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Abstract

The field of autonomous robotics is progressing rapidly, with research moving toward
developing systems capable of moving without direct human control and learning without
human intervention. One of the problems requiring an efficient and sustainable solution
is ensuring the smooth and safe navigation of robots between obstacles. In this study, a
new path planning approach is developed, integrating particle swarm optimization (PSO)
and artificial potential field (APF) algorithms to assist the mobile robot in navigating an
area with static and dynamic obstacles. The robot moves independently while routing
dynamically and avoiding obstacles. To evaluate its adaptive ability to a changing environ-
ment, we continuously calculate the shortest distance between two points and dynamically
adjust the path to avoid obstacles during replanning, path recalculation, and robot position
adjustment to ensure efficient and safe navigation. Different scenarios are tested to evaluate
our approach, including different environmental conditions and obstacle configurations.
Experimental results show that our method reduces the path length by 18%, the obstacle
avoidance efficiency by 90%, and the success rate by 85% in dynamic environments. In
addition, PSO-APF reduces computation time, demonstrating better capacity and efficiency.

Keywords: PSO; APF; navigation; autonomous mobile robot; obstacle avoidance;
path planning

1. Introduction

Autonomous mobile robotics focuses on creating systems that can independently
navigate and engage with their surroundings without needing direct human control. These
robots are designed for operation in dynamic and unpredictable environments, such as
warehouses, factories, outdoors, and disaster areas. The main goal is to allow robots to
perform tasks autonomously while reducing the demand for human intervention [1,2].
The global market for autonomous mobile robots is projected to surpass USD 30 billion by
2030, mainly fueled by uses in logistics, disaster response, and healthcare. For example,
Business Insider (published on 11 February 2025) reported that Amazon employs more
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than 750,000 robots in its warehouses, which facilitate automation for approximately 75%
of its global package deliveries. Despite this remarkable progress, navigation mistakes
caused by environmental uncertainties and moving obstacles still occur, often resulting in
errors in complex real-world situations. These developments underscore the urgent need
for robust and adaptable path-planning algorithms that can deliver dependable results in
diverse and dynamic settings.

The diverse challenges of real-world environments emphasize the importance of au-
tonomous navigation. Unlike controlled lab or industrial spaces, real-world areas are
marked by unpredictability and ongoing change. Autonomous robots must grapple with
challenges such as diverse obstacles, fluctuating terrains, dynamic entities (such as moving
objects or individuals), and uncertainties in sensor data and environmental conditions [2].
What drives us to explore autonomous robotic navigation is to bridge the gap between
current technological capabilities and the multiple requirements of real-world applica-
tions. There are still significant barriers to achieving substantial progress in robotics,
requiring further developments to enable reliable and efficient operation in complex
environments [3].

Despite the efficiency of industrial robots at performing repetitive tasks in controlled
environments, they face limitations when operating in unfamiliar settings or under unex-
pected conditions. Their rigid programming restricts their flexibility to cope with dynamic
changes within their environment; they are limited to operating flexibility and autonomy
and, in most cases, work within predetermined sequences of actions in highly tuned envi-
ronments [1,4]. A clear trend is emerging with rising demand for genuinely autonomous
robots that can operate independently. These robots are expected to possess the intelligence
and flexibility necessary to navigate complex environments, make swift decisions, and per-
form tasks without ongoing human supervision. This increasing demand emphasizes the
recognized benefits of autonomous systems in boosting productivity, efficiency, and safety
across various industries and applications. Consequently, there is a distinct move toward
developing robots with advanced sensing, perception, and decision-making capabilities to
meet the evolving needs of modern industries and societies [4].

Autonomous navigation in complex, dynamic environments remains a significant chal-
lenge in robotics and intelligent systems, where conventional techniques, such as Artificial
Potential Fields (APFs), are straightforward to implement and require minimal computing
power. However, they frequently face issues like becoming stuck in local minima and
oscillations, particularly in dense environments filled with obstacles. Conversely, global
optimization techniques like particle swarm optimization (PSO) are effective at explor-
ing solutions but can be slow and occasionally generate suboptimal paths in large-scale
navigation problems. These challenges underscore the importance of hybrid approaches
that integrate the rapid response capabilities of local planners with the extensive search
capabilities of metaheuristic techniques. The field of multi-agent systems faces analogous
hurdles, where protocols for Fast Finite-Time Consensus (FFTC) in high-order nonlinear
systems leverage event-triggered communication to reduce computational burden and
enhance adaptability in dynamic environments [5]. While such methods excel in achieving
consensus under adversarial conditions, this paper presents the PSO-APF framework,
which offers a complementary strength: real-time, adaptive parameter tuning for robust
navigation and obstacle avoidance in unpredictable settings. Unlike traditional hybrid
methods, which depend on preset or offline-tuned parameters, this approach features an
adaptive layer. This adaptivity includes real-time optimization of APF parameters (7, do,
w, c1, c2) through PSO during navigation. This dynamic adjustment allows the robot to
repeatedly reconfigure its force field in response to environmental changes, enhancing its
responsiveness, robustness, and ability to escape local minima.
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This research aims to address the challenge of developing an autonomous mobile robot
capable of navigating an uninterrupted path from an origin to a destination. The navigation
and positioning of the robot reveal two main perspectives: the first is to direct the robot
from a starting position to a destination, while the second is to choose the best path from
the robot’s current location. We aim to confirm that the combined use of PSO and APF
techniques can effectively address both navigation and positioning problems, providing
satisfactory solutions. PSO is a bio-inspired algorithm that shows promise for optimization
techniques inspired by natural swarm behavior. On the other hand, APF techniques utilize
virtual forces to enable the robot to navigate around obstacles. Bio-inspired algorithms,
such as PSO, are rapidly emerging as viable solutions to optimization issues. PSO achieves
global optimization through iterative improvement of candidate solutions; hence, it is a
valuable approach for both industry and academia. Similarly, the interest of researchers
has extended to the topic of the APF due to its potential future applications in collision
avoidance by robots, which employ virtual forces. We propose a new method that combines
PSO with APF to overcome the limitations of each technique. While the PSO technique may
struggle to operate in high-dimensional spaces, APF techniques can encounter problems
such as becoming trapped in local minima; hence, our approach aims to leverage the
strengths of both while mitigating their drawbacks.

In summary, traditional path-planning methods are effective but often lack flexibility
and robustness in dynamic, uncertain environments. This research proposes a solution by
integrating PSO with APF, resulting in an algorithm that leverages PSO’s global search
capabilities alongside APF’s real-time adaptability. The main contributions of this paper
can be summarized as follows:

*  We developed a new adaptive hybrid PSO-APF algorithm that allows PSO to dynami-
cally tune APF parameters (repulsive scaling # and distance of influence dy) in a way
that favors global optimization while also providing rapid tuning in the local scope.

* In our experiments with dynamically changing scenarios, the suggested algorithm
provides better navigation performance, with significantly shorter paths (up to 18%)
and an 85% success rate, relative to PSO and APF alone representations, utiliz-
ing moving obstacles, in comparison with two standalone benchmarks and one
hybrid benchmark.

* A thorough review of parameter sensitivity and parameter optimization was per-
formed, which provides a systematic exploration of how basic parameter choices can
affect performance, along with practical advice on parameter knobs to tune.

*  The proposed adaptive hybrid PSO-APF algorithm is robust and flexible in various
contexts by exploiting real-time replanning to consider dynamic or moving obstacles
with degraded paths, as well as dynamic or different goals, which all reflect reliability
in a real-world implementation scenario.

The rest of the paper is organized as follows. Section 2 reviews related work on both
global and local path-planning methods. Section 3 describes the main components of
PSO and APF and discusses their relevance to some aspects of reinforcement learning
and adaptive control methods. Section 4 details the PSO-APF hybrid system we propose,
including its initialization, how we evaluate fitness, and how we adapt the PSO-APF scheme
during operation. Section 5 presents simulation results with comparisons of performance
metrics. Finally, Section 6 concludes the paper, discussing future research directions, such as
assistive robots, and considerations for integrating an APF into a sensor-fusion framework.

2. Related Work

In this section, we will explore diverse methodologies adopted by researchers to
solve navigation challenges faced by autonomous mobile robots. Mobile and autonomous
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robotic navigation is the ability to move independently in dynamic environments filled
with obstacles, achieved by using information collection and decision-making techniques
without human intervention [6]. Navigation, being a pivotal task in mobile robotics, can
be broadly categorized into two types: global navigation and local navigation [7,8]. When
the path is determined from the starting point to the destination, this is called global path
planning, while local path planning is modifying the path to avoid potential hazards and
correcting the path in real time [9]. Table 1 presents a comparison between global and local
path planning. Additionally, we will examine integrated navigation strategies and hybrid
reinforcement learning—PSO approaches.

Table 1. Comparing global and local path planning.

Feature Global Path Planning Local Path Planning
Environment Use preloaded map or data Adapts to real-time changes and
obstacles.

Path Compute the whole path Adjust path as the robot moves and
before moving. encounters obstacles.

Obstacles Assume obstacles are static. Avoid moving obstacles in real-time.

Data Ut11.1ze a thap or mOdel .Of the Use live sensor data to navigate.
environment provided in advance.

s Less flexible in dynamic environments . . .
Flexibility due to reliance on static data. Highly flexible and adjusts to changes.
Use Case Work best in predictable environments. Best for dynamic or

unknown environments.

