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Abstract

Artificial Intelligence (AI) and computer-aided diagnosis (CAD) have revolutionised var-
ious aspects of modern life, particularly in the medical domain. These technologies en-
able efficient solutions for complex challenges, such as accurately segmenting brain tu-
mour regions, which significantly aid medical professionals in monitoring and treating
patients. This research focuses on segmenting glioma brain tumour lesions in MRI images
by analysing them at the pixel level. The aim is to develop a deep learning-based approach
that enables ensemble learning to achieve precise and consistent segmentation of brain
tumours. While many studies have explored ensemble learning techniques in this area,
most rely on aggregation functions like the Weighted Arithmetic Mean (WAM) without
accounting for the interdependencies between classifier subsets. To address this limitation,
the Choquet integral is employed for ensemble learning, along with a novel evaluation
framework for fuzzy measures. This framework integrates coalition game theory, infor-
mation theory, and Lambda fuzzy approximation. Three distinct fuzzy measure sets are
computed using different weighting strategies informed by these theories. Based on these
measures, three Choquet integrals are calculated for segmenting different components
of brain lesions, and their outputs are subsequently combined. The BraTS-2020 online
validation dataset is used to validate the proposed approach. Results demonstrate superior
performance compared with several recent methods, achieving Dice Similarity Coefficients
of 0.896, 0.851, and 0.792 and 95% Hausdorff distances of 5.96 mm, 6.65 mm, and 20.74 mm
for the whole tumour, tumour core, and enhancing tumour core, respectively.

Keywords: brain cancer; MRI; Choquet integral; coalition game theory; deep learning;
medical imaging; machine learning

1. Introduction
Brain tumours are abnormal cell growths in the brain or surrounding tissues, classified

as primary (originating in the brain) or secondary (metastatic, from other parts of the
body) tumours. While their causes are not fully understood, genetic factors, radiation
exposure, and environmental influences may contribute. Treatment typically involves
surgery, radiation therapy, and chemotherapy, depending on tumour type, location, and
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stage. Medical imaging, particularly MRI, plays a critical role in diagnosing and managing
brain tumours due to its superior soft tissue contrast. However, manual diagnosis faces
challenges such as subjective interpretation, variability in radiologist expertise, and complex
tumour morphology, leading to potential misdiagnoses or delays in treatment [1,2].

Conventional approaches to brain tumour segmentation primarily rely on manual
delineation by expert radiologists or traditional image processing techniques, such as
thresholding, region growing, edge detection. These methods mainly utilize handcrafted
features—such as intensity, texture, and shape descriptors—to distinguish tumour tissue
from healthy brain structures. While these techniques have contributed to advancements
in medical imaging analysis, they frequently suffer from limitations, including sensitivity
to image noise, poor generalizability across diverse patient populations, and an inability to
capture the intricate and heterogeneous nature of brain tumours [3]. Furthermore, manual
segmentation is time-consuming and subject to intra- and inter-observer variability, which
can compromise diagnostic consistency and accuracy.

Artificial Intelligence (AI) offers solutions to these challenges, enhancing diagnostic
accuracy and reducing variability. Deep learning methods, especially Convolutional Neural
Networks (CNNs), have proven effective for tasks like tumour segmentation, enabling
early detection and personalized treatment [1,4]. Ensemble learning further improves
model performance by combining predictions from multiple algorithms, though traditional
aggregation methods like the Arithmetic Mean or Weighted Arithmetic Mean fail to account
for classifier interactions. Advanced methods, such as fuzzy integrals (e.g., the Choquet
integral), address these limitations by considering both the importance of individual
classifiers and their interactions [5].

Calculating fuzzy measures for such integrals is computationally complex, but the
Lambda fuzzy approximation balances complexity and applicability. This study uses
the Lambda fuzzy approximation, supported by coalition game theory, to compute
fuzzy measures and applies the Choquet integral to aggregate predictions from multi-
ple CNN models [6]. Segmentation of brain tumours remains challenging due to complex
tumour morphology and imaging variability. While U-Net-based architectures have shown
success [7], improvements are needed in capturing spatial relationships. This study intro-
duces the following two novel feature concatenation techniques to enhance U-Net models:

1. Channel shuffling: Intermixes encoder and decoder feature maps to improve hierar-
chical feature processing and spatial detail capture;

2. Width shuffling: Shuffles feature map widths to enhance spatial resolution, particu-
larly for high-dimensional 3D data.

An ensemble framework aggregates predictions from six U-Net variants using the
Choquet integral, which accounts for interactions between subsets of models. Fuzzy
measures calculated using the Lambda fuzzy approximation and coalition game theory
address the limitations of traditional ensemble methods [8]. Key contributions include
the following:

• Novel channel and width shuffling techniques to enhance U-Net-based architectures;
• A method for fuzzy measure calculation using coalition game theory and the Lambda

fuzzy approximation;
• Application of the Choquet integral to aggregate predictions, enabling robust

tumour segmentation.

The remainder of the paper is structured as follows: Section 2 reviews related work
on brain tumour diagnosis and segmentation. Section 3 describes the dataset and de-
tails the proposed method. Section 5 outlines the experimental setup and methodology.
Section 6 presents experimental results, including error analysis and comparisons with
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state-of-the-art methods. Section 7 concludes the paper and discusses potential future
research directions.

