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ARTICLE INFO ABSTRACT

Keywords: Steganalysis methods based on deep learning (DL) often struggle with computational complexity and challenges
Steganalysis in generalizing across different datasets. In the specific case of voice-over-IP (VoIP) speech streams, detection
Steganography

is particularly challenging because the low bit-rate encoding creates complex, relational dependencies between
speech frames. Conventional DL models, which treat data as simple sequences or grids, often fail to capture
these complex inter-frame dependencies effectively. To address this gap, this paper presents the first application
of a graph neural network (GNN), specifically the GraphSAGE architecture, for steganalysis of compressed
VolIP speech streams. The method involves straightforward graph construction from VoIP streams and employs
GraphSAGE to capture hierarchical steganalysis information, including both fine-grained details and high-level
patterns, thereby achieving high detection accuracy. Experimental results demonstrate that the developed
approach performs well in uncovering quantization index modulation (QIM)-based steganographic patterns
in VoIP signals. It achieves detection accuracy exceeding 98% even for short 0.5-second samples, and 95.17%
accuracy under challenging conditions with low embedding rates, representing an improvement of 2.8% over
the best-performing state-of-the-art methods. Furthermore, the model exhibits superior efficiency, with an
average detection time as low as 0.016 s for 0.5-second samples—an improvement of 0.003 s. This makes it
efficient for online steganalysis tasks, providing a superior balance between detection accuracy and efficiency
under the constraint of short samples with low embedding rates.

Quantization index modulation
Graph neural network
GraphSAGE

VolIP speech stream

1. Introduction has made it an attractive choice for concealing and transmitting hidden

information [8]. The ubiquity and high-volume nature of VoIP traffic

Data hiding has garnered significant attention from researchers in
recent years, spanning various disciplines. On the one hand, it serves
to verify integrity and ensure information remains unaltered during
transmission, as seen in watermarking [1,2]. On the other hand, it
can be utilized to conceal confidential information through uncon-
ventional means, exemplified by steganography [3,4]. Steganography
and steganalysis are two complementary aspects of covert commu-
nication. While steganography involves concealing secret information
within apparently benign carriers such as images [5], text [6], and
speech [3], steganalysis is focused on detecting and unveiling such
concealed communication [7]. Over the years, the proliferation of In-
ternet services has facilitated the transmission of multimedia data over
digital networks. Among these services, voice over internet protocol
(VoIP) has emerged as a prominent means of enabling real-time voice
communication over the Internet. This increased reliance on VolIP,
driven by the success of platforms like Skype, WhatsApp, and Zoom,

make it an appealing vector for steganographic purposes, presenting
both opportunities for clandestine communication and challenges for
cybersecurity professionals.

In VoIP communications, speech is typically compressed using
codecs, such as G.722, G.723, and G.729, to reduce bandwidth require-
ments. This compression process, which involves the quantization of
speech parameters, inadvertently creates potential vulnerabilities that
can be exploited for steganographic purposes. Malicious actors, includ-
ing cybercriminals and extremist groups, may exploit these vulnerabili-
ties by manipulating VoIP software to facilitate covert communications.
This scenario presents a significant challenge to communication moni-
toring and network security. Steganography for VoIP can occur both in
network protocol fields and payload data [9,10]. However, while the
former approach may provide some degree of concealment, it is the
latter that takes precedence. This distinction arises from the fact that
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the practice of concealing information within network protocol fields,
which encompass many layers of the open systems interconnection
(OSI) model, ultimately provides less robust concealment capabilities.
These protocol fields are typically public, and their data tends to remain
fixed under most ordinary circumstances, rendering them less secure for
covert communication [11]. On the contrary, the method of embedding
data within payload data, characterized by its dynamic nature and
temporal variations, offers a substantially higher degree of conceal-
ment. This dynamism makes it considerably more challenging to detect
covert practices within VoIP streams, reinforcing its position as the
preferred choice for steganographic endeavors [11,12]. Additionally, as
steganography methods become more sophisticated, particularly with
the advent of Al-generated content, advanced steganalysis techniques
are necessary to keep pace [13].

As a result, there is a compelling need to develop effective ste-
ganalysis methods tailored specifically for VoIP steganography. These
methods can address several critical concerns, including: (i) For na-
tional security agencies, detecting and preventing the covert exchange
of sensitive information via VoIP is crucial to national security; (ii) busi-
nesses depend on steganalysis to safeguard against intellectual property
theft and unauthorized data exfiltration through VoIP channels, pro-
tecting their proprietary information and maintaining a competitive
advantage; (iii) many industries are required to monitor and secure
their communications to comply with regulatory standards, making
VoIP steganalysis essential for ensuring compliance with legal and
industry-specific requirements.

An effective steganalysis in the context of VoIP streams should meet
two crucial requirements [14,15]. Firstly, it should operate in real-time,
ensuring that the time required for detection is minimized due to the
need for swift action against potential malicious activities. Secondly,
the steganalysis method must be capable of detecting short samples
of VoIP streams, as covert information may be hidden within brief
segments of the communication. Adding to these two requirements, it
should be sensitive enough to detect low embedding rates, as some
covert data may be hidden with minimal changes to the host signal.
Meeting these stringent requirements represents a significant and per-
sistent challenge in developing practical and reliable VoIP steganalysis
methods, which is essential to ensure their successful integration into
real-world applications [9,14]. In this work, we address the core re-
search problem of designing a steganalysis approach for VoIP that
can achieve real-time detection performance, maintain high accuracy
on short speech segments, and remain effective under low embedding
rates.

1.1. Motivation

The steganalysis process generally involves a two-step process: first,
identifying distinguishing features from the carrier signal, and then
classifying whether it contains steganographic content. Feature extrac-
tion involves identifying and selecting key pieces of data from the
carrier, such as patterns or anomalies, that can indicate the presence
of steganography. Traditional methods rely on handcrafted statisti-
cal features, designed based on expert knowledge, to detect signifi-
cant changes introduced by steganographic embedding. However, these
methods face limitations in the context of VoIP due to the minimal ad-
ditional distortion introduced by steganography in compressed speech,
making it challenging to extract suitable features for steganalysis.

With the rapid advancement of deep learning (DL), recent methods
have leveraged deep models to automatically learn discriminative fea-
tures. Various neural network architectures, primarily leveraging con-
volutional neural network (CNN)- and recurrent neural network (RNN)-
based designs [12,14,16,17], have been explored in VoIP steganalysis.
These models are specifically designed to capture distinct codeword
correlation features between cover and stego VoIP streams, achieving
state-of-the-art (SOTA) detection outcomes. While effective in capturing
sequential (RNNs) or local spatial (CNNs) patterns, these traditional
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deep learning architectures face inherent limitations when dealing with
the relational structure of compressed VoIP data affected by steganog-
raphy. QIM steganography, in particular, subtly alters the dependen-
cies and correlations between line spectral frequency (LSF) codewords
across frames and within their neighborhoods. CNNs, designed for grid-
like data, struggle to explicitly model these non-Euclidean, inter-frame
relationships. RNNs, while adept at sequences, might not efficiently
capture the graph-like dependencies that extend beyond simple linear
order or local windows, especially when the crucial information lies in
the way codewords relate to each other rather than just their individual
values or linear sequence.

Recently, significant attention has been directed toward adapting
DL methods for graph-structured data, giving rise to the emergence
of graph neural networks (GNNs) as a prominent topic [18]. GNNs
are uniquely suited for modeling complex relationships within non-
Euclidean data by explicitly learning from graph structures, where
nodes represent entities (e.g., LSF codeword frames) and edges rep-
resent their relationships (e.g., temporal dependencies). This intrinsic
capability allows GNNs to capture both fine-grained local dependen-
cies and high-level global patterns by aggregating information from
connected neighborhoods. GNNs have demonstrated efficiency in repre-
senting and analyzing graph data across various computer vision fields,
including action recognition [19], object tracking [20], and natural
language processing, such as text classification [21]. However, there
have been limited efforts in applying GNNs to steganalysis, primarily
in the domains of images, as in [22,23], and text, as in [24,25]. This
highlights a significant gap where GNNs’ relational modeling power
could be particularly advantageous for VoIP steganalysis.

1.2. Contribution and paper structure

DL-based steganalysis commonly encounter trade-offs between per-
formance and processing complexity. This study introduces the appli-
cation of a GraphSAGE GNN network to design an effective approach
that meets the essential requirements of VoIP steganalysis systems. The
key contributions of this study can be outlined as follows:

Propose, according to the literature reviewed, the first application
of GNNs in the context of VoIP steganalysis, marking a signifi-
cant advancement in quantization index modulation (QIM)-based
steganalysis methodologies.

Introduce a simple and efficient approach for constructing graphs
from input VolIP streams, resulting in a lightweight and simplified
graph structure that reduces computational complexity while pre-
serving the capability for excellent feature extraction, crucial for
identifying patterns indicative of steganography.

Propose a GNN architecture based on the GraphSAGE model,
specifically designed to hierarchically extract steganalysis infor-
mation. This architecture, for the first time, effectively utilizes
LSF codewords from VoIP codecs notably G.723 and G.729 to cap-
ture both fine-grained details and high-level patterns, resulting in
high detection accuracy.

Prove, through experiments, that the suggested GNN-based speech
steganalysis technique achieves competitive detection accuracy
in the challenging scenario. Specifically, it attains detection ac-
curacy exceeding 98% even for short 0.5-s samples, and 95.17%
accuracy under challenging conditions with low embedding rates,
representing an improvement of 2.8% over the best-performing
state-of-the-art methods. Furthermore, the model exhibits supe-
rior efficiency, with an average detection time as low as 0.016 s
for 0.5-s samples—an improvement of 0.003 s. These results high-
light the model’s suitability for real-time deployment, offering a
robust trade-off between detection accuracy and computational
efficiency.
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» Demonstrate practical implications by enabling real-time detec-
tion of covert communications in VoIP streams for real-world sce-
narios. This includes enhanced cybersecurity and network moni-
toring, support for law enforcement in identifying hidden trans-
missions, and applications in digital rights management and IoT
security, thanks to the method’s high detection accuracy and
efficiency.

The remainder of this paper is structured as follows: Section 2
delves into related works. Section 3 offers an overview of the back-
ground. Section 4 introduces the proposed GNN-based steganalysis
framework. Section 5 presents experimental results and offers an in-
depth examination of the results. Section 6 outlines the key limitations
and shortcomings of the approach, suggests possible enhancements, and
discusses the applicability of the proposed scheme in several real-world
scenarios. Finally, Section 8 presents conclusive remarks and outlines
future directions.

