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Abstract: This paper investigates the application of Deep Reinforcement Learning (DRL) for attributing malware to specific Advanced
Persistent Threat (APT) groups through detailed behavioural analysis. By analysing over 3,500 malware samples from 12 distinct
APT groups, the study utilises sophisticated tools like Cuckoo Sandbox to extract behavioural data, providing a deep insight into
the operational patterns of malware. The research demonstrates that the DRL model significantly outperforms traditional machine
learning approaches such as SGD, SVC, KNN, MLP, and Decision Tree Classifiers, achieving an impressive test accuracy of 94.12%.
It highlights the model’s capability to adeptly manage complex, variable, and elusive malware attributes. Furthermore, the paper
discusses the considerable computational resources and extensive data dependencies required for deploying these advanced AI models
in cybersecurity frameworks. Future research is directed towards enhancing the efficiency of DRL models, expanding the diversity of
the datasets, addressing ethical concerns, and leveraging Large Language Models (LLMs) to refine reward mechanisms and optimise the
DRL framework. By showcasing the transformative potential of DRL in malware attribution, this research advocates for a responsible
and balanced approach to AI integration, with the goal of advancing cybersecurity through more adaptable, accurate, and robust
systems.
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1 Introduction

In recent years, cyber-attacks have evolved from isolated incidents into sophisticated operations conducted by well-
resourced Advanced Persistent Threats (APTs), which are characterised by their strategic, long-term approaches
compared to more opportunistic cyberattacks [22]. Like traditional cyberattacks, APTs utilise malware as their primary
tool, but they stand out due to their complexity, higher number of network events, and intricate behavioural activities
[18]. APTs are meticulously orchestrated, employing advanced techniques to remain hidden while they extract data,
disrupt operations, or create entry points for future attacks [49]. Often backed by nation-states or large organisations
with political or economic motives, APTs pose significant threats to critical resources [22]. A notable example is the
Stuxnet worm, which, although discovered in 2010, had been operating covertly since at least 2005, specifically targeting
Iran’s nuclear facilities at the Natanz uranium enrichment plant [4]. Developed by the USA, Stuxnet utilised advanced
evasion techniques like zero-day exploits and rootkits to infiltrate and compromise its target while remaining undetected
for years [4].

According to Statista, the global revenue from the APT protection market is expected to reach $12.5 billion by
2025, driven by the urgent need to defend against these evolving threats [23] [21]. Despite significant investments in
security solutions, APT incidents, including ransomware attacks, continue to rise across industries, military sectors, and
government institutions, with a 55.5% increase in ransomware cases in 2023 alone, reaching 4,368 incidents worldwide
[33, 41]. The use of advanced technologies like large language models (LLMs) has further intensified the threat landscape,
enabling more sophisticated cyberattacks [20]. This escalation underscores the critical need for innovative defence
strategies, encouraging organisations and governments to continuously invest in advanced security measures to stay
ahead of these persistent adversaries [5].

The increasing sophistication and frequency of APTs highlight the critical challenge of precise attribution in the
cybersecurity landscape [18] [52] [21]. Accurate attribution is essential for developing targeted defensive strategies, as
understanding an adversary’s tactics, techniques, and procedures (TTPs) allows for tailored responses to specific threats
[38] [52]. It also plays a key role in holding perpetrators accountable, which can act as a deterrent through legal and
diplomatic consequences, thereby maintaining global cyber stability [30]. However, attribution is complicated by the
obfuscation methods used by APTs, including routing attacks through proxies and deceptive indicators [43] [52]. These
sophisticated tactics require extensive technical expertise and collaboration across sectors to analyse threat profiles
that reveal attackers’ motives and strategies [43]. Building on this complexity, each APT group possesses a distinct
signature, merging specific malware applications with strategic objectives, whether for financial gain or disrupting
critical infrastructure [23]. The intricacies of these profiles underscore the importance of attribution, pinpointing the
perpetrator not only aids in defence but also in shaping cybersecurity policies and measures to pre-empt future attacks
[9].

