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Abstract
Forecasting human development is important for tracking sustainable growth and societal
progress. However, this task presents statistical challenges. The primary difficulty is the
limited nature of the available data, which is a typical problem encountered in forecasting
many social time series. In this paper, we propose a novel approach for forecasting short time
series based on the Theta method. The classical Theta method decomposes the time series
into trend and short-run components. We propose an improved version of the Theta method,
called θ -comb, based on the combination of alternative forecasts for the short-run component.
We apply the proposed method to forecast worldwide human development, measured with
the HumanDevelopment Index, from 1990 to 2022. The results show that the θ -combmethod
significantly improves the out-of-sample accuracy in comparison to existing approaches.

Keywords Predictions · Short time series · Theta method · Forecast combination · Human
Development Index

1 Introduction

Forecastinghumandevelopment has significant implications for economic andpolicy-making
perspectives. Accurate forecasting of human development can inform targeted policy inter-
ventions, help monitoring progress towards global development goals, and ensure that
resources are effectively allocated. TheHumanDevelopment Index (HDI) is a comprehensive
measure of a country’s human development, incorporating three fundamental dimensions,
namely; longevity as measured by the life expectancy index, knowledge as measured by the
education index and standard of living as measured by the Gross National Income index.
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The HDI allows policymakers to move beyond the Gross Domestic Product (GDP)
and obtain a more robust understanding of human welfare, as the HDI allows the three
socioeconomic dimensions to be isolated and examined independently. By using the HDI,
policymakers can identify specific areas in need of intervention and tailor economic and
social policies accordingly, thereby increasing the effectiveness of development strategies
(Shaydullina, 2020; Korankye et al., 2020). For instance, understanding the distribution
of educational opportunities can inform targeted investments in educational infrastructure,
which, in turn, can enhance human capital and productivity. As noted by Okoh et al. (2020),
human development is fundamental for expanding people’s choices and capabilities, which
underscores the importance of equitable access to education and health services.

From a policy perspective, the dimension of knowledge used in the HDI is well discussed
by economists, who have defined “human capital” as the investment that humans can make
in their own capabilities through, education, training and skills (similar to a stock of pro-
ductive capital). Investments in education and training yield returns in the labour market,
as individuals with higher levels of education tend to secure a higher market wage. This
relationship highlights the need for policies that not only increase the quantity of education,
but also improve its quality through complementary investments in educational infrastructure
(IT facilities, laboratories, etc.) and resources that serve to upskill the labour force to a higher
value-added productivity level. Such educational policies can lead to enhanced productivity
and, consequently, a higher standard of living, which directly influences longevity through
improved health awareness and access to healthcare services. Furthermore, macroeconomic
policies that focus on both width growth factors (such as the amount of labour and capital
employed in production) can significantly impact the standard of living. Policies to improve
the utilisation of labour and capital, as well as policies to improve total factor productivity,
are crucial for sustainable development. These efforts can create a positive feedback loop in
which improved living standards contribute to better health outcomes, thereby increasing life
expectancy. The interplay between these dimensions of the HDI illustrates the complexity of
human development and the need for integrated policy approaches that address economic,
social and environmental factors (Palchoudhuri et al., 2015; Thomas & Allen, 2021).

Therefore, forecasting human development through the lens of the HDI provides valuable
insights for policymakers. By understanding the links between longevity, knowledge and
living standards, and by addressing disparities within these dimensions, policymakers can
design more effective and equitable development strategies. This holistic approach not only
supports economic growth and the associated positive spillover effects from amore developed
socioeconomic society, but also improves the overall quality of life of citizens, in line with
the broader goals of sustainable development (Okoh et al., 2020; Deng et al., 2018).

However, forecasting HDI poses statistical challenges. One of the main difficulties lies
in the nature of the data available. The HDI values are typically reported annually and often
span only a few decades. Therefore, the HDI is a typical example of a short social time series.
We notice that short time series can also be found in other domains, such as management
(e.g. see Thomakos et al, 2023) and tourism (e.g. see Yu and Schwartz, 2006). The limited
sample size makes traditional time series forecasting methods less effective, as these models
typically rely on longer data series to produce accurate and robust predictions. Additionally,
the HDI’s multifaceted composition introduces complexities related to the interaction of its
subcomponents over time.

Given these challenges, a particularly promising approach for dealing with short and com-
plex time series such as the HDI is the Theta method (Nikolopoulos & Thomakos, 2019). The
Theta method decomposes a time series into different components to improve the accuracy
of predictions. In particular, the original Theta method, proposed by Assimakopoulos and
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Nikolopoulos (2000), operates by decomposing the original series into twomodified versions.
The first extrapolates the linear trend of the series, effectively capturing the long-term growth
or decline within the series. The second component, on the other hand, is modelled using
Simple Exponential Smoothing (SES) to capture short-term variations. The final forecast is
obtained by averaging the two forecasts.

Despite the usefulness of the SES model in dealing with its effectiveness can be limited
when applied to short-time series data, as is the case for the HDI and its components. Indeed,
the inherent variability and complexity of social indicators may not be adequately captured
by a simple smoothing approach. Therefore, in this paper, we propose an enhanced Theta
method that improves on the traditional approach by incorporating a combination of different
forecasting techniques for the second Theta component. By introducing forecast combination
into the Theta method, we aim to synthesize the strengths of multiple models in forecasting
the short-run component, creating a more robust and flexible framework.