2. Related work

Vocoders, such as G.723 and G.729, are widely applied in VoIP
communication with the aim of lowering decoding errors via the
analysis-by-synthesis (AbS) approach, maintaining excellent speech
quality while achieving high compression ratios. In contrast to conven-
tional steganographic methods typically used for images or text, low
bit-rate (LBR) VoIP streams, characterized by the AbS linear predic-
tive coding technique, pose a unique challenge due to their minimal
redundancy within the encoded speech. To address this, researchers
have explored two distinct categories of data hiding techniques, each
linked to different stages in the encoding process. The first category
involves altering specific elements in the compressed speech stream,
often utilizing methods like least significant bit (LSB) replacement, such
as in [10]. However, this is complicated due to the limited data-hiding
space in LBR speech. The second category focuses on embedding covert
information during encoding, by altering encoding features, notably the
linear predictive coding (LPC) [26], fixed codebook (FCB) [27], and
adaptive codebook (ACB) [28].

In the second category, QIM-based steganography is most commonly
employed, especially within LPC domains. QIM steganography, orig-
inally developed by Chen et al. [29], is widely used in literature. It
conceals steganograms by altering the quantization vector within the
speech code, introducing minimal unperceptible distortion and offer-
ing high data hiding capabilities. Thus, when it comes to embedding
information in VoIP streams, QIM emerges as a suitable scheme that
poses a significant challenge for detection.

On the one hand, research into QIM steganography detection meth-
ods has primarily concentrated on image carriers [30]. Subsequently,
a limited number of research studies have been proposed in the field
of steganalysis, particularly focusing on QIM-based steganography in
VolIP, such as in [11,31]. Due to the distinct characteristics of VoIP
streams, the detection methods proposed for use in images cannot be
directly applied within the VoIP context. Moreover, classical audio
steganalysis methods based on statistical feature extraction in the un-
compressed domain are inapplicable to VoIP. This is due to the minimal
additional distortion introduced by VoIP QIM steganography in de-
coded speech signals, making it challenging to extract suitable features
for steganalysis [32]. To address this issue, some research in the VoIP
field has proposed the use of handcrafted statistical features to detect
significant changes in codewords used in LBR speech codec streams
caused by QIM steganography. For instance, Li et al. [33] examined
the impact of QIM steganography on G.729, where it altered the quan-
tization index of the LPC filter. They employed a statistical model to
capture codeword distribution characteristics and, in conjunction with
a support vector machine (SVM), formulated an efficient system for
steganographic detection. In a related study, Li et al. [34] developed the
index distribution characteristics (IDC) steganalysis method, employing
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codeword distribution histograms and first-order Markov chain-derived
state transition probabilities as correlation features. These features,
integrated with SVM, were utilized to classify steganographic samples
with a focus on inter-frame transition probabilities. Expanding upon
this concept, the studies by Li et al. [35] and Wu et al. [36] aim
to detect steganograms embedded using QIM techniques. Both works
employ principal component analysis (PCA) for reducing feature di-
mensionality and SVM for classification. Notably, Li et al. [35] focus
on state transition probabilities of intra-frame codewords as features,
while Wu et al. [36] suggested extracting features from the original
speech signal by analyzing its distribution patterns and transmission
likelihoods. Meanwhile, Yang et al. [37] employed temporal dependen-
cies between codewords across frames to model a Codeword Bayesian
Network (CBN), where the parameter learning process was guided by
a Dirichlet prior. Yang et al. [38] proposed a fast steganalysis which
involved mapping vector quantization codewords to a semantic space,
followed by feature extraction using a hidden layer input into a softmax
classifier. Such methods require meticulous feature design to align
with the characteristics of speech data and specific information hiding
techniques. Consequently, they struggle to effectively address gener-
ative steganography that produces high-quality stego speech. On the
other hand, the proposed GraphSAGE-based algorithm addresses these
challenges by utilizing relational data through GNNs and efficiently
managing the minimal distortion and short sample lengths typical of
VoIP streams.

Besides, recent advancements in DL have led to improved robustness
and effectiveness in steganalysis methods, which can be broadly cate-
gorized into two main categories: general steganalysis approaches and
specific steganalysis approaches. In the first category, several methods
have been introduced to detect a range of steganographic techniques.
For example, Hu et al. [39] addressed heterogeneous parallel steganog-
raphy (HPS) by introducing the steganalysis feature fusion network
(SFFN). The architecture of SFFN comprises three core modules: a
network for feature extraction, a component for feature integration,
and a classification unit, effectively extracting and combining steganal-
ysis features from HPS methods for dependable predictions. Building
upon this, Wang et al. [40] proposed a fast and efficient steganal-
ysis method which leveraged attention mechanisms. Their suggested
method adeptly extracts key characteristics related to steganography
exceptions and fuses these features targeting multiple steganography
techniques utilized in HPS. Li et al. [41] introduced a unified detec-
tion framework, termed CBCA, which leverages codeword embedding
along with bidirectional long short-term memory (Bi-LSTM) and CNN-
based attention mechanisms. This approach is capable of identifying
three distinct steganographic techniques concurrently. Wang et al. [42]
proposed a steganalysis method aimed at identifying various stegano-
graphic schemes within compressed speech signals. Their framework
introduces a codeword-distributed embedding component designed to
generate compact representations from compressed codewords. To cap-
ture dependencies across different contexts, it employs two correlation
extraction modules: a global-guided unit that incorporates Bi-LSTM
and multi-head self-attention, and a local-guided unit built using the
convolutional block Attention module (CBAM), enabling the modeling
of both global and local correlations before and after data hiding. Detec-
tion is accomplished through fully connected layers, ensuring accurate
identification. Li et al. [13] introduced a generic frame-level steganal-
ysis approach for LBR steganography, utilizing dual-domain feature
representation and a Transformer-based model named Stegaformer. The
proposed method consists of two modules, dual-domain representation
and Stegaformer. Li et al. [43] introduced SANet, an independent
steganalysis network for speech encoding and steganography. This
approach unifies compressed speech outputs from various codecs by
converting them into a common uncompressed-domain format, intro-
ducing an intermediate representation. A Bi-LSTM neural network is
developed to extract steganography-sensitive characteristics through
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collaborative correlation features. This approach achieves SOTA detec-
tion performance for various steganography algorithms across different
speech encoders. Recently, Wang et al. [44] proposed E-SWAN, a
deep learning-based sliding window analysis network that combines
LSTM and convolutional modules for real-time VoIP speech steganal-
ysis. The model demonstrates competitive performance in detecting
two steganography methods. Similarly, Lin et al. [45] introduced a
steganalysis approach that integrates Bi-LSTM, 3D convolution and
attention mechanisms to detect two QIM-based steganography variants
in VoIP streams. Although these algorithms offer some capability for
broad steganalysis applications, their performance often falters when
confronted with specific steganographic techniques, particularly QIM.
In such specialized scenarios, these general methods typically exhibit
lower accuracy, highlighting the need for more targeted approaches.

Consequently, several researchers prefer to exploit the power of DL
to design specialized steganalysis algorithms, particularly geared to-
ward QIM-based steganography. For example, Lin et al. [14] identified
four robust codeword correlation patterns and introduced a steganalysis
model based on RNN for improved detection accuracy. Nonetheless,
their model, RNN-SM, centered on global contextual information, uti-
lizing a two-layer LSTM. Yang et al. [32] proposed a novel approach
to enhance local representations that combined RNN and CNN, re-
sulting in the CNN-LSTM model, which outperformed RNN-SM in the
detection of QIM-based steganography. Yang et al. [11] incorporated
an attention mechanism within a hierarchical convolutional structure,
further enhancing steganalysis results. In a subsequent study [46],
the same authors presented a lightweight neural architecture called
the fast correlation extract model (FCEM), which integrates positional
encoding and multi-head attention to capture correlation features. Qiu
et al. [16] developed an efficient steganalysis that incorporates a
codeword embedding layer to capture dense representations, employs
a bidirectional LSTM layer and incorporates a gated attention module
to model contextual feature distributions. Yang et al. [12] designed
a multi-channel convolutional sliding window mechanism to capture
inter-frame dependencies between a target frame and its adjacent
frames. Recently, the utilization of a transformer encoder [47] and
federated learning [48] has been implemented for the detection of
QIM-based steganography in G.729 speech encoders. These two ap-
proaches demonstrated SOTA detection performance. Zhang et al. [49]
tackled the challenge of identifying payload locations in QIM-based
VolIP steganography by proposing an LSTM-based steganalysis method
named SPM. To provide a structured comparison and highlight the
evolution of these key approaches, Table 1 presents a summary of the
works most relevant to our research, detailing their core techniques and
limitations.

The mentioned studies underscore the adoption of DL-based meth-
ods as the benchmark for real-time VoIP steganalysis, demonstrating
superior detection capabilities and efficiency in comparison to hand-
crafted features. The integration of DL with graph data has led to the
widespread adoption of GNNs. These DL-based models, specialized for
graph domains, are crafted to capture representations of graph data
adeptly, proficiently handling tasks centered on both individual nodes
and entire graphs. GNNs capture relationships within graphs by ex-
changing messages among nodes and maintaining a state that encodes
information from any connected neighborhood through edges [50].
Furthermore, GNNs exhibit an enhanced capability to leverage global
information, contributing to their compelling performance. While GNNs
have been recently employed in various studies for image [22,23]
and text steganalysis [24,25,51], there is a noticeable gap in research
focusing on steganalysis in the context of VoIP.

This paper aims to investigate the potential of GNNs in crafting
steganographic detection approaches that meet the essential require-
ments of VoIP steganalysis systems. Based on the available literature
reviewed by the authors, no existing studies have explored GNN-based
VoIP steganalysis. Our work addresses this significant gap by intro-
ducing a novel GraphSAGE-based algorithm tailored for VoIP streams,
achieving high accuracy and real-time efficiency. Consequently, this
approach has the potential for deployment in various real-world ap-
plications.
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Developing a novel steganalysis scheme dedicated to VoIP secu-
rity requires a foundational understanding of how hidden messages,
embedded within the bitstream (steganogram), are generated in the
coder’s output. Furthermore, representing the bitstream in a graph
format necessitates prior knowledge of GNNs and an understanding
of how speech can be effectively represented in a graphical form. For
this purpose, this section summarizes the principles of speech coding,
QIM-based steganography, and GNNs.

