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INTRODUCTION
The categorization of blood pressure (BP) is a crucial component of clinical research. BP 
measurements, acquired during physical examinations, outpatient appointments, or hospital 

ABSTRACT
Objectives: The primary objective of the study is to classify the blood pressure (BP) levels using advanced machine 
learning (ML) techniques for predictive purposes. The study assesses the efficacy of the Naïve Bayes, AdaBoost, 
feedforward neural networks (FNNs), and long short-term memory (LSTM) algorithms over the conventional 
multinomial logistic model using standard performance evaluation metrics.

Methods: The dataset comprised 15,000 entries obtained from the National Health Service, England, each 
containing eight variables. The variables include BP, age, weight, height, gender, smoking habit, alcohol 
consumption, and fitness level. The Naïve Bayes, AdaBoost, FNN, LSTM, and multinomial logistic models were 
employed in the study. Each model underwent training, testing, validation, and evaluation using suitable metrics 
such as accuracy, F1-Score, kappa statistics, sensitivity, specificity, and area under the curve score.

Results: The FNN model gives the highest test accuracy of 89.47% and balanced performance, making it the 
most appropriate model for predicting BP levels. The LSTM model demonstrated strong proficiency in capturing 
temporal patterns. AdaBoost was highly effective for dealing with class imbalance, but Naïve Bayes was a dependable 
benchmark. The multinomial logistic model established a reliable and stable reference point. The results represented 
a notable improvement over previous research, which typically reported median accuracy rates in the 80–85% range.

Conclusion: The study reveals that knowing an individual’s age, weight, height, gender, smoking habit, alcohol 
consumption, and fitness level is useful in predicting his/her BP level. Thus, the advanced ML algorithms 
demonstrate potential in accurately classifying BP levels and can aid in the prevention, detection, and management 
of hypertension.
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stays, form the foundation for most medical interventions. 
The measurements of these readings are expressed in 
millimeters of mercury (mmHg) and comprise two 
values: The systolic pressure (numerator) and the diastolic 
pressure (denominator).[1] A noticeable research obstacle in 
determining BP is the identification of characteristics that can 
accurately predict an individual’s BP level. Previous studies 
have suggested that variables such as age, heredity, body 
mass, stature, physical activity, smoking patterns, sodium 
consumption, and alcohol use can influence BP levels. 
Elevated BP is a prominent risk factor for cardiovascular 
disease and cerebrovascular accident.[2] According to recent 
data from National Health Service (NHS) England and the 
Office for National Statistics, almost 30% of adults in the UK 
receive a diagnosis of high BP from their general practitioner, 
while 29% have untreated hypertension.[3] The prevalence 
of high BP in England is 31% among males and 26% among 
females. Approximately 75 million individuals in the United 
States have hypertension.[4,5] It is crucial to emphasize that 
sporadic episodes of elevated BP caused by sickness or stress 
do not automatically signify hypertension.

Previous studies have shown the categorization of BP into 
a binary or categorical form, utilizing logistic regression 
with only two classes.[6] The response variable is high BP 
or hypertension, and it is assumed to follow a binomial 
distribution with parameters 1 and p, where p represents 
a probabilistic measure. A  person is typically categorized 
as either having high BP (0 = yes) or not having high 
BP (1 = no).[7,8] Nevertheless, this strategy primarily 
emphasizes a seemingly binary result that lacks informative 
or precautionary details for individuals. For example, a 
person’s BP may be identified as elevated yet categorized as 
within the normal range, regardless of the potential risk of 
progressing to hypertension. Furthermore, the investigation 
into the potential association between hypertension and 
other categorical variables, such as smoking habit, physical 
exercise, and alcohol consumption, will be limited to only two 
categories for the hypertension variable. This limitation may 
not yield enough evidence to effectively protect individuals 
from the risk factors of high BP and related cardiovascular 
diseases. A  recent investigation has demonstrated the 
effectiveness of multiclass logistic regression and traditional 
machine learning (ML) methods for BP categorization,[9,10] 
over previous studies regarding the classification and 
management of hypertension.[11-14] The results seem to be 
promising, but the predictive accuracy could be improved. 
Enhancements could be made by choosing more pertinent 
explanatory factors and utilizing more advanced algorithms 
that have the potential to surpass the standard methodologies 
employed in the investigations.

