i}’]g electronics

Article

Transfer Learning-Based Distance-Adaptive Global Soft
Biometrics Prediction in Surveillance

Sonjoy Ranjon Das 19, Henry Onilude 2, Bilal Hassan 3*(, Preeti Patel 3

check for
updates
Academic Editor: George A.

Tsihrintzis

Received: 5 August 2025
Revised: 27 August 2025
Accepted: 12 September 2025
Published: 19 September 2025

Citation: Das, S.R.; Onilude, H.;
Hassan, B.; Patel, P.; Ouazzane, K.
Transfer Learning-Based Distance-

Adaptive Global Soft Biometrics

Prediction in Surveillance. Electronics

2025, 14,3719. https:/ /doi.org/
10.3390/ electronics14183719

Copyright: © 2025 by the authors.
Licensee MDP], Basel, Switzerland.
This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license
(https:/ /creativecommons.org/
licenses /by /4.0/).

and Karim Ouazzane 3

1 Department of Computer Science, Global Banking School, London UB6 0HE, UK; sdas@globalbanking.ac.uk
2 METICS Solutions Ltd., London IG3 9JA, UK; henry.onilude@meticssolutions.uk

3 School of Computing & Digital Media, London Metropolitan University, London N7 8BD, UK;
p-patel@londonmet.ac.uk (P.P.); k.ouazzane@londonmet.ac.uk (K.O.)

Correspondence: b.hassan@londonmet.ac.uk

Abstract

Soft biometric prediction—including age, gender, and ethnicity—is critical in surveillance
applications, yet often suffers from performance degradation as the subject-to-camera
distance increases. This study hypothesizes that embedding distance-awareness into the
training process can mitigate such degradation and enhance model generalization across
varying visual conditions. We propose a distance-adaptive, multi-task deep learning
framework built upon EfficientNetB3, augmented with task-specific heads and trained
progressively across four distance intervals (4 m to 10 m). A weighted composite loss
function is employed to balance classification and regression objectives. The model is
evaluated on a hybrid dataset combining the Front-View Gait (FVG) and MMV annotated
pedestrian datasets, totaling over 19,000 samples. Experimental results demonstrate that
the framework achieves up to 95% gender classification accuracy at 4 m and retains 85% ac-
curacy at 10 m. Ethnicity prediction maintains an accuracy above 65%, while age estimation
achieves a mean absolute error (MAE) ranging from 1.1 to 1.5 years. These findings validate
the model’s robustness across distances and its superiority over conventional static learning
approaches. Despite challenges such as computational overhead and annotation demands,
the proposed approach offers a scalable and real-time-capable solution for distance-resilient
biometric systems.

Keywords: transfer learning; distance adaptive; soft biometrics; EfficientNetB3; multi-task
learning; surveillance vision; computer vision

1. Introduction

The prediction of soft biometric traits such as age, gender, and ethnicity has signif-
icantly advanced through developments in machine learning and computer vision [1,2].
Although deep learning models show high accuracy under controlled conditions, their
performance significantly deteriorates in real-world scenarios due to distance-based
variations in image resolution and feature clarity. While Al-powered recognition systems
perform well in controlled settings, their accuracy often declines as the distance between
the subject and the camera increases, leading to degraded feature quality and classification
accuracy [3,4].

According to the paper [5], deep learning models, particularly those based on convo-
lutional neural networks (CNNSs), suffer from generalization issues across varying capture
distances. To address this limitation, we propose transfer learning as a robust strategy
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for enhancing adaptability under different imaging conditions. This study introduces an
adaptation-based transfer learning framework that maintains robust and consistent per-
formance across multiple distances, thereby improving the applicability of soft biometric
recognition in real-world environments.

As noted in [5], soft biometric traits are easier to detect at close range but become less
distinguishable as the subject moves further from the camera. This reduction in accuracy is
primarily caused by resolution loss and feature distortion due to increased distance. As
shown in Figure 1, soft biometric prediction accuracy decreases with distance—a trend
consistent with prior work using datasets like SCFace [6] and UCCS [7], both of which
report substantial performance drops at distances beyond 5 m.

Comparison of Blometric Model Accuracy by Distance
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Figure 1. Prediction performance across varying distances (4 m-10 m) for soft biometric traits. Gender
and ethnicity performance is reported in terms of classification accuracy (%), while age estimation is
reported using mean absolute error (MAE, in years). Results are averaged over 5-fold cross-validation,
with error bars showing +1 standard deviation. Number of test samples per distance: 4 m (5563),
6 m (4973), 8 m (4500), 10 m (4200).
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The key difficulty faced by biometric recognition systems is their low accuracy when
the main task is to recognize people at further distances from the imager. Biometric
models use physical features in a close range to capture and analyze useful features, but
performance contours and training decrease with distance from the camera. Such a loss of
image resolution, distortion of features, and increase in sensitivity to environmental factors,
such as lighting variations and occlusion [2,6], occurs for this reason. However, empirical
studies corroborate this limitation, which has been shown to be a positive correlation
between subject distance and the resulting classification accuracy. For example, the findings
in [1] indicate that the performance of biometric recognition models significantly degrades,
often failing completely, when the subject-to-camera distance reaches six meters—an effect
observed in real-world scenarios such as surveillance and smart identification systems.
Furthermore, demonstrated that deep learning-based biometric techniques struggle with
generalization across varying capture distances and can benefit from advanced methods
such as transfer learning and multi-scale feature adaptation [2]. These insights underscore
the importance of developing next-generation biometric systems capable of mitigating
distance-induced performance degradation and enhancing applicability in real-world
contexts. This decline in accuracy at longer distances is consistent with prior work reported
in [1,2], which highlights significant performance drops in gait and facial recognition tasks
beyond six meters in surveillance settings.

Despite significant advancements, persistent research gaps and critical challenges in
soft biometric recognition hinder its full integration into practical systems. The accurate
performance of systems faces persistent difficulties owing to the decline in distance-based
accuracy. The accuracy of multiple recognition models declines severely when subjects
exist beyond 10 m distances because diminished image resolution leads to intoned features
that reduce recognition effectiveness. Compared to the efficiency rate, accuracy presents
an enduring challenge because deep learning models with superior performance require
substantial processing power and computing resources, which hinder real-time usage in
small-scale systems.

