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Abstract: This paper proposes convex conditions for the observer design of nonlinear
continuous-time systems. A broad class of nonlinear systems can be tackled by the proposed
technique. A spatial discretization is employed, and an approximate model is obtained within the
error matrices that measure the difference between the nonlinear system and the approximated
one. The conditions are formulated as parameter-dependent matrix inequalities and ensure
that the observer can asymptotically follow the states of the original nonlinear system while
guaranteeing a bound to the L2-gain from the disturbance input to the estimation error.
Numerical experiments are used to illustrate the features of the proposed method.
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1. INTRODUCTION

The inherently nonlinear nature of systems cannot be ne-
glected (Khalil, 2002). Failure to handle nonlinearities can
lead to performance specifications not being met when de-
signing controllers and filters. In some applications, linear
models cannot capture the dynamics of the real systems
properly. For this reason, several techniques have been
developed to analyse the behaviour of nonlinear systems.
Many efforts have been made to approximate nonlinear
systems by a set of local linear models, instead of a
single global linear model. One may cite Takagi-Sugeno
fuzzy techniques (Takagi and Sugeno, 1985) and linear
parameter-varying (LPV) models (Mohammadpour and
Scherer, 2012). These techniques along with the Lyapunov
theory, allow the formulation of control design and analysis
conditions as convex optimization problems in the form
of linear matrix inequalities (LMIs) (Boyd et al., 1994).
Thanks to the advance of semidefinite programming al-
gorithms the LMIs can be efficiently solved by existing
solvers.

One important issue in control theory is the estimation
problem. The issue of estimating the state of a system from
the output can be applied in the observer-based control
problem for instance Heemels et al. (2010). When distur-
bance is considered the problem becomes more intriguing
and the H2 and H∞ performance criteria are employed.
The estimation problem has been investigated under differ-
ent scenarios. One may find studies dealing with observer
design (Ichihara, 2009) and filter design (Lacerda et al.,

2014, 2015) for nonlinear polynomial systems, observer-
based control for periodic systems (Lv and Duan, 2010)
and linear time-varying periodic systems (Agulhari and
Lacerda, 2016), and observer-design for affine LPV sys-
tems (Bara et al., 2001) for instance.

LPV systems have been employed for observer design
considering continuous and discrete-time dynamics (Ibrir,
2009; Wang et al., 2015). However, in most of the scenarios,
the polytopic description of the system is assumed to be
known and no correspondence with the original nonlinear
system is established. To deal with this issue, the spatial
discretization introduced in Agulhari et al. (2023) will
be employed in this work. With spatial discretization, a
nonlinear system can be formulated in terms of an approx-
imate polytopic model that can be used to cast convex
design conditions in terms of LMIs, being such a model
also known as a quasi-LPV system, since the parameters
depend on the states. This avoids the use of more com-
plex tools such as sum of squares methods for polynomial
systems (Papachristodoulou and Prajna, 2005). Moreover,
the system nonlinearities are not restricted to polynomial
functions of the states in this scenario. To the authors’
knowledge, there is no other method in the literature that
considers a quasi-LPV observer directly depending on the
observed states with convergence guarantees.

This paper proposes convex conditions for observer design
when considering nonlinear continuous-time systems. The
spatial discretization is applied to obtain a polytopic
approximation of the original nonlinear model. A set of



convex conditions is proposed to design a parameter-
dependent observer that can estimate the states of the
approximated system while ensuring a bound from the
disturbance input to the reference output. The conditions
also ensure that the same observer can estimate the
states of the original nonlinear system while guaranteeing
a bound from the disturbance input to the reference
output of the system. Numerical experiments illustrate
the behaviour of the proposed observer design technique
in two academic examples. The impact of the number of
samples used in the spatial discretization is explored, and
it is shown that by increasing the number of samples and
properly setting the position of the samples in the state
space, the bound for the L2-gain from the disturbance
input to the reference output decreases.

2. PRELIMINARIES

Consider the continuous-time state-dependent system

ẋ(t) = A(x)x(t) +Bw(x)w(t),

y(t) = C(x)x(t) +Dw(x)w(t),
(1)

where x ∈ R
nx is the state vector, y ∈ R

ny is the output
vector, and w ∈ R

nw is the disturbance.

