IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE: WS05. WORKSHOP ON OPEN RADIO ACCESS NETWORKS (OPEN RAN): 1

FlexScale: Scalable and Efficient Management
Approach for Near-RT RIC in O-RAN

Sunil Kumar*, Rafik Zitouni, Ayhan Akbas’, Chuan Heng Foh'
* School of Computing and Digital Media, London Metropolitan University, London, United Kingdom
T 5G/6GIC, Institute for Communication Systems, University of Surrey, Guildford, United Kingdom
Email: s.kumar@londonmet.ac.uk, {r.zitouni, a.akbas, c.foh} @surrey.ac.uk

Abstract—The Near-Real-Time (Near-RT) Radio Access Net-
work (RAN) Intelligent Controller (RIC) in the Open RAN
(O-RAN) architecture provides flexibility and programmability,
enabling dynamic network management through Machine Learn-
ing based applications known as xApps. However, scalability
and strict latency requirements hinder the support of numerous
xApps. Existing orchestration solutions struggle to efficiently
manage large-scale xApp deployments while maintaining latency
below one second. Connecting multiple next-generation NodeBs
(gNBs) to a single Near-RT RIC risks performance bottlenecks
and single points of failure in the O-RAN architecture. To address
these challenges, we propose FlexScale, a scalable approach to en-
hance O-RAN system capacity for extensive xApp deployments. It
dynamically scales Near-RT RIC instances connected to gNB mod-
ules (E2 Nodes) using Kubernetes-based Horizontal and Vertical
Pod Autoscaling (HPA, VPA) and native load balancing. FlexScale
optimizes CPU utilization while meeting latency requirements.
Simulations show that FlexScale efficiently scales xApps across
multiple Near-RT RIC pods, addressing system limitations. Under
high E2AP trafficc HPA and VPA autoscaling reduce latency
by up to 96% compared to a single Near-RT RIC deployment.
Additionally, CPU usage is reduced by approximately 70%,
ensuring balanced resource utilization during traffic fluctuations.
FlexScale demonstrates its capability to support large-scale xApp
deployments while maintaining performance and efficiency.

Index Terms—Scalability, Resource Utilisation, Load Balancing,
Near-RT RIC, O-RAN, 6G networks, Horizontal Pod Autoscaler
(HPA), Vertical Pod Autoscaler (VPA), E2AP interface.

I. INTRODUCTION

Next-generation 6G networks will revolutionize telecommu-
nications by overcoming issues like bandwidth, latency, and
energy efficiency. Moving from the Internet of Everything to
Intelligent Networks, 6G aims to support ML-driven appli-
cations linking trillions of devices. These advancements will
enable real-time applications such as autonomous systems,
smart grids, remote sensing, extended reality, drones, robotics,
and telemedicine, all requiring low latency, scalability, and
intelligent automation [1].

The Open Radio Access Network (O-RAN) paradigm
emerges as a pivotal framework for achieving 6G goals.
Leveraging virtualized and programmable technologies like

Software-Defined Networking (SDN) and Network Function
Virtualization (NFV), O-RAN enhances flexibility, scalability,
and energy efficiency while enabling cloud-based architectures
for Near-RT. Through ML integration, O-RAN supports crucial
functionalities, including spectrum optimization, mobility mon-
itoring, conflict mediation, and anomaly detection [2]. Despite
these advancements, challenges persist. Current designs relying
on Stream Control Transmission Protocol (SCTP) and E2
Application Protocol (E2AP) face scalability limitations [3].
Furthermore, some ML-based solutions fail to meet latency
and performance guarantees for control loops in Near-RT and
Non-RT RICs. As user equipment (UE) connections and traffic
volumes increase, a single Near-RT RIC can become a bottle-
neck, limiting scalability and system efficiency. Addressing this
issue through the addition of multiple Near-RT RICs which was
not specified in the O-RAN alliance specifications [4] allows
better distribution of processing loads, ensuring scalability and
higher system performance. O-RAN also introduces complexi-
ties due to the dynamic traffic generated by multivendor xApps
designed to monitor, report, and control RAN functions. The
Near-RT RIC, central to these operations, often suffers from
capacity limitations, causing performance degradation, connec-
tion failures, and extended downtimes under heavy traffic loads.
Deploying Near-RT RIC instances across multiple machines
provides partial relief but proves inefficient during low traffic
and inadequate during peak traffic scenarios.