The present study reports novel multiclass advanced ML 
algorithms designed for the classification of BP levels. Before 
utilizing advanced algorithms, we establish a model for 

predicting multiclass  BP using multinomial methods with 
relevant explanatory variables. The categorization of the 
four groups is derived from the guidelines established by 
the American College of Cardiology and American Heart 
Association.[9]

Since 2005, the World Hypertension League has been leading 
a global movement to raise awareness about the importance 
of hypertension through yearly screening programs. The 
2023 survey findings indicated that of the 502,079 persons 
diagnosed with hypertension, only 59.5% had knowledge of 
their disease.[15] This indicates a requirement for enhanced 
consciousness and instruction around hypertension. The 
existing research highlights the inadequacy of the present 
hypertension screening programs used by the NHS. This 
highlights the need for improvements in the effectiveness of 
these initiatives. To successfully tackle this pressing matter, 
it is imperative to devise novel ways for enhancing the 
identification of hypertension on a population scale. Through 
the identification of risk factors for hypertension, we can 
proactively undertake interventions at an early stage to avoid 
its occurrence, recognize it promptly, and mitigate the long-
term repercussions linked to it. The expertise of healthcare 
professionals, researchers, and policymakers is essential in 
this undertaking. Their contributions have the capacity to 
generate a substantial influence on the lives of numerous 
individuals.

The British and Irish Hypertension Society hosts a yearly 
nationwide initiative to raise awareness about the critical 
importance of identifying high BP. Various surveys have 
been utilized to gather data about hypertension throughout 
the years. A  total of 37,110 persons actively engaged in the 
World Hypertension Day initiatives between 2020 and 2024, 
resulting in a significant dataset. After examining the initial 
dataset, a total of 20,206 participants were meticulously 
chosen to be included in the current study. This selection 
approach entailed the exclusion of persons who had 
previously been diagnosed with hypertension. Out of the 
chosen subjects, 4192  (20.75%) individuals were identified 
as having been recently diagnosed with hypertension. The 
dataset included demographic information, risk factors, 
general knowledge inquiries about hypertension, and three 
measurements of systolic and diastolic BP, as well as heart 
rate. The question is, “what about those individuals who 
are unlikely to present themselves for vital signs checks, 
medical tests, or diagnosis”? Knowing the age, weight, height, 
smoking habit, fitness level, and other relevant factors could 
be helpful in predicting the individual’s hypertensive status 
regardless of their negligence for medical tests. An early 
detection approach in this sense could trigger a follow-up to 
enhance the individual’s medical safety, thereby preventing 
the individual from moving from a normal or lower stage to 
a higher stage of hypertension.
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In recent years, artificial intelligence (AI) has been 
successfully employed in health care as a beneficial medical 
instrument for numerous clinical diseases.[16,17] ML excels at 
generating precise predictions about individual outcomes 
by leveraging acquired data to identify learned patterns, 
rather than depending on explicit programming. Multiple 
ML algorithms have been employed in the statistical 
predictability of hypertension, resulting in varied outcomes 
across different research.[18-23]

Thus, the objective of this study was to employ supervised 
ML techniques with a substantial dataset to create algorithms 
capable of precisely detecting unidentified hypertensive 
status. In this study, we aimed to evaluate the effectiveness 
of these models or algorithms in comparison to the 
current screening techniques. The research procedure is 
comprehensive, utilizing five advanced ML classifiers. 
The models are subjected to a 10-fold cross-validation 
on the original training set, applying oversampling and 
undersampling procedures to resolve any imbalances in the 
data. This approach is likely to instill trust in the capability 
of ML in identifying hypertensive status from the multiclass. 
The evaluation of model performance entails a comparative 
analysis of the training and testing sets using prominent 
performance evaluation metrics such as sensitivity, 
specificity, accuracy, and precision, among others.