2. Related Work
The field of brain tumour segmentation has seen significant advancements through

deep learning techniques, benchmarked on datasets such as BraTS-2020. These develop-
ments span network architectures, loss functions, optimisers, and data augmentation strate-
gies. Related work can be organised into three categories: standalone models, ensemble-
based approaches, and methods leveraging recent deep architectures.

2.1. Standalone Models for Brain Tumour Segmentation

Standalone models form the foundation of brain tumour segmentation research. Vari-
ous techniques focus on optimising networks, incorporating attention mechanisms, and
leveraging hierarchical or probabilistic designs. Sun et al. [9] introduced HAD-Net, which
incorporates hyper-scale shifted aggregating and max-diagonal sampling techniques to
optimise multi-scale interactions in U-Net frameworks. Yu [10] proposed DTASUnet, a
U-shaped network employing dual transformers to extract local and global features, achiev-
ing robust results on BraTS and BTCV datasets. S and Clement [11] developed IC-Net
with multi-attention blocks and feature concatenation networks to address challenges like
tumour heterogeneity. Soulaiman et al. [12] proposed an efficient LinkNet-34 model with an
EfficientNetB7 encoder, achieving a Dice Coefficient of 0.915 and reducing computational
costs while maintaining segmentation accuracy. Zhang et al. [13] developed AugTransU-
Net, which combines U-Net with Transformer modules and paired attention mechanisms
to capture long-range dependencies. Guan et al. [14] introduced 3D AGSE-VNet, incorpo-
rating anisotropic convolutional layers, Squeeze and Excite (SE) modules, and Attention
Guide Filters (AG) to handle anisotropic voxel sizes and reduce noise. Zhuang et al. [15]
developed ACMINet, employing cross-modality feature fusion and dual interaction graph
reasoning for improved spatial and channel feature relationships. Ahmad et al. [16]
presented MH-UNet, leveraging hierarchical structures and residual-inception blocks to in-
tegrate global and local information. Xu et al. [17] proposed CH-UNet, which incorporates
corner attention mechanisms (CAM) and high-dimensional perceptual loss (HDPL) to en-
hance inter-slice information modelling and preserve local consistency. Liu [18] introduced
a noise diffusion probability model for multi-class segmentation, enhancing recognition in
challenging regions like enhancing tumours (ET) using a two-step approach that combines
diffusion-based modelling with ET boundary recognition.

2.2. Ensemble-Based Approaches

Ensemble methods have emerged as a promising strategy to improve segmentation
accuracy by combining the strengths of multiple models. Rajput et al. [19] proposed a tri-
planar ensemble model for robust segmentation using multi-parametric MRI (mpMRI) data,
incorporating attention mechanisms to enhance feature focus. Henry et al. [20] introduced
a deeply supervised 3D U-Net ensemble, utilizing Stochastic Weight Averaging (swa) to
prevent overfitting. Nguyen et al. [21] employed nested U-Nets and BiFPN ensembles
combined with a classification network for improved tumour boundary differentiation.
Zaho et al. [22] proposed UMM, integrating predictions from 2D-CNN, 2.5D-CNN, and
3D-CNN models using uncertainty-aware soft labels. Furthermore, a fuzzy ensemble
framework based on the Choquet integral was introduced, leveraging fuzzy measures
and coalition game theory to account for inter-model interactions. Wen et al. [23] de-
signed a deep ensemble framework using multimodal MRI data, combining asymmetric
convolution and dual-domain attention mechanisms for simultaneous segmentation and
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glioma risk grading. Litijens et al. [3] utilized modality-pairing learning in a 3D U-Net
for the BraTS-2020 Challenge, incorporating ensemble strategies and post-processing for
refined segmentation.

2.3. Methods Leveraging Recent Deep Architectures

Recent innovations in deep architectures have further improved tumour segmentation
through attention mechanisms, feature aggregation, and novel optimisers. Akbar et al. [24]
proposed MRAB-UNet, integrating Multipath Residual Attention Blocks (MRABs) and atten-
tion gates in skip connections for focused feature extraction. Liu et al. [25] replaced ADHDC-
Net standard convolutions with hierarchical decoupled convolutions (HDC), enhancing focus
on tumour regions. Ref. [26] introduced MSegNet, a Transformer-based framework with
cross-modal attention mechanisms for capturing spatial and depth dimensions in multimodal
MRI data. Silva et al. [27] introduced a multi-stage deep layer aggregation framework that
uses Gaussian filters and auxiliary losses to reduce aliasing artefacts and improve spatial
fusion. Fidon et al. [28] proposed a 3D U-Net with the generalized Wasserstein Dice loss to
address the hierarchical structure of tumour regions. They employed robust optimisation tech-
niques and the Ranger optimiser for stability. Rastogi et al. [29] developed a hybrid approach
combining 3D Replicator Neural Networks and 2D Volumetric Convolutional Networks for
enhanced feature extraction and segmentation.

Table 1 summarizes related work, outlining the proposed methods, the datasets
employed for experimentation, and the primary results obtained. Performance is evaluated
primarily using the Dice coefficient and Hausdorff distance. The latter is a metric for
quantifying the spatial discrepancy between the boundaries of two segmentations, such
as a ground truth and a predicted mask. Because the standard Hausdorff distance is
highly sensitive to outliers and noise, the 95th percentile Hausdorff distance (HD95) is
used, considering the 95th percentile of all boundary-to-boundary distances instead of the
maximum. This makes HD95 more stable and clinically relevant, particularly in medical
imaging, where it can reveal significant boundary errors that may not be captured by
overlap-based metrics like the Dice similarity. Mathematically, HD95 is defined as the 95th
percentile of the set of minimum distances from each point on one segmentation boundary
to the other, considering both directions. It is expressed by Equation (1).

