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Abstract

E-Learning is an emerging dominant phenomenon in education, making the development
of robust models that can accurately represent the dynamic behavior of learners in MOOCs
even more critical. In this article, we propose the Temporal Sparse Attention-Gated Re-
current Unit (TSA-GRU), a novel deep learning framework that combines TSA with a
sequential encoder based on the GRU. This hybrid model effectively reconstructs student
response times and learning trajectories with high fidelity by leveraging tthe emporal
embeddings of instructional and feedback activities. By dynamically filtering noise from
student interactions, TSA-GRU generates context-aware representations that seamlessly in-
tegrate both short-term fluctuations and long-term learning patterns. Empirical evaluation
on the 2009–2010 ASSISTments dataset demonstrates that TSA-GRU achieved a test accu-
racy of 95.60% and a test loss of 0.0209, outperforming Modular Sparse Attention-Gated
Recurrent Unit (MSA-GRU), Bayesian Knowledge Tracing (BKT), Performance Factors
Analysis (PFA), and TSA in the same experimental design. TSA-GRU converged in five
training epochs; thus, while TSA-GRU is demonstrated to have strong predictive perfor-
mance for knowledge tracing tasks, these findings are specific to the conducted dataset
and should not be implicitly regarded as conclusive for all data. More statistical validation
through five-fold cross-validation, confidence intervals, and paired t-tests have confirmed
the robustness, consistency, and statistically significant superiority of TSA-GRU over the
baseline model MSA-GRU. TSA-GRU’s scalability and capacity to incorporate a temporal
dimension of knowledge can make it acceptably well-positioned to analyze complex learner
behaviors and plan interventions for adaptive learning in computerized learning systems.

Keywords: MOOCs; TSA-GRU; Temporal Sparse Attention (TSA); Gated Recurrent Unit
(GRU); self-attention; learner behavior analytics; knowledge tracing; student response time
prediction; hybrid deep learning model

1. Introduction
Online education has reduced some barriers, including geography and time, allowing

learners to access meaningful, high-quality educational content no matter where they
are in the world. These changes are significantly altering the educational landscape. For
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example, current efforts to expand alternative pedagogy through adaptive learning, better
virtual classrooms, and performance development based on data are increasing student
engagement and support. At the same time, Massive Open Online Courses (MOOCs)
have become a key part of modern e-learning [1], which has altered the educational
landscape into one of broader access and democratization of learning experiences [2].
MOOCs offer learners a structured learning experience available free of charge, or at
a low cost, to those interested in the learning process, be it students, professionals, or
lifelong learners. The Open Classrooms platform explicitly employs mentor-led programs,
interactive assignments, real-world projects, and recommendation systems to add value to
a personalized learning experience [3,4]. While MOOCs provide various advantages, they
also present several obstacles, which include overall completion rates, a lack of personalized
support during learning, varied learner motivations, and no opportunity for interaction
with instructors [5]. Learner behavior is fragmented and data-rich in MOOCs and can
include several different activities such as watching video lectures, engaging in discussions,
and completing assignments [6]. Research suggests that goal-setting and peer engagement
(or interaction) are among the strongest predictors of improved completion rates student
performance in the course [7]. Additionally, group-level behaviors may either facilitate
or inhibit course selection and learning outcomes [8,9]. Secure online learning is also a
necessity, involving policies and practices that establish strong encryption, multi-factor
authentication, and strict privacy compliance to protect learner data and establish trust
within digital learning contexts [2,10].

The large amount and variety of MOOCs create challenges for the implementation of
a personalized learner analytics process. Predictive models and clustering methods can
put learners into categories with respect to their behavior, but their usefulness is limited
by the amount of heterogeneity in students and the noisy, unstructured data produced by
redundant interactions [4]. Privacy issues often make large-scale data collection difficult
in practice, and the data collected must comply with strict ethical and data protection
policies. To compound these challenges, many analytics approaches struggle with both
scalability and interpretability when dealing with complex learning data. To address these
shortcomings, this research integrates process-mining methods with learning analytics to
help reveal the sometimes hidden, implicit patterns within MOOC learner data. The study
will critically evaluate the current analytic techniques in this context and propose the TSA-
Transformer, a new deep learning model architecture that incorporates Temporal Sparse
Attention (TSA) and Transformer networks into a single model. This model can filter noise
in the data and model contextualized and sequential data from learners’ interactions while
extracting the underlying implications of learner engagement and dropout risk. Ultimately,
a more personalized online learning system can be established for learners. Through
TSA-Transformer, it is possible to have personalized interventions that are intended for
individual learners, resulting in improved educational outcomes in an MOOC context.

This research presents a new TSA-GRU model that is used to understand learner
movement in MOOCs. While TSA-GRU is based on known mechanisms such as sparse
attention and GRU, it is novel in how the model builds TSA across the sequence dynamically
and selectively to focus on the learning moments that are most critical to achieving learning
objectives. Whereas MSA-GRU does not filter out uninformative time steps, TSA-GRU
introduces a sparsity threshold mechanism to filter out the uninformative time steps in a
cognitively efficient manner and from a perspective of interpretability. Unlike traditional
probabilistic models or recurrent architectures that do not handle long-range dependencies
well, TSA-GRU is a combined TSA model with a GRU-based sequential model that captures
both short- and long-range dependencies in learner behavior. Over the other models, it
renders a dense and robust representation of learner behavior while reducing noise and
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redundancy with regard to all of the learners’ evidence. Some experimental evidence
indicates that TSA-GRU outperforms most prior knowledge tracing models, including
MSA-GRU, BKT, PFA, and TSA alone, with an accuracy of 95.60% and a test loss of 0.0209.
The model also converged considerably faster than other models to reach its optimal
performance in five epochs, suggesting that TSA-GRU is an efficient learner behavior
representation and can mitigate the risks of overfitting or underfitting models to learner
behaviors. Overall, this evidence supports the contention that TSA-GRU will provide
both advances in predicting better student performance outcomes and act as an exemplar
platform for adaptive, data-driven, and personalized approaches for large-scale online
educational environments.

This work makes three primary contributions to the field of learner behavior analytics
in MOOCs:

• We introduce a next-generation learner model, TSA-GRU, a novel deep learning
module that uses the combined output of TSA and a GRU, each focusing on context-
aware, enriched embeddings of student interactions.

• In parallel, such embeddings are concatenated with a sequential modeling procedure,
which helps capture short- and long-term dependencies in student behavior and hence
supports learning outcome and response time prediction.

• In our current procedure, the embedding originating from TSA has been merged with
GRU-based sequential modeling. This allows it to capture short-term fluctuations and
long-term temporal dependencies in student behavior. All of this translates into better
performance in predicting learning outcomes and the time needed to respond.

• Finally, extensive experiments and validation on large-scale educational datasets have
proved the superiority of TSA-GRU over existing knowledge tracing models. These
experiments show that TSA-GRU is capable of being put to real-world use in adaptive
learning systems.

The structure of the paper is as follows: Section 2 discusses related work on knowledge
tracing and online learning analytics; Section 3 presents the architecture and method of
the TSA-GRU module; Section 4 provides experimental results and compares the models;
Section 5 discusses how to interpret the findings according to their impact; Section 6 gives
a preview of implications and future works; and Section 7 concludes the paper.

2. Related Works
Recent advancements in AI and data-driven technologies have had a tremendous

influence on online education, which has ignited large amounts of research into learner
behavior analytics in MOOCs. In order to render a scientific state-of-the-art of the recursive
field, the related studies can be loosely divided into five categories. These sum together
the wide range of techniques and approaches in support of improving learner experiences.
They are summarized as

1. Learner Behavior Analytics in MOOCs, which examines the intricate patterns of
student interactions.

2. Dropout prediction studies, which use traditional ML techniques to define and detect
early indicators of disengagement and help in better learner retention.

3. MOOC engagement prediction strategies that rely on deep learning methods to
identify intricacies in learner interaction and engagement patterns.

4. Personalized learning in MOOCs that encompasses adaptive-based algorithms to
provide pedagogical content and intervention based on individual learners.