To address the growing challenge of attributing APTs, this report suggests leveraging machine learning algorithms
that focus on analysing malware behaviour within sandbox environments [37]. Machine learning’s ability to process
vast datasets and detect subtle patterns offers a promising solution to understanding the complex and often hidden
techniques used by APT groups [38]. By training models on behavioural data obtained from executing malware in
virtual systems, these systems can be developed to automatically detect and classify patterns, leading to more precise
attribution of cyberattacks. Within this context, Deep Reinforcement Learning (DRL) emerges as particularly effective
for attributing APT malware [31]. DRL combines deep learning’s pattern recognition capabilities with reinforcement
learning’s adaptive decision-making through trial and error, enabling it to detect and enhance its response to evolving
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malware behaviours [32] [36]. Techniques like the Markov Decision Process (MDP) and model-free learning allow DRL
to structure decision-making and adapt without relying on predefined models. Unlike traditional machine learning
models that may struggle with the dynamic nature of cyber threats, DRL continuously learns and refines its strategies,
making it highly effective against sophisticated APT tactics. Its ability to operate in environments with incomplete
information, simulate diverse attack scenarios, and evolve through interaction underscores its potential as a powerful
tool in crafting robust cyber defence strategies [34].

2 Related Work

The adoption of Deep Reinforcement Learning (DRL) for malware detection is a relatively recent and promising devel-
opment in the wider field of cybersecurity [3]. Understanding the related work in this domain requires a foundational
grasp of malware behaviours, origins, and classifications. Since malware plays a central role in APT attacks, analysing
its behavioural patterns provides crucial insights into the tactics and identities of APT groups [55]. The works reviewed
in this section explore the use of reinforcement learning in cybersecurity more broadly, followed by focused discussions
on malware behavioural analysis, attribution, and family classification, critically assessing the effect of these elements
to enhance the precision and efficiency of cybersecurity defences [15].

2.1 Reinforcement Learning in Cybersecurity

Reinforcement learning (RL) has long played a role in cybersecurity, with recent advances—particularly in deep
reinforcement learning (DRL)—expanding its applications across a wide range of security tasks. Notably, DRL has
been leveraged for network intrusion detection and anomaly detection, enabling adaptive identification of malicious
activities in dynamic environments [39]. One approach integrates DRL with optimized feature selection to continuously
recognize network attacks, resulting in improved detection rates on modern benchmark datasets [39]. These RL-driven
intrusion detection systems can adjust to evolving attack patterns on the fly, generalizing beyond known signatures to
identify previously unseen threats[11]. Unlike static, rule-based detectors, RL-based defenders learn policies through
ongoing interaction with network traffic, allowing them to autonomously refine their detection strategies as new threats
emerge [11].

Another active area of research in reinforcement learning for cybersecurity is its application to proactive defence
mechanisms such as phishing prevention and honeypot deployment. In phishing detection, recent approaches utilize
double deep Q-networks (DDQNs) to frame the task as a sequential decision-making problem, enabling systems to adapt
dynamically to concept drift and class imbalances in malicious URLs [29]. This adaptability allows DRL-based classifiers
to outperform traditional deep learning models, particularly on newer phishing datasets that reflect evolving attack
strategies [29]. Similarly, RL has been applied to enhance honeypot systems through Deep Adaptive RL for Honeypots
(DARLH) framework where agents learn optimal honeypot behaviours (in single-agent and multi-agent settings) to
better engage and analyze attackers in real-time [11]. These systems autonomously adjust their responses in real-time
based on attacker interactions, improving their ability to engage intruders and gather relevant threat intelligence as
attacks unfold.

Together, these applications highlight the growing importance of reinforcement learning in building resilient, adaptive
defences. By continuously learning from adversarial environments, RL-based systems can refine their strategies without
manual intervention—making them especially effective for intrusion detection, phishing mitigation, and other security
tasks where flexibility and real-time responsiveness are critical to countering sophisticated, fast-changing threats [45].
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4 Basnet et al.

2.2 Behavioural Analysis

Building on the adaptive detection capabilities offered by RL, malware behavioural analysis serves as a cornerstone
technique in cybersecurity that involves observing and understanding the actions performed by malware within a
controlled environment, typically a sandbox [57]. This technique allows for the identification of malicious patterns
and behaviours including networks and operations within the system. Recent studies emphasise the evolution of this
analysis to include automated systems that leverage machine learning to predict and react to malware behaviour
dynamically [17]. Such systems can discern between benign and malicious processes by examining changes made by
the software to the system’s state or its network behaviour [53]. These analyses often involve the extraction of features
such as API calls, file-system operations, and network activity which are then processed using advanced algorithms
to detect anomalous patterns that suggest malicious intent [53]. By comprehensively understanding the behaviour
exhibited by the malware during execution and examining its underlying code and structure, we can gain valuable
insights that aid in accurately attributing the malware to specific APT groups or threat actors [10].