3.1. Speech compression overview

In VoIP applications, voice signals are initially compressed using
LBR speech encoders at the sender’s end before transmission. These
encoders are based on the LPC model and operate under the AbS
framework, where an LPC filter is used to model and reconstruct speech
during both encoding and decoding stages. The LPC filter formulation
is given by:

1
1-3" az’
where A(z) is the transfer function of the LPC filter, z is a complex
variable that represents the frequency domain, n is the order of the
LPC filter, and a; represents the ith order coefficient of the LPC filter.
Since speech exhibits short-term stationarity, it is processed in frames,
and LPC coefficients are derived individually for each frame. Due to
the high sensitivity of LPC coefficients to quantization noise, they are
typically transformed into line spectrum frequencies (LSF), which are
easier to quantize to maintain coding stability. LSFs from each frame
are quantized using several codebooks based on the minimum mean
square error criterion. This quantization aims to select the optimal
codeword that reduces the discrepancy between the original and re-
constructed speech signals. In particular, G.723 and G.729 implement
LSF quantization by choosing codewords c¢;, ¢,, and ¢; from their
corresponding codebooks C;, C,, and Cj.

A(z) = (@]

3.2. QIM-based steganography

In the context of QIM steganography, the process of quantizing LSFs
can be modified. Each original codebook C;, which is used for vector
quantization, is split into two separate parts, C,,l and Ciz, following the
relationship:

¢ =cluct
Lo 2
C,nC =40

When embedding the bit “0”, the quantizer in the QIM scheme
retrieves the closest match from the sub-codebook C!. Conversely,
when embedding the bit “1”, the QIM method chooses the optimal
quantization value from the sub-codebook Ciz. During reception, the
receiver can deduce the embedded bits by determining whether the re-
ceived quantization index corresponds to sub-codebook Cl.1 or Cl.z. This
methodology allows for the seamless integration of secret data within
the quantization. In the context of QIM, it is possible to enhance con-
cealment capacity by subdividing the codebook into 2" sub-codebooks,
allowing the simultaneous hiding of » bits. The process of embedding
and extracting a hidden message with 2 bits length using the QIM
technique is depicted in Fig. 1. This functionality is accomplished by
partitioning C; into sub-codebooks C!,C?,C?, and C?, as illustrated in
the figure.

The challenge in QIM steganography arises from increased distor-
tion resulting from the use of a reduced codeword set in the quan-
tization procedure. The fundamental issue lies in how to partition
the original codebook C; into multiple sub-codebooks. Researchers
have proposed various methods including matrix encoding QIM (ME-
QIM) [8], complementary neighbor vertices QIM (CNV-QIM) [52], and
others.
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Table 1
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A comparative summary of key SOTA methods in QIM-based VoIP steganalysis, representing the works most closely related to our proposed approach.

Ref.

Method/Model

Key contribution

Limitations addressed by our work

Li et al. [33]

Li et al. [34]

Li et al. [35]

Wu et al. [36]

Yang et al. [37]

Yang et al. [38]

Lin et al. [14]

Yang et al. [32]

Yang et al. [11]

Yang et al. [46]

Qiu et al. [16]
Zhang et al. [49]

Yang et al. [12]

Zhang et al. [47]

Tian et al. [48]

Statistical model + SVM

Statistical Features + SVM

Statistical Features + PCA + SVM

Statistical Features + PCA + SVM

Codeword bayesian network
(CBN)

Semantic mapping + softmax
classifier

RNN-SM (Two-layer LSTM)

CNN + LSTM

Hierarchical CNN + Attention

FCEM (Lightweight CNN +
Attention)

Bi-LSTM + gated Attention
LSTM-based SPM

Multi-channel sliding CNN
Window

Transformer encoder

Federated learning

Captures distribution characteristics of LPC
quantization indices in G.729

Used codeword histograms and Markov
probabilities to capture inter-frame correlations.

Focused on state transition probabilities of
intra-frame codewords.

Extracted features from the original speech
signal’s distribution patterns.

Modeled temporal dependencies across frames
using a probabilistic graphical model.

Projects VQ codewords to semantic space for
classification

Captures global contextual correlations

Combines local CNN with temporal RNN
features

Enhanced detection using multi-level attention

Efficient correlation extraction with positional
encoding

Dense contextual feature representation
Identifies payload locations in VoIP

Captures local inter-frame dependencies
between adjacent frames

Leveraged the power of self-attention from
Transformers for steganalysis.

Introduced a secure, collaborative learning
framework for steganalysis.

Requires handcrafted features; limited robustness to low embedding
rates

Relies on manually designed features; limited robustness to low
embedding rates

Requires meticulous feature engineering and is less adaptable than
end-to-end models; limited robustness to low embedding rates

Feature design is specific to known signal characteristics;
Computationally expensive; weaker for real-time detection.

Relies on a specific statistical model (CBN) that is less flexible than
learned representations.

Lightweight but less accurate for subtle embeddings

Models data purely sequentially; less effective at capturing complex,
non-local dependencies.

Grid-based, CNN and sequential models, do not explicitly capture
the complex relational structure of VoIP data; Higher complexity

Limited by the inherently local receptive field of CNNs, which
struggles to capture complex, long-range dependencies

Attention works on sequences; weaker in capturing structural
relationships

Sequential model; lacks relational aggregation over graph structures
Task-specific; not generalized for broad steganalysis

Sliding window has fixed local receptive field; cannot capture
longer-range dependencies

May not inherently model the direct temporal adjacency in speech
frames as effectively as a graph structure.

Focuses on the training paradigm rather than the core model
architecture for feature extraction.

Our work GNN First to model VoIP streams as graphs to Explicitly models non-Euclidean, relational dependencies
capture hierarchical relational data. between speech frames, overcoming the limitations of both
manual feature engineering and simpler sequential/grid-based
models.
 Sub-Codebooks activation function. The update rule essentially aggregates information
Secret bits from neighboring nodes to refine the current node’s hidden state.

“10”

0., ¢
! o o]

LSF coefficient—»<_Quantization

—» Quantized LSF

Fig. 1. QIM for concealing 2-bit steganograms.

3.3. GNN overview

GNNs are a specialized class of neural networks tailored for learn-
ing from graph-structured data. In such data structures, nodes denote
entities, while edges capture the relationships or interactions between
them. The basic propagation rule in a GNN can be expressed as follows:

rE=F Y, wk ek Rk 3)

ueN(v)
Here, h* and h’L‘," represent the hidden states of node v at layers k
and k — 1, respectively. The neighborhood of a node v is symbolized
as N(v), and wk>! represents the weight associated to the edge con-
necting « and v in the (k—1)th layer. The function ¥ is a non-linear

A widely adopted family of GNN models includes graph convolu-
tional networks (GCNs) [53], gated graph neural networks (GGNNs)
[54], graph sample and aggregation (GraphSAGE) [55], and more.
These architectures often involve variations of the basic propagation
rule to capture more complex relationships within the graph.

4. Proposed framework

Building upon the foundational concepts of speech coding, QIM
steganography, and GNN discussed in Section 3, we now present the
detailed architecture and components of our proposed steganalysis
system. Specifically, this section describes an efficient method designed
to uncover QIM steganography within compressed, LBR VoIP streams.
Our approach is specifically tailored to work with speech compressed
using the G.729 A codec, which is widely used in VoIP communications.
Fig. 2 illustrates the structure of our proposed VolP steganalysis, while
Algorithm 1 outlines the steps involved.

As depicted in the figure, our framework consists of a three-stage
pipeline. First, the Graph Construction Module takes a raw VoIP stream,
extracts its Quantization Index Sequence (QIS) matrix, and converts
it into a directed acyclic graph representation. Second, this graph is
processed by the GraphSAGE Network Module, which learns a dis-
criminative graph-level feature vector through hierarchical message
passing and pooling operations. Finally, the resulting feature vector is
fed into the Classification Network Module, which performs a binary
classification to determine if the stream is ‘Cover’ (benign) or ‘Stego’
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Fig. 2. The overall structure of the proposed approach, which consists of a three-stage pipeline. (1) Graph Construction Module: A QIS matrix is extracted from
the input VoIP stream and converted into a directed acyclic graph. (2) GraphSAGE Network Module: The graph is processed via graph updating and pooling to
generate a representative feature vector. (3) Classification Network Module: The final vector is passed through dropout and linear layers to classify the stream

as ‘Cover’ or ‘Stego’.

(contains hidden data). The remainder of this section provides a de-
tailed explanation of each of these components, covering codewords
correlation analysis, graph construction, and the network architecture.

4.1. Codewords correlation analysis

As previously explained, the QIM steganography process involves
making changes to the quantization of LSFs, affecting the LSF code-
words denoted as ;. Thus, all the necessary information for steganalysis
is contained within these codewords.

To perform steganalysis, a sliding detection window collects one or
several continuous packets of compressed speech. This process allows
for the construction of a sequence of quantized LSF codewords for
analysis. The G.723 and G.729 compression processes operate in frames
with durations of 10 ms and 30 ms, respectively. Assuming that the
detection window size is denoted as T frames, and its frames can be
represented as a set F = [f}, f,, ..., fr]. The quantized LSF codewords,
also known as the quantization index sequence (QIS), are expressed
as C = [¢;1,¢5, .., ¢;7], where ¢;; is the ith codeword at frame j in
the sequence. For G.729 and G.723, where i € [1,3], the QIS can be
expressed in matrix form as:

€1 €2 - O
C=|c1 ©¢o - Cr )
1 G2 - Gr

In the case where all codewords are uncorrelated, their occurrences
become independent. As a result, it is expressed as:

P(c; j. e ) = Ple; ;) - Plegy)s 5)

where P(c;;,c,,) represents the joint probability of observing code-
words ¢; ; and ¢, ;, and P(c; ;), P(c,,) denote their individual probabili-
ties. This expression is valid for all i and k in the range of 1 to 3, and
and / in the range of 1 to T. Inequality between the two sides implies
a correlation between ¢; ; and ¢, ;.

Due to the repeating patterns in human speech sounds (especially
vowels and voiced consonants), the vocal signal exhibits stability over
limited durations, approximately the frame length. Consequently, the
codewords exhibit correlations within the same frame. Furthermore,
speech signals have local periodicity, meaning that codewords have
similar values in different frames. As a result, there are four types of
inter-codeword correlations, namely: intra-frame correlation, succes-
sive frame correlation, cross-frame correlation, and cross-word correla-
tion [14]. Local features are characterized by the first two correlations,
while global ones are reflected by the latter two.

