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ABSTRACT
This paper addresses the leader-following formation consensus problem for multi-agent systems (MASs) with agents represented
by discrete-time linear parameter-varying (LPV) models. The scenario where each agent can be modeled with distinct time-varying
scheduling parameters is investigated with respect to compensation signals. Using Lyapunov stability arguments, sufficient con-
ditions are derived for designing a distributed gain-scheduled observer-based consensus protocol that ensures formation tracking.
Furthermore, we explore the case where the effects of the desired formation and different parameters are considered internal
perturbations. Under this assumption, we propose sufficient design conditions to ensure that the combined estimation and track-
ing error dynamics are 𝓁∞-norm bounded. The effectiveness of the proposed leader-following framework is illustrated through
numerical examples.

1 | Introduction

Multi-agent systems (MASs) embrace several practical applica-
tions, including spacecraft formation, cooperation of robotic sys-
tems, sensor networks, among others [1]. An interesting feature
of MASs is their cooperative actions, which allow them to solve
complex problems by modifying the agents’ behavior to achieve a
common goal. The most investigated cooperative approaches are
classified into consensus, formation, and flocking problems [2].

In the leader-following formation problem, one agent acts as
the leader, and the remainder, designated as followers, must
track the trajectories of the leader at a desired distance or off-
set, maintaining a predefined geometric shape [3]. This problem
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has been investigated for different classes of MASs in dif-
ferent scenarios, including second-order nonlinear multi-agent
systems under fixed, directed, and switching communication
topology [4, 5], high-order nonlinear MASs with an uncertain
leader [6], discrete-time heterogeneous linear MASs [7], nonlin-
ear MASs with event-based communication and quantized leader
signal [8], and consensus of fractional-order fuzzy multiagent sys-
tems under DoS attacks [9].

The importance of communication topologies and the exchange
of information among agents in designing cooperative protocols
for MASs is widely recognized. However, due to physical and eco-
nomic constraints, complete communication among agents and
the measurement of all system states might not be possible in
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practical scenarios. To address this issue, the design of distributed
observer-based protocols that limit the exchange of estimated
information to only agents within the same neighborhood can
be a viable solution [10, 11]. Hence, several approaches focused
on the design of distributed observer-based protocols have been
proposed for leader-following strategies considering continuous
[12–18] and discrete-time dynamics [19–23].

Further discussing continuous-time approaches, [12] investigates
a time-varying group formation for general linear time-invariant
MASs, considering group leaders with nonzero bounded inputs.
The leader’s inputs are treated as disturbances, and a nonlin-
ear function is introduced into the consensus protocol to mit-
igate their effects. In [13], an observer-based quadratic bound-
edness protocol is proposed to achieve leader-following consen-
sus in the presence of bounded disturbances. The observer and
consensus gain are designed simultaneously based on sufficient
conditions to ensure that the states of the closed-loop MASs
remain enclosed within an invariant ellipsoid. The bounded-
ness of formation errors is also ensured in [14] by designing
observer-based event-triggered protocols for MASs under switch-
ing directed communication topologies. To achieve time-varying
formations for heterogeneous linear MASs subject to distur-
bances, uncertainties, and various topology scenarios, [15] pro-
poses a robust distributed observer-based protocol with adaptive
observers. Moreover, considering the methods for agents with
discrete-time dynamics, a two-layer consensus approach is pro-
posed in [19] for nonlinear strict-feedback MASs. The methods
of [20] and [21] focus on the output regulation problem for MASs
with jointly connected switching networks and the output track-
ing formation for heterogeneous MASs subject to time-varying
faults, respectively. With the design of reduced-order observers,
the work of [23] investigates the formation problem for linear
MASs with switching communication topology.

Although distributed observer-based protocols have been
developed for various scenarios within the context of the
leader-follower formation problem, the case where agents
are described by linear parameter-varying (LPV) models remains
underexplored. The main approaches that employ the LPV
framework for MASs can be found in [1, 24–36]. The leaderless
consensus problem of homogeneous continuous-time LPV MASs
has been investigated in [1, 26–28]. Among these results, the
approach of [27] proposes a gain-scheduled observer-based con-
sensus protocol, in which both the controller and the observer
gains depend on the time-varying scheduling parameters.
The design is performed through sufficient LMI conditions
obtained considering Polya’s Theorem. A similar gain-scheduled
observer-based approach is also considered in [28]. However,
different from [27], the presence of additive and multiplicative
faults in the sensors and actuators is considered. Virtual actu-
ators and sensors are introduced to compose a fault-tolerant
consensus protocol to deal with this faulty scenario. Moreover,
the presence of actuator faults modeled as polytopic uncertain-
ties is also considered in [26]. Furthermore, a gain-scheduled
consensus protocol is proposed in [1], considering the presence
of time-varying delays in the communication among the agents.

The use of homogeneous continuous-time LPV models for agents
is also explored in [24, 25]. As in [27, 28], observer-based
protocols are introduced, but with attention directed to the

leader-following consensus problem. Furthermore, the presence
of actuator faults is also considered in [24]. The leaderless
consensus of heterogeneous continuous-time LPV MASs and
the leader-following consensus problem for MASs with hetero-
geneous parameter-dependent linear fractional transformation
dynamics are investigated in [29] and [30], respectively. Fur-
ther investigations in MASs with continuous-time heterogeneous
LPV modeling are performed in [31–33]. These approaches
focus on the output regulation problem considering distributed
observers [31], distributed adaptive observers [32], and dis-
tributed event-triggered adaptive observers [33]. In contrast to
the previously discussed scenario of continuous-time LPV MASs,
approaches for discrete-time LPV MASs have received limited
attention. In [34], a leaderless consensus approach based on finite
frequency fault estimators and adaptive event-triggered mecha-
nisms is proposed, and in [35, 36], the event-triggered 𝓁2-optimal
output formation is investigated.

Among the approaches discussed above, only [24, 25, 30]
focus on designing leader-following consensus protocols for
continuous-time LPV MASs. To the best of the authors’
knowledge, the development of distributed gain-scheduled
observer-based protocols for the leader-following formation
problem in discrete-time LPV MASs remains an open issue. Thus,
to address this gap in the literature, the first motivation of this
paper is:

• To propose a distributed observer-based consensus pro-
tocol to ensure the leader-following formation consensus
of discrete-time LPV MASs with scheduling parameters
mismatch.

The scheduling parameters mismatch among the agents appears
in an LPV modeling where each agent has independent
time-varying scheduling parameters. The first work to evalu-
ate the influence of different scheduling parameters was [27],
where it is shown that if a consensus protocol designed consider-
ing equal parameters is implemented in a continuous-time LPV
MAS with different parameters, a non-synchronization scenario
appears. In this case, the parameter mismatch can be seen as
internal perturbations that disrupt the dynamics of the consen-
sus tracking error. Moreover, it is known that the properties of
the desired formation can also affect consensus errors [37]. Thus,
to deal with these issues, the second motivation of this paper is:

• To propose a distributed observer-based consensus pro-
tocol to guarantee the practical leader-following forma-
tion consensus of discrete-time LPV MASs with scheduling
parameters mismatch, and ensure that the trajectories of
the consensus-tracking error converge exponentially to an
attractive bounding region, for the cases in which the inter-
nal perturbations are not compensated.

Based on the above discussion, the main contributions of the pro-
posed approach can be summarized as:

• Inspired on compensation signals usually considered only to
expand the set of feasible formations [14, 18, 37, 38], we pro-
pose a novel compensated distributed observer-based con-
sensus protocol capable of simultaneously expanding the set
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of feasible formations, deal with unmeasurable states, and
compensate the internal perturbations raised on the forma-
tion tracking errors by the scheduling parameters mismatch
among the discrete-time LPV modeling of the agents.

• Novel LMI-based synthesis conditions are proposed for
designing the gains of both local observers and the con-
sensus protocol such that the exponential stability of the
tracking-error system is guaranteed.

• For the scenarios where the proposed compensation sig-
nals cannot be designed, by modeling the effects of the
desired formation and heterogeneous scheduling parame-
ters as internal perturbations, we propose a novel LMI-based
condition to guarantee that the tracking-error dynamics is
𝓁∞ bounded.

The remainder of this paper is organized as follows.
Section 2 describes the proposed distributed gain-scheduled
observer-based consensus protocol and formulates the main
problems addressed in this paper. Section 3 provides the pro-
posed LMI-based design conditions. Section 4 presents two
numerical simulations to evaluate the effectiveness of the
proposed approach. Finally, Section 5 concludes this work.

Notation and List of Symbols: The identity matrix of order 𝑛
is denoted by I𝑛 and the null matrix of order 𝑛 × 𝑚 by 0𝑛×𝑚. If
the dimensions of both identity and null matrices are straightfor-
wardly deduced, they are omitted. In a given symmetric matrix,
the term deduced by symmetry is denoted by “⋆”. Moreover, the
following Table 1 provides a summary of other mathematical
symbols and their corresponding descriptions.

2 | Problem Formulation

This section first presents the preliminaries of the graph
theory considered to model the communication among the
agents. Then, the considered leader-following formation and the
assumptions required for the proposed observer-based consensus
law are discussed. Moreover, based on the obtained modeling of
the estimation and consensus-tracking errors, the addressed con-
trol problems are formally stated.

2.1 | Graph Theory and Communication Setup

The communication among the 𝑁 agents is represented by an
undirected graph  = ( , ), where  is the set of vertices, and
 = {𝑒𝑖𝑗 = (𝑖, 𝑗) ∈  × } is the set of edges. The neighborhood
set of an agent 𝑖 is represented by 𝑖 = {𝑗 ∈  ∶ (𝑗, 𝑖) ∈ }.