• A and B are two sets of points (e.g., boundary points of two segmentations).
• a ∈ A: A point from set A.
• b ∈ B: A point from set B.
• ∥a − b∥: The Euclidean distance between points a and b.
• minb∈B ∥a − b∥: The shortest distance from a point a in A to any point in B.
• mina∈A ∥b − a∥: The shortest distance from a point b in B to any point in A.
• ∪: The union operator, combining the distances calculated in both directions.
• percentile95(. . .): The 95th percentile value of the combined set of minimum distances,

making the metric robust to outliers.

HD95(A, B) = percentile95

({
min
b∈B

∥a − b∥ | a ∈ A
}
∪
{

min
a∈A

∥b − a∥ | b ∈ B
})

(1)
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Table 1. Summary of related work methods and findings.

Work Reference Methods Dataset Results

[3]

Modality-pairing
learning; parallel
modality-specific

branches

BraTS-2018 Dice: 89.1%, 84.2%,
81.6%

[28]

Wasserstein
Dice loss;

distributionally
robust

optimization;
Ranger optimizer

BraTS-2020,
BraTS-2021

Dice: 88.9%, 84.1%,
81.4%; HD95: 6.4,

19.4, 15.8

[21]

DCNN with
classification
branch to aid
segmentation

BraTS-2020 Dice: 78.43%,
89.99%, 84.22%

[14]
AGSE-VNet using

SE and AG
modules

BraTS-2020 Dice: 68%, 85%
(enhanced tumour)

[16]

Dense +
residual-inception
blocks for gradi-

ent/contextual flow

BraTS-2018,
BraTS-2019,
BraTS-2020

Dice: Not reported

[17]
U-Net with Corner
Attention Module
(CAM) and HDPL

BraTS-2018,
BraTS-2019,
BraTS-2020

Dice: 89.6%,
85.1%, 79.2%

3. Methodology
The methodology proposed for brain tumour segmentation follows a structured

pipeline, as illustrated in Figure 1. This overall pipeline is composed of three key stages:
image preprocessing, data augmentation, and the segmentation stage.

Figure 1. General pipeline of the proposed methodology.

Initial image preprocessing standardizes the data by correcting for artefacts and
variations. Data augmentation expands the dataset to prevent overfitting and improve the
model’s generalization. The segmentation stage utilizes the prepared data to accurately
delineate tumour regions. It consists of training deep models, aggregating predictions to
reconstruct the segmentation, and refining segmentation. The implementation of each stage
is tailored to the specific characteristics of the target dataset, as discussed below.

The BraTS-2020 dataset, a publicly available benchmark, includes four MRI modalities
from glioma patients: T1, T1ce, T2, and T2-FLAIR [30–34]. These are paired with expert-
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generated ground truth masks delineating peritumoural oedema (ED), necrotic and non-
enhancing tumour core (NCR/NET), and enhancing tumour (ET).

The dataset presents challenges due to heterogeneity in imaging protocols. The model
was trained on 295 BraTS-2020 training cases and validated on 74 cases. Inference was
performed on the BraTS-2020 online validation set (125 cases). Figure 2 shows a sample
MRI scan and annotations.

Figure 2. Example of a brain tumour from the BraTS-2020 training dataset. Yellow: enhancing
tumour (ET), blue: non-enhancing tumour/necrotic tumour (NET/NCR), and green: peritumoural
oedema (ED).

3.1. Image Pre-Processing

To standardize images, min-max scaling is applied to each MRI sequence after clipping
intensity values, as follows:

I′ =
I − Imin

Imax − Imin
(2)

where I′ is the normalized intensity in [0, 1]. Images were cropped and re-cropped to
(128 × 128 × 128) for training and (144 × 176 × 144) for validation. This enabled the
elimination of the majority of irrelevant background present in the original volume, thereby
facilitating the analysis of a nearly complete representation of each brain tumour.

3.2. Data Augmentation

On-the-fly data augmentation is employed to mitigate overfitting. Augmentations include
the following:

1. Input channel rescaling: Voxel values are multiplied by a factor r ∼ U(0.9, 1.1) with a
probability of 70–80%, as follows:

I′ = I · r, r ∼ U(0.9, 1.1) (3)
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2. Input channel intensity shift: A constant c ∼ U (0, 0.1) is added to each voxel with a
probability of 5–10%, as follows:

I′ = I + c, c ∼ U (0, 0.1) (4)

3. Additive Gaussian noise: Noise n ∼ N (0, 0.1) is added to each voxel, as follows:

I′ = I + n, n ∼ N (0, 0.1) (5)

4. Input channel dropping: A randomly selected input channel is set to zero with a
probability of 12–16%.

5. Random flipping: Inputs are flipped along spatial axes with a probability of 70–80%.

3.3. Proposed Brain Tumour Segmentation

This work proposes a lambda fuzzy-based ensemble method for brain tumour
segmentation. It combines outputs from multiple DCNNs (3D U-Net variants) using
the Choquet integral, leveraging fuzzy measures from coalition game theory, informa-
tion theory, and heuristic weighting. The final segmentation masks are computed for
enhancing tumour (ET), tumour core (TC), and whole tumour (WT).

The workflow can be summarized in the following steps:

• Deep Models: Train multiple U-Net variants.
• Ensemble Aggregation: Aggregate predictions using the Choquet integral with

fuzzy measures.
• Post-Processing: Refine segmentation masks.

