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Abstract— This paper investigates the impact of Denial-of-
Service (DoS) attacks on sampled-data control systems with
non-uniform sampling and extends the analysis to cloud-based
control architectures subject to random delays and packet
losses. A Lyapunov-based framework is developed to ensure
exponential stability of linear time-invariant (LTI) systems un-
der DoS conditions, with sufficient conditions derived via linear
matrix inequalities (LMIs). Numerical simulations illustrate
the performance of both local and cloud-based controllers,
revealing that while both architectures achieve stability, the
cloud-based implementation suffers from degraded transient
performance due to communication uncertainties. The results
highlight the trade-offs between resilience and performance in
modern networked control systems.

I. INTRODUCTION

The increasing reliance on communication networks to

close control loops in cyber-physical systems (CPSs) has

paved the way for the development of Networked Control

Systems (NCSs) [1], [2], [3]. These architectures offer flex-

ibility and reduced wiring costs, enabling distributed control

in applications such as autonomous vehicles, smart grids, and

industrial automation. However, this interconnectivity also

introduces vulnerabilities, particularly when the communi-

cation network is subject to imperfections such as packet

dropouts, time-varying delays, and limited bandwidth [4],

[5], [6]. A critical concern in this context is the threat

of Denial-of-Service (DoS) attacks, where malicious agents

block or delay transmissions, effectively disrupting the avail-

ability of sensor or control data [7], [8], [9], [10], [11].

Recent studies have shown that cyberattacks, including

DoS and false data injection threats, are increasingly con-

cerning in practical networked systems. For instance, detec-

tion and mitigation of Distributed Denial-of-Service (DDoS)

attacks have been investigated in 5G-enabled vehicular net-

works using xApp orchestration strategies [12]. Additionally,

the vulnerability of Industrial Internet of Things (IIoT)

devices to false data injection via communication protocols

such as MQTT has also been demonstrated, highlighting

risks beyond mere unavailability [13].

To address communication constraints and improve re-

source efficiency, sampled-data control strategies with non-
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uniform sampling intervals have been proposed. Unlike pe-

riodic schemes, these approaches update the control input

only at irregularly spaced time instants, either through event-

triggered mechanisms or randomized sampling [14], [15],

[16]. Non-uniform sampling not only reduces bandwidth

usage but also increases the unpredictability of transmission

events, which can enhance resilience to cyberattacks. Fur-

thermore, it allows for a more realistic representation of sys-

tems where sensors and controllers operate asynchronously

due to hardware or network variability [17].

In the presence of DoS attacks, missing updates dur-

ing their occurrence can significantly degrade performance.

However, by employing sampled-data control strategies with

aperiodic sampling, the irregularity of control updates re-

duces predictability and increases the resilience to DoS

attacks in comparison to standard periodic sampling. To

properly model the effect of DoS attacks in control systems,

previous work has considered deterministic or stochastic

frameworks, often assuming constraints on their frequency

and duration [18]. Additionally, resilient strategies have been

proposed for LPV systems subject to hybrid cyberattacks,

combining Denial-of-Service and deception mechanisms.

In [19], an event-triggered control approach is developed

using LMI-based co-design techniques to handle both control

update reduction and attack resilience, ensuring exponential

stability even under adverse network conditions.

In this paper, we investigate the sampled-data control of

linear time-invariant (LTI) systems in the presence of de-

terministic DoS attacks. The sampling instants are generated

with random sampling times, reflecting realistic variability in

sensing or communication delays. The DoS attacks are de-

fined by intervals of activity during which control signals are

completely blocked. To increase the resilience of the closed-

loop system, the zero-input strategy is employed such that

the input is set to zero when unsuccessful communication

occurs due to DoS attacks. The stability analysis is studied

using a looped-functional approach.

