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Abstract—One promising way to enable distributed intelligence
at the edge while protecting data privacy is to integrate Federated
Learning (FL) with Unmanned Aerial Vehicles (UAV) networks.
Using FL enables each UAV to cooperatively train a global model
without sharing raw data, especially in UAV swarms used for
surveillance, monitoring, or emergency response missions. But
choosing the best clients (UAVs) for every training cycle is made
extremely difficult by the dynamic and diverse character of UAV
environments. These difficulties are brought on by things like
fluctuating connectivity, shifting patterns of movement, and en-
ergy limitations. In this work, we investigate the problem of client
selection for Federated Edge Learning in UAV networks. We first
present a taxonomy of existing selection strategies, considering
criteria such as model performance and UAV mobility. Then, we
propose Safelearning, an adaptive client selection framework
that integrates both mobility-awareness and distance with speed
to enhance learning efficiency and model accuracy. Simulations
demonstrate that our method significantly improves convergence
speed and reduces client dropout, while maintaining high model
performance in dynamic UAV scenarios.

Index Terms—FL, UAV Networks, Client Selection, Mobility-
Aware Selection, Edge Intelligence.

I. INTRODUCTION

Multi-access Edge Computing (MEC) supported by Un-
manned Aerial Vehicles (UAVs) has gained significant atten-
tion as a flexible and scalable solution for meeting the needs of
latency-sensitive and computation-intensive applications, par-
ticularly in remote, rural, or disaster-stricken environments [1].
UAVs provide unique advantages such as agile 3D mobility,
line-of-sight communication, rapid deployment, and improved
onboard computing capabilities. These features enable UAVs
to serve as mobile edge nodes that can offer on-demand
computation to ground users or act as data collectors in large-
scale sensing and monitoring tasks [2], [3].

With the increasing volume and sensitivity of collected data,
Federated Learning (FL) has emerged as a privacy-preserving
alternative to centralized learning by enabling decentralized
model training directly on UAVs [4], [S]. However, most
existing FL implementations in UAV networks apply simplistic
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client selection techniques, typically random sampling, that
fail to account for the dynamic nature of UAVs. Challenges
such as frequent topology changes, mobility-induced discon-
nections, limited battery life, and fluctuating link quality
contribute to unstable participation and high dropout rates,
ultimately degrading training performance [6], [7].

Motivated by these limitations, this work focuses on im-
proving the reliability and efficiency of FL in UAV-assisted
MEC systems by introducing mobility-aware client selection
strategies. The key contributions include:

o The development of a novel client selection mecha-
nism that leverages UAV-specific metrics such as speed,
displacement, and positional consistency to predict and
minimize dropout events.

o Demonstrating through empirical evaluation that the pro-
posed method reduces both the average and variance of
client dropout ratios.

« Showing that this improved stability leads to faster model
convergence and enhanced global accuracy, thereby im-
proving the overall efficiency and robustness of federated
learning in UAV networks.

The remainder of this paper is organized as follows. In the next
section we provide an overview of related works on this topic,
discussing the client selection strategies. Section III details
our contribution in this paper. Then, section IV presents the
main findings of this paper. Finally, in section VI, the paper
is finalized with a conclusion, along with references to future
work.

II. RELATED WORK

Client selection plays a crucial role in enhancing the effi-
ciency, robustness, and fairness of FL systems. A wide range
of strategies has been proposed in the literature to address
various challenges such as data heterogeneity, communication
overhead, limited resources, security risks, and client mobility
especially in dynamic environments like UAV networks or



vehicular systems. There are many client selection meth-
ods adapted in the literature, which can be broadly classi-
fied into four main categories: (i) Data-based selection, (ii)
Resource-based selection, (iii) Security-based selection, and
(iv) Mobility-based selection. The following summarizes key
selection strategies, along with their benefits and limitations.

A. Data-Based Client Selection

Data-based approaches prioritize clients based on the diver-
sity, quality, or representativeness of their local datasets. In
UAV networks, this helps improve global model convergence
and generalization [8]. By selecting UAVs with complemen-
tary data or those aligned with training goals, unnecessary
redundancy is reduced [9], [10]. However, these methods often
rely on UAVs transmitting metadata such as data size or
distribution, introducing communication overhead and energy
consumption [11]. Additionally, data relevance may change
rapidly due to UAV mobility, making consistent selection
challenging [11].