5. Student performance, which arises in online learning by means of a combination of
deep and traditional learning to effectively forecast academic aspects.
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2.1. Learner Behavior Analytics in MOOCs

In [11], the authors analyzed undergraduate students participating in an online learn-
ing experience at Kyung-Hee University using k-means clustering. Although the students
were organized using standard indicators (i.e., attendance, completion of required work,
and participating in discussions), the authors concluded that these indicators did not reflect
authentic engagement in learning. The researchers suggested that behavioral, emotional,
and cognitive dimensions need to be included when considering the development of ac-
tive learning strategies and student support systems. In [12], the emergent integration of
process mining, learning analytics, and explainable artificial intelligence (XAI) in MOOCs
was discussed. Process mining allows hidden learning patterns to be elicited from event
logs and uses these data in the analytics to identify at-risk students and recommend in-
terventions in a timely manner. XAI promotes educator transparency and builds trust in
adaptive multimodal learning systems, iterated through continuous real-time feedback.
The Tadakhul model described in [13] is a bilingual MOOC platform that has been devel-
oped for higher education in Oman. An approach based on a combination of Bidirectional
Long Short-Term Memory (BiLSTM) and Convolutional Neural Network (CNN) makes
use of a hybrid deep learning model to investigate student interactions, resulting in better
predictions for students who drop out of their courses than any past methods, paving the
way for better personalized learning analytics. In the context of MOOC video analytics,
ref. [14] explains that studying student interactions with video content is important to
gain insight into video engagement and dropout risk (play, pause, rewind) and leads to
immediate feedback with visual dashboards. Additionally, ref. [15] illustrates a hierarchical
attention model using CNNs and Long Short-Term Memory (LSTM) to analyze the senti-
ment of MOOC comments, leading to more precise sentiment detection and adjustments
to inform better teaching. Finally, ref. [16] proposes an NLP framework that uses topic
modeling on free-text survey responses to identify 18 distinct problem-solving approaches,
offering a comprehensive view of student learning behaviors beyond traditional log data.
In [17], predictive AI models employing K-means clustering and decision trees classify
MOOC learners in Thailand into three groups, High Active, Medium Active, and Lurking
Participants, demonstrating the potential of AI to personalize learning experiences and
boost both engagement and retention.

2.2. MOOC Engagement Prediction

In [18], a hybrid application was used to predict learner engagement in MOOCs based
on complicated data from 1356 learners from different semesters. It grouped students based
on level of engagement using unsupervised clustering and identified emotions expressed
in forum discussions using BiLSTM. A classification model with a decision tree approach
obtained an accuracy of 98% and AUC was 0.97. This study involved contextual factors,
such as location and connection, that contributed to personalizing learning experiences
for dropouts within learning context. Ref. [19] is a speaker-centric, balanced, and media
with context study of learner engagement. The findings point to a media with context
video style that appears to mediate social engagement, while balanced videos appeared
to provide better cognitive and emotional engagement indicators, particularly for STEM
course learners. The overall finding was that speaker-centric videos provided little to no
effectiveness. The findings advance the literature by providing information for educators
and instructional designers in selecting video content styles. An optimized, lightweight
CNN model based on the architecture ShuffleNet V2 has been developed [20] for real-
time engagement recognition in MOOCs. The model includes an attention mechanism
and a modification to the activation function to increase performance while maintaining
speed, making it appropriate for mobile applications. The model performed better than
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other architectures reported in the literature, such as Inception V3 and ResNet. This work
indicates the potential of leveraging deep learning to improve personalized learning and
retention strategies in online education.

2.3. MOOC Dropout Prediction Models

As described in [21], researchers developed a new dropout prediction model for
MOOCs based on fractional calculus. This model seeks to address the drawbacks of
previous dropout prediction techniques, which require hand-designed features and very
large datasets. This strategy gives greater confidence to the predictions made by the model
and supports the development of targeted interventions to retain learners. Both studies
in [22] reached the same conclusion and built a dropout prediction model using a deep
neural network with data from various sources. In this analysis, dropout data from over
3000 students was utilized with 17 attributes within the model, enabling the researchers
to achieve high precision and low false negative rates, indicating the great potential of
deep learning in dropout prediction. Documenting dropout prediction technology in [23],
researchers proposed a new module of dropout prediction that uses self-supervised learning
on clickstream data using skip-gram and PCA. It was noted that when the methods were
applied to datasets from XuetangX and KDDCUP, the prediction performance of dropout
outcomes improved to achieve higher metrics on dropout predictions, demonstrating
that natural language processing methods can be borrowed to reflect learner behaviors
in learning environments in more detail. In addition, ref. [24] tackles high dropout rates
by employing a combination of deep learning and traditional machine learning models
to forecast student engagement and attrition. This study also offers a conceptual model,
indicating a degree of personalized adaptive e-learning, particularly for learners with
disabilities, and highlights the necessity for faculty to receive training in the effective use of
emerging technologies. Lastly, the research in [25] proposed a hybrid method that involves
using convolutional networks and recurrent networks (with LSTM) to analyze time-based
sequences of learner engagement in STEM MOOCs. Their research identifies explicit and
implicit behavioral features, suggesting early intervention approaches while emphasizing
the importance of data-driven models to reduce learner attrition.

2.4. Personalized Learning in MOOCs

The research referenced in [26] introduces a hybrid knowledge-based recommenda-
tion system for MOOCs developed by combining semantic web rules with collaborative
filtering techniques. The system employs the Felder–Silverman Learning Style Model to
cluster learners according to patterns of course usage and subsequently offers personalized
recommendations for course components, such as reading material and quizzes, which
can occur over time in a dynamic process. The technique enhances user engagement and
assists in addressing dropout rates through reducing the cold-start problem, as well as
taking advantage of contextual knowledge. In [27], the authors discuss the ongoing use of
learner behavior analytics in MOOCs. The paper demonstrates that meaningful insights
regarding learners can be based on their engagement over time, in terms of assessments
and learning navigation, and how that can dictate adaptive pathways and personalized
recommendations that enhance the overall experience. The research presented in [28]
uses a sentiment analysis methodology to analyze feedback from learners in the MOOC
context. By employing machine learning and data analytics, the study leverages a range of
individual learning styles and preferences to provide individualized content and real-time
analysis of feedback that improves motivation and engagement while enhancing learners’
performance and satisfaction. Additionally, the authors of [29] present an examination
and application of eye-tracking technology within MOOC contexts to facilitate person-
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alized course recommendations. This innovative perspective highlights the potential of
personalized learning approaches, which can assist adaptive and efficient environments
of online learning. Another study [30] provides a review of specific developments in
online learning analytics, focusing on recent extensions in the deep learning world, refer-
ring to techniques such as neural networks and reinforcement learning. The work uses
a systematized approach of literature synthesis using a co-occurrence network analysis,
and the analysis found new conversational patterns associated with predicting learners’
engagement and success. They discuss scalability, integration into educational contexts,
and ethical issues arising from data-informed practices, and they end with the potential for
improving personalized learning and enhancing educational well-being.

2.5. Student Performance Prediction in Online Learning

In [31], the authors examine deep learning techniques to forecast student performance
in MOOCs and LMS, focusing on backpropagation-based models like LSTM. This research
provides a systematic filtering of a broad literature pool, resulting in 23 key papers in the
area of deep learning and MOOCs/LMS, pinpointing patterns in model architecture, pre-
diction accuracy, and possibilities for early intervention, which demonstrates the growing
efficacy of deep neural networks handling complex educational datasets. The work in [32]
pertains to an integration module that combines behavioral analysis and machine learn-
ing algorithms for an augmented performance prediction in online continuing education,
specifically in MOOCs. To develop this integration approach, a scientometric review and
clustering analysis of the literature was applied, revealing a range of learning patterns (e.g.,
low autonomy and motivation) and showing how adding behavioral data may improve
prediction accuracy that exceeds the conventional machine learning algorithms utilized in
the field, such as XGBoost. The authors of [33] make use of advanced analytical methods
involving spiking neural networks (SNNs) and more than 300,000 records of past behavior
data from the edX platform to predict whether students completed an MOOC. The analysis
achieved an impressive 99.8% prediction accuracy. The study shows that student activity,
such as posting in discussion forums and watching videos, are linked to the ability to
complete a course. All of this highlights the importance of understanding behavioral char-
acteristics to help better design timely interventions to reduce dropout rates. The research
presented in [34] investigates predicting student performance in MOOCs using machine
learning models to analyze demographics, assessment test scores, and student engagement
metrics from the Open University Learning Analytics Dataset (OULAD). Techniques such
as logistic regression and random forest regression showed that simple student behaviors,
such as levels of daily activities, predicted success, with random forest demonstrating
elevated prediction accuracy. The research pointed to the value of integrating a variety of
data to identify at-risk students earlier and inform retention strategies.