The QIM steganography process has a direct impact on the cor-
relations between these codewords, thereby altering their statistical
distribution. Earlier VoIP steganalysis approaches aimed to extract
correlation features to uncover steganograms, as in [35,37].

In the proposed steganalysis approach, the power of GNNs, specif-
ically the GraphSAGE model, is leveraged to capture these crucial
correlations for steganalysis. GNNs have proven to be highly effective
in modeling complex relationships and dependencies within graph-
structured data, making them an ideal choice for understanding the
intricate correlations between codewords in LBR VoIP streams. By
representing the relationships between codewords as a graph and em-
ploying GraphSAGE, local and global connections can be effectively
analyzed, thereby identifying patterns and changes induced by QIM
steganography. This approach allows for the extraction of meaning-
ful features that are instrumental in detecting steganographic con-
tent, thereby enhancing the accuracy and efficiency of the steganalysis
process.

4.2. Graph construction

As GNNs require data in the form of a graph for processing during
training, it is essential to transform the QIS matrix representation of the
compressed speech stream into a graph structure. This transformation
enables the GNN to leverage the inherent relationships and patterns
within the speech data for effective steganalysis.

Taking the QIS matrix as input, the objective of this step is to
construct a corresponding graph G = (V, E), where V = {v; }I_T=1 is the
set of T nodes, and E = {ej}jT=‘11 is the set of all edges between the
nodes.

QIM-based steganography induces significant changes, principally
in the correlation of adjacent frame codewords, i.e., edges between
codewords of adjacent frames [12,14,34,35,37]. Consequently, each of
the T frames in the speech signal is represented as a node, forming a
graph G composed of T nodes:

+ Each node v; is assigned a feature vector x; € R* that encap-
sulates the three codewords from the corresponding frame: x; =
[eyin e €3]

* The edges e;, which link the nodes v; and v,,,, are directional and
symbolize the transitions between two successive frames. This
choice of directed edges is crucial for capturing the temporal se-

quence and dependencies inherent in speech signals, allowing the
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Algorithm 1 Proposed steganalysis approach.

Input: VoIP speech stream
Output: Classification (Cover or Stego)

1: Codewords Extraction:

2: Apply sliding detection window of size T frames to collect
continuous packets

3: for each frame f; do

4: Extract 3 LSF codewords c; ;. ¢);.¢3;
5: end for
€1 C2 - Cr
6: Form QIS matrix: C=(c,; ¢n ... Cp
€1 G2 .- 4T

7: Graph Construction: G = (V, E)

: Create nodes: Each frame f; becomes a node v;

9: Set node features: Use codewords ¢, ;,¢,;,¢;; as 3D feature vector
x; for each node v;

10: Create edges: Connect adjacent frames (nodes v; and v;,; ) with
directed edges v;

11: Construct adjacency matrix A:

12: — A;; =0 (no self-loops)

13: — A; ;41 = 1 (connect successive nodes)

o)

14: GraphSAGE Network:
15: Graph Updating:

16: for layer k: 1 to K =3 do
17: for node v € V do

18: Set initial attribute of v : h% = x;
19: Sample neighborhood N(v)
20: Aggregate information:
21: h';v(v) = AGG,({h*=1,Yu e N(v)})
22: Update node embedding:

. - -1 pk
23: hi = F(W, - CONCAT(R™' by )
24: end for
25: Compute graph-level representation at layer k: z’é =

1
MeanPool ({h¥,veV}) = 7 Loer (hX)

26: end for

27: Hierarchical Pooling:
28: Compute final graph-level representation z; by summing all layer
representations: zg = Y, z’é

29: Classification:

30: Apply dropout to z;

31: Feed to fully connected layer

32: Compute class probabilities using softmax

33: Determine final classification (Cover or Stego)

34: Training:
35: Use CrossEntropyLoss as the loss function
36: Backpropagate and update model parameters.

model to learn how information flows and changes over time, par-
ticularly between consecutive frames. This design choice aligns
with prior studies in speech processing, where directed relation-
ships are commonly employed to model temporal dependencies
and improve learning performance [56,57].

The graph generated from these procedures is a directed acyclic
graph (DAG) used to represent the temporal dependencies between
frames in the compressed speech. Due to its directed configuration, the
graph ensures that information flows in one direction, mirroring the
progression of time in speech signals. This unidirectional flow is essen-
tial for capturing the temporal dependencies that may be altered by
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Fig. 3. Speech-to-graph construction process.

steganographic embedding. The acyclic property of the graph prevents
loops, ensuring that the model does not incorrectly assume circular de-
pendencies between frames. This is crucial for maintaining the integrity
of the temporal sequence and avoiding spurious correlations.

The proposed graph construction process is depicted in Fig. 3.

The adjacency matrix of G is indicated by A € R™T, with (A);;
indicating the connection weight between nodes v; and v, as illustrated
in Eq. (6). The off-diagonal elements, signify the presence of edges
between nodes, with a value of 1 indicating their connectivity. The
diagonal elements, by contrast, are all set to 0, as nodes are not
self-connected in this context.

o1 0 - 0
1 0 1 - 0

A=(0 1 0 - O (6)
0o 0 - 1 0

The construction of a simple graph structure in this context is
well-justified due to several essential factors. First and foremost, sim-
plicity in the graph structure reduces the computational complexity
and resource requirements during the training phase, particularly in
scenarios involving large datasets. This efficiency is valuable not only
during training but also in the testing phases, as it allows for the
rapid analysis of a significant number of speech segments without
excessive resource consumption. Moreover, the straightforward graph
structure aligns perfectly with the nature of the information under
examination. In QIM-affected speech data steganalysis, the critical
alterations predominantly occur in the transitions between adjacent
frames, as already mentioned. Consequently, this approach effectively
captures these local temporal dependencies. Furthermore, despite the
graph’s simplicity, the GraphSAGE model excels at feature extraction,
effectively aggregating local neighborhood information to reveal the
vital temporal dependencies critical for accurate steganalysis.

4.3. Network architecture

Given a collection of graphs {G,,...,Gy}, derived from speech
samples, along with their corresponding true labels {y;,...,yx}, the
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Fig. 4. The proposed GraphSAGE-based network architecture.

objective is centered around graph classification. The aim is to differen-
tiate between graphs corresponding to cover data and those indicating
the presence of QIM steganography.

To accomplish this, the generated graphs are passed through a
GraphSAGE network for representation learning. This process produces
a feature vector that captures the most relevant information indicating
the presence of QIM steganography, which is then used in the final
classification step. The network architecture, as depicted in Fig. 4,
comprises two sub-networks: GraphSAGE Network and Classification
Network.

4.3.1. GraphSAGE network

In this architectural framework, the GraphSAGE Network consists
of two key phases: graph updating and readout (pooling). The objective
of this network is to extract a vector of the most relevant features for
steganalysis.

During the graph updating phase, the node embeddings within the
graph undergo a series of operations aimed at refining and modify-
ing them. This process is crucial for extracting essential features in
steganalysis. In our architecture, three GraphSAGE convolution layers
are employed to progressively extract more abstract features from the
input graph data. The GraphSAGE algorithm, suggested by Hamilton
et al. [55], is instrumental in this process.

Starting with the input graph G = (V,E) including all feature
vectors corresponding to the graph nodes {x,, Vv € V'}, the GraphSAGE
algorithm is determined by how many graph convolutional layers K are
employed, which in our design is set to 3. This determines the number
of hops used for aggregating node information. Furthermore, differ-
entiable aggregator functions AGG,,Vk € {1,...,K} are employed to
combine information from neighboring nodes. At each iteration, the al-
gorithm collects information from a node’s neighbors, their neighbors,
and so on.

Each iteration involves sampling nearby nodes and summarizing
their features into a consolidated vector. At the kth layer, the combined
features for a node v based on the sampled neighborhood N(v), h*

N(v)’
is described in Eq. (7):
@y = AGG({h,™! \Yu € N()}), )

where h*=l corresponds to the output of node u from the previous
layer. The embeddings of all nodes u within the neighborhood of node
v are collectively merged to form the embedding of node v at layer k.
In Eq. (7), various aggregation functions such as mean, pooling, graph

convolution, or LSTM can be applied. Within the scope of our model,
the LSTM architecture achieved superior performance, as proved later
in experiments. The LSTM aggregator processes the set of neighbor
representations as a sequence through an LSTM. For each node v:

k — k=1 pk—1 k=1
RK, ) = LSTM(RETL Rty ®)

where (u;,u,, ...,u,,) is a random permutation of N (v). The final hidden
state of the LSTM sequence processing is used as the aggregated vector
L.
The neighborhood information, represented by the aggregated em-
beddings A% (v 1s combined with the previous layer’s embedding of the
node v, h’;‘l, through concatenation. This concatenated vector is then
transformed by the trainable weight matrix W) and passed through a
non-linear activation function ¥ (e.g., rectified linear unit (ReLU)). The
outcome yields the updated node representation at layer k, as described
in Eq. (9):
ns =7 (W, - CONCATUE i, ) ©)
The final representation of node v, denoted as z,, is obtained from
the node’s embedding at the last layer K, i.e., hX, as formulated in Eq.
(10). The procedure of node embedding through two GraphSAGE layers
is depicted in Fig. 5.

z,=hk wev (10)

The objective is graph classification, where graphs are aimed to be
categorized into two classes: stego and cover. This task differs from the
more common objective of classifying nodes or edges within a graph.
To achieve this, a graph-level representation z; € RZ needs to be
generated from the node embeddings. This is generally accomplished
by applying a pooling operation over the final-layer node embeddings
z,. Instead of this, a hierarchical pooling approach has been intro-
duced by pooling the node-level embeddings at each layer h%.Vk €
{1,...,K}. This approach allows for capturing features at different
levels of abstraction. By aggregating information hierarchically, a com-
prehensive graph-level representation is created that encompasses both
fine-grained details and high-level patterns. This proves particularly
valuable in steganalysis tasks, where subtle changes in different parts of
the graph can collectively indicate the presence of hidden information.
Common options for pooling methods in graph analysis include mean
pooling, max pooling, and sum pooling. In our QIM steganalysis con-
text, the use of mean pooling was found to be especially effective, as it
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Fig. 5. A two-layer node embedding process. h% denotes the initial attribute of node v. In this illustration, node embedding is shown for the target node A.

