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 A B S T R A C T

Steganalysis methods based on deep learning (DL) often struggle with computational complexity and challenges 
in generalizing across different datasets. In the specific case of voice-over-IP (VoIP) speech streams, detection 
is particularly challenging because the low bit-rate encoding creates complex, relational dependencies between 
speech frames. Conventional DL models, which treat data as simple sequences or grids, often fail to capture 
these complex inter-frame dependencies effectively. To address this gap, this paper presents the first application 
of a graph neural network (GNN), specifically the GraphSAGE architecture, for steganalysis of compressed 
VoIP speech streams. The method involves straightforward graph construction from VoIP streams and employs 
GraphSAGE to capture hierarchical steganalysis information, including both fine-grained details and high-level 
patterns, thereby achieving high detection accuracy. Experimental results demonstrate that the developed 
approach performs well in uncovering quantization index modulation (QIM)-based steganographic patterns 
in VoIP signals. It achieves detection accuracy exceeding 98% even for short 0.5-second samples, and 95.17% 
accuracy under challenging conditions with low embedding rates, representing an improvement of 2.8% over 
the best-performing state-of-the-art methods. Furthermore, the model exhibits superior efficiency, with an 
average detection time as low as 0.016 s for 0.5-second samples—an improvement of 0.003 s. This makes it 
efficient for online steganalysis tasks, providing a superior balance between detection accuracy and efficiency 
under the constraint of short samples with low embedding rates.
1. Introduction

Data hiding has garnered significant attention from researchers in 
recent years, spanning various disciplines. On the one hand, it serves 
to verify integrity and ensure information remains unaltered during 
transmission, as seen in watermarking [1,2]. On the other hand, it 
can be utilized to conceal confidential information through uncon-
ventional means, exemplified by steganography [3,4]. Steganography 
and steganalysis are two complementary aspects of covert commu-
nication. While steganography involves concealing secret information 
within apparently benign carriers such as images [5], text [6], and 
speech [3], steganalysis is focused on detecting and unveiling such 
concealed communication [7]. Over the years, the proliferation of In-
ternet services has facilitated the transmission of multimedia data over 
digital networks. Among these services, voice over internet protocol 
(VoIP) has emerged as a prominent means of enabling real-time voice 
communication over the Internet. This increased reliance on VoIP, 
driven by the success of platforms like Skype, WhatsApp, and Zoom, 
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has made it an attractive choice for concealing and transmitting hidden 
information [8]. The ubiquity and high-volume nature of VoIP traffic 
make it an appealing vector for steganographic purposes, presenting 
both opportunities for clandestine communication and challenges for 
cybersecurity professionals.

In VoIP communications, speech is typically compressed using 
codecs, such as G.722, G.723, and G.729, to reduce bandwidth require-
ments. This compression process, which involves the quantization of 
speech parameters, inadvertently creates potential vulnerabilities that 
can be exploited for steganographic purposes. Malicious actors, includ-
ing cybercriminals and extremist groups, may exploit these vulnerabili-
ties by manipulating VoIP software to facilitate covert communications. 
This scenario presents a significant challenge to communication moni-
toring and network security. Steganography for VoIP can occur both in 
network protocol fields and payload data [9,10]. However, while the 
former approach may provide some degree of concealment, it is the 
latter that takes precedence. This distinction arises from the fact that 
https://doi.org/10.1016/j.array.2025.100510
Received 23 June 2025; Received in revised form 19 August 2025; Accepted 10 Se
vailable online 25 September 2025 
590-0056/© 2025 The Author(s). Published by Elsevier Inc. This is an open access a
ptember 2025

rticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://www.elsevier.com/locate/array
https://www.elsevier.com/locate/array
https://orcid.org/0000-0002-7067-7848
mailto:mhemis@usthb.dz
mailto:kheddar.hamza@univ-medea.dz
mailto:mohamed.chahine.ghanem@liverpool.ac.uk
mailto:bboudraa@usthb.dz
https://doi.org/10.1016/j.array.2025.100510
https://doi.org/10.1016/j.array.2025.100510
http://creativecommons.org/licenses/by/4.0/


M. Hemis et al.

 

Array 28 (2025) 100510 
the practice of concealing information within network protocol fields, 
which encompass many layers of the open systems interconnection 
(OSI) model, ultimately provides less robust concealment capabilities. 
These protocol fields are typically public, and their data tends to remain 
fixed under most ordinary circumstances, rendering them less secure for 
covert communication [11]. On the contrary, the method of embedding 
data within payload data, characterized by its dynamic nature and 
temporal variations, offers a substantially higher degree of conceal-
ment. This dynamism makes it considerably more challenging to detect 
covert practices within VoIP streams, reinforcing its position as the 
preferred choice for steganographic endeavors [11,12]. Additionally, as 
steganography methods become more sophisticated, particularly with 
the advent of AI-generated content, advanced steganalysis techniques 
are necessary to keep pace [13].

As a result, there is a compelling need to develop effective ste-
ganalysis methods tailored specifically for VoIP steganography. These 
methods can address several critical concerns, including: (i) For na-
tional security agencies, detecting and preventing the covert exchange 
of sensitive information via VoIP is crucial to national security; (ii) busi-
nesses depend on steganalysis to safeguard against intellectual property 
theft and unauthorized data exfiltration through VoIP channels, pro-
tecting their proprietary information and maintaining a competitive 
advantage; (iii) many industries are required to monitor and secure 
their communications to comply with regulatory standards, making 
VoIP steganalysis essential for ensuring compliance with legal and 
industry-specific requirements.

An effective steganalysis in the context of VoIP streams should meet 
two crucial requirements [14,15]. Firstly, it should operate in real-time, 
ensuring that the time required for detection is minimized due to the 
need for swift action against potential malicious activities. Secondly, 
the steganalysis method must be capable of detecting short samples 
of VoIP streams, as covert information may be hidden within brief 
segments of the communication. Adding to these two requirements, it 
should be sensitive enough to detect low embedding rates, as some 
covert data may be hidden with minimal changes to the host signal. 
Meeting these stringent requirements represents a significant and per-
sistent challenge in developing practical and reliable VoIP steganalysis 
methods, which is essential to ensure their successful integration into 
real-world applications [9,14]. In this work, we address the core re-
search problem of designing a steganalysis approach for VoIP that 
can achieve real-time detection performance, maintain high accuracy 
on short speech segments, and remain effective under low embedding 
rates.

1.1. Motivation

The steganalysis process generally involves a two-step process: first, 
identifying distinguishing features from the carrier signal, and then 
classifying whether it contains steganographic content. Feature extrac-
tion involves identifying and selecting key pieces of data from the 
carrier, such as patterns or anomalies, that can indicate the presence 
of steganography. Traditional methods rely on handcrafted statisti-
cal features, designed based on expert knowledge, to detect signifi-
cant changes introduced by steganographic embedding. However, these 
methods face limitations in the context of VoIP due to the minimal ad-
ditional distortion introduced by steganography in compressed speech, 
making it challenging to extract suitable features for steganalysis.

With the rapid advancement of deep learning (DL), recent methods 
have leveraged deep models to automatically learn discriminative fea-
tures. Various neural network architectures, primarily leveraging con-
volutional neural network (CNN)- and recurrent neural network (RNN)-
based designs [12,14,16,17], have been explored in VoIP steganalysis. 
These models are specifically designed to capture distinct codeword 
correlation features between cover and stego VoIP streams, achieving 
state-of-the-art (SOTA) detection outcomes. While effective in capturing 
sequential (RNNs) or local spatial (CNNs) patterns, these traditional 
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deep learning architectures face inherent limitations when dealing with 
the relational structure of compressed VoIP data affected by steganog-
raphy. QIM steganography, in particular, subtly alters the dependen-
cies and correlations between line spectral frequency (LSF) codewords 
across frames and within their neighborhoods. CNNs, designed for grid-
like data, struggle to explicitly model these non-Euclidean, inter-frame 
relationships. RNNs, while adept at sequences, might not efficiently 
capture the graph-like dependencies that extend beyond simple linear 
order or local windows, especially when the crucial information lies in 
the way codewords relate to each other rather than just their individual 
values or linear sequence.

Recently, significant attention has been directed toward adapting 
DL methods for graph-structured data, giving rise to the emergence 
of graph neural networks (GNNs) as a prominent topic [18]. GNNs 
are uniquely suited for modeling complex relationships within non-
Euclidean data by explicitly learning from graph structures, where 
nodes represent entities (e.g., LSF codeword frames) and edges rep-
resent their relationships (e.g., temporal dependencies). This intrinsic 
capability allows GNNs to capture both fine-grained local dependen-
cies and high-level global patterns by aggregating information from 
connected neighborhoods. GNNs have demonstrated efficiency in repre-
senting and analyzing graph data across various computer vision fields, 
including action recognition [19], object tracking [20], and natural 
language processing, such as text classification [21]. However, there 
have been limited efforts in applying GNNs to steganalysis, primarily 
in the domains of images, as in [22,23], and text, as in [24,25]. This 
highlights a significant gap where GNNs’ relational modeling power 
could be particularly advantageous for VoIP steganalysis.

1.2. Contribution and paper structure

DL-based steganalysis commonly encounter trade-offs between per-
formance and processing complexity. This study introduces the appli-
cation of a GraphSAGE GNN network to design an effective approach 
that meets the essential requirements of VoIP steganalysis systems. The 
key contributions of this study can be outlined as follows:

• Propose, according to the literature reviewed, the first application 
of GNNs in the context of VoIP steganalysis, marking a signifi-
cant advancement in quantization index modulation (QIM)-based 
steganalysis methodologies.

• Introduce a simple and efficient approach for constructing graphs 
from input VoIP streams, resulting in a lightweight and simplified 
graph structure that reduces computational complexity while pre-
serving the capability for excellent feature extraction, crucial for 
identifying patterns indicative of steganography.

• Propose a GNN architecture based on the GraphSAGE model, 
specifically designed to hierarchically extract steganalysis infor-
mation. This architecture, for the first time, effectively utilizes 
LSF codewords from VoIP codecs notably G.723 and G.729 to cap-
ture both fine-grained details and high-level patterns, resulting in 
high detection accuracy.

• Prove, through experiments, that the suggested GNN-based speech
steganalysis technique achieves competitive detection accuracy 
in the challenging scenario. Specifically, it attains detection ac-
curacy exceeding 98% even for short 0.5-s samples, and 95.17% 
accuracy under challenging conditions with low embedding rates, 
representing an improvement of 2.8% over the best-performing 
state-of-the-art methods. Furthermore, the model exhibits supe-
rior efficiency, with an average detection time as low as 0.016 s 
for 0.5-s samples—an improvement of 0.003 s. These results high-
light the model’s suitability for real-time deployment, offering a 
robust trade-off between detection accuracy and computational 
efficiency.
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• Demonstrate practical implications by enabling real-time detec-
tion of covert communications in VoIP streams for real-world sce-
narios. This includes enhanced cybersecurity and network moni-
toring, support for law enforcement in identifying hidden trans-
missions, and applications in digital rights management and IoT 
security, thanks to the method’s high detection accuracy and 
efficiency. 

The remainder of this paper is structured as follows: Section 2 
delves into related works. Section 3 offers an overview of the back-
ground. Section 4 introduces the proposed GNN-based steganalysis 
framework. Section 5 presents experimental results and offers an in-
depth examination of the results. Section 6 outlines the key limitations 
and shortcomings of the approach, suggests possible enhancements, and 
discusses the applicability of the proposed scheme in several real-world 
scenarios. Finally, Section 8 presents conclusive remarks and outlines 
future directions.