The elements of the adjacency matrix  = [𝑎𝑖𝑗], 𝑖, 𝑗 ∈  , are
defined as

𝑎𝑖𝑗 =

{
0, if 𝑖 = 𝑗 or 𝑒𝑖𝑗 ∉  ,

1, if 𝑒𝑖𝑗 ∈ 

and the elements of the diagonal degree matrix  = diag
(𝑑1, . . . , 𝑑𝑁 ) are computed as 𝑑𝑖 =

∑𝑁

𝑗=1𝑎𝑖𝑗 , 𝑖 ∈  . The Lapla-
cian matrix associated with the graph  is defined as  =  −
. Moreover, the communication among the leader and the
following agents is represented by 𝜂 = diag(𝜂1, . . . , 𝜂𝑁 ), where

TABLE 1 | List of symbols.

Symbol Description

ℝ𝑛 Is the 𝑛-dimensional Euclidean space
ℝ𝑚×𝑛 Is the set of 𝑚 × 𝑛 real matrices
ℕ Is the set of non-negative integers
𝓁∞ Is a Banach space
𝑋† Denotes the Moore-Penrose pseudo-inverse of 𝑋
diag(𝐴,𝐵) Denotes a block diagonal matrix whose elements are

𝐴,𝐵

𝐴⊗ 𝐵 Denotes the standard Kronecker product between
matrices 𝐴 and 𝐵

He(𝑋) Corresponds to He(𝑋) = 𝑋 +𝑋⊤

ℕ≤𝑚 Denotes the set {1, . . . , 𝑚} for some 𝑚 ∈ ℕ
( , ) Is the graph representing the communication among

agents
 Set of vertices of the graph
 Set of edges of the graph
𝑖 Neighborhood set of an agent 𝑖
 Laplacian matrix of the overall communication graph
 Degree matrix of the graph
 Adjacency matrix of the graph
Λ Diagonal matrix Λ = diag(𝜆1, . . . , 𝜆𝑁 ) with the

eigenvalues 𝜆𝑖 of the Laplacian matrix
𝜂 Diagonal matrix 𝜂 = diag(𝜂1, . . . , 𝜂𝑁 ) with the

pinning parameters 𝜂𝑖
𝑓𝑖 Desired formation for the 𝑖-th agent
𝜌𝑖(𝑘), 𝜌𝑠(𝑘) Vector of time-varying scheduling parameters of the

agents and leader
𝑥𝑖(𝑘) State vector of the 𝑖-th agent
�̂�𝑖(𝑘) Estimation of the state vector of the 𝑖-th agent
𝑦𝑖(𝑘) Output vector of the 𝑖-th agent
𝑧𝑖(𝑘) Estimation error of the 𝑖-th agent
𝛿𝑖(𝑘) Consensus tracking error of the 𝑖-th agent
𝑢𝑖(𝑘) Designed consensus law of the 𝑖-th agent
𝜈𝑖(𝑘) Designed compensation signal of the 𝑖-th agent
𝑟𝑖(𝑘) Designed compensation signal of the 𝑖-th agent
𝑠(𝑘) State vector of the leader
𝑒(𝑘) Augmented error vector
𝑤(𝑘) Internal perturbation vector
𝛾 Positive scalar that corresponds to the 𝓁∞

performance level
𝜎 ∈ (0, 1) Scalar parameter of the decay rate||𝑥||𝓁∞

For a sequence of vectors {𝑥(𝑘)}𝑘∈ℤ+ denote||𝑥||𝓁∞
= sup𝑘≥0 ||𝑥(𝑘)|| < ∞

the pinning parameters 𝜂𝑖 indicate whether the 𝑖-th follower
has access to the leader dynamics (𝜂𝑖 = 1) or not (𝜂𝑖 = 0).
Therefore, the overall communication can be represented by
 =  + 𝜂.

The matrix  can be written in terms of its spectral decom-
position, such that  = 𝑇Λ𝑇 −1, where the orthogonal
matrix 𝑇 ∈ ℝ𝑁×𝑁 constitutes the eigenvectors of , and
Λ = 𝑑𝑖𝑎𝑔(𝜆1, 𝜆2, . . . , 𝜆𝑁 ) ∈ ℝ𝑁×𝑁 is a diagonal matrix with
the eigenvalues of  ordered as 𝜆1 < 𝜆2 ≤ · · · ≤ 𝜆𝑁 .
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2.2 | Formation Consensus of Discrete-Time
LPV MASs

Consider an MAS comprising a leader and 𝑁 followers repre-
sented by discrete-time LPV systems. The dynamics of the fol-
lowers are given by

𝑥𝑖(𝑘 + 1) = 𝐴(𝜌𝑖(𝑘))𝑥𝑖(𝑘) + 𝐵(𝜌𝑖(𝑘))𝑢𝑖(𝑘),

𝑦𝑖(𝑘) = 𝐶(𝜌𝑖(𝑘))𝑥𝑖(𝑘) (1)

where 𝑥𝑖(𝑘) ∈ ℝ𝑛𝑥 is the state vector, 𝑢𝑖(𝑘) ∈ ℝ𝑛𝑢 is the consen-
sus law (control input), 𝑦𝑖(𝑘) ∈ ℝ𝑛𝑦 is the output, and 𝜌𝑖(𝑘) ∈ ℝ𝑝

is the vector of time-varying scheduling parameters, which are
functions of measured exogenous signals. Meanwhile, the leader
system is described as

𝑠(𝑘 + 1) = 𝐴(𝜌𝑠(𝑘))𝑠(𝑘) (2)

where 𝑠(𝑘) ∈ ℝ𝑛𝑥 is the state vector and 𝜌𝑠(𝑘) ∈ ℝ𝑝 is the vector
of time-varying scheduling parameters of the leader.

The parameter-dependent matrices of the followers
𝐴(𝜌𝑖(𝑘)) ∈ ℝ𝑛𝑥×𝑛𝑥 , 𝐵(𝜌𝑖(𝑘)) ∈ ℝ𝑛𝑥×𝑛𝑢 , and 𝐶(𝜌𝑖(𝑘)) ∈ ℝ𝑛𝑦×𝑛𝑥 ,
the parameter-dependent matrix of the leader 𝐴(𝜌𝑠(𝑘)), and all
the parameter-dependent matrices to be designed in this paper
belong to a polytopic domain and can be written as functions of
the scheduling parameters as follows:

𝐺(𝜌(𝑘)) =
𝑁𝑣∑
ℎ=1

𝛼ℎ(𝜌(𝑘))𝐺ℎ

where 𝑁𝑣 is the number of vertices of the polytopic domain and
𝛼ℎ(𝜌(𝑘)) satisfy the convex sum property:

𝑁𝑣∑
ℎ=1

𝛼ℎ(𝜌(𝑘)) = 1, and 𝛼ℎ(𝜌(𝑘)) ≥ 0, ∀𝑖 ∈ ℕ≤𝑁

Notice that the parameter-dependent matrices of the agents
are homogeneous with respect to the vertices of the polytopic
domain. However, they have independent time-varying schedul-
ing parameters, which induce heterogeneity in global dynamics.
Moreover, the leader-dynamics 𝐴(𝜌𝑠(𝑘)) also share the same ver-
tices of the followers’ representation.

The main goal of this paper is to design distributed
observer-based consensus laws 𝑢𝑖(𝑘), ∀𝑖 ∈ ℕ≤𝑁 , such that the
followers described in Equation (1) track the trajectory generated
by the leader-dynamics (2) according to a desired formation, as
established in Definition 1.

Definition 1 ([18, 23]). The MAS (1) and (2) achieves
leader-following formation consensus if

lim
𝑘→∞

||𝑥𝑖(𝑘) − 𝑠(𝑘) − 𝑓𝑖|| = 0, ∀𝑖 ∈ ℕ≤𝑁 (3)

for any initial condition 𝑥𝑖(0), where 𝑓𝑖 denotes the desired
constant formation vector of agent 𝑖 with respect to the leader
trajectory.

2.3 | Observer-Based Consensus Law

To ensure that the MAS achieves the leader-following formation
consensus (3), the proposed gain-scheduled observer-based dis-
tributed consensus law is:

𝑢𝑖(𝑘) = 𝐾(𝜌𝑖(𝑘))
⎛⎜⎜⎝
∑
𝑗∈𝑖

[𝑥𝑖(𝑘) − 𝑥𝑗 (𝑘)] + 𝜂𝑖
(
𝑥𝑖(𝑘) − 𝑠(𝑘)

)⎞⎟⎟⎠ + 𝜈𝑖(𝑘) + 𝑟𝑖(𝑘) (4)

𝜈𝑖(𝑘) = 𝑀(𝜌𝑖(𝑘))𝑓𝑖 (5)

𝑟𝑖(𝑘) = 𝜂𝑖𝑅(𝜌𝑖(𝑘))𝑠(𝑘) (6)

where 𝐾(𝜌𝑖(𝑘)) ∈ ℝ𝑛𝑢×𝑛𝑥 , 𝑀(𝜌𝑖(𝑘)) ∈ ℝ𝑛𝑢×𝑛𝑥 , and 𝑅(𝜌𝑖(𝑘)) ∈
ℝ𝑛𝑢×𝑛𝑥 , are the gain-scheduled functions to be designed,
𝑥𝑖(𝑘) = �̂�𝑖(𝑘) − 𝑓𝑖, and �̂�𝑖 ∈ ℝ𝑛𝑥 is the estimated state of the
local agent.

For each agent, the local estimated state is given by

�̂�𝑖(𝑘 + 1) = 𝐴(𝜌𝑖(𝑘))�̂�𝑖(𝑘) + 𝐵(𝜌𝑖(𝑘))𝑢𝑖(𝑘) + 𝐿(𝜌𝑖(𝑘))(𝐶(𝜌𝑖(𝑘))�̂�𝑖(𝑘) − 𝑦𝑖(𝑘))
(7)

where 𝐿(𝜌𝑖(𝑘)) ∈ ℝ𝑛𝑥×𝑛𝑦 is the gain-scheduled observer gain to be
designed.