Cloud-native load balancer like LoxiLB [5] could address
these gaps. However, the overall success of the deployment
using LoxiLB depends on adapted configuration to the complex
O-RAN architecture. This work proposes FlexScale, a novel
framework with O-RAN-specific features for dynamic Near-RT
RIC management. FlexScale dynamically scales Near-RT RIC
instances and xApps according to traffic load, optimizing re-
source utilization and ensuring system stability. It incorporates
a native load-balancing mechanism based on routing concepts
to handle real-time SCTP connections and maintain latency
below 1 second, essential for effective Near-RT RIC operations.
Key Contributions of the paper are:

IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE: WS05. WORKSHOP ON OPEN RADIO ACCESS NETWORKS (OPEN RAN): 2

1) Scalable Approach for O-RAN: FlexScale’s Auto-scaling
approach is designed to support large number of xApps,
Near-RT RIC instances and CU/DU/gNB. The approach
ensures latency guarantees while optimizing the CPU
resource. It integrates advanced monitoring tools like
Grafana [6] and Prometheus [7] to track Kubernetes
metrics, identifying bottlenecks and performance spikes.

2) Comparison with existent solution: FlexScale signifi-
cantly outperforms a static deployment of FlexRIC [8],
which lacks scalability and resource efficiency. Tests
reveal that FlexScale achieves CPU utilization of up to
98%, ensuring efficient resource management and better
scalability.

II. FLEXSCALE APPROACH

The proposed FlexScale approach addresses both Near-RT
RIC interfaces: the Northbound interface, connecting to XApps,
and the Southbound interface, connecting to gNBs (or E2
Nodes).

A. Architectural Design

The architecture of the FlexScale is illustrated in Fig. 1,
showing how it integrates seamlessly with Near-RT RIC. It
works by collecting requests from the Service Management
and Orchestration (SMO) system through a control interface.
This interface allows network operators to submit their requests
for ML-driven O-RAN applications. These requests are then
gathered by the SMO system, and every T seconds (where T is
a configurable interval). FlexScale Northbound is implemented
on Kubernetes. This allows flexible and scalable orchestration
of the O-RAN components. Each Kubernetes pod acts as a
Near-RT RIC container that runs key FlexScale workloads.This
allows it to dynamically scale near-RT RIC pods horizontally
and vertically within the node. This scaling is based on the
combined metrics of CPU utilization and latency. These metrics
are continuously monitored to ensure efficiency and maintain
the performance needed for real-time applications like xApps
[4]. FlexScale Northbound load balancer proves how Near-
RT RIC pods can be dynamically orchestrated and scaled
up or down within a Kubernetes environment. This dynamic
approach ensures efficient resource utilization and real-time
performance, making it ideal for deploying large number of
xApps. The detailed view of process is given in Fig. 2.

The SMO layer processes xApp deployment requests and
verifies availability through the xApp catalog. Once the de-
scriptors are defined, FlexScale calculates metrics using APIs
from the Grafana dashboard, which gathers data from Ku-
bernetes [9]. FlexScale retrieves the requested xApp, assigns
it to an available node, and ensures latency constraints and
resource availability are met. Load balancing is employed
to distribute the workload across Near-RT RIC pods, while

SMo
Non-RT RIC
Iml a1
""""""""""""""""""" near-RT RIC!
Deployed xApplications)
XAppl xApp2 ,,, XAppN

FlexScale - Northbound Load Balancer

Pod1 Pod2 PodN

FlexScale - Southbound
E2AP Instances Manager

CU-UPs/DUs/gNBs 'I'

Multiple Instance Deployment

Fig. 1. The proposed FlexScale architecture

Request from Non-RT RIC

EIEIEI FlexScale Northb d — Load Bal —
|HPA
log 1@ I
Podl | Pod2 ese | PodN D:shio:rd
/r——

+ Monitor CPU Util.+ Latency + ML Prediction time
Kubernetes Cluster

Fig. 2. Components of FlexScale Kubernetes Cluster

FlexScale dynamically adjusts the number of pods based on
real-time metrics, such as latency and CPU usage, to maintain
system performance and resource efficiency.