B. Security-Based Client Selection

To address security vulnerabilities in FL, such as label-
flipping attacks or poisoned updates, researchers have pro-
posed selection strategies that exclude unreliable or adversarial
clients [12]. These strategies improve model robustness by
prioritizing clients with high reliability scores and incorpo-
rating secure mechanisms like blockchain and homomorphic
encryption [13]. While this improves model integrity and
privacy, it also reduces the client pool, potentially excluding
UAVs with valuable data but weaker security features, thereby
limiting model generalization.

C. Resource-Based Client Selection

Resource-aware strategies select clients based on their com-
putational capacity, energy availability, and network band-
width. In UAV settings, these approaches prevent system
overloads and reduce dropout rates caused by limited resources
[14]. Energy-efficient techniques like model compression and
workload adaptation further support low-resource UAVs [15].
Despite improved efficiency, these strategies may exclude
resource-limited but data-rich UAVs, introducing bias. Addi-
tionally, real-time monitoring of device status adds overhead
to the selection process [16], [17].

D. Mobility-Based Client Selection

Mobility-aware selection leverages the dynamic movement
of UAVs to improve data diversity and model generalization.
Cluster-based FL approaches, such as CFL, group mobile
clients with similar patterns for local aggregation, reducing
communication loads and improving accuracy in non-IID
scenarios [18]. Hierarchical FLL methods have shown that
mobility can enhance convergence by promoting data mixing
across edge servers [19]. However, client scheduling in such
environments is complex, and most existing models are limited
to 2D vehicular mobility or fixed UAV trajectories, limiting
their effectiveness in real-world UAV networks. Systems like

the one proposed in [9] introduce edge-assisted FL frameworks
to mitigate issues such as label noise and data heterogeneity
through quality-aware aggregation and data augmentation.
While these models perform well in controlled conditions,
they often overlook critical factors such as UAV mobility,
node dropout, and real-time communication disruptions, which
limits their adaptability in dynamic UAV environments.

E. Discussion and Limitations

Despite the progress made, a gap remains in effectively
addressing the combined impact of UAV mobility and energy
constraints on FL model convergence and reliability. Most
existing works neglect the variability of UAV speed and its
influence on training performance, as well as the energy-
efficiency challenges unique to UAVs. To address these lim-
itations, the next section introduces a novel client selection
approach designed specifically for UAV-assisted MEC sys-
tems that accounts for both mobility dynamics and energy
constraints.

III. SAFELEARNING: MOBILITY-AWARE CLIENT
SELECTION STRATEGY

To address the challenges posed by the dynamic nature of
UAV networks, we propose a mobility-aware client selection
algorithm that strategically selects a subset of UAVs for each
communication or training round. This method prioritizes
UAVs that exhibit favorable mobility characteristics namely,
stability, reachability, and communication reliability ensuring
their sustained participation in latency-sensitive and collab-
orative FL tasks. SafelLearning client selection process is
described in the following sub-sections. Moreover, Algorithm
.2 and Algorithm .1 summarize our contribution.

1) Inputs and Output: Our proposed client selection frame-
work operates based on three key inputs: the total number of
UAVs in the network V,,, the total number of communication
or training rounds RR,, and a selection fraction f,, which
specifies the proportion of UAVs to be selected in each round.
Using these inputs, the algorithm generates a single output,
which is a structured list that records the subset of UAVs
chosen for each round based on their mobility characteristics.

2) Utility Calculation Process: In each communication or
training round, the algorithm initiates the selection process
by resetting a list designated to store the utility scores of
candidate UAVs. It then iterates over the set of available UAVs,
evaluating each one based on a combination of eligibility
criteria and performance indicators. Specifically, a UAV must
satisfy the following minimum conditions: (1) its battery
level must exceed a predefined threshold Sreshola (€.8- 15%)
to ensure task completion without interruption, and (2) it
must lie within the maximum allowable communication range
from the base station to guarantee reliable connectivity. Once
these prerequisites are met, the UAV’s mobility behavior is
assessed through a set of dynamic features, including its
current distance from a reference center, instantaneous speed,
change in distance since the previous round, and variation in
speed. These mobility attributes are then fed into a scoring



function that computes a composite mobility score. Only UAVs
that receive a valid (non-null or above-threshold) score are
included in the candidate pool for potential selection in the
given round.

