

• 𝛕𝛕𝐍𝐍𝐍𝐍𝐍𝐍: Expected Total Number of Transitions Before Absorption where the "Nil" action is taken.

• 𝛕𝛕∗: Expected Total Number of Transitions Before Absorption.

Defence Success Probability (DSP):  𝛗𝛗∗ = 𝟏𝟏 − 𝛖𝛖 𝐬𝐬𝐧𝐧
∑𝐢𝐢=𝟐𝟐
𝐧𝐧 𝛖𝛖 𝐬𝐬𝐢𝐢

× 𝟏𝟏𝟏𝟏𝟏𝟏𝟏

• 𝛖𝛖 𝐬𝐬𝐧𝐧 : The number of times the system reaches the final state (successful attack).

•  𝛖𝛖 𝐬𝐬𝐢𝐢 : The denominator sums up the visits to all states except the first state where the system works normally.

System Availability: 𝛝𝛝∗ = 𝛇𝛇− 𝛌𝛌∗

𝛇𝛇
 × 𝟏𝟏𝟏𝟏𝟏𝟏𝟏

• 𝛇𝛇 : The maximum network availability between decision epochs.

• 𝛌𝛌∗: The expected overhead of the system.



Example- Penetration Testing (POMDP)

Mapping Network Penetration Testing to MDP/POMDP Models
1. State Definitions
oNetwork Posture: Open ports, active services, patch levels, firewall rules, authentication mechanisms.
oVulnerability Status: Known CVEs, misconfigurations (e.g., default credentials, unencrypted protocols).
oAccess Level: Current privileges (e.g., unauthenticated, user, admin, root).
oDefender Awareness: Detection alerts triggered, honeypots activated, defensive countermeasures (e.g., IP blocking).

2. Actions
oReconnaissance: Port scanning, service fingerprinting, vulnerability scanning.
oExploitation: Deploy payloads (e.g., SQLi, buffer overflow), phishing attempts, credential brute-forcing.
oPersistence: Install backdoors, escalate privileges, exfiltrate data.
oEvasion: Clear logs, spoof IPs, use encryption to avoid detection.

3. Observation 
4. Rewards
•Positive: Successful exploit (+20), privilege escalation (+30), data exfiltration (+50).
•Negative: Triggered alerts (-15), blocked IP (-25), system crash (-40), failed exploit (-10).



In Practice- Penetration Testing



Example- DDoS (MDP)

1. State Definitions
o Network Status: Traffic volume, connection rates, server load, open ports, device connectivity.
o System Vulnerabilities: Unpatched software, misconfigurations, weak authentication protocols.
o Threat Signatures: Known attack patterns (e.g., DDoS traffic signatures, malware behaviour).

2. Actions
o Preventative Measures: Apply patches, update firewall rules, restrict access.
o Active Countermeasures: Block IPs, rate limit traffic, isolate compromised nodes.
o System Updates: Deploy security patches, refresh threat databases.

3. Rewards
o Positive: Mitigated attack (e.g., stopped DDoS), minimal downtime.
o Negative: False positives (blocking legitimate users), false negatives (undetected breaches), resource overhead.



In Practice- DDoS Attack

States:
• S0: Normal traffic.
• S1: Low-intensity DDoS.
• S2: High-intensity DDoS.
• S3: System crash.

Actions:
• A1: Monitor/analyse traffic.
• A2: Block suspicious IPs.
• A3: Deploy traffic scrubbing.

Observations:
• Traffic spikes, geographic anomalies, server response latency.
• Uncertainty: Legitimate surge (e.g., viral event) vs. attack.

Rewards:
• R(S1,A2) R(S1,A2): +10 if attack stops, -5 if legitimate users blocked.
• R(S2,A3) R(S2,A3): +20 for mitigation, -2 for operational cost.

Belief Updates:
• Bayesian inference to adjust probabilities of being in S0, S1, or S2 based on traffic patterns.



RL in Offensive Security (Penetration Testing)
From: Reinforcement learning for efficient and effective penetration testing



RL in Offensive Security (Penetration Testing) - Scalability
From: Hierarchical reinforcement learning for efficient and effective automated penetration testing of large networks

https://link.springer.com/article/10.1007/s10844-022-00738-0


RL in Malware Cyber Incident Response
From: Reinforcement learning for an efficient and effective malware investigation during cyber Incident response

https://www.sciencedirect.com/science/article/pii/S2667295225000030


RL in Post Incident Investigation
From: Leveraging Reinforcement Learning for an Efficient Automation of Windows Registry Analysis During Cyber Incident

https://www.preprints.org/frontend/manuscript/c6174952d70fd8315e0eddb923ee57e8/download_pub


RL for ATP Attribution
From: Advanced Persistent Threats (APT) Attribution Using Deep Reinforcement Learning

https://arxiv.org/abs/2410.11463


Summary & Key Takeaways
• RL’s potential in automating cybersecurity is clear
• RL tackle adversarial dynamics models (may require non-stationary MDPs).
• Importance of complete and realistic modelling (MDP/POMDP) in dynamic, 

uncertain environments

• Effective with MDP more complicated in MTD and PT where POMDP is needed 

• Probabilistic belief states are required in POMDPs, to accurately capture the 
uncertainty from partial observability, allow for Bayesian updating

• Enhanced PERSEUS Algorithm: Improved using importance sampling for faster 
convergence and better efficiency

• RL in Cyber Security is a promising future research directions
• Emphasis on collaboration between theory and practice - Real-World Validation with 

live industry scenarios



Thank you!

Any Question?
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