Notably, the embedding of other nodes occurs in parallel.

averages the features at each layer, enabling the capture of collective
characteristics crucial for QIM steganography detection. The graph-

level representation at each layer k, zG, is defined as in Eq. (11):

MeanPool({hv,veV} |V| Z hK , Vke{l,..,K} (@11
where MeanPool is the pooling operation that averages the node rep-
resentations. Mean pooling preserves the collective statistics and the
overall distribution of features across nodes, which is crucial for detect-
ing subtle patterns introduced by QIM steganography in compressed
speech streams. In contrast, max pooling may discard valuable in-
formation by focusing only on the strongest activation, making it
less effective when the signal differences are minimal and widely
distributed. This observation is supported by the results presented
in Section 5.4, which show that using max pooling instead of mean
pooling leads to a notable drop in detection accuracy.

The final vector representing the entire graph, z, is constructed by
summing all the hierarchically pooled representations z’é, as expressed
in Eq. (12).

K
zg = Z z’é 12)
k

This global representation encapsulates the most relevant features
for steganalysis. Additionally, it acts as the input for the subsequent
classification layer, allowing the model to make predictions about the
presence of steganography in the input data.

4.3.2. Classification task

After obtaining the comprehensive graph-level representation zg,
the model proceeds to the classification stage. The primary purpose of
this stage is to differentiate between regular speech (cover data) and
speech samples with embedded QIM steganography (stego speech). The
classification incorporates two key layers: a dropout layer and a linear
classification layer, referred to as the fully connected layer.

The first step is to apply dropout to z; to prevent overfitting.
To prevent overfitting, dropout randomly sets a portion p of input

activations to zero during training updates. The dropout layer can be
formulated as:

zp = D(zg, ), 13)

where D denotes the dropout function, and zj, is the resulting vector
after applying this fucntion.

The result from the dropout layer is subsequently passed to the fully
connected layer to perform the final classification. The latter layer maps
the representation to the output space for binary classification, with
output neurons equal to the number of target classes (two in our case:
“cover” and “stego”). Mathematically, the final classification y can be
expressed as follows:

y=Wrgczp +brc, 14)

where Wy and by represent the weights and biases of the fully
connected layer, respectively. The output § corresponds to the raw
logits for each class.

The model employs CrossEntropyLoss as its loss function for the
binary classification task, which combines a softmax activation and a
negative log-likelihood loss. The function is defined as:

Loss = —— Z [y’ ( ei(;’(r) )) +(1 - y;)log <1 — Z‘:’;I;(;’(,;J))]

15)
where Loss is the loss value to be minimized, y; is the true label, y;
are the logits for the ith sample, and N is the number of samples in
the dataset. Y, ; €xp(¥;) represents the sum of the exponentials of logits
across all classes, used for normalization in the softmax function.

The proposed architecture, consisting of graph construction, the
GraphSAGE network, and the classification module, is implemented
and evaluated under various experimental configurations, as detailed
in the next section.

5. Experiments and discussion
The efficacy of the suggested steganalysis technique is assessed

through various experiments, focusing on factors such as the embed-
ding rate, duration of the speech sample, and time consumption.
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Table 2 Table 3
Dataset description. Summary of hyperparameters used for model training.
Feature Description Hyperparameter Value
Total duration 113 h (72 h English, 41 h Chinese) Optimizer Adam
Number of recordings 320 recordings in 16-bit PCM format Learning rate 0.003
Speakers Various male and female speakers Batch size 32
(sourced from the Internet) Number of epochs 150
Codec G.729A LBR speech codec Dropout rate 0.3
Steganography method CNV-QIM embedding during G.729A GNN layers GraphSAGE
encoding Number of layers 3
Embedding rates tested 20%, 40%, 60%, 80%, 100% Hidden chanels 64
Segment lengths (L,) 05s,15,3s5,5s5,75,10s Aggregation function LSTM
Train/Validation/Test Split 70%/15%/15% (randomized) Pooling method Mean
Cover/Stego ratio 1:1 in each subset Activation function ReLU

5.1. Experiment setup

The experiments were conducted using a dataset described in [14]
and available on the Github' platform. This dataset includes 72 h of
English speech and 41 h of Chinese speech, totaling 320 recordings in
16-bit PCM format. The speech samples were sourced from the internet
and included contributions from various male and female speakers. In
our methodology, the G.729 A LBR speech codec was employed to en-
code the original speech samples, forming the basis of our cover speech
dataset. To create the stego samples, the CNV-QIM [52] steganography
method was used, inserting secret bits during the G.729 A encoding
phase.

To assess the robustness of our detection technique under different
conditions, stego samples were generated at varying embedding rates
ranging from 20% to 100% with a step size of 20%. Moreover, the
algorithm’s ability to detect samples of varied lengths was assessed by
segmenting entries in both the cover and stego speech datasets into
sample lengths L, of 0.5, 15, 35,55, 7 s, and 10 s. For each test,
samples were chosen from the stego and cover datasets based on the
designated embedding rate and duration. For example, for the training
set with 10 s segments and an embedding rate of 100%, there were
10,552 cover samples and 10,552 stego samples. The speech data were
partitioned into three subsets — 70% for training, 15% for validation,
and 15% for testing — using a randomized split while maintaining
a 1:1 cover-to-stego ratio within each subset to ensure balanced and
unbiased evaluation. The validation subset was employed to fine-tune
the model’s parameters, whereas the testing portion served to assess
the model’s effectiveness. A comprehensive summary of the dataset
characteristics is provided in Table 2.

The process of training and testing our model is depicted in Fig. 6
(left-hand process).

The proposed steganalysis model was trained on the Kaggle platform
using a P100 GPU. The model was implemented with the PyTorch and
PyTorch Geometric frameworks, using Adam as the optimizer, config-
ured with a learning rate of 0.003 for efficient convergence. A batch
size of 32 was employed during data preprocessing and model training,
spanning 150 epochs to improve the proposed GNN-based steganalysis
model’s performance. The key hyperparameters used during training
and model configuration are summarized in Table 3. These parameters
were selected empirically through iterative experimentation to achieve
the best detection accuracy and generalization performance

5.2. Evaluation metrics

The proposed model is assessed using key performance indicators,
namely detection accuracy, precision, recall, F1-score, detection time, and
computational complexity.

The classification-related measures (accuracy, precision, recall, and
Fl-score) are computed based on the results of binary classification,
which are summarized through four categories in the confusion matrix:

1 https://github.com/fjxmlzn/RNN-SM.
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Loss function Binary Cross-Entropy

True Positive (TP): Instances that are actually stego and are
correctly predicted as stego.

True Negative (TN): Instances that are actually cover and are
correctly predicted as cover.

False Positive (FP): Instances that are actually cover but are
incorrectly predicted as stego.

False Negative (FN): Instances that are actually stego but are
incorrectly predicted as cover.

The evaluation metrics are defined as follows:

Detection accuracy: This metric measures the proportion of cor-
rectly identified instances of steganography compared to the overall
instances. It is calculated as:

TP + TN
TP + TN + FP + FN
Detection accuracy is a key metric in our case as the dataset is evenly
distributed, containing the same number of positive (stego) and neg-
ative (cover) samples. In a balanced dataset, the number of instances
in each class is approximately equal, making accuracy a reliable indi-
cator of the model’s performance. High detection accuracy reflects the
model’s ability to effectively distinguish between stego and non-stego
signals, making it a suitable metric for evaluating performance in this
balanced setting.

Accuracy = (16)

Precision: Measures the accuracy of positive predictions made by the
model. It quantifies the proportion of correctly identified stego samples
out of all samples that the model predicted as stego. High precision
indicates a low rate of false positives, which is important to avoid
incorrectly flagging legitimate communication as covert. It is calculated
as:

TP
TP + FP
Recall (Sensitivity): Measures the model’s ability to find all positive
instances. It quantifies the proportion of correctly identified stego
samples out of all actual stego samples present in the dataset. High
recall indicates a low rate of false negatives, which is crucial for not
missing any covert communications. It is calculated as:

TP
TP + FN
F1-score: The Fl-score is the harmonic mean of Precision and Recall,
providing a single metric that balances both. It is particularly useful
when dealing with imbalanced datasets (though less critical for our
balanced dataset) or when both false positives and false negatives carry
significant costs. It is calculated as:

Precision = a7)

Recall = (18)

Precision x Recall _ 2 x TP
Precision + Recall ~ 2x TP + FP + FN

Fl-score = 2 X 19)
Detection time (DT): Evaluates the time required for the model to
process and classify an input sample. DT is critical for assessing the
efficiency of the model, especially in real-time or online steganalysis
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Fig. 6. Process of training, testing and detection.

scenarios. A shorter DT reflects the model’s capability to perform
analysis swiftly, making it suitable for time-sensitive applications. Since
the training phase is performed offline and does not impact real-time
detection performance, which is the primary object if of our work, we
focus solely on the detection time for evaluating runtime efficiency.

Computational Complexity: This metric provides insight into the
model’s inherent resource requirements, indirectly indicating its mem-
ory footprint, model size, and raw computational load. It is quantified
in terms of:

+ Parameters: The total number of adjustable values within the
model’s architecture or its underlying algorithms, which are de-
termined during the training phase. For neural networks, these
are the trainable weights and biases; for traditional machine
learning methods, these may include coefficients of statistical
models or support vectors of classifiers. This directly correlates
with model size and memory usage.

+ Floating Point Operations (FLOPs): The number of arithmetic op-
erations (additions, multiplications, etc.) required for a single
inference pass. FLOPs indicate the raw computational intensity
of the model, which influences execution time.
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5.3. Detection performance

This section presents the evaluation results of the proposed ap-
proach under various scenarios, encompassing different sample lengths
and embedding rates. The assessment begins by examining the impact
of embedding rates on the system. In real-world scenarios, attackers
often disperse secret information over an extended period to lower
the average embedding rate, intending to enhance communication
concealment. Consequently, effectively detecting steganographic VoIP
signals at low embedding rates remains an open and difficult problem
in the research community.