2.6. Review and Comparative Analysis of Prior Work

Table 1 illustrates a thorough comparison of different methods of learner behavior
analytics in e-learning and MOOC contexts.

As outlined in Table 1, there are several key trends that can be identified in the studies
reviewed. First, deep learning methods (CNN, BiLSTM, and hybrid approaches) have
consistently outperformed traditional machine learning methods with respect to accuracy
and generalizability, particularly with dropout prediction and MOOC engagement identifi-
cation. For example, models that utilize a BiLSTM and CNN [13,25] have demonstrated
considerable predictive performance while using a moderate number of computational
resources, suggesting a potential application in a real-time system.
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Table 1. Comparative Analysis for learner behavior analytics in E-Learning and MOOCs.

Method The Resolved Problem Gaps Resolved by the Approach Accuracy Scalability Interpretability Resource Consumption Adaptability to Large Datasets

Learner Behavior Analytics in MOOCs

Machine Learning [11]
Traditional engagement metrics
do not capture true
student engagement.

Introduces k-means clustering to
indicate the necessity of
behavioral, emotional, and
cognitive measures.

– High High Low-Medium Medium

Process Mining + XAI [12] Opaque analytics in MOOCs
lead to a lack of trust and insight.

Combines process mining,
learning analytics, and XAI to
identify hidden patterns and
provide transparent
recommendations.

– High Very High Medium Very Good

Tadakhul System [13]
Cold-start issues and insufficient
personalization on
MOOC platforms.

Combines BiLSTM and CNN to
predict behavior, engagement,
and drop-out rates.

High Medium Medium Medium Very Good

Video Analytics [14]
Limited understanding of how
video interactions affect
learner engagement.

Analyzes video metrics and
recommends real-time feedback
via dashboards.

Medium High Medium Medium Good

Sentiment Analysis [15] Comment texts are
underexplored in MOOCs.

Combines CNN and LSTM in a
hierarchical attention model for
sentiment detection.

High Medium Medium Medium Good

NLP Framework [16] Log data analysis overlooks
off-platform problem-solving.

Uses topic modeling on free-text
responses to identify
18 problem-solving types.

Medium Medium High Medium Good

Predictive AI [17] Need for improved learner
classification for interventions.

Uses k-means and decision trees
to segment students for
targeted support.

High Medium High Medium Very Good

MOOC Engagement Prediction

Hybrid Engagement Model [18] Difficulty predicting engagement
from complex MOOC data.

Combines unsupervised
clustering, BiLSTM, and
decision trees.

High Medium Medium Medium Very Good

Video Style Impact Study [19] Uncertainty on best video
modalities for engagement.

Classifies video styles and
correlates with
engagement types.

Medium High Very High Medium Good

Optimized CNN Model [20] Need for lightweight
real-time model.

Upgrades ShuffleNet v2 with
attention; outperforms Inception
V3 and ResNet.

High High High Low Very Good
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Table 1. Cont.

Method The Resolved Problem Gaps Resolved by the Approach Accuracy Scalability Interpretability Resource Consumption Adaptability to Large Datasets

MOOC Dropout Prediction Models

Fractional-Iterative BiLSTM [21] Conventional models struggle
with feature identification.

Uses fractional calculus in
BiLSTM to capture
nuanced behavior.

High Medium Medium Medium Good

Deep Neural Network [22] Sparse hand-crafted features
hinder prediction.

Uses 17 features from
3000 students in a DNN. High High Medium High Very Good

Self-Supervision from
Clickstream [23]

Clickstream behavior
is underutilized.

Uses self-supervised
skip-gram + PCA for better
dropout prediction.

Medium High Medium Medium Good

Integrated Deep Learning and
Machine Learning [24]

Dropout factors are multifaceted
and underaddressed.

Integrates DL and ML for
adaptive interventions. Medium High Medium Medium Good

CNN + RNN Hybrid [25] High dropout in STEM MOOCs;
few early warnings.

Combines CNN and LSTM to
analyze behavioral sequences. High High Medium High Very Good

Personalized Learning in MOOCs

Knowledge-based
Recommender [26]

Cold start and lack of
personalization in
recommendations.

Combines semantic web rules
and clustering based on
learning styles.

High Medium High Medium Very Good

Personalized Learning
Exploration [27]

Need for diverse behavior-based
recommendations.

Deep-learning-based analysis of
diverse learner data. Medium High Medium High Very Good

Sentiment Analysis for
Personalization [28]

Learner feedback is underused
for personalization.

Combines sentiment analysis
with engagement metrics. Medium Medium High Medium Good

Eye-Tracking
Recommendations [29]

Observing non-intrusive
behavior for personalization
is difficult.

Uses eye-tracking and DL to
suggest courses. Medium Medium High Medium Good

Student Performance Prediction in Online Learning

Behavior-Integrated
Prediction [32]

ML models often ignore
behavior logs.

Integrates clustering with ML
models to include behavior. High High Medium Medium Very Good

Spiking Neural Networks [33] Course completion prediction
from massive logs is hard.

Uses SNNs to connect behavioral
data to completion. High High Low-Medium High Very Good

ML on Diverse Features [34] Traditional models use limited
data for predictions.

Combines LR and RF on
demographics, assessments,
and logs.

Medium High High Medium Very Good
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Deep learning approaches have demonstrated a significant lack of interpretability. Ap-
proaches that incorporate XAI [12] or decision trees [17,18] provide some degree of account-
ability but may result in either a lack of scalability or predictive capacity. Thus, the trade-offs
in interpretability, prediction, and accountability must be balanced when developing the
aforementioned systems with the potential for uncovering unknown behavioral insights.

Cold-start and sparsity issues have been addressed frequently with clustering [11,17]
and self-supervised learning [23], which suggests that unsupervised techniques are critical
for generalizing results between learner populations. Furthermore, while research studies
have focused on a single behavioral signal, more capable systems [24,26,33] have included
multiple elements, such as clickstream web data, forum text (ICT-based and sentiment), or
even eye tracking, which improved generalizability and reliability.

Despite a few models achieving high accuracy, there are few that actually address the
real-time limits of MOOC platforms. The optimized CNN model in [20] and spiking neural
networks in [33] are important steps toward low-latency and scalable prediction. These
takeaways guide the implementation of our model TSA-GRU and aim to combine inter-
pretability, accuracy, and efficiency while fixing the limitations of the previous approaches.

2.7. Problem Analysis and Proposed Solution

The swift growth of MOOCs has produced a significant quantity of learner interaction
data, while traditional probabilistic and attention-based sequential methods have not
capitalized on the filtering noise caused by redundant interaction and behavior signals,
such as engagement and risk of early dropout, and accurate temporal modeling. This gives
rise to several central research questions:

• Can the integration of a TSA method into a GRU-based sequential modeling approach
in the TSA-GRU module assist in filtering out noise and capturing both short- and
longer-term dependencies for students’ overall interaction?

• Will the TSA-GRU model enhance the meta-representation of learner behavior by al-
lowing for noise monitoring and suppressing noise while still ’corralling’ contextually
relevant features?

• Thus, will improved predictive accuracy for complex behavior and generalizable
targeted interventions within the learner contexts found in MOOC design be achieved?