Kubernetes automates the deployment, scaling, and man-
agement of Near-RT RIC components, with each component
deployed as a container. The cluster includes a single control
plane and nodes capable of hosting multiple containers. A
native load balancer dynamically allocates traffic across nodes,
ensuring resilience and operational efficiency. Deployment
configuration files specify the number of pod replicas for high
availability, resource requests and limits for CPU and memory
optimization, and load balancer settings for smooth traffic
distribution. The Horizontal Pod Autoscaler (HPA) manages
dynamic scaling by adjusting the number of replicas (1-3)
based on CPU utilization, targeting 80%. This elasticity enables
the system to handle changing workloads without manual
intervention.

xApps are deployed in containerized formats with applica-
tion descriptors that detail their functionality, such as RAN
slicing or traffic steering, the ML models they utilize, and the

IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE: WS05. WORKSHOP ON OPEN RADIO ACCESS NETWORKS (OPEN RAN): 3

structure of input and output data. Descriptors also specify key
performance indicators (KPIs), data formats, types of actions
performed, and their respective outputs. Additionally, perfor-
mance profiles are included, providing metrics such as latency
and resource requirements like CPU and memory usage. These
descriptors offer a comprehensive operational profile of each
application, further elaborated in the next section.

B. Latency Modeling

To meet the required time constraints, we first developed a
latency model that governs both the scaling and deployment
of applications. This ensures that all applications are able to
complete their respective tasks within the specified time limits.
The primary objective of our design is to develop a model
for total processing time that supports scaling intelligent O-
RAN applications effectively. To achieve this, we focus on
analyzing two key factors: latency and inference time. These
factors remain consistent irrespective of whether the ML model
is pretrained, as the number of operations (such as multiplica-
tions, convolutions, or additions) in the ML models is fixed.
For evaluation, we use a single node within the kubernetes
cluster, deploying one xApp instance at a time. To collect
extensive data, we implemented an E2 traffic emulator using
an open-source O-RAN dataset [10]. This generator simulates
E2 traffic by continuously extracting random KPIs from the
dataset in a format tailored to the input requirements of the
xApp ML models. Each application descriptor specifies the
necessary KPIs and input format for its corresponding xApp
model. When a new xApp instance a is deployed on a server s,
the traffic generator provides the required input data, enabling
us to measure three types of latency:

o Queuing time (t1'"): The time taken for the XApp to
process input after it reaches the E2 termination point on
the Near-RT RIC.

o Execution time (tg"S°): The time required to generate
output once the input is processed.

o ML inference time (ti'] = t3“c"¢ 4 57¢%): The total time
needed to process input and produce output.

In addition to monitoring these latencies, we track CPU and
RAM utilization on the server throughout the process. While
the time required for transferring KPIs and control actions
between the RAN and RICs could be included, these values
remain constant since all servers are part of the same cluster.
Based on these assumptions, we define the inference time
(Eqn. 1) when y instances of application a € A are running
on servers as:

tad (y) = 125 (y) + 125 (y), (1)

where t;75¢(y) is the execution time, and tI%"°(y) is the
queuing time for application a on server s.

III. ANALYTICAL MODEL

We propose a queueing and control theory model to mathe-
matically validate scaling effectiveness in time sensitive appli-
cations through latency, inference time, and CPU usage.

A. Queueing Theory Model (M/M/c Queue)

The system can be modeled as a multi-server queue, where
the arrival rate is denoted by A, the service rate per server
by u, and there are c active Near-RT RIC pods (representing
horizontal scaling). The average waiting time (Eqn. 2) in the
system can be represented by:

A
e —A)
This equation helps model system latency as it scales up (when
adding a new pod reduces W) and scales down when idle.

The latency threshold L,,,, represents the maximum tolerable
latency for time-sensitive applications, ensuring that:

Wq < Lmax (3)

2

W, =

B. Control Theory (PID Controller)

We employ a PID controller to regulate scaling based on real
time CPU and latency data. The error e(¢) is defined as the
difference between the desired latency L,,,, and the observed
latency Lopserved(t):

e(t) = Limaz — Lobserved(t) “)

The control action u(t) for scaling can be derived using the
following PID equation.

de(t)
dt

Here, K, is the proportional gain and controls the magnitude of
the response proportional to the current error e(t). K; represent
integral gain, it addresses the accumulated error over time by
considering the integral of e(t). Ky is the derivative gain,
predicts the future behavior of e(t) by considering the rate
of change of the error dz(tt). T is a variable of integration
used to compute the integral term. This feedback mechanism
adjusts resources (pods) in real-time, keeping the latency within
acceptable limits.

t
u(t) = Kpe(t) + KZ/ e(T)dr + K4 Q)
0

C. CPU Scaling Conditions
We define specific conditions for horizontal scaling based
on CPU utilization:
o Scale-Up Condition: When CPU utilization exceeds 80%,
a new pod is added to handle the increased load. If
CPU,pserved = 0.8 X CPU,,q, scale-up by adding a new
pod.

IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE: WS05. WORKSHOP ON OPEN RADIO ACCESS NETWORKS (OPEN RAN): 4

e Scale-Down Condition: If CPU utilization stays idle (be-
low a threshold) for 180 seconds, a pod is removed, but
at least one pod must always remain active. If
CPU,pserved < 0.1 x CPU,, 4. for 180 seconds, scale-
down by removing a pod. Ensure at least one pod is
always running: ¢ > 1

These conditions ensure that resources are efficiently managed
based on CPU load while preventing under-provisioning.

D. Combined Metrics

Metrics are collected from individual pods and aggregated
into system-level metrics (e.g., average CPU usage, maximum
latency). These aggregated metrics are then used to calculate
a combined scaling metric C', which represents the overall
system performance. C' integrates CPU utilization, latency, and
inference time using weighted parameters. When C' exceeds a
predefined threshold, scaling decisions are triggered.

CPUobserved Tznf
CPU, ez Tnaz

Where «, 3, and ~ are weights assigned to CPU, latency, and
inference time, respectively. T}, is the maximum acceptable
inference time. This combined metric reflects the overall sys-
tem’s resource utilization and performance. When C' exceeds a
predefined threshold, the system triggers scaling events, either
to scale up or down to meet performance targets. This approach
ensures a balance between optimal resource utilization and
meeting the stringent latency requirements of time-sensitive ap-
plications. Scaling up occurs when C' > Clyreshold, and scaling
down occurs when C' is below a certain lower bound, ensuring
system scalability while preventing resource contention. This
approach is applied to both horizontal scaling (by adding more
Near-RT RIC pods) and vertical scaling (by adjusting resources
allocated to existing pods).

+ B . Lobserved + ~

Lmaz

C=a«a

(6)

IV. PERFORMANCE EVALUATION

The performance evaluations of the northbound and south-
bound are discussed separately.

A. FlexScale Northbound

We modernize the Near-RT RIC using containerization,
orchestration, and load balancer configurations to improve
scalability, resource management, and deployment efficiency.
By packaging the Near-RT RIC as a Docker container, each
instance is uniquely identified for easy tracking and man-
agement. Kubernetes is used as the orchestration platform,
deploying multiple container instances with unique IP ad-
dresses to streamline communication and control. A load
balancer, positioned northbound of the containers, dynamically

distributes incoming xApp connections evenly across instances,
reducing latency and maintaining efficiency. xApps connect via
a predefined IP address and port, with the load balancer rout-
ing requests to available containers. Kubernetes’ orchestration
allows dynamic scaling of Near-RT RIC instances based on de-
mand, ensuring optimal resource utilization and performance.
This scalable solution supports high traffic volumes, balanced
load distribution, and seamless horizontal scaling, adapting
to varying loads while maximizing efficiency. Initial efforts
focused on containerizing the Near-RT RIC to enable flexible
experimentation using Docker and Kubernetes. Components
were encapsulated to run in isolated environments, improving
scalability and manageability. The next phase implemented
horizontal scaling, enabling additional instances to handle in-
creased load. A load balancer was integrated to distribute traffic
evenly. Lastly, a Grafana-powered dashboard visualizer was
developed to monitor system performance, providing real-time
insights into resource utilization, scaling, and load balancing
efficiency.

This paper outlines horizontal scaling in an experimental
setup using the HPA for a Near-RT RIC system. Initially, the
system runs one pod with a CPU utilization of 3%, monitored
on Kubernetes dashboard. The HPA is set to scale between 1
and 5 pods based on CPU usage, monitored through a custom
dashboard tracking CPU and memory for each pod. As xApps
increase, CPU usage rises to 96%, prompting the HPA to add
a pod to balance the load. The Kubernetes dashboard confirms
this by showing CPU utilization drop to 46%, demonstrating
effective scaling without performance loss. The dashboard also
provides insights into KPIs, allowing for detailed resource
management. After terminating 4 xApps, the load decreases
to 31%, and with one more termination, it drops to 15%,
illustrating the system’s ability to adjust resources based on
demand. When idle for 3 minutes, the system scales down
from 2 pods to 1, as seen on the Kubernetes dashboard,
thus preventing resource waste. Following this, CPU utilization
on the remaining pod rises from 15% to 30%, highlighting
dynamic resource allocation while maintaining efficiency.