2.1. Global Path Planning

This navigation utilizes pre-existing environmental data to calculate the optimal path
from start to destination before the robot begins moving, thereby determining the best
and most efficient route. Several techniques have been developed, including the Dijkstra
algorithm, Floyd-Warshall algorithm, Bellman-Ford algorithm, A* algorithm, deep learn-
ing, genetic algorithm (GA) [8], Bacterial Foraging Optimization (BFO) [10], PSO, ABC,
Ant Colony Optimization (ACO), Golden Jackal Optimization, and Grey Wolf Optimiza-
tion. The efficient global path planning method PSO helps robots navigate efficiently by
optimizing the route using a swarm of particles that search for the best path based on
a set of evaluation criteria [8]. Researchers have developed numerous innovative PSO
variants, including PSO-GA, an efficient algorithm for large-scale global path planning
of UAVs. It is a hybrid algorithm that combines GA and PSO to find the optimal path
in a grid environment. It optimizes paths considering 4G network coverage, communi-
cation reliability, power constraints, obstacles, and no-fly zones. PSO-GA shows faster
convergence and better performance in suburban environments, validated by real-world
tests [11]. BAPFACO is a novel global path-planning algorithm that improves ACO. This
technique integrates a bidirectional APF to eliminate traps, an adaptive heuristic function
to reduce turns, a pseudo-random state transition rule to accelerate convergence, and an
improved pheromone update strategy to escape local optima. BAPFACO outperforms
other ACOs by reducing path length, improving convergence speed, and minimizing
turning times [12]. To effectively optimize the path planning of a mobile robot with global
optimization, improve the path smoothness, and reduce running time, Huang et al. [13]
used the A* PSO (APSO) technique, which combines A* and PSO. Researchers in another
article (Ref. [14]) proposed SDPSO, a novel approach for efficient UAV global path in
complex environments. SDPSO enhances global optimization and reduces local conver-
gence, outperforming traditional methods by improving path quality and robustness in 3D
environments. Lv and Yang [15] improved PSO for mobile robot path planning, where this
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method features an inverse learning strategy that initializes the swarm and dynamically
adjusts the inertial weight and learning factors during iterations to improve the global
search capability, convergence accuracy, and stability. The authors in this approach utilize
the Travelling Salesman Problem (TSP) to frame the path planning, and PSO to optimize
this path. Zhong and his team [12] proposed an alternative global path planning algorithm
to optimize the mobility efficiency of robots, which generates paths segmented by turning
points and smooths them using Dubins and Clothoids curves under kinematic constraints.
They used an evaluation function to select the most efficient path considering factors such
as speed loss and turning distance. The results demonstrate the effectiveness of this method,
which outperforms the Hybrid A* algorithm in generating smooth and efficient trajectories
in complex environments. Researchers [16] introduce an adaptive PSO that enables smooth
path planning in mobile robots and avoids obstacles. They adjust the inertial weight and
acceleration coefficients according to the swarm’s success rate in the current iteration to
enable dynamic adaptation in the search space. To streamline multi-UAV collaboration,
the authors in [17] used the PPSwarm algorithm that combines RRT* for fast initial path
search and a priority-based method. PPSwarm outperforms other algorithms in terms of
path quality, speed, scalability, and scenarios with up to 500 UAVs. ABC-PSO is primarily
a global path planning algorithm, as it seeks to find the optimal path by searching the
entire space, and enhances the global search capabilities of PSO by integrating the global
and local search mechanisms of the artificial bee colony (ABC). This makes it suitable for
global navigation missions [18]. HWPSO is a hybrid algorithm that combines the Whale
Optimization Algorithm (WOA) and PSO for global path planning of differential wheeled
mobile robots, aiming to solve the challenges of nonholonomic constraints in complex
terrains and to exploit the exploration capabilities of WOA and the exploitation efficiency
of PSO. Najm et al. [19] evaluated HWPSO in five different environments and compared
it with several works, where the results show its effectiveness. The authors of another
study [20] presented an improved PSO for mobile robot path planning. They address the
low convergence accuracy and premature convergence. To improve the search accuracy,
they integrate differential evolution (DE) with adaptive parameters and a “high-intensity
training” mode. To optimize the path length and hazard level, they used a two-objective
approach. Separately, Haris and Nam [21] have sought to utilize distance-dependent sig-
moid inertia weighting (DSI-PSO), a novel technique for enhancing route planning. It aims
to find an optimal and collision-free path that satisfies criteria such as shortest distance
and smoothness, which are characteristic of global planning, the authors of DSI-PSO in-
spired by the activation functions of neural networks, where it adapts its inertia weight
using a sigmoid function based on the distance metric of a particle, DSI-PSO shows high
performance in convergence rates and path optimization, including safe and efficient route
planning. Makhlouf et al. [22] combined PSO and BFO to find the optimal path from a
starting point to a destination in obstacle-ridden environments. This approach is tested in
various scenarios and demonstrates its effectiveness in solving path planning problems.
The authors introduce an enhanced deep reinforcement learning algorithm for global path
planning of autonomous mobile robots (AMRs) in complex, unfamiliar environments.
This method treats the path-planning challenge as a Markov Decision Process (MDP). It
employs a Double Deep Q-Network (DDQN) along with an adaptive e-greedy strategy
and a heuristic-based reward system to promote efficient exploration and successful goal
achievement. The approach produces safe, concise, and smooth paths by selecting optimal
actions and applying Bezier curve smoothing. Simulation results indicate that the proposed
IDDQN algorithm surpasses traditional methods such as DQN, A*, RRT, and APF in path
efficiency, safety, and disturbance resilience, showing strong adaptability in unfamiliar
settings [23].
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2.2. Local Path Planning

Local path planning enables robots to determine how to move and operate in un-
familiar or changing environments, utilizing real-time data from sensors to continu-
ously update the path, distance to the target, and obstacle positions while navigating.
Katona et al. [8] have successfully employed a variety of methods such as Bug algorithms,
APF, Rapidly Exploring Random Tree (RRT), Simulated Annealing, and Tabu Search. To
address the challenges posed by local navigation, several studies have followed this ap-
proach, including the AS-IAPF (Adaptive Strength Improved APF). This was presented
to address congestion, obstacle avoidance, and path planning efficiency of autonomous
vehicles in urban environments. The scholars [24] combined a dynamic traffic stability
model with improvements in the APF algorithm, including Gaussian oscillation for path
optimization and adaptive repulsion force adjustments. The AS-IAPF is efficient and stable,
outperforms traditional APF methods, and improves safety through 2D and 3D scenario
simulations. The ISALPSO (Improved Self-Adaptive PSO) algorithm is used to enhance
the path prediction of mobile robots in logistics applications. Fusic and his colleagues [25]
used 2D Lidar mapping and the Hector SLAM method on the Robot Operating System
(ROS) platform to create real-time maps and find efficient routes. Simulation and hardware
test results demonstrate that ISALPSO is effective in optimizing path planning, yielding
shorter trajectories, faster convergence, and reduced computation time compared to other
PSO variants. Benmachiche et al. [26] use GA to determine optimal paths for multiple
robots to navigate in changing environments. Robots edit their paths based on real-time
conditions, and path evaluation is based on a fitness function, which optimizes path length.
The authors of another work [27] presented how fuzzy logic and bright lights can help
autonomous vehicles navigate their environment. The problems addressed include guiding
robots from one point to another and finding the best path. Using the Reinforcement
Learning PSO (RLPSO) algorithm, Nagar et al. [28] looked into optimizing path planning
for an autonomous ground vehicle (AGV) that navigates in real time through localization
and map generation via Hector-SLAM and LiDAR sensors. RLPSO eliminates obstacles
and follows feedback, where the results show that RLPSO outperforms other PSOs in both
simulation and real-world testing. Muni et al. [29] used the SOMA-PSO algorithm to
respond to obstacles detected by sensors while maintaining path efficiency. It combines
the self-organizing migration algorithm (SOMA) and PSO for optimal path planning and
control of single and multiple mobile robots in static and dynamic environments. In addi-
tion to classical optimization-based techniques, several modern control approaches have
been applied to robot local path navigation. For instance, the researchers in this study
present an improved local path planning algorithm called FLC-TEB for car-like mobile
robots. It builds on the Timed Elastic Band (TEB) method by adding objectives for trajectory
smoothness and minimal jerk. A -PSOler adaptively modifies the importance of these
goals depending on environmental constriction and turn complexity. This strategy yields
trajectories that are smoother, shorter, and more stable than those generated by the standard
TEB algorithm, as demonstrated through simulations and real-world tests [30]. Kumar et
al. present a Deep Spiking Q-Network (DSQN) designed for mobile robot path planning
that is both efficient and energy-conserving. This approach replaces the typical neurons
in a Deep Q-Network (DQN) with leaky integrate-and-fire (LIF) spiking neurons, which
are inspired by biological systems, allowing the DSQN to learn its navigation strategy
through reinforcement learning. The DSQN system combines the robot’s overall objectives
with local environment observations (such as nearby obstacles) into a single framework,
allowing the robot to make intelligent, real-time decisions [31].
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2.3. Hybrid Navigation

Some methodologies combine global and local path planning, such as BPPSO, or
bi-population PSO, which divides particles into two subpopulations: one improves global
search capability by considering particle quality and optimal solutions, and the other
improves local search by using an adjustable cognitive coefficient. BPPSO outperforms tra-
ditional PSO and other algorithms in terms of path quality and execution time [32]. To help
robots navigate around obstacles and reach their destination efficiently, the scholars [33]
presented a novel approach that creates a path-planning method for mobile robots. This
approach adjusts the robots” movements in response to real-time environmental changes
and determines the shortest path with the optimal cost. The research presents a hybrid
system for path planning and correction to assist factory handling robots. It utilizes an en-
hanced A* algorithm to optimize overall path planning and employs the Dynamic Window
Approach (DWA) for local adjustments, thereby combining their strengths. Additionally, a
fuzzy PID controller was developed to correct navigation deviations. The results demon-
strated that this integrated method increased planning efficiency, supported smooth sliding
and obstacle avoidance behaviors, and produced stable, efficient paths [34]. In another
study [35], the authors present a detailed navigation framework for an Autonomous Marine
Surface Vehicle (AMSV) that integrates multi-objective global path planning with real-time
obstacle avoidance. A spiral path planner generates a smooth overall route through mul-
tiple waypoints, which is subsequently optimized by an improved A* algorithm to steer
clear of obstacles dynamically. To maintain precise path tracking despite environmental
disturbances such as waves, the system employs a finite-time Extended State Observer
(ESO) to estimate and counteract sideslip angles and external forces. This method, com-
bined with a Line-of-Sight (LOS) guidance law and a high-order sliding mode controller,
guarantees robust, precise, and stable trajectory tracking.

