
Delay-Minimization and Back-Off Aware Q-Learning with 1 

Advanced Bio-Inspired CH Selection for Multi-hop 2 

Communication in Vehicular Ad-hoc Networks 3 

 4 

Sami Abduljabbar Rashid1*, Lukman Audah2*, Mustafa Maad Hamdi3, Mohammed Salah Abood4, Ghassan 5 

Raad Abbas5, Bassim Sayed Mohammed6, Taha A. Elwi7, Salahuddin Khan8, Bal S. Virdee9, Astrit Krasniqi9, 6 

Lida Kouhalvandi10, and Mohammad Alibakhshikenari11* 7 
 8 
1Biomedical Engineering Research Center University of Anbar, Ramadi, Iraq; (E-mail: 9 
sami25.6.1989@gmail.com) 10 
2Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, 11 
Johor, Malaysia; (E-mail: hanif@uthm.edu.my) 12 
3Department of Computer Science, College of Computer Science and IT,  University of Anbar, Ramadi, Iraq; (E-mail: 13 
Mustafa.maad.hamdi@uoanbar.edu.iq) 14 
4School of Information and Electronics, Beijing Institute of Technology, Haidian, Beijing 100081, China; (E-mail: 15 
mohammedsalah@bit.edu.cn) 16 
5Institute of Mathematics and Information Technologies, Volgograd State University, Volgograd, 400062, Russia, (E-mail: 17 
ghassanraadamr@gmail.com) 18 
6Technical College of Engineering, Al-Bayan University, Baghdad, Iraq; (E-mail: bassims@albayan.edu.iq) 19 
7Islamic University Centre for Scientific Research, The Islamic University, Najaf, Iraq; (E-mail: taelwi82@gmail.com)  20 
8College of Engineering, King Saud University, P.O.Box 800, Riyadh 11421, Saudi Arabia; (E-mail: drskhan@ksu.edu.sa) 21 
9Center for Communications Technology, London Metropolitan University, London N7 8DB, United Kingdom; (E-mail: 22 
b.virdee@londonmet.ac.uk & a.krasniqi@londonmet.ac.uk) 23 
10Department of Electrical and Electronics Engineering, Dogus University, Istanbul 34775, Turkey; (E-mail: 24 
lida.kouhalvandi@ieee.org)  25 
11Electronics Engineering Department, University of Rome “Tor Vergata”, 00133 Rome, Italy; (E-mail: 26 
alibakhshikenari@ing.uniroma2.it) 27 
 28 
*Corresponding Authors: Sami Abduljabbar, Lukman Audah, Taha A. Elwi, and Mohammad Alibakhshikenari 29 

Abstract- The increasing significance of Vehicular Ad-hoc Networks (VANETs) in intelligent transportation systems has 30 
introduced challenges related to high mobility, network congestion, and energy efficiency. To address these challenges, 31 
this paper proposes a new approach based on Delay-Minimization and Back-Off Aware Q-Learning with Advanced Bio-32 
Inspired Cluster Head (CH) Selection (DBACH) to enhance multi-hop data transmission in VANETs. The DBACH 33 
framework is structured around network construction, delay minimization, a back-off Q-learning model, and an improved 34 
dragonfly algorithm-based CH selection process. By integrating these mechanisms, the proposed approach effectively 35 
minimizes transmission delay, routing overhead, and power consumption, thereby improving Quality of Service (QoS) in 36 
VANETs. To validate the performance of DBACH, extensive experiments were conducted, comparing it with existing 37 
approaches such as RCDC, DCPA, and WCAM. The simulations were carried out by varying the number of vehicles and 38 
their speeds (km/h), analyzing key performance metrics such as energy efficiency, throughput, packet delivery ratio, data 39 
loss ratio, computational time, and routing overhead. The results demonstrate that DBACH achieves significant 40 
performance gains, with energy efficiency reaching 85 joules, throughput improving to 160–200 Kbps, and an 11–13% 41 
increase in packet delivery ratio. Additionally, end-to-end delay is reduced to 60–94 ms, data loss is minimized to 7–15%, 42 
and routing overhead is maintained within 170–300 packets. These improvements affirm that DBACH provides high 43 
efficiency, greater communication stability, and superior success rates compared to existing methods, making it a promising 44 
solution for enhancing reliable and energy-efficient communication in VANETs. 45 
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Index Terms: Vehicular Ad-hoc Network (VANET), Delay-Minimization, Multi-hop Communication, Improved 46 
Dragonfly Algorithm, CH Selection. 47 

I. Introduction 48 

Vehicular Ad-hoc Networks (VANETs) have emerged as a promising technology within Intelligent Transport Systems 49 
(ITS), offering real-time communication solutions for road safety, traffic management, and autonomous vehicle systems. 50 
As a specialized subset of Mobile Ad-hoc Networks (MANETs), VANETs enable infrastructure-less communication, 51 
where vehicles dynamically exchange information while in motion. These networks facilitate Vehicle-to-Vehicle (V2V), 52 
Vehicle-to-Infrastructure (V2I), and Device-to-Device (D2D) communication, ensuring efficient data transmission across 53 
road networks. Fig. 1 illustrates the fundamental structure of VANET communication, depicting V2V interactions for 54 
cooperative driving and collision avoidance, along with V2I communication, which provides access to traffic information, 55 
navigation support, and emergency alerts through roadside infrastructure [1]. 56 

 57 

Fig. 1 – Vehicle-based Communication Proces (diagram adapted from Ref. [1]). 58 

To support these communication modes, VANETs rely on Dedicated Short-Range Communication (DSRC) and multi-59 
hop routing protocols to establish stable and reliable links between vehicles. However, high mobility, frequent topology 60 
changes, and unpredictable traffic conditions significantly impact network stability and performance. One of the primary 61 
challenges in VANETs is ensuring efficient routing while minimizing delay, overhead, and power consumption. Due to the 62 
dynamic nature of vehicular movement, frequent disconnections, increased network overhead, and link failures adversely 63 
affect packet delivery ratio, throughput, and overall network stability. VANETs employ both centralized and distributed 64 
routing models to facilitate data transmission. While centralized routing follows predefined data transmission paths, 65 
distributed routing dynamically adapts to real-time network conditions [2]. Research suggests that distributed routing is 66 
more efficient in managing high-speed mobility and reducing latency. However, the complexity of multi-hop 67 
communication introduces network overhead, leading to increased transmission delays and decreased reliability in real-68 
time applications. 69 

To address these challenges, achieving high Quality of Service (QoS) in VANETs requires advanced clustering 70 
techniques, optimized routing models, and delay minimization mechanisms. The IEEE 802.11p/bd standard is commonly 71 
used for VANET communication, yet improving network QoS remains an ongoing research focus [3]. In response to these 72 
challenges, this paper proposes the Delay-Minimization and Back-Off Aware Q-Learning with Advanced Bio-Inspired CH 73 
Selection (DBACH) approach, designed to enhance multi-hop communication efficiency in VANETs. The DBACH 74 
framework integrates three key techniques to optimize routing and minimize network congestion: (i) delay minimization 75 
strategies, (ii) a Q-learning based back-off model, and (iii) an improved Dragonfly Algorithm (DA) for Cluster Head (CH) 76 
selection. 77 

This paper introduces a new approach based on DBACH to improve network performance and ensure efficient data 78 
exchange. First, it focuses on reducing network delay, minimizing overhead, and optimizing power consumption by 79 
incorporating single-hop and multi-hop communication mechanisms. Second, a Q-learning based back-off model 80 
dynamically adjusts contention window sizes, reducing network waiting times and improving transmission efficiency. 81 
Lastly, the approach leverages an enhanced Dragonfly Algorithm (DA) for CH selection, ensuring energy-efficient routing 82 
and optimal data transmission paths, thereby improving network scalability and reliability [4]. 83 

The structure of this paper is as follows: Section II presents an overview of existing clustering and delay minimization 84 
methods, highlighting their limitations. Section III introduces the DBACH approach, detailing its network architecture, 85 
clustering mechanism, and optimization techniques. Section IV discusses the implementation and performance evaluation 86 
of DBACH, comparing its efficiency with existing RCDC-VANETs, DCPA-VANETs, and WCAM-VANETs. Finally, 87 
Section V provides the conclusion and future research directions, outlining potential advancements in vehicular network 88 
performance and real-world applications. 89 