As an additional contribution, we also consider a cloud-

based control configuration that introduces additional un-

certainties such as random delays in state transmission and

probabilistic packet loss, motivated by the growing deploy-

ment of Control-as-a-Service (CaaS) frameworks [20]. In this

setting, the controller operates remotely and receives state

measurements through a network prone to random failures.

When a packet is successfully received, the control input

is computed using a delayed state due to network latency.

When lost, the system relies on the last valid control input.

This architecture models realistic cloud scenarios where

computational resources are offloaded to remote servers and



control decisions are applied asynchronously.

This paper is organized as follows. Preliminary results and

problem formulation are presented in Section II, Section III

details the main contributions of the paper. The effectiveness

of the proposed method is illustrated via numerical experi-

ments in Section IV, while Section V concludes the paper.

Notation: X ∈ R
m×n represents a matrix with real entries

of m rows and n columns. The transpose of a matrix X is

denoted by X⊤. P > 0 (P < 0) represents a positive definite

(negative definite) symmetric matrix. The identity and zero

matrices of appropriate dimensions are denoted by I and 0,

respectively. diag(A,B) is the block diagonal matrix whose

elements are A, B. For a given matrix X , He(X) , X+XT .

II. PRELIMINARIES

Consider the following continuous-time plant,

ẋ(t) = Ax(t) +Bu(t), (1)

where x(t) ∈ R
n is the state and u(t) ∈ R

nu is the control

input at time t > 0, ∀t ∈ R.

When no DoS attacks occur, the measured state x(t) is

sampled and transmitted at the instants tk, k ∈ N0, with

the signal x̂(t) = x(tk) remaining constant over the interval

[tk, tk+1) due to the zero-order hold (ZOH) mechanism. The

sampling instants tk ∈ R≥0 satisfy t0 = 0, tk+1 − tk >

0, limk→∞ tk = ∞. However, during a DoS attack, the

transmission attempt is blocked, preventing the update of

x̂(t). Consequently, x̂(t) can be defined as follows:

x̂(t) =

{

x(tk), if a transmission is successful at t = tk,

x̂(t−), otherwise.

(2)

Using a zero-input strategy [9], the control signal effec-

tively applied to the plant is

u(t) = σ(t)Kx(tk), (3)

for all t ∈ [tk, tk+1), K ∈ R
nu×n is the control gain and

σ(t) =

{

0, if a DoS is active at tk,

1, otherwise.
(4)

The auxiliary variable σ(t) indicates whether the latest

transmission attempt at tk was unsuccessful (σ(t) = 0) or

not (σ(t) = 1) due to the presence of DoS attacks.

Therefore, the closed-loop system is described as

ẋ(t) = Ax(t) + σ(t)BKx(tk). (5)

A. Exponential stability analysis under DoS attacks

Assumption 1 Let the sequence of DoS attacks {Hn}n∈N ∈
IDoS and let n(T1, T2) be the number of DoS on/off transi-

tions occurring in the interval [T1, T2), that is,

n(T1, T2) = card{n ∈ N | hn + τn ∈ [T1, T2)},

where card denotes the cardinality of the set. For given τD ∈
R>0 and η ∈ R≥0, the sequence of DoS attacks {Hn}n∈N

satisfies the DoS frequency constraint:

n(T1, T2) ≤ η +
T2 − T1

τD
, ∀T1, T2 ∈ R≥0 with T2 ≥ T1.

Assumption 2 For given T ∈ R>1 and κ ∈ R≥0, the

sequence of DoS attacks {Hn}n∈N ∈ IDoS satisfies the DoS

duration constraint:

|Ξ(T1, T2)| ≤ κ+
T2 − T1

T
, ∀T1, T2 ∈ R≥0 with T2 ≥ T1.

The problem addressed in this work is stated as follows.

Problem: Consider the system (1) and the control law

given by (3), under DoS attacks satisfying Assumptions 1,

and 2, and a bounded set T = [Tmin, Tmax], with Tmax >

Tmin > 0. Suppose that the feedback gain K is chosen such

that the matrix A+ BK is Hurwitz, i.e., all its eigenvalues

lie in the open left-half of the complex plane. Determine a

looped functional that certifies that the origin of the closed-

loop system (5) is exponentially stable for any arbitrary time-

varying sampling interval Tk = tk+1−tk with values in T .