MATERIALS AND METHODS

Data pre-processing

The dataset is split into a training set and a test set. We 
utilized sophisticated ML techniques with a supervised 
learning strategy to acquire knowledge from the data. This 
was achieved by training the models, cross-validating, and 
making predictions on the test dataset. We use the assumption 
that the BP conforms to a multinomial distribution with four 
distinct classes. The categorization of the BP levels obtained 
from the NHS England into four classes is based on the 
guidelines established by the American College of Cardiology 
and American Heart Association. Let I Y XBP

class ( | )  represent a 
binary indicator function for BP. This function is defined as a 
multiclass variable in the form:
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The data are split into a training set comprising 70% and a test 
set comprising 30%. In the first step, we apply a multinomial 
logistic regression model to the data. Thereafter, the feasibility 
of the fitted model is assessed, and we perform statistical 
tests to determine its significance. Subsequently, we utilize 
sophisticated ML classifiers to analyze the training data and 
make predictions for the test set. For this task, the supervised 
ML technique is suitable. The research employs advanced 
ML classifiers, namely Naïve Bayes, Adaptive Boosting 
(AdaBoost), feedforward neural network (FNN), and long 
short-term memory (LSTM). The effectiveness of the proposed 
algorithms was evaluated using a multiclass confusion matrix 
and various performance evaluation metrics, including 
prediction accuracy, classification accuracy, kappa statistics, 
F1-score, specificity, sensitivity, and precision. These metrics 
were compared to the results obtained from conventional 
techniques used in previous studies. Furthermore, we 
performed statistical tests of independence to further examine 
the potential association between hypertension and each of the 
categorical explanatory factors.

 Naïve Bayes algorithm

The Naïve Bayes algorithm is a probabilistic classifier based 
on Bayes’ Theorem, which underpins a broad range of 
applications in ML. Fundamentally, Naïve Bayes assumes that 
the presence of a particular feature in a class is independent 
of the presence of any other feature.[24] This assumption, 
often termed “conditional independence,” simplifies the 
computation, and while it may seem oversimplified, 
Naïve Bayes classifiers have proven remarkably effective 
in numerous practical applications, particularly in text 
classification tasks such as spam detection and sentiment 
analysis.[25]

The algorithm leverages Bayes’ Theorem, which relates the 
conditional and marginal probabilities of stochastic events. 
Specifically, for a classification problem, it calculates the 
posterior probability of a class based on a set of predictors. 
The Naïve Bayes algorithm requires that attribute pairs are 
conditionally independent, given the class variable.[26] In a 
nutshell, it is summarized as:

( ) ( )=



 ( | )
| * 
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where, ci is the class, P (ci) is the class probability, and 


b  is 
the attribute variable.
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This model is computationally efficient and easy to 
implement, contributing to its widespread use in scenarios 
with large datasets and high-dimensional input spaces. 
The effectiveness of Naïve Bayes has been demonstrated, 
particularly when the conditional independence assumption 
holds reasonably well.[27]

Multinomial logistic model

Multinomial logistic model extends a binary logistic to 
multiclass problems, where the dependent variable can take 
three or more categories. This statistical model estimates 
the probabilities of the different possible outcomes of a 
categorically distributed dependent variable, given a set of 
independent variables.[28]

The model operates on the principle that each category’s log-
odds are a linear combination of the independent variables. 
Mathematically, for K possible outcomes, the probability of 
the outcome k is modeled as:

β β

β β
−

=

+
= = =

+ +∑
0

0
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( | )  
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where, βk0 and βk are parameters to be estimated, and 
x represents the vector of independent variables. The 
denominator ensures that the probabilities sum to one.