The use of soft biometrics is challenging because of privacy problems and ethical
considerations. The collection of soft biometric data without clear consent creates multiple
privacy, surveillance, and compliance issues under the GDPR and related legal frameworks.
System accuracy deteriorates when environmental factors such as lighting conditions
together with background clutter and occlusions factor into the performance levels of the
recognition systems. Most contemporary models have limitations in their ability to follow
through with different environmental demands and distance limitations, while continuing
to deliver optimal accuracy within controlled environments. The authors of [7] established
that combining multiple biometric features through fusion helped to improve recognition
accuracy according to their published research. The field requires complete models to solve
distance-based performance issues while preserving both speed performance and data
protection rules.

The main contribution of this research is a novel distance-adaptive transfer learning
framework which allows for the adaptation of biometric recognition models without any
discontinuity across varying distances. However, for real-world usage, our approach
combines several advanced components to reduce the error of the prediction.

e Developed a distance-adaptive framework that maintains consistent prediction accu-
racy across varying distances, overcoming traditional biometric recognition limitations.

e Bridged the performance gap between controlled settings and real-world environ-
ments, improving biometric recognition in practical scenarios.

e Paved the way for next-generation Al-driven biometric systems that can perform
real-time recognition over long distances.
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e  Dynamically fine-tuned feature extraction layers to achieve consistency in recognition
performances across different subject distances.

Compared to recent transformer-based models such as D-ViT and TFormer++, our
approach is built on EfficientNetB3 due to its favorable balance between performance
and efficiency. While transformers excel in capturing global contextual information, they
typically require extensive data and computational resources, which can hinder deploy-
ment in real-time or resource-constrained environments. In contrast, EfficientNetB3 offers
optimized feature reuse and scalability, enabling our model to operate with lower latency
and memory usage—critical for practical biometric applications.

The remainder of this paper is organized as follows: Section 2 reviews related work on
adaptive distance learning global soft biometric verification technologies. Section 3 presents
the dataset collection and representation through a distribution plot and sample images
for gender, age, and ethnicity categories, along with an explanation of the image format
and quality. Section 4 discusses the significance of soft biometrics in the security context.
Section 5 discusses benchmarks in global soft biometrics, concentrating on gender, age, and
ethnicity recognition applications within and beyond security and offers a comparison of
the techniques used in these recognition processes. Section 6 outlines the study’s limitations
and challenges. Finally, conclusions are presented in Section 7.

2. Related Work

In modern surveillance and identity verification systems, soft biometric attributes—such
as age, gender, and ethnicity—have become increasingly valuable. Unlike traditional
biometrics (e.g., fingerprints or iris scans), soft biometrics offer a non-invasive, real-time
recognition mechanism particularly suitable for high-traffic environments like airports
and border checkpoints [7]. These attributes enhance overall identification accuracy while
preserving user convenience and system scalability.

Recent research has proposed multichannel frameworks that process multiple data
streams simultaneously, leading to improved prediction accuracy. For instance, according to
Hassan [7] introduced a multichannel soft biometric model designed to address challenges
such as privacy, latency, and adaptability. These developments highlight the growing
demand for privacy-aware, efficient, and robust biometric systems that can scale in dynamic
real-world environments.

Among recent advancements in deep learning, the EfficientNet architecture [8] has
gained attention for its use of compound scaling to simultaneously optimize depth, width,
and resolution. This strategy enables high predictive performance with relatively few
parameters—making it well-suited for real-time biometric tasks where both speed and
accuracy are crucial.

In addition to CNN-based models, transformer-based architectures have emerged
as powerful tools for long-range biometric recognition. Recent approaches have explored
integrating distance-awareness into transformer architectures, enabling models to dynam-
ically adjust attention based on spatial cues, which enhances recognition accuracy over
longer ranges [8]. Additionally, some lightweight transformer designs have been proposed
to improve the efficiency of soft biometric inference in surveillance contexts. While these
transformer-based methods demonstrate competitive performance, their increased compu-
tational demands often limit their practicality for real-time or edge-device deployment [9].

In contrast, our proposed framework combines the efficiency of EfficientNetB3 with
a distance-adaptive ensemble strategy to achieve high performance without sacrificing
deployment feasibility. By leveraging modular paths and distance-specific tuning, the
model balances robustness and resource efficiency, complementing recent transformer-
based innovations and its comparison shown in Table 1.
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Table 1. Comparison of deep learning architectures for soft biometrics.

Deep CNN with High accuracy, handles Computationally
ResNet-50 . . e : "

residual learning vanishing gradients well expensive

Deep CNN with Easy to implement, widely = High parameter count,
VGG-16 . : . -

simple architecture used in early models slow training

: . . .- Lower accuracy

MobileNetV?2 Depth wise ' ngh'twelght, eff1C}ent for rmrpeEdl

separable convolutions mobile/edge devices d

eeper networks

EfficientNet Compound High accuracy with Requires more

scaling optimization fewer parameters hyperparameter tuning

Self-attention mechanism
for image processing

High performance in
large-scale datasets

Requires large

Vision Transformers (ViTs) training data

In the following Table 2, we summarize all related papers on global soft biometrics

prediction from 2019 to 2025, detailing the datasets, features, and performance to provide a

clearer understanding of the progress and advancements in this field.

Table 2. Summary of utilizing transfer learning for distance-adaptable global soft biometrics from

(2019-2025).