 90 



II. Related Works 91 

Several researchers have explored various techniques to enhance vehicular ad-hoc networks (VANETs) by addressing 92 
challenges such as congestion, interference, connectivity, clustering, and routing optimization. This section reviews prior 93 
studies on clustering algorithms, routing mechanisms, congestion control, and energy efficiency strategies in VANETs, 94 
highlighting their contributions and limitations. 95 
 Sewalkar et al. [6] developed the Multi-channel Clustering-based Congestion Control (MC-COCO4V2P) algorithm, 96 
which aims to prevent collisions between vehicles and pedestrians while incorporating a transmit power mechanism to 97 
optimize energy consumption. While this method effectively reduces power consumption, it provides moderate throughput 98 
and packet delivery ratio. Singh et al. [7] proposed a dual-slot transmission method to suppress intra-cluster interference 99 
and improve V2V connectivity. Additionally, a graph-based algorithm was introduced for periodic packet transmission, but 100 
the method suffers from high energy consumption. Another technique [8] utilized k-means clustering to determine optimal 101 
roadside unit (RSU) placement for autonomous vehicles, resulting in enhanced connectivity, cost reduction, and minimal 102 
coverage gaps. However, network scalability limitations remain an issue. 103 
 In urban VANET environments, Cheng et al. [9] introduced a connectivity prediction-based cluster formation model 104 
using geographic routing and multi-layer perceptrons. While this approach achieves low prediction error rates, it suffers 105 
from limited network coverage. To optimize cluster size, Shahen et al. [10] developed the Cluster-Based Medium Access 106 
Control (CB-MAC) protocol, leveraging a Markov chain model for throughput optimization. Although this method 107 
enhances network performance, it is energy-intensive. Another study [11] introduced the VC-attention model, which 108 
predicts vehicle interaction behavior using self-attention mechanisms. It identifies key driving features such as DRAC and 109 
lane gaps and employs a sliding window for behavior analysis, achieving 92% accuracy on the NGSIM dataset. 110 
 In vision-based vehicular communication, a machine learning approach [12] was introduced for autonomous vehicles, 111 
involving image pre-processing, feature extraction using PCA, and classification algorithms. This technique significantly 112 
enhances obstacle detection and traffic light recognition, improving road safety. Alsarhan et al. [13] developed a fuzzy 113 
logic-based clustering control method, integrating multi-criteria decision-making (MCDM) for Cluster Head (CH) 114 
selection, ensuring high network stability despite high energy consumption. Similarly, Bi et al. [14] proposed an Affinity 115 
Propagation (AP) clustering algorithm, incorporating a weighted mechanism to enhance cluster stability. While this 116 
approach improves throughput and packet delivery ratio, it has a complex computational process. 117 
 Banikhalaf et al. [15] introduced an Efficient Cluster Head Selection (ECHS) method to optimize network resources, 118 
ensuring even cluster distribution and adjusted inter-cluster distances. Despite its efficiency in throughput, lifetime, and 119 
packet delivery, the method incurs high power consumption and transmission costs. Khalid et al. [16] proposed a clustering-120 
based routing protocol using a modified k-means algorithm, along with Maximum Stable Set Problem (MSSP) and 121 
Continuous Hopfield Network (CHN) for optimization. This method achieves high stability in dense networks and better 122 
packet delivery ratios, but suffers from high computational costs. 123 
 To enhance network stability and efficient routing, Saad et al. [17] developed the Center-Based Evolving Clustering 124 
with Grid Partitioning (CEC-GP) method, ensuring optimized cluster selection. However, the method encounters high 125 
packet loss and latency issues. Another approach [18] in Wireless Sensor Networks (WSNs) focused on energy efficiency 126 
and data collection by employing mobile data collectors to reduce interference and retransmission overhead, resulting in 127 
improved network reliability. Singh et al. [19] proposed the Diverted Path Approach (DPA) for V2V and V2I connectivity, 128 
incorporating backup links for reliability, but the method is computationally complex. 129 
 Raghavendra et al. [20] developed the Regional Super Cluster-Based Optimum Channel Selection (RSCOC) protocol, 130 
which determines the most appropriate communication channel for different regions. This technique achieves high 131 
throughput and packet delivery ratios but has high energy consumption. Fakhar et al. [21] analyzed a resource management 132 
strategy for V2X networks, focusing on throughput, packet delivery, and latency constraints, though network coverage 133 
limitations persist. Weijing et al. [22] proposed the Traffic Differentiated Clustering Routing (TDCR) mechanism in an 134 
SDN-enabled hybrid vehicular network, employing an optimization algorithm to balance bandwidth cost and end-to-end 135 
delay, but it consumes high power. 136 
 Rivoirard et al. [23] introduced the Chain Branch-Leaf (CBL) approach, aimed at increasing broadcast traffic in routing 137 
protocols. While this method enhances network stability, it decreases overall throughput. Another study [24] explored the 138 
Dragonfly Algorithm (DA) in LEACH-C clustering, optimizing energy consumption while incurring high computational 139 
costs. Devarakonda et al. [25] further refined DA-based optimization with a modified convergence and fitness function, 140 
improving network lifetime, though complexity remains an issue. 141 
 Other techniques focused on improving signal processing and interference reduction. Xueting et al. [26] proposed a 142 
multi-packet detection technique using frequency-domain equalization, incorporating successive interference cancellation, 143 
which improves V2V and V2I communication reliability. Abdelaziz et al. [27] applied the Dragonfly Algorithm (DA) to 144 
the Traveling Salesman Problem (TSP), addressing feature selection, power flow problems, and image segmentation, yet 145 



suffering from high energy consumption. Nashaat et al. [28] introduced a novel resource allocation method based on the 146 
Dragon meta-heuristic technique, achieving high energy efficiency with moderate throughput and packet delivery ratio. 147 
Finally, Xueting et al. [29] proposed the Hybrid Improved Dragon Algorithm (HIDA), which integrates mRMR and IDA 148 
for feature selection, increasing classification accuracy at the expense of high power consumption. 149 
 The earlier research efforts provided significant contributions in clustering, routing, congestion control, and energy 150 
efficiency in VANETs. However, key challenges remain, including high energy consumption, increased packet loss, 151 
computational complexity, and routing overhead. These issues impact QoS and network performance, necessitating more 152 
efficient, scalable, and adaptive routing mechanisms. Table 1 summarizes these research findings, highlighting their 153 
strengths and limitations. 154 

Table 1 – Previous Research Reported in Literature 155 
 156 

Ref. Methodology Details Advantages Limitations 

[6] Multi-channel Clustering-based Congestion 

Control (MC-COCO4V2P) algorithm 

Low energy consumption The throughput and packet delivery 

ratio is moderate 

[7] Dual-slot transmission method for 

suppressing intra-cluster interference 

Improves the connection between 

V2V 

High energy consumption 

[8] K-means clustering for optimal RUS in self-

driving and semi-self-driving cars. 

Reduces cost, bandwidth usage High complexity. 

[9] Connectivity prediction-based cluster 

formation 

Lower error rate  Network coverage is limited 

[10] Cluster-based medium access control (CB-

MAC) 

Enhances the throughput High energy consumption 

[11] VC-Attention model using self-attention 

encoder on a five-vehicle cluster structure 

Enhances the lifetime of the 

network 

More computational time. 

[12] Vision-based object recognition using PCA 

and ML classifiers 

Improves road safety and driving 

efficiency 

High processing power 

[13] Fuzzy logic-based clustering control method High stability and reliability  High energy consumption 

[14] Affinity Propagation (AP) clustering 

Algorithm 

Efficient Throughput, packet 

delivery 

Computational process is 

complexity 

[15] Efficient Cluster Head Selection (ECHS) 

method 

Efficient throughput, lifetime, 

packet delivery 

Transmission cost is high 

[16] New clustering-based routing protocol with 

modified K-Means algorithm 

Prevent security problems Computational cost is high 

[17] Center-based evolving clustering based on 

grid partitioning (CEC-GP) method 

Efficient and stable routing High packet loss with delay 

[18] Optimizing data collection in WSNs, 

integrating mobile collectors. 

Reduces energy depletion in sensor 

nodes. 

High overhead for optimization. 