Remark 1. The proposed observer-based gain-scheduled
distributed consensus law (4) can be partitioned
into three components. The first term, 𝐾(𝜌𝑖(𝑘))(∑

𝑗∈𝑖

[
𝑥𝑖(𝑘) − 𝑥𝑗(𝑘)

]
+ 𝜂𝑖

(
𝑥𝑖(𝑘) − 𝑠(𝑘)

))
, concerns the dis-

tributed relative information with respect to the neighboring
agents and the leader. Moreover, the components 𝜈𝑖(𝑘) and
𝑟𝑖(𝑘) are compensation signals introduced to deal with the
desired formation 𝑓𝑖 and the mismatch among the scheduling
parameters of agents and the leader, respectively. Notice that
if 𝑓𝑖 = 0,∀𝑖 ∈ ℕ≤𝑁, this term is reduced to a leader-following
consensus protocol. Compensation signals similar to 𝜈𝑖(𝑘) can be
found in the literature of formation tracking for continuous-time
linear MASs [14, 18, 37, 38]. However, a key distinction of the
proposed approach is the design of 𝑟𝑖(𝑘), which is proposed
in this work to deal with the mismatch among the scheduling
parameters in the formation tracking of discrete-time LPV MASs.

2.4 | Estimation and Formation-Tracking Error
Dynamics

The proposed design conditions will be developed considering a
global error composed of local estimation and consensus-tracking
errors. From the discrete-time LPV model of the agents (1), and
the defined local observer structure (7), it is possible to write the
dynamics of the local estimation errors 𝑧𝑖(𝑘) = 𝑥𝑖(𝑘) − �̂�𝑖(𝑘) as

𝑧𝑖(𝑘 + 1) = 𝐴(𝜌𝑖(𝑘))
(
𝑥𝑖(𝑘) − �̂�𝑖(𝑘)

)
− 𝐿(𝜌𝑖(𝑘))

(
𝐶(𝜌𝑖(𝑘))�̂�𝑖(𝑘) − 𝑦𝑖(𝑘)

)
,

𝑧𝑖(𝑘 + 1) =
(
𝐴(𝜌𝑖(𝑘)) + 𝐿(𝜌𝑖(𝑘))𝐶(𝜌𝑖(𝑘))

)
𝑧𝑖(𝑘)

Let 𝛼ℎ𝑙(𝜌𝑘) = diag(𝛼ℎ(𝜌1(𝑘))𝛼𝑙(𝜌1(𝑘)), . . . , 𝛼ℎ(𝜌𝑁 (𝑘))𝛼𝑙(𝜌𝑁 (𝑘)),
and 𝑧(𝑘) = (𝑧1(𝑘), . . . , 𝑧𝑁 (𝑘)). We then have that

𝑧(𝑘 + 1) =
𝑁𝑣∑
ℎ=1

𝑁𝑣∑
𝑙=1

(𝛼ℎ𝑙(𝜌𝑘)⊗ 𝐼𝑛𝑥 )(𝐼𝑁 ⊗ (𝐴ℎ + 𝐿𝑙𝐶ℎ))
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Meanwhile, by setting 𝛿𝑖(𝑘) = 𝑥𝑖(𝑘) − 𝑠(𝑘) − 𝑓𝑖 as the local
leader-following consensus tracking error, it is possible to
compute

𝛿𝑖(𝑘 + 1) = 𝐴(𝜌𝑖(𝑘))𝑥𝑖(𝑘) + 𝐵(𝜌𝑖(𝑘))𝑢𝑖(𝑘) − 𝐴(𝜌𝑠(𝑘))𝑠(𝑘) − 𝑓𝑖

By the definitions of local estimation and consensus tracking
error, we have �̂�𝑖(𝑘) = 𝑥𝑖(𝑘) − 𝑧𝑖(𝑘), and 𝑥𝑖(𝑘) = 𝛿𝑖(𝑘) + 𝑠(𝑘) + 𝑓𝑖,
resulting in �̂�𝑖(𝑘) = 𝛿𝑖(𝑘) + 𝑠(𝑘) + 𝑓𝑖 − 𝑧𝑖(𝑘). Replacing �̂�𝑖(𝑘) in
the consensus law (4), we obtain

𝑢𝑖(𝑘) = 𝐾(𝜌𝑖(𝑘))
⎛⎜⎜⎝
∑
𝑗∈𝑖

[(
𝛿𝑖(𝑘) − 𝑧𝑖(𝑘)

)
−
(
𝛿𝑗 (𝑘) − 𝑧𝑗 (𝑘)

)]

+ 𝜂𝑖
(
𝛿𝑖(𝑘) − 𝑧𝑖(𝑘)

)⎞⎟⎟⎟⎠ + 𝜈𝑖(𝑘) + 𝑟𝑖(𝑘), ∀𝑖 ∈ ℕ≤𝑁

allowing us to write the dynamics of the local consensus tracking
error as

𝛿𝑖(𝑘 + 1) = 𝐴(𝜌𝑖(𝑘))𝛿𝑖(𝑘) + (𝐴(𝜌𝑖(𝑘)) − 𝐼 + 𝐵(𝜌𝑖(𝑘))𝑀(𝜌𝑖(𝑘)))𝑓𝑖

+ (𝐴(𝜌𝑖(𝑘)) − 𝐴(𝜌𝑠(𝑘)) + 𝜂𝑖𝐵(𝜌𝑖(𝑘))𝑅(𝜌𝑖(𝑘)))𝑠(𝑘)

+ 𝜂𝑖𝐵(𝜌𝑖(𝑘))𝐾(𝜌𝑖(𝑘))
(
𝛿𝑖(𝑘) − 𝑧𝑖(𝑘)

)
+ 𝐵(𝜌𝑖(𝑘))𝐾(𝜌𝑖(𝑘))

∑
𝑗∈𝑖

[
(
𝛿𝑖(𝑘) − 𝑧𝑖(𝑘)

)
−
(
𝛿𝑗 (𝑘) − 𝑧𝑗 (𝑘)

)
]

Let 𝛼ℎ𝑙𝑞(𝜌𝑘) = diag(𝛼ℎ(𝜌1(𝑘))𝛼𝑙(𝜌1(𝑘))𝛼𝑞(𝜌𝑠(𝑘)), . . . , 𝛼ℎ(𝜌𝑁 (𝑘))𝛼𝑙
(𝜌𝑁 )(𝑘)𝛼𝑞(𝜌𝑠(𝑘))), 𝑓 = (𝑓1, . . . , 𝑓𝑁 ), 𝑠(𝑘) = (𝟏⊗ 𝑠(𝑘)), and
𝛿(𝑘) = (𝛿1(𝑘), . . . , 𝛿𝑁 (𝑘)). Then, similarly to the estimation
error, it is possible to write

𝛿(𝑘 + 1) =
𝑁𝑣∑
ℎ=1

𝑁𝑣∑
𝑙=1

(𝛼ℎ𝑙(𝜌𝑘)⊗ 𝐼𝑛𝑥 )
{
(𝐼𝑁 ⊗ 𝐴ℎ + ⊗𝐵ℎ𝐾𝑙)𝛿(𝑘)

− (⊗𝐵ℎ𝐾𝑙)𝑧(𝑘) +
(
𝐼𝑁 ⊗ (𝐴ℎ + 𝐵ℎ𝑀𝑙 − 𝐼𝑛𝑥 )

)
𝑓
}

+
𝑁𝑣∑
ℎ=1

𝑁𝑣∑
𝑙=1

𝑁𝑣∑
𝑞=1

(𝛼ℎ𝑙𝑞(𝜌𝑘)⊗ 𝐼𝑛𝑥 )(𝐼𝑁 ⊗ (𝐴ℎ − 𝐴𝑞) − 𝜂 ⊗ 𝐵ℎ𝑅𝑙)𝑠(𝑘)

Finally, defining the augmented error system 𝑒(𝑘) = (𝑧(𝑘), 𝛿(𝑘)),
we have

𝑒(𝑘 + 1) = �̄�(𝜌𝑘)𝑒(𝑘) + 𝐵𝑤𝑤(𝑘) (8)

where 𝑤(𝑘) = 𝑤𝑓 (𝑘) +𝑤𝑠(𝑘), and

𝐴(𝜌𝑘) =
𝑁𝑣∑
ℎ=1

𝑁𝑣∑
𝑙=1

⎡⎢⎢⎣
𝛼ℎ𝑙(𝜌𝑘)⊗ (𝐴ℎ + 𝐿𝑙𝐶ℎ) 0

− 𝛼ℎ𝑙(𝜌𝑘)⊗𝐵ℎ𝐾𝑙 𝛼ℎ𝑙(𝜌𝑘)⊗𝐴ℎ + 𝛼ℎ𝑙(𝜌𝑘)⊗𝐵ℎ𝐾𝑙

⎤⎥⎥⎦,
𝑤𝑓 (𝑘) =

𝑁𝑣∑
ℎ=1

𝑁𝑣∑
𝑙=1

(
𝛼ℎ𝑙(𝜌𝑘)⊗ (𝐴ℎ + 𝐵ℎ𝑀𝑙 − 𝐼𝑛𝑥 )

)
𝑓, 𝐵𝑤 =

[
0𝑁𝑛𝑥

𝐼𝑁𝑛𝑥

]
,

𝑤𝑠(𝑘) =
𝑁𝑣∑
ℎ=1

𝑁𝑣∑
𝑙=1

𝑁𝑣∑
𝑞=1

(
(𝛼ℎ𝑙𝑞(𝜌𝑘)⊗ 𝐼𝑛𝑥 )(𝐼𝑁 ⊗ (𝐴ℎ − 𝐴𝑞) − 𝜂 ⊗ 𝐵ℎ𝑅𝑙)

)
𝑠(𝑘)

With the error system (8), it is possible to conclude that the
leader-following formation consensus (3) can be achieved only if
𝑤(𝑘) = 0. The term 𝑤(𝑘) can be seen as an internal perturbation
that arises in the closed-loop error system due to the desired
formation (𝑤𝑓 (𝑘)), and heterogeneity among the scheduling
parameters of the agents and the leader (𝑤𝑠(𝑘)). The compensa-
tion signals (5) and (6) introduced in the consensus law (4) are
designed such that the augmented error system (8) is reduced
to 𝑒(𝑘 + 1) = �̄�(𝜌𝑘)𝑒(𝑘), which allows the design of the control

and the observer gains, 𝐾(𝜌𝑖(𝑘)) and 𝐿(𝜌𝑖(𝑘)), by employing a
separation principle argument.