3.3.1. Neural Network Architectures

The backbone of the proposed network is a 3D U-Net architecture (Figure 3) with a
classic encoder–decoder structure. The encoder consists of four stages, each comprising
two 3 × 3 × 3 convolutional layers, followed by group normalization and ReLU activation.
Spatial dimensions are progressively reduced using 3D MaxPooling or RelatedPooling
operations, with the number of filters doubling after each downsampling step, starting from
48. At the deepest layer, dilated convolutions are applied to increase the receptive field.

The decoder mirrors the encoder, using trilinear interpolation for upsampling and
reconstructing segmentation masks. To preserve and effectively utilize spatial informa-
tion, shortcut connections are established between matching encoder and decoder stages.
Uniquely, instead of the conventional concatenation along the channel axis as in standard
U-Net variants, this architecture employs a channel shuffling strategy (Figure 4) and width
shuffling (Figure 5). Specifically, the encoder’s output and the upsampled decoder feature
maps are first stacked along the last axis, creating a more intricate structure. They are then
reshaped to interleave and mix the corresponding feature channels from both pathways
before being fed into the subsequent decoder layer. This channel shuffling approach intro-
duces greater flexibility in information flow, potentially enabling the network to capture
more detailed spatial and hierarchical features.
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Figure 3. Overview of the proposed deep neural network architecture.

Figure 4. The proposed channel shuffling technique.
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In the final decoder layer, three output channels (ET, TC, WT) are produced with
sigmoid activation. Additionally, the dilation trick [35] is applied to further enhance
receptive field coverage.

Figure 5. The proposed width shuffling technique.

3.3.2. Ensemble Method for Brain Tumour Segmentation

The ensemble method uses the Choquet integral to combine predictions (Figure 3).
This allows for a sophisticated combination of predictions by considering the interactions
between classifiers rather than assuming their independence.

1. Shapley Values: The Shapley value φi(v), represented by Equation (6), represents the
average contribution of classifier i to all possible coalitions.

φi(v) = ∑
S⊆N\{i}

|S|!(n − |S| − 1)!
n!

(v(S ∪ {i})− v(S)) (6)

where n is the total number of classifiers, S is a subset of classifiers excluding i, |S| is
the cardinality of S, v(S) is the characteristic function indicating the value of coalition
S, and v(S ∪ i) is the value with classifier i included. v(S ∪ i)− v(S) is the marginal
contribution of classifier i on coalition S. It is calculated by Equation (7).

I( fk; class | L)− I(L; class) (7)
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where I( fk; class | L) is the conditional mutual information between the predictions of
classifier fk and the ground truth labels, based on the outputs of classifiers in the set
L, and I(L; class) is the mutual information between L’s classifiers and the true labels.
Based on the values of I( fk; class | L) and I(L; class), classifiers can be as follows:

• Redundant:
I( fk; class | L) < I(L; class) (8)

• Independent:
I( fk; class | L) = I(L; class) (9)

• Interdependent:
I( fk; class | L) > I(L; class) (10)

2. Lambda Fuzzy Approximation: Computational tractability is enhanced using a pa-
rameter λ, which facilitates the estimation of fuzzy measures µ(A) for all subsets X,
as follows:

λ + 1 =
N

∏
n=1

(λµ(An) + 1) (11)

Here, N is the number of classifiers, and An refers to individual classifiers. λ is
used to compute fuzzy measures for larger subsets by leveraging those of individual
classifiers. The fuzzy measure of the union of two classifiers Ai and Aj can be
calculated by Equation (12), given that λ > −1, as follows:

µ(Ai ∪ Aj) = µ(Ai) + µ(Aj) + λµ(Ai)µ(Aj) (12)

A heuristic based on mutual information is utilized (Equation (13)), as follows:

marginal contribution = I( fk; class )− 1
l ∑

fi∈L
I( fk, fi) (13)

L is the current set of selected classifiers with cardinality l, and I( fk, fi) is the mutual
information between fk and fi ∈ L. This heuristic estimates the marginal contribution
of a classifier by taking into account its relevance and redundancy.

Weighting Schemes

To further penalize redundancy, the marginal contribution is adjusted through Equation (14),
as follows:

marginal contribution = I( fk; class)− 1
l ∑

fi∈L
weights · I( f j, fi) (14)

Here, the penalty term relates to the mutual information I( f j, fi) between f j and the
other classifiers fi in L, weighted according to classifier accuracy. Based on validation
accuracies, the following three distinct weighting schemes are considered:

1. Weighting Scheme 1:

weight 1 =
(1 − Vi) + (1 − Vk)

2
(15)

Vi and Vk are respectively the validation accuracies of fi and fk. This approach assigns
lower weights to classifiers with superior validation accuracy.

2. Weighting Scheme 2:

weight 2 =
(1/Vi) + (1/Vk)

2
(16)
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Here, the reciprocal of validation accuracy is used, such that higher accuracy corre-
sponds to lower weight.

3. Weighting Scheme 3:

weight 3 =
−log(Vi) +−log(Vk)

2
(17)

This scheme utilizes the negative logarithm of validation accuracies, similarly reduc-
ing the weight for more accurate classifiers.

The final fuzzy measures are computed by averaging the results obtained from these
three schemes.