We forecast worldwide human development, measured with the HDI, considering data
from 1990 to 2022. It should be noted that not all 195 countries show the full history of
available time series. Therefore, we consider for each dimension only the countries with full
data from 1990 to 2022. The resulting application involves 142 short time series. We find
that the proposed approach considerably improves the out-of-sample accuracy compared to
existing approaches, namely the standard Theta method and the more recent optimal Theta
developed by Fiorucci et al. (2016). In particular, we find that the Theta-related methods
all provide better forecast accuracy compared to simple existing statistical methods that
are applicable for short time series, that is, ARIMA, SES and Random Walk. Among the
Theta-related methods, the proposed approach based on forecast combination provides the
best results. We also find that the proposed method provides better results than the forecast
combination of the considered base statistical methods. Therefore, the joint use of Theta
decomposition and forecast combination allows for improvements in forecasting accuracy
of human development.

The rest of the paper is structured as follows. Section2 describes how human development
ismeasured by theUnitedNations, describing theHumanDevelopment Index calculation and
its components. Moreover, Sect. 2 presents the data considered for the application. Section3
presents the Theta method in details and the proposed Theta approach based on forecast
combination. Section4 shows the main forecasting results to the Human Development Index.
In the end, Sect. 5 concludes with final remarks and future research directions.

2 Measuring human development

2.1 The HDI index

The Human Development Index (HDI) is a composite indicator developed by the United
Nations Development Programme (UNDP) to assess and compare the social and economic
development of countries. It consists of three key dimensions, that are health, education, and
standard of living.

The Life expectancy at birth is the indicator representing the health dimension and is
computed as the average number of years a newborn is expected to live, assuming constant
mortality rates at each age. For the education dimension, two variables are considered, i.e.
the “Mean Years of Schooling” and “Expected Years of Schooling”. The “Mean Years of
Schooling” is the average number of years of education received by people aged 25 and older,
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Table 1 Goalposts for the HDI dimensions

Dimension Indicator Min.; Max.

Health Life expectancy at birth (years) 20; 85

Education Expected years of schooling (years) 0; 18

Mean Years of Schooling (years) 0; 15

Standard of living GNI per capita (2017 PPP$) 100; 75000

based on educational attainment levels, while the expected years of schooling is computed
as the total number of years of schooling a child entering school is expected to receive,
assuming age-specific enrollment ratios remain constant throughout the child’s life. In the
end, the Gross National Income (GNI) per Capita is the indicator selected for summarizing
the standard of living dimension. It reflects the average income of a country’s citizens and
is adjusted for purchasing power parity (PPP) to account for differences in the cost of living
and inflation rates.

The raw values of each indicator are normalized using the minimum-maximum scaling.
Minimum and maximum values are used to transform the indicators expressed in different
units into indices between 0 and 1. These goalposts parameters act as “the natural zeros” and
“aspirational targets” respectively, from which component indicators are normalized.

Therefore, the dimension indices are calculated using the formula

Z pt = Ipt − min(Ipt )

max(Ipt ) − min(Ipt )
, (1)

where Ipt is the actual value of the indicator p at time t and minimum and maximum for Ipt
are defined according to Table 1.

For the education dimension, the arithmetic mean of the indices for expected years of
schooling and “Mean Years of Schooling” is taken. Next, the normalized values for the three
indicators, within each dimension are averaged to obtain the dimensional index, and are
aggregated through the geometric mean. In formula, we have that HDI at a given time point
t is computed as follows

Xt =
(

P∏
i=1

Z pt

)1/P

, (2)

where P = 3 and Z pt represents the p-th dimensional indicator at time t . We remark that the
normalized indicators Z pt refer to a generic i-th Country, but we omitted the i-th subscript
for readers convenience. The calculation of the index is the same for all the i = 1, . . . , N
Countries.

2.2 Data

We consider data on human development from the United Nations Development Program
(UNDP) website.1 Our aim is to forecast the Human Development Index and its components
shown in Table 1, i.e. health, education and standard of living dimensions. To forecast the

1 Data associated with this paper is available at the following link: https://hdr.undp.org/data-center/
documentation-and-downloads.
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Fig. 1 Human development time series for USA, China, Zimbabwe, and Yemen. The values in the figure are
standardized to compare countries with different values

health dimension we consider the life expectancy at birth variable, while for education we
forecast the average of expected years of schooling and “Mean Years of Schooling” variable.
Finally, we forecast the GNI per capita to predict the future standard of living. The number
of Countries with full available history of data, that is, with time series are available from
1990 to 2023, is N = 142. The considered time series have length T = 33, and thus are
short, presenting significant challenges for their predictions.

Figure1 shows an example of the four-dimensional time series, i.e., the HDI and its con-
stituents, for four countries: the USA, Iran, Zimbabwe, and Yemen. These countries were
chosen to represent a range of Human Development Index (HDI) levels: very high (USA),
high (China), medium (Zimbabwe), and low (Yemen). This selection highlights the varied
development paths and socio-economic conditions across different regions. The USA, with
its consistently high HDI, demonstrates a steady upward trend driven by strong economic,
educational, and health indicators. China, which is also classified as a highly developed
country, has demonstrated comparable progress to that of the USA. While the USA has
consistently exhibited higher values than China in terms of health, the reverse is true in the
context of education. Finally, both countries have exhibited convergent trends in terms of
standard of living, particularly in recent years. Zimbabwe represents a medium HDI coun-
try according to the last HDI values, and exhibits significant variability over time reflecting
periods of economic crisis and recovery influencing its development trajectory. In particular,
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Zimbabwe HDI time series shows a decreasing trend for the first decade (1990–2000) and
then an increasing trend from 2010. Similar patterns can be found in all human development
dimensions. Finally, Yemen, an example of low HDI, exhibits a contrasting trend compared
to the aforementioned countries, demonstrating an increasing stable trend from 1990 to 2010,
followed by a pronounced decline, further exacerbated by ongoing conflict and humanitarian
challenges, which impact its development. As demonstrated in Fig. 1, both long-term trends
and short-termfluctuations are highlighted. The former is attributed to various shocks, includ-
ing political changes, economic recessions and natural disasters. This variability underscores
the importance of employing a method capable of accurately capturing both the broader
trends and short-term deviations to improve predictive analysis and inform policy decisions
effectively.

