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About me

Engineer Degree in Computing (EMP), MSc in Digital Forensics (LMU), MA in
Academic Practice (University of Liverpool) and PhD in Cyber Security
Engineering (City, University of London).

15+ years in the Cyber Security Industry (Law Enforcement and Corporations)
Certified Expert (CISSP, CPCI, Multi-GIAC Cert. )

Currently Associate Professor, Director of the Cyber Security Research Centre
(London Met) and Visiting Associate Professor at the University of Liverpool
Senior Advisor on Cyber Resilience (CSbD) in FinTech (former Director —
Resilience and Security Auditing at KROLL LLC)



Overview & Agenda
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Introduction & Motivation

What Autonomous Cyber Security is about ?
Generative Al and LLMs

LLMs and RAGs in Cyber Security
Reinforcement Learning (RL) Fundamentals
MDP & POMDP Frameworks in Cybersecurity
Challenges in Real-World Cyber Environments
Bridging Theory and Practice

Conclusion & Future Directions



Current Cyber Security Context
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Human Expert in Cyber Security?

 Very hard to define expert as it is subjective

 Often related to technical expertise and skills and validated through
certifications (not about Degrees)

« Shortage of Expert and if found it is a very expensive

* Only a limited number (<5%) can afford hiring Experts



Cybersecurity in the Age of Adaptive Threats

o Static defences give attackers the upper hand — They have time to
analyse and exploit vulnerabilities.

e Cyber threats are evolving rapidly — APTs, zero-day attacks, and large-
scale cybercrime are on the rise.

e Traditional security lacks adaptability — once deployed, defences
remain unchanged for long periods.

e Systems’ unpredictability — continuously changes system configurations
to disrupt attackers.

o Shifting the balance — MTD helps defenders regain control by making
attacks harder and riskier.



Autonomous Cyber Security?

* Increasing complexity and volume of cyber
threats

- Limitations of manual threat detection and . . .\
response Ongoing learning Dlscnviﬂ:lﬂgail:knuwn Vast data volumes

* Need for scalable, real-time, adaptive
defences

» Benefits of automation: continuous
monitoring, rapid response, reducing costs

d minimizi Improved vulnerability ~ Enhanced overall Better detection
ana minimizing errors management security posture and response




Large Language Models (LLMs)

» | LMs are a branch of Generative Al

» Focused specifically on language
processing.

= | LMs are built on advanced Deep
Learning architectures and trained on
massive text datasets.

Artificial Intelligence (Al)
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Models are trained on diverse text corpora using neural networks with billions of parameters,
allowing them to capture complex language structures and subtle meanings.



LLMs in Incident Response
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in Cyber Security”

“LLMs are team player



LLMs in Cyber Security
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Trustworthiness, LLMs and Security

Mitigating Unforeseen
Risks

Enhancing Security
System Reliability

Preventing Escalation
of Security Incidents

___________________

____________________

Aligning Security with
Societal Well-Being

Building Public Trust
in Security Systems

Mitigating the Risks of
Malicious Use
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Current Research hot topic in LLMs

Threat Modelling & Dataset Augmentation

Synthesize polymorphic malware pseudocode and realistic attack narratives for red-team exercises

Generate high-fidelity phishing exemplars and social engineering templates for training

Create LLM-augmented datasets to improve anomaly detection and adversarial robustness



Reinforcement Learning

[ Agent
. . . . i, R tati
« Basic Concept: Learning through interaction —1 0 chreee R
ith th . t ff il ,\ Learning algorithm
wit e environmen I_> a A Policy Graph
* Key Elements: Agent, Environment, Actions, Reward Action
. r(t) a®
Rewards, Policy State —— \
s(t) ‘ (i) Environment

* Learning Goal: Maximize cumulative reward




Markov Chains
and MDP

Markov Chains model dynamic systems where
the next state depends only on the current state,
not “past history” (Markov property).

Absorbing Markov Chains have special
‘absorbing’ states where the system gets stuck

permanently.




Partially Observable Markov Decision Process

Real-world cybersecurity environments often have incomplete information

Key Components:

States (S): System conditions (e.g., secure, under attack, compromised).
Actions (A): Defender choices (e.g., apply MTD, do nothing)

Transition Probabilities (T(s’ | s, a)): Likelihood of moving between
states after an action.

Observations (O): Limited signals instead of knowing the exact attack
state.

Observation Model (Z(o |a,s")): Links hidden states to observable
evidence.

Rewards (R): Immediate Reward & Operational Cost.

Challenges:

Curse of Dimensionality: Exponentially growth of possible states.

Curse of History: Increasing memory and processing demands over
time.