2.4. Multidisciplinary Navigation Insights

Recent advancements in optimization across multiple fields provide valuable insights
for autonomous navigation. Bayesian inferential motion planning using heavy-tailed distri-
butions like Student’s-t has been suggested to improve motion planning under uncertainty.
Unlike conventional Gaussian sampling, heavy-tailed models increase robustness to out-
liers and rare events, facilitating more effective exploration of the configuration space and
collision avoidance in cluttered environments [36]. This probabilistic methodology encour-
ages further enhancements in path planning resilience amid unpredictable dynamics. In
structural optimization, the performance-based design of reinforced concrete wall-frames
and steel chevron-braced frames using metaheuristics like ABC and ACO shows how
swarm intelligence handles nonlinear, high-dimensional problems [37,38]. These studies
demonstrate how optimization can balance multiple performance goals, similar to naviga-
tion, where safety, efficiency, and real-time constraints must be simultaneously optimized.
For robotic manipulators, a closed-loop approach to direct-indirect optimization has been
developed to solve nonlinear optimal path-tracking issues [39]. Unlike purely offline
trajectory design, this method incorporates real-time feedback and corrections, thereby
improving stability and accuracy, which closely aligns with our adaptive PSO-APF sys-
tem that dynamically adjusts parameters based on environmental changes. Furthermore,
convex optimization-based trajectory planning has become a powerful technique for coop-
erative robotics [40]. By incorporating global performance metrics into real-time control,
convex programming allows for the creation of nearly optimal paths even in changing
conditions. This method is similar to our approach of using metaheuristics for local plan-
ning to improve responsiveness and reliability in dynamic environments. Overall, these
interdisciplinary studies support our key strategies: (1) using probabilistic inference to
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increase search flexibility; (2) applying swarm intelligence for performance optimization
under nonlinear constraints; (3) incorporating closed-loop adaptivity for robustness; and
(4) achieving optimality through advanced optimization frameworks. These perspectives
position PSO-APF at the crossroads of robust, adaptive, and efficient navigation solutions.

2.5. Reinforcement Learning—PSO Hybrid Approaches

Katona et al. [8] and Maysam and Al-Darraji [41] classified path planning algorithms
into traditional algorithms, such as Bug algorithms, Vector field histograms, probabilistic
cell decomposition, etc., and heuristics, such as A*, ga, PSO Ai algorithms (RL, ANN),
etc. The authors focused their paper on the most commonly used Al-based methods and
their capabilities to solve path planning problems, including deep learning-based path
planning, reinforcement learning-based path planning, and deep reinforcement learning-
based path planning. Many other researchers explore these techniques in their papers:
BILSTM-PSO-GRRT [42] is a novel approach that aims to improve UAV path planning in
complex 3D environments with many obstacles, where GDRRT is an enhanced version of
RRT* that uses intelligent sampling based on target distance for faster convergence, PSO
is used to optimize the paths found by GDRRT*, and BILSTM is a neural network that
estimates optimal paths from PSO-GDRRT* and enables real-time path planning. Liu and
others [43] optimize reinforcement learning hyperparameters to improve convergence
speed and better learning. They reduce the impact of invalid particles by improving the
PSO, and they use reinforcement learning rewards to improve particle fitness in the PSO.
RMPSQO [44] is a novel approach that combines reinforcement learning and PSO to optimize
the path planning algorithm for autonomous underwater vehicles. This approach aims
to improve the convergence speed and adaptability of PSO by integrating a reinforce-
ment learning feedback mechanism. To optimize the paths of automated guided vehicles,
Chen et al. [45] used two algorithms: APF and double delayed deep deterministic policy
gradient (TD3). This approach generates optimal paths and considers obstacles, target
points, and AGV states. It uses reinforcement learning to select the best actions. The algo-
rithm proposed by Zhang et al. [46] is a multi-objective PSO algorithm with multi-mode
collaboration based on reinforcement learning (MCMOPSO-RL). It utilizes reinforcement
learning to select the optimal position for particles, striking a balance between exploration
and exploitation, and employing a hybrid update mode to enhance performance and solve
the collaborative path planning problem for multiple drones in complex environments. The
authors [47] proposed the Reinforcement Learning PSO (RLPSO) algorithm, a combination
of Q-learning and PSO. RLPSO utilizes Q-learning to explore the environment and create a
Q-matrix, which PSO subsequently employs to enhance path planning.

3. Background and Motivation
3.1. Mechanics of PSO and APF Integration

The hybridization of PSO and APF combines the global optimization capabilities of
PSO with the real-time obstacle avoidance of APF (as summarized in Table 2).

This integration establishes a robust framework that strikes a balance between global
optimization and local responsiveness. The interaction between the two methods occurs
as follows:

e PSO initializes a population of particles (potential paths) in the search space, evalu-
ating their fitness based on a combined cost function that accounts for path length,
smoothness, and goal proximity.

*  APF calculates repulsive forces from obstacles and attractive forces toward the goal
in real-time. These forces provide local adjustments to particle trajectories, ensuring
collision-free navigation.



Sensors 2025, 25, 5742

9 of 32

¢ Ateach PSO iteration: The APF module provides feedback by modifying the velocity
vector of each particle to account for dynamic obstacles. This refined trajectory is then

evaluated by the PSO fitness function, integrating local obstacle avoidance into the

global optimization process.

*  The search space is dynamically adjusted by APF forces, effectively steering particles

away from infeasible regions while maintaining focus on the global objective.

Table 2. PSO and APF integration process.

Step

Description

1. Global Path Initialization (PSO)
2. APF Parameter Optimization (PSO)
3. Real-time Navigation (APF)

4. Feedback to PSO

PSO generates potential paths toward the goal, exploring the search
space to find optimal solutions.

PSO adjusts key APF parameters (weights for attractive and repulsive
forces) to minimize path inefficiency and avoid local minima.

With optimized parameters, APF dynamically adjusts the path to avoid
obstacles during real-time navigation.

Real-time feedback on path quality (smoothness, obstacle avoidance) is
provided to PSO for further refinement.

The hybrid APF-PSO approach combines the strengths of both methods while ad-
dressing their individual weaknesses, making it an effective solution for path planning in

complex and dynamic environments (Table 3).

e  Weaknesses addressed:

While PSO is powerful for global optimization, it can be slow due to its iterative
nature. In the hybrid approach, PSO is used for initial path planning, which
is completed in advance. This enables the faster APF component to handle
modifications in real-time, ensuring rapid responses during execution.

APF can get stuck at a local minimum, preventing it from finding the target. The
hybrid approach avoids this by using PSO to generate a globally optimized path,
giving the APF a solid starting point and reducing the risk of getting stuck.
APF often struggles with smooth motion near obstacles, leading to oscillations.
The hybrid approach facilitates these transitions, as the globally optimized path
of PSO reduces the sudden adjustments required by APF.

*  Enhanced strengths:

PSO excels at finding efficient paths in congested environments. This global
optimization ensures that the path is not only feasible but also efficient in terms
of distance and energy usage.

APF is fast and lightweight, making it ideal for responding to sudden changes,
such as moving obstacles. In the hybrid approach, APF fine-tunes the path in real
time without the need for the more computationally expensive PSO restart.

¢ Benefits: The hybrid APF-PSO method strikes a balance between optimization and
adaptability. As shown in Table 3:

It combines the efficient pathfinding of PSO with the real-time adjustment ability
of APF, ensuring successful navigation even in dynamic environments.
Smoother trajectories: By combining global planning with local adjustments, the
resulting trajectories become less steep and more natural.

Although it requires more computation than APF alone, the hybrid method
remains efficient compared to standalone PSO or other hybrid methods.

The hybrid method effectively adapts to changing environments, optimizes the
search space for efficiency, and overcomes common challenges such as local
minima. This synergy makes it a powerful and reliable choice for real-world
robotics applications.
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Table 3. Comprehensive comparison of path planning methods.
. o e Computation  Path (Curva- Success . Computational
Method/Technique Advantages Limitations Time (ms) ture Index) Rate (%) Accuracy  Adaptability Efficiency
Real-time performance; easy Local minima issues; os- Low Medium Moderate .
APE to implement cillatory near obstacles (17-23) (0.6-0.8) (72-81) Moderate  Low High
Global search capability; effec- Higher computational Medium Medium Moderate .
PO tive in complex environments cost; slower in real-time (52-65) (0.75-0.85) (84-91) High Moderate Moderate
Hybrid Combines real-time naviga- . . . Very
APF-PSO tion with global optimization; Eeqiljre}?efzgzﬁﬁgej ;uPI; ?;;j;m Z)Ilggfll 0) high High High gioclrl\erate—
(Proposed) mitigates local minima &g - (95-98) &
: Exploits BFO exploration Slower than PSO; sensi- Medium Medium-High High .
BFO-PSO with PSO optimization tive to tuning (50-70) (0.8-0.9) (88-93) High Moderate  Moderate
Good at escaping local min- Very slow convergence; High Medium Moderate Low-
BFO ima; bio-inspired search high computational cost (70-100) (0.7-0.8) (75-85) Moderate - Moderate Moderate
) Convergence time high; . . Moderate—
GA Stror}g global search; good risk of premature conver- High Medium High High Moderate Low
for discrete problems gence (80-110) (0.75-0.85) (85-90)
. Requires large training . . . ..
Learns from data; adaptive to ] o High High High . . Low (training-
ANNand QL dynamic environments f:lata, poor generalization (100-150) (0.9-1.0) (90-95) High High intensive)
in unseen cases
. . . Low- . .
A* Ggarantees op.tlrnal path in (;om.putahonally expen- Medium Medium High Moderate  Low High
grid-based environments sive in large maps (20-50) (0.7-0.85) (88-92)
Learns adaptive strategies Training overhead; com- . . Very
RL-PSO with RL while ensuring putationally more inten- %;I(l)g—}llZO) z)h;gi 0) high High Xfr}}: Moderate
lobal search with PSO sive than PSO alone R (93-96) &
&
Fuzzy Logic igg;e .r;lcl)iﬁ:tsie: n(i)eizlsfr?- Requires expert-defined Low Medium-High High Moderate  High High
Control (FLC) Jaxmng; y rules; scalability limited (15-30) (0.8-0.9) (85-92) & (lightweight)
vironments
Moderate
Adaptive Adjusts online to environ- Needs continuous tuning; Medium High High Hich Hieh (train-
Control ment changes sensitive to disturbances (40-60) (0.85-0.95) (90-94) & & ing/tuning
needed)
E\'/ent- Distributed * and sc_talable; Communication  over- M.e dium-— High Vf_-ry . . High (scalable,
triggered excellent for multi-robot head: complex desien High (0.9-1.0) high High High efficient)
Consensus coordination ’ P & (60-90) R (93-97)
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3.2. Reinforcement Learning and Adaptive Control: Key Differences

Chaoyang [48] employed reinforcement learning to optimize path planning by learning
from past experiences. However, reinforcement learning methods often suffer from high
computational complexity and may require extensive training data, which can limit their
real-time adaptability. Our Approach: In contrast, we combine PSO (global optimization)
with APF (real-time obstacle avoidance), which does not require prior training. This hybrid
approach ensures faster convergence and adaptability to dynamic environments without
the overhead of model training or extensive computation.