Remark 2. As discussed in [18], without the compensation sig-
nal (5), the leader-following formation consensus (3) is achieved
only for specific formations 𝑓𝑖 that satisfy

(
𝐴(𝜌𝑖(𝑘)) − 𝐼

)
𝑓𝑖 = 0.

Therefore, the compensation signal (5) is essential to extend the
range of feasible formations. Another outstanding contribution
of this paper is to deal with heterogeneity among the schedul-
ing parameters of the agents and the leader using the additional
compensation signal (6). Similarly, if (6) is not introduced in the
consensus law, the consensus on the leader-follower formation
(3) can be achieved if all scheduling parameters are equal, that is,
𝜌1(𝑘) = 𝜌2(𝑘) = · · · = 𝜌𝑁 (𝑘) = 𝜌𝑠(𝑘), once it results in 𝐴(𝜌𝑖(𝑘)) =
𝐴(𝜌𝑠(𝑘), ∀ 𝑖 ∈ ℕ≤𝑁 .

The design of the compensation signal (5) requires only local
information. However, to cope with the heterogeneity among the
scheduling parameters, the design of (6) requires access to the
states and scheduling parameters of the leader, as defined in the
next Assumption.

Assumption 1. The leader states 𝑠(𝑘), and the scheduling
parameters 𝜌𝑠(𝑘) are available for all agents of the MASs (1), that
is, 𝜂𝑖 = 1, ∀ 𝑖 ∈ ℕ≤𝑁 .

Based on the previous discussion, the first problem addressed in
this work can be stated as follows.

Problem 1. Given the LPV MAS described in Equation (1),
assuming that Assumption 1 holds, design both the distributed
observer-based consensus law (4), and the observer (7), such that
the origin of the error system (8) is exponentially stable and the
leader-following formation consensus (3) is achieved.

In this paper, we are also interested in investigating the case
where Assumption 1 does not hold and the compensation sig-
nals cannot be designed. In this case, we have that if 𝑀(𝜌𝑖(𝑘)) =
0𝑛𝑢×𝑛𝑛𝑥 and 𝑅(𝜌𝑖(𝑘)) = 0𝑛𝑢×𝑛𝑛𝑥 , the internal perturbations of the
augmented error system (8) can be rewritten as

𝑤𝑓 (𝑘) =
𝑁𝑣∑
ℎ=1

𝑁𝑣∑
𝑙=1

(
𝛼ℎ𝑙(𝜌𝑘)⊗ (𝐴ℎ − 𝐼𝑛𝑥 )

)
𝑓 (9)

𝑤𝑠(𝑘) =
𝑁𝑣∑
ℎ=1

𝑁𝑣∑
𝑙=1

𝑁𝑣∑
𝑞=1

(
(𝛼ℎ𝑙𝑞(𝜌𝑘)⊗ 𝐼𝑛𝑥 )(𝐼𝑁 ⊗ (𝐴ℎ − 𝐴𝑞))

)
𝑠(𝑘) (10)

For the sequence of vectors {𝑤𝑓 (𝑘)}𝑘∈ℕ, and {𝑤𝑠(𝑘)}𝑘∈ℕ,
define ||𝑤𝑓 ||𝓁∞

= sup𝑘≥0 ||𝑤𝑓 (𝑘)|| < ∞, and ||𝑤𝑠||𝓁∞
= sup𝑘≥0||𝑤𝑠(𝑘)|| < ∞. Consequently, ||𝑤||𝓁∞

≤ ||𝑤𝑓 ||𝓁∞
+ ||𝑤𝑠||𝓁∞

. Due
to the effects of these internal perturbations, the leader-following
consensus (3) cannot be achieved. Therefore, the second problem
addressed in this paper is to guarantee that in the absence of
the compensation signals, the error system (8) is bounded, as
described in the following problem.

Problem 2. Given the LPV MAS described in Equation (1), if
Assumption 1 does not hold, design a distributed observer-based
consensus law in the form

𝑢𝑖(𝑘) = 𝐾(𝜌𝑖(𝑘))
⎛⎜⎜⎝
∑
𝑗∈𝑖

𝑥𝑖(𝑘) − 𝑥𝑗 (𝑘) + 𝜂𝑖
(
𝑥𝑖(𝑘) − 𝑠(𝑘)

)⎞⎟⎟⎠ (11)
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such that the augmented error system (8), with the internal
perturbations given by (9) and (10), is bounded for any initial
condition 𝑒(0), and any sequence {𝑤(𝑘)}𝑘∈ℕ ∈ 𝓁∞. That is, there
exists an upper bound 𝜑(𝑒(0), ||𝑤||𝓁∞

) such that

||𝑒(𝑘)|| ≤ 𝜑(𝑒(0), ||𝑤||𝓁∞
),∀𝑘 ≥ 0

and
lim
𝑘→∞

sup ||𝑒(𝑘)|| < 𝛾||𝑤||𝓁∞
(12)

where 𝛾 > 0 corresponds to the 𝓁∞ performance level.

3 | Main Results

This section presents the main results of this work. First, the
conditions to ensure the exponential and 𝓁∞ stability of the aug-
mented error system are defined based on the Lyapunov the-
ory. Then, assuming that the compensation signals are properly
designed, sufficient conditions are provided for designing the
compensated consensus law able to ensure the leader-following
consensus (3). Finally, sufficient conditions are presented for the
design of the uncompensated consensus law that provides the
bounding guarantees for the 𝓁∞ gain (12).

3.1 | Exponential and 𝓵∞ Stability Analysis
Conditions

The proposed approach is based on the Lyapunov theory pre-
sented in the following analysis condition.

Lemma 1. If there exist positive scalars 𝛾 , 𝜎 ∈ (0, 1), and sym-
metric positive definite matrices 𝑃1 ∈ ℝ𝑛𝑥×𝑛𝑥 and 𝑃2 ∈ ℝ𝑛𝑥×𝑛𝑥 , such
that the Lyapunov function

𝑉 (𝑒(𝑘)) = 𝑒(𝑘)⊤𝑃 𝑒(𝑘), 𝑃 = diag((𝐼𝑁 ⊗ 𝑃1), (𝐼𝑁 ⊗ 𝑃2)) (13)

satisfies

Δ𝑉 𝑘 + 𝜎
(
𝑉 (𝑒(𝑘)) − 𝛾𝑤(𝑘)⊤ 𝑤(𝑘)

)
< 0 (14)[

𝑃 ⋆

𝐼 𝛾𝐼

]
> 0 (15)

where Δ𝑉 𝑘 = 𝑉 (𝑒(𝑘 + 1)) − 𝑉 (𝑒(𝑘)), then the augmented error sys-
tem (8), with the rewritten internal perturbations given by (9) and
(10) is bounded by

||𝑒(𝑘)|| <√
𝛾(1 − 𝜎)𝑘𝑉 (𝑒(0)) + 𝛾2||𝑤||2𝓁∞

(16)

and 𝓁∞-stable with performance level 𝛾 . Moreover, if 𝑤(𝑘) =
0∀𝑘 ≥ 0, the augmented error system (8) is exponentially stable
with respect to the origin, and the leader-following formation con-
sensus (3) is achieved.

Proof. The proof follows the same reasoning as in [39]. First,
notice that condition (14) can be written as

𝑉 (𝑒(𝑘 + 1)) < (1 − 𝜎)𝑉 (𝑒(𝑘)) + 𝜎𝛾𝑤(𝑘)⊤𝑤(𝑘))

which recursively implies that

𝑉 (𝑒(𝑘)) < (1 − 𝜎)𝑘𝑉 (𝑒(0)) + 𝜎𝛾

𝑘−1∑
𝑖=0

(1 − 𝜎)𝑖 ||𝑤(𝑘 − 1 − 𝑖)||2, ∀𝑘 ≥ 1

< (1 − 𝜎)𝑘𝑉 (𝑒(0)) + 𝛾||𝑤||2𝓁∞ (17)

once 𝜎 ∈ (0, 1). By applying the Schur complement in Equation
(15) we have

𝑃 > 𝛾−1𝐼

which is equivalent to

𝛾𝑒(𝑘)⊤𝑃 𝑒(𝑘) > 𝑒(𝑘)⊤𝑒(𝑘) (18)

By combining (17) and (18), it is possible to conclude that

||𝑒(𝑘)||2 < 𝛾𝑉 (𝑒(𝑘)) < 𝛾(1 − 𝜎)𝑘𝑉 (𝑒(0)) + 𝛾2||𝑤||2𝓁∞
, ∀𝑘 ≥ 1

resulting in the bound defined in Equation (16). Moreover, notice
that if 𝑤(𝑘) = 0, the condition (17) is reduced to 𝑉 (𝑒(𝑘)) <
(1 − 𝜎)𝑘𝑉 (𝑒(0)), guaranteeing that the origin of the error system
is exponentially stable. This concludes the proof. ◽

3.2 | Compensated-Consensus Design
Conditions

In the sequel, the design conditions proposed to solve Problem 1
are presented.