2. Related work

Vocoders, such as G.723 and G.729, are widely applied in VoIP 
communication with the aim of lowering decoding errors via the 
analysis-by-synthesis (AbS) approach, maintaining excellent speech 
quality while achieving high compression ratios. In contrast to conven-
tional steganographic methods typically used for images or text, low 
bit-rate (LBR) VoIP streams, characterized by the AbS linear predic-
tive coding technique, pose a unique challenge due to their minimal 
redundancy within the encoded speech. To address this, researchers 
have explored two distinct categories of data hiding techniques, each 
linked to different stages in the encoding process. The first category 
involves altering specific elements in the compressed speech stream, 
often utilizing methods like least significant bit (LSB) replacement, such 
as in [10]. However, this is complicated due to the limited data-hiding 
space in LBR speech. The second category focuses on embedding covert 
information during encoding, by altering encoding features, notably the 
linear predictive coding (LPC) [26], fixed codebook (FCB) [27], and 
adaptive codebook (ACB) [28].

In the second category, QIM-based steganography is most commonly 
employed, especially within LPC domains. QIM steganography, orig-
inally developed by Chen et al. [29], is widely used in literature. It 
conceals steganograms by altering the quantization vector within the 
speech code, introducing minimal unperceptible distortion and offer-
ing high data hiding capabilities. Thus, when it comes to embedding 
information in VoIP streams, QIM emerges as a suitable scheme that 
poses a significant challenge for detection.

On the one hand, research into QIM steganography detection meth-
ods has primarily concentrated on image carriers [30]. Subsequently, 
a limited number of research studies have been proposed in the field 
of steganalysis, particularly focusing on QIM-based steganography in 
VoIP, such as in [11,31]. Due to the distinct characteristics of VoIP 
streams, the detection methods proposed for use in images cannot be 
directly applied within the VoIP context. Moreover, classical audio 
steganalysis methods based on statistical feature extraction in the un-
compressed domain are inapplicable to VoIP. This is due to the minimal 
additional distortion introduced by VoIP QIM steganography in de-
coded speech signals, making it challenging to extract suitable features 
for steganalysis [32]. To address this issue, some research in the VoIP 
field has proposed the use of handcrafted statistical features to detect 
significant changes in codewords used in LBR speech codec streams 
caused by QIM steganography. For instance, Li et al. [33] examined 
the impact of QIM steganography on G.729, where it altered the quan-
tization index of the LPC filter. They employed a statistical model to 
capture codeword distribution characteristics and, in conjunction with 
a support vector machine (SVM), formulated an efficient system for 
steganographic detection. In a related study, Li et al. [34] developed the 
index distribution characteristics (IDC) steganalysis method, employing 
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codeword distribution histograms and first-order Markov chain-derived 
state transition probabilities as correlation features. These features, 
integrated with SVM, were utilized to classify steganographic samples 
with a focus on inter-frame transition probabilities. Expanding upon 
this concept, the studies by Li et al. [35] and Wu et al. [36] aim 
to detect steganograms embedded using QIM techniques. Both works 
employ principal component analysis (PCA) for reducing feature di-
mensionality and SVM for classification. Notably, Li et al. [35] focus 
on state transition probabilities of intra-frame codewords as features, 
while Wu et al. [36] suggested extracting features from the original 
speech signal by analyzing its distribution patterns and transmission 
likelihoods. Meanwhile, Yang et al. [37] employed temporal dependen-
cies between codewords across frames to model a Codeword Bayesian 
Network (CBN), where the parameter learning process was guided by 
a Dirichlet prior. Yang et al. [38] proposed a fast steganalysis which 
involved mapping vector quantization codewords to a semantic space, 
followed by feature extraction using a hidden layer input into a softmax 
classifier. Such methods require meticulous feature design to align 
with the characteristics of speech data and specific information hiding 
techniques. Consequently, they struggle to effectively address gener-
ative steganography that produces high-quality stego speech. On the 
other hand, the proposed GraphSAGE-based algorithm addresses these 
challenges by utilizing relational data through GNNs and efficiently 
managing the minimal distortion and short sample lengths typical of 
VoIP streams.

Besides, recent advancements in DL have led to improved robustness 
and effectiveness in steganalysis methods, which can be broadly cate-
gorized into two main categories: general steganalysis approaches and 
specific steganalysis approaches. In the first category, several methods 
have been introduced to detect a range of steganographic techniques. 
For example, Hu et al. [39] addressed heterogeneous parallel steganog-
raphy (HPS) by introducing the steganalysis feature fusion network 
(SFFN). The architecture of SFFN comprises three core modules: a 
network for feature extraction, a component for feature integration, 
and a classification unit, effectively extracting and combining steganal-
ysis features from HPS methods for dependable predictions. Building 
upon this, Wang et al. [40] proposed a fast and efficient steganal-
ysis method which leveraged attention mechanisms. Their suggested 
method adeptly extracts key characteristics related to steganography 
exceptions and fuses these features targeting multiple steganography 
techniques utilized in HPS. Li et al. [41] introduced a unified detec-
tion framework, termed CBCA, which leverages codeword embedding 
along with bidirectional long short-term memory (Bi-LSTM) and CNN-
based attention mechanisms. This approach is capable of identifying 
three distinct steganographic techniques concurrently. Wang et al. [42] 
proposed a steganalysis method aimed at identifying various stegano-
graphic schemes within compressed speech signals. Their framework 
introduces a codeword-distributed embedding component designed to 
generate compact representations from compressed codewords. To cap-
ture dependencies across different contexts, it employs two correlation 
extraction modules: a global-guided unit that incorporates Bi-LSTM 
and multi-head self-attention, and a local-guided unit built using the 
convolutional block Attention module (CBAM), enabling the modeling 
of both global and local correlations before and after data hiding. Detec-
tion is accomplished through fully connected layers, ensuring accurate 
identification. Li et al. [13] introduced a generic frame-level steganal-
ysis approach for LBR steganography, utilizing dual-domain feature 
representation and a Transformer-based model named Stegaformer. The 
proposed method consists of two modules, dual-domain representation 
and Stegaformer. Li et al. [43] introduced SANet, an independent 
steganalysis network for speech encoding and steganography. This 
approach unifies compressed speech outputs from various codecs by 
converting them into a common uncompressed-domain format, intro-
ducing an intermediate representation. A Bi-LSTM neural network is 
developed to extract steganography-sensitive characteristics through 
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collaborative correlation features. This approach achieves SOTA detec-
tion performance for various steganography algorithms across different 
speech encoders. Recently, Wang et al. [44] proposed E-SWAN, a 
deep learning-based sliding window analysis network that combines 
LSTM and convolutional modules for real-time VoIP speech steganal-
ysis. The model demonstrates competitive performance in detecting 
two steganography methods. Similarly, Lin et al. [45] introduced a 
steganalysis approach that integrates Bi-LSTM, 3D convolution and 
attention mechanisms to detect two QIM-based steganography variants 
in VoIP streams. Although these algorithms offer some capability for 
broad steganalysis applications, their performance often falters when 
confronted with specific steganographic techniques, particularly QIM. 
In such specialized scenarios, these general methods typically exhibit 
lower accuracy, highlighting the need for more targeted approaches.

Consequently, several researchers prefer to exploit the power of DL 
to design specialized steganalysis algorithms, particularly geared to-
ward QIM-based steganography. For example, Lin et al. [14] identified 
four robust codeword correlation patterns and introduced a steganalysis 
model based on RNN for improved detection accuracy. Nonetheless, 
their model, RNN-SM, centered on global contextual information, uti-
lizing a two-layer LSTM. Yang et al. [32] proposed a novel approach 
to enhance local representations that combined RNN and CNN, re-
sulting in the CNN-LSTM model, which outperformed RNN-SM in the 
detection of QIM-based steganography. Yang et al. [11] incorporated 
an attention mechanism within a hierarchical convolutional structure, 
further enhancing steganalysis results. In a subsequent study [46], 
the same authors presented a lightweight neural architecture called 
the fast correlation extract model (FCEM), which integrates positional 
encoding and multi-head attention to capture correlation features. Qiu 
et al. [16] developed an efficient steganalysis that incorporates a 
codeword embedding layer to capture dense representations, employs 
a bidirectional LSTM layer and incorporates a gated attention module 
to model contextual feature distributions. Yang et al. [12] designed 
a multi-channel convolutional sliding window mechanism to capture 
inter-frame dependencies between a target frame and its adjacent 
frames. Recently, the utilization of a transformer encoder [47] and 
federated learning [48] has been implemented for the detection of 
QIM-based steganography in G.729 speech encoders. These two ap-
proaches demonstrated SOTA detection performance. Zhang et al. [49] 
tackled the challenge of identifying payload locations in QIM-based 
VoIP steganography by proposing an LSTM-based steganalysis method 
named SPM. To provide a structured comparison and highlight the 
evolution of these key approaches, Table  1 presents a summary of the 
works most relevant to our research, detailing their core techniques and 
limitations.

The mentioned studies underscore the adoption of DL-based meth-
ods as the benchmark for real-time VoIP steganalysis, demonstrating 
superior detection capabilities and efficiency in comparison to hand-
crafted features. The integration of DL with graph data has led to the 
widespread adoption of GNNs. These DL-based models, specialized for 
graph domains, are crafted to capture representations of graph data 
adeptly, proficiently handling tasks centered on both individual nodes 
and entire graphs. GNNs capture relationships within graphs by ex-
changing messages among nodes and maintaining a state that encodes 
information from any connected neighborhood through edges [50]. 
Furthermore, GNNs exhibit an enhanced capability to leverage global 
information, contributing to their compelling performance. While GNNs 
have been recently employed in various studies for image [22,23] 
and text steganalysis [24,25,51], there is a noticeable gap in research 
focusing on steganalysis in the context of VoIP.

This paper aims to investigate the potential of GNNs in crafting 
steganographic detection approaches that meet the essential require-
ments of VoIP steganalysis systems. Based on the available literature 
reviewed by the authors, no existing studies have explored GNN-based 
VoIP steganalysis. Our work addresses this significant gap by intro-
ducing a novel GraphSAGE-based algorithm tailored for VoIP streams, 
achieving high accuracy and real-time efficiency. Consequently, this 
approach has the potential for deployment in various real-world ap-
plications.
4 
3. Background

Developing a novel steganalysis scheme dedicated to VoIP secu-
rity requires a foundational understanding of how hidden messages, 
embedded within the bitstream (steganogram), are generated in the 
coder’s output. Furthermore, representing the bitstream in a graph 
format necessitates prior knowledge of GNNs and an understanding 
of how speech can be effectively represented in a graphical form. For 
this purpose, this section summarizes the principles of speech coding, 
QIM-based steganography, and GNNs.

3.1. Speech compression overview

In VoIP applications, voice signals are initially compressed using 
LBR speech encoders at the sender’s end before transmission. These 
encoders are based on the LPC model and operate under the AbS 
framework, where an LPC filter is used to model and reconstruct speech 
during both encoding and decoding stages. The LPC filter formulation 
is given by: 

𝐴(𝑧) = 1
1 −

∑𝑛
𝑖=1 𝑎𝑖𝑧−𝑖

, (1)

where 𝐴(𝑧) is the transfer function of the LPC filter, 𝑧 is a complex 
variable that represents the frequency domain, 𝑛 is the order of the 
LPC filter, and 𝑎𝑖 represents the 𝑖th order coefficient of the LPC filter. 
Since speech exhibits short-term stationarity, it is processed in frames, 
and LPC coefficients are derived individually for each frame. Due to 
the high sensitivity of LPC coefficients to quantization noise, they are 
typically transformed into line spectrum frequencies (LSF), which are 
easier to quantize to maintain coding stability. LSFs from each frame 
are quantized using several codebooks based on the minimum mean 
square error criterion. This quantization aims to select the optimal 
codeword that reduces the discrepancy between the original and re-
constructed speech signals. In particular, G.723 and G.729 implement 
LSF quantization by choosing codewords 𝑐1, 𝑐2, and 𝑐3 from their 
corresponding codebooks 𝐶1, 𝐶2, and 𝐶3.