Choquet Integral

The discrete Choquet integral serves as an advanced aggregation operator for the
outputs of multiple models. The Choquet integral incorporates both the individual im-
portance of each model and the interactions among models by means of fuzzy measures
defined over all subsets of classifiers. Each model’s prediction is thus weighted according
to, in addition to its standalone performance, its contribution with other models. This
allows the Choquet integral to effectively aggregate model outputs, which is particularly
advantageous in complex scenarios such as brain tumour segmentation, where models
may capture complementary information dimensions. The discrete Choquet integral is
formally defined as in the following Equation (18) [36]:

Cµ(x) =
n

∑
i=1

x(i)(µ(Ai)− µ(Ai+1)) (18)

where x(i) denotes the i-th smallest element of the input vector x, µ(Ai) is the fuzzy measure
for subset Ai, and n is the number of classifiers. This formulation expresses the Choquet
integral as a weighted sum over the ordered inputs.

An equivalent form, as presented in [37], is given by the following Equation (19):

Cµ(x) =
n

∑
i=1

(
x(i) − x(i−1)

)
µ(Ai) (19)

where x0 = 0. This alternative formulation computes the integral as the sum of differences
between consecutive ordered input values, each weighted by the fuzzy measure of the
corresponding subset.

4. Fuzzy Measures
Fuzzy measures are a generalization of traditional measures (like probability measures)

that allow for the representation of uncertainty and imprecision. They are particularly
useful in scenarios where the relationships between elements are not strictly additive,
which is often the case in real-world applications, such as in ensemble learning. In the
context of fuzzy measures, you need to balance these properties, as follows:

Let X be a universe of discourse; then µ : 2X → [0, 1] is a fuzzy measure if it satisfies
the following:

1. Boundary Condition: The measure of the empty set is zero, and the measure of the
entire universe of discourse X is one, as follows:

µ(∅) = 0 and µ(X) = 1.
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2. Monotonicity: This refers to the requirement that fuzzy measures respect the natural
inclusion relationship between subsets. Specifically, for A, B ∈ 2X, if A ⊆ B, then
µ(A) ≤ µ(B).

3. Continuity: If you have a sequence of sets that are either increasing or decreasing, the
measure of the limit of these sets should equal the limit of their measures, as follows:
A1 ⊆ A2 ⊆ . . . or A1 ⊇ A2 ⊇ . . ., then limi→∞ µ(Ai) = µ(limi→∞ Ai).

4. Super-additivity and Sub-additivity: These concepts refer to how the measure of the
union of sets relates to the measures of the individual sets. Super-additivity means
that the measure of the union is at least as large as the sum of the measures of the
individual sets, while sub-additivity means that it is at most that sum.

5. Experimental Setup
5.1. Configuration Setup

Hardware and software specifications are summarized in Table 2. Cython v3.1.2 was
employed to decrease processing time by enhancing execution speed.

Table 2. Hardware and software setup for the experimental pipeline.

Category Details

Hardware

• NVIDIA A100 40 GB GPU: Used for training and valida-
tion (254 s/epoch for training, 70 s/epoch for validation,
134 s/epoch validation with swa)

• NVIDIA T4 GPU: Choquet integral execution (21 h per
weighting scheme)

• NVIDIA L4 GPU: Choquet integral execution (18 h per
weighting scheme)

• Google Colab Pro+: 83.48 GB RAM (21 GB used for Shapley
value calculation with 74 patients)

Software

• Google Colab
• Python v3.12.0, Jupyter Notebook v7.2.1
• Cython v3.1.2 library
• SimpleITK v2.5.0 library

5.2. Evaluation Metrics

The model performance was assessed using metrics like Dice Similarity Coefficient
(DSC), sensitivity, specificity, and Hausdorff distance (HD95).

• Dice Similarity Coefficient (DSC): Measures overlap between predicted and ground
truth segmentations.

DSC =
2 · TP

2 · TP + FP + FN
(20)

• Sensitivity: Measures the ability to detect positive instances.

Sensitivity =
TP

TP + FN
(21)

• Specificity: Measures the ability to detect negative instances.

Speci f icity =
TP

TN + FP
(22)
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• Dice Loss: Used to train the network.

DSC = 1 − 1
N ∑

n

Sn ∗ Rn + ε

S2
n + R2

n + ε
(23)

The models were trained using five-fold cross-validation for 400 epochs. Key training
strategies included the following:

1. Learning Rate Schedule: Initial learning rate of 0.0001 reduced using cosine decay
after 100 epochs.

2. Stochastic Weight Averaging: Applied after 250 epochs.
3. Optimiser: Ranger optimiser for primary training, Adam optimiser during Stochastic

Weight Averaging.
4. Model Selection: The two best-performing models were selected based on validation loss.

During prediction, six trained U-Net models were evaluated on 74 patients. The
process involved the following:

1. Predicted Masks: Each model generated binary masks for ET, TC, and WT.
2. Pixel-Wise Aggregation: Predictions were combined using the Choquet integral.
3. Final Labelmap Reconstruction: Tumour sub-regions were combined to construct a

3-channel labelmap.

6. Results and Discussion
Table 3 summarizes the used models, the number of parameters and epochs, and the

training time.

Table 3. Overall models, epochs, and training time.