Optimal Fully Actuated System Approach: Tian and his colleagues. Ref. [49] focused
on trajectory tracking for fully actuated robotic systems, primarily in structured environ-
ments with predefined trajectories. Its scope is more on control strategies than on dynamic
path planning in unstructured environments.

Our Approach: Our work addresses explicitly dynamic path planning in unstructured
and dynamic environments, where both the goal and obstacles can move unpredictably.
The hybrid PSO-APF algorithm ensures that the robot navigates efficiently while adapting
to environmental changes in real-time.

The referenced studies focus on specialized methodologies for either learning-based
optimization or control mechanisms, while our work uniquely integrates a global meta-
heuristic (PSO) with a local reactive method (APF) to achieve efficient and adaptable
path planning.

3.3. Adaptive Parameter Optimization

Several hybrid approaches exist in the literature; for example, PSO-GA [11] combines
global exploration (GA) and local refinement (PSO), but relies on fixed parameters that
must be manually adjusted for specific environments. Similarly, BFO/PSO [22] inte-
grates bacterial search schemes to improve the exploration capability of PSO, but does
not allow dynamic parameter adjustment during execution. Our method is fundamen-
tally distinguished by its adaptive mechanism. Our approach achieves true adaptabil-
ity by modifying PSO-driven APF parameters in real time, setting it apart from tra-
ditional hybrid methods where parameters are generally fixed or optimized offline.
More accurately:

*  Parameter tuning: PSO dynamically adjusts the repulsive scaling factor (), influence
distance (dy), inertial weight (w), and acceleration constants (c1, c3) of the APF during
each iteration. In contrast, PSO-GA or BFO/PSO usually depend on fixed static values
or offline tuning methods.

*  Escaping local minima: While genetic algorithms rely on mutation and BFO on
chemotaxis to avoid local minima, our approach combines the repulsive forces of APF
with PSO’s global exploration, resulting in more effective trap avoidance.

*  Real-time tuning: The proposed PSO-APF continuously updates APF forces dur-
ing operation, whereas BFO/PSO/PSO-GA hybrids are usually designed for offline
optimization and then operate in a fixed configuration.

¢  Two-way feedback loop: In PSO-APF, a two-way feedback loop exists: PSO sends
updated parameters to APF for trajectory planning, and APF guides PSO particles via
its force field evaluation. This interaction is absent in traditional hybrid methods.

The adaptive nature of our method allows for better performance in changing environ-
ments, where fixed-parameter methods have difficulty keeping optimal navigation behavior.

4. The Proposed System

The problem revolves around enabling autonomous robots to navigate from a starting
point to a goal location in dynamic environments filled with obstacles. The objective is
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to find an optimal or near-optimal path that minimizes travel time, distance, or energy
consumption while avoiding collisions with obstacles.

The hybrid PSO-APF path-planning problem aims to develop a robust navigation
strategy for autonomous robots operating in dynamic environments. By integrating the
strengths of both PSO and APF, this approach seeks to overcome the limitations of individ-
ual methods and achieve efficient and adaptable path planning.

PSO is a bio-inspired optimization algorithm that mimics the behavior of bird flocks
or fish schools in nature. It optimizes solutions iteratively by adjusting the positions
of particles in a search space to find the best possible solution. In the context of our
path planning, PSO is utilized to generate candidate paths by iteratively exploring the
environment. Each particle in the swarm represents a potential solution (a path), and the
swarm iteratively adjusts the positions of particles based on their individual experiences
and the global best solution found by the swarm.

In contrast, APF operates on the principle of potential fields, perceiving obstacles as
repulsive forces and the target destination as an attractive force. Through computation of
the potential field surrounding obstacles and the goal, APF influences the robot’s trajectory,
diverting it from obstacles and aligning it towards the target. The resultant force dictates
both the direction and velocity of the robot’s motion, facilitating progress toward the objec-
tive while sidestepping obstacles (Figure 1). Nonetheless, APF may encounter challenges
such as being prone to local minima, navigating through narrow passages, or experiencing
oscillations around obstacles when used in isolation.

Start

'

Initialize Particles

I

APF Fattractive: FRepulsive [+ Evaluate Fitness [

I

Update Local Best

'

Update Global Best No

I

Update Velocity and Position

I

Stopping Criteria Met? @—————=<

Yes Yes <
: .

End

v

Acceptable Solution

Figure 1. Overall process of PSO-APF.

Through the fusion of PSO and APF, the hybrid approach harnesses the global op-
timization capabilities of PSO to produce a wide array of potential paths, while simulta-
neously employing APF for real-time navigation guidance, ensuring fluid and effective
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traversal. Initially, the PSO algorithm refines and explores the search space continuously,
while APF promptly adjusts the robot’s trajectory based on local obstacles and the goal
location. As the robot progresses through the environment, APF continually fine-tunes its
trajectory, ensuring adaptability to dynamic environmental changes and facilitating safe

and efficient advancement toward the goal (Table 4).

Table 4. Advantages and limitations of APF, PSO, and hybrid approaches.

Technique Advantages Limitations

APF Fast local navigation; real-time ob- Prone to local minima; struggles
stacle avoidance in complex environments

PSO Global optimization; effective for ~Slow convergence in dynamic sce-

complex environments
Hybrid APF-PSO Combines local response (APF)
with global search (PSO); over-

narios; lacks real-time adaptability
Higher computational cost; re-
quires careful parameter tuning

comes local minima; enhanced
path smoothness

The seamless integration of PSO and APF entails harmonizing the operations of
both algorithms. This may involve specifying the initialization, updating, and evaluation
procedures for PSO particles, as well as determining the computation and application
of APF forces to steer the robot’s motion. Such coordination ensures optimal perfor-
mance and synergy between PSO’s global exploration capabilities and APF’s real-time
navigation guidance.

In alignment with the flowchart depicted in Figure 2 illustrating the proposed system,
the following pseudo-code delineates its overall process:

o

Intialize Particles and Set PSO & APF i Update Particle Position based on
Parameters ( Updated Velocity

.

For each lteration: Evaluate Fitness of Updated Position

} ;

For each Particle: If Fitness is Improved, Update Panicle's\
Best Position .

.
-
-
.
——— h
¢ —

Calculate Attractive Force from Target / | Check if Any Particle

(APF Attraction) Reached Target
Check if Maximum I
Iterations Reached Yeg
Calculate Repulsive Forces from ‘
Obstacles (APF Repulsion) No
¢ Save Optimal Path
Found

Sum Attractive and Repulsive Forces Return Optimal Path from Particle with
to get Total APF Force Best Fitness

Update Particle Velocity using:
- Inertia (Previous Velocity)
- Total APF Force
- Cognitive and Social Components (PSO)

Figure 2. Analysis of the system’s elements and the interaction of PSO and APF in path planning.

The overall workflow of the proposed hybrid PSO-APF method is summarized in
Algorithm 1.
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Algorithm 1 Hybrid PSO-APF Pseudocode

IS e S G S G Y
L N

e e e

NN NN NN =
A N

27:
28:
29:

O PN U A WN R

: Input: Start point S, Goal G, Obstacle set OPS, N (particles), max! (iterations)
: Output: Optimal path (Gbest)

: Initialize particles: X;, V; randomly in search space

: for each particle i do

Compute fitness f(X;) using Equation (1)
Set Pbest; + X;
end for

: Pglobal < argmin f(Pbest;)
: fort =1 to maxI do

for each particle i do
Fuit < ComputeAttractiveForce(X;, G)
Frep < ComputeRepulsiveForces(X;, OPS)
Fiotar <= Fatt + Frep
Update velocity: /! = w - vl + ¢y - 1y - (Pbest; — X!) 4¢3 - rp - (Pglobal — X*)
Update position: X! ™ = Xt 4 o1
Apply Fipq1 to adjust trajectory
Evaluate new fitness f(X!™1)
if f(X!™1) < f(Pbest;) then

Pbest; + X!
end if
if f(Pbest;) < f(Pglobal) then
Pglobal < Pbest;

end if

end for

if convergence criteria met then
Break

end if

end for
Return Gbest = Pglobal

4.1. Initialization

3.

Initialization consists of the following steps:

Generate a population of particles, each representing a potential solution (path) for
the robot, letting N be the number of particles in the population.

Each particle i is initialized with a position vector X;, and a velocity vector V; with
random values within a predefined range in the search space, taking obstacles into
account. These vectors can be represented as follows:

e Position Initialization: X; = (x/1, Xj, ..., X;;) where d is the dimensionality of the
problem space.
e Velocity Initialization: V; = (v1, vjp, ..., Uig)-

Each particle i is represented by its position X; and velocity V; in the solution space.

4.2. Fitness Evaluation

For each particle, calculate the fitness function f(X;) of its path by determining the

length from the starting point to the endpoint and evaluate the quality of each particle’s

position, with APF (Fagtractive FRepulsive) for obstacle avoidance. Mathematically, it can be

expressed as:

n

f(Xi) =) d(Xij, Xij1) (1)

j=1



Sensors 2025, 25, 5742

15 of 32

*  where n is the number of waypoints in the path, d is a Euclidean distance function,
and X; ; represents the j;, waypoint in the path for particle i.
¢ Update the fitness value for each particle based on the length of the path found.