(a) Performance results under varying embedding rates:
A preliminary assessment of the degree of difficulty faced by
the proposed GNN scheme in uncovering the CNV-QIM stegano-
graphic method, particularly at low embedding rates, was con-
ducted using statistical analysis by comparing cover and stego
datasets. Fig. 7 presents this analysis using boxplots, contrasting
cover and stego datasets across various embedding rates. The
results demonstrate that CNV-QIM maintains consistent mean
values across different scenarios, with only slight variations
in the first (Q1) and third (Q3) quartiles as embedding rates
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(b)

increase. This stability indicates that CNV-QIM is a challeng-
ing steganographic method. The evaluation of the proposed
steganalysis technique under different embedding rates for 10-
s sample segments, as presented in Table 4, reveals nuanced
performance characteristics. Notably, the detection capability,
as measured across all metrics (Accuracy, Precision, Recall, F1-
score), exhibits a slight decreasing trend with lower embedding
rates. This is attributed to the fact that higher embedding rates
induce more pronounced changes in codewords, providing a
more discernible pattern for steganalysis. It is noteworthy that
even at a low embedding rate of 20%, our approach main-
tains high accuracy, registering at 95.17%, and demonstrates
strong, balanced performance across the other metrics, with
Precision at 95.43%, Recall at 94.95%, F1-score at 95.19%, and
AUC at 95.20%. This high level of accuracy in a low-payload
scenario is particularly significant, as attackers frequently use
low embedding rates to minimize statistical disturbances and
evade detection. The model’s ability to maintain such robust
performance demonstrates its high sensitivity to even the most
subtle steganographic artifacts.

To further illustrate this robust performance in the challeng-
ing low-embedding-rate scenario, Fig. 8 presents the detailed
confusion matrix for the 20% embedding rate. Out of a total
of 3166 test samples (comprising 1583 actual stego and 1583
actual cover samples), the model successfully identified 1503
TP (correctly classified stego) and 1511 TN (correctly classified
cover). Critically, the false classifications were minimal, with
only 72 FP (cover incorrectly flagged as stego) and 80 FN
(stego samples missed). This granular breakdown is crucial for
practical applications, as it demonstrates the model’s ability to
strike a critical balance: minimizing false alarms (FP), which
could disrupt legitimate communication, while simultaneously
minimizing missed detections (FN), which would allow covert
channels to go unnoticed. The proposed steganalysis approach
consistently achieves high detection rates despite the inher-
ent challenge posed by the resilience of CNV-QIM, showcasing
its strong discriminative power even under subtle embedding.
This demonstrates that the GNN-based architecture successfully
learns to distinguish the subtle, distributed changes introduced
by steganography from the natural variations in cover speech.
Performance results under varying speech segment lengths:
In VoIP steganalysis, the length of speech segments is also a
crucial factor influencing detection accuracy. A successful ap-
proach must achieve a sufficiently high level of accuracy within
a limited time detection window. Table 5 explores the impact
of sample length on various detection performance metrics, fo-
cusing on a fixed embedding rate of 100%. The findings reveal
that longer sample lengths lead to a steady and significant im-
provement across all performance metrics: Accuracy, Precision,
Recall, and Fl-score. This improvement is rapid, with perfor-
mance reaching near-perfect levels (e.g., 99.97% accuracy at 3 s)
and achieving a perfect 100% across all metrics from 7-s samples
onwards. This trend is directly linked to the nature of our GNN-
based model; a longer speech segment translates to a larger
graph with more nodes and edges. This allows the GraphSAGE
architecture to aggregate information over a wider neighbor-
hood, resulting in more stable and representative graph-level
embeddings that make the distinction between cover and stego
patterns far more pronounced. Crucially, even with short 0.5-s
segments, the approach we propose attains exceptionally high
detection performance, with Accuracy, Precision, Recall, and F1-
score all exceeding 98%. This is a critical finding for practical
deployment, as real-time monitoring systems must often make
decisions based on individual or fragmented data packets. Fur-
thermore, attackers may intentionally disperse hidden data in
short, disjointed bursts to evade detection systems that require
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Fig. 7. Statistical analysis of cover and stego speeches at different embedding
rates.
Table 4
Detection performance metrics across varied embedding rates for 10s
samples.
Embedding rate (%) 20 40 60 80 100
Accuracy (%) 95.17 99.68 99.94 100 100
Precision (%) 95.43 99.68 99.94 100 100
Recall (%) 94.95 99.68 99.94 100 100
Fl-score (%) 95.19 99.68 99.94 100 100

(c)

longer samples for analysis. The remarkable consistency across
these metrics for each sample length highlights the model’s
robust and balanced performance, demonstrating its ability to
minimize both false positives and false negatives. The method
therefore enables effective detection of QIM steganography even
for very short segments of monitored VolP traffic, which is vital
for real-world scenarios where covert data might be dispersed in
brief bursts.

Performance results with varying speech segment lengths
and embedding rate: Fig. 9 provides the results of detection
accuracy with varying embedding rates for sample segments of
different lengths. The results reaffirm the method’s reliability,
with a general upward trend in accuracy as the embedding rate
and sample length increase. This trend is expected, as longer
samples and higher embedding rates provide the model with
more data and a stronger, less ambiguous signal, respectively,
making the detection task easier. It is evident that achieving ac-
curate detection under low embedding rates with short segments
poses a challenge for any steganalysis system. This scenario, rep-
resenting the most difficult detection conditions due to minimal
available information, can be considered a benchmark for model
robustness. Our approach maintains an acceptable accuracy ex-
ceeding 70% even in these worst-case conditions, which, rather
than being an “Achilles’ heel”, demonstrates that the GNN is still
able to capture a discriminative signal from extremely sparse and
noisy data, highlighting its effectiveness.

To further substantiate the discriminative capabilities of our ap-
proach, t-distributed stochastic neighbor embedding (t-SNE) was ex-
ploited to visualize the graph-level representation vectors (Eq. (12)),
before and after training, utilizing a set of 2000 graphs selected from
the training dataset. Fig. 10 presents snapshots of the distribution of
graph-level representation vectors at different embedding rates while
utilizing a fixed sample length of 0.5 s. Before training (top-left),
the cover and stego data points are heavily overlapped, indicating
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Fig. 8. Confusion matrix under 20% embedding rate.

Table 5
Detection performance metrics across varied sample lengths at 100% embed-
ding rate.

Sample length (s) 0.5 1 3 5 7 10
Accuracy (%) 98.26 99.47 99.97 99.98 100 100
Precision (%) 98.27 99.43 99.97 99.98 100 100
Recall (%) 98.27 99.49 99.97 99.98 100 100
Fl-score (%) 98.24 99.46 99.97 99.98 100 100
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Fig. 9. Detection accuracy across varying embedding rates and sample length.

that they are indistinguishable in their raw feature space. The color-
coded representation illustrates the gradual separation of stego and
cover graphs in the vector space of features post-training. The overlap
diminishes as the embedding rate increases, reaching almost complete
separation at a 100% embedding rate. This directly correlates the
strength of the steganographic signal with the distance between the
clusters in the learned space, visually confirming the model’s sensi-
tivity. These visualizations intuitively showcase the model’s efficacy
in extracting and analyzing steganographic speech features across var-
ious embedding rates. As a result, the combination of sensitivity to
various embedding rates and effectiveness with short samples suggests
that our method is versatile and applicable across a wide range of
steganographic scenarios, from high-capacity hidden messages to more
subtle, security-conscious embeddings. These characteristics position
our approach as a powerful tool in the ongoing challenge of audio
steganalysis, capable of adapting to different steganographic strategies
while maintaining high detection accuracy. These findings provide
valuable insights into how the model can be applied in practical

13

Array 28 (2025) 100510

VolIP security systems, as discussed in the following section. Moreover,
these findings offer valuable insights into the practical applicability of
our model in real-world VoIP security systems, which will be further
explored in the Section 6.

5.4. Comparison with different model variants

The purpose of this section is to demonstrate the effectiveness of the
suggested GraphSAGE-based architecture by comparing it with several
of its variants. Six variant architectures, indexed from #2 to #7, were
considered in the experiment, each with components slightly different
from our complete proposed network #1. The experiment focused on a
speech length of 10 s and an embedding rate of 20%

Table 6 presents the results of the experiment, showing the de-
tection accuracy for each architecture variant. The results highlight
the significance of various components in the proposed architecture.
It is obvious that the complete model (#1) yields the highest level
of accuracy, demonstrating the effectiveness of our GraphSAGE for
steganalysis. Variant #2, which removes the first and second max-
pooling layers, experiences a significant drop in accuracy, emphasizing
the importance of using the hierarchical pooling approach in capturing
fine-grained details and high-level patterns. This is particularly bene-
ficial in scenarios with low embedding rates where changes produced
by steganography are minimal. In variant #3, the use of a mean aggre-
gator instead of LSTM highlights the importance of the latter in our
approach. The LSTM aggregator captures sequential dependencies and
temporal patterns in the input data, which is crucial for steganalysis
tasks dealing with speech segments. By leveraging LSTM, the model
can effectively learn inter-frame relationships and sequential context,
allowing for more effective detection of subtle changes introduced by
QIM steganography. Variant #4, using max pooling instead of mean
pooling, also leads to an accuracy of 85%, significantly inferior to the
complete model. A possible explanation is that max-pooling selects the
maximum value from each layer, discarding the information about the
overall distribution of features within the layer. In the context of QIM
steganalysis, where capturing collective characteristics is crucial for ef-
fective detection, this loss of information makes it harder for the model
to notice subtle patterns that indicate steganographic content. Mean
pooling, on the other hand, averages the features at each layer, provid-
ing a more comprehensive representation of the layer’s characteristics
and proving to be more effective for our specific steganalysis task.
Furthermore, variant #5, where GraphSAGE layers are replaced with
GCN, exhibits a notable decrease in accuracy, suggesting that the spe-
cific architecture of GraphSAGE contributes significantly to the model’s
performance. Similarly, when GraphSAGE layers are replaced with
graph attention network (GAT) layers (Variant #6), while performance
is strong (91.63%), it remains lower than our proposed GraphSAGE
model. This indicates that for this specific VoIP steganalysis task, the
fixed aggregation approach of GraphSAGE, which comprehensively
samples and aggregates features from a fixed neighborhood, provides a
more effective representation for QIM-induced subtle changes than the
attention-based weighting of GAT layers. Finally, in variants #7 and #8,
the first reduces the number of GraphSAGE layers by one, while the
second adds one extra GraphSAGE layer. Both configurations result in
a decrease in terms of accuracy, consequently supporting the suitability
of employing three layers in our model architecture. Generally, a
deeper network has the potential to capture more intricate features
within the input data. Variant #8’s performance highlights a crucial
observation — the depth of the network does not necessarily correlate
with improved model performance. Deeper networks, as seen in variant
#8, may face challenges such as overfitting and vanishing gradient
problems, emphasizing the importance of striking a balance between
network depth and effective steganalysis. The optimal configuration
should not only capture relevant features but also mitigate potential
issues associated with increased model complexity.
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Fig. 10. Distribution of graph-level representation vectors before and after training of the proposed model in statistical space across different embedding rates

while utilizing a fixed sample length of 0.5 s.