3 Methodology

3.1 Thetamethod

Forecasting worldwide human development requires forecasting a relatively large amount
of short time series. Therefore, simple but robust forecasting methods for univariate time
series are very important in this context. Given the short-length feature of these types of time
series, simple methods—without many parameters to estimate—are the main candidates to
be used for forecasting. The Theta method (Assimakopoulos & Nikolopoulos, 2000) is a
relatively simple model, which performed very well in the M3-Competition (Makridakis &
Hibon, 2000). Therefore, it is commonly considered a benchmark in more recent forecasting
competitions (e.g. see Athanasopoulos et al., 2011; Makridakis et al., 2020).

The Theta method decomposes the seasonally adjusted data into two “theta lines”, the first
removing the curvature of the data to estimate the long-term trend component and the second
approximating its short-term behaviour. Therefore, the Theta method can be considered as a
forecasting with decomposition approach.

The Theta method can be breifly outlined as follows in the context of human development
forecasting. Let us defining an univariate time series for the i-th country (i = 1, . . . , N )

as {Xi1, . . . , Xit , . . . , XiT }. Assimakopoulos and Nikolopoulos (2000) define the following
transformed time series {Y θ

i1, . . . , Y
θ
i t,, . . . , Y

θ
iT ,} such that for t = 3, . . . , T it holds

∇2Y θ
i t = θ∇2Xit , (3)

with ∇ indicating the difference operator, so that ∇Xit = Xit − Xit−1. Hyndman and Billah
(2003) noted that (3) is a second difference equation with solution

Y θ
i t = (1 − θ) (a + bt) + θXit , (4)

where a and b are constants and t = 1, . . . , T . Therefore, the series Yit,θ—called the θ -
line—is an additive function of the series Xit and a linear trend.

It is clear from (4) that different θ parameters can be selected, leading to alternative
decompositions. In general, the θ parameter is chosen to adjust the shape of the data, as it
determines the influence of the trend and the local curvatures in the adjusted series. More
precisely, we can define the following scheme (Petropoulos & Nikolopoulos, 2017).

• For θ = 1 we obtain the original time series Xit ;
• For 0 < θ < 1 the long-term pattern is amplified, thus implying a smoothing of the data

that emphasizes the overall trend;
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• For θ = 0, the series is a linear trend, that is, Yit = a + bt ;
• For θ > 1 the curvature is amplified, and the decomposition emphasizes short-term

fluctuation;
• For θ < 0 the resulting θ curve reflects the opposite pattern of the linear trend.

In the original Thetamethod adopted in theM3competition,Assimakopoulos andNikolopou-
los (2000) selected two θ lines, that is, θ = 0 and θ = 2, leading to Y (θ=0)

i t = a + bt and

Y (θ=2)
i t = 2Xit − (a + bt). We remark that the parameters a and b are the minimum square

coefficients of a simple linear regression of {Xi1, . . . , Xit , . . . , XiT } over {1, . . . , t, . . . , T },
thus having known closed-form solutions. Therefore an estimate of the first theta line is
Ŷ (θ=0)
i t = â + b̂t , while the second is Ŷ (θ=2)

i t = 2Xit − â − b̂t given that Xit is known. The
forecast at time t + 1 is obtained as

X̂i t+1 = ωŶ (θ=0)
i t+1 + (1 − ω)Ŷ (θ=2)

i t+1 . (5)

Hence, a linear ω-combination of the forecasts obtained for the two theta lines, where the
first is simply obtained by extrapolation of the linear trend, that is Ŷ (θ=0)

i t+1 = â + b̂(t + 1),
while the second is obtained with Simple Exponential Smoothing (SES).

Originally, Assimakopoulos and Nikolopoulos (2000) assumed equal combination
weights, i.e. ω = 0.5, while more recently Fiorucci et al. (2016) developed an approach
for optimal weights ω selection. However, Thomakos and Nikolopoulos (2014) shown that
the assumption ω = 0.5 in the case of two theta lines decomposition with θ = 0 and θ = 2
corresponds to the optimal solution when the Data Generating Process (DGP) for Xit is a
unit root autoregressive model with uncorrelated innovations. Thomakos and Nikolopoulos
(2014) explain that a possible explanation of the very good performances of the Thetamethod
could be that this DGP assumption was compatible for many time series considered in the
M3 competition.

According to Petropoulos (2019), the standard theta method can be extended by consider-
ing several deviations from the standard set-up, such as the inclusion of multiple theta lines
(Petropoulos & Nikolopoulos, 2013), the use of unequal combination weights (Fiorucci et
al., 2016; Spiliotis et al., 2020), or the adoption of alternative extrapolation methods. In what
follows, we aim at extending the standard Theta method in the last direction, by proposing
the use of a combination of alternative extrapolation approaches.

3.2 Improved Thetamethod with combination

Despite the utility of the SES model for handling short-term fluctuations, its effectiveness
can be limited when applied to short time series data, as is the case of HDI. The inherent
variability and complexity of social indicators may not be adequately captured by a simple
smoothing approach. For this reason, we propose an enhanced Thetamethod that improves on
the traditional approach by incorporating a combination of different forecasting techniques
for the second Theta component.