The system matrices are supposed to depend on the subset
of states x1(t), . . . , xp(t), p ≤ nx, which may include all the
states depending on the system. Define the subspace Xp

Xp , {x1(t), . . . , xp(t)} ⊂ R
n,

and consider the p-tuple I defined as

I , (i1, . . . , ip),

where

ij ∈ {1, . . . , Nj} , Ij , ∀j = 1, . . . , p,

for any Nj ∈ Z
+. For each state xj(t) ∈ Xp, let

Dj , {x
(1)
j , . . . , x

(Nj)
j },

be a predefined real-valued grid, where x
(ℓ)
j > x

(k)
j if

ℓ > k. Consider also the set DI = D1 × . . . × Dp, being
× the Cartesian product. The sets Dj represent a spatial
discretization on the states within the subset Xp, where
Nj samples are used for each state grid.

For every index i ∈ I , letQ(x, i) be the real matrix-valued
function described as

Q(x, i) = Q(x)
∣∣
x1(t)=x

(i1)

1 ,...,xp(t)=x
(ip)
p ,

being Q(x) any state-dependent matrix from (1).

The following definitions are necessary for the sequence of
this work (Boyd et al., 1994; Agulhari et al., 2013).

Definition 1. Let ΛN denote the unit simplex with N
vertices. It is characterized as the set of vectors ξ(t) in
R

N satisfying the following conditions:

ΛN ,

{
ξ(t) ∈ R

N :

N∑

i=1

ξi(t) = 1, ξi(t) ≥ 0, i ∈ Z
+
≤N

}
.

Definition 2. A multi-simplex ΩN is the Cartesian prod-
uct ΛN1

× . . . × ΛNp
of a finite number p of simplexes.

The dimension of ΩN is denoted by N = (N1, . . . , Np)
and, to simplify the notation, R

N denotes the space
R

N1+...+Np . Any element α(t) of Ω is decomposed as
(α(1)(t), . . . , α(p)(t)) and, consequently, any α(j)(t) ∈ ΛNj

is decomposed as (α
(j)
1 (t), . . . , α

(j)
Nj

(t)).

Usually, the simplex and multisimplex sets are used to
define polytopic domains with known matrix vertices.
Define the matrix

Ã(α(x)) =

N1∑

i1=1

α
(1)
i1

. . .

Np∑

ip=1

α
(p)
ip

A(x, i)

=
∑

i∈I

αiA(x, i), α ∈ ΩN , i ∈ I , (2)

which is a polytope with vertices given by A(x, i), for each
i ∈ I , and will be used in the sequence to represent a
polytopic approximation of the original nonlinear system.
Before, another definition is necessary.

Definition 3. The set of edges for the simplex ΛNj
is

defined as

E(j) =

Nj−1⋃

ℓ=1

E
(j)
ℓ , E

(j)
ℓ ,

{
α
(j)
ℓ ∈ ΛNj

: α
(j)
ℓ +α

(j)
ℓ+1 = 1,

α
(j)
k = 0 ∀k /∈ {ℓ, ℓ+ 1}

}
.

The set ∂ΩN is then defined as

∂ΩN , E(1) × . . .× E(p).

According to Definition 3, the domain of Ã(α(x)), α ∈
∂ΩN corresponds to a set of edges from the polytope ΩN ,
whose vertices are given by A(x, i) resultant from a spatial
discretization procedure of the state subspace Xp.

Consider the system given by

˙̃x(t) = Ã(α(x̃))x̃(t) + B̃w(α(x̃))w(t)

ỹ(t) = C̃(α(x̃))x̃(t) + D̃w(α(x̃))w(t)
(3)

where all the polytopic matrices are structured such as pre-
sented in (2). System (3) is the aforementioned polytopic
approximation of the original nonlinear dynamics (1), ob-
tained from the spatial discretization methodology.

The main objective of this paper is to propose a set of
conditions to guarantee that the observer denoted by

˙̂x(t) = Ã(α(x̂))x̂(t) + L(α(x̂))(y(t)− ŷ(t)),

ŷ(t) = C̃(α(x̂))x̂(t),
(4)

being L(α(x̂)) the parameter-dependent observer gain,
fully estimates the states of the nonlinear system (1).
To assure the robustness of the proposed observer to the
disturbance inputs the following reference output will be
considered

z(t) = Cz(x(t)− x̂(t)) +Dzww(t).