Theorem 1. On the basis that Assumption 1 holds, consider
the augmented error dynamics (8) obtained with discrete-time
LPV MAS (1), the gain-scheduling consensus protocol (4), and
the observer (7). Given positive scalars 𝜎 ∈ (0, 1), 𝜉 ∈ ℝ+, and
the eigenvalues 𝜆m of , ∀m = 1, . . . , 𝑁 , if there exist symmetric
positive definite matrices 𝑃1 ∈ ℝ𝑛𝑥×𝑛𝑥 , 𝑃2 ∈ ℝ𝑛𝑥×𝑛𝑥 , matrices 𝑋1 ∈
ℝ𝑛𝑥×𝑛𝑥 , 𝑋2 ∈ ℝ𝑛𝑥×𝑛𝑥 , 𝐾𝑙 ∈ ℝ𝑛𝑢×𝑛𝑥 , and �̃�𝑙 ∈ ℝ𝑛𝑥×𝑛𝑦 , such that the
following inequalities hold

Ψℎℎ < 0, if ℎ = 𝑙 (19)

Ψℎ𝑙 + Ψ𝑙ℎ < 0, if ℎ < 𝑙 (20)

Φℎℎm < 0, if ℎ = 𝑙, ∀ m = 1, . . . , 𝑁 (21)

Φℎ𝑙m + Φ𝑙ℎm < 0, if ℎ < 𝑙, ∀ m = 1, . . . 𝑁 (22)

with

Ψℎ𝑙 =

[
𝑃1 − 𝜉He(𝑋1) ⋆

𝜉Θ̃⊤

ℎ𝑙
(𝜎 − 1)𝑃1

]
(23)

Φℎ𝑙m =

[
𝑃 2 − 𝜉He(𝑋2) ⋆

𝜉Γ̃⊤
ℎ𝑙m (𝜎 − 1)𝑃 2

]
(24)

Θ̃ℎ𝑙 = 𝑋1𝐴ℎ + �̃�𝑙𝐶ℎ (25)

Γ̃ℎ𝑙m = 𝐴ℎ𝑋2 + 𝜆𝑚𝐵ℎ𝐾𝑙 (26)
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for all ℎ, 𝑙 ∈ ℕ≤𝑁𝑣
, and if there exist compensation gains 𝑀(𝜌𝑖(𝑘))

and 𝑅(𝜌𝑖(𝑘)), such that the following conditions(
𝐴(𝜌𝑖(𝑘)) − 𝐼 + 𝐵(𝜌𝑖(𝑘))𝑀(𝜌𝑖(𝑘))

)
𝑓𝑖 = 0 (27)

(
𝐴(𝜌𝑖(𝑘)) − 𝐴(𝜌𝑠(𝑘)) + 𝐵(𝜌𝑖(𝑘))𝑅(𝜌𝑖(𝑘))

)
𝑠(𝑘) = 0 (28)

hold for all 𝑖 ∈ ℕ≤𝑁 . Then {𝑤(𝑘) = 0}𝑘∈ℕ, the error dynamics
(8) is exponentially stable, and the gains of the observer (7), the
matrices of the Lyapunov function (13), and the remaining gains
of the consensus protocol are given, respectively, by 𝐿𝑙 = 𝑋−1

1 �̃�𝑙,
𝑃2 = 𝑋−⊤

2 𝑃2𝑋
−1
2 , 𝑃1, and 𝐾𝑙 = 𝐾𝑙𝑋

−1
2 .

Proof. First, notice that matrices 𝑃1 and 𝑃2 are symmetric and
positive definite. Therefore, the Lyapunov function (13) is also
positive definite. Moreover, considering that the conditions (27)
and (28) hold we have that {𝑤(𝑘) = 0}𝑘∈ℕ, and by employing the
separation principle argument, the exponential stability of the
augmented error system (8) can be evaluated considering the fol-
lowing subsystems

𝑧(𝑘 + 1) =
𝑁𝑣∑
ℎ=1

𝑁𝑣∑
𝑙=1

(
𝛼ℎ𝑙(𝜌𝑘)⊗ (𝐴ℎ + 𝐿𝑙𝐶ℎ)

)
𝑧(𝑘),

𝛿(𝑘 + 1) =
𝑁𝑣∑
ℎ=1

𝑁𝑣∑
𝑙=1

(
(𝛼ℎ𝑙(𝜌𝑘)⊗ 𝐼𝑛𝑥 )(𝐼𝑁 ⊗ 𝐴ℎ + ⊗𝐵ℎ𝐾𝑙)

)
𝛿(𝑘)

Defining 𝑉 (𝑧(𝑘)) = 𝑧(𝑘)⊤(𝐼𝑁 ⊗ 𝑃1)𝑧(𝑘), the condition 𝑉 (𝑧(𝑘 +
1)) + (𝜎 − 1) 𝑉 (𝑧(𝑘)) < 0, is equivalent to

𝑧(𝑘 + 1)⊤(𝐼𝑁 ⊗ 𝑃1)𝑧(𝑘 + 1) + (𝜎 − 1)𝑧(𝑘)⊤(𝐼𝑁 ⊗ 𝑃1)𝑧(𝑘) < 0

Replacing (25) in Equation (23), and performing the change of
variables �̃�𝑙 = 𝑋1 𝐿𝑙, results in[

𝑃1 − 𝜉He(𝑋1) 𝜉(𝑋1𝐴ℎ +𝑋1𝐿𝑙𝐶ℎ)
⋆ (𝜎 − 1)𝑃1

]
(29)

Multiplying (29) by [𝐴⊤
ℎ
+ 𝐶⊤

ℎ
𝐿⊤
𝑙
𝐼𝑛𝑥 ], on the left and its trans-

pose in the right, we obtain

(𝐴ℎ + 𝐿𝑙𝐶ℎ)⊤𝑃1 (𝐴ℎ + 𝐿𝑙𝐶ℎ) + (𝜎 − 1)𝑃1

from which it is possible to conclude that due to the convex prop-
erties of time-varying parameters, the LMIs (19) and (20) are suf-
ficient to guarantee 𝑉 (𝑧(𝑘 + 1)) + (𝜎 − 1) 𝑉 (𝑧(𝑘)) < 0. Further-
more, by defining

𝑉 (𝛿(𝑘)) = 𝛿(𝑘)⊤(𝐼𝑁 ⊗ 𝑃2)𝛿(𝑘) (30)

and considering the spectral decomposition  = 𝑇Λ 𝑇 −1, we
define the exchange of coordinates 𝛿(𝑘) = (𝑇 −1 ⊗ 𝐼𝑛𝑥 )𝛿(𝑘) that
allows to write the condition 𝑉 (𝛿(𝑘 + 1)) + (𝜎 − 1)𝑉 (𝛿(𝑘)) < 0 as

𝛿(𝑘 + 1)⊤(𝐼𝑁 ⊗ 𝑃2)𝛿(𝑘 + 1) + (𝜎 − 1)𝛿(𝑘)⊤(𝐼𝑁 ⊗ 𝑃2)𝛿(𝑘) < 0

with

𝛿(𝑘 + 1) =
𝑁𝑣∑
ℎ=1

𝑁𝑣∑
𝑙=1

(
(𝛼ℎ𝑙(𝜌𝑘)⊗ 𝐼𝑛𝑥 )(𝐼𝑁 ⊗ 𝐴ℎ + Λ⊗𝐵ℎ𝐾𝑙)

)
𝛿(𝑘)

Multiplying (24) by diag(𝑋−⊤
2 , 𝑋−⊤

2 ) on the left and its transpose
on the right, replacing (26), and performing the exchange of vari-
ables 𝐾𝑙 = 𝐾𝑙𝑋2, and 𝑃2 = 𝑋−⊤

2 𝑃2𝑋
−1
2 results in[

𝑃2 − 𝜉He(𝑋−⊤
2 ) 𝜉(𝑋−⊤

2 𝐴ℎ + 𝜆𝑚𝑋
−⊤
2 𝐵ℎ𝐾𝑙)

⋆ (𝜎 − 1)𝑃2

]
(31)

Multiplying (31) by [𝐴⊤
ℎ
+ 𝜆𝑚𝐾

⊤
𝑙
𝐵⊤
ℎ

𝐼𝑛𝑥 ] on the left and its trans-
pose on the right, it results in

(𝐴ℎ + 𝜆𝑚𝐵ℎ𝐾𝑙)⊤𝑃2 (𝐴ℎ + 𝜆𝑚𝐵ℎ𝐾𝑙) + (𝜎 − 1)𝑃2

from which it is possible to conclude that due to the convex prop-
erties of time-varying parameters, the LMIs (21) and (22) are suf-
ficient to guarantee that 𝑉 (𝛿(𝑘 + 1)) + (𝜎 − 1) 𝑉 (𝛿(𝑘)) < 0.

Combining the previous steps, it is possible to see that the LMIs
(19) and (22) are sufficient to guarantee

𝑉 (𝑒(𝑘 + 1)) + (𝜎 − 1) 𝑉 (𝑒(𝑘)) < 0

with a Lyapunov function 𝑉 (𝑒(𝑘)) = 𝑉 (𝛿(𝑘)) + 𝑉 (𝑧(𝑘)), as
defined in Equation (13). Thus, if all the conditions of Theorem 1
hold, the trajectories of the error system (8) converge exponen-
tially to the origin. This concludes the proof. ◽

Assuming that the compensation signals are properly designed,
the presented Theorem 1 provides sufficient conditions to guar-
antee the exponential stability of the origin of the error system (8).
If the input matrices 𝐵(𝜌𝑖(𝑘)) are invertible, the suitable design of
the compensation gains can be directly performed by considering

𝑀(𝜌𝑖(𝑘)) = 𝐵(𝜌𝑖(𝑘))−1 (𝐼𝑛𝑥 − 𝐴(𝜌𝑖(𝑘))
)
,

𝑅(𝜌𝑖(𝑘)) = 𝐵(𝜌𝑖(𝑘))−1 (𝐴(𝜌𝑠(𝑘)) − 𝐴(𝜌𝑖(𝑘))
)

Moreover, if the matrices 𝐵(𝜌𝑖(𝑘)) are not invertible, the
Moore-Penrose pseudo-inverse 𝐵(𝜌𝑖(𝑘))† may be applied sim-
ilarly. In the above cases, the compensation signals can be
designed independently of the formation, extending the range of
feasible desired formations, as discussed in Remark 2 and in [18].