In particular, we consider the combination of forecasts for the time series Y (θ=2)
i t+1 using

a set of K alternative forecasting methods, where k = 1, . . . , K . Let Ŷ (θ=2)
i t+1 denote the

forecast generated by the k-th method. To construct the combined forecast, we define λk as
the combination weights associated with each forecasting method. The combined forecast
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for Yit+1,θ=2 is expressed as

Ŷ (θ=2)
i t+1 =

K∑
k=1

λk Ŷ
(θ=2)
i t+1,k, (6)

where λk are combination weights that sum to one, that is,
∑K

k=1 λk = 1.
The benefit of combining forecasts lies in leveraging the strengths of different models,

which can reduce forecast variability and improve overall predictive accuracy (e.g. see see
Timmermann, 2006). This approach reduces the risk of relying solely on a single model,
particularly when individual models may have limitations due to the short length of the time
series or specific data characteristics.

As a result, the θ -comb approach forecast can be written as

X̂i t+1 = ωŶ (θ=0)
i t+1 + (1 − ω)

(
K∑

k=1

λk Ŷ
(θ=2)
i t+1,k

)
. (7)

In accordance to Assimakopoulos and Nikolopoulos (2000) and to equally balance the con-
tributions of the short-run and long-run components we keep ω = 0.5. We remark that this
choice is motivated by the limitations of short time series, where data scarcity makes it chal-
lenging to estimate optimal weights reliably. While optimization-based approaches could in
principle be applied, these solutions tend to perform poorly and are prone to overfitting and
instability when dealing with limited data. A simple, equal-weight combination provides a
more robust and interpretable solution, avoiding the issues related to data-driven optimization
in this context.

Themain issue for implementing the (7) withω = 0.5 is the determination of combination
weights λk . The simplest and often most effective method for combining forecasts is the
sample average, where λk = 1/K ∀k = 1, . . . , K . The combined forecast at time t + 1 can
be expressed as

Ŷ (θ=2)
i t+1 = 1

K

K∑
k=1

Ŷ (θ=2)
i t+1,k . (8)

However, literature proposed a great variety of more complex approaches, selecting the λk
weights optimally (for a review, seeWang et al., 2023). Bates and Granger (1969) proposed a
method, similar to portfolio selection, for finding optimal weights byminimizing the variance
of the combined forecast error. They discussed only combinations of pairs of forecasts,
while Newbold and Granger (1974) extended the method to combinations of more than two
forecasts. In general, the “minimum variance” approach in the case of K different alternative
methods involves the minimization of the following objective function

min
λ

λ′�−1
e λ, (9)

where λ = [λ1, . . . , λK ]′ is the K -dimensional vector of unknown optimal weights and �e

the K -dimensional forecast error covariance matrix. The solution to (9) give the optimal
weights

λk = 1/σ 2
k∑K

k=1 1/σ
2
k

, k = 1, . . . , K (10)
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if correlations across forecast errors are ignored, while are equal to

λ = �−1
e 1K

1′
K�−1

e 1K
. (11)

if correlations across K methods are considered, and where 1K is a K -dimensional vector of
ones, while �−1

e is the inverse of the K -dimensional forecast error covariance matrix, which
is unknown and need to be estimated—for instance using the sample estimator—and σ 2

k is
the k-th diagonal element of the matrix �e.

The minimum-variance approaches belong to the class of the performance-based weights,
given that methods with lower forecast error variance are weighted more than others. An
alternative performance approach is the Inverse Weighting (InvW,Aiolfi and Timmermann,
2006),where theweightsλk depend on the ranking of themethods in terms of somepredefined
accuracy measure, usually the Root Mean Square Error (RMSE). Therefore, larger weights
are given to methods ranked first.

Finally, another relatively simple combination approach are those based on regression
methods (e.g. see Granger and Ramanathan., 1984). In this case, the weights are chosen by
the Ordinary Least Square (OLS)

Y (θ=2)
i t = λ0 +

K∑
k=1

λk Ŷ
(θ=2)
i t,k + εt . (12)

This approach ensures unbiasedness of the resulting combined forecast even if some of the K
forecasts Ŷ (θ=2)

i t,k are biased given the presence of the constant λ0. However, the Constrained
Least Square (CLS)

Y (θ=2)
i t =

K∑
k=1

λk Ŷ
(θ=2)
i t,k + εt ,

s.t.
K∑

k=1

λk = 1, λk ≥ 0,

(13)

which does not ensure unbiasedeness but previous research (e.g. see see Aksu and Gunter,
1992) show that (13) provides better results in out-of-sample compared to (12).

This paper constitutes an investigation into the results obtained through the implementa-
tion of our methodology in conjunction with a variety of combination approaches. However,
we remark that, in the context of short time series, the estimation of the unknown quantities
required to compute the optimal weights may be more challenging compared to usual set-
tings. Moreover, cross-validation approaches are not applicable in this setting (Hyndman &
Athanasopoulos, 2021) and, therefore, the combination weights will be selected considering
in-sample information. Despite these challenges, we aim to assess whether these approaches
based on optimal combination offer improvements over the standard Theta method proposed
by Assimakopoulos and Nikolopoulos (2000). The K forecasting methods to combine are
discussed in the next Sect. 4.1.
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4 Forecasting human development: results

4.1 Forecasting experiment design

To evaluate the appropriateness of the method in forecasting the time series described in
Sect. 2, we adopt the following rolling-window approach. We consider the first M = 15
years as estimation window and obtain a forecast at time t = M + 1, i.e. X̂iM+1 with a
generic forecasting method using information from t = 1 to t = M . Then, to forecast the
time series at time t = M + 2, i.e. X̂iM+2 using information from t = 2 to t = M + 1.
Therefore, in the rolling approach we recursively remove the oldest observation and include
the newest. As a result we obtain a series of T −M = 18 years of out-of-sample testing where
we evaluate the accuracy of alternative forecasting methods. As forecast accuracy measures,
we consider both out-of-sample Root Mean Square Error (RMSE) and Mean Absolute Error
(MAE).