3.2. QIM-based steganography

In the context of QIM steganography, the process of quantizing LSFs 
can be modified. Each original codebook 𝐶𝑖, which is used for vector 
quantization, is split into two separate parts, 𝐶1

𝑖  and 𝐶2
𝑖 , following the 

relationship: 
{

𝐶𝑖 = 𝐶1
𝑖 ∪ 𝐶2

𝑖

𝐶1
𝑖 ∩ 𝐶2

𝑖 = ∅
(2)

When embedding the bit ‘‘0’’, the quantizer in the QIM scheme 
retrieves the closest match from the sub-codebook 𝐶1

𝑖 . Conversely, 
when embedding the bit ‘‘1’’, the QIM method chooses the optimal 
quantization value from the sub-codebook 𝐶2

𝑖 . During reception, the 
receiver can deduce the embedded bits by determining whether the re-
ceived quantization index corresponds to sub-codebook 𝐶1

𝑖  or 𝐶2
𝑖 . This 

methodology allows for the seamless integration of secret data within 
the quantization. In the context of QIM, it is possible to enhance con-
cealment capacity by subdividing the codebook into 2𝑛 sub-codebooks, 
allowing the simultaneous hiding of 𝑛 bits. The process of embedding 
and extracting a hidden message with 2 bits length using the QIM 
technique is depicted in Fig.  1. This functionality is accomplished by 
partitioning 𝐶𝑖 into sub-codebooks 𝐶1

𝑖 , 𝐶
2
𝑖 , 𝐶

3
𝑖 , and 𝐶4

𝑖 , as illustrated in 
the figure.

The challenge in QIM steganography arises from increased distor-
tion resulting from the use of a reduced codeword set in the quan-
tization procedure. The fundamental issue lies in how to partition 
the original codebook 𝐶𝑖 into multiple sub-codebooks. Researchers 
have proposed various methods including matrix encoding QIM (ME-
QIM) [8], complementary neighbor vertices QIM (CNV-QIM) [52], and 
others.
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Table 1
A comparative summary of key SOTA methods in QIM-based VoIP steganalysis, representing the works most closely related to our proposed approach.
 Ref. Method/Model Key contribution Limitations addressed by our work  
 Li et al. [33] Statistical model + SVM Captures distribution characteristics of LPC 

quantization indices in G.729
Requires handcrafted features; limited robustness to low embedding 
rates

 

 Li et al. [34] Statistical Features + SVM Used codeword histograms and Markov 
probabilities to capture inter-frame correlations.

Relies on manually designed features; limited robustness to low 
embedding rates

 

 Li et al. [35] Statistical Features + PCA + SVM Focused on state transition probabilities of 
intra-frame codewords.

Requires meticulous feature engineering and is less adaptable than 
end-to-end models; limited robustness to low embedding rates

 

 Wu et al. [36] Statistical Features + PCA + SVM Extracted features from the original speech 
signal’s distribution patterns.

Feature design is specific to known signal characteristics; 
Computationally expensive; weaker for real-time detection. 

 

 Yang et al. [37] Codeword bayesian network 
(CBN)

Modeled temporal dependencies across frames 
using a probabilistic graphical model.

Relies on a specific statistical model (CBN) that is less flexible than 
learned representations.

 

 Yang et al. [38] Semantic mapping + softmax 
classifier

Projects VQ codewords to semantic space for 
classification

Lightweight but less accurate for subtle embeddings  

 Lin et al. [14] RNN-SM (Two-layer LSTM) Captures global contextual correlations Models data purely sequentially; less effective at capturing complex, 
non-local dependencies.

 

 Yang et al. [32] CNN + LSTM Combines local CNN with temporal RNN 
features

Grid-based, CNN and sequential models, do not explicitly capture 
the complex relational structure of VoIP data; Higher complexity

 

 Yang et al. [11] Hierarchical CNN + Attention Enhanced detection using multi-level attention Limited by the inherently local receptive field of CNNs, which 
struggles to capture complex, long-range dependencies

 

 Yang et al. [46] FCEM (Lightweight CNN + 
Attention)

Efficient correlation extraction with positional 
encoding

Attention works on sequences; weaker in capturing structural 
relationships

 

 Qiu et al. [16] Bi-LSTM + gated Attention Dense contextual feature representation Sequential model; lacks relational aggregation over graph structures 
 Zhang et al. [49] LSTM-based SPM Identifies payload locations in VoIP Task-specific; not generalized for broad steganalysis  
 Yang et al. [12] Multi-channel sliding CNN 

Window
Captures local inter-frame dependencies 
between adjacent frames

Sliding window has fixed local receptive field; cannot capture 
longer-range dependencies

 

 Zhang et al. [47] Transformer encoder Leveraged the power of self-attention from 
Transformers for steganalysis.

May not inherently model the direct temporal adjacency in speech 
frames as effectively as a graph structure.

 

 Tian et al. [48] Federated learning Introduced a secure, collaborative learning 
framework for steganalysis.

Focuses on the training paradigm rather than the core model 
architecture for feature extraction.

 

 Our work GNN First to model VoIP streams as graphs to 
capture hierarchical relational data.

Explicitly models non-Euclidean, relational dependencies 
between speech frames, overcoming the limitations of both 
manual feature engineering and simpler sequential/grid-based 
models.

 

Fig. 1. QIM for concealing 2-bit steganograms.

3.3. GNN overview

GNNs are a specialized class of neural networks tailored for learn-
ing from graph-structured data. In such data structures, nodes denote 
entities, while edges capture the relationships or interactions between 
them. The basic propagation rule in a GNN can be expressed as follows: 

ℎ𝑘𝑣 = 

(

∑

𝑢∈𝑁(𝑣)
𝑤𝑘−1

𝑢𝑣 ℎ𝑘−1𝑢 , ℎ𝑘−1𝑣

)

(3)

Here, ℎ𝑘𝑣 and ℎ𝑘−1𝑣  represent the hidden states of node 𝑣 at layers 𝑘
and 𝑘 − 1, respectively. The neighborhood of a node 𝑣 is symbolized 
as 𝑁(𝑣), and 𝑤𝑘−1

𝑢𝑣  represents the weight associated to the edge con-
necting 𝑢 and 𝑣 in the (𝑘−1)th layer. The function  is a non-linear 
5 
activation function. The update rule essentially aggregates information 
from neighboring nodes to refine the current node’s hidden state.

A widely adopted family of GNN models includes graph convolu-
tional networks (GCNs) [53], gated graph neural networks (GGNNs)
[54], graph sample and aggregation (GraphSAGE) [55], and more. 
These architectures often involve variations of the basic propagation 
rule to capture more complex relationships within the graph.

4. Proposed framework

Building upon the foundational concepts of speech coding, QIM 
steganography, and GNN discussed in Section 3, we now present the 
detailed architecture and components of our proposed steganalysis 
system. Specifically, this section describes an efficient method designed 
to uncover QIM steganography within compressed, LBR VoIP streams. 
Our approach is specifically tailored to work with speech compressed 
using the G.729 A codec, which is widely used in VoIP communications. 
Fig.  2 illustrates the structure of our proposed VoIP steganalysis, while 
Algorithm 1 outlines the steps involved.

As depicted in the figure, our framework consists of a three-stage 
pipeline. First, the Graph Construction Module takes a raw VoIP stream, 
extracts its Quantization Index Sequence (QIS) matrix, and converts 
it into a directed acyclic graph representation. Second, this graph is 
processed by the GraphSAGE Network Module, which learns a dis-
criminative graph-level feature vector through hierarchical message 
passing and pooling operations. Finally, the resulting feature vector is 
fed into the Classification Network Module, which performs a binary 
classification to determine if the stream is ‘Cover’ (benign) or ‘Stego’ 
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Fig. 2. The overall structure of the proposed approach, which consists of a three-stage pipeline. (1) Graph Construction Module: A QIS matrix is extracted from 
the input VoIP stream and converted into a directed acyclic graph. (2) GraphSAGE Network Module: The graph is processed via graph updating and pooling to 
generate a representative feature vector. (3) Classification Network Module: The final vector is passed through dropout and linear layers to classify the stream 
as ‘Cover’ or ‘Stego’.
(contains hidden data). The remainder of this section provides a de-
tailed explanation of each of these components, covering codewords 
correlation analysis, graph construction, and the network architecture. 

4.1. Codewords correlation analysis

As previously explained, the QIM steganography process involves 
making changes to the quantization of LSFs, affecting the LSF code-
words denoted as 𝑐𝑖. Thus, all the necessary information for steganalysis 
is contained within these codewords.

To perform steganalysis, a sliding detection window collects one or 
several continuous packets of compressed speech. This process allows 
for the construction of a sequence of quantized LSF codewords for 
analysis. The G.723 and G.729 compression processes operate in frames 
with durations of 10 ms and 30 ms, respectively. Assuming that the 
detection window size is denoted as 𝑇  frames, and its frames can be 
represented as a set 𝐹 = [𝑓1, 𝑓2,… , 𝑓𝑇 ]. The quantized LSF codewords, 
also known as the quantization index sequence (QIS), are expressed 
as 𝐶 = [𝑐𝑖,1, 𝑐𝑖,2,… , 𝑐𝑖,𝑇 ], where 𝑐𝑖,𝑗 is the 𝑖th codeword at frame 𝑗 in 
the sequence. For G.729 and G.723, where 𝑖 ∈ [1, 3], the QIS can be 
expressed in matrix form as: 

𝐶 =
⎡

⎢

⎢

⎣

𝑐1,1 𝑐1,2 … 𝑐1,𝑇
𝑐2,1 𝑐2,2 … 𝑐2,𝑇
𝑐3,1 𝑐3,2 … 𝑐3,𝑇

⎤

⎥

⎥

⎦

(4)

In the case where all codewords are uncorrelated, their occurrences 
become independent. As a result, it is expressed as: 
𝑃 (𝑐𝑖,𝑗 , 𝑐𝑘,𝑙) = 𝑃 (𝑐𝑖,𝑗 ) ⋅ 𝑃 (𝑐𝑘,𝑙), (5)

where 𝑃 (𝑐𝑖,𝑗 , 𝑐𝑘,𝑙) represents the joint probability of observing code-
words 𝑐𝑖,𝑗 and 𝑐𝑘,𝑙, and 𝑃 (𝑐𝑖,𝑗 ), 𝑃 (𝑐𝑘,𝑙) denote their individual probabili-
ties. This expression is valid for all 𝑖 and 𝑘 in the range of 1 to 3, and 𝑗
and 𝑙 in the range of 1 to 𝑇 . Inequality between the two sides implies 
a correlation between 𝑐𝑖,𝑗 and 𝑐𝑘,𝑙.

Due to the repeating patterns in human speech sounds (especially 
vowels and voiced consonants), the vocal signal exhibits stability over 
limited durations, approximately the frame length. Consequently, the 
codewords exhibit correlations within the same frame. Furthermore, 
speech signals have local periodicity, meaning that codewords have 
similar values in different frames. As a result, there are four types of 
inter-codeword correlations, namely: intra-frame correlation, succes-
sive frame correlation, cross-frame correlation, and cross-word correla-
tion [14]. Local features are characterized by the first two correlations, 
while global ones are reflected by the latter two.
6 
The QIM steganography process has a direct impact on the cor-
relations between these codewords, thereby altering their statistical 
distribution. Earlier VoIP steganalysis approaches aimed to extract 
correlation features to uncover steganograms, as in [35,37].