P

Reconfiguration gy a(t+1)

Reward
/ Cost




RL in Practice

value/policy
acting
planning direct
RL
model experience
model

learning



Adaptive Cyber Security

Dynamic Decision-Making in Uncertainty: Continuous adaptation of the POMDP model ensures
accurate decision-making.

Three-Stage Methodology:

Development of POMDP Model: Captures key elements of cyber defence while incorporating
uncertainty.

POMDP Planning Phase: Selects and deploys MTD techniques based on updated belief
states.

Performance Assessment: Assesses strategy effectiveness and optimizes defensive
measures.

Iterative Refinement: If objectives aren’t met, the model is recalibrated to enhance accuracy and
effectiveness.



Exploration vs. Exploitation

Concepts: Balancing learning new strategies (exploration) vs. using known
effective responses (exploitation)

Challenges:
* High stakes of exploration in live environments

 Safe exploration methods and simulations

Techniques: Model-based RL, risk-sensitive exploration



Challenges in Modelling Cyber Environments

High Dimensionality: Large number of potential states and actions
Dynamic Threat Landscape: Evolving attack patterns
Adversarial Noise: Intentional obfuscation by attackers

Sparse and Delayed Rewards: Difficulty in timely feedback for policy updates



Reward Engineering and Computational cost

Reward functions that align with security goals and constraints.

* Security actions vs operational costs to avoid disruptions.

* Sparse rewards via intrinsic motivation for rare threats.

Reward shaping and risk-aware objectives for threats.



Moving Target Defence

e MTD was Introduced by NITRD in 2009 —
Addressing cybersecurity challenges.

e MTD rational — Continuously changes system
configurations to disrupt attacks.

e Shell Game Analogy — Shuffling system
components increases uncertainty.

e Dynamic Security Approach — Increases attack
complexity and costs.




MTD need to mimic Cyber Kill Chain

e Cyber Kill Chain models the structured steps of an attack.
e Understanding attack progression helps in applying MTD effectively.

Command and Actions on
Control Objectives

Reconnaissance Weaponization Exploitation Installation




Implementing MTD

MTD is promising but has challenges:
High resource consumption and system complexity.
Balancing security and operational manageability is difficult.

Some MTD techniqgues may not be fully compatible with each other.

Key research challenge:
How do we optimize MTD strategies to enhance security while ensuring availability?
Develop a realistic POMDP to model MTD under uncertainty.
Optimize system overhead while maximizing security effectiveness and system availability.

Incorporate risk assessment to guide adaptive MTD decision-making.



MTD Attack

» Flexible Attack Progressions: Allows step skipping.
« System can progress or stay in place but cannot move backward.

« The transitions occur under the action 'Nil’, representing an undefended system operating normally while
under attack.
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MTD Defence

P_def+P_i*P_SS

The Success Probabilities for each Defence Action:
« Port Hopping (PH): 0.55
« Service Reconfiguration (SR): 2/3
« |P Reconfiguration (IR): 255/256
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POMDP SOIVing Partially Observable Monte Carlo Planning (POMCP)

* Online Method
» Uses Monte Carlo Tree Search & Particle Filtering
« Scalable for large state spaces

PERSEUS - Point-Based Value lteration
{S:1, P:0, I:0, V:0, E:0, F:0} @ e Offline Method
« Improved with Importance Sampling instead of
uniform sampling
Nil Port Hopping E Service Reconfiguration IP Reconfiguration n o F a St er conver g ence & b ett er eﬂ:l Cl en Cy

Randomized Backup: Updates only a subset of

@ @ Q Q @ @ OO0 O0OO0OO0OOO OOOOO ‘ belief points per iteration — reduces computation

time
< y"« 5

» Focus on High-Impact Beliefs: Prioritizes important
‘ - regions of the belief space — reduces variance in
updates

« Scalable for Large POMDPs - More efficient
belief selection improves policy quality



RL and System Validation

Optimal Policy under Perfect “Detection”

Belief
« Start State -> Nil Action (N) . or ARG belivfa — OS/
Os/ n
» Port Scan -> Port Hopping (PH) OF .

S

= P

 |CMP Scan -> Port Hopping (PH) =
« Vulnerability Scan -> Service Reconfiguration (SR) Ok > . o/ SV
 Exploit Launch -> IP Reconfiguration (IR) N op! OF " E
- Security Failure -> Nil Action (N) ol - oV i

OP/
QP/ 0]l
0l oV
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Performance Assessment

Q Attack Success Probability (ASP): ¢* = L‘ x 100%

* Tyil: Expected Total Number of Transitions Before Absorption where the "Nil" action is taken.

* T": Expected Total Number of Transitions Before Absorption.