The stability analysis regarding the stated problem is stated

in the following Proposition.

Proposition 3 Let V : Rn → R be a continuously differen-

tiable function that satisfies

c1||x||
2 ≤ V (x) ≤ c2||x||

2, (6)

for scalars c1, c2 > 0. Let χk ∈ C([−Tk, 0],R
n) be a lifted

function defined as

χk(τ) = x(tk + τ), (7)

for any transmission attempt instant tk. And let V0 : [0, Tk]×
C([0, Tk],R

n) → R be a functional that satisfies the looping

condition

V0(0, χk) = eω1TkV0(Tk, χk), (8)

with

V0(0, χk) ≤ δV (χk(0)), (9)

−δV (χk(0)) ≤ eω1τV0(τ, χk), (10)

for some δ ≥ 0 and τ ∈ [0, Tk].
If the following conditions hold:

1) When tk belongs to a DoS interval, then

V̇ (x(t)) ≤ ω2V (x(t)), (11)

for all t ∈ [tk, tk+1).
2) When tk does not belong to a DoS interval, then

d

dτ
U(τ, χk) ≤ 0, (12)

for all τ ∈ [0, Tk), where

U(τ, χk) = eω1τ (V (χk(τ)) + V0(τ, χk)), (13)

3) The frequency and duration of the DoS sequence satisfy

1

T
+

Tmax

τD
<

ω1

ω1 + ω2
. (14)

Then, the closed-loop system (5) is exponentially stable.

Proof: The proof can be found in [9].



III. MAIN RESULTS

A. Stability analysis in the presence of DoS attacks

Proposition 4 Consider the system given by the intercon-

nection of (1) and (3) in the presence of DoS attacks. Let K

be a gain selected such that the matrix A+BK is Hurwitz.

Given positive scalars ω1, ω2 and h, if there exist matrices

P > 0, R > 0, S1 = ST
1 , S2, X ≥ 0 all belonging to

R
n×n, X ∈ R

4n×n and Y ∈ R
2n×4n such that the following

inequalities are satisfied:

ATP + PA− ω2P ≤ 0. (15)

φ1 + h2(0)φ2 + h4(0)φ4 < 0, (16)
[

Φ1 h3(Tmin)Y
T

⋆ −h3(Tmin)R

]

< 0, (17)

where Φ1 = h1(Tmin)φ1 + h2(Tmin)φ2 + h4(Tmin)φ4,
[

Φ2 h3(Tmax)Y
T

⋆ −h3(Tmax)R

]

< 0, (18)

where Φ2 = h1(Tmax)φ1+h2(Tmax)φ2+h4(Tmax)φ4, and

h1(τ) = eω1τ ,

h2(τ, Tk) =
1

ω1
(eω1Tk − eω1τ ), (19)

h3(τ, Tk) =
eω1Tk

ω1
(eω1τ − 1),

h4(τ, Tk) = 2eω1Tk + ((e2 − 4)e
ω1

2
Tk + 1)eω1τ .

and

φ1 = He(MT
1 PM4) + ω1M

T
1 PM1 +He(XB)

−MT
12S1M12 −He(MT

12S2M2)−He(Y TW ),

φ2 = MT
4 RM4 +He(MT

4 S1M12) +He(MT
4 S2M2),

φ4 = MT
2 XM2,

B =
[

A BK 0 −I
]

,

R = diag(R, 3R),

with

M1 =
[

I 0 0 0
]

, M2 =
[

0 I 0 0
]

,

M3 =
[

0 0 I 0
]

, M4 =
[

0 0 0 I
]

,

M12 =
[

I −I 0 0
]

, W =

[

M12

M1 +M2 − 2M3

]