To allow the application of convex procedures, the observer
gain needs to be computed from the approximated dynam-
ics (3), thus being necessary to account for the difference
between both models. Such difference is described through
a set of error matrices given by

δA(x) = A(x)− Ã(α(x̃)), δB(x) = Bw(x)− B̃w(α(x̃)),

δC(x) = C(x)− C̃(α(x̃)), δD(x) = Dw(x)− D̃w(α(x̃)).
(5)

Remark 1. Note that the proposed modelling allows the
utilization of parameter-dependent observer gains L(α(x̂)),
which is not possible when using standard models of sim-
ply removing the nonlinearities of the original system by
introducing uncertain time-varying parameters.



3. MAIN RESULTS

The following theorem presents a set of conditions to com-
pute an observer gain L(α(x̂)), using the approximated
model (3), assuring that the observer (4) is capable of
estimating the states of the nonlinear system (1). All the
parameters α(x̃) are simply denoted by α for clarity.

Theorem 1. Given a positive scalar ρ satisfying ||x(t)|| ≤
ρ||w(t)||, if there exists a symmetric positive definite
matrix P (α), matrices H(α), Z(α) and M , a scalar ξ and
a positive scalar τ satisfying inequalities (6) and (7), being

Ψ1 = MÃ(α) + Ã(α)TMT + Z(α)C̃(α)

+ C̃(α)TZ(α)T + ηP (α) + Ṗ (α),

Ψ2 = ξ
(
MδA(x) + δA(x)

TMT

+ Z(α)δC(x) + δC(x)
TZ(α)T

)
− τI,

then the observer (4) with L(α) = −M−1Z(α) is capable
of asymptotically follow the dynamics of the nonlinear
system (1) while assuring that ||z(t)||2 ≤ (γ2

1+γ2
2)||w(t)||

2.

Proof. The LMI (6) is a well-known condition for the
synthesis of parameter-dependent observers for LPV sys-
tems (Yaesh and Shaked, 2009; Pipeleers et al., 2009).
First, since

−H(α)TH(α) ≤ I −H(α)−H(α)T ,

then, the inequality (6) is valid if (8) is satisfied. Replacing

Z(α) = −ML(α), denoting ÃL(α) = Ã(α) − L(α)C̃(α),

B̃L(α) = B̃w(α) − L(α)D̃w(α), and multiplying condi-
tion (8) on the left by



I ÃL(α)

T 0 0

0 B̃L(α)
T I 0

0 0 0 (H(α)T )−1


 ,

and on the right by its transpose results in


Γ ⋆ ⋆

B̃L(α)
TP (α) −γ2

1I ⋆
Cz Dzw −I


 < 0,

where Γ = ÃL(α)
TP (α) + P (α)ÃL(α) + ηP (α) + Ṗ (α).

The application of the Schur complement yields[
Γ + CT

z Cz ⋆

B̃L(α)
TP (α) +DT

zwCz DT
zwDzw − γ2

1I

]
< 0.

Multiplying the last condition by [ẽ(t)T w(t)T ] on the
left and by its transpose on the right, results in the H∞

bound (Boyd et al., 1994) inequality

V̇ (ẽ) + z̄(t)T z̄(t)− γ2
1w(t)

Tw(t) < −ηẽ(t)TP (α)ẽ(t), (9)

considering that the Lyapunov function is given by

V (ẽ) = ẽ(t)TP (α)ẽ(t),

and ẽ(t) = x̃(t)− x̄(t) is the estimation error for the states
of the approximate system (3). Therefore, it is proven that
if (6) holds, then the states of the auxiliary observer

˙̄x(t) = Ã(α(x̄))x̄(t) + L(α(x̄))(ỹ(t)− ȳ(t)),

ȳ(t) = C̃(α(x̄))x̄(t),

z̄(t) = Cz(x̃(t)− x̄(t)) +Dzww(t),

(10)

are capable of asymptotically follow the states of the
approximated system (3), while assuring that ||z̄(t)||2 ≤

γ2
1 ||w(t)||

2. Note that the auxiliary observer (10) is only
used in the proof to design the gain L(α) and not actually
implemented.

It is now necessary to establish the conditions that assure
that the observer (4), considering the same gain L(α), can
estimate the states of the original nonlinear system (1).
Consider the error signal e(t) = x(t) − x̂(t) between both
states. The error dynamics, after applying the relations
depicted in (5), is given by

ė(t) = ÃL(α)e(t)+B̃L(α)w(t)+(δA(x)−L(α)δC(x))x(t)

+ (δB(x)− L(α)δD(x))w(t). (11)