4.3. Local Best Solution

1. For each particle, we identify the best solution Pyest ; encountered so far (best local
solution) by comparing its fitness value with those of its neighboring particles. This
can be mathematically expressed as:

X; iff(Xi) < f(Pbest,i)
Pyest;  otherwise

(2)

B best,i —

2. Update Pyeg; if f(X;) is better than the fitness value associated with Ppeg; or
its neighbors.

4.4. Global Best Solution

1. The swarm collectively tracks the global best-known position Pgjopal, representing
the position with the best fitness value among all particles (global best solution).
Mathematically, this is updated as:

P, global — argmin f (P best,i ) (3)
1
2. Update Pgiopar if f (X;) is better than the fitness value associated with Pgiobal OF
its neighbors.

4.5. Velocity and Position Update

*  For each particle, calculate the new velocity by considering its current velocity,
its best local solution, and the global best solution, which balances exploration
and exploitation.

Mathematically, it can be expressed as:

vf“ = wz;§ +oir (Pliest,i — Xf ) + carp (Pélobal - th ) @)

where w is the inertia weight, c1, and ¢ are acceleration coefficients, r; and r, are

random numbers between 0 and 1, P!, ; is the best position of particle i found so far,

ti
and Pél obal 18 the best position found ]j;any particle in the swarm at iteration .
¢  Limit the particle’s velocity to prevent excessive movements.
*  Update the position of each particle i by adding its velocity to its current position,
using the equation:

b1 ot bl
X = xj + 0] ®)

where x! is the current position of particle i at iteration ¢, and ! is the velocity of
particle i at iteration ¢.

4.6. Stopping Criteria
1.  We repeat steps 2 to 5 until a stopping criterion is met:
¢ A maximum number of iterations is reached.
¢  The algorithm converges with a solution within a predefined threshold (Accept-
able Solution).
¢  Stagnation in the search process.
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2. Weselect the particle that produced the best solution as the final solution, representing
the shortest path found by the algorithm. This algorithm iteratively refines the
solutions by adjusting the velocities and positions of particles based on their own
experiences (local best) and the collective knowledge of the swarm (global best).
By combining PSO’s exploration capabilities with APF’s obstacle avoidance, the
algorithm efficiently navigates the solution space to find an optimal path for the
autonomous mobile robot in a complex environment.

4.7. The Effect of Different Parameters on Path Planning Performance

In this subsection, we demonstrate how particle swarm optimization (PSO) optimizes
the repulsive scaling factor (1), influence distance (dp), inertia weight (w), and acceleration
constants (cy, c2) of the artificial potential field (APF) during runtime, thereby embedding
adaptivity into the hybrid model. This mechanism ensures that the robot’s navigation
strategy is continuously updated according to environmental feedback rather than relying
on static parameters.

In PSO, the inertia weight (w) regulates how much a particle’s past velocity affects
its current movement. Greater inertia weight encourages exploration as it allows particles
to keep their velocity, which can help prevent getting stuck in local minima. On the
other hand, a smaller inertia weight focuses on exploitation, facilitating convergence by
decreasing particles’ speed as they close in on promising regions. In path planning, if w
is excessively high, particles may miss their targets or oscillate, particularly in areas with
numerous obstacles. An appropriately adjusted inertia weight enables particles to explore
effectively while maintaining the necessary stability for precise pathfinding near obstacles
(Equation (4)).

¢ A higher w promotes exploration, leading to better global search but slower conver-
gence. Conversely, a lower w enhances exploitation, resulting in faster convergence
but a higher risk of local minima. We tested values ranging from 0.2 to 0.9 and found
an optimal value of 0.6, balancing path quality and computational efficiency.

*  For the acceleration factors c1, and ¢, higher ¢; improved responsiveness to obstacles,
while higher ¢, yielded smoother paths by promoting global collaboration among
particles. Optimal values were ¢c; = 1.5and ¢y = 2.0.

In the APF framework, repulsive forces inhibit particles from colliding with obstacles.
The strength and reach of these repulsive forces influence how particles navigate around
barriers. For instance, a strong repulsive force or a long-range effect can lead to unnecessary
detours or cause the path to oscillate. Balancing the repulsive force parameters in APF with
the inertia and acceleration of PSO is crucial to prevent conflicts between obstacle avoid-
ance and PSO-based exploration. If the repulsive forces are excessively strong, particles
might not get sufficiently close to the target, while weaker forces may lead to inadequate
avoidance, particularly when coupled with high PSO inertia.

The repulsive force Fyep for obstacle avoidance in APF is defined as:

(6)

Frep =

where d is the distance between the robot and the obstacle, dj is the influence distance of
the obstacle, 7 is a repulsive force scaling factor, determining obstacle avoidance strength,
and 71 is a unit vector pointing away from the obstacle.

Larger 7 values ensured safer obstacle avoidance but increased path length. Smaller
dp enabled precise navigation in tight spaces. Optimal settings were 7 = 3.0 and dy = 2.5.
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Table 5 summarizes the effect of different parameters on path planning performance

in our simulation, specifically for the PSO and APF methods. Each parameter was tested

within a specific range, and the optimal values were selected based on their impact on path

quality, computational efficiency, and obstacle avoidance.

Table 5. Comprehensive parameter analysis with rationale for optimal selection.

Parameter Val;l:s{{eilnge O‘I;atizl:l Impact on Path Planning Rationale for Optimal Selection
. _ . . At w = 0.6, we observed the optimal trade-off:
tPcI)Iga}:/(E?él Tofj)ﬁ?;}rﬁzcgi te );I:zlaorz;fvr\: 18% shorter paths than APF alone while main-
Inertial [0.2,09] 06 convercence and lenethen athz Low taining 98.6% convergence rate in 100 x 100 en-
Weight (w) - ' (W = ng)_ faster ongv oroe r}:ce bl:lt Ligk Vironments. Values > 0.7 caused oscillations
sub; ti.mz.al solutions & near obstacles, while values < 0.5 resulted in
p ’ 12% more local minima incidents.
¢1 = 1.5 provided the best balance between
High (¢, = 2.5): enhances obstacle individual particle responsiveness to obstacles
Cognitive [1.0,2.5] 15 avgi danlce ;ia ioc.alize d search. Low (measured by obstacle clearance distance) and
Factor (¢1) e ’ (c; = 1.0): less effective naviga tié)n swarm coherence. Higher values caused frag-
L=k & ’ mented search patterns, while lower values re-
duced obstacle avoidance efficiency by 15%.
¢y = 2.0 maximized global information sharing
Social High (c; = 2.5): promotes smooth paths, without sacrificing diversity. At this value, path
Factor (ca) [1.0,2.5] 2.0 may limit diversity. Low (c; = 1.0): less curvature index improved by 23% compared to
2 smooth, more diverse but less optimal. = PSO-only, while maintaining 85% success rate
in dynamic environments.
n = 3.0 provided optimal obstacle clearance
Repulsive High (y = 5.0): cautious but longer (1.8x obstacle radius) without excessive de-
Force [0.5,5.0] 3.0 paths. Low ( = 0.5): smoother but tours. Values > 3.5 increased path length by
Scaling (77) more collisions. 12%, while values < 2.5 resulted in 22% more
near-collision incidents.
Influence High (dp = 5.0): more avoidance, more dy = 2.5 enabled effective navigation in narrow
Distance [1.0,5.0] 2.5 detours. Low (dy = 1.0): better in corridors (width < 3 units) while preventing
(do) narrow spaces. unnecessary detours in open spaces.

4.8. Dynamic Environments

In our work, dynamic environments refer to scenarios where key environmental

factors change over time, requiring the robot to adapt its path planning in real-time. These

factors include:

Obstacles may change position or move unpredictably during the robot’s navigation.
The algorithm accounts for this by continuously recalculating the APF based on
updated obstacle positions and adjusting the PSO particles’ paths accordingly.

The robot may need to accelerate or decelerate based on terrain or mission require-
ments. The algorithm dynamically adapts the step size in the velocity updates of PSO
particles to maintain smooth and efficient navigation.

In certain applications, the goal location may also move (e.g., tracking a moving target).
The APF’s attractive force component is recalculated in real-time to guide the robot
toward the updated goal.

Environmental changes, such as the sudden appearance or disappearance of obsta-
cles, are handled by dynamically updating the APF and recalculating the fitness of
PSO particles.

In our implementation, we chose the circle to be the moving. The circle starts moving

in one direction at a speed determined by the user. Once the robot conducts a certain

number of runs, also determined by the user, the obstacle changes its direction, and so
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on until the number of runs is completed. Points on the obstacle borders/edges are not
considered inside the obstacle; therefore, the robot can use them to advance along those
borders. Basically, the user is in charge of the following:

*  The speed of the robot: the speed at which the robot navigates once it discovers a
better position closer to the goal

*  The speed of the obstacle: the speed at which the obstacle moves, which is important
as it affects the path of the robot. If the robot and the obstacle have different speeds,
it can cause further effects on the robot, forcing it to alter its original path, or it can
collide with the robot, and that contact, in a way, pushes the robot off its course and
forces changes on the robot while it is moving. The parameters of APF’s repulsive
force might require dynamic adjustments to emphasize collision avoidance when
obstacles are frequently or unpredictably in motion.

¢ Invert direction: the number of runs before the obstacle reverses its direction. This
can make the robot recalculate and find another path to the goal than the one it
initially found.

The performance of the hybrid PSO-APF algorithm is highly sensitive to parameter
selection. Through testing in different environments (from 10 x 10 to 1000 x 1000 with
various obstacle densities), we were able to identify parameters producing balanced results
between exploration and exploitation, and real-time responsiveness. A systematic testing
methodology was followed to empirically establish the optimal parameters, accompanied
by performance metrics across five key dimensions: path length, computation time, success
rate, obstacle avoidance efficiency, and path smoothness. Unlike previous studies that typi-
cally adopted default or arbitrary parameter values, we chose each of our parameters based
on systematic testing (quantitative performance metrics) across these five key dimensions
of path planning. Our theoretical parameter selection stemmed from the need to balance
the utility of global PSO exploration and subsequent local path refinement by APF. The
core innovation of our approach is captured by this integrated motion equation:

t+1 t t t
vi = woj + 171 (Poesti — ¥;) + €272(8best — X;) + Fatt + Frep )
S~~~ ——
Inertia  Cognitive component  Social component APF forces

For example, it is important to point out that if the inertia weight is too high, it would
cause particles to overshoot obstacles; conversely, if the inertia weight is too low, it will
create premature convergence in local minima traps. Similarly, improper APF parameter
selections could lead to either excessive detours or collision risks. Our parameter selection
process can be formalized as finding the global maximum of the performance surface,
where our experimental results show that the optimal point is approximately:

w* =06, =15 o¢,=20, n*=30 dj=25

4.8.1. Mechanism of Adaptivity

To clarify the implementation of adaptivity, this subsection details the technical work-
flow of the proposed hybrid.
Adaptive PSO-APF:

1.  Initialization
First, a group of PSO particles is generated, each representing a potential set of APF
parameters (17, do, w, c1, c2). These parameters control the magnitude and arrangement
of the attractive and repulsive forces that shape the robot’s trajectory.