To address these issues, we propose TSA-GRU, a novel hybrid deep learning model us-
ing a TSA Encoder component that allows for selective feature extraction using a threshold-
based sparse attention to yield context-enhanced embeddings from a learner dataset,
followed by a GRU modeling temporal dependencies through technology gating unit
operations. Combining these interpretable layers and dynamic features in feedforward
fully connected layers fosters a comprehensive learning response framework to predict
learning outcomes with global context understanding and fine temporal dynamics.

3. Methodology
The TSA-GRU fusion model is composed of two modules for making effective time-

series predictions on MOOC data (Figure 1):

TSA Module: Using a sparse multi-head attention mechanism, this module extracts the
most salient temporal features by focusing on certain parts of the sequence.
GRU Sequential Encoder and Fusion Module: This extracts local sequential dynamics
from attention-enhanced features and fuses these global and local representations for the
final prediction.
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Figure 1. Architecture of the TSA-GRU module.

TSA-GRU adds a new TSA component, where only some time steps are assigned a
meaningful attention weight based on a learnable sparsity threshold. TSA-GRU employs
a dynamically learned method for filtering temporal noise and irrelevant information.
Specifically, this will be interpreted as an improved attention to the most pedagogically
relevant moments, contributing to generalization and prediction.

3.1. Temporal Sparse Attention (TSA)

The TSA Module directs its focus on the most vital temporal interactions from the
information. It utilizes multi-head attention while incorporating the sparsity mechanism to
ignore bleeding relationships. While the concept of sparse attention has been explored in
the context of language models and transformers, our proposed TSA introduces a novel
adaptation tailored to time-series educational data. Specifically, TSA applies a learnable
sparsity threshold on attention weights across time steps, dynamically retaining only the
most salient learner interactions. This contrasts with standard sparse attention mechanisms
that often rely on fixed or predefined patterns.

3.1.1. Embedding Transformation

The transformation is performed with an embedding to turn discrete inputs into a contin-
uous vector space wherein inputs sharing similar properties will have similar representations.

Input Representation: For each student, we use a sequence of standardized features
(e.g., original, correct, attempt_count, position) to construct an interaction sequence.

Embedding Transformation: These input features are passed through a linear layer to
project them into a higher-dimensional space:

xembed = Wex + be (1)

where

• x is the input sequence of shape (seq_len, din);
• We and be are learnable parameters;
• xembed ∈ Rseq_len×H is the embedded sequence with H being the hidden dimension.

3.1.2. Multi-Head Sparse Attention

A set of attention processes running in parallel (in parallel termed heads) to capture
different sorts of relations in the data.

Query, Key, and Value Computation
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The embedded sequence linearly projects to three vectors:

Q = WQ xembed, K = WK xembed, V = WV xembed (2)

where WQ, WK, and WV are learned weight matrices.
Scaled Dot-Product Attention
A method where attention scores between query and key are obtained via a dot

product and scaled by the square root of the dimension dK. This scaling helps maintain
numerical stability.

Scaled Dot-Product

scores =
QhK⊤h√

dK
(3)

Here, Qh and Kh are the query and key matrices for each head h, with dK = H/n where n
refers to the number of heads.

Sparse Query--Key Selection
Sparsity in this case implies that only relevant connections with attention scores higher

than a threshold are retained, and the remaining lateral connections are masked.
For each query position i, the maximum attention score is computed:

max_scorei = max
j

scores(i, j) (4)

A threshold of 50% of this maximum is applied:

thresholdi = 0.5×max_scorei (5)

Scores that fall below the threshold (all but the maximum) are masked out:

s̃cores(i, j) =

scores(i, j), if scores(i, j) ≥ thresholdi or j = arg max
j

scores(i, j)

−∞, otherwise
(6)

The softmax function is applied over these masked scores to determine the atten-
tion weights:

α(i, j) =
exp(s̃cores(i, j))

∑j′ exp(s̃cores(i, j′))
(7)

3.1.3. Contextual Feature Compression

Concatenation
It is a process of placing several vectors next to each other and combining them into a

single vector.
The output for each head has the following form as a weighted sum of value vectors:

out(h) = αhVh (8)

Outputs from all heads are concatenated and then passed through a final linear projection:

TSAfeatures = Wo concat(out1, . . . , outh) + bo (9)

TSA Module Pseudocode: Algorithm 1 describes the TSA module.
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Algorithm 1 TSA_Module (x_embed, num_heads, hidden_dim)

1: dk ← hidden_dim/num_heads
2: # Compute queries, keys, and values
3: Q← Linear(x_embed, WQ, bQ)
4: K ← Linear(x_embed, WK, bK)
5: V ← Linear(x_embed, WV , bV)
6: # Reshape for multi-head attention: (batch, num_heads, seq_len, dk)
7: Q← ReshapeAndTranspose(Q, num_heads, dk)
8: K ← ReshapeAndTranspose(K, num_heads, dk)
9: V ← ReshapeAndTranspose(V, num_heads, dk)

10: # Compute scaled dot-product attention scores
11: Scores← MatMul(Q, Transpose(K))/

√
dk

12: # Apply sparse attention selection per head
13: for each head in [1, num_heads] do
14: for each sequence position i in [1, seq_len] do
15: max_score← max(Scores[head, i, :])
16: Threshold← 0.5×max_score
17: for each position j in [1, seq_len] do
18: if Scores[head, i, j] < Threshold and j ̸= arg max(Scores[head, i, :]) then
19: Scores[head, i, j]← −∞
20: end if
21: end for
22: end for
23: end for
24: # Compute attention weights via softmax
25: attention_weights← Softmax(Scores, axis = −1)
26: # Compute weighted sum of values
27: out← MatMul(attention_weights, V)
28: # Concatenate heads and apply final projection
29: out← TransposeAndReshape(out, hidden_dim)
30: Tsa_features← Linear(out, Wo, bo)
31: return Tsa_features

3.2. GRU Sequential Encoder and Fusion Module

The actual local number of sequential dependencies from the TSA-enhanced features
is taken into account in this module, and these dependencies are integrated with global
representations in order that a final prediction may take place.

3.2.1. GRU Sequential Encoding

Gated Recurrent Unit (GRU)
A type of recurrent neural network (RNN) that controls information flow by using var-

ious gating methods to try to address problems, including the vanishing gradient problem.
GRU Layer
TSA features are fed into a GRU layer:

GRUout, hfinal = GRU(TSAfeatures) (10)

where hfinal is the hidden state keeping track of what happened sequentially.

3.2.2. Global Pooling and Feature Fusion

Global average pooling
Computes the average value across the time dimension, effectively squeezing down a

variable-length sequence into a fixed-size description.



Future Internet 2025, 17, 355 13 of 31

Pooling: Global average pooling is applied to both TSA and GRU outputs:

TSApooled =
1

seqlen

seqlen

∑
i=1

TSAfeatures,i, GRUpooled =
1

seqlen

seqlen

∑
i=1

GRUfeatures,i (11)

Fusion: The pooled TSA and GRU representations are concatenated:

fusion = Concat(TSApooled, GRUpooled) (12)

3.3. Final Prediction

Dense Prediction Layer:
A fully connected layer maps the fused vector to the final output:

ŷ = W f · fusion + b f (13)

where ŷ is the predicted, normalized response time.
TSA GRU Fusion Model Pseudocode: Algorithm 2 describes the TSA-GRU pseudocode.