In the proposed steganalysis approach, the power of GNNs, specif-
ically the GraphSAGE model, is leveraged to capture these crucial 
correlations for steganalysis. GNNs have proven to be highly effective 
in modeling complex relationships and dependencies within graph-
structured data, making them an ideal choice for understanding the 
intricate correlations between codewords in LBR VoIP streams. By 
representing the relationships between codewords as a graph and em-
ploying GraphSAGE, local and global connections can be effectively 
analyzed, thereby identifying patterns and changes induced by QIM 
steganography. This approach allows for the extraction of meaning-
ful features that are instrumental in detecting steganographic con-
tent, thereby enhancing the accuracy and efficiency of the steganalysis 
process.

4.2. Graph construction

As GNNs require data in the form of a graph for processing during 
training, it is essential to transform the QIS matrix representation of the 
compressed speech stream into a graph structure. This transformation 
enables the GNN to leverage the inherent relationships and patterns 
within the speech data for effective steganalysis.

Taking the QIS matrix as input, the objective of this step is to 
construct a corresponding graph 𝐺 = (𝑉 ,𝐸), where 𝑉 = {𝑣𝑖}𝑇𝑖=1 is the 
set of 𝑇  nodes, and 𝐸 = {𝑒𝑗}𝑇−1𝑗=1  is the set of all edges between the 
nodes.

QIM-based steganography induces significant changes, principally 
in the correlation of adjacent frame codewords, i.e., edges between 
codewords of adjacent frames [12,14,34,35,37]. Consequently, each of 
the 𝑇  frames in the speech signal is represented as a node, forming a 
graph 𝐺 composed of 𝑇  nodes:

• Each node 𝑣𝑖 is assigned a feature vector 𝑥𝑖 ∈ R3 that encap-
sulates the three codewords from the corresponding frame: 𝑥𝑖 =
[𝑐1,𝑖, 𝑐2,𝑖, 𝑐3,𝑖].

• The edges 𝑒𝑗 , which link the nodes 𝑣𝑖 and 𝑣𝑖+1, are directional and 
symbolize the transitions between two successive frames. This 
choice of directed edges is crucial for capturing the temporal se-
quence and dependencies inherent in speech signals, allowing the 
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Algorithm 1 Proposed steganalysis approach.
Input: VoIP speech stream
Output: Classification (Cover or Stego)

1: Codewords Extraction:
2: Apply sliding detection window of size 𝑇  frames to collect 
continuous packets

3: for each frame 𝑓𝑖 do
4:  Extract 3 LSF codewords 𝑐1,𝑖, 𝑐2,𝑖, 𝑐3,𝑖
5: end for

6: Form QIS matrix: 𝐶 =
⎡

⎢

⎢

⎣

𝑐1,1 𝑐1,2 … 𝑐1,𝑇
𝑐2,1 𝑐2,2 … 𝑐2,𝑇
𝑐3,1 𝑐3,2 … 𝑐3,𝑇

⎤

⎥

⎥

⎦

7: Graph Construction: 𝐺 = (𝑉 ,𝐸)
8: Create nodes: Each frame 𝑓𝑖 becomes a node 𝑣𝑖
9: Set node features: Use codewords 𝑐1,𝑖, 𝑐2,𝑖, 𝑐3,𝑖 as 3D feature vector 

𝑥𝑖 for each node 𝑣𝑖
10: Create edges: Connect adjacent frames (nodes 𝑣𝑖 and 𝑣𝑖+1 ) with 

directed edges 𝑣𝑗
11: Construct adjacency matrix 𝐴:
12:   – 𝐴𝑖,𝑖 = 0 (no self-loops)
13:   – 𝐴𝑖,𝑖+1 = 1 (connect successive nodes) 

14: GraphSAGE Network:
15: Graph Updating :
16: for layer 𝑘: 1 to 𝐾 = 3 do
17:  for node 𝑣 ∈ 𝑉  do
18:  Set initial attribute of 𝑣 ∶ ℎ0𝑣 = 𝑥𝑖
19:  Sample neighborhood 𝑁(𝑣)
20:  Aggregate information:
21:  ℎ𝑘𝑁(𝑣) = 𝐴𝐺𝐺𝑘({ℎ𝑘−1𝑢 ,∀𝑢 ∈ 𝑁(𝑣)})
22:  Update node embedding:
23:  ℎ𝑘𝑣 =  (𝑊𝑘 ⋅ 𝐶𝑂𝑁𝐶𝐴𝑇 (ℎ𝑘−1𝑣 , ℎ𝑘𝑁(𝑣)))
24:  end for
25:  Compute graph-level representation at layer 𝑘: 𝑧𝑘𝐺 =

MeanPool
({

ℎ𝑘𝑣 , 𝑣 ∈ 𝑉
})

= 1
|𝑉 |

∑

𝑣∈𝑉
(

𝐡𝐾𝑣
)

26: end for
27: Hierarchical Pooling:
28: Compute final graph-level representation 𝑧𝐺 by summing all layer 

representations: 𝑧𝐺 =
∑

𝑘 𝑧
𝑘
𝐺

29: Classification:
30: Apply dropout to 𝑧𝐺
31: Feed to fully connected layer
32: Compute class probabilities using softmax
33: Determine final classification (Cover or Stego) 

34: Training:
35: Use CrossEntropyLoss as the loss function
36: Backpropagate and update model parameters.

model to learn how information flows and changes over time, par-
ticularly between consecutive frames. This design choice aligns 
with prior studies in speech processing, where directed relation-
ships are commonly employed to model temporal dependencies 
and improve learning performance [56,57].

The graph generated from these procedures is a directed acyclic 
graph (DAG) used to represent the temporal dependencies between 
frames in the compressed speech. Due to its directed configuration, the 
graph ensures that information flows in one direction, mirroring the 
progression of time in speech signals. This unidirectional flow is essen-
tial for capturing the temporal dependencies that may be altered by 
7 
Fig. 3. Speech-to-graph construction process.

steganographic embedding. The acyclic property of the graph prevents 
loops, ensuring that the model does not incorrectly assume circular de-
pendencies between frames. This is crucial for maintaining the integrity 
of the temporal sequence and avoiding spurious correlations.

The proposed graph construction process is depicted in Fig.  3.
The adjacency matrix of 𝐺 is indicated by 𝐴 ∈ R𝑇×𝑇 , with (𝐴)𝑖𝑗

indicating the connection weight between nodes 𝑣𝑖 and 𝑣𝑗 , as illustrated 
in Eq.  (6). The off-diagonal elements, signify the presence of edges 
between nodes, with a value of 1 indicating their connectivity. The 
diagonal elements, by contrast, are all set to 0, as nodes are not 
self-connected in this context. 

𝐴 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 1 0 ⋯ 0
1 0 1 ⋯ 0
0 1 0 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(6)

The construction of a simple graph structure in this context is 
well-justified due to several essential factors. First and foremost, sim-
plicity in the graph structure reduces the computational complexity 
and resource requirements during the training phase, particularly in 
scenarios involving large datasets. This efficiency is valuable not only 
during training but also in the testing phases, as it allows for the 
rapid analysis of a significant number of speech segments without 
excessive resource consumption. Moreover, the straightforward graph 
structure aligns perfectly with the nature of the information under 
examination. In QIM-affected speech data steganalysis, the critical 
alterations predominantly occur in the transitions between adjacent 
frames, as already mentioned. Consequently, this approach effectively 
captures these local temporal dependencies. Furthermore, despite the 
graph’s simplicity, the GraphSAGE model excels at feature extraction, 
effectively aggregating local neighborhood information to reveal the 
vital temporal dependencies critical for accurate steganalysis.

4.3. Network architecture

Given a collection of graphs {𝐺1,… , 𝐺𝑁}, derived from speech 
samples, along with their corresponding true labels {𝑦 ,… , 𝑦 }, the 
1 𝑁
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Fig. 4. The proposed GraphSAGE-based network architecture.
objective is centered around graph classification. The aim is to differen-
tiate between graphs corresponding to cover data and those indicating 
the presence of QIM steganography.

To accomplish this, the generated graphs are passed through a 
GraphSAGE network for representation learning. This process produces 
a feature vector that captures the most relevant information indicating 
the presence of QIM steganography, which is then used in the final 
classification step. The network architecture, as depicted in Fig.  4, 
comprises two sub-networks: GraphSAGE Network and Classification 
Network.

4.3.1. GraphSAGE network
In this architectural framework, the GraphSAGE Network consists 

of two key phases: graph updating and readout (pooling). The objective 
of this network is to extract a vector of the most relevant features for 
steganalysis.

During the graph updating phase, the node embeddings within the 
graph undergo a series of operations aimed at refining and modify-
ing them. This process is crucial for extracting essential features in 
steganalysis. In our architecture, three GraphSAGE convolution layers 
are employed to progressively extract more abstract features from the 
input graph data. The GraphSAGE algorithm, suggested by Hamilton 
et al. [55], is instrumental in this process.

Starting with the input graph 𝐺 = (𝑉 ,𝐸) including all feature 
vectors corresponding to the graph nodes {𝑥𝑣,∀𝑣 ∈ 𝑉 }, the GraphSAGE 
algorithm is determined by how many graph convolutional layers 𝐾 are 
employed, which in our design is set to 3. This determines the number 
of hops used for aggregating node information. Furthermore, differ-
entiable aggregator functions 𝐴𝐺𝐺𝑘,∀𝑘 ∈ {1,… , 𝐾} are employed to 
combine information from neighboring nodes. At each iteration, the al-
gorithm collects information from a node’s neighbors, their neighbors, 
and so on.

Each iteration involves sampling nearby nodes and summarizing 
their features into a consolidated vector. At the 𝑘th layer, the combined 
features for a node 𝑣 based on the sampled neighborhood 𝑁(𝑣), ℎ𝑘𝑁(𝑣), 
is described in Eq.  (7): 
ℎ𝑘𝑁(𝑣) = 𝐴𝐺𝐺𝑘({ℎ𝑘−1𝑢 ,∀𝑢 ∈ 𝑁(𝑣)}), (7)

where ℎ𝑘−1𝑢  corresponds to the output of node 𝑢 from the previous 
layer. The embeddings of all nodes 𝑢 within the neighborhood of node 
𝑣 are collectively merged to form the embedding of node 𝑣 at layer 𝑘. 
In Eq.  (7), various aggregation functions such as mean, pooling, graph 
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convolution, or LSTM can be applied. Within the scope of our model, 
the LSTM architecture achieved superior performance, as proved later 
in experiments.  The LSTM aggregator processes the set of neighbor 
representations as a sequence through an LSTM. For each node 𝑣: 
ℎ𝑘𝑁(𝑣) = LSTM(ℎ𝑘−1𝑢1

, ℎ𝑘−1𝑢2
,… , ℎ𝑘−1𝑢𝑚

) (8)

where (𝑢1, 𝑢2,… , 𝑢𝑚) is a random permutation of 𝑁(𝑣). The final hidden 
state of the LSTM sequence processing is used as the aggregated vector 
ℎ𝑘𝑁(𝑣). 