,

then the conditions (11) and (12) hold with

V (x) = xTPx (20)

and

V0(τ, χk) =f1(τ, Tk)ζ
T
k (τ)(S1ζk(τ) + 2S2χk(0))

+ f1(τ, Tk)

∫ τ

0

χ̇T
k (s)Rχ̇k(s)ds

+ f2(τ, Tk)χ
T
k (0)Xχk(0) + γe−ω1τ ||χk(0)||

2,

(21)

where ζk(τ) = χk(τ)− χk(0), γ > 0, and

f1(τ, Tk) =
1

ω1
(eω1(Tk−τ) − 1),

f2(τ, Tk) =
e−ω1τ

ω1
[(eω1Tk − 1)(eω1τ − 1)− (eω1τ − 1)2].

If the frequency and duration of the DoS sequence satisfy

(14), then the origin of the closed-loop system (5) is expo-

nentially stable.

Proof: The proof is now conducted by analyzing the

two distinct operational modes of the closed-loop system,

corresponding to transmission events occurring either with

or without DoS attacks. First, consider a scenario where a

transmission attempt takes place during a DoS attack. In

this case, the system operates in an unforced mode, and its

dynamics are given by:

ẋ(t) = Ax(t). (22)

Thus, if the inequality (15) is satisfied, it follows that (11)

holds with V (x) given in (20).

When a transmission is attempted in the absence of at-

tacks, the analysis is carried out considering the time interval

t ∈ [tk, tk + Tk), or τ ∈ [0, Tk), such that the closed-loop

system, in the absence of DoS attacks, can be written as

ẋ(t) = Ax(t) +BKx(tk).

As χk(τ) = x(tk + τ), then

ẋ(tk + τ) = Ax(tk + τ) +BKx(tk),

which can be rewritten as

χ̇k(τ) = Aχk(τ) +BKχk(0).

In this case, the derivative of (13) w.r.t. τ is

U̇(τ, χk) =h1(τ)(2χ̇
T
k (τ)PχT

k (τ) + ω1χ
T
k (τ)PχT

k (τ))

− h1(τ)ζ
T
k (τ)[S1ζ

T
k (τ) + 2S2χk(0)]

− h1(τ)

∫ τ

0

χ̇T
k (s)Rχ̇k(s)ds

+ h2(τ, Tk)χ̇
T
k (τ)[Rχ̇T

k (τ) + 2S1ζk(τ) + 2S2χk(0)]

+ ((eω1Tk + 1)eω1τ − 2e2ω1τ )χT
k (0)XχT

k (0).
(23)

By applying the Wirtinger-based integral inequality [21],

the integral term in (23) can be upper-bounded by

−

∫ τ

0

χ̇T
k (s)Rχ̇k(s)ds ≤ −

1

τ
ξTk (τ)W

TRWξk(τ) (24)

where ξk(τ) = (χk(τ), χk(0), υk(τ), χ̇k(τ)), with υk(τ) =
1
τ

∫ τ

0
χk(s)ds. Since R > 0, the inverse of R exists and

(RW − τY )TR−1(RW − τY ) ≥ 0, implying that

−
1

τ
WTRW ≤ −He(Y TW ) + τY TR−1Y. (25)

Moreover, the closed-loop equation in (III-A) allows to

define the following null-term

2h1(τ)ξ
T
k (τ)XBξk(τ) = 0. (26)



It follows from (23), (25) and (26) that

U̇(τ, χk) ≤h1(τ)(2χ̇
T
k (τ)PχT

k (τ) + ω1χ
T
k (τ)PχT

k (τ))

− h1(τ)ζ
T
k (τ)[S1ζ

T
k (τ) + 2S2χk(0)]

− h1(τ)ξ
T
k (τ)(He(Y TW )− τY TR−1Y )ξk(τ)

+ h2(τ, Tk)χ̇
T
k (τ)[Rχ̇T

k (τ) + 2S1ζk(τ) + 2S2χk(0)]