Table 6
Detection performance under various model configurations.

Table 7
Comparison of detection accuracy with SOTA methods.

Index Architecture variant Accuracy (%)
#1 The complete proposed model 95.17
#2 Consider only the last mean pooling layer 52.56
(delete the first and second mean pooling)
#3 Replace LSTM aggregator with Mean aggregator 86.70
#4 Replace Mean pooling with Max pooling 85.25
#5 Replace the GraphSAGE layers with GCN Layers 68.37
#6 Replace the GraphSAGE layers with GAT Layers 91.63
#7 Use 2 GraphSAGE layers 94.38
#8 Use 4 GraphSAGE layers 93.25

This ablation study reaffirms the crucial role each architectural
component plays in the overall performance of our model. To further
demonstrate the effectiveness of our approach, we next conduct a
direct comparison against existing state-of-the-art methods in VoIP
steganalysis.

5.5. Comparison with SOTA methods

To validate the performance of the proposed model, a comparison
was conducted with the following four SOTA methods: IDC [34], SS-
QCCN [35], RNN-SM [14], and CNN-LSTM [32]. These methods were
selected for several reasons. First and foremost, they are specifically
tailored for detecting QIM steganography, similar to our approach.
Secondly, these methods are established SOTA approaches frequently
used as benchmarks in various studies. Lastly, to ensure a fair and
equitable comparison, these approaches were reimplemented based on
their original papers, which either provided GitHub links for implemen-
tation, as with [14], or were thoroughly documented with sufficient
details for independent reimplementation, as provided in [32,34,35].
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Sample length (s) Method Embedding rate (%)
20 40 60 80 100
IDC [34] 59.15 73.35 81.90 89.40 94.05
SS-QCCN [35] 61.25 77.35 87.90 9315 95.85
0.5 RNN-SM [14] 70.81 84.39 93.14 96.09 97.43
CNN-LSTM [32] 71.78 85.52 92.69 96.76 98.29
Our 70.20 83.35 92,58 95.63 98.26
IDC [34] 68.15 84.80 95.10 9835 99.60
SS-QCCN [35] 71.30 96.15 99.40 99.90 100
5 RNN-SM [14] 6791 8876 96.59 98.67 99.60
CNN-LSTM [32] 89.98 96.80 99.66 99.81 99.87
Our 90.76 98.88 99.89 99.97 99.98
IDC [34] 6450 85.60 95.95 99.55 99.70
SS-QCCN [35] 72.15 98.75 99.80 100 100
10 RNN-SM [14] 62.41 92.74 98.32 99.65 99.93
CNN-LSTM [32] 92.38 99.65 99.74 99.93  99.96
Our 95.17 99.68 99.94 100 100

The implementations of these approaches were carried out in
Python, adhering to the parameters specified in their respective papers.
For IDC and SS-QCCN, given their reliance on SVM with quadratic time
complexity, it is impractical to evaluate them using the entire stego and
cover segment datasets. Following the experimental settings in [35],
4000 samples were randomly selected for the training set, maintaining
a cover-to-stego ratio of 1:1, and 2000 samples for the testing set, also
with a cover-to-stego ratio of 1:1. On the other hand, RNN-SM and
CNN-LSTM were evaluated using the same dataset employed in our
proposed approach.

Table 7 presents a detailed comparison of detection accuracy be-
tween the proposed model and SOTA approaches across various speech
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Fig. 11. Comparison of mean detection accuracy with standard deviation for different methods across various sample lengths.

segment lengths and embedding rate settings. The results reveal that
our approach and CNN-LSTM exhibit superior accuracy. Our model
demonstrates competitive performance in 0.5-s and 5-s speech seg-
ments, compared to RNN-SM and SS-QCCN, respectively. In comparison
to IDC and SS-QCCN, our approach significantly outperforms these
methods, notably in cases where embedding rates are low and segments
are short. When compared to RNN-SM, our approach demonstrates a
notable disparity, especially at low embedding rates (20% and 40%).
However, in the context of 0.5-s speech length, RNN-SM performs on
par or slightly better than our model. Overall, across all scenarios where
our model does not achieve the highest accuracy, its performance
remains close to the best results.

Additionally, when the sample duration is 5 s and 10 s, and the
embedding rate surpasses 80%, the detection accuracy of almost all
models stabilizes around 99%. The primary challenge arises in scenar-
ios with short speech fragments and/or low embedding rates, where
our approach still demonstrates satisfactory performance. In terms of
statistics, as presented in Fig. 11, our method demonstrates competi-
tive and, in certain scenarios, superior performance in terms of mean
detection accuracy and standard deviation compared to other SOTA
methods. At shorter sample lengths (0.5 s), while our mean accuracy
slightly trails behind the CNN-LSTM method, it maintains a lower stan-
dard deviation, indicating more consistent performance across different
embedding rates. As the sample length increases to 5 and 10 s, our
method outperforms all other techniques, achieving the highest mean
accuracy and standard deviation. Furthermore, when considering the
overall performance across all sample lengths, our method exhibits the
highest mean accuracy and the most consistent performance.

To further validate the approach, a detection comparative analysis
was conducted with four recently proposed methods: E-SWAN [44], Bi-
LSTM-3DCNN [45], TENet [47], and FedSpey [48]. These methods use
the same dataset and QIM steganography technique as our work. Due
to the complexity of the techniques and limited available information,
these methods were not re-implemented. Consequently, the comparison
is based on results presented in the corresponding published papers and
is limited to scenarios common to our study.

For the TENet approach, which is based on Transformer architec-
ture, the nearest comparable scenario to our study involves embedding
rates of 50% with sample lengths of 1, 5, and 10 s. This closely aligns
with our scenario of 60% embedding rates and identical sample lengths.
TENet reports accuracies of 96%, 99%, and 99% for these respective
durations. In comparison, our approach achieves accuracies of 95.83%,
99.89%, and 99.94% for the same sample lengths.
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FedSpy applies federated learning to several SOTA steganalysis
approaches, specifically RNN-SM. Their results focus on 1-s sample
lengths with varying embedding rates. For a 40% embedding rate,
FedSpy achieves an accuracy of about 95%, while our approach attains
90.98%. At a 100% embedding rate, both approaches reach near 100%
accuracy.

E-SWAN, which relies on LSTM and convolutional modules, was
evaluated using only 10-s audio samples across varying embedding
rates. At a low embedding rate of 20%, it achieved an accuracy of
94.65%, while our approach reached 95.17%.

The Bi-LSTM-3DCNN method was tested with 10-s samples at dif-
ferent embedding rates and with 100% embedding at varying sample
lengths. In the challenging scenarios—10 s at 20% embedding and 1 s
at 100% embedding—it achieved accuracies of 77.99% and 80.61%,
respectively. In contrast, our approach significantly outperformed it,
achieving 95.17% and 99.47% in the same settings.

These findings underscore the robustness and effectiveness of our
proposed GraphSAGE-based model across diverse scenarios, establish-
ing it as an alternative and advanced solution in QIM steganalysis.

5.6. Time efficiency and computational complexity

Time efficiency is a crucial consideration when assessing the prac-
tical applicability of a model, particularly for online applications. To
evaluate the time efficiency of our method, the average DT across
various sample lengths was computed. The detection process is depicted
in Fig. 6 (right-hand process). Furthermore, a comparative analysis was
conducted with the four previously mentioned approaches to assess the
efficiency of our method in relation to existing steganalysis models.
The detection process considered in our comparison encompasses the
phases starting with a compressed VoIP sample and concluding with the
decision on whether a secret message is embedded. It is important to
emphasize that all compared models, including ours, are trained offline.
During the detection phase, the pre-trained models are loaded into
memory and used for inference, which reflects a realistic deployment
scenario. This ensures a fair comparison focused solely on runtime
detection performance. These experiments were implemented on the
Kaggle platform, utilizing only CPU without any GPU acceleration.
To ensure a fair comparison, the mean and standard deviation were
computed over 200 detection tests for each sample length L,. Fig.
12 presents the DT of our approach across different sample lengths.
Notably, the mean DT demonstrates a nearly linear increase with
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Fig. 12. DT of the proposed GNN approach across various sample lengths.

respect to the sample length, as approximately modeled by Eq. (20),
expressed as follows:

DT =0.003 x L, +0.0145 (20)

The standard deviation, visualized by the arrows, highlights the
variability in DTs, particularly for longer samples.

It is evident that our GNN model maintains a relatively consis-
tent mean detection time, even when processing moderately longer
speech segments. For instance, detecting steganography in a 10-s sam-
ple takes approximately 0.045 s, representing only 0.45% of the sample
length. While detecting steganography in short segments poses a chal-
lenge, our approach ensures fast detection in such scenarios. Detecting
steganography in 0.5-s samples takes about 0.016 s, which represents
approximately 3.2% of the sample length. These performances are
attributed to several factors. Firstly, the adopted GraphSAGE archi-
tecture is relatively simple, leading to a reduced computational load.
This simplicity contributes to faster training and DTs. Secondly, the
GraphSAGE layer uses graph-based operations for information aggrega-
tion. The method of aggregating information from neighboring nodes
in a graph can be computationally efficient, especially for tasks that
involve capturing dependencies and relationships in a graph structure.
Finally, the simplicity of the graph construction approach reduces
the computational complexity and resource requirements both in the
training and detection phases. These results underscore the efficiency
of our suggested GNN-based steganalysis method, demonstrating its
suitability for deployment in online steganalysis tasks.