Given the relatively short nature of the time series in our application, the number of
models we can use is quite limited. In what follows, we consider the SES, the AutoRegressive
Integrated Moving Average (ARIMA) and the naive models.

Given a generic time series {Yi1, . . . , Yit , . . . , YiT }, the SES model forecasts at t + 1 is
given by applying an exponentially weighted average of past observations, that is,

Ŷi t+1 = αYit + (1 − α)Ŷi t , (14)

where 0 < α ≤ 1 is the smoothing parameter, which can be estimated by minimizing the
squared sum of errors. The ARIMA(p, q) model adopts p lagged values and q moving
average components for modelling and it can be written as follows

(1 − φ1B − · · · − φp B
p)(1 − B)dYit = c + (1 + γ1B + · · · + γq B

q)εi t , (15)

where B is the backshift operator such that BYit = Yit−1,φ1, . . . , φp are the p autoregressive
parameters, γ1, . . . , γq are the q moving average parameters, d is the degree of differencing,
c is the constant term and εt represents white noise process. The model parameters are
estimated usingmaximum likelihood, while the optimal model order is determined following
the stepwise procedure explained in Hyndman and Khandakar (2008), which aims at finding
the model with minimum AICc (Hurvich & Tsai, 1989), that is the Akaike Information
Criterion with small-sample correction to account for the short length of the considered
time series. Finally, the naive method assumes that the forecast is equal to the most recent
observation, that is,

Ŷi t+1 = Yit . (16)

Moreover, to evaluate if the combination procedure improves compared to the existing Theta
methods, we consider two additional benchmarks. First, we provide predictions with the
Assimakopoulos and Nikolopoulos (2000) approach based on SES and equal combination
weights ω = 0.5. Second, we also consider the Optimal Theta method (OTM), developed by
Fiorucci et al. (2016), where ω is chosen optimally. The OTM shows more accurate forecasts
on theM3-competition data. However, the results shown in Fiorucci et al. (2016) are in terms
of average accuracy measures. Therefore, it is difficult to evaluate if the improvements in the
out-of-sample accuracy are achieved for the short time series. In what follows, we evaluate
the ability of the OTM model to forecast short social time series as those about human
development. Finally, we remark that to implement the θ -comb approach, we combine the
forecasts of the three aforementioned simple univariate time series methods to forecast the
second component of the Theta decomposition, i.e. SES, ARIMA and naive.
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Table 2 Average out-of-sample
forecast accuracy over the
N = 142 countries

Forecasting method RMSE MAE

RW 68.7490 55.6416

ARIMA 61.1430 42.6846

SES 69.1237 56.2927

Theta 57.9163 43.1612

OTM 60.1228 44.1128

θ -comb (SA) 55.0501 39.7363

The best results is highlighted in italic

Table 3 Percentage of N
countries showing improvements
using the θ -comb approach as
defined in (8), compared to the
forecasting method in the row

Forecasting method RMSE MAE

RW 92.2535 95.0704

ARIMA 83.0986 69.7183

SES 93.6620 97.1831

Theta 73.9437 79.5775

OTM 75.3521 76.0563

Table 4 Resulting p-values
associated with the Equal
Predictive Accuracy test (Diebold
& Mariano, 2002)

Forecasting method RMSE MAE

RW 1.393e−27 3.422e−32

ARIMA 6.889e−13 2.354e−05

SES 1.642e−30 4.056e−37

Theta 2.042e−09 3.174e−14

OTM 9.405e−10 3.287e−11

A natural last benchmark is the use of forecast combination to the time original time
series. We apply the same combination procedure described in Sect. 3.2, but to the original
forecasts. Therefore, the objective of this paper is twofold: firstly, to evaluate whether the
combination is beneficial in itself; and secondly, to determine whether it enhances accuracy
if included in the theta forecasting framework.

4.2 Main results

We first evaluate the out-of-sample performance of the naive combination procedure based
on equal weights (Simple Average, SA). Table 2 shows the average out-of-sample forecast
accuracy for the N = 142 countries. Both RMSE and MAE are computed, for each country,
considering the 18 years in the out-of-sample dimension. The first interesting result of Table 2
is that the original Thetamethod ofAssimakopoulos andNikolopoulos (2000) performs better
than the single benchmark methods, that is, RW, ARIMA and SES, therefore confirming that
the Theta method improves the forecast accuracy for short time series compared to standard
methods. Moreover, we find that the Theta method interestingly performs better than the
optimally weighted approach of Fiorucci et al. (2016) (OTM in Table 2). Therefore, our
results indicate that the use of equal weights between the two selected theta lines θ = 0 and
θ = 2 provides better out-of-sample forecasts. The most interesting result shown in Table 2,
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Table 5 Average out-of-sample
forecast accuracy over the
N = 142 countries

Forecasting method RMSE MAE

θ -comb (SA) 55.0501 39.7363

Theta-comb (BG) 55.1778 39.7467

Theta-comb (NG) 59.9590 43.3576

Theta-comb (InvW) 55.1346 39.5866

Theta-comb (CLS) 57.5882 41.4190

The best model is highlighted in italic

Table 6 Percentage of N countries showing improvements using “optimal” θ -comb approaches, compared to
the forecasting method in the row

Forecasting Measures
method RMSE MAE RMSE MAE RMSE MAE RMSE MAE

θ -comb (BG) θ -comb (NG) θ -comb (InvW) θ -comb (CLS)