The neighborhood information, represented by the aggregated em-
beddings ℎ𝑘𝑁(𝑣), is combined with the previous layer’s embedding of the 
node 𝑣, ℎ𝑘−1𝑣 , through concatenation. This concatenated vector is then 
transformed by the trainable weight matrix 𝑊𝑘 and passed through a 
non-linear activation function  (e.g., rectified linear unit (ReLU)). The 
outcome yields the updated node representation at layer 𝑘, as described 
in Eq.  (9): 
ℎ𝑘𝑣 = 

(

𝑊𝑘 ⋅ CONCAT(ℎ𝑘−1𝑣 , ℎ𝑘𝑁(𝑣))
)

(9)

The final representation of node 𝑣, denoted as 𝑧𝑣, is obtained from 
the node’s embedding at the last layer 𝐾, i.e., ℎ𝐾𝑣 , as formulated in Eq. 
(10). The procedure of node embedding through two GraphSAGE layers 
is depicted in Fig.  5. 
𝑧𝑣 = ℎ𝐾𝑣 ,∀𝑣 ∈ 𝑉 (10)

The objective is graph classification, where graphs are aimed to be 
categorized into two classes: stego and cover. This task differs from the 
more common objective of classifying nodes or edges within a graph. 
To achieve this, a graph-level representation 𝑧𝐺 ∈ R𝑄 needs to be 
generated from the node embeddings. This is generally accomplished 
by applying a pooling operation over the final-layer node embeddings 
𝑧𝑣. Instead of this, a hierarchical pooling approach has been intro-
duced by pooling the node-level embeddings at each layer ℎ𝑘𝑣 ,∀𝑘 ∈
{1,… , 𝐾}. This approach allows for capturing features at different 
levels of abstraction. By aggregating information hierarchically, a com-
prehensive graph-level representation is created that encompasses both 
fine-grained details and high-level patterns. This proves particularly 
valuable in steganalysis tasks, where subtle changes in different parts of 
the graph can collectively indicate the presence of hidden information. 
Common options for pooling methods in graph analysis include mean 
pooling, max pooling, and sum pooling. In our QIM steganalysis con-
text, the use of mean pooling was found to be especially effective, as it 
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Fig. 5. A two-layer node embedding process. ℎ0
𝑣 denotes the initial attribute of node 𝑣. In this illustration, node embedding is shown for the target node 𝐴. 

Notably, the embedding of other nodes occurs in parallel.
averages the features at each layer, enabling the capture of collective 
characteristics crucial for QIM steganography detection. The graph-
level representation at each layer 𝑘, 𝑧𝑘𝐺, is defined as in Eq.  (11): 

𝑧𝑘𝐺 = MeanPool
({

ℎ𝑘𝑣 , 𝑣 ∈ 𝑉
})

= 1
|𝑉 |

∑

𝑣∈𝑉

(

𝐡𝐾𝑣
)

, ∀𝑘 ∈ {1,… , 𝐾} (11)

where MeanPool is the pooling operation that averages the node rep-
resentations. Mean pooling preserves the collective statistics and the 
overall distribution of features across nodes, which is crucial for detect-
ing subtle patterns introduced by QIM steganography in compressed 
speech streams. In contrast, max pooling may discard valuable in-
formation by focusing only on the strongest activation, making it 
less effective when the signal differences are minimal and widely 
distributed. This observation is supported by the results presented 
in Section 5.4, which show that using max pooling instead of mean 
pooling leads to a notable drop in detection accuracy.

The final vector representing the entire graph, 𝑧𝐺, is constructed by 
summing all the hierarchically pooled representations 𝑧𝑘𝐺, as expressed 
in Eq.  (12). 

𝑧𝐺 =
𝐾
∑

𝑘
𝑧𝑘𝐺 (12)

This global representation encapsulates the most relevant features 
for steganalysis. Additionally, it acts as the input for the subsequent 
classification layer, allowing the model to make predictions about the 
presence of steganography in the input data.

4.3.2. Classification task
After obtaining the comprehensive graph-level representation 𝑧𝐺, 

the model proceeds to the classification stage. The primary purpose of 
this stage is to differentiate between regular speech (cover data) and 
speech samples with embedded QIM steganography (stego speech). The 
classification incorporates two key layers: a dropout layer and a linear 
classification layer, referred to as the fully connected layer.

The first step is to apply dropout to 𝑧𝐺 to prevent overfitting. 
To prevent overfitting, dropout randomly sets a portion 𝑝 of input 
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activations to zero during training updates. The dropout layer can be 
formulated as: 
𝑧𝐷 = (𝑧𝐺 , 𝑝), (13)

where  denotes the dropout function, and 𝑧𝐷 is the resulting vector 
after applying this fucntion.

The result from the dropout layer is subsequently passed to the fully 
connected layer to perform the final classification. The latter layer maps 
the representation to the output space for binary classification, with 
output neurons equal to the number of target classes (two in our case: 
‘‘cover’’ and ‘‘stego’’). Mathematically, the final classification 𝑦̂ can be 
expressed as follows: 
𝑦̂ = 𝑊𝐹𝐶𝑧𝐷 + 𝑏𝐹𝐶 , (14)

where 𝑊𝐹𝐶 and 𝑏𝐹𝐶 represent the weights and biases of the fully 
connected layer, respectively. The output 𝑦̂ corresponds to the raw 
logits for each class.

The model employs CrossEntropyLoss as its loss function for the 
binary classification task, which combines a softmax activation and a 
negative log-likelihood loss. The function is defined as: 

Loss = − 1
𝑁

𝑁
∑

𝑖=1

[

𝑦𝑖 log

(

exp(𝑦𝑖)
∑

𝑗 exp(𝑦𝑗 )

)

+(1 − 𝑦𝑖) log

(

1 −
exp(𝑦𝑖)

∑

𝑗 exp(𝑦𝑗 )

)]

(15)

where Loss is the loss value to be minimized, 𝑦𝑖 is the true label, 𝑦𝑖
are the logits for the 𝑖th sample, and 𝑁 is the number of samples in 
the dataset. ∑𝑗 exp(𝑦𝑗 ) represents the sum of the exponentials of logits 
across all classes, used for normalization in the softmax function.

The proposed architecture, consisting of graph construction, the 
GraphSAGE network, and the classification module, is implemented 
and evaluated under various experimental configurations, as detailed 
in the next section.

5. Experiments and discussion

The efficacy of the suggested steganalysis technique is assessed 
through various experiments, focusing on factors such as the embed-
ding rate, duration of the speech sample, and time consumption.
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Table 2
Dataset description.
 Feature Description  
 Total duration 113 h (72 h English, 41 h Chinese)  
 Number of recordings 320 recordings in 16-bit PCM format  
 Speakers Various male and female speakers 

(sourced from the Internet)
 

 Codec G.729A LBR speech codec  
 Steganography method CNV-QIM embedding during G.729A 

encoding
 

 Embedding rates tested 20%, 40%, 60%, 80%, 100%  
 Segment lengths (𝐿𝑠) 0.5 s, 1 s, 3 s, 5 s, 7 s, 10 s  
 Train/Validation/Test Split 70%/15%/15% (randomized)  
 Cover/Stego ratio 1:1 in each subset  

5.1. Experiment setup

The experiments were conducted using a dataset described in [14] 
and available on the Github1 platform. This dataset includes 72 h of 
English speech and 41 h of Chinese speech, totaling 320 recordings in 
16-bit PCM format. The speech samples were sourced from the internet 
and included contributions from various male and female speakers. In 
our methodology, the G.729 A LBR speech codec was employed to en-
code the original speech samples, forming the basis of our cover speech 
dataset. To create the stego samples, the CNV-QIM [52] steganography 
method was used, inserting secret bits during the G.729 A encoding 
phase.

To assess the robustness of our detection technique under different 
conditions, stego samples were generated at varying embedding rates 
ranging from 20% to 100% with a step size of 20%. Moreover, the 
algorithm’s ability to detect samples of varied lengths was assessed by 
segmenting entries in both the cover and stego speech datasets into 
sample lengths 𝐿𝑠 of 0.5 s, 1 s, 3 s, 5 s, 7 s, and 10 s. For each test, 
samples were chosen from the stego and cover datasets based on the 
designated embedding rate and duration. For example, for the training 
set with 10 s segments and an embedding rate of 100%, there were 
10,552 cover samples and 10,552 stego samples. The speech data were 
partitioned into three subsets — 70% for training, 15% for validation, 
and 15% for testing — using a randomized split while maintaining 
a 1:1 cover-to-stego ratio within each subset to ensure balanced and 
unbiased evaluation. The validation subset was employed to fine-tune 
the model’s parameters, whereas the testing portion served to assess 
the model’s effectiveness. A comprehensive summary of the dataset 
characteristics is provided in Table  2.

The process of training and testing our model is depicted in Fig.  6 
(left-hand process).

The proposed steganalysis model was trained on the Kaggle platform 
using a P100 GPU. The model was implemented with the PyTorch and 
PyTorch Geometric frameworks, using Adam as the optimizer, config-
ured with a learning rate of 0.003 for efficient convergence. A batch 
size of 32 was employed during data preprocessing and model training, 
spanning 150 epochs to improve the proposed GNN-based steganalysis 
model’s performance. The key hyperparameters used during training 
and model configuration are summarized in Table  3. These parameters 
were selected empirically through iterative experimentation to achieve 
the best detection accuracy and generalization performance

5.2. Evaluation metrics

The proposed model is assessed using key performance indicators, 
namely detection accuracy, precision, recall, F1-score, detection time, and
computational complexity.

The classification-related measures (accuracy, precision, recall, and 
F1-score) are computed based on the results of binary classification, 
which are summarized through four categories in the confusion matrix:

1 https://github.com/fjxmlzn/RNN-SM.
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Table 3
Summary of hyperparameters used for model training.
 Hyperparameter Value  
 Optimizer Adam  
 Learning rate 0.003  
 Batch size 32  
 Number of epochs 150  
 Dropout rate 0.3  
 GNN layers GraphSAGE  
 Number of layers 3  
 Hidden chanels 64  
 Aggregation function LSTM  
 Pooling method Mean  
 Activation function ReLU  
 Loss function Binary Cross-Entropy 

• True Positive (TP): Instances that are actually stego and are 
correctly predicted as stego.

• True Negative (TN): Instances that are actually cover and are 
correctly predicted as cover.

• False Positive (FP): Instances that are actually cover but are 
incorrectly predicted as stego.

• False Negative (FN): Instances that are actually stego but are 
incorrectly predicted as cover.

The evaluation metrics are defined as follows:
Detection accuracy: This metric measures the proportion of cor-
rectly identified instances of steganography compared to the overall 
instances. It is calculated as: 
Accuracy = TP + TN

TP + TN + FP + FN (16)

Detection accuracy is a key metric in our case as the dataset is evenly 
distributed, containing the same number of positive (stego) and neg-
ative (cover) samples. In a balanced dataset, the number of instances 
in each class is approximately equal, making accuracy a reliable indi-
cator of the model’s performance. High detection accuracy reflects the 
model’s ability to effectively distinguish between stego and non-stego 
signals, making it a suitable metric for evaluating performance in this 
balanced setting.
Precision: Measures the accuracy of positive predictions made by the 
model. It quantifies the proportion of correctly identified stego samples 
out of all samples that the model predicted as stego. High precision 
indicates a low rate of false positives, which is important to avoid 
incorrectly flagging legitimate communication as covert. It is calculated 
as: 
Precision = TP

TP + FP (17)

Recall (Sensitivity): Measures the model’s ability to find all positive 
instances. It quantifies the proportion of correctly identified stego 
samples out of all actual stego samples present in the dataset. High 
recall indicates a low rate of false negatives, which is crucial for not 
missing any covert communications. It is calculated as: 

Recall = TP
TP + FN (18)

F1-score: The F1-score is the harmonic mean of Precision and Recall, 
providing a single metric that balances both. It is particularly useful 
when dealing with imbalanced datasets (though less critical for our 
balanced dataset) or when both false positives and false negatives carry 
significant costs. It is calculated as: 

F1-score = 2 × Precision × Recall
Precision + Recall =

2 × TP
2 × TP + FP + FN (19)

Detection time (DT): Evaluates the time required for the model to 
process and classify an input sample. DT is critical for assessing the 
efficiency of the model, especially in real-time or online steganalysis 

https://github.com/fjxmlzn/RNN-SM


M. Hemis et al. Array 28 (2025) 100510 
Fig. 6. Process of training, testing and detection.
scenarios. A shorter DT reflects the model’s capability to perform 
analysis swiftly, making it suitable for time-sensitive applications. Since 
the training phase is performed offline and does not impact real-time 
detection performance, which is the primary object if of our work, we 
focus solely on the detection time for evaluating runtime efficiency.
Computational Complexity: This metric provides insight into the 
model’s inherent resource requirements, indirectly indicating its mem-
ory footprint, model size, and raw computational load. It is quantified 
in terms of:

• Parameters: The total number of adjustable values within the 
model’s architecture or its underlying algorithms, which are de-
termined during the training phase. For neural networks, these 
are the trainable weights and biases; for traditional machine 
learning methods, these may include coefficients of statistical 
models or support vectors of classifiers. This directly correlates 
with model size and memory usage.