Performance (Accuracy, F1,

Ser  Year Authors Dataset Features Method MAE, Distance Context)
Gait patterns DL-based gait Accuracy >90% at 4-6 m;
! 2019 Zhang etal. [1] FVG dataset across distances  recognition with TL drops to ~82% at 10 m
. Multlplg CNN-extracted Review (?f deep Overview only; no
2 2019 Minaee et al. [9] biometric learning .
features - . metrics reported
datasets in biometrics
3 2019 Kumar & Custom Height, build, matsceh?r?nt-:cso it Rank-1: 88% @ 5 m; robust to
Nagabhushan [10] datasets clothing color trai%s clothing variation
Breed, gender, CNN s + soft/hard  Accuracy: 78.1% (image only)
4 2020 Laietal. [11] Dog photos height + face . o Yo7 & Y
; fusion 84.9% (fusion); range: 3-7 m
image
Various Review of deep .
5 2020 Mehraj & Mir [11] biometric CNN deep learning No experimental
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sets frameworks
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7 2021 selfie ocular Ocular features & gt ! Y: a8 '8
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10 2023 Xu etal. [15] palmprint p Y 2570, 8 ’
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with TL
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A key challenge in soft biometric systems is to keep consistent across different dis-
tances. At a greater distance between devices, the captured image quality (resolution and
clarity of biometric features) decreases. The system suffers from a major loss in image
quality which directly affects its accuracy, and thus it becomes ineffectual in practically
applicable systems. This leads to a high recognition rate. The challenge addressed by [1,16]
is that gait-based recognition can authenticate even when facial features are obscured.
This study emphasizes the need to develop distance-adaptive biometric models to capture
such variations in image quality. Issues with distance-based biometric recognition are
outlined, and the solutions are proposed in Table 3. These issues call for more sophisticated
methodologies which effectively improve recognition performance over diverse distances
and environments—that which is new. To overcome these challenges, it is essential to adopt
enhanced adaptive learning techniques together with multimodal fusion to improve the
robustness and accuracy of biometric predictions across different signal distances.

Table 3. Distance-based challenges in soft biometrics.

Challenge Impact Proposed Solutions
Low image resolution Degraded feature extraction accuracy Super-resolution techniques, adaptive filtering
Lighting variations Inconsistent model performance Data augmentation, HDR-based preprocessing
Feature occlusions Loss of key biometric traits Multimodal fusion, occlusion-aware models

Varying distances

Accuracy drops at long distances (>10 m)  Distance-invariant feature extraction methods

Privacy and Ethical Considerations

In accordance with GDPR and privacy-by-design principles, the proposed system
incorporates several mitigation strategies:

e  Data Minimization: Only non-identifying, cropped facial regions used for age, gender,
and ethnicity inference are processed, minimizing exposure to sensitive data.

e  On-Device Processing: The framework is deployable on embedded edge hardware,
such as NVIDIA Jetson AGX Xavier, enabling localized inference and eliminating the
need for cloud-based transmission of user data.

e Federated Learning Compatibility: Our architecture supports integration with feder-
ated learning setups, allowing decentralized model updates without exchanging raw
data, further preserving subject privacy.

These safeguards ensure ethical deployment in surveillance settings and help to the
fulfill GDPR Article 25 obligations regarding data protection by design and default.

3. Dataset Collection and Representation

For this study, we utilized two publicly available datasets to rigorously evaluate the
proposed distance-adaptive transfer learning framework, ensuring their applicability in
real-world biometric recognition contexts.

e  Front-View Gait (FVG) Dataset: Primarily used to simulate controlled acquisition
scenarios with known distances (4 m, 6 m, 8 m, and 10 m). This dataset contributed to
performance benchmarking under semi-structured surveillance conditions [1].

e MMV Annotated Pedestrian Dataset: Used to simulate real-world, unconstrained
surveillance environments with varied lighting and occlusion. It helped to validate the
generalizability of the model under noisy conditions [7]. Both datasets were combined
into a unified training and validation pool, with stratification applied to maintain
distributional balance.
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A total of 19,236 annotated samples were curated across four defined distance inter-
vals to capture the spatial variability between the subject and the imaging device. The
distribution across distances is summarized in Table 4.

Table 4. Distance-based sample distribution.

Distance Interval Number of Samples Percentage of Dataset
4 m (m) 5563 28.9%
6 m (m) 4973 25.9%
8 m (m) 4500 23.4%
10 m (m) 4200 21.8%

Additionally, the dataset was stratified across three demographic attributes—age,
gender, and ethnicity—to ensure unbiased performance and model fairness. The class
composition is summarized in Table 4. To ensure transparency and fairness in evaluation,
we provide detailed demographics of the collected dataset. The combined dataset includes
612 unique subjects, comprising 310 males (50.7%) and 302 females (49.3%). The age range
spans from 18 to 65 years, with the following approximate distribution:

e 18-30 years: 41%.
e 31-45 years: 34%.
e  46-65 years: 25%.

Ethnic representation is relatively balanced, with four predefined groups each account-
ing for 22% to 28% of the total data. These distributions help to ensure the generalization
capacity of the proposed model across diverse soft biometric classes. A visual distribu-
tion of gender and age is included in Figure 2, and in Table 5 we present the class-wise
demographic distribution.

w© Age Group Distribution Gender Distribution

Percentage (%)

0

18-30 31-45 46-65
Age Range

Figure 2. Age and gender distribution.

Table 5. Class-wise demographic distribution.

Attribute Class Sample Count
Age 0-17 3421
18-40 8719
41-65 5066
66+ 2030
Gender Male 1017
Female 9059
Ethnicity Group A 7220
Group B 4835
Group C 3048

Group D 4133
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To address demographic imbalance, two strategies were applied:

e  Class-weighted categorical loss was used during training to assign higher weights to
underrepresented classes.

e  Oversampling of minority classes was performed during batch construction to ensure
balanced representation in each training iteration.

All images underwent a standardized preprocessing pipeline as follows.

e Resizing: All samples were resized to 224 x 224 pixels to standardize input dimensions.

e  Contrast Normalization: Histogram equalization was applied to enhance visibility
under variable lighting.

e  Background Filtering: To eliminate environmental noise and emphasize soft biometric
traits, a semantic segmentation-based background filtering method was applied. We
employed a pretrained DeepLabV3+ model with a ResNet-101 backbone to segment
the subject from the background. After segmentation, a Gaussian blur was applied
to the background region, reducing distractions while preserving the clarity of the
foreground features. This enhanced feature isolation is particularly beneficial for
images captured at longer distances. After preprocessing and distance-specific stratifi-
cation, we applied data augmentation techniques including random horizontal flips,
brightness adjustments, and Gaussian noise injection. These operations approximately
doubled the dataset size from 19,236 to 38,472 images, helping to increase robustness
to real-world variance.

The dataset was then split in a subject-disjoint manner into

e 70% for training (~26,930 images).
e 10% for validation (~3847 images).
e 20% for testing (~7694 images).

This stratification was maintained across distance intervals (4 m, 6 m, 8 m, and 10 m)
and demographic attributes (age, gender, and ethnicity) to ensure balanced representation.
This consistent split was applied in each of the 5-fold cross-validation runs, enhancing the
statistical reliability of our evaluation.