We begin by defining the Euclidean distance function, which
measures spatial separation between two points:

EuclideanDistance(z, y) = /(21 — y1)2 + (22 — 2)2
+(w3 —y3)?

where z = (x1,22,23) and y = (y1,¥2,y3) denote the
3D coordinates of two entities typically a UAV and the base
station, where each component corresponds to the z, y, and z
axes, respectively.

Using this function, we calculate the current distance be-
tween UAV v at time ¢ and the base station as:

(D

dist!) = EuclideanDistance(v*).coords, BS.coords), (2)

where v(*) coords denotes the coordinates of UAV v in
round ¢, and BS.coords denotes the position of the base station.

To quantify the positional change of UAV v between the
current and previous rounds, we compute the displacement:

Ad{Y = EuclideanDistance(v® .coords, v~V coords).
3)
The variation in speed between rounds ¢ and ¢ — 1 is
computed as:

“4)

A UAV is only considered further if it satisfies the range
constraint:

— |,® (t=1)
A’Ugt) - Uspccd - Uspccd :

distgf) < max_dist. &)

We then compute a set of normalized feature-specific scores
to assess UAV suitability.
The proximity score favors UAVs closer to the base station:

it (D)
() dist,,
e =1—— 6
SCOT st max_dist ©)
The speed score rewards UAVs with lower velocities:
()
(t) Vspeed
=1-— . 7
SCOTspeed max_speed )
The displacement score captures spatial stability:
AdY
score(Atll =1- (8)

max(Ad)

The speed variation score measures temporal consistency:
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Av max(Av)’
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Finally, the overall utility score is a weighted combination
of the individual feature scores:

(

ﬁnal_scoregf) = a-scored?st—kb-score(t)

t
Speed—i—c-score(Azi—Fdscore

(10
Here, a, b, ¢, and d are scalar weights (typically between 0
and 1) indicating the relative importance of each feature.

3) Scoring and Ranking UAVs: UAVs that remain close to
the base station, exhibit lower speeds, demonstrate minimal
displacement, and maintain consistent speed over time are
assigned higher scores. These characteristics are indicative of
UAVs that are reliable. By assigning greater weight to such
mobility attributes, the scoring function ensures that UAVs
with the most desirable behavioral patterns are prioritized.

Following the scoring process, all UAVs are ranked in
descending order according to their final scores. A fraction f,
of the highest-ranked UAVs representing the target selection
rate for each round is then selected. These UAVs are added to
the selected UAVs list, which stores the identifiers of UAVs
selected in each round.

Upon completion of all communication or training rounds,
the algorithm returns the selected UAVs list as its output. This
list serves as a complete schedule of UAV participation across
rounds, based on the calculated trade-offs between mobility,
availability, and energy constraints.

Algorithm .1: Safelearning Client Selection Strategy

Input: Number of UAVs V,,, rounds R,,, selection factor f,
Output: Selected UAVs per round:
selected_UAVs_per_round
1 selected_UAVs_per_round < [ ]
for selections
2 foreach round r € R,, do
3 U<+ 0
4 foreach UAV v € V,, do
5
6

// Storage

// Reset utility list

if Ubattery > /Bthreshold then
dist <+
EuclideanDistance(v.coords, base_station.coords)

7 Ad +
EuclideanDistance(v.coords, v.previous_coords)
8 Av « |v.speed — v.previous_speed|
9 score < ComputeMobilityScore(
10 dist, MAX_COMMUNICATION_RANGE,
v.speed, MAX_SPEED,
11 Ad, MAX_Ad, Av, MAX_Av )
12 if score # None then
13 | U < UU{(score,v)}
14 Usorted <= Sort U by score descending

15 num < max(0, | fp X [Val])