3.3 | Bounded-Consensus Design Conditions

In the previous approach, if the design of the compensation gains
is not possible, the leader-following consensus (3) cannot be
achieved. Although suitable formations can be defined to ensure
(𝐴(𝜌𝑖(𝑘) − 𝐼)𝑓𝑖 = 0, ∀𝑖 ∈ ℕ≤𝑁 , the difference among the schedul-
ing parameters will prevent the exact consensus. To deal with
these cases, we design the consensus law (11), which guaran-
tees that the error system (8) is bounded. To solve Problem 2, we
present the design conditions in Theorem 2.

Theorem 2. Consider the augmented error dynamics (8)
obtained with discrete-time LPV MAS (1), the gain-scheduling con-
sensus protocol (11), the observer (7), and the rewritten internal per-
turbations (9) and (10). Given positive scalars 𝜎 ∈ (0, 1), 𝜉 ∈ ℝ+,
and the eigenvalues 𝜆m of , ∀m = 1, . . . , 𝑁 , if there exist sym-
metric positive definite matrices 𝑃1 ∈ ℝ𝑛𝑥×𝑛𝑥 , 𝑃2 ∈ ℝ𝑛𝑥×𝑛𝑥 , matri-
ces 𝑋1 ∈ ℝ𝑛𝑥×𝑛𝑥 , 𝑋2 ∈ ℝ𝑛𝑥×𝑛𝑥 , 𝐾𝑙 ∈ ℝ𝑛𝑢×𝑛𝑥 , and �̃�𝑙 ∈ ℝ𝑛𝑥×𝑛𝑦 , and
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a positive scalar 𝛾 ∈ ℝ+, such that inequalities (19) and (20) hold
together with

Υℎℎm < 0, if ℎ = 𝑙, ∀ m = 1, . . . , 𝑁 (32)

Υℎ𝑙m + Υ𝑙ℎm < 0, if ℎ < 𝑙, ∀ m = 1, . . . , 𝑁 (33)

[
𝑃 ⋆

𝑋2 𝛾𝐼

]
< 0 (34)

for all ℎ, 𝑙 ∈ ℕ≤𝑁𝑣
, where 𝑃 = diag(𝑃1, 𝑃2), 𝑋2 = diag(𝐼𝑛𝑥 , 𝑋2),

Υℎ𝑙m =
⎡⎢⎢⎢⎣
𝑃 2 − 𝜉He(𝑋2) ⋆ ⋆

𝜉 Γ̃⊤
ℎ𝑙m (𝜎 − 1)𝑃 2 ⋆

𝜉𝐼 0 −𝜎𝛾𝐼

⎤⎥⎥⎥⎦ (35)

and Γ̃ℎ𝑙m as in Equation (26). Then, the error dynamics (8) is 𝓁∞
stable with performance index 𝛾 . The gains of the observer (7),
the Lyapunov function matrices (13), and the gains of the con-
sensus protocol (11) are given, respectively, by 𝐿𝑙 = 𝑋−1

1 �̃�𝑙, 𝑃2 =
𝑋−⊤

2 𝑃2𝑋
−1
2 , 𝑃1, 𝐾𝑙 = 𝐾𝑙𝑋

−1
2 .

Proof. Firstly, from the error system (8) with the rewritten
internal perturbations (9) and (10), it is possible to see that the
internal perturbations do not affect the state estimation. There-
fore, the separation principle can be once again employed, and
the 𝓁∞ stability of the augmented error system (8) can be evalu-
ated considering the following subsystems

𝑧(𝑘 + 1) =
𝑁𝑣∑
ℎ=1

𝑁𝑣∑
𝑙=1

𝛼ℎ𝑙(𝜌𝑘)⊗ (𝐴ℎ + 𝐿𝑙𝐶ℎ)𝑧(𝑘) (36)

𝛿(𝑘 + 1) =
𝑁𝑣∑
ℎ=1

𝑁𝑣∑
𝑙=1

(𝛼ℎ𝑙(𝜌𝑘)⊗ 𝐼𝑛𝑥 )(𝐼𝑁 ⊗ 𝐴ℎ + ⊗𝐵ℎ𝐾𝑙)𝛿(𝑘) +𝑤(𝑘)

(37)

Recall that it was already shown in the proof of Theorem 1 that
if the inequalities (19) and (20) hold, the trajectories of the esti-
mation error subsystem (36) converge exponentially to the origin.
Therefore, we only need to prove that subsystem (37) is 𝓁∞ stable.

The remainder of the proof follows the same steps performed
in the proof of Theorem 1. Notice that considering (37), the
condition

𝑉 (𝛿(𝑘 + 1)) + (𝜎 − 1)𝑉 (𝛿(𝑘)) − 𝜎𝛾𝑤(𝑘)⊤𝑤(𝑘) < 0

can be equivalently written as

𝛿(𝑘 + 1)⊤(𝐼𝑁 ⊗ 𝑃2)𝛿(𝑘 + 1) + (𝜎 − 1)𝛿(𝑘)⊤(𝐼𝑁 ⊗ 𝑃2) 𝛿(𝑘) − �̃�(𝑘)⊤

(𝐼𝑁 ⊗ 𝜎𝛾𝐼𝑛𝑥 )�̃�(𝑘) < 0 (38)

with 𝑉 (𝛿(𝑘)) as in Equation (30), and �̃�(𝑘) = (𝑇 −1 ⊗ 𝐼𝑛𝑥 )𝑤(𝑘).

Replacing (26) in Equation (35), multiplying (35) on the left
by diag(𝑋−⊤

2 , 𝑋−⊤
2 , 𝐼𝑛𝑥 ) and its transpose on the right, and

performing the exchange of variables 𝐾𝑙 = 𝐾𝑙𝑋2, and 𝑃2 =
𝑋−⊤

2 𝑃2𝑋
−1
2 , results in

⎡⎢⎢⎢⎣
𝑃2 − 𝜉He(𝑋−⊤

2 ) 𝜉(𝑋−⊤
2 𝐴ℎ + 𝜆𝑚𝑋

−⊤
2 𝐵ℎ𝐾𝑙) 𝜉𝑋−⊤

2

⋆ (𝜎 − 1)𝑃2 0𝑛𝑥×𝑛𝑥
⋆ ⋆ −𝜎𝛾𝐼𝑛𝑥

⎤⎥⎥⎥⎦ (39)

Multiplying, (39) by

⊤ =

[
𝐴⊤
ℎ
+ 𝜆m𝐾⊤

𝑙
𝐵⊤
ℎ

𝐼𝑛𝑥 0𝑛𝑥×𝑛𝑥
𝐼𝑛𝑥 0𝑛𝑥×𝑛𝑥 𝐼𝑛𝑥

]
on the left and its transpose on the right, we obtain[

(𝐴⊤
ℎ
+ 𝜆m𝐾⊤

𝑙
𝐵⊤
ℎ
)𝑃2(𝐴ℎ + 𝜆m𝐵ℎ𝐾𝑙) + (𝜎 − 1)𝑃2 ⋆

𝑃2(𝐴ℎ + 𝜆m𝐵ℎ𝐾𝑙) 𝑃2 − 𝜎𝛾𝐼𝑛𝑥

]
(40)

Moreover, performing a dimension adjustment, and then multi-
plying (40) by [𝛿(𝑘)⊤ �̃�(𝑘)⊤] on the left, and its transpose on the
right, results in

𝛿(𝑘)⊤(𝐼𝑁 ⊗ (𝐴⊤
ℎ
+ 𝜆m𝐾⊤

𝑙
𝐵⊤
ℎ
)𝑃2(𝐴ℎ + 𝜆m𝐵ℎ𝐾𝑙))𝛿(𝑘)

+ �̃�(𝑘)⊤(𝐼𝑁 ⊗ (𝑃2 − 𝜎𝛾𝐼𝑛𝑥 ))�̃�(𝑘)

+ 𝛿(𝑘)⊤((𝜎 − 1)(𝐼𝑁 ⊗ 𝑃2))𝛿(𝑘)

+ He
(
𝛿(𝑘)⊤(𝐼𝑁 ⊗ 𝑃2(𝐴ℎ + 𝜆m𝐵ℎ𝐾𝑙))�̃�(𝑘)

)
from which it is possible to conclude that due to the convex prop-
erties of time-varying parameters, the LMIs (32) and (33) are suf-
ficient to guarantee (38). Therefore, we have that the LMIs (19)
to (33) and (32) and (33) are sufficient to guarantee (14) with a
Lyapunov function as defined in Equation (13).

Finally, multiplying (34) by diag(𝐼𝑛𝑥 , 𝑋
−⊤
2 , 𝐼𝑛𝑥 , 𝐼𝑛𝑥 ) on the left, and

its transpose on the right, and performing the exchange of vari-
ables 𝑃2 = 𝑋−⊤

2 𝑃2𝑋
−1
2 , it is possible to see that (34) is equivalent

to (15). Thus, all the conditions of the Lemma 1 are satisfied. This
concludes the proof. ◽

Remark 3. As discussed in [39], the upper bound of the error
(16) can be reduced with the minimization of 𝛾 .