These preprocessing steps ensured consistency in feature representation across all
distance intervals and demographic variations, enabling a fair and reproducible evaluation
of the proposed model.

4. Experimental Design of Proposed Approach

The proposed architecture uses EfficientNetB3 as its foundation because it achieves
the best combination of performance efficiency and model capability. The system employs
the EfficientNetB3 [17] model with ImageNet weights as its principal processing unit to
analyze 224 x 224 x 3 pixels images. The model contained three convolutional blocks that
used max-pooling layers for postprocessing for proper feature analysis. Multiple distance
intervals are fed into a feature fusion layer that concatenates their features for integration
into the architecture. The network automatically handles diverse image-quality levels
while adapting its performance dynamically, regardless of picture-resolution changes. The
network completes its operation by generating independent output paths, each of which
performs its own assessments of key soft biometric characteristics for age, gender, and eth-
nicity. The model delivers accurate results while ensuring efficient operation, which makes
it appropriate for real-time biometric systems that operate in environments with limited
computing power. Figure 3 shows the thorough system design of the proposed model,
which explains the processes from image input to feature collection and soft biometric
result generation.
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Figure 3. Unified architecture of the proposed multi-task distance-adaptive network. The input
images, collected at varying distances, are processed through a shared EfficientNetB3 backbone.
Features are fused at the mid-level stage and passed through three separate task-specific heads for
gender classification, ethnicity classification, and age estimation. The architecture incorporates a
distance-adaptive learning module to enhance robustness across variable capture ranges.

4.1. Feature Fusion and Distance Adaptation

To improve feature representation across varying acquisition distances, we introduce
a multichannel feature fusion mechanism integrated within the EfficientNetB3 backbone.
Features extracted at intermediate layers (specifically after Block 4 and Block 6) are con-
catenated along the channel dimension, enabling the model to retain both mid-level and
high-level semantic cues. This fused feature map is passed through a lightweight attention
block that adaptively re-weights channels based on the estimated capture distance class.
Unlike traditional multi-scale fusion methods such as Feature Pyramid Networks (FPN),
which rely on fixed layer-wise combination strategies, our method dynamically adjusts
the fusion process based on learned distance-aware cues, enhancing robustness under
cross-distance conditions. The output of this fusion layer is shared across the multi-task
heads, enabling joint optimization for gender, race, and distance estimation tasks.
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4.2. Training Protocol

An elaborate training protocol was implemented so that the resulting biometric predic-
tion system would be robust and distance-adaptive. In terms of protocol, dataset diversity,
hyperparameter optimization, and a progressive training approach were emphasized to
ensure that the model could be generalized for varying distances and in the real world [18].
The training dataset was based on biometric features collected at various distance intervals
over time. Learning the changes in the quality of the image regarding the distance of the
subject from the camera was made possible by this diversity, which allowed the model to
learn these distance-dependent variations in the quality of the image and make accurate
predictions. This progressive training was performed by training the model on data from
shorter distances first and then introducing longer distance data. The model is gradually
exposed to the issues of image resolution degradation at increased distances, enabling it to
adapt shown in Figure 4.

(Y o ©

Dataset Hyperparameter Progressive Model
Diversity Optimization Training Adaptation
Collecting Fine-tuning model Gradually exposing Adjusting model to
biometric features parameters for model to longer distance-dependent
at various accuracy distances variations

distances

Figure 4. Proposed training protocol for distance-adaptive soft biometric system. The diagram
highlights data augmentation, feature freezing, head-specific training, and distance-targeted fusion
during progressive training phases.

4.3. Hyperparameter Configuration

The training process was carried out for the Adam optimizer [15], which guaran-
tees an adaptive learning rate and efficient gradient update. The key hyperparameter
configurations are listed in Table 6.

Table 6. Hyperparameter configuration.

Learning Rate 1 x 10 — 41 x 104 (adaptive) Gradual adaptation for convergence stability
1, B2 (Adam Betas) 0.9, 0.999 Momentum control for gradient updates
Weight Decay 1x 10 — 61 x 1079 Prevents overfitting by penalizing large weights
Dropout Rate 0.2 Regularization to reduce overfitting risks

Batch Size 32 samples Efficient mini-batch training

Extensive empirical trials have been performed for hyperparameter tuning to deter-
mine the balance between computational efficiency and predictive stability. The configura-
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tion had the goal of making the system computationally feasible, while remaining accurate
for real-time use. Each of these strategies was then blended to ensure that even when the
nearest rest point was far from the model; it performs well in all environments. To simulate
real-world degradation at longer distances, augmentation parameters were adapted by
range: 0-3 m (light rotation/brightness jitter), 4-6 m (moderate motion blur), and 7-10 m
(heavy blur and noise).

4.4. Progressive Training Strategy

We adopted a progressive training strategy beginning with samples captured at shorter
distances (4 m), then incrementally introduced data from 6 m, 8 m, and 10 m. This approach
is inspired by curriculum learning principles, where simpler tasks are learned before
introducing more complex variations. Closer-range samples provide higher visual fidelity,
allowing the model to establish robust early feature representations.

When tested in reverse order (i.e., starting with 10 m), we observed increased training
instability and overfitting, as lower-quality distant samples provided noisier feature repre-
sentations early on. These effects are detailed in the ablation experiment, confirming the
benefits of progressive distance inclusion.

To clarify, the learning rate was not adapted based on distance. Instead, a single learn-
ing rate of 0.0001 was applied globally across all distance intervals. ReduceLROnPlateau
was used as a scheduler to automatically reduce the learning rate when validation loss
plateaued. This dynamic adaptation helped to mitigate convergence issues encountered
when samples from 8 m and 10 m were introduced.

This training sequence and rationale are summarized in Figure 5.

Progressive Training Strategy for Model Adaptation

Phase 1: Short-distane [’Eﬂ Phase 2: Intermediate Dis-
Traninig N Training
High-resolution Images é% Moderate Degradation

Clear Image Capture Medium Distance Data

Progressive
Training

ntati chni e 2
Data Augmentation Teu.mquﬁu Strategy

Subject Orientation Variations Noise Handling

Lighti dition Simulati
ighting Condition Simulations Long-distance Data

Figure 5. Overview of the progressive training strategy phases. Each training phase introduces incre-
mental complexity to the network, enabling robust learning under varied distance and environmental
constraints. Phases are sequential and build upon previously optimized parameters.