2.3 Malware Attribution

The attribution of malware encompassing identifying the probable origin or actor behind an attack, is a complex
yet crucial task within cybersecurity. Traditional approaches in malware attribution have relied heavily on manual,
domain-specific feature engineering and pre-processing to isolate attributes indicative of a malware’s lineage or
family ties [40]. The incorporation of neural networks has significantly advanced malware attribution capabilities,
particularly using machine learning techniques such as Random Forest and Extreme Gradient Boosting (XGBoost),
which have strengthened efforts in this area [19]. These algorithms refine neural network models by improving accuracy
and handling overfitting, essential for distinguishing between benign and malicious activities in vast and complex
datasets [19]. This synergy optimises feature selection and enhances predictive capabilities, effectively supporting the
identification of malware origins and behaviours.

Recent studies have introduced novel approaches in malware attribution that significantly improve upon traditional
methods. For instance, the work by Binhui Tang and colleagues transforms APTmalware samples into RGB images rather
than relying on standard grayscale feature extraction [48] [36]. This approach allows for deeper and more nuanced
feature mining, using an enhanced Convolutional Neural Network (CNN) model that incorporates Self-Attention
mechanisms and Spatial Pyramid Pooling (SPP-net) [48]. This novel framework aids not only in detecting APT malware
but also in facilitating the identification of malware origins and attack methodologies through sophisticated visual data
representations. Another innovative approach is presented by Elijah Snow and his team, who utilised an end-to-end
multimodal learning strategy [47]. This method integrates three distinct neural network architectures—dense networks,
CNNs, and Recurrent Neural Networks (RNNs) with Long Short-Term Memory (LSTM) cells—to automatically extract
and learn features from diverse malware data attributes [47]. By combining these architectures, their model effectively
classifies malware into respective groups, enhancing the granularity and accuracy of malware attribution. Further, Gil
Shenderovitz and Nir Nissim introduced a dynamic analysis technique for segmenting Multivariate Time Series Data
(MTSD) derived from API calls [46]. Their approach uses temporal segmentation to provide a detailed behavioural
profile of APT malware, facilitating the detection and attribution to specific cyber-groups or nations with enhanced
explainability [16].
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Table 1. Summary of Recent Research Works on Malware Attribution

Research
Work

Year Dataset Type of
Data Used

RGB
Image
Conver-
sion

Time
Series
Analy-
sis

Feature
Engi-
neering

Multi-
Input /
Fusion
Model

Machine Learn-
ing Model

Tang, et al.
[48]

2023 3594 malware samples
from 12 APT groups

Visual Data
X X X X

Enhanced
CNN with
Self-Attention
and SPP-net

Snow, et al.
[47]

2020 Microsoft Malware
Challenge Dataset

Multimodal
Data X X X X

Dense Networks,
CNN, RNN using
LSTM

Shenderovitz,
et al. [46]

2024 API calls of 12,655 mal-
ware from 188 APT
groups

Time Series
Data X ✓ X X

Machine Learn-
ing Classification

Zhang, et al.
[56]

2024 Behavioural data and
binary instructions
from 2809 malware
samples

Behavioural
& Binary
Data

✓ X ✓ ✓
GNNs and Im-
ageCNTM

Li, et al. [25] 2021 Behavioural data from
2389 malware samples
from 7 APT groups