Algorithm 2 Build_TSA_GRU_Fusion_Model(input_sequence)

1: # 1. Embedding Transformation
2: xembed ← LinearEmbedding(input_sequence) ▷ (batch, seq_len, hidden_dim)
3: # 2. Apply Temporal Sparse Attention (TSA)
4: tsa_features← TSA_Module(xembed, num_heads, hidden_dim)
5: # 3. GRU Sequential Encoding
6: gru_out← GRU_Layer(tsa_features) ▷ (batch, seq_len, hidden_dim)
7: tsa_pooled← GlobalAveragePooling(tsa_features) ▷ (batch, hidden_dim)
8: gru_pooled← GlobalAveragePooling(gru_out) ▷ (batch, hidden_dim)
9: # 5. Fusion of TSA and GRU Features

10: fusion← Concatenate(tsa_pooled, gru_pooled) ▷ (batch, 2× hidden_dim)
11: # 6. Final Prediction
12: prediction← Dense(fusion, W f , b f ) ▷ (batch, 1)
13: return prediction

4. Experimental Results and Comparaison
4.1. Dataset

In this paper, the dataset used is the 2009–2010 ASSISTments dataset [35], which
comprises systematic records of student interactions with an intelligent tutoring system
that predates MOOCs and many modern learning analytics features. The dataset includes
user IDs, problem IDs, correct or incorrect responses, attempts, time taken, and position
of questions. Interestingly, while preprocessing, duplicates were removed. Furthermore,
numerical features were standardized in Scikit-Learn using the StandardScaler. For se-
quential modeling, the user interactions were grouped by user ID and ordered by question
position, which generated fixed-length learning sequences (in this case, 10) so that all input
dimensions stayed the same. The data were split into a train–test split of 80/20 using a
random seed of 42 for reproducibility. These preprocessing steps highlighted connections
that were not visible before but opened pathways to train even more sophisticated deep
neural network models. The processed sequences will be input into a TSA-GRU network
for the prediction of students’ response times.

Once the proposed TSA-GRU model was established, various preprocessing tech-
niques were adopted for the data to attain consistency and quality:
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• Input Data:

– Student interaction logs with records featuring original, correct, attempt_count,
and position.

– The variable to predict is ms_first_response_time.

• Preprocessing:

– Cleaning: Removing duplicate records.
– Feature Scaling: Standardizing input features and the target using z-score normalization.

• Sequence Generation:

– For each user, a fixed-length sequence (e.g., 10 timesteps) is generated.
– The last value within each sequence is used as the prediction target.

• Variable Split:

– Processed data are split into training and testing sets.
– Data are wrapped in a custom PyTorch Dataset and DataLoader for efficient

batching during model training.

4.2. Materials

To assess the proposed method, we made use of the ASSISTments dataset from the
2009–2010 school year, which contains detailed logs of how students interacted with an
intelligent tutoring system. Before using the data, we carried out several cleaning steps,
such as removing repeated entries, filling in missing values with appropriate defaults, and
scaling the numerical fields. These interaction logs were then divided into equal-length
sequences to keep the input format consistent across the model.We build our TSA-GRU
model by integrating a TSA mechanism with GRU layers in the PyTorch framework
(version 2.2.0) and preprocessing in Python 3.10.16, while we used TensorFlow 2.14.0 for
compatibility checks and experimentation with purpose. All training and testing were
done on a local machine with an Intel Core i7 processor and 16 GB of RAM.

To support reproducibility and make it easier for others to compare with our results,
we have outlined all key training settings in Table 2. These hyperparameters were chosen
based on findings from earlier research in the field and were fine-tuned through trial-and-
error processes across multiple validation rounds.

Table 2. Hyperparameter settings for TSA-GRU model.

Hyperparameter Value

Number of Attention Heads 4
Hidden Dimension (Embedding) 128
Learning Rate 0.001
Batch Size 64
Number of Epochs 5
Optimizer Adam
Dropout Rate Not used
Loss Function Binary Cross-Entropy
Sequence Length 10
GRU Hidden Units 128
Weight Initialization Xavier Normal
Sparsity Threshold 50% of max attention score
Total Parameters 166,017

4.3. Implementation of the TSA-GRU for Learner Behavior Analytics

The TSA-GRU model was developed using several configurations and tested for its
ability to predict student response times from sequential interaction data. The model is
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comprised of a combination of TSA and GRU, capturing broad behavioral patterns as well
as the temporal characteristics present in the context of learner interactions.

The simulated sequential interaction data serving as input are structured as a series
of numerically encoded features that represent student behavior over time. By combining
a TSA-Attention module for global feature refinement with a GRU layer for modeling
sequential dependencies, TSA-GRU effectively predicts the expected response time for the
next interaction. Hyperparameter tuning across various configurations was performed
to optimize predictive accuracy while ensuring robust generalization across multiple
student datasets.

The TSA-GRU model includes the following key components (Figure 2):

• Linear Embedding Layer: The input sequences (10 steps with multiple numerical
features per step) are projected into a 128-dimensional space using a linear embedding
layer. With 640 learnable parameters, this layer enables the model to capture complex
nonlinear relationships among features.

• TSA-Attention Module: The embedded features are refined through linear transfor-
mations of queries, keys, and values. A sparse selection mechanism, based on binary
masks and thresholding, filters out irrelevant interactions and enhances the most
pertinent temporal patterns.

– Query transformation: 16,512 parameters
– Key transformation: 16,512 parameters
– Value transformation: 16,512 parameters
– Output transformation: 16,512 parameters

The total number of parameters in the TSA-Attention module is therefore 66,048, enabling
effective feature selection and the extraction of global behavioral representations.

• GRU Module for Sequential Dependency Modeling: The refined features from
the TSA module are passed to a GRU layer. Using update and reset gates, the
GRU captures temporal dependencies in student behavior, retaining important his-
torical information while discarding less useful patterns. This module contains
99,072 tunable parameters.

• Fusion and Prediction Layer: Outputs from both the TSA-Attention and GRU modules
undergo global average pooling to reduce sequence length. The pooled outputs (each
128-dimensional) are concatenated into a 256-dimensional vector. This vector is passed
through a fully connected layer (with 257 parameters) to predict the normalized
response time for the next interaction.

4.4. TSA-GRU Performance Across Epochs and with Other Models

The evaluation of TSA-GRU is conducted in two phases: first, its performance across
training epochs, and second, its comparison to other models in knowledge tracing.

In phase one, the TSA-GRU model depicts significant decreases in training and test
loss and steady improvements in accuracy while training. Certainly, the best performance is
attained at epoch 40, as shown in Figure 3, where minimal test loss and maximum accuracy
are recorded. This is an indication for TSA-GRU: the performance captures the sequential
dependencies in student interactions with no overfitting or underfitting. This stability at
that time provides further justification for its robustness while processing fixed-length
sequences of student learning data.
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Figure 2. Layer-wise architecture and hyperparameter details of TSA-GRU.

Figure 3. Epoch-wise performance analysis of TSA-Transformer.

The second phase considers the comparison of TSA-GRU against various other knowl-
edge tracing systems, specifically TSA-Transformer, MSA-GRU, BKT, and Performance
Factor Analysis (PFA). The attention-based models, TSA and MSA-GRU, performed fairly
well, but TSA-GRU performs better by achieving high predictive accuracy along with
considerably lower test loss values. On the other hand, classical models such as BKT and
PFA incur higher losses but lower accuracies, indicating that it is very hard to completely
characterize inherently complicated human learning behaviors. The relative comparisons
confirm that TSA-GRU can show us the best representation concerning student learning
paths, thus backing up its argument in favor of high-level knowledge tracing activities.

4.4.1. TSA-GRU Performance Across Epochs
Model Performance Across Five Epochs

Figure 4 showed that the TSA-GRU model registered significant improvement in
performance during the five training epochs, gradually fine-tuning its predictions with
little loss and incremental accuracy gains. Most of its training performance settled down at
a training loss of about 0.0302 (95.69% accuracy) and a test loss of 0.0211 (95.96% accuracy).
This indicates that TSA-GRU was able to reasonably correctly capture sequential patterns
in student interactions and, based on that, quickly learned from emerging data to achieve
peak performance.
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Figure 4. Accuracy and loss curves with 5 epochs.

Model Performance Across 10 Epochs

Through 10 epochs in Figure 5, TSA-GRU showed a smoothly decreasing loss curve
for both training and test loss, indicating its high capability of learning and generalizing.
The training loss started at around 0.0319 and finally reached equilibrium at around 0.0298.
The test loss reduced from around 0.0283 to 0.0210. This demonstrates the potential of the
model to capture useful features from sequences of student learning. There was a small
improvement in accuracy (tolerance equal 0.2); the training accuracy was improved from
about 94.02% to 94.68% at the end, while the testing accuracy was improved from about
93.83% to 94.68%. These results show the capability of TSA-GRU in modeling complex
layer-wise sequential dependencies and achieving strong predictive performance.