Multinomial logistic regression is widely used in areas such as 
medical research, market research, and social sciences, where 
the outcomes are nominal, and the independent variables are 
linearly related to the log-odds of the outcomes.[29] Empirical 
studies have validated the utility and broad applicability of 
the multinomial logistic regression in interpreting complex 
relationships between categorical data. Researchers have 
postulated that it supports fewer complex models to produce 
accurate predictions.[30]

The AdaBoost algorithm

The AdaBoost (Adaptive Boosting) algorithm is a powerful 
ensemble technique that combines multiple weak classifiers 
to form a robust classifier. The AdaBoost algorithm 
recursively merged linearly to form a more satisfying 
classifier.[31,32] The AdaBoost is one of the most influential 
developments in the field of ML, specifically within the 
domain of classification.[31]

AdaBoost works by training a sequence of classifiers, 
typically decision trees, on repeatedly modified versions of 
the data. Each successive classifier is trained on a dataset that 
has been altered in terms of the distribution of the training 
sets. Sets that were misclassified by previous classifiers are 
given increased weight, thereby focusing the learning of 
subsequent classifiers on the harder cases.

The output of the AdaBoost algorithm is a weighted sum 
of the classifiers’ predictions. Each classifier’s weight in the 
sum is assigned based on its accuracy, with more accurate 
classifiers having a higher influence on the final decision. 
Mathematically, the final model can be expressed as:

( ) ( )
=

= ∝∑
1

 ( )
T

t t
t

F x sign h x

where. ht (x) is the prediction of the t-th classifier, and ∝t is its 
weight, calculated from its error rate on the training set.

AdaBoost’s effectiveness has been demonstrated to reduce 
both bias and variance, leading to improved prediction 
accuracy over individual classifiers and other ensemble 
methods.[33] The algorithm’s simplicity and effectiveness have 
made it a standard benchmark in ML tasks.

FNNs

One of the methods we are considering in this study is the 
FNNs. The FNN is a pivotal class of artificial neural networks 
characterized by non-cyclical node connections. This non-
cyclical design ensures a seamless flow of data from input 
to output, enhancing their efficiency in tasks such as speech 
recognition and image classification.[34] Unlike recurrent 
neural networks (RNNs), which utilize feedback loops, FNN 
are structured in distinct layers, input, hidden, and output, 
that facilitate parallel processing through interconnected 
computational units.[35] The multilayer perceptron’s (MLPs) 
or multilayer neural network is an important special case of 
the FFN, whereby the links to the ith layer come only from 
the immediately preceding layer (ith–1).[36,37] The input layer 
receives data and assigns each feature to a neuron; the hidden 
layers conduct complex computations to abstractly transform 
the input; and the output layer, often employing a SoftMax 
function, converts the outputs into a probability distribution 
for classification tasks.[38] Each neuron processes a weighted 
sum of inputs through a non-linear activation function like 
sigmoid, tanh, or ReLU, with the choice of activation function 
critically affecting the network’s efficiency and training 
dynamics.[35,38] The configuration of these layers, especially 
the number and size of the hidden layers, significantly 
influences the network’s performance.

Figure  1 shows a simple example of an FNN with a 
single hidden layer ( )h1  and a single-out layer, where 

( )=∅ ∑1  i
n i imn

h x w ; ∅ is the activation symbol and wim are 
the corresponding weight matrices, connecting neuron i 
from the input to a neuron m in the hidden layer.[35] FNN 
utilizes forward propagation for data processing, where 
neurons sequentially transmit information up to the output 
layer, while the learning is driven by backpropagation, where 
the network updates its weights to minimize the error and 
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improve its predictions. Backpropagation uses a mechanism 
where the loss function’s gradient is computed concerning 
each weight, guiding optimization algorithms such as SGD, 
Adam, or RMSprop to adjust weights and minimize errors.[36]

However, FNNs are prone to overfitting and can suffer from 
vanishing or exploding gradients during training, potentially 
leading to poor generalization and unstable updates.[39] These 
challenges necessitate strategic network design and the 
implementation of regularization techniques to bolster the 
robustness and efficacy of FNN in practical settings.