RW 92.9577 94.3662 78.1690 85.2113 92.2535 92.9577 83.8028 88.7324

ARIMA 82.3944 75.3521 56.3380 51.4085 82.3944 75.3521 76.7606 70.4225

SES 92.2535 95.0704 80.2817 85.2113 93.6620 94.3662 85.2113 90.1408

Theta 69.7183 76.0563 35.2113 47.1831 70.4225 78.8732 45.7746 54.9296

OTM 74.6479 77.4648 54.2254 57.0423 73.9437 75.3521 61.2676 64.7887

The best model is highlighted in italic

however, is that the improved Theta method based on forecast combination—the so-called θ -
comb—provides the best results according to both the considered metrics, RMSE and MAE.
More precisely, the θ -comb with Simple Average (SA) combination has an RMSE (MAE)
equal to 55.05 (39.73), which is about 5% (8%) lower than the standard Theta method.

The results therefore indicate that the proposed approach improves both the Theta method
and its extension for optimal weights. This result can be explained by the well-known benefit
of forecast combination (e.g. see Timmermann, 2006). Instead of using the SESmodel for the
second theta line capturing short-run fluctuations of the time series around the trend, the use
of alternative forecasting approaches allows better forecasting of the short-run component.
To further investigate if substantial improvements in the forecasting accuracy are achieved
by the use of θ -comb approach, we analyze the percentage of N countries showing improve-
ments using the θ -comb approach, as defined in (8), compared to the benchmark forecasting
methods. Table 3 shows the result for both squared and absolute forecasting errors. A value
larger than 50% indicates that the θ -comb improves the out-of-sample forecasting for more
than half of the N countries considered in the sample.

The θ -combination approach proves to be a robust and generalizable forecasting strat-
egy, capable of delivering significant improvements over a wide variety of baseline methods,
underscoring the effectiveness of the θ -comb in enhancing forecasting accuracy across diverse
metrics and contexts. Table 4 shows the p-values associated with the Equal Predictive Accu-
racy test (Diebold &Mariano, 2002). Under the null hypothesis we have the the two methods
provide statistically equal forecasts out of the sample. The forecasting methods in the row
are compared with the θ -comb (SA). We reject the null hypothesis for all the considered
cases, thus concluding that the θ -comb (SA) provides statistically more accurate forecasts in
out-of-sample.
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Table 7 Resulting p-values
associated with the Equal
Predictive Accuracy test (Diebold
& Mariano, 2002): θ -comb (SA)
versus alternative combination
schemes

Forecasting method RMSE MAE
θ -comb (SA)

Theta-comb (BG) 4.655e−01 9.583e−01

Theta-comb (NG) 1.348e−07 1.888e−06

Theta-comb (InvW) 6.790e−01 5.232e−01

Theta-comb (CLS) 1.150e−07 3.590e−04

Table 8 Average out-of-sample
forecast accuracy over the
N = 142 countries

Forecasting method RMSE MAE

SA 59.7599 45.4308

BG 55.8067 39.7924

NG 60.5362 42.7949

InvW 56.7790 41.2765

CLS 59.4279 42.1651

The classical forecast combination approaches are compared with the
benchmark methods. The best model is highlighted in italic

4.3 Do sophisticated combination approaches improve the naive?

The results in Tables 2 and 3 highlight the effectiveness of the θ -combination (θ -comb)
approach under a Simple Average (SA) combination strategy. Table 5 extends this analysis
by exploring whether more sophisticated combination methods can further enhance forecast-
ing accuracy. Specifically, the table compares different θ -comb strategies, includingBates and
Granger (1969) (BG), Newbold and Granger (1974) (NG), Inverse Weighting (InvW, Aiolfi
and Timmermann., 2006), and Constrained Least Squares (CLS, Granger and Ramanathan,
1984), against traditional forecasting methods and both the standard Theta method and the
optimal weights Theta method (OTM, Fiorucci et al., 2016). In terms of both RMSE and
MAE, the results clearly indicate that θ -comb strategies consistently outperform traditional
forecasting methods across both metrics. The best results are achieved by the θ -comb (InvW)
method, with RMSE andMAEvalues of 55.13 and 39.59, respectively. These values are high-
lighted in italic, confirming that the Inverse Weighting approach leads to the most accurate
forecasts among all considered methods. The improvement over the standard Theta method
is substantial, reducing RMSE by approximately 4.8% and MAE by 8.3%. The CLS strat-
egy, while not as effective as InvW or BG, still outperforms traditional methods like RW,
ARIMA, and SES and the existing Theta methods. Table 5 highlights the versatility and
robustness of the θ -comb approach in improving forecasting accuracy. Although the stan-
dard Theta method provides a strong baseline, the use of advanced combination techniques
such as InvW enhances its predictive performance significantly. This finding underscores the
importance of incorporating data-driven weighting schemes in combination models to better
account for varying forecasting patterns across countries. By leveraging these sophisticated
techniques, the proposed θ -combmethod demonstrates its capacity to achieve state-of-the-art
results in large-scale forecasting problems.

However, the SA method, whose performance is shown in Table 2, yields very com-
petitive results. Indeed, the θ -comb (SA) provides better performances than sophisticated
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Table 9 Average out-of-sample
forecast accuracy over the
N = 142 countries

Forecasting method RMSE MAE

SA 59.7599 45.4308

BG 55.8067 39.7924

NG 60.5362 42.7949

InvW 56.7790 41.2765

CLS 59.4279 42.1651

θ -comb (SA) 55.0501 39.7363

θ -comb (BG) 55.1778 39.7467

θ -comb (NG) 59.9590 43.3576

θ -comb (InvW) 55.1346 39.5866

θ -comb (CLS) 57.5882 41.4190

The classical forecast combination approaches are compared with the
proposed θ -comb methods. The best method is highlighted in italic

approaches in terms of RMSE, while the InvW combination provides more accurate out-of-
sample predictions in terms of MAE. Therefore, the difference between the two methods is
not substantial.