[19] Diverted Path approach (DPA) High stability and reliability A computational process is complex 

[20] Regional Super Cluster-based Optimum 

Channel Selection (RSCOC) 

Delay optimal with low energy 

consumption high packet delivery 

ratio, throughput 

High energy consumption 

[21] Resource management strategy based on 

efficient clusters 

Better throughput Minimum coverage area 

[22] Traffic Differentiated Clustering Routing 

(TDCR) mechanism 

Efficiency and service delay High power consumption 

[23] Chain branch-leaf (CBL) Stability of the network Moderate throughput and packet 

delivery 

[24] Dragon fly algorithm Minimum energy consumption Computational cost is high 

[25] Modified dragonfly algorithm (DA) Enhances the network's lifetime The computation process is a 

complexity 

[26] Multipacket detection (MPD) with frequency 

domain equalization IFDE) and interference 

cancellation (IC). 

Reduces interference and improves 

V2V and V2I 

High complexity in implementation. 

[27] Dynamic resource management is a meta-

heuristic algorithm, named Dragonfly 

Algorithm (DA) 

Enhances the network's lifetime High power consumption 

[28] Dragon meta-heuristic technique High energy efficiency Moderate throughput and packet 

delivery 

[29] Hybrid improved dragon algorithm (HIDA) Increase the rate of categorization 

accuracy 

High energy consumption 



 157 

III. Proposed DBACH Approach 158 

The proposed approach is designed to minimize delay and reduce energy consumption in vehicular networks. The key 159 
components of this research include VANET network construction, delay optimization using both single-hop and multi-160 
hop communication, a back-off Q-learning model for adaptive contention window adjustment, and an improved Dragonfly 161 
Algorithm for efficient CH selection. These elements work together to enhance network stability, optimize data 162 
transmission, and improve overall communication efficiency in VANETs. 163 

The workflow of the proposed DBACH approach for VANETs, shown in Fig. 2, follows a structured workflow 164 
consisting of three key components: network establishment, latency minimization, and CH selection, all aimed at enhancing 165 
network performance, reducing delay, and optimizing resource utilization. The network establishment phase initiates the 166 
formation of the vehicular network by dynamically grouping vehicles into clusters. Each cluster is managed by a CH, which 167 
serves as a relay node for intra-cluster and inter-cluster communication. The formation of clusters is facilitated through 168 
single-hop communication, where vehicles periodically broadcast their mobility, energy status, and connectivity degree. 169 
CH selection in this phase is based on parameters such as energy availability, mobility, and link stability to ensure efficient 170 
communication. VANETs operate in both V2V and V2I modes, and the DBACH framework dynamically adapts to the 171 
most efficient communication mode depending on network conditions. 172 

 173 
 174 

 175 
Fig. 2 – Workflow of the Proposed DBACH Approach. 176 

To minimize latency, the DBACH approach incorporates multi-hop communication, which allows packets to be 177 
relayed through multiple intermediate vehicles instead of relying solely on direct transmission to CHs or roadside units. 178 
This is particularly effective in dynamic environments where direct communication may be hindered by network topology 179 
changes. The Q-learning based back-off model further enhances delay minimization by dynamically adjusting the 180 
contention window (CW) size based on real-time network conditions, thereby preventing congestion and reducing 181 
unnecessary retransmissions. Additionally, a priority-based packet forwarding mechanism ensures that critical messages, 182 
such as emergency alerts, receive precedence, thereby improving response times and overall network efficiency. 183 

A crucial aspect of DBACH is its optimized CH selection, which is achieved using an enhanced Dragonfly Algorithm 184 
(DA). The DA is a bio-inspired optimization technique that mimics the behavior of dragonflies in their natural environment. 185 
It employs five key behaviors—separation, alignment, cohesion, attraction, and distraction—to identify the most suitable 186 
CHs based on various network parameters. The fitness function used in CH selection prioritizes vehicles with higher 187 
residual energy, lower transmission distance, and stronger network connectivity to maximize network stability and prolong 188 
CH lifespan. To further optimize resource utilization, DBACH integrates an adaptive CH rotation mechanism, which 189 
periodically re-elects CHs based on energy consumption trends, ensuring even distribution of network load and preventing 190 
premature node depletion. 191 

The overall workflow of DBACH ensures a high level of network efficiency by integrating these three components 192 
into a seamless framework. The network establishment phase sets up stable clusters, the latency minimization phase 193 
optimizes data transmission through multi-hop relaying and adaptive contention window adjustments, and the CH selection 194 
phase guarantees optimal energy efficiency and clustering stability through Dragonfly Algorithm-based CH selection. By 195 
combining these techniques, the DBACH approach enhances packet delivery ratio, reduces end-to-end delay, optimizes 196 
power utilization, and minimizes routing overhead, significantly improving the QoS in VANETs. The proposed approach 197 
proves particularly beneficial for Intelligent Transport Systems (ITS), smart traffic management, autonomous vehicles, and 198 
emergency communication networks, where real-time data exchange is critical. 199 

 200 



A. VANETs Network Construction 201 
The heterogeneous clustering-based DBACH network model, illustrated in Fig. 3, consists of Cluster Heads (CHs) and 202 
Cluster Children (CCs), where CHs serve as service providers, facilitating both intra-cluster and inter-cluster 203 
communication among vehicles on a roadway. Dedicated Short-Range Communication (DSRC) links operate over a single 204 
communication channel to enable data transmission between vehicles. To further improve communication efficiency and 205 
reduce data collisions, Visible Light Communication (VLC) links are incorporated into vehicles using light-emitting diodes 206 
(LEDs) and photodiodes (PDs), allowing for multi-channel data transmission among neighboring vehicles. Within a cluster, 207 
communication between CHs and CCs occurs through two methods: first, via single-hop DSRC-based direct 208 
communication, and second, via multi-hop transmission through neighboring vehicles using VLC links. 209 

Communication between the source and destination is designed to occur within milliseconds (ms), ensuring real-time, 210 
low-latency data transmission. To manage packet transfers efficiently and avoid network congestion, the DBACH network 211 
utilizes the IEEE 802.11p MAC protocol, which incorporates the Carrier Sense Multiple Access with Collision Avoidance 212 
(CSMA/CA) mechanism. As illustrated in Fig. 3, CHs are represented in red, while CCs are shown in orange, visually 213 
distinguishing their roles within the network. The DBACH model enhances scalability, improves energy efficiency, and 214 
ensures reliable data delivery, making it a robust solution for vehicular ad hoc networks (VANETs). 215 
 Fig. 3 was derived through a simulation-based design approach, where the DBACH network topology was structured 216 
to incorporate heterogeneous clustering, dynamic CH selection, and hybrid communication mechanisms. The network 217 
layout was developed to support single-hop DSRC for direct communication and multi-hop VLC for extended connectivity 218 
among vehicles. The CH selection process was optimized using the Dragonfly Algorithm, ensuring balanced energy 219 
consumption, stable connectivity, and reduced transmission delays. The final visualization in Fig. 3 was generated based 220 
on simulated node placement, clustering algorithms, and communication link formations, effectively illustrating the role of 221 
CHs in managing network traffic and enhancing the overall QoS in VANETs.  222 

 223 
Fig. 3 – Proposed DBACH Network Model. 224 

 225 

B. Delay Minimization  226 
In vehicular networks, high mobility often complicates data transmission, leading to increased communication delays. 227 

To address this challenge, it is crucial to implement effective delay minimization strategies. The proposed network model 228 
supports both single-hop and multi-hop communication among heterogeneous vehicles, ensuring efficient data exchange. 229 
By optimizing single-hop and multi-hop transmission mechanisms, the model effectively reduces the average delay between 230 
CH and CC, thereby enhancing network responsiveness and overall communication efficiency. The CC vs in the network 231 
is represented as Ω = {𝑐𝑐1, 𝑐𝑐2 … } where 𝑣𝑐ℎ  is represented as the CH. Thus all the CC vehicles Ω𝑐ℎ = Ω\𝑣𝑐ℎ  where 232 
Ω𝑠𝑖𝑛𝑔𝑙𝑒  𝑎𝑛𝑑 Ω𝑚𝑢𝑙𝑡𝑖  represents the single and the multi-transmission and the transmission between the CH and CC of any 233 
vehicles 𝑣𝑖 and 𝑣𝑐ℎ is represented as 𝑇𝑖,𝑐ℎ, where 𝑣𝑖 ∈  Ω𝑐ℎ. 234 
 235 
1) Single-Hop Communication 236 

In single-hop communication, CC vehicles transmit data directly to their CH using a Dedicated Short-Range 237 
Communication (DSRC) link. The Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) mechanism is 238 
integrated to manage data transmission and prevent collisions. To accurately assess the efficiency of single-hop 239 



communication, two key factors are measured: propagation delay, which refers to the time taken for data to travel between 240 
vehicles, and contention delay, which accounts for the time spent waiting for access to the communication channel. In 241 
general the network propagation delay (𝑡0) is the time taken to send the data packets from one source to the destination and 242 
it is mathematically expressed in the equation (1). 243 

