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Abstract

Parkinson’s Disease (PD) refers to the chronic movement disorder caused by the degeneration of the brain’s motor
functions. Functional Magnetic Resonance Imaging (fMRI) and Diffusion Tensor Imaging (DTI) are evidence-based neu-
roimaging procedures which evoke relevant anatomical and functional alterations in PD. The purpose of this work is to
investigate whether the machine learning approach can benefit from applying deep learning for data interpretation of
fMRI and DTI to detect disease at an early stage and study the progression of the disease. The objectives of this research
are twofold: first, to predict the biomarkers for attending to the changed brain activity pattern using deep learning model
from the fMRI data and the second one is, to find the micro structural changes in the white matter tracts that is specific
to the PD using DTI data. The adopted approach is data pre-processing to clean the neuroimaging data and remove
different artifacts, then features extraction using deep learning approaches such as CNNs and transformers. Data were
collected from the intersection of the PD patients and controls, and similar to the machine learning models, the perfor-
mance of the segmentation models was assessed using the accuracy, precision, and F| score based on the databases of
PD patients and age-matched healthy controls. Analysis shows that the newly developed deep learning models outper-
forms previous conventional machine learning techniques with more significant increases in sensitivity for early-stage PD
diagnosis. Respective investigation of feature importance provided significant BrainNet features related to PD diagnosis
and identified main brain areas and white matter tracts involved in disease, concordant with prior clinical research. To
sum up, the findings of the presented work can be useful for developing deep learning algorithms for the analysis of fMRI
and DTI data in the context of PD diagnosis and further research. Lastly, the general avenue of future work will cover
the combination of multiple modalities and the testing of the models on bigger and more diverse datasets.
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I Introduction

Parkinson’s Disease (PD) is a chronic favourable and progressive disease characterized by deterioration of the motor
and non-motor systems affecting millions of patients globally. This is typified by the progressive loss of dopaminergic
neurons in substantia nigra that result in classics signs like tremors, rigidity and bradykinesia.! However, apart from
motor disabilities, PD patients are at high risk of suffering from cognitive decline: mood disorder. and sleep disturbances.
The major success in combating diseases is the timely detection of the diseases and the accurate treatment of the diseases.
Nevertheless, the conventional techniques of diagnosing mental disorders are based on clinical impressions and qualitative
appraisals, which may result in late and/or mistaken identification.’

Diagnostic imaging that targets the nervous system has become instrumental in the diagnosis diagnosis, measurement
and examination of Parkinson’s Disease. Thus, the methods including functional magnetic resonance imaging (fMRI)
and diffusion tensor imaging (DTI) give the data about changes of structural and functional brain connections Functional
magnetic resonance imaging is based upon the detection of changes in blood oxygenation level-dependent (BOLD) signal
that reflects regional brain activation.? Catch22 is a conventional MRI technique that helps to see anatomical structures
of the brain, while DTI is a more particular MRI technique that images the water diffusion in the tissues of the brain to
portray white matter compartment and nerve tracts. These imaging techniques have been demonstrated to play a useful
role in defining biomarkers for PD, assessing disease pathophysiology and measuring treatment effects. However, both
fMRI as well as DTI are high dimensional and analyzing them for reasonable patterns of information is difficult with
conventional methods.*

These techniques are high in comp[lexiry and well managed through the use of a subfield of machine learning known as
deep learning. As it can learn hierarchical features directly from raw data, it is well justified to apply it in analyzing the
high dimensional and nonlinearity on the fMRI and DTT data. Recent deep learning architectures include Convolutional
Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) that have performed favouably in activities such as
classification, seementation, and prediction.’ If applied to PD, we can identify more precise changes in the structure
and activity of the brain compared to the use of other techniques. Taken with large-scale datasets of neuroimaging, deep
learning can permit early identification, tracking of progression, and even prognosis of results in patients more efficiently
and effectively.®

The goal of this work is to investigate the possibility of using deep learning methods for processing fMRI and DTI
in patients with Parkinson’s Disease. In particular, it focuses on several important issues including how to optimally fuse
data from multiple imaging modalities, how to extract relevant features and how to interpret the resulting models. For this,
the work’s principle research questions are as follows: The aims are to design novel deep learning architectures for fMRI
and DTT and assess their accuracy against conventional methods: while searching for pathophysiologically significant
biomarkers for PD. Incorporating novel computational methods in conjunction with neuroimaging, this work advances the
literature of computational neuroscience and its use in NDs.’