2. APF Field Calculation
Using each particle’s parameters, the APF creates attractive forces guiding the robot
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toward the goal and repulsive forces pushing it away from obstacles. This results in
an initial path for the robot to follow.

Cost Evaluation

The trajectories are assessed using a fitness function that considers factors such as goal
proximity, obstacle clearance, and path smoothness. This assessment offers feedback
on the effectiveness of the selected parameters.

PSO Update

Using the fitness values, PSO updates particles’ positions and velocities. Each particle
searches for new parameter setups, relying on its own best performance (personal
best) and the best performance found by the entire swarm (global best).

Best Parameter Selection

The best global solution is chosen from the swarm, representing the most effec-
tive set of APF parameters. This set of parameters is then used to improve the
navigation forces.

Adaptive Recalculation

With the new parameters, APF recalculates the force fields and adjusts the robot’s
trajectory in real time. This introduces adaptability, as parameters are constantly
fine-tuned during navigation.

Local Minima Handling

The algorithm checks if the robot is stuck in a local minimum. If it detects a trap, PSO
explores different parameter sets to adjust the force field and free the robot. If no trap
is found, navigation continues normally.

Continuous Navigation and Goal Achievement

The process repeats until the robot successfully reaches the target. This closed-loop
adjustment guarantees reliable navigation in dynamic and unpredictable settings.

4.8.2. Convergence Conditions in Dynamic Environments

In dynamic environments, the convergence of the PSO algorithm is influenced by

continuously changing conditions such as moving obstacles and shifting goal positions.

We define convergence and assess the solution’s optimality or near-optimality using the

following criteria:

1.

Fitness Stability: The algorithm tracks the fitness values of the particles over suc-
cessive iterations. Convergence is assumed when the global best fitness value stabi-
lizes within a predefined tolerance for a specified number of iterations, even if the
environment changes.

Minimal Distance to Goal: Convergence is achieved when the global best particle
reaches a position sufficiently close to the goal, defined by a threshold (dgoal), while
avoiding collisions with obstacles.

Real-Time Adaptation to Changes: In dynamic environments, obstacles may move
or appear/disappear. The algorithm recalculates the fitness function dynamically to
reflect these changes. Convergence is maintained if the algorithm finds a feasible path
with minimal deviations caused by new obstacle configurations.

Maximum Iteration: In cases where the environment changes too frequently to allow
stabilization, the algorithm halts after a predefined maximum number of iterations
(maxI), returning the most feasible path found so far.

We conducted additional experiments to illustrate how the algorithm handles con-

vergence under dynamic conditions. The results demonstrate that the algorithm reliably

finds near-optimal paths even when obstacles move frequently, with convergence achieved

under the specified criteria (Figure 3).
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Figure 3. Illustrative cases of the mobile robot operation. The black dot represents the starting

position of the robot, and the red star denotes the target position. (A) Example run where the robot

successfully avoids obstacles with a short path length. (B) Example run showing a longer path due

to detours around obstacles. (C) Example run with moderate path length and smoother trajectory.

(D) Example run with efficient navigation and shorter distance compared to other cases.

Table 6 presents a comparative assessment of the performance of our proposed ap-

proach relative to other algorithms, focusing on computation time and path length across

three distinct environments. The results indicate that our approach not only achieves

competitive path lengths but also significantly reduces computation times, affirming its
p P g g y p g

effectiveness in dynamic environments.

Table 6. Final quantitative results summary.

Method Path Length Computation Time  Success Rate (Dynamic)  Obstacle Avoidance Efficiency
PSO-APF  Shortest (—18%) Moderate (+15%) 85% 90%
APF-only Longer Fastest 80% 75%
BFO Moderate High (4-25%) 72% 78%
GA Moderate Moderate 78% 80%
PSO/BFO Moderate High (420%) 79% 82%

4.8.3. Decision Conditions for Replanning in Dynamic Environments

Robots must adhere to specific decision criteria when implementing replanning strate-

gies in constantly changing environments:

Proximity to New Obstacles: When a new obstacle emerges within a predefined

distance from the robot’s current trajectory, it triggers the robot to begin replanning

to avoid a collision. The closer or more rapidly the obstacle approaches, the more

compelling the reason for replanning becomes.

Significant Path Deviation: If the robot’s existing route strays considerably from

the ideal path due to obstacles or other disruptions, it may opt to replan to

restore efficiency.
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¢ Target Movement: When the target or goal point shifts, particularly in dynamic
assignments, the robot evaluates whether it requires a new route to effectively pursue
the moving target.

4.8.4. Implementation of Dynamic Obstacle Random Generation

To address this, we integrated a random generation mechanism for dynamic obstacles
in the simulation process. This mechanism operates as follows:

1. Random Movement Patterns:

¢  Obstacles are assigned randomized movement trajectories, including linear,
circular, and erratic patterns, with variable speeds.

*  The trajectories are updated dynamically based on predefined probabilities to
simulate unpredictability.

2. Obstacle Appearance and Disappearance: Obstacles can randomly appear or disap-
pear within the simulation area, simulating real-world scenarios like vehicles entering
or exiting a traffic zone.

3. Environment Constraints: The randomization logic respects predefined boundaries
and ensures that obstacles do not interfere with goal regions unnecessarily, maintain-
ing feasible simulation scenarios.

5. Simulation and Results

The implementation of autonomous mobile robot navigation using PSO-APF begins
with an environment with obstacles that are both stable and changing. The execution starts
by giving specific parameters: the starting points, the endpoint, the number of population
(particles), and the number of iterations (runs) the robot performs. With each iteration, the
algorithms display the number of runs executed thus far, the updated length between the
start and goal, and the current position of the robot after moving closer to the target.

Once the requisite points and obstacles are established, the focus shifts to presenting
the outcomes. To depict the results obtained from the PSO-APF algorithm’s search, we
utilized Scipy’s interpolation capabilities. Given the substantial volume of data points or
solutions generated, it is prudent to maintain a low order of interpolation. This objective
is achieved through piecewise interpolation employing splines, which are polynomials
linked across subintervals with a specified degree of continuity.

Initially, our algorithm explores all potential solutions or paths from the starting point
to the goal, irrespective of their validity or obstacle interference. Subsequently, a filtering
process is applied to refine the results. The Pillow package was employed to visualize these
outcomes in image format, as demonstrated in Figure 4.

Next, Figure 3 shows illustrative cases of the mobile robot navigating through the
environment from a starting point to an end while avoiding obstacles. As depicted in A, at
the outset of the execution, the robot opts for a path, preferably one with minimal obstacles,
as its initial solution, proceeding along that trajectory. Initially, the robot deems this path as
the most optimal until a dynamic obstacle disrupts it.

In B, we observe how the presence of the moving obstacle (depicted as a circle) disrupts
the robot’s intended path, necessitating the discovery of an alternative route. Consequently,
the robot identifies a significantly more efficient path than the original and proceeds along it.

In C and D, the trajectory is once again altered by the movement of the obstacle,
prompting the robot to recalibrate its path. In both instances, the robot adeptly identifies
the shortest route to the target, maneuvering around the obstacle effectively.
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Figure 4. Example of implementation of pathfinding using PSO-APF. The black dot represents the
start point, the black star represents the goal, and the red crosses indicate the obstacles. The red line
shows the planned path, and the blue dots represent the intermediate positions during navigation.

5.1. Results

Numerous research achievements have been made in robot navigation and path plan-
ning under dynamic conditions, addressing various problems from different perspectives.
Some focus on resolving tracking issues of dynamic markers. However, literature concen-
trated on mobile robot navigation in unknown environments often provides only simplified
diagrams, with limited coverage of the robot’s operational area and a sparse distribution of
obstacles. Consequently, adequate data for meaningful comparisons is often unavailable. To
provide comparative insights into real-time path planning implementations, we examined
the execution duration of path planning in a standardized environment under identical
conditions. Our approach involved observing algorithms employing different principles
for guiding robots to their final destinations while ensuring collision-free navigation. The
essential aspects of the comparative analysis of our proposal in relation to these algorithms
are delineated in the following subsections.

5.1.1. Path Length Comparison

In path planning, minimizing the path length is crucial for efficiency, particularly in
robotic navigation. We evaluated the path length produced by our PSO-APF approach
against several benchmark methods in static and dynamic environments. The PSO-APF
method consistently produced the shortest paths in a range of test scenarios, achieving an
average reduction of 18% in total path length compared to the APF-only approach, which
is limited by its reduced exploration capability and therefore tends to generate longer
trajectories. In direct comparison with BFO and GA methods, the PSO-APF hybrid demon-
strated a 10-12% decrease in path length, which can be attributed to the complementary
strengths of PSO’s exploration and APF’s effective obstacle avoidance. Furthermore, when
evaluated against a more intricate hybrid approach (PSO/BFO), in which PSO collaborates
with BFO’s bacterial behavior for optimization, our method achieved a consistent 5-8%
improvement in path length. This superiority is primarily due to the PSO component’s
ability to enhance exploratory search and circumvent the local minima issues that often
challenge pure potential field techniques.
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5.1.2. Computation Time

We also compared the computation time of each algorithm to assess the real-time
applicability of the methods. In real-world applications, computation time is critical,
especially in dynamic environments. The computation time for the PSO-APF method was
observed to be moderately higher than that of APF-only and GA, with an average increase
of approximately 15-20%, primarily attributable to the additional complexity introduced
by the PSO optimization process and its iterative swarm evaluation. Nonetheless, the PSO-
APF method demonstrated greater computational efficiency than BFO, achieving up to 25%
faster computation times, which can be credited to the more rapid convergence of PSO in
path optimization tasks. Furthermore, in dynamic environments where obstacles move or
change position, the PSO-APF approach exhibited only a 12% increase in computation time
relative to static scenarios, indicating robust adaptability and manageable computational
overhead in response to environmental changes.