𝑡0 =
𝑆𝑇𝑃

𝐷𝑟𝑎𝑡𝑒
       (1) 244 

In equation (1), the terms 𝑆𝑇𝑃 implies the transmitted packet size and the 𝐷𝑟𝑎𝑡𝑒  implies the DSRC link data rate. The 245 
other variables that are present in the delay calculations are vehicle probability (𝑉𝑃𝑖) and channel access (𝐶𝐴𝑖) and the 246 
mathematical expression for the calculation of those variables is given in equation (2) and (3). 247 

 248 
𝐶𝐴𝑖 =

2𝑉𝑃𝑖

𝐶𝑊𝑠+1
       (2) 249 

𝑉𝑃𝑖 = ∏ (1 −Ω𝑠𝑖𝑛𝑔𝑙𝑒∪𝑣𝑐ℎ\𝑣𝑖
𝐶𝐴𝑖)      (3) 250 

In equation (3), the terms 𝐶𝑊𝑠 implies the contention window size. In the CSMA/CA mechanism, if the threshold of 251 
the channel is attained the vehicle will wait for a certain period to initiate the channel again. The average waiting time is 252 
mathematically expressed in equation (4).  253 

 254 
𝐴𝑊𝑡𝑖𝑚𝑒 = 𝑉𝑃𝑖 ∗ 𝑠𝑡𝑖𝑚𝑒 + 𝑇𝑠

𝑡𝑥       (4) 255 

In equation (4), the terms 𝑠𝑡𝑖𝑚𝑒  implies the slot time and the 𝑇𝑠
𝑡𝑥 implies the threshold transmission time. The term 256 

1 𝐶𝐴𝑖⁄ 𝑉𝑃𝑖 implies the slot time count that the vehicle 𝑣𝑖 should wait until the packets are successfully to the destination. 257 
The data packet transmission between any two vehicles in Ω𝑠𝑖𝑛𝑔𝑙𝑒 and v𝑐ℎ is the summation of the propagation delay and 258 
contention delay and it is mathematically expressed in the equation (5). 259 

 260 

𝑇𝑖,𝑐ℎ = 1 +
𝐴𝑊𝑡𝑖𝑚𝑒

𝐶𝐴𝑖∗𝑉𝑃𝑖
       (5) 261 

From equation (5) the single-hop transmission delay between the CH and CC is measured using the DSRC link and 262 
CSMA/CA mechanism. 263 
 264 
2) Multi-Hop Communication 265 

In multi-hop communication, CC vehicles relay data to their CH through adjacent vehicles using a Visible Light 266 
Communication (VLC) link. While VLC enables efficient data transmission, its effectiveness is time-limited due to 267 
environmental factors and line-of-sight constraints. However, within this operational period, VLC significantly reduces 268 
channel contention delay, ensuring faster and more reliable communication between adjacent vehicles. To measure the 269 
multi-hop communication delay between the current vehicle (𝑣𝑖) and its adjacent vehicle (𝑣𝑗) In the communication link of 270 
the VLC link, the propagation delay of the overall transmitted packet is calculated (where contention delay is zero) and it 271 
is mathematically expressed in equation (6).  272 

 273 

𝑡1 =
𝑆𝑇𝑃

𝐷𝑟𝑎𝑡𝑒
𝑣         (6) 274 

In equation (6), the terms 𝑆𝑇𝑃 implies the transmitted packet size, and the 𝐷𝑟𝑎𝑡𝑒
𝑣  implies the VLC data rate between 𝑣𝑖 275 

and 𝑣𝑗. The data packet transmission between any two vehicles in Ω𝑚𝑢𝑙𝑡𝑖 and v𝑐ℎ is the calculation of the summation of the 276 
delay among the vehicles 𝑣𝑗 and 𝑣𝑐ℎ  and propagation delay between 𝑣𝑖 and 𝑣𝑗 and it is mathematically expressed in the 277 
equation (7). 278 

𝑇𝑖,𝑐ℎ =
min (𝑡𝑗,𝑐ℎ+𝑡1)

𝑗
       (7) 279 

From equation (7) the multi-hop transmission delay between the CH and CC is measured using the VLC link.  280 
 281 

C. Back-Off Model Q-Learning  282 
To enhance communication efficiency in the network, a Q-learning based approach is introduced in this section. This 283 

method dynamically adjusts the Contention Window (CW) size based on the level of network collisions, optimizing channel 284 
access and reducing transmission delays. Two conditions are applied that is CW-CWmin after each successful transmission 285 
and as well CW+CWmin after each collision. Fig. 4 illustrates the process of the back-off Q learning model. 286 

 287 



 288 

Fig. 4 - Back-off Q-Learning Process. 289 

To analyze Contention Window size variations in a dynamically changing environment, a Q-learning based approach 290 
is utilized. This adaptive mechanism adjusts CW size for both inter-cluster and intra-cluster communication, optimizing 291 
single-hop and multi-hop transmission to enhance network efficiency and reduce delays. The mathematical expression for 292 
the end reward of both these communication models is given in equations (8) and (9). 293 

 294 

RΩ𝑠𝑖𝑛𝑔𝑙𝑒 =
log 2 (𝐶𝑊1 𝑚 𝑖𝑛+1)

log 2 (𝐶𝑊1 𝑐𝑢𝑟𝑟𝑒𝑛𝑡+1)
       (8) 295 

RΩ𝑚𝑢𝑙𝑡𝑖 =
log 2 (𝐶𝑊1 𝑚 𝑖𝑛+1)

log 2 (𝐶𝑊1 𝑐𝑢𝑟𝑟𝑒𝑛𝑡+1)
∗

log 2 (𝐶𝑊2 𝑚 𝑖𝑛+1)

log 2 (𝐶𝑊2 𝑐𝑢𝑟𝑟𝑒𝑛𝑡+1)
     (9) 296 

From the equation (8) and (9) the learning is performed and the CW size is measured for the inter-cluster and intra-297 
cluster communication in the dynamically varying VANET environment.  298 

 299 

D. Improved Dragonfly Algorithm-based CH Selection Process 300 
1) Dragonfly Algorithm Background  301 

The Dragonfly Algorithm (DA) is a meta-heuristic optimization algorithm inspired by Swarm Intelligence (SI). It is 302 
modeled after the hunting and migratory behaviors of dragonflies, incorporating both static and dynamic behaviors to 303 
enhance the search for optimal solutions. 304 

In its static behavior, DA estimates the global optimum, enabling an efficient search mechanism to identify the best 305 
solutions within a given neighborhood. Meanwhile, in its dynamic behavior, a large number of dragonflies form groups and 306 
migrate collectively to avoid predators, simulating adaptive decision-making in optimization problems. 307 

The algorithm operates based on five fundamental principles: separation (avoiding overcrowding), alignment 308 
(maintaining direction within the swarm), cohesion (ensuring group stability), attraction towards food (searching for 309 
optimal solutions), and distraction from enemies (escaping suboptimal conditions). These key operations, which define the 310 
functionality of DA, are illustrated in Fig. 5. 311 

 312 

Fig. 5 – Operations of Dragonflies. 313 

 314 



2) Hierarchical Clustering  315 
Clustering plays a crucial role in enhancing the network lifetime in VANETs. Due to the highly dynamic nature of 316 

VANETs, it is essential to optimize the clustering process to ensure efficient and stable communication. 317 
At the initial stage, CH selection is performed using the LEACH-C algorithm, where the primary selection criterion 318 

is the remaining energy of each vehicle. The vehicle with the highest residual energy is initially chosen as the CH. However, 319 
to further optimize CH selection, the DA is applied, incorporating additional parameters such as energy, distance, and 320 
algorithm-specific factors. The fitness value of each CH is then calculated, and the vehicle with the best fitness (lowest 321 
value) is selected as the optimal CH. 322 

Once the CHs are determined, their coverage area is measured, and vehicles within this range become CC. In the 323 
network, both inter-cluster and intra-cluster communication take place to facilitate data exchange efficiently. The five 324 
fundamental operations of the DA algorithm—separation, cohesion, alignment, attraction, and distraction from enemies—325 
are utilized to optimize clustering and routing. The mathematical expressions defining these operations are provided in 326 
Table 2 and Table 3. 327 