To further enhance the robustness of the model to different viewing situations, ro-
bustness to noise was applied through data augmentation. By effectively simulating the
subject orientation and lighting conditions, which are commonly used challenges in creat-
ing images of subjects at any specific distance, such augmentation effectively reduces the
requirements for subject controllability. This strategy allowed the model to accommodate
a large treatment space and to make highly accurate predictions under various sets of
environmental conditions.

4.5. Loss Functions and Data Augmentation

We employed a weighted multi-task loss to balance the three objectives: gender
classification, ethnicity classification, and age estimation. The final weights were set to
0.3 (gender), 0.3 (ethnicity), and 0.4 (age). These were determined through grid search on
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the validation set, where we tested multiple weight sets (e.g., 0.33/0.33/0.33, 0.25/0.25/0.5,
0.4/0.3/0.3) and found that (0.3/0.3/0.4) yielded the best trade-off in terms of overall
accuracy, Fl-score, and mean absolute error (MAE). The slightly higher weight for age
regression compensates for its naturally higher error magnitude compared to classification
tasks. In Table 7 we have presented the Loss functions and mathematical formulations used
for each biometric prediction task.

L = 0.3 x Lgender + 0.3 x Lage + 0.4 x Lethnicity 1)

Table 7. Loss functions and mathematical formulations used for each biometric prediction task.

Biometric Task Loss Function Mathematical Formulation
Gender Classification Binary Cross-Entropy (BCE) L_gender = —)_ y log(y)
Age Estimation Mean Squared Error (MSE) L_age=(1/n) L (y — ¥)?
Ethnicity Classification Categorical Cross-Entropy (CCE) L_ethnicity = —)_ y log(y)

As proposed in our study, the final weighted loss function integrates the individual
task losses, allowing the network to optimize performance across all biometric tasks si-
multaneously. To further improve the robustness of our system and enhance its ability
to generalize across varying environmental conditions, we incorporated a variety of data
augmentation strategies designed to simulate real-world variations encountered when
subjects were imaged at different distances. These strategies include the following:

e Rotation: +10° variations to simulate slight changes in the subject orientation.

e  Brightness Adjustments: £20% intensity shifts to replicate varying lighting conditions,
which is critical for distance-adaptive systems.

e  Occlusion Simulation: Random feature masking to account for partial obstructions
and realistic real-world occlusions.

e  Gaussian Noise: Simulated sensor noise to improve the model’s resilience to input
noise and sensor degradation, particularly at longer distances.

e  Horizontal Flipping: 50% probability of flipping the images to simulate mirror image
variations, ensuring that the model becomes invariant to different subject orientations.

These augmentation techniques were essential in enhancing the performance of our
model in real-world scenarios, as they effectively addressed the challenges posed by
environmental factors and subject variability across distances, as highlighted in our study.

4.6. Implementation Details

The proposed distance-adaptive soft biometric prediction model was implemented
using TensorFlow 2.12 and trained with a progressive transfer learning strategy. A 5-fold
cross-validation protocol was used to ensure robust performance evaluation. For each fold,
the dataset was divided into 70% training, 10% validation, and 20% test sets, stratified by
gender, age, and ethnicity to maintain class distribution balance. Samples from both the
FVG and MMV datasets were proportionally distributed across all folds. Specifically, the
model was progressively trained on samples grouped by increasing distances (4 m — 6 m
— 8 m — 10 m), allowing the network to gradually adapt to feature distortions introduced
at longer ranges. At each stage, training was run for 10 epochs, with early stopping based
on validation loss (patience = 3) to prevent overfitting.

We used EfficientNetB3 as the base architecture. The first 300 layers were frozen
during initial training, while the final layers and task-specific prediction heads were fine-
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tuned. During later stages, selective unfreezing was applied to allow deeper layers to adapt
to distance-specific distortions.

Training was performed on an NVIDIA RTX 3090 GPU, with the following hyperparameters:
Batch size: 32.

Optimizer: Adam.
Initial learning rate: 1 x 10~#, reduced on plateau (factor 0.5, patience 2).

Total trainable parameters: ~11.2 M.

To enhance generalization, standard data augmentation techniques were employed,
including random horizontal flips, Gaussian noise injection, and brightness variation.
Additionally, semantic segmentation-based background filtering was applied to reduce
environmental noise. The augmentation pipeline is illustrated in Figure 6.

Model Training and Evaluation Process

idation &7 ini
Cross-Validation =1 Gpu Training
Evaluating model Utilizing GPU for
performance through computational efficiency
multiple folds

aining

Adapting model to
varying distances

Regularization }

Techniques
Applying mothods to
prevent overfitting

Enhancing dataset
diversity for better
generalization

Figure 6. Model training and evaluation process.

The training pipeline processed datasets through different distance intervals, with
the system processing them successfully. Nevertheless, there were some challenges of
adapting the learning rate and processing data at longer distances (e.g., 8 m and 10 m).
However, these problems did not prevent the framework from being stable and always
performing well on all tested distances up to 10 m. The model effectively learned distance-
invariant features through a progressive training strategy, while the integration of data
augmentation and regularization techniques contributed to robust generalization across
varying distances [19].

4.7. Deployment Considerations

To assess the practical feasibility of the proposed framework, we recorded resource
consumption and model characteristics during training. The model was trained on an
NVIDIA RTX 3080 GPU (10 GB VRAM), with an average training time of ~52 min per fold
across 10 epochs.

e  Model size: 12.8 million parameters.

Peak GPU memory usage: ~8.3 GB.

Average training time per epoch: ~6.3 min.

FLOPs (floating point operations): ~3.9 GFLOPs per forward pass.
Training time (full 5-fold run): ~4.3 h.

The relatively lightweight architecture (EfficientNetB3) helps to maintain computa-
tional efficiency while supporting multichannel feature fusion. However, GPU dependency
and memory usage may limit deployment on resource-constrained edge devices with-
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out further model optimization (e.g., pruning or quantization). These metrics help to
contextualize the system’s real-world deplorability in surveillance environments.