Figure 5. Accuracy and loss curves with 10 epochs.

Model Performance Across 20 Epochs

The TSA-GRU model was trained for 20 epochs; both the training and test loss curves,
as shown in Figure 6, show a tendency to decrease, demonstrating the great capability for
learning and generalization in this network. The initial value for training loss is about
0.0309; 0.0210 is the value for test loss. Over the entire period of training, minor variations
notwithstanding, the model stabilized at the end to a training loss of 0.0293 and a test loss
of 0.0205. Regarding the accuracy tolerance at 0.2, the training accuracy reached 95.39%,
whereas the test accuracy was 95.18%. These results demonstrate that TSA-GRU captures
intricate sequential patterns of student learning data very well, thus justifying its capability
for sound knowledge tracing operations.
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Figure 6. Accuracy and loss curves with 20 epochs.

Model Performance Across 30 Epochs

In Figure 7, the performance of the TSA-GRU model after 30 epochs of training
is established. A steady decrease in training and testing loss confers stable and strong
performance. The training loss starts from approximately 0.0324 and decreases to about
0.0295, whereas the test loss drops from around 0.0221 to 0.0205, with many bumps during
the training phase. In terms of accuracy, the TSA-GRU model scored quite high: training
accuracy stabilizing around 95.78% and test accuracy settling at 95.67%. The results suggest
that TSA-GRU, among other models, best captures the learning patterns of students and
generalizes better across various knowledge tracing tasks, while the insignificant ups and
downs indicate it remains sensitive to the variations in the data and could be adjusted
further upon tuning.

Figure 7. Accuracy and loss curves with 30 epochs.

Model Performance Across 40 Epochs

The TSA-GRU model’s training is remarkably consistent over 40 epochs, as shown
in Figure 8, as both training and test losses continue their steady decline, which is a clear
indicator of learning and generalization. Training loss dropped from 0.0316 to 0.0288, while
test loss had dropped from 0.0313 to 0.0201 by the last epoch. In tandem, the training
accuracy increased from 93.79% to 95.60% and the testing accuracy rose from 93.76% to
95.74%. Such observations verified that the TSA-GRU model could adequately seize the
essential patterns that established the sequences of students’ learning and is both resilient
and consistently applicable to various knowledge tracing problems while accommodating
slight training perturbations.
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Figure 8. Accuracy and loss curves with 40 epochs.

Model Performance Across 100 Epochs

Over 100 epochs (Figure 9), the TSA-GRU model showed a stable and robust perfor-
mance in detecting student learning activities. The training loss of the model monotonically
converged toward 0.0277, while the test loss stably converged to 0.0209. This was mirrored
by an estimated training accuracy of 95.44% and a test accuracy of 95.25%. These results
indicate that the TSA-GRU learns well from the sequential student interaction data, is
capable of strong generalization, and performance consistency along knowledge tracing
tasks, all in the context of some minimal fluctuations throughout training.

Figure 9. Accuracy and loss curves with 100 epochs.

These findings indicate that the TSA-GRU can learn effectively from the sequential
data of the objects being interacted with by students, along with impressive levels of
generalization and consistency in performance in knowledge tracing tasks, all within
the context of some relatively small changes throughout the training. Besides that, we
also monitored the model performance across training and validation sets to evaluate
generalization. The training and test curves (shown in Figures 4–9) continuously and in
parallel declined in loss, with no indication of diverging. TSA-GRU learned to converge
very early on in training, and results remained constant in consecutive epochs. The patterns
suggest that the model generalized well over unseen data and did not overfit. Generally,
from the performance of the TSA-GRU model in run training for multi-epochs, it can be
deduced that the model learns quickly and generalizes properly. All experiments conducted
for 5, 10, 20, 30, 40, and 100 epochs accepted the persistent statement that training loss and
test loss were constantly reduced. Notably, the highest test accuracy ratio is achieved of
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95.96% is achieved after five epochs. Although a few epochs of training produce slight
improvements in loss (from 0.0302 after 5 epochs to 0.0277 after 100 epochs) as well as
variability in accuracy, the advantage gained after that is marginal. It can thus be deduced
that, perforated by the TSA-GRU taken at the beginning of each of the five epochs into the
training iterations, meaningful patterns regarding student interaction data were recognized;
therefore, further epochs became a fading utility, promoting the entire model’s capacity for
performing tasks concerning knowledge tracing.

4.4.2. Comparison of Knowledge Tracing Models

To evaluate the performance of the method described above, we compared training
and testing performance across several metrics (training loss, training accuracy, test loss,
and test accuracy). The results shown in Table 3 provide strong evidence that modern
attention-based architectures (TSA-GRU and MSA-GRU) are generally more accurate than
classical models (BKT and PFA), with notably lower test losses. Additionally, the TSA-GRU
model achieved the highest test accuracy, as well as the lowest test loss, which provides
further evidence of its ability to better model complex student behavior due to the nature
and capabilities of attention-based architectures. Overall, these results provide strong
evidence that the TSA-GRU model (and other similar attention-enhanced architectures) is
capable of producing better multiple-choice predications than traditional models in the
task of knowledge tracing. We conducted a controlled experiment comparing TSA-GRU,
MSA-GRU, BKT, and Performance Factor Analysis (PFA) using the 2009–2010 ASSISTments
dataset under identical experimental conditions. TSA-GRU achieved the best results, with
a test accuracy of 95.60% and a test loss of 0.0209.

Table 3. Comparative analysis of knowledge tracing methods.

Model Train Loss Train Accuracy Test Loss Test Accuracy

MSA-GRU 0.0667 81.36% 0.0222 80.00%
BKT 0.6651 64.10% 0.6691 64.01%
PFA 0.6334 63.63% 0.6363 64.11%
TSA 0.0678 75.06% 0.0238 74.83%
TSA-GRU 0.0296 95.62% 0.0209 95.60%

MSA-GRU vs. TSA-GRU
Although Modular Sparse Attention with GRU is capable of computing a certain

range of dependencies at a much reduced computational overhead, it lacks efficiency in
handling the very complicated long-range dependencies necessary for learning trajectories.
In contrast, TSA-GRU combines TSA and GRU as its core for capturing richer contextual
insights from all student interactions, as Figure 10 demonstrates. Our results substantiate
this difference. MSA-GRU, had a training loss of 0.0667, a training accuracy of 81.36%, a
testing loss of 0.0222, and a testing accuracy of 80.00%. In contrast, the TSA-GRU recorded
a training loss of just 0.0296 and a greater training accuracy of 95.62% along with a test
loss of 0.0209 and test accuracy of 95.60%. The analysis also illustrates that TSA-GRU not
only exhibits better performance in predictive capacity, but has also shown its competence
in deciphering complex sequential behaviors from educational data—hence making it an
optimal choice for advanced knowledge tracing challenges.



Future Internet 2025, 17, 355 21 of 31

Figure 10. Accuracy and loss curves of MSA-GRU.

BKT vs. TSA-GRU:
The BKT model and TSA-GRU are two distinct representations of different paradigms

of knowledge tracing. BKT is a probabilistic model that uses binary correctness observations
to infer the gradual and probabilistic process of mastering any skill that is conceived to
proceed according to the structure of hidden Markov models. Although such an approach
is more interpretable and simpler, it cannot fit very complex learning patterns since it has
a training loss of 0.6651 and a test loss of 0.6691, as demonstrated in Figure 11, while the
corresponding low training and test accuracy are at 64.10% and 64.01%, respectively. So,
one thing becomes clear, unlike this, the TSA-GRU model follows a hybrid architecture
combining temporal sparsity attention with GRU, representing long-term dependencies
and implied contextual relations in student interactions. This modern approach greatly
surpasses BKT, with a training loss of 0.0296, a test loss of 0.0209, and solid training and
testing accuracies of 95.62% and 95.60%. TSA-GRU may have other large datasets and
computational power requirements. The main feature is its capability for delivering high
predictive performance by modeling complex learning pathways, which makes it suitable
for large-scale data-driven education applications.