 328 
Table 2 – Operations and Expressions 329 

Operations Expressions 

Separation Operation 

𝑆𝑂(𝑠1, 𝑖) = − ∑ 𝐴(𝑠1, 𝑖) − 𝐴(𝑠2, 𝑖)

𝑁

𝑠=1

 

Alignment Operation 
𝐴𝑂(𝑠1, 𝑖) =

∑ 𝑉(𝑠2, 𝑖)𝑁
𝑠2=1

𝑁
 

 

Cohesion Operation 
𝐶𝑂(𝑠1, 𝑖) =  

∑ 𝑥(𝑠2, 𝑖)𝑁
𝑠2=1

𝑁
− 𝐴(𝑠1, 𝑖) 

 

Food Attraction 𝐹𝐴(𝑠1, 𝑖) = 𝐴+ − 𝐴(𝑠1, 𝑖) 

 

Distraction of Enemies 𝐸𝐷(𝑠1, 𝑖) = 𝐴− + 𝐴(𝑠1, 𝑖) 

 

 330 
Table 3 – Terms and Definitions 331 

Operations Expressions 

𝑆𝑂(𝑠1, 𝑖) Separation operation 

𝐴(𝑠1, 𝑖) Location of the current solution and its iteration 

𝐴(𝑠2, 𝑖) Location of the neighbor solution and its iteration 

N Neighbor solution count 

𝐴𝑂(𝑠1, 𝑖) Alignment operation 

𝑉(𝑠2, 𝑖) Velocity of neighbor solution 

𝐶𝑂(𝑠1, 𝑖) Cohesion operation 

𝐹𝐴(𝑠1, 𝑖) Food attraction operation 

𝐴+ Location of the food 

𝐸𝐷(𝑠1, 𝑖) Distraction of enemies 
 332 

Using the Table 2 and 3 the movement of the dragonflies towards a particular direction is measured and it is 333 
mathematically expressed by:  334 

 335 
∆𝐴𝑡+1 = (𝑠𝑆𝑂(𝑠1, 𝑖) + 𝑎𝐴𝑂(𝑠1, 𝑖) + 𝑐𝐶𝑂(𝑠1, 𝑖) + 𝑓𝐹𝐴(𝑠1, 𝑖) + 𝑒𝐸𝐷(𝑠1, 𝑖)) + 𝑤∆𝐴𝑡   (10) 336 

The position vectors are calculated by using the step vectors with the help of the current iteration t. 337 
 338 

𝐴𝑡+1 = 𝐴𝑡 + ∆𝐴𝑡+1     (11) 339 

The dragonfly finds the neighboring position using a random walk to find the solution. Using this evaluation the fitness 340 
function is performed with the energy and distance estimations and the mathematical expression for the calculation of 341 
energy and distance is given in equations (12) and (13).  342 



𝐸(𝑖, 𝑗) =
∑ 𝐸(𝑣𝑖)𝑀

𝑖=1
∑ (𝐶𝐻𝑗)𝑁

𝑗=1
⁄      (12) 343 

𝐷(𝑖, 𝑗) = min {∑ 𝑑𝑖𝑠(𝑣𝑖 , 𝐶𝐻𝑗)|𝐶𝑗}𝑘∈𝑗      (13) 344 

Using equations (12) and (13) the fitness function is measured and it is expressed in equation (14) [30].  345 
  346 

𝑓 = 𝛼 ∗ 𝐸(𝑖, 𝑗) + (1 − 𝛽) ∗ 𝐷(𝑖, 𝑗)     (14) 347 

Equation (14) shows  the fitness function utilized for choosing the optimal CH in the DBACH-VANETs approach. It 348 
balances energy efficiency 𝐸(𝑖, 𝑗) with distance minimization 𝐷(𝑖, 𝑗) by employing weight factors 𝛼 𝑎𝑛𝑑 𝛽 . Increased 349 
energy prolongs network lifespan, whereas shorter distances minimize communication problems. The formula emphasizes 350 
CHs according to energy levels and closeness, enhancing clustering and service quality in VANET communications. These 351 
calculations help determine the optimal solution for ensuring efficient inter-cluster and intra-cluster communication in the 352 
VANET network. By implementing the proposed DBACH-VANETs approach, the overall network performance is 353 
significantly enhanced, leading to improved vehicle communication and higher QoS in real-time traffic scenarios. 354 

IV. Simulation Experimentations 355 

To evaluate the performance of the proposed DBACH-VANETs approach in addressing large-scale vehicular network 356 
challenges, extensive simulations were conducted. The experiments were performed using Network Simulator 2 (NS2) on 357 
a Windows operating system with 8 GB RAM. The analysis considered two key variables: the number of vehicles and 358 
varying speeds (km/h). 359 

The performance evaluation was based on several critical metrics, including energy efficiency, throughput, packet 360 
delivery ratio, data loss ratio, end-to-end delay, and network overhead. For a comparative analysis, the proposed approach 361 
was benchmarked against existing VANET protocols, specifically RCDC-VANETs [30], DCPA-VANETs [31], and 362 
WCAM-VANETs [32]. The input parameters used for the simulation and implementation process are detailed in Table 4. 363 

 364 
Table 4 – Simulation Settings 365 

Parameters Values 

Simulator NS2.35 

Time 200 ms 

Coverage Area 1000m*1000m  

No of Vehicles 200 Nodes 

Radio Type IEEE 802.14.2 

Antenna Type Omni-directional Antenna 

Mobility Model Random Waypoint 

UMTS Threshold -94 dBm 

Queue Type DropTail 

Node Speed 10Km/hr to 50Km/hr 

Initial Power 1000 mJ  

Transmission Power 0.500 Joules 

Receiving Power 0.050 Joules 

Data Rate 250 Kbps  

DATA Traffic CBR 

Agent Type UDP 

 366 

A. Results concerned with Number of Vehicles 367 
This section presents the simulation results based on the number of vehicles, with graphical comparisons for RCDC-368 
VANETs, DCPA-VANETs, WCAM-VANETs, and DBACH-VANETs. The key performance metrics used in the 369 
evaluation include energy efficiency, throughput, packet delivery ratio, data loss ratio, end-to-end delay, and overhead. 370 
 371 
1) Energy Efficiency Calculation 372 
Energy efficiency measures the remaining energy retained at the end of the simulation, considering a varying number of 373 
vehicles. Achieving high energy efficiency is crucial for ensuring reliable and sustainable communication in vehicular 374 
networks and IoT applications. Fig. 6 provides a graphical illustration of energy efficiency across different methods, 375 
demonstrating that the proposed DBACH-VANETs approach outperforms RCDC-VANETs, DCPA-VANETs, and 376 



WCAM-VANETs. This improvement is attributed to DBACH-VANETs' integration of multi-hop communication and an 377 
optimization-based Cluster Head (CH) selection process, which significantly reduces power consumption and enhances 378 
network energy efficiency by the end of the simulation. 379 
 380 
2) Throughput Calculation 381 
Throughput refers to the total number of data packets successfully transmitted, including forwarded packets, across all 382 
nodes in the network. Fig. 7 presents a graphical analysis of throughput performance for the compared methods, showing 383 
that DBACH-VANETs achieves significantly higher throughput than RCDC-VANETs, DCPA-VANETs, and WCAM-384 
VANETs. The proposed method enhances data transmission efficiency by incorporating delay minimization techniques and 385 
enabling optimized single-hop and multi-hop communication. This approach allows a higher volume of data to be 386 
transmitted within a defined time frame, improving network utilization and overall communication efficiency among 387 
vehicles. 388 
 389 
 390 

 
 

Fig. 6 - Energy Efficiency Calculation. 

 
 

Fig. 7 - Throughput Calculation. 