B. FlexScale Southbound

Our Near-RT RIC E2AP Instances Manager simulates the
scenario of the interconnection of one or multiple Near-RT
RICs to E2 Nodes (see Fig. 3). The process of testing and per-
formance evaluation begins with traffic generation, where the
generator method creates different patterns of E2AP (SCTP)
traffic of Indication messages. The traffic between the xApps
via Near-RT RIC and E2 Nodes might be periodic or random.
The latter is qualified as realistic because we are consider-
ing short-term fluctuations and random bursts. This traffic is
distributed among the available pods, each calculating SCTP
of E2AP interface latency for incoming messages considering

IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE: WS05. WORKSHOP ON OPEN RADIO ACCESS NETWORKS (OPEN RAN): 5

TABLE I
PARAMETERS FOR POD CONFIGURATION, AUTOSCALING SIMULATOR AND
TRAFFIC CHARACTERISTICS

[Category | Parameter [Value
Base Capacity 200 packets/sec
Max CPU
. 4 Cores
Pod Allocation
Configuration Min C]?U 0.5 Core
Allocation

SCTP Base Latency
Network Latency

50us
10 msec

Heartbeat Interval 1 sec

Max RTT 200 msec
Autoscaling Max. Pods 5
Simulator Scaling Strategies Slll)lilt Pod (None)

Tested VPA

1000 packets/sec
Periodic Patterns
(10ms, 100ms, 1000ms)
with random burst
(realistic)

Traffic
Characteristics

Base Rate

Traffic Variability

Queue Processor Metrics

_

—$| Pod N [EE

£ Egil

I Scaling Decision I-—| Aggregator I

Traffic
Generator

[(1]

Fig. 3. Architecture of Near-RT RIC E2AP Instances Manager

the network congestion and transmission delays. Messages are
added to the pods’ queues, with queue latency determined
by the current load. Pods process these messages from their
queues, calculating processing latency based on allocated CPU
resources and workload. After processing, each pod generates a
PodMetrics object containing performance data. The Instances
Manager uses these metrics to make scaling decisions, either
horizontally by adding pods or vertically by adjusting CPU
allocations. Finally, metrics from all pods are aggregated for
analysis, providing insights into system performance and scal-
ing efficiency. Table I shows the configuration of our O-RAN
FlexScale E2AP Instances Manager with realistic configuration
parameters for CPU resources, protocol parameters, and traffic
patterns.

V. RESULTS AND DISCUSSION

In our experiments, we evaluated the performance of the
FlexScale approach and compared it with the O-RAN com-
pliant FlexRIC using the same hardware configuration. The
experimental setup replicated the conditions discussed earlier,
employing different types of xApps specifically designed to
measure performance. The experimental setup demonstrates
effective scalability of the pods in response to varying loads,

0.9

e
S

CPU Utilisation
o
o

o
@

0.4

0.3

Single Pod HPA VPA

Fig. 4. Comparison of CPU utilisation in the three cases with single and
multiple instances of Near-RT RIC

thereby optimizing resource utilization. As the system adapts
to the demands of the xApps, the FlexScale ensures that the
appropriate number of pods is active, maintaining performance
efficiency. Additionally, the visualization dashboard provides
comprehensive KPI metrics, facilitating improved management
and monitoring capabilities. This integrated approach high-
lights the system’s robustness in handling traffic fluctuations
while ensuring optimal resource allocation and performance
management.

Fig. 4 shows a statistical overview of CPU utilization across
various Near-RT RIC deployment strategies (Single Pod, HPA,
VPA) and traffic patterns, illustrating metrics like median,
quartiles, and outliers. This assessment would reveal resource
usage variability and identifies potential over-utilization issues.
With a single Pod deployment, CPU utilization is concentrated
at the maximum level (near 1.0), indicating over-utilization
and resource bottlenecks. The CPU utilization distribution for
HPA is more balanced, with a median around 50%. However,
there are noticeable outliers above the upper whisker, indicating
occasional spikes in CPU utilization. This suggests that while
HPA mitigates high utilization, it may not scale quickly enough
to handle sudden traffic bursts. VPA shows even lower CPU
utilization compared to HPA, with the median around 40%.
However, the wider interquartile range and higher number of
outliers at the upper end indicate variability in how efficiently
VPA adjusts resources. The lower median could imply under-
utilization of resources, potentially leading to inefficiencies.