+ ((eω1Tk + 1)eω1τ − 2e2ω1τ )χT
k (0)XχT

k (0)

+ 2h1(τ)ξ
T
k (τ)XBξk(τ). (27)

Since τh1(τ) ≤ h3(τ, Tk) and ((eω1Tk +1)eω1τ −2e2ω1τ ) ≤
h4(τ, Tk), ∀τ ∈ [0, Tk], it is possible to write

U̇(τ, χk) ≤ ξTk (τ)φ(τ)ξk(τ), (28)

where φ(τ) = h1(τ)φ1 +
∑3

i=1 hi(τ, Tk)φi, with φ3 =
Y TR−1Y . A sufficient condition to ensure (12) holds is

φ(τ) < 0. (29)

With τ ∈ [0, Tk] and Tk ∈ [Tmin, Tmax]. First we evaluated
φ(τ) at τ = 0, and we get (16). Evaluating φ(τ) at τ = Tmin,
we have

h1(Tmin)φ1 + h2(Tmin)φ2 + h3(Tmin)φ3 + h4(Tmin)φ4 < 0,

applying Schur complement yields (17). Finally, evaluating

φ(τ) at τ = Tmax, and applying the Schur complement, one

has (18). These conditions are sufficient to ensure that (29)

holds, concluding the proof.

B. Cloud Control

The cloud-based controller accounts for packet losses

and random delays, inspired by the modeling framework of

cloud control systems under uncertainties proposed by [22].

Specifically, the control law is updated based on successful

packet delivery, as indicated by β(t), and delayed states due

to network latency are taken into account.

Consider the continuous-time linear system (1). A cloud-

based controller generates the control signal and is subject

to DoS attacks, packet losses, and random delays. Thus, the

actual control input applied to the system is given by:

ũ(t) = σ(t)ũ(tk), for t ∈ [tk, tk+1), (30)

where σ(t) ∈ {0, 1} is a switching signal that indicates the

presence of a DoS attack, as defined in (4). Moreover, the

signal ũ(t) is computed at sampling instants tk, and held

constant between samples using ZOH.

To consider the presence of random delays, let β(t) be a

binary variable indicating whether the control packet at time

tk was successfully transmitted:

ũ(tk) = β(t)Kx(tk−dk
) + (1− β(t))ũ(tk−), (31)

where β(t) = 1 if the packet is received (with delay dk ∈
[0, Tk]) and β(t) = 0 if the packet is lost and the previous

valid control is reused. Moreover, x(tk−dk
) is the delayed

state due to communication latency, and ũ(tk−) is the last

valid control.

It is important to note that the conditions presented in

Section III-A do not account for the presence of packet

losses or random delays. However, if the packet losses exhibit

the same duration and frequency characteristics as the DoS

attacks, the proposed conditions can still guarantee stability.

In the numerical experiments, we will evaluate the robustness

of these conditions in the presence of random delays.

IV. NUMERICAL EXPERIMENTS

To illustrate the efficacy of the proposed method, nu-

merical experiments are considered1. Consider the following

system borrowed from [9], [18], [25]:

ẋ =

[

1 1
0 1

]

x(t) + u(t), (32)

which is open-loop unstable. Consider the following gain

K =

[

−4.5 −1
0 −6

]

, (33)

that ensures that the matrix (A+BK) is Hurwitz stable.

To observe the behavior of the system (32), the fourth-

order Runge-Kutta method with ∆t = 10−2, initial condi-

tions x0 =
[

1 −1
]

, non periodic sampling with transmis-

sion rate Tk ∈ T = [0.03, 0.15] s, ω1 = 6.6250, ω2 =
2.1799, n = 15, Ξ = 6.28 s, η = 0, τD = 0.7143, κ = 1 and

T = 1.5921 were employed. Considering these parameters,

the following matrix P is obtained from Proposition 4:

P =

[

0.0460 −0.0020
−0.0020 1.4926

]

.