In order to the proposed observer follow the nonlinear
system (1) assuring also the bound ||z(t)||2 ≤ γ2||w(t)||2,
it is necessary to guarantee the condition

V̇ (e) + z(t)T z(t)− γ2w(t)Tw(t) < 0, (12)

being V (e) = e(t)TP (α)e(t). The derivative V̇ (e), consid-
ering the error dynamics (11), is

V̇ (e) = e(t)T
(
Ṗ (α) +

(
Ã(α)− L(α)C̃(α)T

)
P (α)

+ P (α)(Ã(α)− L(α)C̃(α))
)
e(t)

+ 2e(t)TP (t)(δA(x)− L(α)δC(x))x(t)

+ 2e(t)TP (α)(δB(x)− L(α)δD(x))w(t). (13)

It is possible to show that, since (9) is verified from
condition (6) and using the derivative in (13), then (12)
can be rewritten as

V̇ (e) + z(t)T z(t)− γ2w(t)Tw(t)

= V̇ (e) + z(t)T z(t)− (γ2
1 + γ2

2)w(t)
Tw(t)

< −ηe(t)TP (α)e(t)+2e(t)TP (α)(δA(x)−L(α)δC(x))x(t)

+2e(t)TP (α)(δB(x)−L(α)δD(x))w(t)−γ2
2w(t)

Tw(t) < 0.

Note that the change of variables γ2 , γ2
1 + γ2

2 has been
applied. Suppose now that ||x(t)||2 ≤ ρ||w(t)||2. Through
the application of the S -Procedure (Boyd et al., 1994) in
the latter inequality, then there exists τ > 0, such that

− ηe(t)TP (α)e(t) + 2e(t)TP (t)(δA(x)−L(α)δC(x))x(t)

+ 2e(t)TP (α)(δB(x)− L(α)δD(x))w(t)

+ (τρ2 − γ2
2)w(t)

Tw(t)− τx(t)Tx(t) < 0. (14)

Finally, it remains to show that condition (14) is valid
since (7) holds. Replacing Z(α) = −ML(α) and multiply-
ing (7) on the left by 


I 0 0 0
0 δTA I 0
0 δTB 0 I


 ,

and on the right by its transpose results in


−ηP (α) ⋆ ⋆
(δA(x)− L(α)δC(x))

TP (α) −τI ⋆
(δB(x)− L(α)δD(x))TP (α) 0 (τρ2 − γ2

2)I


 < 0.

The multiplication of the last condition on the left by
[e(t)T x(t)T w(t)T ] and on the right by its transpose
yields (14), finishing the proof. �

Remark 2. Since the simplex presented in Definition 3 is

given by α
(j)
ℓ +α

(j)
ℓ+1 = 1 one may write α̇

(j)
ℓ + α̇

(j)
ℓ+1 = 0, or

simply
∣∣∣α̇(j)

ℓ

∣∣∣ =
∣∣∣α̇(j)

ℓ+1

∣∣∣. In this way, following the same lines






Ψ1 ⋆ ⋆ ⋆

P (α)−MT + ξ(MÃ(α) + Z(α)C̃(α)) −ξ(M +MT ) ⋆ ⋆

B̃w(α)
TMT + D̃w(α)

TZ(α)T ξ(B̃w(α)
TMT + D̃w(α)

TZ(α)T ) −γ2
1I ⋆

H(α)TCz 0 H(α)TDzw I +H(α) +H(α)T


 < 0 (6)




−ηP (α) ⋆ ⋆ ⋆
P (α) −(M +MT ) ⋆ ⋆
0 δA(x)

TMT + δC(x)
TZ(α)T − ξM Ψ2 ⋆

0 δB(x)
TMT + δD(x)TZ(α)T ξ(δB(x)

TMT + δD(x)TZ(α)T ) (τρ2 − γ2
2)I


 < 0 (7)




Ψ ⋆ ⋆ ⋆

P (α)−MT + ξ(MÃ(α) + Z(α)C̃(α)) −ξ(M +MT ) ⋆ ⋆

B̃w(α)
TMT + D̃w(α)

TZ(α)T ξ(B̃w(α)
TMT + D̃w(α)

TZ(α)T ) −γ2
1I ⋆

H(α)TCz 0 H(α)TDzw −H(α)TH(α)


 < 0 (8)

presented in Lacerda et al. (2016)(Section 4.1), the space
where the time-derivative parameters lie can be modeled
and the matrix Ṗ (α) can be obtained.