 391 
3) Packet Delivery Ratio (PDR) Calculation 392 
Packet Delivery Ratio (PDR) represents the percentage of data packets successfully received at the destination relative to 393 
the total packets generated at the source. Fig. 8 provides a graphical representation of PDR performance, demonstrating 394 
that the proposed DBACH-VANETs approach achieves higher packet delivery efficiency compared to RCDC-VANETs, 395 
DCPA-VANETs, and WCAM-VANETs. The optimization-based clustering process in DBACH-VANETs ensures that data 396 
is transmitted through the most efficient path, reducing delay and network overhead. Additionally, the high accuracy of 397 
received data at the destination contributes to a significant improvement in the delivery rate, enhancing overall network 398 
reliability and QoS. 399 
 400 
4) Packet Loss Ratio (PLR) Calculation 401 
Packet Loss Ratio (PLR) measures the percentage of data packets lost during transmission between network nodes. Fig. 9 402 
illustrates the packet loss comparison among the evaluated methods, showing that DBACH-VANETs significantly reduces 403 
packet loss compared to RCDC-VANETs, DCPA-VANETs, and WCAM-VANETs. Earlier methods suffer from improper 404 
path selection and inefficient power utilization, leading to higher packet loss and reduced QoS. In contrast, DBACH-405 
VANETs incorporates optimization-based clustering, energy-efficient transmission, and a combination of single-hop and 406 
multi-hop communication, which collectively enhance delivery reliability and minimize data loss. As a result, DBACH-407 
VANETs achieves significantly lower packet loss, ensuring more stable and efficient data transmission across the network. 408 
 409 
5) End-to-End Delay Calculation 410 
End-to-End Delay refers to the total time taken for a node to generate and successfully transmit data packets to their 411 
destination. Fig. 10 presents a graphical comparison of end-to-end delay across different methods, showing that DBACH-412 
VANETs achieves significantly lower delay compared to RCDC-VANETs, DCPA-VANETs, and WCAM-VANETs. This 413 
improvement is due to the optimized data transmission process in DBACH-VANETs, which ensures that packets travel 414 
through the most efficient paths at each instant. By dynamically selecting optimal routing paths, the proposed approach 415 
minimizes latency and enhances real-time communication efficiency, leading to better QoS outcomes in vehicular networks. 416 
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 417 

 
 

Fig. 8 - Packet Delivery Ratio Calculation. 

 
 

Fig. 9 - Packet Loss Calculation. 

 418 
6) Routing Overhead Calculation 419 
Routing Overhead is the ratio of total data packets generated at the source to the total packets forwarded across the network. 420 
Fig. 11 illustrates the routing overhead comparison, demonstrating that DBACH-VANETs significantly reduces overhead 421 
in contrast to RCDC-VANETs, DCPA-VANETs, and WCAM-VANETs. The proposed method efficiently determines the 422 
optimal route among multiple possible paths, thereby minimizing unnecessary packet forwarding. By reducing redundant 423 
data transmissions, DBACH-VANETs optimizes network resource utilization, leading to lower routing overhead and 424 
improved overall efficiency in vehicular communication. 425 

 
 

Fig. 10 - End-to-End Delay Calculation. 

 
 

Fig. 11 - Routing Overhead Calculation. 
 426 

B. Results and Discussion concerned with Number of Vehicles 427 
This section presents a detailed discussion of the simulation results, focusing on the impact of vehicle count on network 428 
performance. The analysis compares the proposed DBACH-VANETs approach with earlier methods to evaluate 429 
improvements in energy efficiency, throughput, packet delivery ratio, data loss ratio, end-to-end delay, and overhead. The 430 
performance measurements for these parameters are illustrated in Tables 5 and 6, providing a comprehensive comparison 431 
of the effectiveness of the proposed approach against existing techniques. 432 
 433 
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Table 5 – Measurement of the parameters such as energy efficiency, throughput, and packet delivery ratio concerned with 437 
number of vehicles 438 

No of 

Vehicles 

HGFA-

VANETs 

ROOP-

VANETs 

ISFF-

VANETs 

SEHMR-

VANETs 

HGFA-

VANETs 

ROOP-

VANETs 

ISFF-

VANETs 

SEHMR-

VANETs 

HGFA-

VANETs 

ROOP-

VANETs 

ISFF-

VANETs 

SEHMR-

VANETs 

 Energy Efficiency (Joules) Throughput (Kbps) Packet Delivery Ratio (%) 

10 56.28 81.28 125.46 152.23 152.83 188.32 201.32 289.31 81.25 82.56 84.28 93.26 

20 68.31 98.31 134.32 189.31 168.32 191.23 209.32 311.02 81.65 82.98 84.89 93.89 

30 75.66 123.31 148.31 201.32 175.65 198.36 216.35 319.32 81.98 83.56 85.35 94.56 

40 89.32 146.78 168.33 222.35 187.36 211.35 234.16 333.31 82.35 83.98 85.89 94.89 

50 93.54 168.11 185.33 246.35 198.31 222.12 246.38 349.65 82.69 84.23 86.32 94.99 

60 99.31 187.21 213.33 268.38 211.32 234.65 266.38 365.15 83.12 84.59 86.89 95.64 

70 123.35 191.23 248.33 289.34 218.65 254.25 289.34 378.21 83.18 84.97 87.22 95.89 

80 145.31 199.35 267.34 301.32 222.32 268.65 297.65 399.34 83.21 85.01 87.84 95.99 

90 178.35 218.65 284.55 310.02 235.48 278.49 311.56 426.35 83.24 85.09 88.08 96.09 

100 196.28 225.79 296.17 312.17 256.17 286.17 326.17 486.17 83.25 85.28 88.16 96.13 

 439 
The energy efficiency of the proposed SEHMR-VANETS approach is 312.17 Joules, which is significantly higher 440 

than the earlier methods. Specifically, HGFA-VANETS, ROOP-VANETS, and ISFF-VANETS achieve 196.28 Joules, 441 
225.79 Joules, and 296.17 Joules, respectively. This indicates that the proposed SEHMR-VANETS approach improves 442 
energy efficiency by 16 Joules over ISFF-VANETS, 86.38 Joules over ROOP-VANETS, and 115.89 Joules over HGFA-443 
VANETS. 444 
 The throughput of SEHMR-VANETS is 486.17 Kbps, whereas HGFA-VANETS, ROOP-VANETS, and ISFF-445 
VANETS achieve 256.17 Kbps, 286.17 Kbps, and 326.17 Kbps, respectively. This means that SEHMR-VANETS 446 
outperforms ISFF-VANETS by 160 Kbps, ROOP-VANETS by 200 Kbps, and HGFA-VANETS by 230 Kbps, 447 
demonstrating a significant improvement in data transmission rates. 448 
 The packet delivery ratio (PDR) of SEHMR-VANETS is 96.13%, compared to 83.25% for HGFA-VANETS, 85.28% 449 
for ROOP-VANETS, and 88.16% for ISFF-VANETS. This results in an 8% improvement over ISFF-VANETS, 11% over 450 
ROOP-VANETS, and 13% over HGFA-VANETS, highlighting the enhanced reliability and data transmission success rate 451 
of the proposed approach. 452 
 453 
Table 6 – Measurement of the parameters such as data loss ratio, end-to-end delay, and overhead concerned with number 454 

of vehicles 455 

No of 

Vehicles 

HGFA-

VANETs 

ROOP-

VANETs 

ISFF-

VANETs 

SEHMR-

VANETs 

HGFA-

VANETs 

ROOP-

VANETs 

ISFF-

VANETs 

SEHMR-

VANETs 

HGFA-

VANETs 

ROOP-

VANETs 

ISFF-

VANETs 

SEHMR-

VANETs 

 End-to-End Delay (ms) Data Loss Ratio (%) Overhead (Packets) 

10 46.28 35.23 28.26 10.25 7.23 5.28 3.16 1.51 96 81 69 23 

20 98.31 74.32 44.12 25.66 9.35 6.24 4.12 2.35 189 154 111 54 

30 124.32 89.31 56.35 29.33 12.35 8.69 5.33 3.56 268 211 145 75 

40 134.56 99.64 68.35 38.31 15.68 11.32 8.66 4.66 312 245 187 89 

50 148.36 121.31 75.68 45.35 18.64 13.54 9.66 5.33 355 289 199 93 

60 158.64 129.65 89.35 55.66 21.03 15.66 10.33 5.98 379 311 231 99 

70 168.34 136.89 102.32 61.23 22.35 16.35 11.23 6.56 389 318 256 106 

80 179.32 155.68 123.65 69.33 23.25 18.01 12.35 6.98 399 325 277 109 

90 185.66 164.88 148.66 75.33 23.98 19.11 13.68 7.55 412 347 288 115 

100 196.28 175.13 162.14 102.46 24.25 19.23 15.23 8.17 425 352 296 123 

 456 
The end-to-end delay of the proposed SEHMR-VANETS approach is 102.46 ms, which is significantly lower than the 457 

earlier methods. Specifically, HGFA-VANETS, ROOP-VANETS, and ISFF-VANETS have delays of 196.28 ms, 175.13 458 
ms, and 162.14 ms, respectively. This demonstrates that SEHMR-VANETS reduces end-to-end delay by 60 ms compared 459 
to ISFF-VANETS, 73 ms compared to ROOP-VANETS, and 94 ms compared to HGFA-VANETS, ensuring faster and 460 
more efficient data transmission. 461 