Behavioural
Data X X ✓ X

Multiclass
SMOTE-RF
Model

Our System 2025 3594 malware samples
from 12 APT groups

Behavioural
Data X X ✓ X

Deep Learning
Model

The work of Jian Zhang and colleagues improved the integration of multiple feature dimensions by employing a
Graph Neural Network (GNN) model to create an event behaviour graph based on API instructions and operations,
combined with an innovative ImageCNTM for capturing local spatial correlations and long-term dependencies of
opcode images [56]. By fusing word frequency and behavioural features in a multi-input deep learning model, they
propose a comprehensive system that classifies and accurately attributes APT malware, improving upon traditional
single-dimensional models. Similarly, Shudong Li and his team refined the classification methodology by implementing
a dynamic analysis and pre-processing stage for malware samples, followed by feature representation using the TF-IDF
method and feature dimensionality reduction using the chi-square test [25]. Their innovative use of a Multiclass
SMOTE-RF model addresses class imbalance, enhancing the classification accuracy significantly across various malware
families [25]. Recent research by Mei and colleagues has proposed a deep learning-based network forensic framework
for attributing APT attacks by analyzing encrypted network traffic and extracting key traceability features, which are
then processed using a Multi-Layer Perceptual Deep Neural Network (MLP DNN) for anomaly detection [31]. When
evaluated on the UNSW-NB15 dataset, this approach demonstrated superior performance in identifying and tracking
APT events, surpassing traditional AI-based methods in both accuracy and forensic reliability [31].

However, despite these advancements, challenges persist, particularly when dealing with malware that lacks evolu-
tionary links or belongs to completely different families. As noted by Rosenberg and colleagues, traditional methods
often fall short in such scenarios because they primarily focus on detecting mutations or similarities within the same
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6 Basnet et al.

functional group [40]. This limitation highlights the need for more advanced and flexible analytical tools to handle a
broad spectrum of malware types, moving beyond familial or evolutionary similarities to embrace a more holistic and
integrative approach in malware analysis [14].

Table 2. Comparative Analysis of Related Work on Leveraging Reinforcement Learning for ATP Detection

Research Work Year Data Source Technique Used Approach

Xuan & Cuong
[8]

2024 Network traffic data in-
volving APT IPs and nor-
mal IPs

(1) BiLSTM and Attention networks
for unusual behaviour extraction in
APT IPs.
(2) Data rebalancing and contrastive
learning for APT IP classification.

Introduces the FIERL model, com-
bining advanced machine learn-
ing techniques to improve APT
attack detection.

Saheed & Henna
[41]

2023 Wireless network traf-
fic data, including dy-
namic interactions and
multi-stage APT attack
patterns.

Deep Reinforcement Learning that
dynamically interacts with the envi-
ronment to learn and adapt to new
APT attack strategies.

Proposed deep reinforcement
learning to continually adapt
and respond to evolving APT
threats in wireless networks. This
method outperforms traditional
Feed Forward Neural Network
models by learning faster

Atti & Yogi [3] 2024 Microsoft Malware Pre-
diction Dataset

(1) Implements various techniques
to prepare features extracted from
executable files for training.
(2) Involves data cleaning and pre-
processing to optimise the dataset
for model training.
(3) Employs deep learning models,
specifically Proximal Policy Opti-
mization (PPO), to train the sys-
tem’s ability to detect malware.

Introduces a DRL framework for
malware detection that learns
complex patterns from executable
files to identify malicious soft-
ware

Addressing these challenges, this work presents a novel approach utilising Deep Reinforcement Learning (DRL) for
malware attribution, specifically tailored for APTs developed by nation-states. DRL has previously shown significant
advancements in malware detection, effectively identifying and responding to APT activities [31]. For instance, Cho
Do Xuan and Nguyen Hoa Cuong have developed the FIERL model, which employs BiLSTM and Attention networks
to extract unusual behaviour from network traffic data involving APT and normal IPs, further enhancing detection
capabilities through data rebalancing and contrastive learning for APT IP classification [8]. Similarly, Kazeem Saheed
and Shagufta Henna applied DRL to wireless network traffic data, where the system dynamically learns and adapts to
new APT attack strategies, showcasing an ability to outperform traditional models by rapidly adjusting to evolving
threats [41]. Additionally, Mangadevi Atti and Manas Kumar Yogi utilised a DRL framework that leverages Proximal
Policy Optimization (PPO) to learn complex patterns from executable files, optimising malware detection processes
and enhancing the system’s predictive accuracy [3]. These applications underscore DRL’s pivotal role in the detection
domain, demonstrating its potential not only for identifying malware but also for attributing it effectively to specific
APTs developed by nation-states.
Final Version Accepted by ACM Digital Threats: Research and Practice Jounal
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DRL’s application in the context of malware attribution offers a significant advancement over previous methods, as it
does not rely on pre-definedmodels or static features, which are often limited by the need for extensive manual extraction
and are less effective across disparate malware families [24, 54]. DRL leverages the strengths of deep learning for
pattern recognition within complex and large-scale datasets, combined with the strategic decision-making capabilities of
reinforcement learning [2]. This approach is particularly adept at processing incomplete or obfuscated data commonly
employed in sophisticated cyberattacks, enabling it to adaptively learn and predict attribution based on behavioural
patterns rather than static signatures [37].