The outcome of this study is therefore expected to contribute towards the need for developing better techniques for
the analysis of Parkinson’s Disease. The combination of deep learning with neuroimaging has the power to boost the
diagnostic accuracy and organizational aspects of treatment for this disabling disorder with a direct impact on patient’s
quality of life.

2 Related work
(Table 1)

3 Methodology

o Dataset Description
m  Details of fMRI and DTI Data Sources
m Preprocessing Steps (e.g., Normalization, Noise Reduction)
o Deep Learning Models
m Architecture Selection (e.g., CNNs, RNNs, or Transformers)
m Feature Extraction Techniques
o Training and Validation
m  Training Protocols and Hyperparameter Tuning
m  Evaluation Metrics (e.g., Accuracy, Precision, Recall, F1 Score)



Table |. Literature survey.

Authors & year

Key findings

Methodology/Techniques used

Results/Remarks

Finding gaps

Shaban, M. (2023)'3

Sangeetha et al. (2023)*

Forkert, N. D. (2024)'®

Majhi et al. (2024)'6

Ramirez et al. (2020)'7

Muioz-Ramirez et al.
(2022)'8

Bhan et al. (2021)!?

Welton et al. (2024)20

Abumalloh et al. (2024)?'

Kamagata et al. (2021)22

Explored the use of deep
learning for Parkinson’s
disease diagnosis.

Early detection of Parkinson’s
disease using brain MRI and
deep learning.

Explainable Al for diagnosing
Parkinson’s disease using
multimodal MRI data.

Proposed
metaheuristic-enhanced deep
learning models for PD
diagnosis.

Studied early-stage Parkinson’s
disease using deep learning
models.

Applied anomaly detection
techniques to brain MRI for
Parkinson’s patients.

Explored early Parkinson’s
disease diagnosis using brain
MRI and deep learning.

Used deep learning for midbrain
MRI classification of
Parkinson’s disease.

Bibliometric analysis and
literature review of deep
learning applications in PD
diagnosis.

Investigated diffusion MRI
biomarkers for
neurodegenerative diseases,
including PD.

Deep learning models with focus
on automated feature
extraction.

CNN-based deep learning
models applied to MRl images.

Explainable deep learning models
incorporating multimodal
imaging techniques.

Deep learning with
metaheuristic optimization
techniques.

CNN and transfer learning
techniques on early-stage PD
imaging data.

Subtle anomaly detection via Al
on de novo Parkinsonian
patients.

Deep learning algorithms with
pre-trained CNN models.

Deep learning-based
classification on midbrain MRI.

Comprehensive literature review
with a bibliometric approach.

Diffusion MRI techniques for
biomarker identification.

Achieved high accuracy in PD
diagnosis using diverse
datasets.

Improved sensitivity for early PD
detection.

Enhanced model interpretability
while maintaining diagnostic
accuracy.

Qutperformed traditional deep
learning models in terms of
efficiency and accuracy.

Achieved reliable dassification
results.

Successfully detected subtle
brain abnormalities.

Demonstrated high accuracy in
early PD detection.

Achieved significant
improvements in classification
accuracy.

Identified trends, methodologies,
and gaps in PD diagnosis
research.

Highlighted specific biomarkers
relevant to PD.

Limited focus on multimodal
data {ntegration.

Requires validation on larger and
diverse datasets.

Limited benchmarking with
black-box models.

Computational complexity of
metaheuristic approaches not
addressed.

Lack of extensive validation on
unseen data.

Need for longitudinal studies to
assess progression detection.

Limited consideration of noise in
clinical data.

Needs evaluation on
cross-population datasets.

Lack of experimental validation
of identified trends.

Requires integration with deep
learning for improved
diagnostic accuracy.




Figure 1. fMRI and DTI data sources.
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Figure 2. Steps of preprocessing.