4 | Numerical Examples

In this section, we presented two distinct examples to illus-
trate the effectiveness of the main results of this work. The
first example is a numerical system adapted from [27]. In this
example, the goal is to explore the possible configurations of
the proposed consensus protocols in two distinct scenarios. In
the first scenario, all agents have access to the measurements of
the leader, and the design is performed according to Theorem 1.
Additionally, in the second scenario, we explore the discussion
performed in Remark 2 and make a comparison on the evolution
of the norm of the augmented error system considering the design
performed with Theorem 2. Moreover, in the second example, we
highlight the applicability of the proposed approach on a problem
with practical physical meaning, where the goal is to guarantee
the exact leader-follower formation tracking of an angular posi-
tioning LPV MAS.
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4.1 | Example 1

Consider the LPV MAS, adapted from [27], composed of 𝑁 = 4
agents with communication topology described by

 =

⎡⎢⎢⎢⎢⎢⎣

3 −1 −1 −1
− 1 1 0 0
− 1 0 2 −1
− 1 0 −1 2

⎤⎥⎥⎥⎥⎥⎦
, 𝜂 =

⎡⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎦
Initially we take 𝜂𝑖 = 1, ∀ 𝑖 ∈ ℕ≤4, as defined in Assumption 1.
The vertices of the continuous-time system are

�̄�1 =

[
0 1
− 1 0

]
, �̄�2 = 𝑅−1

𝑝

[
0 1 + 𝑝

− 1 0

]
𝑅𝑝,

𝑅𝑝 =

[
cos(𝛽) − sin(𝛽)
sin(𝛽) cos(𝛽)

]
, 𝛽 = arctan(𝑝), 𝑝 = 0.5

𝐵1 =

[
1 0
0 1

]
, 𝐵2 =

[
1 0
0 1 + 10𝑝

]
,

𝐶1 =
[
1 0

]
, 𝐶2 =

[
1 + 10𝑝 0

]
By employing the Euler discretization with 𝑇𝑠 = 0.01𝑠, we have

𝐴1 = 𝐼 + 𝑇𝑠�̄�1 =

[
1.000 0.010
− 0.010 1.000

]
,

𝐴2 = 𝐼 + 𝑇𝑠�̄�2 =

[
1.002 0.014
− 0.011 0.998

]
,

𝐵1 = 𝑇𝑠𝐵1 =

[
0.01 0

0 0.01

]
, 𝐵2 = 𝑇𝑠𝐵2 =

[
0.01 0

0 0.06

]
,

𝐶1 =
[
1 0

]
, 𝐶2 =

[
6 0

]
To ensure that conditions (27) and (28) hold, we define

𝑀(𝜌𝑖(𝑘)) = 𝐵(𝜌𝑖(𝑘))−1(𝐼𝑛𝑥 − 𝐴(𝜌𝑖(𝑘)),

𝑅(𝜌𝑖(𝑘)) = 𝐵(𝜌𝑖(𝑘))−1(𝐴(𝜌𝑠(𝑘) − 𝐴(𝜌𝑖(𝑘))

as the gain of the compensation signals. Then, the design of
the observer-based consensus protocol gains can be carried out
by invoking Theorem 1. By considering 𝜉 = 1 and 𝜎 = 0.01, we
obtain the following gains

𝐾1 =

[
− 27.8777 −0.2284
0.1051 −10.4342

]
, 𝐾2 =

[
− 27.9406 −0.4216
0.0494 −4.5015

]
,

𝐿1 =

[
− 0.3941
− 0.3084

]
, 𝐿2 =

[
− 0.1582
− 0.1234

]

and Lyapunov matrices

𝑃1 =

[
1.2098 −0.3890
− 0.3890 0.4823

]
, 𝑃2 =

[
1.3220 −0.0047
− 0.0047 1.3213

]

To validate the designed consensus protocol, we perform a simu-
lation with initial conditions

𝑥1(0) =

[
3
10

]
, 𝑥2(0) =

[
− 7
− 3

]
, 𝑥3(0) =

[
10
1

]
, 𝑥4(0) =

[
− 5
− 8

]
,

�̂�1(0) =

[
0
0

]
, �̂�2(0) =

[
0
0

]
, �̂�3(0) =

[
0
0

]
,

�̂�4(0) =

[
0
0

]
, 𝑠(0) =

[
3
3

]

exogenous time-varying scheduling parameters,

𝛼1(𝜌1(𝑘)) =
1 + sin(2𝑡(𝑘))

2
𝛼2(𝜌1(𝑘)) = 1 − 𝛼1(𝜌1(𝑘)),

𝛼1(𝜌2(𝑘)) =
1 + cos(𝑡(𝑘))

2
𝛼2(𝜌2(𝑘)) = 1 − 𝛼1(𝜌2(𝑘)),

𝛼1(𝜌3(𝑘)) =
1 + sin(0.05𝑡(𝑘))

2
𝛼2(𝜌3(𝑘)) = 1 − 𝛼1(𝜌3(𝑘)),

𝛼1(𝜌4(𝑘)) =
1 + cos(0.05𝑡(𝑘))

2
𝛼2(𝜌4(𝑘)) = 1 − 𝛼1(𝜌4(𝑘)),

𝛼1(𝜌𝑠(𝑘)) =
1 + cos(5𝑡(𝑘))

2
𝛼2(𝜌𝑠(𝑘)) = 1 − 𝛼1(𝜌𝑠(𝑘))

and the desired formations,

𝑓1 =

[
3
0

]
, 𝑓2 =

[
0
− 3

]
, 𝑓3 =

[
− 3
0

]
, 𝑓4 =

[
0
3

]

Considering the simulation time of 10 s and the sampling time
𝑇𝑠 = 0.01𝑠, the closed-loop trajectories of LPV MAS (1) equipped
with the proposed consensus protocol (4) are depicted in Figure 1.
Furthermore, the trajectories of the estimation and consensus
errors are presented in Figures 2 and 3, respectively.

The initial conditions of the leader and the following agents in
the 𝑥-plane are highlighted by the black hexagram and the
circles , respectively. Similarly, the positions of the leader and
the following agents in the 𝑥-plane in 𝑡 = 10𝑠 are highlighted by
the magenta hexagram and the circles , respectively. From

FIGURE 1 | Trajectories of the leader and following agents equipped
with the proposed formation consensus protocol (4) designed with
Theorem 1—Example 4.1.
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FIGURE 2 | Trajectories of the estimation error obtained with the
observer designed with Theorem 1—Example 4.1.

FIGURE 3 | Trajectories of the consensus error obtained with the
consensus protocol designed with Theorem 1—Example 4.1.

the results of Figure 1, it is possible to see that the following
agents successfully track the leader in ( ) while maintaining
the specified formation.

Notice that both errors converge exponentially to the origin.
Therefore, it is clear that the leader-follower consensus (3) is
properly achieved, illustrating the effectiveness of the proposed
observer-based consensus protocol in dealing with the forma-
tion tracking problem of LPV MASs with different time-varying
scheduling parameters.

As previously discussed in Remark 2, the exact leader-follower
consensus obtained in the simulation results depicted in
Figures 1–3 requires the proper design of the signals (5) and
(6) to compensate for the internal perturbations. To illustrate
the importance of the proposed compensation, especially when
dealing with different scheduling parameters, consider a second
scenario where information about the leader is unavailable to all

FIGURE 4 | Trajectories of the leader and following agents equipped
with the proposed formation consensus protocol designed with
Theorem 2—Example 4.1.

agents. In this case, only agent 𝑥1 will receive leader information,
that is, 𝜂𝑖 = 0, for 𝑖 = 2, 3, 4.

Recall that without leader information, local controllers can-
not be designed with compensation signals (6). Therefore,
since the condition of the Assumption 1 does not hold for all
agents, the consensus protocol must be designed by invoking
Theorem 2. Then, by considering 𝜉 = 1.8 and 𝜎 = 0.03 we obtain
𝛾 = 34.62, and

𝐾1 =

[
− 36.9253 2.9426
− 0.5473 −13.2470

]
, 𝐾2 =

[
− 27.6660 −5.3710

2.4110 −2.4536

]
,

𝐿1 =

[
− 0.4186
− 0.7467

]
, 𝐿2 =

[
− 0.1644
− 0.2909

]
,

𝑃1 =

[
105.7084 −27.9799
− 27.9799 15.2488

]
, 𝑃2 =

[
0.0879 −0.0146
− 0.0146 0.0325

]

Considering the same initial conditions, formations, and schedul-
ing parameters, the trajectories of the closed-loop following
agents and the consensus error of the second scenario are
depicted in Figures 4 and 5. It can be seen from the results of
Figure 4 that even without compensation 𝑟𝑖(𝑘), the following
agents can track the leader dynamics. However, as shown in
Figure 5, the agents do not achieve the exact desired formation,
and consensus errors oscillate around the origin due to the inter-
nal perturbation 𝑤𝑠(𝑘) in Equation (10). This result evidences
the contributions of the proposed approach, demonstrating that
dealing with the formation perturbation 𝑤𝑓 (𝑘) is not sufficient to
achieve the exact formation (3) for LPV MASs in the form of (1).

Moreover, to evaluate the boundedness guarantees provided by
the conditions of Theorem 2, consider a scenario where none of
the compensation signals (5) and (6) are designed. The behav-
ior of the combined internal perturbation 𝑤(𝑘), with the same
initial conditions and time-varying scheduling parameters, is
depicted in Figure 6. With the computation of ||𝑤||𝓁∞

, together
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FIGURE 5 | Trajectories of the consensus error obtained with the
consensus protocol designed with Theorem 2—Example 4.1.

FIGURE 6 | Internal perturbations of the closed-loop consensus
tracking error—Example 4.1.

with the previously presented values of 𝜎, 𝛾 , 𝑃1, and 𝑃2, obtained
with Theorem 2, we can compute 𝜑(𝑒(0), ||𝑤||𝓁∞

) as defined in
Equation (16).

A comparison of the norm of the augmented error system
(8), together with the obtained 𝜑(𝑒(0), ||𝑤||𝓁∞

), is presented in
Figure 7. The exact leader-follower consensus can be achieved
when considering both compensations (depicted in ). In
other cases, when only one type of compensation is consid-
ered (only 𝑟𝑖(𝑘) depicted in and only 𝜈𝑖(𝑘) depicted in

), or when the compensations are neglected (depicted in
), the norm of the augmented error system is bounded by

𝜑(𝑒(0), ||𝑤||𝓁∞
) (depicted in ). As expected, the consensus

law without compensation yields the worst results, again accen-
tuating the benefits of the proposed approach.

4.2 | Example 2

Consider an LPV MAS angular positioning inspired by the model
presented in [40, 41]. The classical angular position system (APS)
comprises a rotating antenna driven by an electric motor. The

FIGURE 7 | Comparison of the norm of the augmented error
system—Example 4.1.

control goal is to drive the motor to rotate the antenna so that
it points in the direction of a moving target. In this paper, we
assume that the target is a MAS composed of a leader-follower
formation, and our goal is to design a distributed gain-scheduled
observer-based consensus such that the formation of the angu-
lar positioning LPV MAS matches the formation of the targets, as
illustrated in Figure 8.