Table 8 provides insights into the time efficiency of our approach
compared to SOTA methods in three sample length scenarios (0.5 s,
5 s, and 10 s). The detection time is reported as the mean value [+
standard deviation]. Our approach consistently demonstrates superior
time efficiency, outperforming the SOTA methods in terms of speed
across all sample lengths. The IDC approach presents closer DTs to our
approach, which can be explained by the simple architecture adopted
in IDC, focusing only on inter-frame correlation. SS-QCCN, on the other
hand, yields the least favorable results, primarily due to its method of
extracting intra- and inter-frame correlations and its utilization of the
PCA method to reduce the dimensionality of a 131,072-dimensional
feature vector to 300. This process incurs a significant amount of
time, contributing to the observed extended DT in this method. For
CNN-LSTM and RNN-SM, the complicated architecture, particularly for
CNN-LSTM, which involves sequential and convolutional operations,
might be more computationally intensive, especially when dealing with
longer sequences, leading to slower DTs compared to ours. These results
demonstrate the exceptional efficiency of our proposed model, enabling
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Table 8
DT (s) of our approach compared to SOTA method. Results are reported as
Mean [+ standard deviation].

Method Sample length (s)

0.5 5 10
IDC [34] 0.019 [+ 0.004] 0.037 [+ 0.003] 0.049 [+ 0.002]
SS-QCCN [35] 0.099 [+ 0.056] 0.134 [+ 0.070] 0.146 [+ 0.053]
RNN-SM [14] 0.032 [+ 0.057] 0.081 [+ 0.083] 0.127 [+ 0.075]
CNN-LSTM [32] 0.075 [+ 0.069] 0.119 [+ 0.068] 0.152 [+ 0.083]
Our 0.016 [+0.001] 0.029 [+0.022] 0.045 [+0.035]

near real-time identification of hidden data in VoIP voice transmis-
sions. This efficiency has significant practical implications, allowing
for continuous monitoring of communications and immediate detec-
tion of steganographic content. The model’s scalability across various
sample lengths and its superior speed compared to SOTA methods
indicate excellent adaptability and resource efficiency. This perfor-
mance could significantly enhance operational efficiency in security
applications and allow for potential seamless integration into existing
VoIP infrastructure.

While our reported DT in Table 8 and Fig. 12 focuses on single-
sample inference—a common practice in related steganalysis works
[11-14,16,32,34-49] that assesses minimal latency for individual
streams—the architecture of our proposed GraphSAGE-based model is
inherently well-suited for batch processing, a critical aspect for high-
throughput real-world deployments. The core operations within our
GraphSAGE layers are highly parallelizable, meaning multiple sliding
windows (each representing a speech segment) can be grouped into
batches and processed simultaneously. This capability, efficiently man-
aged by modern deep learning frameworks on GPUs or multi-core CPUs,
allows for a significant reduction in the effective detection time per
sample when handling a high volume of traffic. Thus, the low single-
sample DT provides a strong foundation for our system’s scalability and
high throughput in large-scale, real-time VoIP environments.

To further validate our system’s efficiency, we also conducted an
analysis of the computational complexity for all evaluated models,
quantifying them by their number of parameters and floating point
operations (FLOPs), as presented in Table 9. Although our model does
not have the lowest FLOPs, it maintains a strong balance between
architectural simplicity and performance. It uses fewer parameters than
IDC, SS-QCCN and CNN-LSTM while achieving a significantly faster
DT. Several key architectural and implementation factors explain this
outcome. While FLOPs quantify raw arithmetic operations, the actual
execution speed is heavily influenced by factors like memory access
patterns, instruction pipelining, and how efficiently operations can be
vectorized or parallelized by the underlying hardware and software
libraries (e.g., BLAS for matrix multiplications). IDC’s very low FLOPs
(1.53 MFLOPs) stem from its statistical feature extraction, which in-
volves computations like histograms and Markov chain probabilities.
These operations, while theoretically low in FLOPs, can involve fre-
quent, less cache-friendly memory accesses or branch predictions that
are less optimized for modern CPUs compared to highly parallelizable
matrix multiplications typical in GNN layers. GraphSAGE, especially
with the simple directed acyclic graph structure we employ, might be
particularly efficient for single-sample inference on CPUs. The aggre-
gation and update steps, while involving more FLOPs than a direct
statistical lookup, may benefit from more optimized library calls that
process data blocks efficiently. RNN-SM, while having fewer parameters
and FLOPs, might be subject to the inherent sequential bottleneck of
RNNs, making it slower for CPU inference on single, short samples
compared to our parallelizable graph operations.

The efficiency of our model lies not just in theoretical FLOPs, but
in the overall streamlined pipeline, the nature of its core computa-
tional blocks which are well-suited for modern CPU architectures, and
its ability to capture complex relational features without relying on
computationally expensive preliminary feature engineering common in
some other methods.
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Table 9

Comparison of model parameters and FLOPs for all methods.
Model Parameters FLOPS
IDC [34] 735K 1.53M
SS-QCCN [35] 5.2M 11.63M
RNN-SM [14] 33K 6.1M
CNN-LSTM [32] 258K 46.2M
Our 83K 22.8M

6. Real-world applications, limitations, and improvements

In real-world applications, the proposed GraphSAGE-based steganal-
ysis approach offers substantial practical benefits for enhancing the se-
curity of VoIP communication systems and safeguarding against covert
communication channels. Its key strengths — high accuracy and effi-
ciency — make it particularly well-suited for deployment in various
practical scenarios.

» Cybersecurity and network monitoring: Internet service
providers (ISPs) and network administrators could deploy this
system to detect hidden communications in VoIP traffic, poten-
tially uncovering malicious activities or data exfiltration attempts.
Corporate networks could use it to ensure compliance with data
protection policies and prevent unauthorized data transfers.
Law enforcement: Intelligence agencies could utilize this tech-
nology to identify covert communication channels used by crimi-
nal organizations or terrorist groups. Digital forensics teams could
apply this method to analyze seized communication devices for
hidden messages.

Digital rights management: Content distribution platforms could
implement this approach to detect unauthorized watermarking or
copyright infringement in audio streams.

E-learning and online examination integrity: Educational in-
stitutions could use this technology to ensure the authenticity
of voice-based online assessments and prevent cheating through
hidden audio cues.

IoT security: As voice-controlled IoT devices become more preva-
lent, this approach could be used to detect potential security
breaches or unauthorized access attempts via steganographic
commands.

Although our approach demonstrates strong performance, it faces
some limitations and challenges. Firstly, the model struggles with very
short sample lengths (less than 0.5 s) and extremely low embedding
rates (below 20%). This difficulty arises because there is limited infor-
mation available in these cases, making it challenging to extract enough
features for accurate detection. One possible solution to overcome this
limitation is to integrate GAT [58] into the model. GATs are a type of
GNN that utilizes attention mechanisms to focus selectively on the most
relevant connections and information within the graph. By assigning
higher weights to connections that reveal significant variations in QIM
sequences, GATs “could be” more effectively capture subtle changes in
short samples and low embedding rates.

Secondly, the current model is specifically designed for QIM-based
steganography in G.729 compressed speech, and its effectiveness in
detecting other steganography methods used in VoIP streams, such as
those based on ACB, FCB and LSB, or in different codecs (e.g., G.711,
G.722), is limited. To address this limitation and enhance its versatility,
a multi-graph construction approach combined with a fusion network
can be explored. This involves constructing separate graphs for differ-
ent parameter types (QIS, ACB, FCB, etc.) or even for representations
derived from different codecs, and then capturing the unique variations
introduced by each steganography method or codec. A fusion net-
work, potentially implemented using LSTM or attention mechanisms,
would then aggregate and fuse features extracted from these individ-
ual graphs, learning to dynamically weigh their contributions. This
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combined approach could enable the model to generalize to different
steganography techniques and codecs and enhance its ability to detect
a broader range of hidden messages within VoIP streams.

Finally, although the dataset is diverse in terms of speakers and
language (English and Chinese), it is based on pre-recorded data and
a specific codec/steganography pair. Real-world VoIP traffic can ex-
hibit variability in network conditions, background noise, codec im-
plementations, and potentially unknown or adaptive steganography
techniques. Evaluating the model’s performance on live or more diverse
traffic is necessary.

7. Ethical considerations

The primary objective of this research is to enhance cybersecu-
rity by providing a robust and efficient method for detecting covert
communications hidden within VoIP streams. This capability is crucial
for defensive purposes, including protecting national security, pre-
venting intellectual property exfiltration, and aiding law enforcement
in countering illicit activities. However, we acknowledge that, like
many cybersecurity technologies, steganalysis tools could potentially
be misused for unauthorized surveillance or infringement on individual
privacy.

It is important to emphasize that our method is designed solely to
detect the presence of steganography, not to extract, interpret, or moni-
tor the content of any communication. Its responsible deployment must
be strictly governed by strong legal frameworks and transparent ethical
guidelines to ensure that it is used only for legitimate purposes and in
full compliance with privacy laws and human rights. Our contribution
aims to empower defenders in the ongoing cyber security landscape,
fostering a more secure digital environment where covert malicious
activities can be identified, thus supporting a balance between security
needs and individual privacy. We advocate for the ethical application
of this technology in accordance with all relevant regulations and
principles.

8. Conclusion

In this article, a novel steganalysis algorithm for VoIP streams based
on the GraphSAGE architecture was introduced. The proposed GNN
method showecases efficient performance in detecting QIM steganog-
raphy in VoIP signals. Notably, when compared to existing SOTA
algorithms, it demonstrates a superior compromise between detection
accuracy and efficiency. Achieving detection accuracy exceeding 98%
for 0.5-s samples, and 95.17% under 20% embedding rate scenarios
— representing an improvement of 2.8% over the best-performing
SOTA approaches. Additionally, it maintains high computational effi-
ciency, with an average detection time as low as 0.016 s (a 0.003-s
improvement), which corresponds to less than 3% of the sample length,
making it well-suited for online detection systems. Additionally, this
work contributes to the field by introducing the use of GNNs, specifi-
cally GraphSAGE, in VolIP steganalysis, showcasing its practicality and
effectiveness.

Looking ahead, future research will concentrate on refining the
model to address its limitations as detailed in Section 6. This includes
enhancing its ability to detect very short sample lengths with very
low embedding rates, handling various steganography methods, and
accurately predicting embedding rates. Additionally, an important di-
rection for future work is to extend the model to identify the specific
positions of embedded bits within the VoIP streams. This challenging
scenario may involve developing more granular feature extraction tech-
niques that focus on bit-level analysis. Furthermore, investigating the
robustness of GNN-based steganalysis against evasion and adversarial
attacks remains an essential research avenue. Incorporating adversarial
training strategies could help improve the model’s resilience to sophisti-
cated obfuscation attempts. Finally, extending the proposed GNN-based
framework to multi-modal steganalysis — for example, combining VoIP
with video streams — could broaden its applicability and impact,
paving the way for more comprehensive cross-domain steganalysis
systems.
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