Figure 11. Accuracy and loss curves of BKT.

PFA vs. TSA-GRU:
Unlike PFA, which relies on traditional statistical methods to model the acquisition of

skills—and therefore finds it quite impossible to capture intricate learning dependencies—
TSA-GRU builds upon TSA combined with GRU to model both the short- and long-term
dependencies of student learning trajectories. In the experiments, TSA-GRU attained a
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training loss of 0.0296 and a test loss of 0.0209, while training accuracies were 95.62% and
95.60% for test data, respectively. Conversely, PFA obtained a training loss of 0.6363 and
poor accuracies of 64.11% and 63.63% on training and test data, respectively, as shown in
Figure 12. Briefly, these results stem from capturing fine-grained learning patterns, which
TSA-GRU implements substantially better than PFA, suggesting TSA-GRU as the proper
model for knowledge tracing within complex settings.

Figure 12. Accuracy and loss curves of PFA.

TSA vs. TSA-GRU:
Both TSA and TSA-GRU employ attention mechanisms to scrutinize the learning

activities exhibited by students. However, the TSA-GRU addresses the key assumptions
made by prior models by achieving a greater predictive accuracy than TSA. The TSA used
a sparse attention mechanism to steer its analysis toward crucial learning interactions, but
long-term dependencies and complex learning patterns are beyond the TSA model’s ability
to handle. In contrast, TSA-GRU integrates TSA with GRU-based sequential modeling
and is thus able to conciliate short- and long-range dependencies and the contextual
relationships existing among learning trajectories. Figure 13 shows that the model achieved
a training loss of 0.0296, a test loss of 0.0209, and training and test accuracies of 95.62%
and 95.60%. In contrast, the TSA’s training loss was 0.0678, its testing loss was 0.0238, and
its training and testing accuracies were greatly diminished at 75.06% and 74.83%. Given
these empirical results, it is clear that while functional, the superior capability of TSA-
GRU in recognizing complex learning behaviors has made it a technologically advanced
solution to fulfilling educational projects that require a modest level of predictive accuracy
in combination with more profound insights into student learning processes.

Figure 13. Accuracy and loss curves of TSA.
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4.5. Cross-Validation and Statistical Significance Analysis

To ensure the robustness, generalizability, and statistical reliability of the proposed
TSA-GRU model, the following analyses was performed: five-fold cross-validation, esti-
mates of confidence intervals, analysis of variance, and the evaluation of paired statistical
significance as compared to the baseline MSA-GRU model.

4.5.1. Five-Fold Cross-Validation Procedure and Results

To reduce overfitting and verify that the metrics did not fluctuate due to the data splits,
we applied a five-fold cross-validation procedure and handled the data appropriately. We
split the data into five equal subsets; then, on each fold, we trained the model on four
subsets and tested it on the remaining one. So, this was repeated five times, meaning every
sample was used for validation only once.

The TSA-GRU model maintained a high level of accuracy throughout all folds, with
only slight variation, demonstrating stable efficiency. The fold-wise accuracy scores for the
TSA-GRU model are shown in Figure 14,where TSA-GRU 5-fold cross-validation accuracy.
The green highlight indicates the highest fold accuracy, while the red highlight indicates
the 95% confidence interval.Along with a breakdown of per-fold accuracy scores in Figure
15, confirming the efficiency and robustness of the TSA-GRU model across these partitions.

Figure 14. TSA-GRU 5-fold cross-validation accuracy.

Figure 15. TSA-GRU accuracy per fold.
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4.5.2. Confidence Intervals and Variability Analysis

To measure performance stability, we computed the mean accuracy, standard deviation
(SD), and the 95% confidence interval (CI) for each model, as shown in Table 4.

Table 4. Confidence interval and variability analysis of models.

Model Mean Accuracy Standard Deviation (SD) 95% Confidence Interval (CI)

TSA-GRU 95.63% ±0.0014 ±0.0013
MSA-GRU 65.21% ±0.0346 ±0.0430

The small confidence interval and variance of TSA-GRU indicate low noise and
high reliability and generalizability. Figure 16 illustrates this by comparing the fold-wise
accuracy distributions for each method.

Figure 16. Accuracy distribution across folds.

4.5.3. Statistical Significance Testing

To mathematically validate if the observed enhancements in performance of TSA-GRU
over MSA-GRU are statistically significant, we conducted a paired t-test on fold-wise
accuracy scores for both models.

The t-test found a t-statistic = 20.1063 and a p-value < 0.0001, meaning that the
performance difference is statistically very significant (p≪ 0.05).

These results support our assumption that the TSA-GRU’s improved performance can-
not be attributed to random factors and that the improvements come from its architectural
changes. The summary of the statistical comparison is shown in Figure 17 for completeness.
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Figure 17. Paired t-test accuracy comparison between TSA-GRU and MSA-GRU.

4.5.4. Visual Comparative Analysis

To provide a better perspective for the comparison, we include the following visualiza-
tions: A bar chart comparing TSA-GRU and MSA-GRU’s accuracy scores side-by-side for
all five folds in Figure 18. A line chart showing the accuracy trends per fold, also indicating
that TSA-GRU was considerably more accurate than MSA-GRU in each fold shown in
Figure 19.

Figure 18. Five-fold accuracy comparison: MSA-GRU vs. TSA-GRU.

This extensive validation framework of five-fold cross-validation, confidence interval
estimation, and rigorous testing of the statistical significance greatly enhances the reliability
and reproducibility of our results. The TSA-GRU model confidently outperforms the MSA-
GRU model with respect to accuracy, reduced variance, and higher levels of statistical
confidence. This validates that TSA-GRU is robust and resolves all issues raised concerning
statistical rigor.
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Figure 19. Accuracy trend per fold.

5. Discussion
The experimental evaluation of the TSA-GRU model provided insight into its perfor-

mance across varying training epochs while also establishing how it outstrips several other
knowledge tracing models in quality. The focus of this investigation is on investigating the
model’s convergence property, generalization capability, and complete predictive accuracy
based on a large-scale dataset of student interactions. In this discussion, we describe our
findings by observing the performance measures for different epoch configurations and
by contrasting TSA-GRU with other approaches in the discipline, such as MSA-GRU, BKT,
Performance Factor Analysis (PFA), and a solitary TSA approach.

5.1. Performance Across the Training Epochs

The TSA-GRU model was tested over a wide range of epochs (5, 10, 20, 30, 40, and
100 epochs) to determine the optimal training duration needed to better capture sequential
patterns from students’ interaction data. The results indicated that the model converges
very fast, with the best overall performance at 5 epochs. It was at this time that the training
loss was about 0.0302 and the training accuracy was about 95.69%; the test loss was about
0.0211, while test accuracy was almost 95.96% (or, as reported in the comparative summary,
95.60%). Interestingly, while there were further small reductions in loss between various
epochs—for instance, at 100 epochs, the training loss was 0.0277—there was only marginal
improvement in accuracy; in some cases, longer training resulted in a minor decrease
or some cycling of accuracy. This implies that TSA-GRU well captures the important
dependencies that are sequenced in student interactions within a few training epochs. So,
after that point, it enters a phase in which added epochs give no further advantage. This
rapid convergence is also indicative of the strength of the model as well as its computational
efficiency, a crucial consideration for educational use cases in real-world scenarios. In order
to alleviate concerns about possible overfitting, we explicitly assessed the model’s learning
behavior over the training process. The lack of divergence between training and testing
curves, its rapid convergence, and its stability provide evidence that TSA-GRU is very
robust. In the results section, we added a statement signaling this to be more transparent
and demonstrating how effectively the model generalizes beyond the training data.