3.1 Details of fMRI and DTI data sources

Functional MRI (fMRI) datasets and Diffusion Tensor Imaging (DTI) provide the background for the investigation of
Parkinson’s Disease (PD). These datasets often consist of neuroimaging data sourced from public database like Parkin-
son’s Progression Markers Initiative (PPMI), Human Connectome Project (HCP) or data contributed by academic medical
institutions during clinical trials.®

Functional MRI collects time series data that represents the neural activity, as it’s a BOLD contrast technique the mea-
sures signals from oxygenation of blood. These signals are specifically beneficial for investigating resting-state networks
as well as tasks-on activations of PD populations. For its part, DTI measures the extent of water molecule displacement
through bundled nerve fibers it describes microstructural and connectional integrity. As a rule, datasets contain demo-
eraphic Characteristics, clinical Measurements, and metadata on images is quite useful and allows performing accurate
analysis and cross-check (Figure 1).

3.2 Pre-processing steps

Pre-processing is very important for dealing with the heterogeneities of the data to be analyzed and to settle for high
quality data for analysis. For fMRI some of the preprocessing steps include; motion correction for errors arising from
patient movements, temporal smoothing that reduces image noise and lastly normalization that put an image under study
into a stereotactic space. Section time correction is used to correct temporal misregistration of the fMRI slices.”

DTI preparation includes eddy current correction to eliminate distortions resulting from the artefacts of the scanner,
tensor estimation to obtain the parameters such as FA and MD, and tractography for connecting white matter fibres.
Both modalities also apply skull stripping and normalize the intensity to ensure that the voxel values are in some manner
consistent. Other techniques may also be used including denoising using spatial-spectral filters (Figure 2).

4 Deep learning models

4.] Architecture selection

Three types of deep learning architecture commonly used in neuroimaging include Convolutional Neural Networks
(CNNs), Recurrent Neural Networks (RNNs) and Transformers. CNNs are most suitable for recognising spatial patterns



Deep Learning Architectures in Neuroimaging
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Figure 3. Architectures deep learning in neuroimaging.

Algorithm 1: Deep Learning for Neuroimaging using CNNs, RNNs, Trans-formers, and LSTMs

Input: Neuroimaging data: Functional MRI (fMRI) and Diffusion Tensor Imaging (DTI) features.
Output: Classification results indicating healthy or at-risk state.
Step 1: Data Preprocessing :

* Normalize fMRI and DTI features to [0,1] using x' =

x—min(x) .

max(x)—min(x)
= Apply noise reduction techniques (e.g., Gaussian filtering).;
= Perforin feature augmentation if required.;

Step 2: Spatial Feature Extraction using CNN;
* Input preprocessed data to the CNN layer:; y =Conv2D(W - x + b).;
* Apply activation function (ReLU):; y = max(0, y).;

Perforin max-pooling to reduce dimensionality.;

Sequential Processing using RNN;
» Pass CNN features to the RNN layer:: h, = tanh(W}, - h,_; + W, - x, + D).
= Exfract temporal dependencies across neuroimaging scans.;

Step 4: Attention Mechanism using Transformers ;
= Compute query, key, and value matrices:; Q = W,-x, K=W,-x,

x, V
* Calculate attention scores:; Attention(Q, K, V) = softmax (Q—\/I;_T) - V. 3. Update

.
Q.
J.

Step

feature representations using attention outputs.;
S|tep 5: Integration using LSTM ;
* Pass Transformer outputs to LSTM:; Forget Gate: f/, = o (Wf gl + bf) -
orgeuGate : jl— o (m [ |h_y.x,1|0f) .
InputGate : i, = a(W,; - [h,_1,x;] + b))
*  Output Gate: o, = (W, - [h,_1,x, 1+ b,).;
* CellState: C,=£,0C_,+i,0C,;
» Integrate time-series information for classification.;
Step 6: Classification Layer ;
» Use a fully connected dense layer for final classification: ;
¥ = softmax(W - x + b).; N L
Compute loss using cross — entropy : L=- Ef:‘ vilog(§:)-;
* Optimize parameters via backpropagation.;
Step7: Output ;
= Return predicted class labels (e.g., healthy or at-risk).;
* Provide feature importance for interpretability.