By incorporating delays and losses as part of the commu-

nication channel, it is possible to assess the resilience of the

system against multiple sources of degradation, highlighting

the combined impact of cyber threats and communication

failures.

Figure 1 (a) compares the performance of two scenarios

• a local controller with blocked updates during DoS, and

• a remote (cloud-based) controller subject to random

delays and packet losses.

The same DoS parameters were used, considering a packet

loss probability of 10% and a random delay in the interval

[0.03, 0.15] s.

It is observed that although both systems achieve asymp-

totic stability, the cloud-based controller exhibits degraded

transient performance, as evidenced by larger oscillations in

the state trajectories x(t). These differences arise primarily

due to two factors: random communication delays, which

cause the controller to act on outdated state information, and

packet losses, which result in the reuse of obsolete control

inputs when updates are not received.

Despite these limitations, the cloud-based control system

demonstrated robust behavior, with convergence observed

even in the presence of DoS attacks and communication

1The numerical experiments were performed using MATLAB (R2020a)
64 bits for Windows 11, in a machine with Intel Core i5-8265U (1.8 GHz)
processor and 8 GB RAM. The codes were implemented by using the
packages YALMIP [23], and the solver Mosek [24].



uncertainties. This reinforces the viability of cloud-based

control in distributed or remote applications, particularly

when some degree of performance degradation is acceptable

in exchange for improved scalability and flexibility.

Figure 1 (b) illustrates the packet success indicator β(t) at

each sampling instant. The gray vertical bands represent time

intervals during which DoS attacks occur. When β(t) = 1,

the control packet from the cloud is successfully received

(i.e., no packet loss occurred). When β(t) = 0, the control

packet was lost, which may happen even outside of DoS

periods due to probabilistic communication failures.

Importantly, even if β(t) = 1, the control signal is not ap-

plied to the plant during a DoS attack, as the system enforces

u = 0 in those intervals. Thus, a successful transmission

from the cloud does not guarantee the actuation of control

when a DoS attack is active. This explains occurrences where

β(t) = 1 within DoS intervals, yet the effective control

remains null.

Figure 2 presents successful and unsuccessful transmission

attempts under both DoS-only and DoS combined with

cloud-based control scenarios. As expected, the number of

successful transmissions is lower in the DoS and Cloud

setups. This is due to the presence of random packet losses

and additional delays introduced by the cloud communication

layer, which are captured by the transmission indicator β(t).
Even though both systems operate under the same sampling

instants, cloud-induced losses and delays reduce the effective

number of successful updates, which is reflected in the

transmission statistics.

Remark 1 Successful control updates in the cloud-based

system occur only when three conditions are simultaneously

satisfied: (i) the sampling instant tk aligns closely with the

simulation time grid, (ii) no DoS attack is active during the

update, and (iii) the transmission is successful, i.e., β(t) = 1.

However, since the sampling instants tk are randomly gener-

ated and do not exactly match the simulation times t, some

successful transmissions may not result in actual control

updates. This explains the absence of blue segments (i.e.,

successful updates) in certain time intervals without DoS

and with β(t) = 1, such as between t = 3 and t = 4.

Additionally, random communication delays may shift the

applied control further in time, contributing to the lack of

updates despite successful transmission.

V. CONCLUSION

This work studied linear control systems subject to DoS

attacks that can maintain exponential stability when equipped

with a suitable sampled-data feedback law, even under ir-

regular sampling schedules. By extending the analysis to

cloud-based control configurations, we incorporated realistic

communication challenges such as random delays and packet

losses. Simulation results confirmed that although cloud-

based control introduces transient degradation, it preserves

the system’s stability under DoS conditions. These findings

emphasize the viability of resilient remote control strategies

for cyber-physical systems. A direction for future work is

to propose stability certificates that take into account DoS

attacks, packet losses, and random delays at the same time.
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