The time-varying dynamics of the APS are given by

𝑥𝑖(𝑘 + 1) =

[
1 0.1
0 1 − 0.1𝜌𝑖(𝑘)

]
𝑥𝑖(𝑘) +

[
0

0.1𝜅

]
𝑢𝑖(𝑘),

𝑦𝑖(𝑘) =
[
1 0

]
𝑥𝑖(𝑘)

where 𝑥𝑖 = [𝜃⊤
𝑖
�̇�
⊤

𝑖
]⊤, 𝜃𝑖 [rad] is the angular position, �̇�𝑖 [rad∕𝑠]

is the angular velocity, 0.1 s−1 ≤ 𝜌𝑖(𝑘) ≤ 10 s−1 is proportional
to the coefficient of viscous friction in the rotation parts of the
antenna, and𝜅 = 0.787 rad−1V−1𝑠−2 is a given constant. Similarly
to [40, 41], 𝜌𝑖(𝑘) is arbitrarily time-varying in the indicated range
of variation.

We assume that the angular position of the leader-target 𝜃𝑙𝑡 [rad]
and the formation of its followers are measurable and available.
Considering a simulation time of 𝑡 = 10 s with a sampling period
of 𝑇𝑠 = 0.01s, the position of the leader-target is given by

𝜃𝑙𝑡(𝑘) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜋

3
0 ≤ 𝑘 ≤ 300,

𝜋

3
+ (𝑘 − 300) 𝜋

6
300 < 𝑘 ≤ 400,

𝜋

2
300 < 𝑘 ≤ 700,

𝜋

2
+ (𝑘 − 700) 𝜋

6
700 < 𝑘 ≤ 800,

2𝜋
3

800 < 𝑘 ≤ 1000

(41)

Moreover, we assume that the target system comprises one leader
and three followers with the same distance of 𝜋∕12. Therefore,
the desired formation and the communication among the agents
of the APS are given by
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FIGURE 8 | Setup of an angular positioning MASs.

𝑓1 =

[
− 𝜋

12
0

]
, 𝑓2 =

[
− 𝜋

6
0

]
, 𝑓3 =

[
− 𝜋

4
0

]
,

 =
⎡⎢⎢⎢⎣

1 −1 0
− 1 2 −1
0 −1 1

⎤⎥⎥⎥⎦, 𝜂 =
⎡⎢⎢⎢⎣
1 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎦
Notice that a leader of the APS in the open-loop form of (2) can-
not track the position of the leader-target described in Equation
(41). In this case, it is necessary to consider a controlled leader in
the form

𝑠(𝑘 + 1) = 𝐴(𝜌𝑠(𝑘))𝑠(𝑘) + 𝐵(𝜌𝑠(𝑘))𝑢𝑠(𝑘)

where the leader control input 𝑢𝑠(𝑘) is properly designed to track
the leader-target. By the definition of the consensus error, notice
that we now have

𝛿𝑖(𝑘 + 1) = 𝐴(𝜌𝑖(𝑘))𝑥𝑖(𝑘) + 𝐵(𝜌𝑖(𝑘))𝑢𝑖(𝑘) − 𝐴(𝜌𝑠(𝑘))𝑠(𝑘) − 𝐵(𝜌𝑠(𝑘))𝑢𝑠(𝑘) − 𝑓𝑖

Similarly to [23], we assume that the leader control input is
known by all followers, and the consensus law is modified to
𝑢𝑖(𝑘) = 𝑢𝑖(𝑘) + 𝑢𝑠(𝑘), resulting in

𝛿𝑖(𝑘 + 1) = 𝐴(𝜌𝑖(𝑘))𝑥𝑖(𝑘) + 𝐵(𝜌𝑖(𝑘))𝑢𝑖(𝑘) − 𝐴(𝜌𝑠(𝑘))𝑠(𝑘) − 𝑓𝑖

+ (𝐵(𝜌𝑖(𝑘)) − 𝐵(𝜌𝑠(𝑘)))𝑢𝑠(𝑘)

Since the input matrix of the APS systems is parameter-
independent, we have 𝐵(𝜌𝑖(𝑘)) = 𝐵(𝜌𝑠(𝑘)) = 𝐵, and the aug-
mented error system (8) remains unchanged. However, in the
more general case, the consensus law can be modified to 𝑢𝑖(𝑘) =
𝑢𝑖(𝑘) + �̄�𝑠(𝑘) where employing the same strategy considered in
the compensation signals, �̄�𝑠(𝑘) is defined to satisfy condition
𝐵(𝜌𝑖(𝑘))�̄�𝑠(𝑘) − 𝐵(𝜌𝑠(𝑘))𝑢𝑠(𝑘) = 0.

Then, the desired formations satisfy
(
𝐴(𝜌𝑖(𝑘)) − 𝐼

)
𝑓𝑖 = 0. There-

fore, we only design the compensation signals 𝑟𝑖(𝑘) consid-
ering the Moore-Penrose pseudo-inverse to obtain 𝑅(𝜌𝑖(𝑘)) =
𝐵(𝜌𝑖(𝑘))†(𝐴(𝜌𝑠(𝑘)) − 𝐴(𝜌𝑖(𝑘)).

With 𝜉 = 1, and 𝜎 = 0.025, we solve the conditions of Theorem 1
to obtain the following gain vertices:

𝐾1 =
[
− 3.4843 −4.8451

]
, 𝐾2 =

[
− 3.6610 −0.3055

]
,

𝐿1 =

[
− 1.0372
− 0.3919

]
, 𝐿2 =

[
− 1.0412
0.0359

]

and Lyapunov matrices

𝑃1 =

[
0.8620 −0.2865
− 0.2865 0.7248

]
, 𝑃2 =

[
2.6946 0.6532
0.6532 0.7807

]
To validate the designed consensus protocol, we perform a sim-
ulation of the closed-loop system with trajectories starting from
the initial conditions

𝑥1(0) =

[
𝜋

10
0

]
, 𝑥2(0) =

[
𝜋

12
0

]
, 𝑥3(0) =

[
𝜋

14
0

]
,

�̂�1(0) =

[
0
0

]
, �̂�2(0) =

[
0
0

]
, �̂�3(0) =

[
0
0

]
, 𝑠(0) =

[
0
0

]
and the exogenous time-varying scheduling parameters of the fol-
lowers and the leader are defined as

𝛼1(𝜌1(𝑘)) =
1 + sin(3𝑡(𝑘))

2
𝛼2(𝜌1(𝑘)) = 1 − 𝛼1(𝜌1(𝑘)),

𝛼1(𝜌2(𝑘)) =
1 + cos(4𝑡(𝑘))

2
𝛼2(𝜌2(𝑘)) = 1 − 𝛼1(𝜌2(𝑘)),

𝛼1(𝜌3(𝑘)) =
1 + sin(0.01𝑡(𝑘))

2
𝛼2(𝜌3(𝑘)) = 1 − 𝛼1(𝜌3(𝑘)),

𝛼1(𝜌𝑠(𝑘)) =
1 + cos(7𝑡(𝑘))

2
𝛼2(𝜌𝑠(𝑘)) = 1 − 𝛼1(𝜌𝑠(𝑘))

The closed-loop trajectories of the angular positioning LPV MAS
are depicted in Figure 9. As shown in Figure 9, with the designed
consensus protocol, the angular positioning system can success-
fully track the formation of the target. Notice that due to com-
pensation signals 𝑟𝑖(𝑘), the consensus error depicted in Figure 10
converges exponentially to the origin, and the formation is main-
tained even during the transient period when the angular veloc-
ities are not null and 𝑤𝑠(𝑘) is actively disturbing the augmented
error system.

Furthermore, we show by the consensus error depicted in
Figure 11 that if the compensation signals 𝑟𝑖(𝑘) are neglected,
the angular positioning system loses its desired formation during
the transition times, highlighting the importance of the proposed
method.

5 | Conclusions

This paper has addressed the problem of consensus in
leader-follower formation for multi-agent systems represented
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FIGURE 9 | Trajectories of the leader and following agents equipped
with the proposed formation consensus protocol designed with
Theorem 1—Example 4.2.

FIGURE 10 | Trajectories of the consensus error obtained with the
consensus protocol designed with Theorem 1—Example 4.2.

FIGURE 11 | Trajectories of the consensus error obtained with the
consensus protocol designed with Theorem 2 without the compensation
signals 𝑟𝑖(𝑘)—Example 4.2.

by discrete-time polytopic LPV models. The modeling employed
investigates a more general scenario, where although all agents
belong to a homogeneous polytopic domain, it allows a mis-
match among the scheduling parameters of the agents and
the leader. Under this scenario, the dynamics of the consensus
tracking error are subject to internal perturbations that might
prevent the closed-loop system from achieving the desired for-
mation. To properly deal with this issue, we proposed a novel
distributed gain-scheduled observer-based consensus protocol
that, in addition to the classical relative information concerning
the neighboring agents, also possesses compensation signals to
cancel these perturbations. It has been shown that, with the
design of these additional components, the proposed protocol
enhances the set of possible formations even with mismatches
in the physical modeling os the agent. Moreover, for the cases
where we cannot design the compensation signals, we have
presented a 𝓁∞ analysis condition that provides an upper bound
for the disturbed augmented error system and guarantees a
practical formation. Numerical experiments highlight the effec-
tiveness of the proposed consensus protocol in achieving the
exact leader-follower consensus even when mismatches among
the time-varying scheduling parameters introduce heterogeneity
into the MASs. One limitation of the proposed protocol is the
requirement of ideal and undirected communication among
agents. However, dealing with network issues such as com-
munication delays, packet dropouts, and cyberattacks goes
beyond the scope of this work and will be addressed in future
research.
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