and are widely employed on image segmentation and categorisation. It should, therefore, be noted that continuous fMRI
data can be analyzed effectively using Recurrent Neural Networks (RNNs) and especially Long Short Term Memory
(LSTM) networks because of their property of capturing temporal dependencies in data.'” Transformers, due to the atten-
tion mechanisms incorporated into them, offer the state-of-art approach to the multi-modal feature fusion, which makes
Transformers appropriate (o incorporate (MRI and DTI features (Figure 3).

4.2 Feature extraction techniques

Feature extraction is used to reduce the elevation of the images and determine their basic and advanced features that will be
helpful in diagnosis. For fMRI, additional spectra associated with regional connectivity metrics, power spectra densities,



and dynamic connectivity state are calculated. To our knowledge DTI derived measures such as FA, MD and connectivity
eraphs are used as features in DTI. Auto-encoders and transferred learning are useful to reduce the high-dimensional
neuroimaging data into low-dimensional, task relevant one so as to enhance generalization of the model.!!

5 Training and validation
5.1 Training protocols and hyperparameter tuning

Training deep learning models involves splitting the dataset into training, validation, and test sets, typically in ratios of
70:15:15. To increase the model robustness, several data augmentation are performed including the spatial flipping and
rotation. Hyper-parameters including learning rate, batch size and them, regularization parameters, are tweaked using grid
search or the Bayesian optimization methods. Pre-trained models are also applied to transfer learning in order to make
convergence easier, and enhance performance when data is scarce.

5.2 Evaluation metrics

Other measurable performance indicators include accuracy, precision, recall as wells as the F1 score of the model. Accu-
racy define general fitness of model by evaluating the number of right prediction while specificity and sensitivity gives
information about PD-specific features of model. As with any machine learning algorithm the F1 score is harmonic mean
of precision and recall and is thus appropriate for imbalanced datasets. For classification performance measurements, Area
Under the Curve (AUC) of Receiver Operating Characteristic (ROC) and confusion matrices are used, to get accurate and
easily comprehensible results.!?

6 Analysis of functional MRI data

a. Key Features of fMRI in Parkinson’s Disease.
b. Deep Learning for Analyzing Brain Activity Patterns.
c. Insights from Resting-State and Task-Based fTMRI.

6.1 Analysis of functional MRI data

Neuroimaging method which involves functional Magnetic Resonance Imaging (fMRI), which identifies the functional
levels of activity in the brain through the related signals of blood-oxygenation and blood-flow. It offers important infor-
mation regarding the structural organization of the brain and has in fact been widely used to investigate neurodegenerative
diseases such as Parkinson’s Disease (PD). Through deep learning analyses of the data obtained from fMRI images, some
relevant patterns that might not be possible to detect when applying simple statistical models are identified.

6.2 fMRI in Parkinson’s disease

As it happens in Parkinson’s Disease, IMRI has been very useful in understanding functional deficits in various brain areas.
These include changes to the communication within motor processing networks like the basal ganglia-thalamocortical
loops and recognisable dysfunctions in junior circuits involved in cognition and emotion processing. Downregulation of
functional connectivity between the DMN, SMN, and executive control networks are other essential parameters of the
disease.
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Symbols Explanation:

S(x, v,z 1): Signal intensity at spatial coordinates (x, v, z) and time 7.
M’ ’, 7. w): Frequency-domain representation of the signal.

J(@): Tlme dependent signal decay function .

p(x.y, z): Proton density at spatial coordinates.

y: Gyromagnetic ratio of hydrogen protons .

B(x,y, z.1): Magnetic field strength varying over space and time.
-Sp(7): Baseline signal intensity .

AS(r): Fluctuation of signal intensity from baseline.

F(k,. ky, k_, @): Fourier transform of the spatial and temporal signal fluctuations .
R(8, ¢. r.1): Radial projection of the signal in spherical coordinates.
W(8, ¢): Weighting function for angular dependence .

C(r): Correlation coefficient of the signal.