• Floating Point Operations (FLOPs): The number of arithmetic op-
erations (additions, multiplications, etc.) required for a single 
inference pass. FLOPs indicate the raw computational intensity 
of the model, which influences execution time.
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5.3. Detection performance

This section presents the evaluation results of the proposed ap-
proach under various scenarios, encompassing different sample lengths 
and embedding rates. The assessment begins by examining the impact 
of embedding rates on the system. In real-world scenarios, attackers 
often disperse secret information over an extended period to lower 
the average embedding rate, intending to enhance communication 
concealment. Consequently, effectively detecting steganographic VoIP 
signals at low embedding rates remains an open and difficult problem 
in the research community.

(a) Performance results under varying embedding rates:
A preliminary assessment of the degree of difficulty faced by 
the proposed GNN scheme in uncovering the CNV-QIM stegano-
graphic method, particularly at low embedding rates, was con-
ducted using statistical analysis by comparing cover and stego 
datasets. Fig.  7 presents this analysis using boxplots, contrasting 
cover and stego datasets across various embedding rates. The 
results demonstrate that CNV-QIM maintains consistent mean 
values across different scenarios, with only slight variations 
in the first (Q1) and third (Q3) quartiles as embedding rates 
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increase. This stability indicates that CNV-QIM is a challeng-
ing steganographic method.  The evaluation of the proposed 
steganalysis technique under different embedding rates for 10-
s sample segments, as presented in Table  4, reveals nuanced 
performance characteristics. Notably, the detection capability, 
as measured across all metrics (Accuracy, Precision, Recall, F1-
score), exhibits a slight decreasing trend with lower embedding 
rates. This is attributed to the fact that higher embedding rates 
induce more pronounced changes in codewords, providing a 
more discernible pattern for steganalysis. It is noteworthy that 
even at a low embedding rate of 20%, our approach main-
tains high accuracy, registering at 95.17%, and demonstrates 
strong, balanced performance across the other metrics, with 
Precision at 95.43%, Recall at 94.95%, F1-score at 95.19%, and 
AUC at 95.20%. This high level of accuracy in a low-payload 
scenario is particularly significant, as attackers frequently use 
low embedding rates to minimize statistical disturbances and 
evade detection. The model’s ability to maintain such robust 
performance demonstrates its high sensitivity to even the most 
subtle steganographic artifacts.
To further illustrate this robust performance in the challeng-
ing low-embedding-rate scenario, Fig.  8 presents the detailed 
confusion matrix for the 20% embedding rate. Out of a total 
of 3166 test samples (comprising 1583 actual stego and 1583 
actual cover samples), the model successfully identified 1503 
TP (correctly classified stego) and 1511 TN (correctly classified 
cover). Critically, the false classifications were minimal, with 
only 72 FP (cover incorrectly flagged as stego) and 80 FN 
(stego samples missed). This granular breakdown is crucial for 
practical applications, as it demonstrates the model’s ability to 
strike a critical balance: minimizing false alarms (FP), which 
could disrupt legitimate communication, while simultaneously 
minimizing missed detections (FN), which would allow covert 
channels to go unnoticed. The proposed steganalysis approach 
consistently achieves high detection rates despite the inher-
ent challenge posed by the resilience of CNV-QIM, showcasing 
its strong discriminative power even under subtle embedding. 
This demonstrates that the GNN-based architecture successfully 
learns to distinguish the subtle, distributed changes introduced 
by steganography from the natural variations in cover speech.

(b) Performance results under varying speech segment lengths:
In VoIP steganalysis, the length of speech segments is also a 
crucial factor influencing detection accuracy. A successful ap-
proach must achieve a sufficiently high level of accuracy within 
a limited time detection window. Table  5 explores the impact 
of sample length on various detection performance metrics, fo-
cusing on a fixed embedding rate of 100%. The findings reveal 
that longer sample lengths lead to a steady and significant im-
provement across all performance metrics: Accuracy, Precision, 
Recall, and F1-score. This improvement is rapid, with perfor-
mance reaching near-perfect levels (e.g., 99.97% accuracy at 3 s) 
and achieving a perfect 100% across all metrics from 7-s samples 
onwards. This trend is directly linked to the nature of our GNN-
based model; a longer speech segment translates to a larger 
graph with more nodes and edges. This allows the GraphSAGE 
architecture to aggregate information over a wider neighbor-
hood, resulting in more stable and representative graph-level 
embeddings that make the distinction between cover and stego 
patterns far more pronounced. Crucially, even with short 0.5-s 
segments, the approach we propose attains exceptionally high 
detection performance, with Accuracy, Precision, Recall, and F1-
score all exceeding 98%. This is a critical finding for practical 
deployment, as real-time monitoring systems must often make 
decisions based on individual or fragmented data packets. Fur-
thermore, attackers may intentionally disperse hidden data in 
short, disjointed bursts to evade detection systems that require 
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Fig. 7. Statistical analysis of cover and stego speeches at different embedding 
rates.

Table 4
Detection performance metrics across varied embedding rates for 10s
samples.
 Embedding rate (%) 20 40 60 80 100 
 Accuracy (%) 95.17 99.68 99.94 100 100 
 Precision (%) 95.43 99.68 99.94 100 100 
 Recall (%) 94.95 99.68 99.94 100 100 
 F1-score (%) 95.19 99.68 99.94 100 100 

longer samples for analysis. The remarkable consistency across 
these metrics for each sample length highlights the model’s 
robust and balanced performance, demonstrating its ability to 
minimize both false positives and false negatives. The method 
therefore enables effective detection of QIM steganography even 
for very short segments of monitored VoIP traffic, which is vital 
for real-world scenarios where covert data might be dispersed in 
brief bursts.

(c) Performance results with varying speech segment lengths 
and embedding rate: Fig.  9 provides the results of detection 
accuracy with varying embedding rates for sample segments of 
different lengths. The results reaffirm the method’s reliability, 
with a general upward trend in accuracy as the embedding rate 
and sample length increase. This trend is expected, as longer 
samples and higher embedding rates provide the model with 
more data and a stronger, less ambiguous signal, respectively, 
making the detection task easier. It is evident that achieving ac-
curate detection under low embedding rates with short segments 
poses a challenge for any steganalysis system. This scenario, rep-
resenting the most difficult detection conditions due to minimal 
available information, can be considered a benchmark for model 
robustness. Our approach maintains an acceptable accuracy ex-
ceeding 70% even in these worst-case conditions, which, rather 
than being an ‘‘Achilles’ heel’’, demonstrates that the GNN is still 
able to capture a discriminative signal from extremely sparse and 
noisy data, highlighting its effectiveness.

To further substantiate the discriminative capabilities of our ap-
proach, t-distributed stochastic neighbor embedding (t-SNE) was ex-
ploited to visualize the graph-level representation vectors (Eq.  (12)), 
before and after training, utilizing a set of 2000 graphs selected from 
the training dataset. Fig.  10 presents snapshots of the distribution of 
graph-level representation vectors at different embedding rates while 
utilizing a fixed sample length of 0.5 s. Before training (top-left), 
the cover and stego data points are heavily overlapped, indicating 
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Fig. 8. Confusion matrix under 20% embedding rate.

Table 5
Detection performance metrics across varied sample lengths at 100% embed-
ding rate.
 Sample length (s) 0.5 1 3 5 7 10  
 Accuracy (%) 98.26 99.47 99.97 99.98 100 100 
 Precision (%) 98.27 99.43 99.97 99.98 100 100 
 Recall (%) 98.27 99.49 99.97 99.98 100 100 
 F1-score (%) 98.24 99.46 99.97 99.98 100 100 

Fig. 9. Detection accuracy across varying embedding rates and sample length.

that they are indistinguishable in their raw feature space. The color-
coded representation illustrates the gradual separation of stego and 
cover graphs in the vector space of features post-training. The overlap 
diminishes as the embedding rate increases, reaching almost complete 
separation at a 100% embedding rate. This directly correlates the 
strength of the steganographic signal with the distance between the 
clusters in the learned space, visually confirming the model’s sensi-
tivity. These visualizations intuitively showcase the model’s efficacy 
in extracting and analyzing steganographic speech features across var-
ious embedding rates. As a result, the combination of sensitivity to 
various embedding rates and effectiveness with short samples suggests 
that our method is versatile and applicable across a wide range of 
steganographic scenarios, from high-capacity hidden messages to more 
subtle, security-conscious embeddings. These characteristics position 
our approach as a powerful tool in the ongoing challenge of audio 
steganalysis, capable of adapting to different steganographic strategies 
while maintaining high detection accuracy. These findings provide 
valuable insights into how the model can be applied in practical 
13 
VoIP security systems, as discussed in the following section. Moreover, 
these findings offer valuable insights into the practical applicability of 
our model in real-world VoIP security systems, which will be further 
explored in the Section 6.