In the proof of Theorem 1, the bound γ2 is rewritten
as γ2 = γ2

1 + γ2
2 . This is a necessary step to assure the

negativity of Condition (7). Therefore, if the optimization
of the observer robustness is required, then it suffices to
minimize γ2

1 + γ2
2 subject to (6) and (7).

Condition (7) depends on nonlinear terms δA(x), δB(x),
δC(x) and δD(x). One way to solve this condition using
the usual convex approaches is to consider a polytopic
approach on such matrices. Suppose that these matrices
can be rewritten in terms of the extreme values as

δA(x) = βA
1 δA + βA

2 δA, δB(x) = βB
1 δB + βB

2 δB ,

δC(x) = βC
1 δC + βC

2 δC , δD(x) = βD
1 δD + βD

2 δD,

βA, βB , βC , βD ∈ Λ2.

Then, the parameter-dependent inequality (7) can be
solved by considering every combination of the matrix
vertices of the nonlinear matrices. Another important
feature is that condition (7) improves the approach to
deal with the differences δ(x) between the approximated
system and the original model when compared to Agulhari
et al. (2023). In Agulhari et al. (2023) the robustness
to such differences is assured through a norm-bounded
constraint, being rather conservative when compared with
condition (7).

4. NUMERICAL EXPERIMENTS

Two numerical experiments are presented to illustrate
the validity of the proposed method. Experiment 1 per-
forms a numerical analysis of the technique, while Experi-
ment 2 depicts a comparison with another procedure from
the literature. The routines are implemented in Matlab
R2017a, by using the packages YALMIP (Löfberg, 2004),
ROLMIP (Agulhari et al., 2019) and the solver Mosek (An-
dersen and Andersen, 2000).

4.1 Example 1

Consider, for this experiment, the nonlinear system

ẋ(t) =

[
0 1

10Sa(x1) −1

]
x(t) +

[
0
1

]
w(t),

y(t) = [1 + 0.2 cos(x1) 0]x(t),

z(t) = [1 1] (x(t)− x̂(t)),

being Sa(x1) = sin(x1)/x1.

First, the conditions from Theorem 1 are applied con-
sidering different values for the number N1 of samples
on the state x1, and the correspondent matrices for the
approximated system (3) are obtained. For instance, if
N1 = 3 and considering the interval x1 ∈ [−5, 5], matrices

Ã(α) and C̃(α) are given by

Ã(α) = α1(x̃)

[
0 1

10Sa(−5) −1

]

+ α2(x̃)

[
0 1

10Sa(0) −1

]
+ α3(x̃)

[
0 1

10Sa(5) −1

]
,

C̃(α) = α1(x̃) [1 + 0.2 cos(−5) 0]

+ α2(x̃) [1.2 0] + α3(x̃) [1 + 0.2 cos(5) 0] .

Matrices δA(x) and δC(x) applied to Condition (7) are
given by

δA(x) = βA
1

[
0 0

min
t

10a(t) 0

]
+ βA

2

[
0 0

max
t

10a(t) 0

]
,

δC(x) = βC
1

[
min
t

c(t) 0
]
+ βC

2

[
max

t
c(t) 0

]
,

being

a =





Sa(x1)− (α1(x̃1)Sa(−5) + α2(x̃1)Sa(0)),
if x1 ∈ [−5, 0], α3(x̃1) = 0,

Sa(x1)− (α2(x̃1)Sa(0) + α3(x̃1Sa(5)),
if x1 ∈ (0, 5], α1(x̃1) = 0.

c =





cos(x1)− (α1(x̃1) cos(−5) + α2(x̃1)),
if x1 ∈ [−5, 0], α3(x̃1) = 0,

cos(x1)− (α2(x̃1) + α3(x̃1) cos(5)),
if x1 ∈ (0, 5], α1(x̃1) = 0.

α1(x̃1) =
−x̃1

5
, α2(x̃1) =

5− x̃1

5
and α3(x̃1) =

x̃1

5
.

Table 1 presents the results obtained concerning the min-
imized bound γ =

√
γ2
1 + γ2

2 , as well as the number of
scalar decision variables for the LMI conditions and the
uncertainty intervals for the errors a(t) and c(t) when a
different number of spatial samples N1 are considered.



For all the cases, Theorem 1 is applied supposing that
x1 ∈ [−5, 5], setting ξ = 0.01, ρ = 0.1 and

η = 2max ||a(t)||,

following the suggested lines from Agulhari et al. (2023).
All the parameter-dependent matrices within the LMI
conditions are modeled as polynomials of unitary degree.