LSTM

LSTM networks, a specialized subclass of RNNs, were 
developed by Hochreiter and Schmidhuber in 1997 to 
tackle the challenges associated with recognizing long-
term dependencies in sequential data.[40] These networks 
have revolutionized deep learning, significantly enhancing 
performance in tasks requiring comprehension of lengthy 
sequences, such as language translation, speech recognition, 
and time series analysis.[41]

The distinctive architecture of LSTM is built around a 
structure called the cell, which consists of three gates: 
The input gate, the forget gate, and the output gate. These 
components are crucial for regulating the flow of information. 
The input gate controls the entry of new data into the cell, 
the forget gate decides what information to retain or remove 
from the cell state, and the output gate determines which 
parts of the cell state should be output at each step.[42,43] This 
configuration allows LSTMs to maintain or discard data over 
extended periods effectively.

Figure  2 is a simple example to demonstrate the LSTM 
method. Where X is the pointwise multiplication, + is 
the pointwise addition, im is the input gate (m = i), fi is the 
forget gate, oi is the output gate, tanh is the pointwise Tanh, 
tanh * is the Tan h activated and σ is the sigmoid activated 

(i =  1,2,…., n)[1]. A  key feature of the LSTM is the cell 
state, which facilitates the smooth flow of information with 
minimal changes.[35] This design is instrumental in mitigating 
the vanishing gradient problem common in traditional 
RNNs, where backpropagated gradients tend to decrease 
exponentially, hindering the learning of dependencies over 
longer sequences.

In practical scenarios, LSTMs excel in fields where 
understanding contextual continuity is crucial.[41] They 
outperform conventional RNNs and other models by adeptly 
managing data storage and retrieval, making them ideal for 
complex prediction tasks involving extensive historical data. 
Their capacity to learn sequence dependencies underscores 
their superiority and adaptability in the analysis of sequential 
data, demonstrating the significant impact of their innovative 
gating mechanisms on the efficacy of temporal neural 
models.

RESULTS

Data overview and pre-processing

The dataset used for this study consists of 15,000 
observations, each containing eight variables: age, gender, 
weight, smoking status, alcohol consumption, fitness level, 
height, and BP level. The distribution of the BP levels was 
skewed, with most records (11,021) falling into the BP Level 
1 category (normal), followed by 2,889 records in BP Level 2 
(elevated), 702 in BP Level 3 (Stage 1 hypertension), and 388 
in BP Level 4 (Stage 2 hypertension). Data pre-processing 
was performed to ensure that the dataset was free of missing 
values and errors. A Chi-square test was used to evaluate the 
relationships between categorical variables and BP levels. 
Significant dependencies were identified for gender and 
smoking status (P < 0.05), while no significant relationship 
was found for alcohol consumption and fitness level. The 
dataset was split into training set (70%) and test set (30%), 
with the original BP level distribution maintained. Synthetic 
Minority Oversampling Technique (SMOTE) was applied to 
the training data to address class imbalance.

Figure  1: A simple example of a feedback network with a single 
hidden layer and a single output layer.

Figure 2: A simple example of the long short-term memory.
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Model training, testing, and evaluation

AdaBoost achieved a training accuracy of 83.43% and a test 
accuracy of 89.24%. It performed well on BP Levels 1 and 2, 
but struggled with the low-frequency categories, BP Levels 
3 and 4. The F1-score was 0.70, with a kappa statistic 0.77, 
indicating substantial agreement. The model’s sensitivity 
was 0.81 and specificity was high at 0.97. The area under the 
curve (AUC) score was 0.91, reflecting strong discrimination 
between BP levels.

The LSTM model showed a training accuracy of 92.8% 
and a test accuracy of 89.24%. While the confusion matrix 
indicated strong performance across all categories, it had 
slightly lower sensitivity and F1-scores (0.66) than AdaBoost. 
The kappa statistic was 0.76, with a sensitivity of 0.74 and a 
specificity of 0.97. The AUC score was 0.85.

The FNN achieved the highest training accuracy of 93.33% and 
a test accuracy of 89.47%, indicating potential overfitting. It had 

an F1-score of 0.65, a kappa statistic of 0.77, and a sensitivity 
of 0.72, with high specificity (0.97). The AUC score was 0.84, 
indicating strong classification performance. As shown in 
Figure 3, the confusion matrix indicates a balanced performance 
with good sensitivity and specificity across all classes.