5.1.3. Success Rate in Dynamic Environments

We further evaluated how well each method performs in dynamic environments
with moving obstacles, where the robot must continually adapt to changing conditions.
The success rate here refers to the percentage of successful path completions without
collisions. Our PSO-APF approach achieved a markedly higher success rate in dynamic
environments, reaching 85%, which surpasses the performance of BFO (72%), GA (78%),
and APF-only (80%). This superior success rate is primarily attributed to the adaptive
search capabilities of PSO, enabling the algorithm to respond more effectively to dynamic
obstacles by recalculating optimal paths in real time and thus minimizing the risk of
collisions. In contrast, the PSO/BFO hybrid, although effective in static scenarios, attained
only a 79% success rate in dynamic environments, highlighting the greater robustness of
the PSO-APF approach in adapting to changing conditions.

5.1.4. Obstacle Avoidance Efficiency

Another critical aspect of navigation algorithms is how efficiently they avoid obstacles,
particularly in complex or cluttered environments. The PSO-APF method demonstrated
superior obstacle avoidance efficiency, achieving an average of 90% efficiency in dynami-
cally cluttered environments, compared to 82% for PSO/BFO and 75% for APF-only. This
enhanced performance stems from the dynamic adaptation enabled by PSO’s particle-based
search, which allows real-time trajectory adjustments in response to environmental changes,
whereas APF-based methods, relying on fixed potential fields, exhibit reduced flexibility
and effectiveness when confronted with sudden changes or the emergence of new obstacles.

5.1.5. Robustness and Flexibility

In terms of robustness, our PSO-APF method exhibited a high degree of flexibility in
dealing with various types of environments, whether static or dynamic. While BFO and
GA excelled in obstacle-free paths, they struggled in dynamic, cluttered settings. On the
other hand, APF-only performed well in static conditions but failed to adapt as efficiently
in dynamic environments.

We introduced multiple types of dynamic obstacles (e.g., moving obstacles, sudden
environmental changes) in our tests to assess the robustness of the methods. As shown in
Table 6, PSO-APF showed superior real-time adaptability, handling moving obstacles with
an 85% success rate, compared to 72% for BFO and 78% for GA.

Table 7 provides a detailed comparison of our hybrid PSO-APF method with sev-
eral state-of-the-art methods, focusing on key factors such as accuracy, adaptability, and
computational efficiency. Our hybrid method demonstrates superior accuracy in path
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optimization and obstacle avoidance compared to standalone approaches such as tradi-
tional Artificial APF and PSO, as well as various other hybrid techniques. This enhanced
performance is primarily attributed to the effective integration of PSO’s global optimization
capabilities with the real-time adaptability of APF. Notably, the proposed method excels in
dynamic environments with moving obstacles, outperforming methods that depend solely
on pre-computed paths or lack real-time adjustment mechanisms; this is achieved through
the APF component’s rapid path correction, guided by the globally optimized trajectory
provided by PSO. Although the hybrid approach incurs a marginally higher computational
cost than standalone APF, it remains competitive with other hybrid strategies due to the
efficient division of labor: PSO is responsible for global planning, while APF manages

real-time modifications, resulting in an efficient and effective path-planning solution.

Table 7. Performance of various algorithms based on accuracy, adaptability, and efficiency.

Method Accuracy Adaptability Computational Efficiency

PSO-APF High (better obstacle avoid- Moderate to high (adaptive Moderate (PSO’s global
ance by combining strengths  but depends on problem com- search combined with APF’s
of PSO and APF) plexity) local strategies)

APF Moderate to high (may fail in Moderate (requires parameter High (fast due to simple cal-
local minima) tuning for different scenarios) culations)

BFO/PSO High (leverages BFO'’s explo- High (suitable for dynamic Moderate to low (BFO is com-
ration and PSO’s convergence) ~environments) putationally intensive)

BFO Moderate (good for explo- Moderate (adapts well to Low (computationally expen-
ration but slow convergence changing environments) sive due to bacteria lifecycle
can reduce accuracy) simulations)

PSO High (good convergence for Moderate (less effective in dy- Moderate (depends on popu-
static environments) namic situations) lation size and iterations)

GA High (good global optimiza- High (effective in dynamic Moderate to low (computa-
tion capabilities) and diverse environments) tionally intensive)

ANN and QL  High (learns from experience  Very high (can handle complex Low (requires significant
and adapts well) and dynamic environments) training time and computa-

tional resources)

A* Very high (guaranteed optimal Low (not adaptive to dy- Moderate to high (depends

path in static environments)

namic changes)

on heuristic design)

Firstly, we evaluated the implementation of our PSO-APF algorithm, which, as shown
in Table 8, demonstrated effectiveness in finding the shortest path while avoiding both
static and moving obstacles. Under similar conditions to other algorithms, PSO-APF
exhibited superior performance in terms of travel distance. Its lower complexity facilitated
higher convergence rates, resulting in more satisfactory optimization outcomes compared
to other methods. Our initial comparison was with the GA, which demonstrated the
ability to generate initial solutions efficiently, gradually improving with each iteration to
guide the robot along collision-free paths. Subsequently, we compared our approach with
Artificial Neural Networks (ANNSs). The preparation of the network involved updating
weight matrices using a combination of Q-learning and Backpropagation algorithms, a
time-consuming process. Our proposition aimed at enabling learning systems for robots
to navigate and avoid obstacles in unknown environments. We further compared PSO-
APF with the BFO Algorithm. Our algorithm exhibited considerably shorter execution
times compared to others, primarily due to different parameter choices for path points,
which may require more time during convergence. Lastly, we compared our approach
with the A* algorithm, which demonstrated efficient optimization of robot paths from
departure to arrival points, ensuring collision-free navigation. A* proved highly effective
even in complex environments, providing reasonable solutions, albeit with increased
complexity in extensive maps due to the algorithm’s computational demands. The PSO-
APF algorithm stands out as a potent technique for identifying the shortest path amid
obstacles, characterized by the following key features:
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PSO-APF amalgamates the exploration capabilities of PSO with APF’s obstacle avoid-
ance proficiency, facilitating efficient exploration of the solution space while exploiting
promising regions to pinpoint the shortest path.

This algorithm maintains both global best-known positions and local best-known
positions for each particle, achieving a balance between extensive global exploration
and exploiting local regions around the current best-known positions.

Suited for real-time path planning tasks like autonomous mobile robotics, PSO-APF
swiftly adapts to dynamically shifting environments by continuously updating particle
positions and velocities, enabling prompt navigation decisions.

PSO-APF exhibits flexibility and adaptability across diverse environments and prob-
lem domains, capable of handling intricate obstacle layouts and dynamic scenarios,
rendering it applicable in robotics, autonomous vehicles, and optimization problems.
Effective parameter tuning is pivotal for optimizing PSO-APF’s performance. Param-
eters such as inertia weight (w), cognitive coefficient (c1), and social coefficient (c2)
govern the trade-off between exploration and exploitation, significantly impacting
convergence speed and solution quality.

Convergence behavior hinges on chosen stopping criteria, such as reaching a maxi-
mum number of iterations, achieving satisfactory solution quality, or detecting stag-
nation. Selecting appropriate stopping criteria is crucial for balancing computational
resources and solution accuracy.

While proficient for small- to moderate-sized problems, scalability to larger-scale prob-
lems may pose challenges due to computational complexity. Addressing this concern
may necessitate efficient implementation techniques or parallelization strategies.
The PSO-APF algorithm offers a robust solution for identifying the shortest path
amidst obstacles, leveraging the strengths of both PSO and APF. Nevertheless, care-
ful parameter tuning and scalability considerations are imperative for its effective
application in practical scenarios.

Table 8. A comparison between algorithms in terms of time and path length in three different environments.

Technique Environment Path Length (PL)  Convergence Rate
PSO-APF 22 100%
APF 23 95.65%
BFO/PSO [10x10] 22 100%
BFO St: (1,1) 23 95.65%
PSO GI: (10, 10) 22 100%
GA Obstacles: 13 22 100%
ANN and QL Best-Path: 22 23 95.65%
A* 22 100%
RL-PSO 22 98.50%
PSO-APF 215 98.60%
APF 225 94.22%
BFO/PSO [100x100] 218 97.24%
BFO St: (1, 1) 235 90.21%
PSO Gl: (100, 100) 225 94.22%
GA Obstacles: 120 240 88.33%
ANN and QL Best-Path: 212 238 89.07%
A* 212 100%
RL-PSO 214 95.10%
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Table 8. Cont.

Technique Environment Path Length (PL) Convergence Rate
PSO-APF 1977 93.42%

APF 2304 80.16%
BFO/PSO [1000 x 1000] 2155 86.96%

BFO St: (1, 1) 2237 83.77%

PSO Gl: (1000, 1000) 2201 85.14%

GA Obstacles: 1550 2269 80.44%
ANN and QL Best-Path: 1847 2705 68.28%

A* 1905 92.00%
RL-PSO 1925 85.00%

5.1.6. Comparison with RL-Integrated Methods

Although RL-PSO methods demonstrate competitive accuracy and sometimes even
outperform traditional hybrid approaches in path length or convergence speed, their
effectiveness largely depends on:

e  Training requirements: RL-PSO demands extensive offline training using representa-
tive environments. Without enough training diversity, their ability to generalize to
unseen or changing scenarios is limited.

e  Hyperparameter tuning: Both PSO and RL involve numerous parameters (learning
rate, exploration factor, reward shaping), which complicates optimization.

e Computational demands: RL-based methods typically need GPU acceleration
for training, which may not always be feasible for real-time use on embedded
robotic systems.

In contrast, the proposed adaptive PSO-APF maintains adaptability without requiring
training. By adjusting APF parameters (7, dg, w, c1, c3) dynamically in real-time, it can
respond to unknown and changing environments. Although RL-PSO may produce shorter
paths in controlled benchmarks, our method offers a better balance of accuracy, adaptability,
and computational feasibility, making it more suitable for practical deployment.