The good performance of the SA combination approach is not surprising. Indeed, despite
the existence of sophisticated combination methods, our results confirm the large empirical
evidence (e.g. see Blanc and Setzer, 2016; Hsiao and Wan, 2014; Smith and Wallis, 2009)
showing that the simple averagewith equal weights outperformsmore complicatedweighting
schemes. The majority of explanations concerning the reasons why simple averaging might
prevail over complex combinations in practice have focused on the errors that occur when
estimating the combination weights. This is particularly evident in the context of short time
series data.

Table 6 presents the percentage of countries N for which different “optimal” θ -
combination (θ -comb) approaches outperform traditional forecasting methods, evaluated
using RMSE and MAE as error metrics. Each row represents a baseline forecasting method,
and the columns correspond to the performance of different θ -comb approaches. The
best-performing θ -comb approach for each baseline method is highlighted in italic. The
outcomes emphasize the adaptability and efficacy of the θ -comb framework, with specific
methodologies exhibiting pronounced enhancements relative to the benchmark.

Moreover, the results also demonstrate that sophisticated methods like InvW and BG con-
sistently deliver the highest improvement rates, particularly for benchmarks like RW, SES,
and ARIMA. Even in cases where improvement rates are closer to 70%, such as against the
Thetamethod andOTM, the performance of the θ -comb approaches remains notable, as these
improvements apply to the majority of countries. Overall, the table highlights the potential
of the θ -comb framework to generalize effectively and achieve state-of-the-art results across
a variety of forecasting contexts. Table 7 shows the p-values associated with the Equal Pre-
dictive Accuracy test, comparing the simple average combination in the Theta-comb method
with sophisticated approaches. Under the null hypothesis, the simple average combination
provides statistically equal accuracy compared to sophisticated combination approaches. The
results highlight that the θ -combmethod based on simple average combination is statistically
better than NG and CLS approaches, while the results are comparable considering BG and
InvW combination methods.
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Table 11 Resulting p-values
associated with the Equal
Predictive Accuracy (Diebold &
Mariano, 2002): θ -comb (SA) vs
standard forecast combination

Forecasting method RMSE MAE
θ -comb (SA)

SA 3.165e−02 8.762e−01

BG 2.559e−12 4.240e−06

NG 2.132e−08 7.138e−07

InvW 2.485e−11 1.165e−04

CLS 5.879e−17 2.147e−20

Table 12 Average out-of-sample forecast accuracy over the N = 142 countries for the HDI components

Forecasting RMSE MAE
method LE EDU GNI LE EDU GNI

RW 55.1099 16.0151 74.4854 43.5096 12.1342 60.7923

ARIMA 54.9521 14.1424 72.4252 35.1601 9.7391 52.8677

SES 55.5731 16.0546 75.2697 44.0413 12.1810 61.6712

Theta 50.5321 13.6763 70.5229 35.5432 10.0772 55.3820

OTM 53.5212 14.6243 71.6099 37.0637 10.7944 55.6097

θ -comb (SA) 49.1629 13.0388 67.8889 32.9654 9.4022 52.6513

The best method is highlighted in italic

4.4 Does the�-combmethod improve forecast combination?

In what follows we evaluate the effectiveness of the θ -comb method compared to standard
combination strategies that do not employ the θ decomposition. Table 8 presents the average
out-of-sample of the considered benchmark approaches with respect to the combination
procedures.We consider the same combination of approaches adopted for the implementation
of the θ -comb method.

The results highlight that, among the classical forecast combination methods, the BG
approach performs better than benchmarks, achieving the lowest RMSE and MAE, as high-
lighted in italic. However, all the considered combination approaches improve compared to
the benchmarks, that is, RW, ARIMA, SES, standard Theta method and the OTM approach.
We then evaluate if forecast combination has more value if included within the Theta decom-
position scheme. In this regard, Table 9 compares the performance of classical forecast
combination methods with the θ -comb methods.

The results show that θ -combmethods outperform classical combinations according to all
accuracy measures. These results underscore the added value of incorporating Theta decom-
position into the combination process. Furthermore, the performance gap between θ -comb
methods and classical combinations demonstrates the advantage of using Theta decompo-
sition to better capture the underlying structure of the data. In particular, θ -comb (InvW)
reduces the MAE to 39.58, further improving on the best classical combination method
(BG). Table 10 shows the percentage of countries showing improvements in forecast accu-
racy using θ -comb methods compared to classical methods. The results again demonstrate
substantial gains across the board. In particular, we notice that the θ -comb (SA) approach
improves RMSE and MAE in 87.32% and 88.73% of countries, respectively, compared to
the classical SA method. Similarly, θ -comb (InvW) outperforms its classical counterpart in
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Table 13 Resulting p-values associated with the Equal Predictive Accuracy (Diebold & Mariano, 2002) for
the HDI components

Forecasting θ -comb (SA)
method LE EDU GNI

RMSE MAE RMSE MAE RMSE MAE

RW 5.403e−11 1.202e−26 8.949e−27 9.398e−24 1.003e−05 1.016e−06

ARIMA 4.319e−12 5.993e−04 1.739e−08 6.104e−02 4.694e−03 8.943e−01

SES 1.916e−12 2.368e−28 3.048e−28 7.021e−25 1.161e−06 8.542e−09

Theta 4.663e−02 6.558e−06 2.670e−09 2.072e−10 1.207e−02 8.687e−04

OTM 4.792e−05 2.143e−05 1.283e−16 5.891e−15 9.682e−02 7.927e−02

73.24% (RMSE) and 72.54% (MAE) of countries. These findings highlight the robustness
and adaptability of θ -comb methods in diverse datasets.