A: Regularization parameter .

- T: Total observation time.

V: Volume of interest in the brain .

Another important aspect that has been considered in PD research is that the supplementary motor area is less active
whereas neighboring parts of the brain work harder. By using methods such as resting-state IMRI which measures intrinsic
functional connectivity, the abnormality is detected in the early stage of PD whereas task-based fMRI which demonstrate
the defi cit during motor and cognitive tasks. Hence, they offer a valuable feature space from which deep biomarkers can
be subsequently learned by a machine-learning model (Figure 4).
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Figure 4. fMRI in Parkinson’s disease.

7 Deep learning for analyzing brain activity patterns

Knife-edge detection by CNNs and RNNs has brought immense changes to fMRI data analysis by providing an analysis
without a human touch and capturing detailed spatial and temporal patterns. For example, CNNs are used for detecting
spatial features from fMRI data that are functional connectivity maps; bn the other hand, RNNs and LSTM networks are
used for analyzing temporal characteristics in brain activity.
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Figure 5. Analyzing brain activity patterns: Parkinson’s disease.

J(8): Cost function for neural network.

(v, ¥): Cross-centropy loss .

o: Activation function (e.g., ReLU, Sigmoid)

h,,y,: Hidden state and output in recurrent layer s
lI’,-j(r): Normalized brain signal at time .

10. p;, 0,2 Mean and standard deviation of the signal.

Neuroimaging method which involves functional Magnetic Resonance Imaging (fMRI), which identifies the functional
levels of activity in the brain through the related signals of blood-oxygenation and blood-flow. It offers important infor-
mation regarding the structural organization of the brain and has in fact been widely used (o investigate neurodegenerative
diseases such as Parkinson’s Disease (PD). Through deep learning analyses of the data obtained from fMRI images, some
relevant patterns that might not be possible (o detect when applying simple statistical models are identified (Figure 5).



Figure 6. DTI tractography in Parkinson’s disease.
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Figure 8. 3D graph showing the accuracy of a deep learning model over different epochs.

Table 2. Performance metrics of deep learning models.

Model Accuracy Precision Recall Fl-Score
CNN 92.5% 0.91 0.89 0.90
RNN 89.8% 0.88 0.86 0.87
Transformer 93.2% 0.92 0.90 091

Table 3. Comparative analysis of deep learning vs. traditional models.

Model type Accuracy Training time (min) Computational complexity
CNN 92.5% 45 High

SVM 85.3% 30 Medium

Decision Tree 78.1% 15 Low

7.1 Insights from resting-state and task-based fMRI

As it happens in Parkinson’s Disease, fMRI has been very useful in understanding functional deficits in various brain areas.
These include changes to the communication within motor processing networks like the basal ganglia-thalamocortical
loops and recognisable dysfunctions in juinor circuits involved in cognition and emotion processing. Downregulation of
functional connectivity between the DMN, SMN, and executive control networks are other essential parameters of the
discase.

Another important aspect that has been considered in PD research is that the supplementary motor area is less active
whereas neighbouring parts of the brain work harder. By using methods such as resting-state fMRI which measures
intrinsic functional connectivity, the abnormality is detected in the early stage of PD whereas task-based (MRI which
demonstrate the deficit during motor and cognitive tasks. Hence, they offer a valuable feature space from which deep
biomarkers can be subsequently learned by a machine-learning model.



Table 4. Activation values of different layers in a CNN.

Layer Activation value | Activation value 2 Activation value 3 Activation value 4
Layer | 55 50 45 40
Layer 2 60 55 50 45
Layer 3 70 65 60 55
Layer 4 80 75 70 65

Comparative Analysis: Accuracy vs. Model Type

Accuracy(%)

| |
CNN SVM DecisionTree
Model Type

Figure 9. Bar graph showing a comparative analysis of accuracy between deep learning models and traditional machine learning
models.

Knife-edge detection by CNNs and RNNs has brought immense changes to TIMRI data analysis by providing an analysis
without a human touch and capturing detailed spatial and temporal patterns. For example, CNNs are used for detecting
spatial features from fMRI data that are functional connectivity maps; on the other hand, RNNs and LSTM networks are
used for analysing temporal characteristics in brain activity.

