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Abstract— The massive proliferation of IoT devices in recent 
years creates new challenges in securing distributed systems, 
especially when it comes to intrusion detection and mitigation in 
real-time. Most traditional cloud-based intrusion detection 
approaches encounter issues ranging from increased latency to 
bandwidths and even centralized vulnerabilities. This paper 
introduces an innovative IDS framework based on federated 
learning (FL) combined with a novel federated dropout 
mechanism and edge computing. Federated dropout updates 
model parameters selectively during communication rounds, 
minimizing bandwidth usage considerably without 
compromising model performance. This work resolves key 
challenges such as communication overhead and encrypted 
traffic processing, opening the door to strong, real-time, and 
decentralized security solutions.

Keywords— Edge Computing, Intrusion Detection, IoT, 
Blockchain, Real-time Security

I. INTRODUCTION

The high deployment of the IoT devices into the gigantic 
IoT network causes increased connection among the 
heterogeneous elements, which enables intelligent 
automation, surveillance, and regulation in the sectors. 
However, such a heavy array of devices concurrently 
introduces an increasing risk towards security because they 
predominantly become vulnerable to cyber threats such as 
unauthorized access, data compromise, and DoS attacks. 
Conventional IDS depends largely on centralized cloud 
computing with restrictions on latency, bandwidth utilization, 
and protection of privacy in data.

As illustrated in Fig. 1, edge computing, which processes 
data at the network's periphery, near the data source, has 
emerged as a viable alternative. It provides real-time data 
processing, reduced latency, and increased scalability for IoT 
networks. However, with the diversity and scale of IoT 
networks, developing an efficient and accurate IDS remains a 
challenge [1]. 

Federated learning therefore gives way to a new approach 
for intrusion detection as the model can be trained in a 
decentralized manner across multiple devices or edge nodes 

such that raw data does not need to be sent to a central server 
for training [2]. This involves every edge node building an 
IDS model based on its locally collected data and sending only 
updates to the central server for aggregation. This 
decentralized learning process increases the level of data 
privacy and bandwidth efficiency and is more apt for IoT 
environments.  

Combining federated learning with edge computing, the 
intrusion detection models can draw on distributed data 
processing without latency and data privacy violation. This 
approach would eliminate some centralized IDS-related 
vulnerabilities in terms of bottlenecks and single points of 
failure, in addition to enhancing network attack resilience in a 
system [3]. 

Fig. 1. Edge Computing Network

II. RELATED WORK

Federated learning and edge computing convergence has 
turned into a promising approach to enhance intrusion 
detection in IoT networks. The current literature defines 
various techniques and approaches that address different 
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aspects of intrusion detection in distributed systems, 
considering privacy, efficiency, and scalability issues. 

The Mun and Lee [3] proposed an internet traffic 
classification framework that relies on federated learning in 
balancing both data privacy and computational efficiency. In 
this regard, their work showed the possibility of federated 
learning in approaching the performance of centralized 
models with regards to precision metrics compared to a 
decentralized training process on client devices instead of 
submitting their data to centralized servers. This methodology 
aligns well with the requirement of privacy-preserving 
techniques in intrusion detection systems, particularly in IoT 
networks, as data is being processed locally on edge nodes, 
thus minimizing risks related to centralized aggregation of 
data. Results highlight the local processing significantly for 
improvement in privacy and do not study communication 
overhead in large federated learning deployments. Liu et al. 
[2] presented the collaborative intrusion detection framework, 
which relies on blockchain and federated learning in vehicular 
edge computing environments. 

They tend to integrate blockchain to secure the process of 
model updates with such a model; that way, the integrity and 
reliability of data can be assured through non-tamper ability 
of model updates. FL combined with blockchain achieves data 
privacy and security issues, which can significantly be posed 
in vehicular networks requiring strong intrusion detection 
mechanisms. However, such increased complexity in 
blockchain requires higher communication and computational 
overheads, which would be demanding for implementation in 
highly dynamic IoT settings where rapid communication and 
low latency are critical. Nie et al. [1] proposed an IDS model 
for social IoT using collaborative edge computing and GANs. 
Using GANs to train the IDS on a number of edge nodes, it 
advances the detection of threats while emphasizing secure 
and decentralized learning, enhancing the model's capacity to 
detect new and evolving intrusion patterns. 

GANs can model complex intrusion behaviours because 
of their generative capability. It can improve the detection 
accuracy across very diverse IoT environments. However, the 
high computational requirement of GANs may limit its 
effectiveness in resource-constrained IoT devices and thus 
strict in the deployments of this on edge-based IDS real-world 
application scenarios. Singh, Chatterjee, and Satapathy 
propose a hybrid IDS framework developed with the help of 
edge computing and techniques specific to machine learning 
for mobile edge computing (MEC) networks [4]. Their 
approach takes advantage of edge-based detection to 
minimize latency, thereby allowing for real-time intrusion 
detection in mobile environments. The hybrid setup combines 
various machine learning models suited to the fluctuating 
nature of MEC, where resources are mostly limited, thus 
providing an all-season solution for intrusion detection. 