Finally, we evaluate if the differences in the out-of-sample accuracy are statistically sig-
nificant. Table 11 shows the p-values of the Equal Predictive Accuracy test. The results show
that the combination approach is more valuable if included in the theta decomposition. In
fact, for all the consisdered standard co

4.5 Forecasting the HDI components

Finally, we apply the proposed θ -combmethod under simple average combination to forecast
the components of the Human Development Index (HDI), namely Life Expectancy (LE),
Education (EDU), and Standard of living (GNI), across the considered set of countries.
Following the same scheme of the main results, we first present the average out-of-sample
forecast accuracy for each HDI component using multiple forecasting methods, including
the RandomWalk (RW), ARIMA, Simple Exponential Smoothing (SES), the classical Theta
method, the Optimal Theta Method (OTM), and the newly introduced θ -comb (SA) method.
The results are summarized in Table 12.

The forecast accuracy is assessed in terms of both the Root Mean Squared Error (RMSE)
and the Mean Absolute Error (MAE). As shown in Table 12, the θ -comb (SA) method
outperforms all other methods across both error measures for all three HDI components. For
instance, in the case ofLifeExpectancy (LE), θ -comb (SA) achieves the lowestRMSE (49.16)
and MAE (32.97), outperforming the next best method, the Theta method, significantly. In
a similar manner, for the Education (EDU) and Income (GNI) components, the combination
of theta-comb (SA) has been demonstrated to provide netter results in both RME and MAE,
thereby substantiating its superior forecasting capability across all constituent elements of
the HDI.

In order to assess the statistical significance of these results, we conduct the Equal Pre-
dictive Accuracy (EPA) test, which compares the performance of the θ -comb (SA) method
against each of the other forecasting methods. The p-values associated with the EPA test
(Diebold & Mariano, 2002) are reported in Table 13.

For Life Expectancy and Education, the θ -comb (SA) method shows extremely small
p-values when compared to RW, ARIMA, SES, and Theta, indicating that the improvements
in accuracy are statistically significant. In the case of GNI, the θ -comb (SA) method shows
statistically significant improvements compared to all methods except for OTM, where the
test suggests that the two models are statistically equivalent on average.
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5 Conclusions

Forecasting human development is crucial for policymakers, researchers, and international
organizations committed to achieving sustainable growth and societal progress.Humandevel-
opment encompasses multiple dimensions, including health, education, and income, which
collectively contribute to the well-being and quality of life of individuals within a soci-
ety. Accurate forecasting of these indicators can inform targeted policy interventions, help
monitor progress towards global development goals, and ensure that resources are effectively
allocated. This paper explored forecasting human development through the Human Develop-
ment Index (HDI) using an enhancedThetamethod, addressing challenges posed by theHDI’s
multifaceted composition and the constraints of short time series data. Our findings under-
score the critical importance of designing integrated policy strategies that simultaneously
target the HDI’s core dimensions-longevity, knowledge, and standard of living.

ForecastingHDI, however, is fraughtwith statistical complexities due to limited data avail-
ability and the intricate interplay of its components. Traditional forecasting methods such as
ARIMA, Simple Exponential Smoothing (SES), and RandomWalk struggle to achieve high
accuracy in this context. To address these limitations, the study advanced the Theta method
by integrating forecast combination strategies, leveraging the strengths of multiple models.
This approach improves on the traditional Theta method by offering a more nuanced rep-
resentation of long-term trends and short-term fluctuations, enhancing prediction reliability.
Using HDI data spanning from 1990 to 2022 across 142 countries with complete datasets, our
enhanced Theta method demonstrated superior out-of-sample forecast accuracy compared
to both the standard Theta method and recent iterations like the optimal Theta model. It
also outperformed traditional statistical methods tailored to short time series, validating its
robustness in handling the variability and complexity of social indicators.

We proposed a type of the decomposition-combination approach which creates a more
effective framework for projecting human development trends. These improved forecasts
provide policymakers with a valuable tool for anticipating changes in HDI dimensions and
devising equitable development strategies. Ultimately, thismethodology supports the broader
goal of supporting sustainable development by aligning economic growth with enhanced
quality of life and resilience in the face of social and environmental challenges.

Future research can further develop the proposed framework, by comparingmore sophisti-
cated combination approaches considered in the paper. For example, while our work focuses
on improving the short-run forecasts through a combination of alternative methods, a natural
extension would be to explore different trend representations for the long-run component.
This could involve combining multiple trend models to capture diverse growth patterns or
allowing for polynomial trends with varying components to better adapt to structural changes
in the data. Such developments could further improve the flexibility and accuracy of the Theta
method in different forecasting contexts.

Moreover, we highlight that, while our study focuses on human development indicators,
the proposed improved Thetamethod can be applied to other fieldswhere the use of short time
series is prevalent. For example, in macroeconomics many indicators are reported annually
and often cover limited time spans, making short-time series forecasting essential. This
fact is particularly salient in the context of developing economies. Similarly, in business and
marketing, newly launched products generate only a few initial data points, requiring accurate
forecasting methods for early-stage demand estimation. Another interesting application can
be found in the demographic and social sciences, where indicators such as migration patterns
or educational attainment rates may be available only for short historical periods. These
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examples illustrate the broader applicability of our approach and suggest future research
directions.
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