8 Analysis of diffusion tensor imaging data

a. Overview of White Matter Tractography in Parkinson’s Disease

White matter tractography for is a method that can use neuroimaging to reveal white matter fibre connections in the
brain and also assess structural connectivity. In Parkinson’s Disease (PD), it gives essential information with respect to
microstructural patterns like axonal injury and demyelination changes, which are useful for understanding the advance-
ment of the illness. DTI data is useful in generating tractography; demonstrating changes in FA and MD. These metrics
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Figure 10. 3D graph visualizing activation values across different layers in a CNN.

enables the detection of discontinuity in areas such as the motor cortex and basal ganglia that are critical in PD develop-
ment. Consequently, white matter tractography is a useful resource for knowing the cause and effect of PD and also for
formulation of precise corrective measures (Figure 6).

b. Deep Learning for Identifying Microstructural Changes

Machine learning methods such as deep learning has proven to be helpful while look for microstructural changes in
the brain tissue using image procedures such as DTI. These models can capture and address intricate features of white
matter vulnerability that reflect neurodegenerative diseases, for instance the Parkinson’s. In this study, FA and MD, the
two features extracted from the DTI data, are employed to differentiate between FA and NF groups with high accuracy,
helping detect microstructural that may be difficult to observe. This enhances also the diagnostic procedure and adds to
the elucidation of disease processes on cellular level. Combining these results with other non-invasive imaging techniques
can give an idea of the notion of brain health (Figure 7).

9 Results

a. Performance Metrics of Deep Learning Models.
b. Comparative Analysis with Traditional Methods.
c. Visualization of Important Features (e.g., Activation Maps).

9.1  Performance metrics of deep learning models

This section presents the performance metrics of various deep learning models, such as accuracy, precision, recall, FI-
score, and the area under the ROC curve (Figure § and Table 2).
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Figure |1. 3D graph depicting model training loss across different epochs.

9.2 Comparative analysis with traditional methods

In this section, we compare deep learning models with traditional machine learning techniques, highlighting the differences
in their accuracy, training time, and computational complexity (Figure 9 and Table 3).

9.3 Visualization of important features (e.g., Activation maps)

This section visualizes the important features in deep learning models, such as the activation maps in CNNs, showing how
different layers of the model contribute to the decision-making process (Figure 10 and Table 4).

9.4 Graph 4: model performance comparison
(Figure 11)

9.5 Graph 5: model accuracy vs. Hyperparameters
(Figure 12)

10 Conclusion

This paper shares knowledge in the use of deep learning methods to process average functional magnetic resonance
imaging fMRI and diffusion tensor imaging DTI signals of Parkinson’'s Disease (PD) patients. innovative progress in
neuroimaging analysis. The results show that deep learning methods, including CNN and hybrid, are promising tools
capable of detecting minimal biomarkers in fMRI and DTI data. Through the use of such techniques, the study affords
enhanced identification of Parkinson’s related changes in the brain over the traditional methods. These include improved
feature extraction from the high-dimension imaging data, the ability to fuse multi-modal information, and significantly
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Figure 12. Graph showing model accuracy at various hyperparameter settings.

higher accuracy in differentiating between ‘control’ and PD patients. These are all contributions to a field. This work
presents the possibility of the deep learning algorithms to identify subtle structures in neuroimaging data that may go
unnoticed by the researcher during the analysis manually. Moreover it provides a methodology for incorporating novel
imaging technology into personalized computational models for diseases such as PD. Measurement data also provides
the possibility for early diagnostics and individual treatment approaches, the goals of which are in line with precision
medicine. Future work can build upon this by investigating how XAI methods can be used to provide such insights
from deep learning to clinicians, and therefore increase the trust and subsequent clinical utilisation of these techniques.
Furthermore if longitudinal imaging datasets were included this may help in analyzing disease progression. It will also
make paper reproducible and reliable by bringing coherence in the processing of data across different institutions and
validation of models for the respective data. These recommendations can help to start translating this research into practice
in the clinic for enhancing patient management and outcomes.
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