Aspect Details

Models 3D U-Net variants (related pooling, channel/width shuffle, 3D
MaxPool)

Parameters 19,167,819 per model

Epochs 500 total

Training Time ∼41.75 h (500 epochs, A100 40GB GPU)

Per Epoch Time Training: 254 s; validation: 70 s (134 s with swa)

Ensemble Choquet integral, 63 subsets, Shapley values, 3 weighting schemes

Ensemble Time T4: 21 h; L4: 18 h; A100: 160–178 s/patient, 18.22 h total

6.1. Performance Analysis of the Proposed Approach

Figure 6 illustrates validation Dice scores and loss curves, with all models achieving
Dice scores exceeding 0.8 for each tumour region and WT achieving the highest Dice scores.
The models had 19,167,819 trainable parameters, with training requiring approximately
254 s per epoch and validation requiring 70 s (doubled during swa).

For segmentation, three U-Net model variants were ensembled using the Choquet
integral. The computation of Shapley values required approximately 8.72 h per tumour
region, while the time required for Choquet integral calculations varied depending on the
specific GPU utilized. Table 4 presents the performance metrics of both individual models
and ensemble methods on the BraTS-2020 validation dataset, which comprises 125 cases.
The table includes results for six distinct 3D U-Net classifiers and the proposed ensemble
approaches. In this context, the notation W or C within a method name indicates the con-
catenation mode, specifically referring to width shuffling or channel shuffling, respectively.
The label R denotes the implementation of a 3D pooling layer in place of conventional
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MaxPooling. The term swa signifies the use of a sophisticated weight averaging technique.
Additionally, WS-1, WS-2, and WS-3 correspond to different weighting schemes applied
during ensemble construction. All evaluations were conducted using the official BraTS
platform at https://synapse.org/brats (accessed on 12 February 2025).

Figure 6. Validation loss with Dice score metrics of the 3D-UNET models.

Table 4. Validation results for Dice, sensitivity, specificity, and Hausdorff95 metrics for the 3-class
segmentation of MRI images.

Methods
Dice Sensitivity Specificity Hausdorff95

ET WT TC ET WT TC ET WT TC ET WT TC

W276 0.787 0.870 0.833 0.818 0.941 0.846 0.999 0.998 0.999 21.09 8.06 6.98

W288 0.784 0.873 0.824 0.808 0.932 0.854 0.999 0.998 0.999 21.58 8.78 10.32

C402swa 0.789 0.872 0.832 0.817 0.945 0.830 0.999 0.998 0.999 20.71 8.74 8.25

C387 0.784 0.877 0.833 0.815 0.942 0.847 0.999 0.998 0.999 20.95 10.15 8.76

r445 0.783 0.877 0.839 0.799 0.931 0.843 0.999 0.998 0.999 29.30 7.40 7.40

r401 0.766 0.884 0.835 0.789 0.918 0.827 0.999 0.998 0.999 32.78 6.63 7.88

Choquet
Integral
(WS-1)

0.775 0.893 0.817 0.768 0.902 0.775 0.999 0.999 0.999 29.50 6.02 9.11

Choquet
Integral
(WS-2)

0.777 0.892 0.824 0.772 0.920 0.787 0.999 0.998 0.999 29.49 6.25 8.98

Choquet
Integral
(WS-3)

0.774 0.892 0.813 0.764 0.893 0.768 0.999 0.999 0.999 29.54 6.02 9.18

6 models
simple avg 0.790 0.885 0.848 0.812 0.941 0.849 0.999 0.998 0.999 23.74 6.89 6.62

https://synapse.org/brats
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• Individual Model Performance: Dice scores for TC ranged from 0.82436 to 0.83919, WT
ranged from 0.87065 to 0.88439, and ET ranged from 0.76689 to 0.78964. Specifically,
Model 2 achieved a Dice score of 0.82436 for TC, while Model 5 reached 0.83919. For
WT, Model 1 scored 0.87065, and Model 6 achieved 0.88439. ET segmentation showed
the highest variability, with scores between 0.76689 (Model 6) and 0.78964 (Model 3).
Sensitivity values for ET were highest for Model 1 (0.81825) and lowest for Model 6
(0.78967). WT sensitivity showed excellent performance across all models, with values
exceeding 0.918, whereas TC sensitivity varied, with Model 3 performing the worst
(0.8306) and Model 2 performing the best (0.85453). Specificity was consistently high
across all models for all tumour sub-regions, with values close to 0.999. The Hausdorff
distance (95%) for ET was lowest for Model 3 (20.71231), reflecting better boundary
prediction, while Model 6 had the highest (32.78875), indicating less accurate boundary
delineation. For WT and TC, the Hausdorff distances were generally low, with the
best values for Models 6 and 5, respectively.

• Weighted Ensembles: Weighted ensemble techniques optimised model performance,
especially for WT segmentation. Weight1 achieved strong results for WT segmentation
(Dice = 0.89318) and specificity (0.99976 for TC), while Hausdorff distances showed
improvements, particularly for WT (6.02998). Weight2 performed comparably with the
highest Dice score for ET (0.77724) and slightly better TC segmentation than Weight1
(Dice = 0.82411). WT sensitivity also improved (0.92054), demonstrating that the
ensemble effectively integrated complementary strengths of the models. Weight3 had
slightly lower performance overall but maintained competitive metrics for specificity
(0.99977 for ET and TC) and WT segmentation. A simple average ensemble yielded
stronger results for TC and ET but lagged in WT performance. The simple average
approach outperformed the weighted techniques for Dice scores in TC (0.84869) and
ET (0.79047), but it did not achieve the same level of performance in WT segmentation
(Dice = 0.88571). It demonstrated good sensitivity for all sub-regions, particularly
TC (0.84953) and WT (0.94181). The Hausdorff distance for TC (6.62945) was notably
the best among all approaches, while ET and WT distances remained competitive.
The weighted ensembles (Weight1, Weight2, and Weight3) provided consistent per-
formance improvements for WT segmentation compared with individual models,
highlighting the ensemble’s ability to leverage diverse model outputs effectively. The
Dice scores and Hausdorff distances suggest that the ensembles prioritize overall
stability, particularly for WT segmentation, where the weights focus on integrating
the strengths of all models. However, for the more challenging ET region, none of
the ensembles managed to outperform the simple average, indicating that additional
refinement or ET-specific weighting strategies may be required to address the small
size and variability of this tumour sub-region.