5.4. Comparison with different model variants

The purpose of this section is to demonstrate the effectiveness of the 
suggested GraphSAGE-based architecture by comparing it with several 
of its variants. Six variant architectures, indexed from #2 to #7, were 
considered in the experiment, each with components slightly different 
from our complete proposed network #1. The experiment focused on a 
speech length of 10 s and an embedding rate of 20%

Table  6 presents the results of the experiment, showing the de-
tection accuracy for each architecture variant. The results highlight 
the significance of various components in the proposed architecture. 
It is obvious that the complete model (#1) yields the highest level 
of accuracy, demonstrating the effectiveness of our GraphSAGE for 
steganalysis. Variant #2, which removes the first and second max-
pooling layers, experiences a significant drop in accuracy, emphasizing 
the importance of using the hierarchical pooling approach in capturing 
fine-grained details and high-level patterns. This is particularly bene-
ficial in scenarios with low embedding rates where changes produced 
by steganography are minimal. In variant #3, the use of a mean aggre-
gator instead of LSTM highlights the importance of the latter in our 
approach. The LSTM aggregator captures sequential dependencies and 
temporal patterns in the input data, which is crucial for steganalysis 
tasks dealing with speech segments. By leveraging LSTM, the model 
can effectively learn inter-frame relationships and sequential context, 
allowing for more effective detection of subtle changes introduced by 
QIM steganography. Variant #4, using max pooling instead of mean 
pooling, also leads to an accuracy of 85%, significantly inferior to the 
complete model. A possible explanation is that max-pooling selects the 
maximum value from each layer, discarding the information about the 
overall distribution of features within the layer. In the context of QIM 
steganalysis, where capturing collective characteristics is crucial for ef-
fective detection, this loss of information makes it harder for the model 
to notice subtle patterns that indicate steganographic content. Mean 
pooling, on the other hand, averages the features at each layer, provid-
ing a more comprehensive representation of the layer’s characteristics 
and proving to be more effective for our specific steganalysis task. 
Furthermore, variant #5, where GraphSAGE layers are replaced with 
GCN, exhibits a notable decrease in accuracy, suggesting that the spe-
cific architecture of GraphSAGE contributes significantly to the model’s 
performance. Similarly, when GraphSAGE layers are replaced with 
graph attention network (GAT) layers (Variant #6), while performance 
is strong (91.63%), it remains lower than our proposed GraphSAGE 
model. This indicates that for this specific VoIP steganalysis task, the 
fixed aggregation approach of GraphSAGE, which comprehensively 
samples and aggregates features from a fixed neighborhood, provides a 
more effective representation for QIM-induced subtle changes than the 
attention-based weighting of GAT layers. Finally, in variants #7 and #8, 
the first reduces the number of GraphSAGE layers by one, while the 
second adds one extra GraphSAGE layer. Both configurations result in 
a decrease in terms of accuracy, consequently supporting the suitability 
of employing three layers in our model architecture. Generally, a 
deeper network has the potential to capture more intricate features 
within the input data. Variant #8’s performance highlights a crucial 
observation – the depth of the network does not necessarily correlate 
with improved model performance. Deeper networks, as seen in variant 
#8, may face challenges such as overfitting and vanishing gradient 
problems, emphasizing the importance of striking a balance between 
network depth and effective steganalysis. The optimal configuration 
should not only capture relevant features but also mitigate potential 
issues associated with increased model complexity.
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Fig. 10. Distribution of graph-level representation vectors before and after training of the proposed model in statistical space across different embedding rates 
while utilizing a fixed sample length of 0.5 s.
Table 6
Detection performance under various model configurations.
 Index Architecture variant Accuracy (%) 
 #1 The complete proposed model 95.17  
 #2 Consider only the last mean pooling layer 

(delete the first and second mean pooling)
52.56  

 #3 Replace LSTM aggregator with Mean aggregator 86.70  
 #4 Replace Mean pooling with Max pooling 85.25  
 #5 Replace the GraphSAGE layers with GCN Layers 68.37  
 #6 Replace the GraphSAGE layers with GAT Layers 91.63  
 #7 Use 2 GraphSAGE layers 94.38  
 #8 Use 4 GraphSAGE layers 93.25  

This ablation study reaffirms the crucial role each architectural 
component plays in the overall performance of our model. To further 
demonstrate the effectiveness of our approach, we next conduct a 
direct comparison against existing state-of-the-art methods in VoIP 
steganalysis.

5.5. Comparison with SOTA methods

To validate the performance of the proposed model, a comparison 
was conducted with the following four SOTA methods: IDC [34], SS-
QCCN [35], RNN-SM [14], and CNN-LSTM [32]. These methods were 
selected for several reasons. First and foremost, they are specifically 
tailored for detecting QIM steganography, similar to our approach. 
Secondly, these methods are established SOTA approaches frequently 
used as benchmarks in various studies. Lastly, to ensure a fair and 
equitable comparison, these approaches were reimplemented based on 
their original papers, which either provided GitHub links for implemen-
tation, as with [14], or were thoroughly documented with sufficient 
details for independent reimplementation, as provided in [32,34,35].
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Table 7
Comparison of detection accuracy with SOTA methods.
 Sample length (s) Method Embedding rate (%)
 20 40 60 80 100  
 

0.5

IDC [34] 59.15 73.35 81.90 89.40 94.05 
 SS-QCCN [35] 61.25 77.35 87.90 93.15 95.85 
 RNN-SM [14] 70.81 84.39 93.14 96.09 97.43 
 CNN-LSTM [32] 71.78 85.52 92.69 96.76 98.29 
 Our 70.20 83.35 92.58 95.63 98.26 
 

5

IDC [34] 68.15 84.80 95.10 98.35 99.60 
 SS-QCCN [35] 71.30 96.15 99.40 99.90 100  
 RNN-SM [14] 67.91 88.76 96.59 98.67 99.60 
 CNN-LSTM [32] 89.98 96.80 99.66 99.81 99.87 
 Our 90.76 98.88 99.89 99.97 99.98 
 

10

IDC [34] 64.50 85.60 95.95 99.55 99.70 
 SS-QCCN [35] 72.15 98.75 99.80 100 100  
 RNN-SM [14] 62.41 92.74 98.32 99.65 99.93 
 CNN-LSTM [32] 92.38 99.65 99.74 99.93 99.96 
 Our 95.17 99.68 99.94 100 100  

The implementations of these approaches were carried out in
Python, adhering to the parameters specified in their respective papers. 
For IDC and SS-QCCN, given their reliance on SVM with quadratic time 
complexity, it is impractical to evaluate them using the entire stego and 
cover segment datasets. Following the experimental settings in [35], 
4000 samples were randomly selected for the training set, maintaining 
a cover-to-stego ratio of 1:1, and 2000 samples for the testing set, also 
with a cover-to-stego ratio of 1:1. On the other hand, RNN-SM and 
CNN-LSTM were evaluated using the same dataset employed in our 
proposed approach.

Table  7 presents a detailed comparison of detection accuracy be-
tween the proposed model and SOTA approaches across various speech 
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Fig. 11. Comparison of mean detection accuracy with standard deviation for different methods across various sample lengths.
segment lengths and embedding rate settings. The results reveal that 
our approach and CNN-LSTM exhibit superior accuracy. Our model 
demonstrates competitive performance in 0.5-s and 5-s speech seg-
ments, compared to RNN-SM and SS-QCCN, respectively. In comparison 
to IDC and SS-QCCN, our approach significantly outperforms these 
methods, notably in cases where embedding rates are low and segments 
are short. When compared to RNN-SM, our approach demonstrates a 
notable disparity, especially at low embedding rates (20% and 40%). 
However, in the context of 0.5-s speech length, RNN-SM performs on 
par or slightly better than our model. Overall, across all scenarios where 
our model does not achieve the highest accuracy, its performance 
remains close to the best results.

Additionally, when the sample duration is 5 s and 10 s, and the 
embedding rate surpasses 80%, the detection accuracy of almost all 
models stabilizes around 99%. The primary challenge arises in scenar-
ios with short speech fragments and/or low embedding rates, where 
our approach still demonstrates satisfactory performance. In terms of 
statistics, as presented in Fig.  11, our method demonstrates competi-
tive and, in certain scenarios, superior performance in terms of mean 
detection accuracy and standard deviation compared to other SOTA 
methods. At shorter sample lengths (0.5 s), while our mean accuracy 
slightly trails behind the CNN-LSTM method, it maintains a lower stan-
dard deviation, indicating more consistent performance across different 
embedding rates. As the sample length increases to 5 and 10 s, our 
method outperforms all other techniques, achieving the highest mean 
accuracy and standard deviation. Furthermore, when considering the 
overall performance across all sample lengths, our method exhibits the 
highest mean accuracy and the most consistent performance.

To further validate the approach, a detection comparative analysis 
was conducted with four recently proposed methods:  E-SWAN [44], Bi-
LSTM-3DCNN [45], TENet [47], and FedSpey [48]. These methods use 
the same dataset and QIM steganography technique as our work. Due 
to the complexity of the techniques and limited available information, 
these methods were not re-implemented. Consequently, the comparison 
is based on results presented in the corresponding published papers and 
is limited to scenarios common to our study.

For the TENet approach, which is based on Transformer architec-
ture, the nearest comparable scenario to our study involves embedding 
rates of 50% with sample lengths of 1, 5, and 10 s. This closely aligns 
with our scenario of 60% embedding rates and identical sample lengths. 
TENet reports accuracies of 96%, 99%, and 99% for these respective 
durations. In comparison, our approach achieves accuracies of 95.83%, 
99.89%, and 99.94% for the same sample lengths.
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FedSpy applies federated learning to several SOTA steganalysis 
approaches, specifically RNN-SM. Their results focus on 1-s sample 
lengths with varying embedding rates. For a 40% embedding rate, 
FedSpy achieves an accuracy of about 95%, while our approach attains 
90.98%. At a 100% embedding rate, both approaches reach near 100% 
accuracy.

E-SWAN, which relies on LSTM and convolutional modules, was 
evaluated using only 10-s audio samples across varying embedding 
rates. At a low embedding rate of 20%, it achieved an accuracy of 
94.65%, while our approach reached 95.17%.

The Bi-LSTM-3DCNN method was tested with 10-s samples at dif-
ferent embedding rates and with 100% embedding at varying sample 
lengths. In the challenging scenarios—10 s at 20% embedding and 1 s 
at 100% embedding—it achieved accuracies of 77.99% and 80.61%, 
respectively. In contrast, our approach significantly outperformed it, 
achieving 95.17% and 99.47% in the same settings.

These findings underscore the robustness and effectiveness of our 
proposed GraphSAGE-based model across diverse scenarios, establish-
ing it as an alternative and advanced solution in QIM steganalysis.

5.6. Time efficiency and computational complexity

Time efficiency is a crucial consideration when assessing the prac-
tical applicability of a model, particularly for online applications. To 
evaluate the time efficiency of our method, the average DT across 
various sample lengths was computed. The detection process is depicted 
in Fig.  6 (right-hand process). Furthermore, a comparative analysis was 
conducted with the four previously mentioned approaches to assess the 
efficiency of our method in relation to existing steganalysis models. 
The detection process considered in our comparison encompasses the 
phases starting with a compressed VoIP sample and concluding with the 
decision on whether a secret message is embedded. It is important to 
emphasize that all compared models, including ours, are trained offline. 
During the detection phase, the pre-trained models are loaded into 
memory and used for inference, which reflects a realistic deployment 
scenario. This ensures a fair comparison focused solely on runtime 
detection performance. These experiments were implemented on the 
Kaggle platform, utilizing only CPU without any GPU acceleration. 
To ensure a fair comparison, the mean and standard deviation were 
computed over 200 detection tests for each sample length 𝐿𝑠. Fig. 
12 presents the DT of our approach across different sample lengths. 
Notably, the mean DT demonstrates a nearly linear increase with 
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Fig. 12. DT of the proposed GNN approach across various sample lengths.

respect to the sample length, as approximately modeled by Eq.  (20), 
expressed as follows: 
DT = 0.003 × 𝐿𝑠 + 0.0145 (20)

The standard deviation, visualized by the arrows, highlights the 
variability in DTs, particularly for longer samples.

It is evident that our GNN model maintains a relatively consis-
tent mean detection time, even when processing moderately longer 
speech segments. For instance, detecting steganography in a 10-s sam-
ple takes approximately 0.045 s, representing only 0.45% of the sample 
length. While detecting steganography in short segments poses a chal-
lenge, our approach ensures fast detection in such scenarios. Detecting 
steganography in 0.5-s samples takes about 0.016 s, which represents 
approximately 3.2% of the sample length. These performances are 
attributed to several factors. Firstly, the adopted GraphSAGE archi-
tecture is relatively simple, leading to a reduced computational load. 
This simplicity contributes to faster training and DTs. Secondly, the 
GraphSAGE layer uses graph-based operations for information aggrega-
tion. The method of aggregating information from neighboring nodes 
in a graph can be computationally efficient, especially for tasks that 
involve capturing dependencies and relationships in a graph structure. 
Finally, the simplicity of the graph construction approach reduces 
the computational complexity and resource requirements both in the 
training and detection phases. These results underscore the efficiency 
of our suggested GNN-based steganalysis method, demonstrating its 
suitability for deployment in online steganalysis tasks.