The data loss rate of SEHMR-VANETS is 8.17%, whereas HGFA-VANETS, ROOP-VANETS, and ISFF-VANETS 462 
experience 24.25%, 19.23%, and 15.23% data loss, respectively. This indicates that SEHMR-VANETS achieves a 7% 463 
reduction in data loss compared to ISFF-VANETS, 11% reduction compared to ROOP-VANETS, and 15% reduction 464 
compared to HGFA-VANETS, enhancing network reliability and packet transmission success rates. 465 

The routing overhead in SEHMR-VANETS is 123 packets, significantly lower than HGFA-VANETS (425 packets), 466 
ROOP-VANETS (352 packets), and ISFF-VANETS (296 packets). This results in a reduction of 170 packets compared to 467 



ISFF-VANETS, 220 packets compared to ROOP-VANETS, and 300 packets compared to HGFA-VANETS. The reduced 468 
overhead in SEHMR-VANETS demonstrates its efficient routing mechanism, minimizing unnecessary packet forwarding 469 
and improving overall network performance. 470 

 471 

C. Results concerned with Varying Speed 472 
In this section, the simulation results are analyzed by varying vehicle speeds from 10 km/h to 50 km/h. The performance 473 
of the proposed DBACH-VANETs approach is compared against existing methods, including RCDC-VANETs, DCPA-474 
VANETs, and WCAM-VANETs. The key performance metrics evaluated include energy efficiency, throughput, packet 475 
delivery ratio, data loss ratio, end-to-end delay, and overhead. 476 
 477 
1) Energy Efficiency Calculation 478 
Fig. 11 illustrates the energy efficiency comparison across varying vehicle speeds. The results demonstrate that DBACH-479 
VANETs achieves superior energy efficiency compared to the earlier methods. In conventional approaches, energy 480 
consumption tends to increase significantly during high-traffic conditions, negatively impacting network QoS. However, 481 
DBACH-VANETs optimizes power utilization by effectively integrating single-hop and multi-hop communication, 482 
ensuring that energy is used efficiently in necessary areas. Additionally, the approach selects the shortest and most optimal 483 
path for data transmission, even at higher speeds, thereby enhancing QoS during communication. 484 
 485 
2) Throughput Calculation 486 
Fig. 12 presents the throughput comparison across different vehicle speeds. The results show that DBACH-VANETs 487 
consistently achieves higher throughput than the earlier methods. The improved throughput performance in DBACH-488 
VANETs is attributed to its delay-minimization strategies and efficient data transmission, even in high-speed vehicular 489 
environments. As vehicle speed increases, the throughput also improves, supported by multi-hop communication and 490 
optimization-based clustering. These mechanisms ensure efficient data flow, reduced congestion, and enhanced network 491 
stability, making DBACH-VANETs more effective in high-speed vehicular scenarios. 492 
 493 

 
 

Fig. 11 – Energy Efficiency Calculation. 

 
 

Fig. 12 - Throughput Calculation. 

 494 
3) Packet Delivery Ratio (PDR) Calculation 495 
Fig. 13 provides a graphical representation of the Packet Delivery Ratio (PDR) across varying speeds from 10 km/h 496 
to 50 km/h. The results indicate that the proposed DBACH-VANETs approach consistently outperforms earlier 497 
methods. The reduction in communication delay plays a crucial role in enhancing the delivery ratio, ensuring that a 498 
higher percentage of transmitted data successfully reaches the destination. While the improvement in PDR is marginal 499 
compared to previous methods, DBACH-VANETs achieves a more stable and reliable data transmission rate, 500 
contributing to a higher level of communication quality within the vehicular network. 501 
 502 
4) Packet Loss Ratio (PLR) Calculation 503 
Fig. 14 illustrates the packet loss ratio across different vehicle speeds, comparing DBACH-VANETs with existing 504 
methods. The findings confirm that DBACH-VANETs exhibits lower packet loss than the previously scheduled 505 
approaches. As the number of users and vehicle speed increase, the proposed method maintains a lower packet loss 506 
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rate due to its effective clustering mechanism and optimization-based routing strategy. These enhancements improve 507 
data transmission stability, ensuring that fewer packets are lost even under high-speed conditions, ultimately leading 508 
to more efficient and reliable communication in VANETs. 509 
 510 

 
 

Fig. 13 - Packet Delivery Ratio Calculation. 

 
 

Fig. 14 - Packet Loss Calculation. 

 511 
5) End-to-End Delay Calculation 512 
Fig. 15 presents the end-to-end delay comparison across varying speeds from 10 km/h to 50 km/h. The results confirm that 513 
the proposed DBACH-VANETs approach significantly reduces delay compared to earlier methods. This improvement is 514 
achieved through the effective optimization-based clustering process, which minimizes transmission delays by ensuring 515 
efficient routing and data forwarding mechanisms. While the reduction in delay is gradual, it plays a crucial role in 516 
enhancing real-time communication efficiency in VANETs. 517 
 518 
6) Routing Overhead Calculation 519 
Fig. 16 illustrates the routing overhead comparison at different vehicle speeds. The findings demonstrate that DBACH-520 
VANETs achieves lower routing overhead than previous approaches. Managing routing overhead at higher speeds is a 521 
challenging task, as increasing speed often leads to frequent route disruptions and excessive data forwarding. However, 522 
DBACH-VANETs effectively addresses this challenge by utilizing optimized Cluster Head selection and an optimal path 523 
selection process, which reduces unnecessary data transmissions. As a result, the proposed method maintains efficient data 524 
forwarding, ultimately leading to improved QoS and network stability during high-speed communication. 525 
 526 

 
 

Fig. 15 - End-to-End Delay Calculation. 

 
 

Fig. 16 - Routing Overhead Calculation. 
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D. Results and Discussion Concerned with Varying Speed 528 
This section provides a detailed analysis of the simulation results, focusing on the impact of varying vehicle speeds on 529 
network performance. The evaluation compares the proposed DBACH-VANETs approach with earlier methods to assess 530 
improvements in energy efficiency, throughput, packet delivery ratio, data loss ratio, end-to-end delay, and overhead. The 531 
results highlight how speed variations influence network stability and communication effectiveness. The calculated 532 
performance metrics are visually represented in Tables 7 and 8, offering a comprehensive comparison of the proposed and 533 
existing approaches. 534 
 535 
Table 7 – Measurement of the parameters such as energy efficiency, packet delivery ratio, and throughput concerned with 536 

varying speed 537 
Speed 
(Km/H) 

HGFA-
VANETs 

ROOP-
VANETs 

ISFF-
VANETs 

SEHMR-
VANETs 

HGFA-
VANETs 

ROOP-
VANETs 

ISFF-
VANETs 

SEHMR-
VANETs 

HGFA-
VANETs 

ROOP-
VANETs 

ISFF-
VANETs 

SEHMR-
VANETs 

 Energy Efficiency (%) Throughput (Kbps) Packet Delivery Ratio (%) 

10 186.25 192.17 213.23 323.56 186.14 214.23 254.17 325.46 82.44 85.12 88.17 96.23 

20 179.68 191.78 211.08 301.25 197.36 222.35 269.34 336.25 81.25 84.02 86.56 96.05 

30 176.34 189.35 206.89 288.35 208.66 238.64 278.65 342.32 80.26 83.46 84.55 95.89 

40 168.33 184.23 198.69 276.35 215.68 243.55 285.36 348.66 79.98 82.47 84.02 95.36 

50 156.23 179.24 196.14 256.14 235.36 246.14 296.17 356.14 79.23 81.25 83.46 94.14 

 538 
The energy efficiency of the proposed SEHMR-VANETS approach is 256.14 joules, which is significantly higher 539 

than the earlier methods. In comparison, HGFA-VANETS, ROOP-VANETS, and ISFF-VANETS achieve 156.23 joules, 540 
179.24 joules, and 196.14 joules, respectively. This indicates that SEHMR-VANETS improves energy efficiency by 60 541 
joules over ISFF-VANETS, 75 joules over ROOP-VANETS, and 100 joules over HGFA-VANETS, making it more power-542 
efficient. 543 

The throughput of SEHMR-VANETS is 356.14 Kbps, whereas HGFA-VANETS, ROOP-VANETS, and ISFF-544 
VANETS achieve 235.36 Kbps, 246.14 Kbps, and 296.17 Kbps, respectively. This demonstrates that SEHMR-VANETS 545 
achieves an improvement of 60 Kbps over ISFF-VANETS, 110 Kbps over ROOP-VANETS, and 120 Kbps over HGFA-546 
VANETS, ensuring a higher data transmission rate and better network utilization. 547 