Table 1. Resultant bound γ, number V of
scalar decision variables and the extreme val-
ues of a(t) and c(t) for different numbers of

state samples N1.

N1 γ V a(t) c(t)

3 0.5934 25 [-0.8763 2.6597] [-0.0021 0.3120]

4 0.6421 31 [-4.0275 2.6351] [-0.2191 0.2157]

5 0.3430 37 [-1.4574 1.7628] [-0.0546 0.1146]

6 0.3064 43 [-1.5853 1.1685] [-0.0919 0.0622]

7 0.2279 49 [-0.9014 0.8072] [-0.0450 0.0530]

8 0.2160 55 [-0.8289 0.5825] [-0.0489 0.0470]

From Table 1, one can see that the bound γ decreases
as the number of samples increases, except when compar-
ing N1 = 3 and N1 = 4. This indicates that the error
reduction between the original nonlinear system and the
approximated dynamics is achieved not only by increas-
ing the number of samples but also by properly setting
the position of the samples, being such analysis left for
future works. Also, accompanying the reduction of γ, the
uncertainty interval of the error functions also shrinks with
a higher number of samples, with the exception of the
analysed case.

Figure 1 illustrates the results obtained from the proposed
observer with x(0) = [1 1]T , considering N1 = 3 and
N1 = 8. Note that the precision of the estimation increases
as γ reduces, as expected. Figure 2 depicts the phase plan
of the error states e(t) = x(t) − x̂(t) for N1 = 8 showing
that, for the considered interval of x1(t), the observer is
indeed capable of asymptotically estimate the nonlinear
states.

0 1 2 3 4 5 6 7 8 9 10
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1
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0 1 2 3 4 5 6 7 8 9 10
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2
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1
(t
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x̂
1
(t
)

t

x
2
(t
),
x̂
2
(t
)

Fig. 1. States x(t) (blue) and estimated states x̂(t) con-
sidering N1 = 3 (orange) and N1 = 8 (green) for
Example 1.

4.2 Example 2

Consider the system adapted from Ran et al. (2021)

Fig. 2. Phase plan of the estimation errors x1(t) − x̂1(t)
and x2(t)− x̂2(t) for Example 1.

ẋ1(t) = −x2
2x1, ẋ2(t) = x3, ẋ3(t) = x4,

ẋ4(t) = −x2x3 + x2
3 − sin(x4) + x1 + w,

y(t) = x2.

To apply the proposed technique, the following state space
representation is employed

ẋ(t) =



−x2

2 0 0 0
0 0 1 0
0 0 0 1
1 0 x3 − x2 −Sa(x4)


x(t) +



0
0
0
1


w(t).

Figure 3 depicts the error signals obtained from the
extended observer presented in Ran et al. (2021), and
for the proposed observer synthesized using the intervals
x1(t) ∈ [−5, 5], x2 ∈ [−5, 5] and x3 ∈ [−5, 5], considering
N1 = 4, N2 = 2, N3 = 4, ξ = 0.01 and ρ = 1, resulting on
the minimized bound γ = 1.2511. For the experiment, the
exogenous input is given by w(t) = 0.2 sin(t)e−0.1t, and
only the estimation errors of the states x3(t) and x4(t) are
shown since they are the only states estimated in Ran et al.
(2021). Note that although there is an initial peak error,
the proposed method achieves a null error in less than 1
second, considerably faster than the compared technique.

5. CONCLUSIONS

This paper presented a new condition for observer design
of nonlinear continuous-time systems affected by distur-
bances. The spatial discretization procedure was employed
to obtain an approximate model. Such model, with the set
of error matrices, is then used to obtain convex conditions
in the form of parameter-dependent LMIs that can be
used for the observer synthesis. The proposed conditions
guarantee that both the approximate model states and the
states of the original system can be tracked asymptotically
while ensuring a bound to the L2-gain from the distur-
bance to the reference outputs. Numerical experiments
illustrated the impact of the number of samples in the
bounds and the error, showing the efficacy of the method.
Future works include further analysis on how the selection
of different system matrices in (1) affect the performance
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Fig. 3. Error signals e(t) from the proposed observer (blue)
and from the nonlinear observer presented in Ran
et al. (2021) (orange) for Example 2.

of the observer, as well as non-uniform choices for the
location of spatial samples.
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