16 selected_UAVs < First num UAVs in Usorted
17 selected_UAVs_per_round <
selected_UAVs_per_round U
{selected_UAvVs}

18 return selected_UAVs_per_round




Algorithm .2: Computation of UAV Mobility Score

1 Function ComputeMobilityScore (dist, max_dist,
speed, max_speed, Ad, max_Ad, Av, max_Awv):

2 if dist > max_dist then
3 | return 0
4 score_dist « 1 — —dist
max_dist
5 score_speed < 1 — —_speed
max_spAes‘d

6 score_delta_d<«1— malx Ad

Av|
7 score_delta_v <+ 1— ml A

ax_Av
8 score < a-score_dist +b-score_speed+c-

score_delta_d+d-score_delta_v

9 return score

IV. EXPERIMENTAL RESULTS AND DISCUSSION
A. Experimental Setup

The FL system consists of a single base station that inte-
grates edge computing capabilities and 20 UAVs operating
within its coverage area. Each UAV is assumed to have
a fixed processing frequency of 2.5 GHz and a maximum
communication range of 250 meters. Each UAV executes one
epoch of training per communication round using a batch size
of 32 samples. Data heterogeneity is explicitly incorporated by
enforcing a non-IID distribution across the UAVs, and client
selection is limited to 10% of the total population per round.

For model optimization, we use SGD with a learning rate
of 0.001. Each local update consists of a single iteration per
round. The model size transmitted by each UAV is 1 MB,
with each parameter occupying 32 bytes. Communication is
modeled with an uplink bandwidth of 1 MHz and a fixed UAV
transmission power of 0.1 Watts. The channel environment
includes background noise, modeled with a noise power of
10~° Watts, consistent with typical wireless settings. To reflect
realistic deployment scenarios where clients often possess non-
uniform data, we simulate a non- IID setting using a k%
random sampling strategy. In our configuration, 70% of the
dataset is randomly assigned across the participating UAVs,
while the remaining 30% is distributed in a biased fashion,
resulting in highly imbalanced and skewed local datasets.

In terms of coordination overhead, model aggregation at the
BS is assumed to take 0.5 seconds per round. Additionally,
UAV mobility is dynamically tracked and updated at 0.1
second intervals throughout the training process.

To evaluate the performance and robustness of the frame-
work, simulations are conducted over 100 FL rounds. During
this process, we test the system’s resilience under various
network dynamics, including fluctuating connectivity, diverse
data distributions, and communication delays. The utility func-
tion used to score UAVs is parameterized with weights set
toa =03, b =03, ¢c =02 and d = 0.2, assigning
relative importance to proximity, speed, displacement, and
speed variation, respectively.

B. Benchmarks

To contextualize the effectiveness of SafelLearning, we
compare it against two baseline methods: random selection and

distance-based filtering. Each method represents a different
strategy for selecting clients to participate in FL rounds. In
order to highlight the difference between them, we define the
benchmarks as follows:

« Random Selection Strategy In the random selection ap-
proach, UAVs are chosen arbitrarily without considering
their location, speed, or movement stability. The advan-
tages of this method are that it is easy to understand and
implement and does not take into account any element or
value, but the disadvantages are that it does not choose
the best drones to participate in the rounds.

o Distance-based Filtering Strategy This strategy se-
lects UAVs that are geographically closest to the edge
server. By reducing communication delays and the risk
of disconnections, this method improves performance
compared to random selection. It takes into account the
distance between the center and each UAV participating
in the training.

C. Evaluation Metrics

To evaluate the performance and robustness of the proposed
client selection strategy in UAV-based FL, we use two primary
categories of metrics: model performance and client participa-
tion stability.

The first metric assesses the global model performance,
while the second group captures the dropout behavior of UAV
clients across training rounds.

+ Global Test Accuracy:
This metric reflects the classification accuracy of the
aggregated global model after each FL round. It is
evaluated on a centralized test set and indicates how well
the model generalizes after incorporating updates from
selected UAVs. Higher accuracy values correspond to
more effective client contributions and improved learning
convergence.

o Mean Dropout Ratio:
The mean dropout ratio in FL represents the average
percentage of UAVs that fail to complete local training
and upload their model updates during each round. A
lower mean dropout ratio implies higher reliability and
faster convergence of the global model. It is computed
as:

N
N D,
Mean Dropout Ratio = Ele,

where D, is the number of dropout events in the i-th
round and N is the total number of UAVs.