While they are able to reduce latency, dependency on 
time-interval-based updates of the models might lead to 
communication overheads, which continues to be challenging 
for scalability in IoT settings that are distributed. Gyamfi and 
Jurcut published a comprehensive review of intrusion 
detection methods targeted for IoT network environments, 
focusing especially on MEC, machine learning 
methodologies, and relevant datasets [5]. This review points 
out various benefits of edge computing for IDS, like that data 
locality offered by MEC enables low latency response crucial 
to implement real-time intrusion detection systems in IoT 

systems. In this regard, the authors emphasize the point that 
although MEC may reduce some privacy and scalability 
concerns, improving communication efficiency in federated 
learning remains a significant challenge in resource-
constrained IoT networks. Spadaccino and Cuomo [6] 
discussed the potential of combining machine learning with 
edge computing for IoT IDS, identifying both opportunities 
and challenges. 

In addition, borrowing from Hemanth et al. [7], our model 
includes intelligent edge computing to harmonize the 
interaction of edge and cloud resources. Li et al. [8] proved 
the scalability and applicability of federated learning in 
various fields, validating its feasibility in IoT IDS 
applications. Mohy-Eddine et al. [9] also underlined the 
significance of ensemble learning in augmenting IDS 
performance, a concept included in our federated dropout 
approach to enhance model robustness and accuracy. 

Rahman et al. [10] and Rashid et al. [11] pointed out the 
importance of using privacy-preserving methods, particularly 
in encrypted environments, where both centralized and 
decentralized strategies are confronted with inherent 
limitations. Based on this observation, our federated dropout 
framework meets scalability and privacy challenges by 
focusing parameter updates on essential components while 
lowering communication expenses without compromising 
accuracy in detection. 

Lastly, Fedorchenko et al. [12] recognized the requirement 
of federated learning-based IDS to be adaptive towards 
heterogeneous IoT devices along with efficient management 
of communication overhead. Our design is compliant with 
these requirements, providing a scalable, privacy-enhancing, 
and resource-conserving IDS solution suitable for real-world 
IoT scenarios. 

Their work identifies some of the pressing issues, 
including model generalization over heterogeneous IoT 
devices, resource constraints, and the requirement for real-
time processing.   They argue that FL would aid in handling 
these issues by providing adaptive and distributed learning 
models.  However, the study also reveals that high 
communication overhead could be a limiting factor when 
interacting with clients and the server to update the models 
repeatedly, thereby restricting scalability in massive IoT 
networks. Our analysis of these works reveals that in federated 
learning, privacy preservation is a strong necessity while 
dealing with the encrypted traffic and the overhead of 
communication incurred by frequent model updates in 
federated learning. These are mainly confronted challenges in 
IoT networks, which are most commonly devices in resource 
constraint networks, where significant proportions of traffic 
will be encrypted to protect user privacy. 

To address these shortcomings, we propose federated 
dropout: a way to update selectively only a fraction of model 
parameters for each communication round. This mechanism 
reduces the volume of data to be exchanged between clients 
and the central server, thereby reducing communications costs 
while preserving privacy by directly operating on the 
encrypted traffic data without decryption requirements. 
Federated dropout thus concentrates only on critical parameter 
modification for a given iteration, thereby efficiently 
alleviating communication constraints while maintaining 
model accuracy and robustness. Further, our approach uses 
edge computing fundamentals that enable intrusion detection 
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close to data origins to minimize latency in the system's 
responsiveness in real time to emerging threats. Our proposed 
framework combines federated dropout with encrypted traffic 
handling, and it aims for a scalable, privacy-preserving, and 
resource-efficient IDS for IoT networks, under real-world IoT 
environments' constraints.

This approach not only increases confidentiality as well as 
effectiveness in the intrusion detection methodology but also 
enhances its adaptability to the unique challenges of different 
and ever-changing IoT environments.

III. METHODOLOGY

The methodology encompasses data preprocessing, design 
of model architecture, training strategies, and metrics 
employed for performance evaluation. There were six 
different configurations; these configurations were run, 
including ANN and CNN, within centralized, federated, and 
federated dropout frameworks. Each configuration was tested 
against a specified set of performance criteria to ascertain its 
effectiveness as an intrusion detection mechanism specifically 
in the context of resource-constrained Internet of Things 
networks.. 

In order to keep uniformity among all models, the primary 
source of data was maintained to be KDD Cup 1999, coupled 
with extensive preprocessing and standardized metrics of 
evaluation. Dataset Creation. 