Table  8 provides insights into the time efficiency of our approach 
compared to SOTA methods in three sample length scenarios (0.5 s, 
5 s, and 10 s). The detection time is reported as the mean value [±
standard deviation]. Our approach consistently demonstrates superior 
time efficiency, outperforming the SOTA methods in terms of speed 
across all sample lengths. The IDC approach presents closer DTs to our 
approach, which can be explained by the simple architecture adopted 
in IDC, focusing only on inter-frame correlation. SS-QCCN, on the other 
hand, yields the least favorable results, primarily due to its method of 
extracting intra- and inter-frame correlations and its utilization of the 
PCA method to reduce the dimensionality of a 131,072-dimensional 
feature vector to 300. This process incurs a significant amount of 
time, contributing to the observed extended DT in this method. For 
CNN-LSTM and RNN-SM, the complicated architecture, particularly for 
CNN-LSTM, which involves sequential and convolutional operations, 
might be more computationally intensive, especially when dealing with 
longer sequences, leading to slower DTs compared to ours. These results 
demonstrate the exceptional efficiency of our proposed model, enabling 
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Table 8
DT (s) of our approach compared to SOTA method. Results are reported as 
Mean [± standard deviation].
 Method Sample length (s)
 0.5 5 10  
 IDC [34] 0.019 [± 0.004] 0.037 [± 0.003] 0.049 [± 0.002] 
 SS-QCCN [35] 0.099 [± 0.056] 0.134 [± 0.070] 0.146 [± 0.053] 
 RNN-SM [14] 0.032 [± 0.057] 0.081 [± 0.083] 0.127 [± 0.075] 
 CNN-LSTM [32] 0.075 [± 0.069] 0.119 [± 0.068] 0.152 [± 0.083] 
 Our 0.016 [±0.001] 0.029 [±0.022] 0.045 [±0.035] 

near real-time identification of hidden data in VoIP voice transmis-
sions. This efficiency has significant practical implications, allowing 
for continuous monitoring of communications and immediate detec-
tion of steganographic content. The model’s scalability across various 
sample lengths and its superior speed compared to SOTA methods 
indicate excellent adaptability and resource efficiency. This perfor-
mance could significantly enhance operational efficiency in security 
applications and allow for potential seamless integration into existing 
VoIP infrastructure.

While our reported DT in Table  8 and Fig.  12 focuses on single-
sample inference—a common practice in related steganalysis works
[11–14,16,32,34–49] that assesses minimal latency for individual
streams—the architecture of our proposed GraphSAGE-based model is 
inherently well-suited for batch processing, a critical aspect for high-
throughput real-world deployments. The core operations within our 
GraphSAGE layers are highly parallelizable, meaning multiple sliding 
windows (each representing a speech segment) can be grouped into 
batches and processed simultaneously. This capability, efficiently man-
aged by modern deep learning frameworks on GPUs or multi-core CPUs, 
allows for a significant reduction in the effective detection time per 
sample when handling a high volume of traffic. Thus, the low single-
sample DT provides a strong foundation for our system’s scalability and 
high throughput in large-scale, real-time VoIP environments.

To further validate our system’s efficiency, we also conducted an 
analysis of the computational complexity for all evaluated models, 
quantifying them by their number of parameters and floating point 
operations (FLOPs), as presented in Table  9. Although our model does 
not have the lowest FLOPs, it maintains a strong balance between 
architectural simplicity and performance. It uses fewer parameters than 
IDC, SS-QCCN and CNN-LSTM while achieving a significantly faster 
DT. Several key architectural and implementation factors explain this 
outcome. While FLOPs quantify raw arithmetic operations, the actual 
execution speed is heavily influenced by factors like memory access 
patterns, instruction pipelining, and how efficiently operations can be 
vectorized or parallelized by the underlying hardware and software 
libraries (e.g., BLAS for matrix multiplications). IDC’s very low FLOPs 
(1.53 MFLOPs) stem from its statistical feature extraction, which in-
volves computations like histograms and Markov chain probabilities. 
These operations, while theoretically low in FLOPs, can involve fre-
quent, less cache-friendly memory accesses or branch predictions that 
are less optimized for modern CPUs compared to highly parallelizable 
matrix multiplications typical in GNN layers. GraphSAGE, especially 
with the simple directed acyclic graph structure we employ, might be 
particularly efficient for single-sample inference on CPUs. The aggre-
gation and update steps, while involving more FLOPs than a direct 
statistical lookup, may benefit from more optimized library calls that 
process data blocks efficiently. RNN-SM, while having fewer parameters 
and FLOPs, might be subject to the inherent sequential bottleneck of 
RNNs, making it slower for CPU inference on single, short samples 
compared to our parallelizable graph operations.

The efficiency of our model lies not just in theoretical FLOPs, but 
in the overall streamlined pipeline, the nature of its core computa-
tional blocks which are well-suited for modern CPU architectures, and 
its ability to capture complex relational features without relying on 
computationally expensive preliminary feature engineering common in 
some other methods. 
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Table 9
Comparison of model parameters and FLOPs for all methods.
 Model Parameters FLOPS  
 IDC [34] 735K 1.53M  
 SS-QCCN [35] 5.2M 11.63M 
 RNN-SM [14] 33K 6.1M  
 CNN-LSTM [32] 258K 46.2M  
 Our 83K 22.8M  

6. Real-world applications, limitations, and improvements

In real-world applications, the proposed GraphSAGE-based steganal-
ysis approach offers substantial practical benefits for enhancing the se-
curity of VoIP communication systems and safeguarding against covert 
communication channels. Its key strengths — high accuracy and effi-
ciency — make it particularly well-suited for deployment in various 
practical scenarios.

• Cybersecurity and network monitoring: Internet service
providers (ISPs) and network administrators could deploy this 
system to detect hidden communications in VoIP traffic, poten-
tially uncovering malicious activities or data exfiltration attempts. 
Corporate networks could use it to ensure compliance with data 
protection policies and prevent unauthorized data transfers.

• Law enforcement: Intelligence agencies could utilize this tech-
nology to identify covert communication channels used by crimi-
nal organizations or terrorist groups. Digital forensics teams could 
apply this method to analyze seized communication devices for 
hidden messages.

• Digital rights management: Content distribution platforms could
implement this approach to detect unauthorized watermarking or 
copyright infringement in audio streams.

• E-learning and online examination integrity: Educational in-
stitutions could use this technology to ensure the authenticity 
of voice-based online assessments and prevent cheating through 
hidden audio cues.

• IoT security: As voice-controlled IoT devices become more preva-
lent, this approach could be used to detect potential security 
breaches or unauthorized access attempts via steganographic 
commands.

Although our approach demonstrates strong performance, it faces 
some limitations and challenges. Firstly, the model struggles with very 
short sample lengths (less than 0.5 s) and extremely low embedding 
rates (below 20%). This difficulty arises because there is limited infor-
mation available in these cases, making it challenging to extract enough 
features for accurate detection. One possible solution to overcome this 
limitation is to integrate GAT [58] into the model. GATs are a type of 
GNN that utilizes attention mechanisms to focus selectively on the most 
relevant connections and information within the graph. By assigning 
higher weights to connections that reveal significant variations in QIM 
sequences, GATs ‘‘could be’’ more effectively capture subtle changes in 
short samples and low embedding rates.

Secondly, the current model is specifically designed for QIM-based 
steganography in G.729 compressed speech, and its effectiveness in 
detecting other steganography methods used in VoIP streams, such as 
those based on ACB, FCB  and LSB, or in different codecs (e.g., G.711, 
G.722), is limited. To address this limitation and enhance its versatility, 
a multi-graph construction approach combined with a fusion network 
can be explored. This involves constructing separate graphs for differ-
ent parameter types (QIS, ACB, FCB, etc.) or even for representations 
derived from different codecs, and then capturing the unique variations 
introduced by each steganography method or codec. A fusion net-
work, potentially implemented using LSTM or attention mechanisms, 
would then aggregate and fuse features extracted from these individ-
ual graphs, learning to dynamically weigh their contributions. This 
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combined approach could enable the model to generalize to different 
steganography techniques and codecs and enhance its ability to detect 
a broader range of hidden messages within VoIP streams.

Finally, although the dataset is diverse in terms of speakers and 
language (English and Chinese), it is based on pre-recorded data and 
a specific codec/steganography pair. Real-world VoIP traffic can ex-
hibit variability in network conditions, background noise, codec im-
plementations, and potentially unknown or adaptive steganography 
techniques. Evaluating the model’s performance on live or more diverse 
traffic is necessary. 

7. Ethical considerations

The primary objective of this research is to enhance cybersecu-
rity by providing a robust and efficient method for detecting covert 
communications hidden within VoIP streams. This capability is crucial 
for defensive purposes, including protecting national security, pre-
venting intellectual property exfiltration, and aiding law enforcement 
in countering illicit activities. However, we acknowledge that, like 
many cybersecurity technologies, steganalysis tools could potentially 
be misused for unauthorized surveillance or infringement on individual 
privacy.

It is important to emphasize that our method is designed solely to 
detect the presence of steganography, not to extract, interpret, or moni-
tor the content of any communication. Its responsible deployment must 
be strictly governed by strong legal frameworks and transparent ethical 
guidelines to ensure that it is used only for legitimate purposes and in 
full compliance with privacy laws and human rights. Our contribution 
aims to empower defenders in the ongoing cyber security landscape, 
fostering a more secure digital environment where covert malicious 
activities can be identified, thus supporting a balance between security 
needs and individual privacy. We advocate for the ethical application 
of this technology in accordance with all relevant regulations and 
principles. 

8. Conclusion

In this article, a novel steganalysis algorithm for VoIP streams based 
on the GraphSAGE architecture was introduced. The proposed GNN 
method showcases efficient performance in detecting QIM steganog-
raphy in VoIP signals. Notably, when compared to existing SOTA 
algorithms, it demonstrates a superior compromise between detection 
accuracy and efficiency. Achieving detection accuracy exceeding 98% 
for 0.5-s samples, and 95.17% under 20% embedding rate scenarios 
— representing an improvement of 2.8% over the best-performing 
SOTA approaches. Additionally, it maintains high computational effi-
ciency, with an average detection time as low as 0.016 s (a 0.003-s 
improvement), which corresponds to less than 3% of the sample length, 
making it well-suited for online detection systems. Additionally, this 
work contributes to the field by introducing the use of GNNs, specifi-
cally GraphSAGE, in VoIP steganalysis, showcasing its practicality and 
effectiveness.

Looking ahead, future research will concentrate on refining the 
model to address its limitations as detailed in Section 6. This includes 
enhancing its ability to detect very short sample lengths with very 
low embedding rates, handling various steganography methods, and 
accurately predicting embedding rates. Additionally, an important di-
rection for future work is to extend the model to identify the specific 
positions of embedded bits within the VoIP streams. This challenging 
scenario may involve developing more granular feature extraction tech-
niques that focus on bit-level analysis. Furthermore, investigating the 
robustness of GNN-based steganalysis against evasion and adversarial 
attacks remains an essential research avenue. Incorporating adversarial 
training strategies could help improve the model’s resilience to sophisti-
cated obfuscation attempts. Finally, extending the proposed GNN-based 
framework to multi-modal steganalysis — for example, combining VoIP 
with video streams — could broaden its applicability and impact, 
paving the way for more comprehensive cross-domain steganalysis 
systems.
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