Table 5 demonstrates the Shapley values for six classifiers across the three weighting
schemes, i.e., enhancing tumour (ET), whole tumour (WT), and tumour core (TC). It is clear
that, for all the weighting schemes, the Shapley values for ET are much smaller than those
for TC and WT. This confirms that the ET region, being small and sometimes nonexistent, is
challenging to segment effectively. Weight2 shows relatively higher values for ET compared
with Weight1 and Weight3, suggesting that it is more sensitive to the ET region. Shapley
values for TC are consistently higher than ET but still smaller than WT. Weight2 consistently
gives higher contributions for TC compared with Weight1, suggesting better performance
for this region. Weight3 shows negative contributions, which could mean a different scale
or prioritization compared with the other weights. WT consistently has the highest Shapley
values across all weights, reflecting the larger size and better segmentation performance.
Weight2 gives significantly higher values than Weight1, and Weight3 has negative values
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but maintains the same relative model ranking. ET consistently had the lowest Shapley
values. Adjustments to Shapley values (Table 6) prioritised ET and TC. For W1_20 and
W2_20, adjustments were based on the original Shapley values from Weight1 and Weight2,
prioritizing Model 3 (0.2077) for ET and Model 5 (0.2077) for TC. In the new Weight3, a
balanced approach was adopted by combining the WT Shapley values from Weight3 with
the adjusted ET and TC values from Weight1.

Table 5. Shapley values for the six 3D U-Net classifiers calculated using three weighting schemes:
WS-1, WS-2, and WS-3.

Subset Tumour SV (WS-1) SV (WS-2) SV (WS-3)

W276 ET, WT, TC 0.011256, 0.036154, 0.019697 0.026734, 0.103931, 0.051548 −0.003341, −0.010863, −0.003477

W288 ET, WT, TC 0.011129, 0.038152, 0.016595 0.026717, 0.106726, 0.047071 −0.003527, −0.009044, −0.005739

C402_swa ET, WT, TC 0.0115, 0.03664, 0.019509 0.026931, 0.103906, 0.051083 −0.00323, −0.00992, −0.003161

C387 ET, WT, TC 0.010704, 0.039278, 0.017495 0.026101, 0.107952, 0.048416 −0.003864, −0.008584, −0.005179

r445 ET, WT, TC 0.009916, 0.038467, 0.020848 0.025075, 0.106737, 0.05255 −0.004238, −0.008989, −0.001954

r401 ET, WT, TC 0.009628, 0.039894, 0.020227 0.024291, 0.10801, 0.051912 −0.004343, −0.006779, −0.002642

Table 6. Adjusted Shapley values for the six 3D U-Net classifiers calculated for four variations of
weighting schemes: WS-1-20, WS-2-20, WS-1-17, and WS-2-17.

Subset Tumour SV (WS-1-20) SV (WS-2-20) SV (WS-1-17) SV (WS-2-17)

W276 ET, WT, TC 0.203293, 0.036154, 0.196238 0.206182, 0.103931, 0.203742 0.175549, −0.010863, 0.172221 0.171537, 0.048112, 0.170193

W288 ET, WT, TC 0.200709, 0.038152, 0.165327 0.20605, 0.106726, 0.186044 0.173318, −0.009044, 0.145093 0.171427, 0.049405, 0.15541

C402_swa ET, WT, TC 0.2077, 0.03664, 0.194358 0.2077, 0.103906, 0.201904 0.179355, −0.00992, 0.170571 0.1728, 0.0481, 0.168659

C387 ET, WT, TC 0.193323, 0.039278, 0.174298 0.201301, 0.107952, 0.191362 0.16694, −0.008584, 0.152966 0.167476, 0.049973, 0.159853

r445 ET, WT, TC 0.179092, 0.038467, 0.2077 0.193383, 0.106737, 0.2077 0.154651, −0.008989, 0.18228 0.160889, 0.049411, 0.1735

r401 ET, WT, TC 0.17389, 0.039894, 0.201511 0.187343, 0.10801, 0.20518 0.150159, −0.006779, 0.176849 0.155863, 0.05, 0.171395