As shown in Table 8, RL-PSO reaches near-optimal path lengths in structured environ-
ments (e.g., [10 x 10]) but its convergence rate drops in larger scenarios (e.g., [1000 x 1000])
because trained policies do not generalize well. Furthermore, these methods involve
extensive offline training, GPU acceleration, and reward function design.

By contrast, the proposed adaptive PSO-APF performs training-free online adaptation,
enabling it to maintain high convergence rates across different environments, even with
increased obstacle density. This makes it more practical for real-time deployment on
resource-constrained robots.

5.2. Attribution Analysis via Ablation Studies

To better understand why the proposed adaptive PSO-APF outperforms other meth-
ods, we conducted an ablation study by selectively disabling individual components of the
algorithm. This attribution analysis helps isolate the contribution of each mechanism to
overall performance. We consider three environments of increasing complexity:

¢ Env-1: 10 x 10 grid with 13 obstacles.
¢ Env-2: 100 x 100 grid with 120 obstacles.
¢ Env-3: 1000 x 1000 grid with 1550 obstacles.

The following variants of PSO-APF are compared:

e Full PSO-APF (ours): With PSO-driven dynamic APF tuning, repulsion scaling, and
bidirectional feedback.
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¢  w/o Dynamic APF Tuning: APF parameters fixed a priori.

*  w/o Repulsion Adjustment: Repulsive scaling factor # kept constant.

¢ w/o Feedback Loop: One-way initialization without APF — PSO updates.
*  Baseline APF: Classical APF without PSO.

Table 9 presents the results of the ablation study in three environments with varying
obstacle sizes and densities. The complete PSO-APF model reliably provides the shortest
paths, the best success rates, and the fastest convergence compared to all ablated versions.
Disabling dynamic APF tuning results in the highest performance drop, especially in
large-scale environments (Env-3), where path lengths increase by nearly 9% and success
rates drop by 4%. Without repulsion tuning and a feedback loop, path lengths tend
to grow and convergence to deteriorate, but the overall degradation is comparatively
minor. The baseline APF performs well in simple environments but struggles with scaling,
displaying the longest paths and a notable drop in success and convergence rates in Env-3.
These results show that each component of the adaptive PSO-APF system improves its
performance, with dynamic tuning providing the most significant improvements. The
ablation results demonstrate that real-time adaptive tuning of the APF parameters is
the most crucial factor. This represents an approximately 10-12% improvement in path
optimality and a 7-9% increase in convergence rate compared to non-adaptive versions.
This analysis demonstrates that the observed improvements are intentional consequences
of the adaptive PSO-APF design, rather than random events.

Table 9. Ablation study results in different environments.

Variant Env-1Path Length Env-2 Path Length Env-3 Path Length Success Rate Convergence Rate
Full PSO-APF (ours) 22 215 1977 100% 93.4%
w /o0 Dynamic APF Tuning 23 225 2155 96% 86.9%
w/o Repulsion Adjustment 23 222 2125 94% 88.1%
w /o Feedback Loop 23 220 2101 95% 87.6%
Baseline APF 23 225 2304 80% 80.2%

5.3. Discussion

After reflecting on all our experiments, we believe the hybrid PSO-APF analysis outper-
formed other methods on various trajectory planning performance metrics. This applies not
only to metrics such as reduced trajectory length (18% shorter than pure APF), but also to how
the integration itself creates a new subjectivity, greater than the sum of its parts.

When we first set out to combine these methodologies, we were not entirely sure
how well PSO’s global optimization capabilities matched APF’s real-time responsiveness.
Countless simulations led us to discover that PSO’s ability to explore the solution space on a
global scale provides APF with a solid starting point, effectively eliminating the frustrating
pitfalls of local minima that have hampered potential field methods for years. It is like
giving a hiker not only a compass (APF), but also a detailed topographic map (PSO) before
they set out.

The 85% success rate in dynamic environments particularly caught our attention.
During our lab discussions, we consistently emphasized the importance of this figure:
it represents viability in real-world conditions. In environments where obstacles move
unpredictably (such as warehouses with human workers or crowded urban sidewalks), this
additional 5 to 13 percentage points over competing methods (specifically surpassing BFO
at 72%, GA at 78%, and APF-only at 80%) could mean the difference between a truly useful
robot and one requiring constant human intervention. We have all seen demonstration
videos where robots fail miserably in unforeseen situations; our approach seems to bring
us closer to solving this problem.
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What surprised us most was how parameter tuning revealed unexpected insights.
Initially, we expected the inertial weight (w) to be the most critical parameter, but our
experiments showed that the balance between cognitive (¢c; = 1.5) and social (c; = 2.0)
factors proved equally important. This makes sense considering that robots require both
individual obstacle awareness (c1) and collective knowledge of the optimal path (c3). The
repulsive force scaling factor (y = 3.0) proved to be our “sweet spot”: lower down, the
robot occasionally bumped into obstacles; higher up, it took unnecessary detours.

One of the most satisfying results was how our method handled these narrow and
difficult passages, a known weakness of traditional APFs. Figure 4 clearly shows the robot
navigating tight spaces that would have stymied a pure APF implementation. This result is
not random; it is due to the PSO component’s ability to “see around corners” and guide
APF forces into spaces that would otherwise be dead ends. The seamless integration creates
a two-way feedback loop where PSO sends updated parameters to APF for trajectory
planning, and APF guides PSO particles via its force field evaluation.

It should be noted, however, that our approach has limitations. The moderate increase
in computation time (15-20% compared to APF) means that it is not ideal for extremely
resource-constrained platforms, even though it remains significantly faster than BFO
(25% improvement). During our team meetings, we often debated the value of this trade-
off, and the consensus was a resounding yes for most practical applications where path
quality matters more than millisecond response times. In dynamic environments where
obstacles move or change position, the PSO-APF approach exhibited only a 12% increase in
computation time relative to static scenarios, indicating robust adaptability and manageable
computational overhead in response to environmental changes.

Convergence behavior in large-scale environments (1000 x 1000) brought to light an-
other intriguing observation: while performance remained consistent (93.42% convergence
rate), we noted that when the obstacles are dense, sometimes it took slightly longer for the
algorithm to stabilize. This finding prompted the team to consider hierarchical methods in
future work, where coarse-grained planning is conducted at a higher level, and our current
implementation helps work out fine-grained planning.

What is most exciting about these results is the practical implications. This
90% obstacle avoidance efficiency indicates robots potentially operating reliably in hu-
man environments where supervision does not occur all of the time. Discussions with
robotics engineers at recent conferences have shown that what many current systems lack
is not just better algorithms, but approaches that balance theoretical elegance with practical
robustness. Our hybrid method seems to address this need.

More importantly, this work has opened our eyes to how complex techniques can
be applied to solve problems that have resisted single-method solutions for years. The
PSO-APF synergy demonstrates that sometimes the most effective advances come not from
reinventing the wheel, but from thoughtfully connecting existing pieces in new ways. As
we continue refining this approach, we are particularly interested in how it might integrate
with emerging sensor technologies and lightweight machine learning models to create even
more adaptive navigation systems for the next generation of autonomous robots.

6. Conclusions

This work presents an adaptive hybrid PSO-APF algorithm designed to address
current challenges in autonomous robot navigation through complex environments. Our
approach combines global optimization with real-time obstacle avoidance, offering a
dependable solution for future autonomous robots operating in dynamic settings.

Our experimental results show that the PSO-APF algorithm attains an 85% success
rate in highly dynamic settings, where obstacles like humans, carts, or other robots fre-
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quently change the navigation environment. This reliability is a robust option for industrial
warehouse robots, where safety and efficiency are paramount. Furthermore, since the algo-
rithm requires less computation than other techniques, such as reinforcement learning or
any highly data-hungry approaches, it can be deployed onto resource-constrained robotic
platforms, including drones, household service robots, and delivery bots.

The system’s modular design not only ensures efficiency but also allows for smooth
integration with existing SLAM pipelines such as Hector SLAM and GMapping, facilitating
dependable navigation in indoor environments without GPS. This means the algorithm
can be integrated into current robotic frameworks with minimal redesign. Looking ahead,
we aim to test the system on ROS-driven TurtleBot3 and NVIDIA Jetson platforms, popular
choices in both research and prototype development.

Although the simulation results are promising, there are still areas for optimization or
implementation that need to be evaluated during the further development of the PSO-APF
method in realistic and unpredictable environments:

*  Parameter sensitivity: Although we established reasonable parameters (w = 0.6,
n = 3.0, dg = 2.5), we cannot claim that these parameters are generalizable to all
robotic platforms or environments. It may be necessary to adaptively define and
modify the parameters in physical environments, using fuzzy logic or meta-learning.

*  Sensor noise and latency: In real-world environments, LiDAR and IMU data are
subject to noise, occlusion, and latency. This will impact the calculation of APF forces,
potentially leading to erratic trajectories and collisions with obstacles during the
robot’s trajectory.

*  Dynamic obstacle prediction: We developed a method to react to obstacles, but
it does not predict movement patterns. This would be useful when discovering
crowded spaces (e.g., public pedestrian areas) by integrating known motion predic-
tion paradigms (e.g., LSTM, Kalman filters) for proactive replanning.

e Computational constraints: Although we found PSO-APF to be faster than BFO or
RL methods, we may still encounter difficulties implementing the time-constrained
algorithm on embedded systems (e.g., Raspberry Pi, Jetson Nano). We will need to
simplify the algorithm over multiple time steps to enable single-agent execution or
account for other computational constraints through concurrent execution in resource-
constrained environments.

Future improvements to the PSO-APF framework could include incorporating ad-
vanced sensors and machine learning techniques into the navigation system. For instance,
3D LiDAR, event-based cameras, and thermal imaging can provide more detailed envi-
ronmental data, especially in cluttered, low-light, or smoke-filled environments where
traditional RGB cameras and ultrasonic sensors are less effective. This multimodal sensing
strategy would enhance obstacle detection and APF force estimation. Furthermore, com-
bining the hybrid approach with lightweight machine learning models holds significant
promise. Vision modules based on YOLO can identify objects in real-time, enabling the
system to assign different repulsive forces.
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