4.8. Model Efficiency Analysis on Edge Devices

To assess the deployment potential of the proposed model in edge computing environ-
ments, we conducted a comparative analysis with widely used lightweight architectures
including MobileNetV2, MobileNetV3-Small, and ShuffleNetV2. All models were eval-
uated under the same testing conditions using the combined FVG + MMV test set, with
inference performed on an NVIDIA GTX 1660 Ti GPU.

Table 8 presents a summary of the number of parameters, GPU memory consump-
tion, average inference time per image, and classification accuracy for gender recognition.
While the proposed model (EfficientNetB3 + multi-task distance-adaptive fusion) contains
more parameters, it significantly outperforms the lightweight baselines in recognition
accuracy while maintaining reasonable resource usage. This trade-off justifies its feasi-
bility for deployment in scenarios where slightly higher resource use is acceptable for
enhanced performance.

Table 8. Model comparison with standardized metrics and distance robustness.

Model Gender Acc (%) Ethnicity Acc (%) Age MAE (years) ﬁ)zfz?; Il:)e
Proposed (Ours) 92.3 67.1 1.2 —7.3%
MobileNetV2 88.5 62.3 1.9 —12.6%
EfficientNetB0 89.4 64.1 1.5 —10.8%
D-ViT 91.0 66.0 14 —9.6%
TFormer++ 91.6 65.5 1.3 —9.1%

The results indicate that while the proposed model demands marginally more mem-
ory and computational power, it achieves up to 5.6% higher accuracy compared to the
best-performing lightweight baseline. Therefore, it offers an optimal balance between
accuracy and resource efficiency, which is critical for real-time biometric applications in con-
strained environments such as surveillance systems, access control terminals, and mobile
edge devices.

5. Results and Analysis
5.1. Training Performance

The training convergence, as shown in Figure 7, illustrates stable patterns across 5-fold
cross-validation over 10 epochs, indicating effective model learning without significant
overfitting. This consistent convergence confirmed the robustness of the proposed distance-
adaptive transfer learning framework during the training process. Validation metrics,
presented in Figure 8, track the accuracy and loss for gender, age, and ethnicity predictions
across the 4 m to 10 m distance range [20]. These results validate that the model maintains
high performance even with increasing distance, demonstrating the effectiveness of our
approach in mitigating distance-related performance degradation. This consistent accuracy
across multiple distances underscores the robustness of our multichannel architecture and
its ability to generalize under different imaging conditions. Figure 7 provides the distance-
based performance analysis of the model, while Figure 6 outlines the model training and
evaluation pipeline.
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Figure 7. Training and validation accuracy curves across 10 epochs for one representative fold.
Solid lines represent mean values, while shaded bands indicate standard deviation over 5-fold
cross-validation. The x-axis represents training epochs, and the y-axis shows accuracy. The legend
differentiates between training and validation performance.
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Figure 8. Cross-validation performance metrics showing training and validation loss/accuracy across
different distances for gender, age, and ethnicity prediction. The observed volatility, particularly at
longer distances (8 m and 10 m), reflects inherent noise due to reduced visual feature quality and
highlights the increased challenge of maintaining learning stability as distance increases.
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5.2. Component-Wise Performance

The component-wise training metrics, as shown in Figure 9, demonstrated a steady
decline in the overall model loss throughout the training process, indicating effective
learning and convergence. For gender classification [21], the model achieved an accuracy
range of 90-95%, reflecting its robustness and ability to maintain high accuracy across
varying distances. In contrast, ethnicity classification performance stabilizes at 60-70%,
highlighting a more challenging task in comparison to gender classification. These results
align with the objectives outlined in our proposed distance-adaptive transfer learning
framework, which effectively addresses the challenges posed by varying distances and
feature degradation. The observed differences in performance across tasks underscore the
varying complexities of different biometric traits and highlight areas for future refinement
in our approach.

1010
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Figure 9. Component-wise training metrics showing overall model loss, gender classification accuracy,
ethnicity classification accuracy, age regression loss, and mean absolute error (MAE). The plots
demonstrate the training progression across epochs for both.

Astonishingly, the mean absolute error (MAE) of age estimation lies between 1.1
to 1.5 years, which is a pretty good reliable and consistent age prediction of age. Such
metrics indicate the balance of performance of the model in all prediction tasks, where
it was examined to achieve the best possible results in the estimation of age, sex, and
ethnicity [22].
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In addition to accuracy, we calculated standard classification metrics—precision, recall,
and F1-score—for gender and ethnicity predictions across all distance intervals. These
metrics offer a more nuanced understanding of model performance, particularly in imbal-
anced or multi-class classification tasks. Table 9 summarizes the average scores across all
folds. The high Fl-score in gender prediction confirms the model’s reliability, while the
moderate F1 in ethnicity reflects task difficulty and potential class imbalance. Nevertheless,
the model consistently outperformed baselines across all metrics.

Table 9. Summary of the average scores across all folds.

Task Precision (%) Recall (%) F1-Score (%)
Gender Classification 94.2 93.8 94.0
Ethnicity Classification 68.4 66.9 67.6

5.3. Distance Impact Analysis

Figures 10-12 present a distance-based performance analysis of the model, demon-
strating its consistent behavior across varying distances. Each distance level was evaluated
using a fixed number of annotated test samples: 5563 at 4 m, 4973 at 6 m, 4500 at 8 m,
and 4200 at 10 m. The reported results reflect mean accuracy with 1 standard deviation,
obtained from five-fold cross-validation. Gender classification achieved 95% accuracy
at a 4-m distance, while ethnicity classification reached 70%, and the mean absolute er-
ror (MAE) for age estimation was 1.1 years. At 10 m, the MAE for age increased to
1.5 years; nevertheless, classification remained robust, with gender accuracy above 85%
and ethnicity accuracy slightly declining to 65%. Importantly, performance degradation
occurs gradually rather than sharply with increasing distance, indicating that the pro-
posed distance-adaptive transfer learning framework effectively mitigates the impact of
distance-related feature degradation. To provide statistical robustness, all accuracy and
MAE values shown in Figures 10-12 include error bars representing the standard deviation
across the five cross-validation folds. These illustrate performance consistency and high-
light the reliability of the reported trends. This gradual decline in performance reflects the
model’s robust adaptation capabilities, maintaining accuracy, and minimizing error even
as the subject distance increases, underscoring the efficacy of our approach in real-world
distance-varying scenarios [6,23]. All results in Figure 10 and this section are derived from
a standardized 5-fold cross-validation setup using the same dataset partitions. Mean values
are presented with 95% confidence intervals (£1.96 x standard error). A paired t-test
comparing 4 m vs. 10 m performance yielded p-values of 0.18 (gender), 0.22 (ethnicity),
and 0.27 (age MAE), indicating no statistically significant degradation in performance
with increasing distance. While these p-values indicate a lack of statistical significance
(p > 0.05), the gradual decline observed in Figure 10 suggests a practical impact of in-
creasing distance on feature quality. This highlights that although the model adapts well,
certain attributes—particularly ethnicity—remain more sensitive to distance-related reso-
lution loss. Therefore, these results emphasize the importance of continuous improvement
in distance-robust feature extraction.