A. Dataset
It uses the KDD Cup 1999 dataset, which is very well 

known as a benchmark for network intrusion detection system 
evaluation. Data preparation involves loading the dataset and 
converting it to what the model requires. Some of the most 
important features summarized in the dataset include duration, 
protocol type, service, and flags that represent the most 
important aspects of network traffic, which were encoded to 
transform categorical variables into their corresponding 
numerical values. This transformation was required to make it 
machine learning framework-compatible and to ensure proper 
usage of categorical data during training of the model. After 
doing encoding, this dataset was split into a training set and 
test set at the ratio 80:20. This would enable giving much more 
extensive training to the model and its testing against the test 
data. Each data sample was reshaped into two-dimensional 
format to include in the CNN-based architecture allowing for 
spatial features in the dataset, and in addition, the training data 
were preprocessed as batches to permit effective memory 
usage and computational speed during model training. 

B. Architectural Models
To address the different intrusion needs in IoT networks, 

two major architectures are used: ANN and CNN. This model 
consists of dense layers and implements fully connected layers 
with activation functions of ReLU. This architecture is 
optimized using a binary cross-entropy loss function, where it 
allows the network to create the minimum errors in the 
classification of the intrusions. This architecture uses two 
convolutional layers combined with max-pooling operations, 
which were implanted to capture spatial features intrinsic to 
the intrusion detection. It further processes the output of 
convolutional layers through fully connected layers 
culminating in a sigmoid-activated output layer that allows for 
binary classification as shown in Fig. 2. 

Fig. 2. CNN Architecture

In the case of ANN as well as CNN architectures, three of 
the training paradigms are used: centralized training, federated 
training, and federated training with dropout. Centralized 
training is a way of traditional training, wherein the entire 
dataset is trained on a single model, whereas federated 
learning distributes the training process across multiple 
clients, providing decentralized processing of data. Federated 
dropout yet brings a new regularization mechanism: a portion 
of the neurons in the model are randomly disabled in every 
round of communication. This targeted dropout would reduce 
the costs of the associated communication and would induce 
redundancy in neuron connection to overfitting.

C. Training Phase
Each of the three types of model configurations-

centralized, federated, and federated with dropout-was learned 
procedurally. In centralized learning, the dataset's overall data 
was used directly to update the model's weights through 
iterations of epochs. The models in this architecture utilized 
iterative back-propagation to iteratively fine-tune parameters 
and converge towards optimal intrusion detection solutions.

By distributing the data across multiple clients, federated 
learning is typical. In this approach, each client independently 
trains a local model with its allocated subset of data. Once set 
numbers of epochs of training are accomplished, the weights 
of the model of each client are averaged to produce an update 
of the global model. This deconstruction methodology ensures 
preserving data privacy because it keeps the data on the client 
side rather than on a central server. In the third training 
configuration, federated dropout had been applied wherein all 
the neurons in each of the client models had been selectively 
turned off. This would reduce the communication overhead 
typical to federated learning while decreasing the parameters 
transmitted between the clients and the central server. 
Through this dropout mechanism, only a fraction of 
parameters in the model was updated during each 
communication round, thus allowing for less data 
transmission yet an improvement in terms of scalability in 
bandwidth-limited environments.

IV. EVALUATION AND RESULTS

The assessment of each model configuration was carried 
out utilizing four key metrics—accuracy, precision, recall, 
and F1-score—on a designated test set that was not used 
during training. Accuracy functioned as a broad performance 
indicator, representing the percentage of instances that were 
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classified correctly. Precision evaluated the proportion of true 
positives relative to all instances predicted as positives, 
thereby gauging the model's capability to accurately identify 
intrusions while minimizing false alarms. Recall quantified 
the ratio of actual intrusions identified by the model, meaning 
its potential in distinguishing the anomalous networking 
behavior. The F1-score, which was computed as the harmonic 
mean of precision and recall, reflected the overall measure 
that considered the false positive and false negatives rates-
very much conducive for measuring models in security-
related application areas like intrusion detection. 

A. Precision and Recall:  
Precision assesses the proportion of true positives among 

predicted positive detections, while recall calculates the 
proportion of true positives identified among all actual 
positives. Both metrics are critical for understanding the 
balance between detection and false alarm rates. 

=
=

B. Accuracy:  
This metric measures the ratio of correctly classified 

instances to the total number of instances, providing a general 
indication of model performance. 

 =          
C. F1-Score:  

The F1-score is the harmonic mean of precision and recall, 
representing a balanced metric that considers both false 
positives and false negatives. 