Table 7 shows results after applying adjusted Shapley values. The Choquet-based
ensemble consistently improved upon the simple average ensemble. For the enhancing
tumour (ET) region, the Choquet ensemble achieved a Dice score of 0.79227, outperforming
the simple average (0.79047). In the tumour core (TC) region, the Choquet ensemble
showed a slight improvement (0.85051) compared with the simple average (0.84869). The
largest gain was observed for the whole tumour (WT) region, where the Dice score of the
Choquet ensemble reached 0.89602, significantly higher than the simple average (0.88571).
Sensitivity for ET improved from 0.81294 in the simple average to 0.81833 in the Choquet
ensemble. For TC, sensitivity increased to 0.85677 from 0.84953. WT sensitivity decreased
slightly in the Choquet ensemble (0.91051) compared with the simple average (0.94181).
The Choquet ensemble maintained high specificity across all tumour regions, comparable
to the simple average, with values of 0.99965, 0.99909, and 0.99952 for ET, WT, and TC,
respectively. For boundary accuracy, the Choquet ensemble outperformed the simple
average for ET (20.74244 vs. 23.74679) and WT (5.9681 vs. 6.89449). Metrics include Dice,
sensitivity, specificity, and Hausdorff95 values for ET, WT, and TC. WT sensitivity slightly
decreased, suggesting a trade-off prioritising small tumour regions. The Choquet ensemble
achieved better Hausdorff distances for ET and WT. The results demonstrate that the
Choquet ensemble consistently outperforms the simple average approach in terms of Dice
scores and Hausdorff distance for most tumour regions. The Choquet integral effectively
leverages the strengths of individual models, leading to better segmentation accuracy for
the challenging ET and TC regions, as well as improved boundary delineation (lower
Hausdorff distances), particularly for ET and WT.
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Table 7. Performance on the BraTS20 Online Validation Data for the Choquet ensemble strategy
compared with the simple average ensemble.

Method Tumour Dice Sensitivity Specificity Hausdorff95

6 models simple average ET, WT, TC 0.79047, 0.88571, 0.84869 0.81294, 0.94181, 0.84953 0.99966, 0.99858, 0.99954 23.74679, 6.89449, 6.62945

Choquet ensemble ET, WT, TC 0.79227, 0.89602, 0.85051 0.81833, 0.91051, 0.85677 0.99965, 0.99909, 0.99952 20.74244, 5.9681, 6.65144

6.2. Comparison with State-of-the-Art Methods

Table 8 compares the proposed method with other state-of-the-art approaches for
brain tumour segmentation. The included solutions are those that participated in the BraTS
competition, which officially closed in 2024. Consequently, related work published after
the competition has been excluded from this comparison.

The proposed method achieved competitive Dice scores (ET = 0.792, TC = 0.851,
WT = 0.896), outperforming several approaches, including those by [21,28]. The proposed
method achieved competitive Dice scores across all tumour regions: 0.792 for enhanc-
ing tumour (ET), 0.896 for whole tumour (WT), and 0.851 for tumour core (TC). Sensi-
tivity values were robust across all regions, with significant improvements for ET and
TC compared with [24]. The proposed method demonstrated robust sensitivity values for
all tumour regions and performed better than Akbar et al. [24] for ET (0.818 vs. 0.786) and
WT (0.910 vs. 0.905). Specificity was nearly perfect (0.999 across all regions). For specificity,
the proposed method achieved near-perfect results with 0.999 for all tumour regions (ET,
WT, and TC), matching the highest values reported by Wang et al. [3] and Akbar et al. [24].
Additionally, the method achieved the lowest Hausdorff distances among all methods for
ET (20.74), WT (5.96), and TC (6.65). The proposed method outperformed all compared
methods with distances of 20.74 (ET), 5.96 (WT), and 6.65 (TC). Notably, it performed better
than Fidon et al. (2021) [28], Nguyen et al. [21], and Zhang et al. [13], particularly for ET
(20.74 vs. 26.80, 24.02, and 24.31, respectively).

Table 8. Comparison of the proposed Choquet ensemble strategy with other state-of-the-art methods
on BraTS-20 Online Validation Data.

Methods
Dice Sensitivity Hausdorff95

ET WT TC ET WT TC ET WT TC

[3] 0.787 0.908 0.856 0.786 0.905 0.822 35.01 4.71 5.70

[28] 0.776 0.910 0.844 - - - 26.80 5.80 4.40

[21] 0.784 0.899 0.842 - - - 24.02 5.68 9.56

[17] 0.780 0.900 0.820 - - - 26.58 4.43 12.35

[14] 0.680 0.850 0.690 0.680 0.830 0.650 47.40 8.44 31.60

[16] 0.782 0.906 0.836 - - - 32.20 4.16 9.80

Proposed Approach 0.792 0.896 0.851 0.818 0.910 0.856 20.74 5.96 6.65

7. Conclusions
This paper has proposed a deep learning-based approach for the segmentation of

brain lesions from MRI images. Specifically, it utilized the Choquet integral for aggrega-
tion, which considers the decisions made by subsets of classifiers along with individual
classifiers, unlike other aggregation functions. A novel method for the calculation of Fuzzy
measures was also introduced, leveraging coalition game theory (Shapley value), infor-
mation theory, and the Lambda fuzzy approximation. As deep learning strategies, the
proposed approach employed three pre-trained 3D U-Net models with minor modifications,
combining their outputs to achieve robust segmentation results. This approach assumes
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that all segmentation models contribute to classification to some extent, though some
classifiers may provide more valuable information than others. Experiments conducted on
the BraTS-2020 dataset demonstrate the algorithm’s competitive performance, achieving
superior segmentation accuracy compared with existing state-of-the-art methods. These
results underscore the effectiveness of the proposed method, which combines innovative
architectural modifications (channel/width shuffling) and advanced ensemble techniques
(Choquet integral) to consistently deliver superior performance across all tumour regions.
A limitation of our method lies in the selection of useful classifiers from a set that may vary
in informativeness. This issue will be addressed in future work. A conceivable solution
would be to use multi-head attention models, where heads could be used to measure the
usefulness of classifiers and select the most adequate ones.
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