As shown in Figure 10, performance degradation becomes more pronounced for
ethnicity classification than for gender classification at increased distances. This discrepancy
is attributed to the higher visual sensitivity of ethnicity prediction, which depends on fine-
grained features such as skin tone, facial detail, and subtle anthropometric cues—all of
which are increasingly obscured beyond 6 m. In contrast, gender classification relies on
more robust and macro-level features (e.g., silhouette, facial outline) that remain discernible
even under moderate blur and scale reduction.
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Figure 10. Comparative analysis of model performance across different distance ranges (4 m to 10 m).
Plots include mean values and 95% confidence intervals for gender accuracy, ethnicity accuracy, and
age MAE. Performance was measured over 5-fold cross-validation, confirming consistent accuracy
with increasing distance.
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Figure 11. Comprehensive model evaluation showing classification accuracy for gender and ethnicity
prediction and component-specific loss metrics including age MAE, gender loss, and ethnicity loss
across training epochs.
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Figure 12. Impact of subject-to-camera distance on prediction accuracy, showing performance
trends from 4 m to 10 m for person recognition (blue), gender classification (orange), and ethnicity
prediction (green).

5.4. Comparative Method Analysis

Figures 13-16 in our paper present a comprehensive comparison of the performance
of different methods. The deep learning approach, as proposed in our framework, achieved
62.5% gender accuracy and 50% ethnicity accuracy, with a total loss of approximately
150. In comparison, the baseline method showed similar accuracy rates but exhibited a
significantly higher total loss of approximately 300, indicating less efficient learning and
convergence.

The ensemble approach, while a valuable technique, demonstrated lower performance,
achieving 37.5% accuracy for both gender and ethnicity classifications, accompanied by the
highest total loss of approximately 600. These findings demonstrate the effectiveness of the
proposed distance-adaptive deep learning approach. While our implementation showed fa-
vorable results compared to baseline and ensemble references, we recognize that advanced
ensemble methods—particularly those involving fine-tuned CNN combinations—may
further improve performance. To ensure a fair evaluation, the baseline model was imple-
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mented using ResNet-50, pretrained on ImageNet, and trained under the same settings
as the proposed ensemble framework. Both models used identical cross-validation folds,
augmentation protocols, batch sizes, and optimizer configurations (Adam, LR = 1 x 107%).
The ensemble model uses EfficientNetB3 with adaptive distance branches for soft biometric
prediction. To quantify the reliability of our model’s performance across different distances,
we now report mean + standard deviation values from five-fold cross-validation for each
task (gender, age, and ethnicity).

Model Performance Comparison

Gender Classification Accuracy Ethnicity Classification Accuracy
100 100

80 80
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20 20
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Figure 13. Performance comparison of baseline and ensemble models on gender prediction across
distances. Both models were trained under identical parameter settings; the baseline uses ResNet-50
while the ensemble incorporates EfficientNetB3 with distance-aware heads.
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Figure 14. Ethnicity classification accuracy across varying distances for baseline and ensemble
approaches. Both models were trained under identical parameter settings; the baseline uses ResNet-
50 while the ensemble incorporates EfficientNetB3 with distance-aware heads.



Electronics 2025, 14, 3719 21 of 25

Model Performance Comparison

Classification Accuracies Age Prediction Metrics
700
— o
6 o
600
50
500
_ 40
2 400
> @
g 2
g ]
§» s
g 300
20
200
0
! — £ 100
3
—
0 0 I
Gendor Ethnicity MAE Loss
Total Loss Comparison Task-Specific Losses

600

500

Loss

300
250
200
s
8
g
k-
150
100
50
-

baseline ensemble deep Gender Ethicity Age

Figure 15. Performance comparison between deep learning, baseline, and ensemble approaches
showing classification accuracies and loss metrics for each prediction task. Both models were trained
under identical parameter settings; the baseline uses ResNet-50 while the ensemble incorporates
EfficientNetB3 with distance-aware heads.
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Figure 16. Ensemble recognition outcomes showing combined model performance metrics, including
classification accuracies and component-specific losses. Both models were trained under identical
parameter settings; the baseline uses ResNet-50 while the ensemble incorporates EfficientNetB3 with
distance-aware heads.

To further analyze performance consistency, we evaluated ethnicity classification
results separately for the four demographic subgroups defined in the dataset (Groups A-D).
The model achieved the following accuracies:
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Group A: 68.5%.
Group B: 66.3%.
Group C: 64.7%.
Group D: 61.9%.

This breakdown indicates that the model maintains a reasonably balanced performance

across subgroups, although Group D shows a slight drop, potentially due to fewer training
samples or overlapping features with other classes. These observations underscore the
importance of balanced training data and potential future work on fairness-aware learning.

5.5. Age Prediction Consistency

We show that age prediction performance is extremely consistent with MAE between
1.1 and 1.5 years over all evaluated distances. This demonstrates that the framework is
highly resilient to error levels and maintains an accurate century-based age estimation.
Age prediction also had the lowest component-specific loss compared to gender and
ethnicity predictions [24]. The steadiness in age estimation demonstrates the resilience
of the framework to the subject’s varying distance from the camera to extracting detailed
features. Our distance-adaptive transfer learning framework is also shown to be able
to maintain the highest prediction accuracy while increasing computational efficiency in
these quantitative results [25]. The findings also show the importance of multichannel
architecture in minimizing distance-related feature degradation and maintaining steady
performance. Furthermore, the training process nearly always converges with multiple
iterations, as shown in Figures 2 and 3, which plots the result of the overall training history
for all possible model configurations [26,27]. To validate the progression of the model and
the robustness of the proposed method, detailed validation metrics throughout the training
epochs are presented in Figure 17.