 1 = 2      
D. Results 

The performance evaluation metrics used in the present 
study-accuracy, precision, recall, and F1 score-all point to 
better effectiveness of the ANN and CNN frameworks in 
intrusion detection contexts, centralized and federated alike. 
For the centralized ANN model, the accuracy rate is 
impressive at 99.91%, while precision, recall, and F1 score 
experience significant increases. Although accuracy falls 
slightly to 98.37% when trained in the federated learning 
environment, precision, recall, and F1 score remain at 
relatively high values of 98.39, 99.59, and 98.99, respectively 
as per TABLE I. . This slight fall in accuracy and precision is 
reflective of some fundamental inherent flaw in federated 
learning; aggregation of model parameters by each 
distributed client in its local environment without having 
access to the actual data reveals a possibility of slightly 
affecting model performance. However, both recall and F1 

score remain high, which means a significant percentage of 
positive cases is still discovered by the model, its main 
desired property in intrusion detection-related tasks. 

TABLE I.  MODEL PERFORMANCE 

Algorithm Accuracy Precision Recall F1 Score 

ANN 99.91 99.99 99.89 99.94 

ANN with 
Federated 
Learning 

98.37 98.39 99.59 98.99 

ANN with 
Federated Dropout 88.54 91.48 94.50 92.96 

CNN 99.87 99.95 99.88 99.92 

CNN with 
Federated 
Learning 

99.57 99.96 99.51 99.73 

CNN with 
Federated Dropout 79.60 80.61 98.15 88.52 

 

When federated dropout is implemented, which involves 
randomly dropping particular neurons while training to lower 
the information shared between the clients, the ANN model 
suffers a significant drop in performance to 88.54% accuracy. 
Precision and recall also decline, whereby the model achieves 
an accuracy of 91.48%, recall of 94.50%, and an F1 score of 
92.96%, respectively. This decrease is expected because 
federated dropout adds an additional sparsity layer to the 
model that leads to lower accuracy associated with 
information loss. However, the technique efficiently reduces 
communication overhead. Federated dropout decreases the 
communication burden as it is sending fewer parameters or 
updates during model aggregation, which is a major concern 
in IoT networks with bandwidth and energy constraints. In so 
doing, it therefore leads to this trade-off: slightly reduced 
detection efficacy but definitely significant improvements in 
communication efficiency and a trade-off that may be 
justified in bandwidth-limited contexts where bandwidth 
conservation is paramount. 

The CNN model follows the same scenario. On a 
centralized configuration, the CNN achieves accuracy of 
99.87%, with high values of precision of 99.95%, recall of 
99.88%, and F1 score of 99.92%. In federated learning, the 
accuracy might slightly decrease to 99.57% though the 
performance metrics remain robust with an F1 score of 
99.73%. This consistency in performance shows that CNN, 
due to its feature extraction capability, federated learning is 
achieved with less degradation in performance when 
compared with the ANN model. However, federated dropout 
in CNN results in an immense decline in accuracy by 79.60 
% and precision by 80.61%, though recall goes up to 98.15%, 
which makes an F1 score of 88.52%. The findings suggest 
that the federated dropout, although it affects the precision 
and overall accuracy of the CNN, remains capable of 
maintaining a considerable percentage of true positive 
instances—a requirement very important for the reduction of 
false negatives in security-related applications. 
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In summary, although federated dropout introduces 
performance compromises, it plays a vital role toward 
reducing the communication overhead. Federated dropout 
reduces the frequency and size of updates needed between the 
server and clients for showing significant bandwidth savings. 
This efficiency is especially useful in IoT and Edge 
Computing environments where devices are constrained in 
connectivity and power resources. Although this means a 
slight drop in model accuracy, communication costs are 
reduced and scalability increases, meaning that more devices 
can participate in the federated learning framework without 
overloading network capacities. 

V. CONCLUSION 
This paper explores the integration of federated learning 

with edge computing as a promising approach towards 
enhancing intrusion detection systems for IoT networks with 
important balances to privacy, efficiency, and overheads in 
communication. Centralised traditional IDS approaches are 
characterized by latency due to bandwidth limitation and 
privacy concerns since they demand centralization of data that 
is unfavourable for expansive as well as dynamic IoT 
environments. By enabling federated learning, the framework 
allows for very localized model training on dispersed edge 
devices and safeguards data privacy through localization of 
raw data, reducing thereby the need to transfer the data to a 
central server. 

Our findings indicate that Federated Dropout integrated 
with edge computing leads to higher adaptability and 
scalability of IDS in the IoT context, especially for traffics 
encrypted. The framework satisfies the specific requirements 
of heterogeneous IoT deployments, creating intrusion 
detection from end towards the services with reduced latency 
and cost for communication in real-time with privacy 
preservation which comes at the cost of slightly degraded 
accuracy. Future research endeavours may aim at refining the 
Federated Dropout methodology to reduce accuracy 
degradation further, while simultaneously investigating 
sophisticated privacy-preserving strategies and enhancing 
model generalization to bolster robustness across diverse IoT 

devices. This investigation highlights the promise of federated 
and edge-based methodologies to markedly enhance secure, 
scalable, and privacy-conscious management of IoT networks. 
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