Fig. 5 shows the percentage of CPU utilisation under dif-
ferent load patterns (10ms, 100ms, 1s, realistic) for three
scaling strategies. As expected Single Pod strategy shows the
highest average utilization (52.8%) compared to HPA (7.9%)
and VPA (31.6%), suggesting that it may be less effective
at scaling under varied traffic loads. HPA shows the lowest
CPU utilization, representative of its ability to dynamically

IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE: WS05. WORKSHOP ON OPEN RADIO ACCESS NETWORKS (OPEN RAN): 6

Traffic Patterns
m Realistic Traffic
== 10ms Interval
=== 100ms Interval

1000ms Interval

Statistical Summary:
Average CPU Utilisation:
Single Pod: 52.8%
HPA: 27.9%

0.81-— VPA: 31.6%

o

Average CPU Utilisation (%)
o

Single Pod

HPA
Near-RT RIC Deployment Strategy

Fig. 5. Statistics of CPU utilisation under different traffic patterns

adjust resources based on real-time demand, making it ideal
for fluctuating traffic. VPA also exhibits moderate resource
utilization, balancing performance and efficiency, yet it is not
as responsive as HPA. HPA appears to have the most consistent
utilization, which is a positive indicator for reliability. These
findings suggest that, for environments with unpredictable
loads, HPA may offer the best scalability and efficiency, while
the Single Pod strategy could be sufficient for more stable
traffic with lower resource demands.

Cumulative Distribution Function (CDF) of latencies for
indication messages under realistic traffic load is shown in
Fig. 6. The CDF curves illustrate how latency varies across
the three deployment strategies, allowing for a comparison of
responsiveness under the same traffic conditions. If a single
Near-RT RIC is deployed, a significantly higher median latency
of 21.1 ms can be experienced. The 95th percentile latency
is 26.5 ms, and the 99th percentile is 27.5 ms, indicating
that 95% of the requests are processed within this time, and
1% experience even longer delays. The steep rise in the CDF
reflects that most of the requests experience higher latencies,
suggesting it may struggle under heavier loads or less effective
resource management compared to the other strategies. How-
ever, Both HPA and VPA show remarkably lower latencies,
with medians of 0.9 ms and 0.8 ms, respectively. The 95th
and 99th percentile latencies for these strategies are also low
(1.0 ms and 1.1 ms), indicating that nearly all requests are
handled very quickly, signifying efficient performance under
realistic traffic loads. The curves for HPA and VPA are nearly
overlapping, demonstrating similar performance characteristics
and suggesting both are highly effective at managing low-
latency requirements.

Our findings demonstrate that FlexScale supports nearly
twice the number of xApps compared to the traditional ap-
proach while maintaining efficient resource utilization. The
evaluation included two categories of xApps: highly resource-

1.0

Statistical Summary:

single Pod Near RT-RIC:
Median: 21.1ms
99th: 27.5ms

0.8

HPA Near RT-RIC:

Median: 0.9ms

99th: 1.1ms

VPA Near RT-RIC:
Median: 0.8ms
0.6 99th: 1.1ms

CDF

0.4

27.5ms

0.2

— Single Pod Near RT-RIC
— HPA Near RT-RIC
— VPA Near RT-RIC

0 5 10 15 20 25
Latency (ms)

0.0

Fig. 6. CDF of latencies of indication messages under high xApp request
frequencies under realistic traffic

intensive and less resource-intensive. Highly Resource-
Intensive xApps are designed to perform complex processing
tasks that consume significant CPU, memory, and GPU re-
sources. To test, we developed a computationally intensive rate
adaptation xApp, which controls real-time RAN functions by
predicting the Modulation and Coding Scheme (MCS) using an
ML-based microservice. This xApp consumes more CPU/GPU
resources and requires longer inference times. It is a resource-
heavy control task that processes high-frequency data streams.
On the other hand, Less Resource-Intensive xApps have mini-
mal computational demands and typically perform lightweight
tasks, such as periodic data reporting and monitoring. The
number of highly resource-intensive XxApps increased from 17
to 35 (which is an increase of approximately 105.88%), while
the less resource-intensive xApps increased significantly from
38 to 89 (134.21%).