Prediction Accuracy and Consistency

Age Prediction Gender
Highly consistent Prediction
Higher loss with MAE between Lowest component-
compared to age 1.1and 1.5 years. specific loss
and gender compared to age
predictions. and ethnicity.

Figure 17. Prediction accuracy and consistency of our model.

5.6. Comparison with State-of-the-Art Models

To comprehensively validate the effectiveness of the proposed distance-adaptive
transfer learning framework, a performance comparison was conducted against three recent
state-of-the-art (SOTA) models that focus on distance-invariant biometric recognition. The
evaluated benchmarks include

e A convolutional neural network (CNN)-based feature adaptation approach for soft
biometric prediction under variable imaging conditions.

e A multi-view attribute recognition model that integrates pedestrian data from different
perspectives to improve classification robustness across distances.

e A deep attribute-based recognition framework utilizing periocular traits for gender
and age classification under constrained acquisition settings.
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These models were implemented and evaluated under the same experimental condi-
tions using the hybrid dataset consisting of the FVG and MMV pedestrian sets. Performance
metrics such as gender classification accuracy, ethnicity prediction, and age mean absolute
error (MAE) were used for comparison. The proposed method outperformed all baseline
models, especially in the 8-10 m distance range, where traditional CNN and attribute-based
methods showed noticeable performance degradation. This confirms the superior general-
ization capacity and distance-robustness of the proposed model in real-world biometric
applications have shown in Table 10.

Table 10. Accuracy and MAE metrics for gender, age, and ethnicity classification at 10 m distance.

Model Gender Accuracy (%) Ethnicity Accuracy (%) Age MAE (Years)
Proposed Model 85 65 1.5
CNN-Based Adaptation [23] 79 58 2.1
Multi-View Attribute Recognition [2] 81 61 19
Attribute-Based Periocular Recognition [13] 80 59 2.0

As shown, our distance-adaptive transfer learning framework outperforms the SOTA
models across all metrics, particularly at long distances. The improvements stem from the
use of multichannel feature fusion and progressive training that enhances robustness to
distance-based feature degradation.

These findings reinforce the claim that the proposed method provides a more effective
and scalable solution for real-world soft biometric prediction across variable distances.

5.7. Discussion on Racial Classification Performance

Although the proposed model demonstrates high overall accuracy, the performance
in racial classification is noticeably lower than that in gender classification. Several factors
may contribute to this disparity. First, data imbalance is likely, as certain racial groups
may be underrepresented in the training dataset, limiting the model’s ability to generalize
effectively. Second, annotation ambiguity or label noise—especially in racially diverse
datasets where visual cues are subtle—can affect ground truth reliability. Additionally, intra-
class variability (e.g., lighting, pose, distance) may impact racial feature distinctiveness
more than gender, which tends to rely on broader structural cues. This highlights a
potential bias in either the dataset composition or the annotation protocol. Future work
should explore targeted data augmentation, re-annotation using consensus labeling, or
fairness-aware learning strategies to mitigate such issues.

6. Computational Cost and Deployment Feasibility

The ensemble model was trained on an NVIDIA RTX 3090 GPU with 24 GB VRAM,
completing 5-fold training in approximately 12.4 h. Inference speed on the same system
averaged 41 milliseconds per frame. The model’s theoretical complexity is 3.72 GFLOPs per
224 x 224 input. For deployment benchmarking, we tested the framework on an NVIDIA
Jetson AGX Xavier, where it achieved 17 FPS using TensorRT optimization. These results
demonstrate the method’s suitability for real-time, edge-based surveillance applications.

7. Conclusions and Future Work

This study demonstrates the effectiveness of a distance-adaptive transfer learning
framework for global soft biometric prediction. By leveraging a multichannel architecture
based on EfficientNetB3, our model achieved robust results across varying subject-camera
distances. Specifically, gender classification accuracy reached 95% at 4 m and remained
stable at 85% even at 10 m. Ethnicity classification maintained 70% accuracy at 4 m and 65%
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at 10 m. Age estimation yielded a mean absolute error (MAE) between 1.1 and 1.5 years,
indicating strong consistency under diverse visual conditions.

Despite these promising outcomes, the current implementation faces three key lim-
itations. First, the model’s computational demands during training introduce resource
constraints, limiting its deployment on edge devices or large-scale systems. Second, the
reliance on distance-labeled training data restricts applicability in scenarios where such
annotations are unavailable. Third, performance beyond the 10 m range has not been
assessed due to dataset constraints, limiting insights into the framework’s scalability for
longer-range surveillance.

To address these issues, future research will focus on the following directions: first,
enhancing feature preservation at extended distances by refining network architectures,
particularly to reduce the impact of resolution degradation and visual noise; second, im-
proving computational efficiency through architecture optimization and pruning strategies,
enabling real-time inference and scalability. To alleviate annotation burdens, we will explore
weakly supervised and self-supervised learning approaches, such as pseudo-labeling and
contrastive representation learning, to infer distance labels automatically. These techniques
may significantly reduce manual effort while retaining strong generalization capabilities.

Additionally, extending the dataset to include subjects at distances greater than 10 m
will be a key priority to evaluate the model’s robustness in long-range surveillance contexts.
While our current evaluation focuses on ranges up to 10 m, scaling the framework to handle
longer distances will further enhance its real-world applicability.

Beyond performance improvements, ethical considerations remain paramount. Future
work will emphasize compliance with data protection frameworks such as GDPR, ensuring
practices like data minimization, anonymization, and informed consent. We also plan
to investigate privacy-preserving and decentralized learning paradigms (e.g., federated
learning or on-device inference) to reduce centralized data exposure. Furthermore, we will
incorporate fairness assessments across demographic subgroups to identify and mitigate
potential biases, particularly in age and ethnicity prediction tasks.

In conclusion, this research establishes a strong foundation for distance-adaptive soft
biometric systems, highlighting a viable path toward real-time, fair, and privacy-compliant
deployment in dynamic surveillance environments.
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