The Naïve Bayes model reached a training accuracy of 90% and 
a test accuracy of 89.07%. It excelled in BP Levels 1 and 2, but 
its performance was weaker for Levels 3 and 4. The F1-score 
was 0.69, with a kappa statistic of 0.79, reflecting the highest 
agreement among the models. Sensitivity was 0.78, while 
specificity remained high at 0.95, and the AUC score was 0.88.

The multinomial logistic model achieved a training accuracy 
of 83.21% and a test accuracy of 89.07%, making it a reliable 
baseline for comparison. The F1-score was 0.68, with a kappa 
statistic of 0.77. Sensitivity was 0.79 and specificity was 0.97, 
with an AUC score of 0.89, demonstrating its competence in 
distinguishing between BP levels.

Figure 3: Graphs depicting different performance metrics for Adaboost algorithm in the classification of blood pressure levels. ROC: Receiver 
operating characteristic, AUC: Area under the curve.
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DISCUSSION

The study assesses the predictive power of various advanced 
machine algorithms over the conventional multinomial 
logistic model in multiclassifying BP levels. In particular, 
the results of the Naïve Bayes, AdaBoost, FNN, and LSTM 
algorithms were compared with the benchmark multinomial 
logistic model using standard performance evaluation 
metrics [Table 1 and Figures 3-7].

Table  1 provides a comprehensive comparison of the 
performance metrics across the different ML models 
evaluated in this study. It includes the training and 
test accuracies, F1 scores, kappa statistics, sensitivities, 
specificities, and AUC scores, along with the confusion 
matrices for each model. From Table 1, all models achieved 
similar test accuracies, hovering around 89%. The FNN 
demonstrated the highest training accuracy at 93.33%, 

Figure 4: Graphs depicting different performance metrics for long short-term memory algorithm in the classification of blood pressure levels.

Table 1: Comparative performance metrics of various machine learning models.

Model Training 
accuracy

Test 
accuracy

F1‑score Kappa Sensitivity Specificity AUC 
score

Confusion matrix

AdaBoost 83.43 89.24 0.7 0.77 0.81 0.97 0.91 Class 1: 3019, Class 2: 753,  Class 3 
and 4: Misclassifications

LSTM 92.8 89.24 0.66 0.76 0.74 0.98 0.85 Class 1: 3042, Class 2: 802,  Class 3 
and 4: Slightly better than AdaBoost

FNN 93.3 89.47 0.65 0.77 0.72 0.98 0.84 Class 1: 3030, Class 2: 812,  Class 3 
and 4: Like AdaBoost and LSTM

Naïve Bayes 90 89.07 0.69 0.79 0.78 0.95 0.88 Class 1: 3003, Class 2: 850,  
Class 3: Better handling, Class 4: 
Some misclassifications

Logistic 
regression

83.21 89.07 0.68 0.77 0.79 0.97 0.89 Class 1: 2970, Class 2: 832,  
Class 3: 144, Class 4: 101

FNN: Feedforward neural network, LSTM: Long short‑term memory, AUC: Area under the curve
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indicating robust learning from the training data. However, 
its test accuracy (89.47%) suggests slight overfitting. In 
contrast, the LSTM model, when also exhibiting high training 
accuracy (92.8%), showed a balanced test accuracy (89.24%) 
and a relatively stable performance across different classes. 
Notably, the multiclass approach adopted from the American 
College of Cardiology and American Heart Association[9] has 
shown evidence of effectiveness.

AdaBoost, with a slightly lower training accuracy (83.43%), 
managed to perform equally well on the test set (89.24%), 
indicating its efficacy in handling class imbalance due 
to its boosting mechanism. The Naïve Bayes model, 
having the lowest test accuracy (89.07%), still showed 
respectable performance metrics, particularly in terms of 

specificity (0.97) and AUC score (0.88). The multinomial 
logistic model, used as a baseline, performed admirably 
with an accuracy of 89.07% and an AUC score of 0.89, 
demonstrating its capability as a reliable and interpretable 
model for this classification task in agreement with 
empirical literature.[7,9,12] The F1-Scores, which balance 
precision and recall, were notably higher for AdaBoost 
(0.70) and Naïve Bayes (0.69), compared to LSTM (0.66) 
and FNN (0.65), indicating better performance in managing 
the trade-off between false positives and false negatives. 
The kappa statistics, which measured the agreement 
between observed and predicted classifications, were also 
consistently high across models, with the highest being for 
Naïve Bayes (0.79).