VI. CONCLUSION AND FUTURE DIRECTIONS

This paper presented FlexScale, a dynamic scaling solution
tailored for Near-RT RIC in O-RAN. It is designed to enforce
CPU usage and time constraints while supporting a large
number of XxApps and E2 Nodes. We developed a latency model
based on a measurement campaign conducted on a Kubernetes
cluster, complemented by an analytical model and a prototype
that aligns with O-RAN specifications. Through a series of
comparisons with traditional FlexRIC, we demonstrated that
HPA is capable of effectively deploying xApps while meeting
strict latency requirements. Specifically, FlexScale supports
approximately double the number of xApps compared to
traditional FlexRIC. Furthermore, we proposed a Southbound
E2AP Instances Manager to allow E2 Nodes to be connected
to not only one Near-RT RIC but to multiple instances. We
performed intensive simulations to test the efficiency of HPA

IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE: WS05. WORKSHOP ON OPEN RADIO ACCESS NETWORKS (OPEN RAN):

and VPA auto-scaling strategies based on CPU utilization.
Under realistic and high-frequency traffic, we measured CPU
utilization and latencies of E2AP Indication messages. HPA is
found to be the most effective strategy due to its capability
for horizontal scaling, making it ideal for dynamic and bursty
traffic patterns. VPA also proves to be a strong contender,
particularly in scenarios where vertical scaling is preferred or
possible. Our future objective is to enhance our Southbound
FlexScaler decision-maker by incorporating additional metrics
like the state of the queue and the network performance.

ACKNOWLEDGEMENT

This work has been done within the framework of the
CELTIC-NEXT under the project 6G-SMART supported by
Innovate UK (Project No: 640240) and HiPer-RAN, supported
by UK Department for Science, Innovation, and Technology.
We also would like to acknowledge the support of the SG/6GIC
members for this work.

REFERENCES

[1] N. Luong, D. Hoang, S. Gong, and et al, “Applications of Deep
Reinforcement Learning in Communications and Networking: A Survey,”
IEEE Communications Surveys & Tutorials, vol. 22, no. 4, pp. 2664—
2732, 2020.

[2] A. Garcia-Saavedra and X. Costa-Pérez, “ORAN: Disrupting the Vir-
tualized RAN Ecosystem,” IEEE Communications Standards Magazine,
vol. 5, no. 4, pp. 96-103, 2021.

[3] M. Polese, L. Bonati, S. D’Oro, S. Basagni, and T. Melodia, “Under-
standing o-ran: Architecture, interfaces, algorithms, security, and research
challenges,” IEEE Communications Surveys Tutorials, vol. 25, no. 2, pp.
1376-1411, 2023.

[4] O-RAN Alliance, “O-RAN Alliance: O-RAN Architecture Specification,”
April 2024, 0o-RAN.WG3.E2SM-R003-v04.00. [Online]. Available:
https://www.o-ran.org/specifications

[5] LoxiLB, “Loxilb: Cloud-native load balancer,” 2023, accessed: [January
2025]. [Online]. Available: https://www.loxilb.io/

[6] Grafana Labs, “Grafana: Open-Source Analytics & Monitoring Solution,”
https://grafana.com, 2014, accessed: 2024-12-14.

[7] “Prometheus: Monitoring System & Time Series Database,”
https://prometheus.io, 2012, accessed: 2024-12-14.

[8] R. Schmidt, M. Irazabal, and N. Nikaein, “FlexRIC: An SDK for
next-generation SD-RANS,” in Proceedings of the 17th International
Conference on emerging Networking EXperiments and Technologies,
2021, pp. 411-425.

[9]1 E. A. Brewer, “Kubernetes and the path to cloud native,” in Proceedings
of the Sixth ACM Symposium on Cloud Computing, SoCC 2015, Kohala
Coast, Hawaii, USA, August 27-29, 2015. ACM, 2015, p. 167.

[10] M. Polese, L. Bonati, S. D’Oro, S. Basagni, and T. Melodia, “Colo-
ran: Developing machine learning-based xapps for open ran closed-loop
control on programmable experimental platforms,” IEEE Transactions on
Mobile Computing, vol. 22, no. 10, pp. 5787-5800, 2022.