O Defence Success Probability (DSP): ¢* = (1 — M) X 100%

?:2 u(sj)
* v(s,): The number of times the system reaches the final state (successful attack).

* v(s;): The denominator sums up the visits to all states except the first state where the system works normally.

*

0 System Availability: 9* = “("‘ x 100%

e { : The maximum network availability between decision epochs.

* A*: The expected overhead of the system.



Example- Penetration Testing (POMDP)

Mapping Network Penetration Testing to MDP/POMDP Models
1. State Definitions
oNetwork Posture: Open ports, active services, patch levels, firewall rules, authentication mechanisms.
oVulnerability Status: Known CVEs, misconfigurations (e.g., default credentials, unencrypted protocols).
oAccess Level: Current privileges (e.g., unauthenticated, user, admin, root).
oDefender Awareness: Detection alerts triggered, honeypots activated, defensive countermeasures (e.g., IP blocking).
2. Actions
oReconnaissance: Port scanning, service fingerprinting, vulnerability scanning.
oExploitation: Deploy payloads (e.g., SQLi, buffer overflow), phishing attempts, credential brute-forcing.
oPersistence: Install backdoors, escalate privileges, exfiltrate data.
oEvasion: Clear logs, spoof IPs, use encryption to avoid detection.
3. Observation
4. Rewards
*Positive: Successful exploit (+20), privilege escalation (+30), data exfiltration (+50).
*Negative: Triggered alerts (-15), blocked IP (-25), system crash (-40), failed exploit (-10).



In Practice- Penetration Testing

Actions:

Observations:
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Example- DDoS (MDP)

1
®
®
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. State Definitions

Network Status: Traffic volume, connection rates, server load, open ports, device connectivity.
System Vulnerabilities: Unpatched software, misconfigurations, weak authentication protocols.
Threat Signatures: Known attack patterns (e.g., DDoS traffic signatures, malware behaviour).

. Actions
Preventative Measures: Apply patches, update firewall rules, restrict access.
Active Countermeasures: Block IPs, rate limit traffic, isolate compromised nodes.
System Updates: Deploy security patches, refresh threat databases.

. Rewards
Positive: Mitigated attack (e.g., stopped DDoS), minimal downtime.
Negative: False positives (blocking legitimate users), false negatives (undetected breaches), resource overhead.



In Practice- DDoS Attack

 SO0: Normal traffic.
 S1: Low-intensity DDoS.
* S2: High-intensity DDoS.
 S3:System crash.
Actions:
* A1: Monitor/analyse traffic.
 A2:Block suspicious IPs.
* A3: Deploy traffic scrubbing.
Observations:
* Traffic spikes, geographic anomalies, server response latency.
* Uncertainty: Legitimate surge (e.g., viral event) vs. attack.
Rewards:
 R(S1,A2) R(S1,A2): +10 if attack stops, -5 if legitimate users blocked.
 R(S2,A3) R(S2,A3): +20 for mitigation, -2 for operational cost.
Belief Updates:
* Bayesian inference to adjust probabilities of being in SO, S1, or S2 based on traffic patterns.



RL in Offensive Security (Penetration Testing)

From: Reinforcement learning for efficient and effective penetration testing
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RL in Offensive Security (Penetration Testing) - Scalability

From: Hierarchical reinforcement learning for efficient and effective automated penetration testing of large networks
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https://link.springer.com/article/10.1007/s10844-022-00738-0

RL in Malware Cyber Incident Response

From: Reinforcement learning for an efficient and effective malware investigation during cyber Incident response
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https://www.sciencedirect.com/science/article/pii/S2667295225000030

RL in Post Incident Investigation

From: Leveraging Reinforcement Learning for an Efficient Automation of Windows Registry Analysis During Cyber Incident
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https://www.preprints.org/frontend/manuscript/c6174952d70fd8315e0eddb923ee57e8/download_pub

RL for ATP Attribution

From: Advanced Persistent Threats (APT) Attribution Using Deep Reinforcement Learning
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https://arxiv.org/abs/2410.11463

Summary & Key Takeaways

* RL’s potential in automating cybersecurity is clear
« RL tackle adversarial dynamics models (may require non-stationary MDPs).

* Importance of complete and realistic modelling (MDP/POMDP) in dynamic,
uncertain environments

« Effective with MDP more complicated in MTD and PT where POMDP is needed

 Probabilistic belief states are required in POMDPs, to accurately capture the
uncertainty from partial observability, allow for Bayesian updating

 Enhanced PERSEUS Algorithm: Improved using importance sampling for faster

convergence and better efficiency

* RL in Cyber Security is a promising future research directions

* Emphasis on collaboration between theory and practice - Real-World Validation with
live industry scenarios



Thank you!

Any Question?
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