5.2. Comparative Analysis with Other Models

Aside from the focused examination of TSA-GR, we also conducted a performance
comparison with a number of commonly used knowledge tracing models. Whereas tradi-
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tional models like BKT and PFA provide interpretability, they do not allow the modeling of
long-term learning and contextual influences. Therefore, each of these models had lower
than 60% accuracy and high loss values in a way that did not capture more nuanced student
behavior. Similarly, attention-based models (the MSA-GRU and TSA models) performed
better than the traditional models but worse than TSA-GRU. For example, MSA-GRU
achieved training and testing accuracies of 81.36% and 80.00%, respectively, while TSA
alone performed at around 75%. TSA-GRU, by contrast, reached training and testing
accuracies close to 95%, with significantly reduced loss values (≈0.496 for raining and 0.209
for testing).

These enhancements arise from combining existing methodologies as well as a novel
way of incorporating TSA into the GRU model architecture. While MSA-GRU attends to
each time step uniformly through its attentional mechanism, TSA-GRU uses a learnable
sparsity threshold to eliminate irrelevant or noisy temporal information. This attention
mechanism allows the model to attend more closely to its most informative sequence
segments, improves learning efficiency, improves interpretability, and aloows better gen-
eralization. All in all, the results illustrate that TSA-GRU is not just a combination of two
existing models; it is a hybrid explicitly created to improve on previous models by shifting
and relaxing attention to allow a more focused and adaptive attention mechanism. It creates
a new and substantial advancement in knowledge tracing models.

5.3. Adaptive Learning and Knowledge Tracing

The use of TSA-GRU does have some serious implications on the adaptive learning
and educational data analytics scenes. Its learning rate and accuracy make it capable of
identifying meaningful patterns from student interaction data and completing updates
within a short period, As such, the model can intervene during the digital learning space
when necessary. The difference between optimal performance within 5 epochs means
reduced computational cost and quicker deployment, both important factors when consid-
ering widespread and data-consuming applications. The double capability of TSA-GRU to
identify both the short-scale variations as well as the long-scale active tendencies of the
learners seems to grant it the potential to reveal more subtle insights into the performances
of the learners. This double-cut capability further means improvement in the prediction of
the response times of learners and provides help in more focused interventions in lessons.
Improvement with this particular technique would, in practice, lead to adaptive learning
systems that are faster and more focused on finding the details of any given student in their
singular learning moment. TSA-GRU is an entirely novel kind of hybrid deep learning
model. In terms of prediction accuracy and speed, it certainly outperformed the standard
knowledge tracing models. Model integration of TSA with sequential modeling based on
GRU imparts a state-of-the-art analysis capability to complex learning patterns from the
fixed-length student interaction data concerning precision. Because of the ability to con-
verge rapidly in five epochs and yet having very good generalization properties, TSA-GRU
is an excellent model for adaptive learning systems. The proposed solution, TSA-GRU,
is excellent, scalable, and works very effectively for the challenges of modeling student
behavior in digital education, therefore providing a way to improve data-driven teaching.

5.4. Cross-Validation and Statistical Significance Analysis

The use of a rigorous a five-fold cross-validation protocol and statistical significance
testing greatly enhances the reliability of the reported findings; the fact that TSA-GRU
showed high accuracy in each fold with minimal variance and narrow confidence in-
tervals lends evidence to TSA-GRU’s robust generalization capacity. The paired t-test
assures that the improvements in performance over MSA-GRU were not the result of
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chance/randomness and could be considered truly statistically significant. These tests,
supported by detailed visualizations (Figures 14–19), represent evidence that the TSA-
GRU architecture can achieve meaningful and reproducible improvements in sequential
modeling tasks for knowledge tracing activities.

6. Implications and Future Directions
The TSA-GRU model achieves impressive results in the context of knowledge tracing,

with a test accuracy of 95.60% and a test loss of 0.0209 after five epochs. Given the speed in
obtaining these results, it appears the model can handle capturing very complex sequential
dependencies in student learning data and limit overfitting, making it useful for real-time
education systems. With long- and short-term dependency modeling capacity, TSA-GRU is
well-positioned to provide personalized learning experiences and employ powerful situa-
tional performance predictors. However, several limitations should be noted. The sparse
attention mechanism requires the user to tune threshold values manually, which may limit
generalizability to other datasets or learning contexts. In addition, the current model does
not leverage any affective or contextual learning signals, which would provide additional
opportunities for improved prediction performance and personalization. Furthermore,
we recognize that the ASSISTments 2009–2010 dataset, while still commonly utilized in
the educational modeling community, does not capture the intricacies and variability of
contemporary MOOC platforms, such as edX, Coursera, or XuetangX. Although we de-
cided upon this dataset based on its sequential structure and its common benchmarking
use for temporal models, we will certainly develop our work for better generalizability
and provide a more accurate instantiation of contemporary e-learning environments where
possible. Future work will require the consideration of new and heterogeneous datasets
that possess multimodal learner behavior (e.g., text, video, exercises), richer engagement
signals, and modality-dependent features, such as thei real-world use of TSA-GRU across
a number of possible MOOC implementations. In future work, we intend to research the
use of reinforcement learning technologies to cater for adaptive learning path generation
through the dynamic performance of each student. We will also research meta-learning
means of quickly adapting to new learners, courses, or contexts with little retraining. Other
routes of research include using graphic neural networks to understand the relational
structures in the learning data, applying self-supervised pretraining to enrich the feature
extraction, and improving the interpretability of models to provide actionable outputs
for educators; however, the most important immediate route of exploration for TSA-GRU
is to evaluate it in live adaptive learning systems as, from an overall practical view, it is
important to implement it in real settings.

7. Conclusions
In this work, we presented TSA-GRU, a hybrid model that brings together TSA and

GRU-based sequential modeling to better trace student knowledge within MOOC platforms.
Unlike many traditional approaches, such as BKT, Performance Factor Analysis (PFA),
or even more recent architectures like MSA-GRU, TSA-GRU shows a stronger ability to
track how learners progress over time by handling both short- and long-term learning
patterns. The model produced promising results concerning the experimental design: it
had a test accuracy of 95.60% and a loss of 0.0209, converging after five epochs. One could
look at the convergence of the model in a positive light since, in practice, we need faster or
even larger training (and potential modeling) cycles, implying the model can generalize
and be trained and succeed without overfitting or unlimited training. Moreover, there
were no large performance gains even with additional training epochs, further supporting
the assertion that TSA-GRU learns things of interest quickly. One of TSA-GRU’s core
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strengths is its ability to model how a student’s knowledge changes over time. This feature
opens up real opportunities for building systems that respond to learners individually,
whether by helping to spot early warning signs for struggling students or by supporting
more adaptive content delivery. Additionally, extensive validation through five-fold cross-
validation, confidence interval analysis, and paired t-testing confirmed the robustness,
statistical reliability, and consistent superiority of TSA-GRU over MSA-GRU. That said, a
few limitations should be mentioned. At present, the attention mechanism depends on fixed
threshold values, which must be selected manually. This could make it harder to transfer
the model across to different datasets without tuning. Also, the current setup does not
include emotional or contextual data, both of which could play a role in learning outcomes
and model accuracy. For future development, one track we are examining is reinforcement
learning, with an eye toward the model adapting the learning path during the assignment
as the student interacts with the content. We are also interested in meta-learning approaches
so that the model can generalize to new types of students or educational content with
minimal retraining. Other potential areas are investigating self-supervised learning to work
more with raw interaction data and utilizing graph neural networks to better represent
the relationships between students, topics, or assessments. Enhancing model transparency
is, furthermore, a substantial aim. By developing clearer interpretability mechanisms, we
anticipate being able to support teachers in understanding why certain predictions are
made, which would make the tool more actionable in classrooms. Testing TSA-GRU in
situ in learning environments is another important next step that would indicate how it
operates in real-world conditions. To conclude, TSA-GRU represents an important advance
in student modeling. Its fidelity, performance, and adaptability make it an important part
of the journey toward AI-enhanced personalized education systems. As we continue to
develop TSA-GRU, we will consider possible uses of the toolbox to support better, smarter,
and responsive educational technologies behavior in different learning scenarios.
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