« Standard Deviation of Dropout Ratio:
This metric quantifies the variability in UAV participation
across training rounds. A low standard deviation implies
stable client availability, minimizing disruption to model
updates. It is calculated using:

SN (D — p)?

Standard Deviation = ,
N



where p is the mean dropout ratio. We note that a low
mean and standard deviation in dropout ratios indicate an
efficient client selection strategy.

V. ANALYSIS OF THE OBTAINED RESULTS

In this section, we analyze the performance of the proposed
client selection strategy by examining its effect on model
accuracy and dropout behavior under two distinct mobility
scenarios. The primary objective is to evaluate how varying
UAV speeds impact the global model’s convergence rate and
system stability.

To this end, we define two experimental scenarios that differ
in terms of UAV mobility patterns:

o Scenario 1: Low-Speed Mobility In contrast, this config-
uration assumes UAV speeds between 2 and 15 meters per
second, reflecting slower, more stable flight conditions
typical of persistent monitoring or coordinated sensing
operations.

o Scenario 2: High-Speed Mobility In this setting, UAVs
move at speeds ranging from 30 to 40 meters per second.
This scenario simulates highly dynamic environments.

The graphs ( Fig. 3 ) and ( Fig. 1 ) compares three different
strategies for selecting drones to participate in each round
of FL. The goal is to evaluate the impact of each selection
strategy on the model’s accuracy over 100 training rounds.
As for Figures ( Fig. 4 ) and ( Fig. 2 ) for the bar chart,
it contains 3 parts. The first part is for the average dropout
for each method, while for Part 2 it represents the standard
deviation values, while Part 3 represents the total number of
dropout (number of UAVs).

A. Scenario 1:

1) Random Selection Strategy: From the curve ( Fig. 1)
we notice that when the speed decreases, the acceleration of
accuracy increases and becomes better , and the final value is
around 95% . As for the dropout values, we notice from Fig. 2
that they are a total of 8 out of 200, meaning that by selecting
200 drones to participate in the FL tasks, there are 8 drones
that were out of range, as for the mean dropout (AVG), the
value was 0.04 . This indicates that random selection is the
worst of the three methods.

2) Distance-based Filtering Strategy:: From the curve ( 1
) we notice a slight advantage in acceleration for the distance
filter, and it reaches 80% around round 38, and the final value
is 95.14%, which is a little better than random selection. As
for the dropout values ( 2), they are a total of 7 out of 200,
and for the mean dropout AVG, the value was 0.035; this is
a little better than random and contributes to better accuracy
values. However, since it does not account for the drones’
motion dynamics (e.g., velocity or trajectory changes), it may
still select unstable UAVs, resulting in fluctuations in model
accuracy during later rounds.

3) SafeLearning Strategy: From (1), we notice that the
acceleration and final accuracy value have become clearly
better than other methods, as the final value is 95.63%. As
for the dropout, from (2), we notice that it has become 4

out of 200, and for the mean dropout AVG, The value was
0.02, which is much better than the other strategies, and this
contributed to the rapid acceleration of the accuracy value.

—— Random (Black)

—— our Solution (Red)
—— Distance Filter (Blue)

80

60

Global Accuracy (%)

a0t

201

Rounds

Fig. 1. Global test accuracy comparison of participant selection methods vs.
number of FL rounds in Scenario 1.

B. Scenario 2:

1) Random Selection Strategy : As the graph shows in Fig.
3, this method leads to the slowest convergence and the lowest
overall performance. Accuracy remains below 60% until about
round 38 and shows significant fluctuation even in later rounds
, It reaches 80% only in round 50 , and this is worse than the
first scenario . As for the dropout values, we notice from Fig. 4
that they are a total of 13 out of 200, meaning that by selecting
200 drones to participate in the FL tasks, there are 13 drones
that were out of range, as for the mean dropout (AVG), the
value was 0.065 , and this is a large numbers compared to
SafeLearning and the distance-filter, and this contributes to
reducing the accuracy value.