Figure 5: Graphs depicting different performance metrics for feedforward neural network algorithm in the classification of blood pressure 
levels.
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Figure 6: Graphs depicting different performance metrics for Naïve Bayes algorithm in the classification of blood pressure levels.

Overall, the table highlights that while FNN achieved 
the highest accuracy, the choice of model can depend on 
specific requirements such as the need for interpretability, 
computational efficiency, and the ability to handle imbalanced 
data. AdaBoost and Naïve Bayes provided balanced 
performance across metrics, whereas LSTM excelled in 
learning complex patterns, and logistic regression offered 
a solid baseline with consistent results. The LSTM model 
demonstrated superior generalization capabilities compared 
to the FNN model. Despite slight overfitting signs in the 
LSTM’s training accuracy, it maintained strong performance 
across the test set, indicating robust generalization. Both 
LSTM and FNN models showed a consistent decrease 
in training loss. However, LSTM continued to improve 
steadily, whereas FNN displayed significant variability in its 
validation accuracy and loss, highlighting LSTM’s superior 
learning efficiency. The LSTM model is better suited to 

capture temporal dependencies and complex patterns in 
the data, making it a more effective choice for datasets with 
such characteristics. The FNN, when showing high accuracy, 
struggled with the variability in the validation metrics, 
indicating potential overfitting.

Comparatively, the AdaBoost gives a high test accuracy and 
balanced performance with slightly lower sensitivity for 
rare classes. LSTM gives a high training accuracy with signs 
of slight overfitting and performs well across most classes. 
FNN gives a strong overall outperformance with the highest 
accuracy and balanced predictions. It is worth noting that the 
use of SMOTE uniquely enhances robustness and superiority 
in the output compared to previous studies.[8,11,13] Naïve Bayes 
is effective for common classes but less so for rare ones. The 
multinomial logistic produces a balanced performance, 
serving as a reliable baseline. Thus, the FNN emerges as the 
best model due to its high accuracy, balanced performance, 
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Figure 7: Graphs depicting different performance metrices for multinomial logistic algorithm in the classification of blood pressure levels.

and effective handling of class imbalance, making it suitable 
for predicting BP levels in this dataset. Despite its high 
performance, practitioners should consider the complexity 
and training stability of LSTM for datasets with similar 
characteristics.

CONCLUSION

Our study demonstrates that advanced ML techniques can 
significantly enhance the classification of BP levels, a crucial 
factor in preventing, detecting, and managing hypertension. 
Among the models tested, the FNN achieved the highest test 
accuracy (89.47%), making it highly promising for practical 
use in predicting BP levels, followed by LSTM, which gives 
89.24%. AdaBoost is effective in handling class imbalance, 
and Naïve Bayes offers competitive performance despite its 
simplicity. These results represent a notable improvement 
over previous research, which typically reported median 

accuracy rates in the 80-85% range. The use of SMOTE 
to address class imbalance was instrumental in reaching 
these high and robust accuracy levels, highlighting the 
importance of balanced datasets in ML applications. The 
study underscores the importance of selecting appropriate 
ML models based on specific criteria such as accuracy, 
interpretability, and the ability to manage class distribution 
imbalances. The findings have significant implications for 
improving hypertension screening programs and developing 
predictive tools that facilitate early detection and prevention 
of hypertension. It reveals that knowing an individual’s age, 
weight, height, gender, smoking habit, alcohol consumption, 
and fitness level are useful in predicting their BP levels. In 
this regard, the approach will enhance early detection or 
prevention with a view to saving lives. Further studies could 
focus on advanced clinical trials to validate these models 
in real-world settings, to ensure further applicability and 
effectiveness across different populations.
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