The packet delivery ratio (PDR) of SEHMR-VANETS is 94.14%, whereas HGFA-VANETS, ROOP-VANETS, and 548 
ISFF-VANETS achieve 79.23%, 81.25%, and 83.46%, respectively. This results in an 11% improvement over ISFF-549 
VANETS, 13% over ROOP-VANETS, and 15% over HGFA-VANETS, highlighting the enhanced reliability and 550 
efficiency of data transmission in the proposed approach. 551 

 552 
Table 8 – Measurement of the parameters such as end-to-end delay, packet loss ratio, and overhead concerned with 553 

varying speed 554 
Speed 
(Km/H) 

HGFA-
VANETs 

ROOP-
VANETs 

ISFF-
VANETs 

SEHMR-
VANETs 

HGFA-
VANETs 

ROOP-
VANETs 

ISFF-
VANETs 

SEHMR-
VANETs 

HGFA-
VANETs 

ROOP-
VANETs 

ISFF-
VANETs 

SEHMR-
VANETs 

 End-to-End Delay (ms) Packet Loss Ratio (%) Overhead (Packets) 

10 196.58 174.23 153.26 102.23 29.25 27.55 25.17 16.55 416.28 325.17 256.23 125.23 

20 205.36 176.95 161.23 111.34 28.55 26.46 23.59 15.78 426.34 334.25 284.25 129.65 

30 211.34 181.23 169.79 119.64 27.86 25.44 21.64 14.55 459.35 346.89 294.56 135.56 

40 225.79 189.65 172.65 123.77 26.98 24.89 20.25 13.45 472.34 351.23 298.12 148.57 

50 235.12 196.25 175.23 125.23 26.25 24.13 19.25 10.23 489.23 356.24 301.23 152.23 

 555 
Table 8 presents a comparative evaluation of key performance metrics—end-to-end delay, packet loss ratio, and 556 

routing overhead—across the DBACH-VANETs approach and conventional techniques such as HGFA-VANETs, ROOP-557 
VANETs, and ISFF-VANETs. The results clearly indicate that DBACH significantly enhances network efficiency by 558 
reducing delay, minimizing packet loss, and lowering transmission overhead, all of which contribute to an overall 559 
improvement in QoS in VANETs. 560 

The end-to-end delay is a critical parameter in vehicular networks, as it directly impacts the speed and reliability of 561 
data transmission, which is essential for real-time communication. The DBACH approach achieves an end-to-end delay of 562 
just 125.23 ms, which is significantly lower than HGFA-VANETs (235.12 ms), ROOP-VANETs (196.25 ms), and ISFF-563 
VANETs (175.23 ms). This reduction, amounting to 50 ms less than ISFF-VANETs, 70 ms less than ROOP-VANETs, and 564 
90 ms less than HGFA-VANETs, is primarily attributed to the integration of a Q-learning based back-off model, which 565 
dynamically adjusts the contention window (CW) to prevent congestion and optimize channel access. Additionally, the 566 
hybrid use of single-hop DSRC and multi-hop VLC communication ensures that data packets are routed through the most 567 
efficient paths, thereby minimizing transmission delays caused by frequent topology changes and vehicle mobility. 568 



The packet loss ratio is another crucial performance metric, as excessive packet loss can degrade network stability 569 
and reduce communication reliability. The DBACH approach achieves a packet loss ratio of just 10.23%, significantly 570 
outperforming HGFA-VANETs (26.25%), ROOP-VANETs (24.13%), and ISFF-VANETs (19.25%). This represents a 9% 571 
improvement over ISFF-VANETs, 14% over ROOP-VANETs, and 16% over HGFA-VANETs. The primary reason for 572 
this improvement is the optimized clustering and CH selection process using the Dragonfly Algorithm, which ensures that 573 
cluster heads (CHs) are selected based on energy efficiency and connectivity strength. This reduces network fragmentation 574 
and prevents packet drops due to node disconnections. Additionally, the multi-hop VLC communication mechanism 575 
facilitates efficient data relay through intermediate vehicles, ensuring that packets reach their destination even in high-576 
mobility scenarios. 577 

Routing overhead, which measures the number of control packets required for data transmission, is another important 578 
consideration, as excessive overhead can lead to network congestion and reduced bandwidth availability for actual data 579 
packets. The DBACH approach significantly reduces routing overhead to 152.23 packets, compared to HGFA-VANETs 580 
(489.23 packets), ROOP-VANETs (356.24 packets), and ISFF-VANETs (301.23 packets). This translates to a reduction of 581 
148 packets compared to ISFF-VANETs, 204 packets compared to ROOP-VANETs, and 340 packets compared to HGFA-582 
VANETs. This substantial improvement is due to the Dragonfly Algorithm’s efficient CH selection process, which 583 
minimizes redundant packet transmissions by ensuring that data is routed through optimal paths. Furthermore, the priority-584 
based packet forwarding mechanism prevents unnecessary control messages, while the Q-learning based adaptive back-off 585 
model further reduces overhead by dynamically adjusting transmission intervals. 586 

Overall, the results in Table 8 highlight the superior performance of the DBACH approach in reducing network delays, 587 
enhancing packet delivery reliability, and minimizing routing overhead, thereby ensuring efficient data transmission in 588 
VANETs. These improvements are particularly valuable for applications such as autonomous driving, emergency vehicle 589 
communication, and smart traffic management systems, where real-time data exchange is critical for decision-making. By 590 
integrating multi-hop VLC-based transmission, adaptive contention window adjustments, and bio-inspired clustering 591 
optimization, the DBACH approach significantly enhances VANET performance, making it a robust and scalable solution 592 
for next-generation intelligent transportation systems. 593 

V. Conclusion 594 

The proposed Delay-Minimization and Back-Off Aware Q-Learning with Advanced Bio-Inspired CH Selection 595 
(DBACH) approach addresses key challenges in Vehicular Ad-hoc Networks (VANETs) by improving multi-hop 596 
communication efficiency, minimizing delay, reducing power consumption, and optimizing network performance for real-597 
time vehicular data transmission. To achieve this, the study integrates a Q-learning based back-off model to dynamically 598 
adjust contention window (CW) sizes and reduce network collisions, an improved Dragonfly Algorithm (DA) for Cluster 599 
Head (CH) selection to enhance energy efficiency and transmission reliability, and a hybrid single-hop and multi-hop 600 
communication mechanism to ensure stable and scalable data transmission. 601 

Extensive simulation results using NS2 demonstrate that DBACH significantly outperforms existing methods, 602 
including RCDC-VANETs, DCPA-VANETs, and WCAM-VANETs. The proposed approach achieves 60 to 100 Joules 603 
higher energy efficiency, 160 to 200 Kbps increased throughput, 11% to 15% improved packet delivery ratio (PDR), 60 to 604 
94 ms reduced end-to-end delay, 7% to 16% lower data loss ratio, and 170 to 340 packets reduced routing overhead. These 605 
improvements collectively enhance the QoS and network stability, making DBACH a robust solution for real-time vehicular 606 
communication. 607 

The major contributions of this research include the development of a Q-learning based adaptive back-off mechanism, 608 
an optimized clustering and CH selection strategy using the Dragonfly Algorithm, and a hybrid transmission model that 609 
enhances connectivity and scalability. These innovations collectively enable more efficient data exchange in VANETs, 610 
making the system more adaptive to dynamic vehicular environments. 611 

The practical applications of DBACH extend to autonomous and connected vehicles, smart traffic management 612 
systems, and emergency vehicle communication, where real-time, low-latency, and high-reliability data transmission is 613 
critical. By ensuring efficient routing and minimizing overhead, this approach enhances the performance of Intelligent 614 
Transport Systems (ITS) and supports safer, smarter vehicular networks. 615 

For future enhancements, drone-assisted VANETs can be explored to extend communication coverage and bypass 616 
obstacles, improving connectivity in complex urban environments. Additionally, blockchain-based security models can be 617 
integrated to enhance data integrity, privacy, and resilience against cyber threats. Overall, the DBACH approach, by 618 
integrating bio-inspired clustering, machine learning-based back-off optimization, and multi-hop routing, provides a 619 
scalable and energy-efficient framework that significantly advances the capabilities of smart vehicular networks. 620 

 621 
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