2) Distance-based Filtering Strategy :: From the curve ( 3)
we notice the value of accuracy reaches 80% around round 35
, which is much better than random selection, and continues
to climb steadily. As for the dropout values ( 4 ) that they
are a total of 8 out of 200, and for the mean dropout AVG,
the value was 0.04, and this is much better than random and
contributes to better accuracy values. But these values remain
worse than the first scenario.

3) SafeLearning Strategy :: From the curve ( 3 ), we notice
that this strategy clearly outperforms the others. It achieves
over 80% accuracy by round 27 and continues to improve
rapidly. By the final round, it ended in 95.50% accuracy.
This indicates that our method maintains its efficiency even
at higher speeds. As for the dropout values ( 4 ), they are
a total of 4 out of 200, and for the mean dropout (AVG),
the value was 0.02, therefore, outperforming both random and
distance-filter. This demonstrates the effectiveness of selecting
UAVs that are not only near the server but also predictable and
reliable in their mobility.

Scenario 1 VS Scenario 2 :

We observe that as the UAV speed increases, the per-
formance of benchmark methods such as random selection
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Fig. 3. Global test accuracy comparison of participant selection methods vs.
number of FL rounds in Scenario 2.

and distance-based filtering significantly degrades, exhibiting
higher dropout rates and greater variability. In contrast, our
proposed solution maintains robust performance under high-
mobility conditions. This resilience stems from the fact that,
unlike the distance-based approach which relies solely on
proximity, our method incorporates multiple mobility features
including speed and its variation into the client selection
process. As a result, it consistently identifies UAV's that are not
only within communication range but also exhibit stable and
predictable mobility patterns, thereby ensuring more reliable
participation and efficient learning convergence.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed Safelearning, a mobility-aware
client selection strategy tailored for federated learning (FL) in
UAV-assisted edge computing environments. Unlike traditional
approaches that rely on random sampling or static metrics such
as distance, SafeLearning integrates multiple UAV mobility at-
tributes—namely speed, displacement, positional consistency,
and proximity to the base station—to identify the most reliable
clients for each training round. This multidimensional scoring
approach allows the system to dynamically adapt to the
fluctuating conditions inherent in UAV networks, ensuring
more stable participation and improving learning efficiency.

Our Distance-
Solution filter

Total Number

of Dropouts
0.1319 8

Random Our Distance-
Solution filter

Dropout Metrics Across Selection Strategies in Scenario 1.

Our simulation results under both low-speed and high-
speed UAV scenarios clearly demonstrate the superiority of
SafeLearning compared to benchmark strategies. Specifically,
our approach achieved faster convergence, higher final accu-
racy (up to 95.63%), and significantly reduced client dropout
rates. These results validate the importance of mobility-aware
client selection and highlight the role of behavioral patterns
in improving the robustness and scalability of FL in highly
dynamic environments. Moreover, by maintaining stability
across varying mobility conditions, Safel.earning proves to be
well-suited for real-world UAV applications such as disaster
response, aerial surveillance, and remote sensing.

The impact of this work extends beyond UAV systems,
providing a generalizable framework for intelligent client
coordination in mobile edge networks. It lays the ground-
work for future research into context-aware federated learning
mechanisms that can adapt to both network conditions and
client behaviors. The SafeLearning model offers a step forward
in bridging the gap between theoretical FL. frameworks and
their practical deployment in mission-critical, latency-sensitive
scenarios.

As future work, we plan to enhance SafelLearning by
incorporating data utility metrics—such as label diversity and
data quality—into the scoring function to better support non-
IID data environments. We also aim to extend the frame-
work with energy-awareness to dynamically balance mobility
and energy constraints, especially critical for power-limited
UAVs. Integrating trust and anomaly detection mechanisms
will strengthen security against adversarial clients, while real-
world testing using UAV testbeds and sim2real transfer will
ensure practical viability. Finally, adopting a multi-objective
optimization approach will help harmonize trade-offs between
model accuracy, resource consumption, fairness, and stability.
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