3 ResearchQuestions and Contribution

As previous sections have detailed the complexity and threat posed by APTs, this study leverages the sophisticated
capabilities of DRL to analyse and interpret intricate malware data from controlled tests. The main goal is to refine a
DRL model that effectively attributes APTs by analysing behavioural patterns, thus advancing cybersecurity defence
mechanisms. This initiative to apply DRL seeks to harness its superior pattern recognition and strategic decision-making
properties to enhance the detection and mitigation of advanced cyber threats.

3.1 ResearchQuestions

The guiding questions of this research aim to critically evaluate the effectiveness of DRL in the cybersecurity landscape,
particularly in attributing APTs. These questions explore: the identification of unique behavioural patterns of APTs
within sandbox-analysed malware, the capability of DRL to precisely differentiate between malware behaviours from
diverse APT groups, and the influence of the Markov Decision Process in boosting the strategic decision-making of
DRL models within the context of cyber threat attribution. These inquiries are designed to assess whether DRL can
offer a sophisticated and adaptive approach to understanding and countering APTs.

3.2 Contribution

This study makes impactful contributions to the domain of cybersecurity by pioneering the use of Deep Reinforcement
Learning (DRL) for the specific purpose of APT attribution, benchmarking its effectiveness against traditional machine
learning models, and exploring its adaptability to varied APT scenarios. It constructs a DRL model that not only
processes and understands detailed behavioural data from malware but also empirically demonstrates its enhanced
effectiveness over existing techniques. Additionally, by probing the model’s ability to adapt to new threats, the research
highlights DRL’s potential to evolve and maintain relevance in a rapidly changing threat environment. The findings and
methodologies of this research expand the practical and theoretical frameworks for deploying advanced AI in active
cybersecurity defences, potentially setting new standards for the integration of machine learning in threat intelligence
and response strategies.

4 Methodology

This section outlines the methodology adopted during the design, implementation and testing of the system. It provides
details and justification on tools, approaches and methods employed as well as providing background information
necessary for understanding the methodology.
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4.1 Proposed System Design

The research adopts an experimental and simulation-based design, focusing on developing and evaluating a Deep
Reinforcement Learning model for malware attribution to APT groups. The study begins by preparing a dataset of
malware samples, followed by data pre-processing and feature extraction to ensure accuracy and relevance. The DRL
model is then trained and tested in a simulated environment designed to mimic real-world conditions. This allows
for controlled experimentation, where the model’s ability to handle complex and evasive malware behaviours can be
systematically assessed using metrics such as accuracy, robustness, and computational efficiency.

Fig. 1. System workflow for the proposed APT Attribution Model

4.2 Dataset

The APT Malware Dataset utilised in this work is a comprehensive collection of over 3,500 malware samples (https:
//github.com/cyber-research/APTMalware), categorised into 12 distinct Advanced Persistent Threat (APT) groups
obtained from. These groups are believed to be state-sponsored by five different countries, including China, Russia,
North Korea, the USA, and Pakistan. The dataset serves as a critical resource for benchmarking various machine-learning
techniques aimed at authorship attribution of cyberattacks.[7]

Each APT group in the APT Malware Dataset represents a unique threat actor with a specific set of malware samples
attributed to their cyber activities. The dataset’s diversity is evident in both the number of samples per group and the
variety of file types, ranging from executable files like .dll and .exe to documents such as .doc, .xlsx, and .ppt. This
assortment adds complexity to the analysis, enabling robust evaluations of the various attack vectors and infection
methods used by these groups. However, the dataset also shows a significant class imbalance, with some groups having
as few as 32 samples and others as many as 961, presenting a challenge for reinforcement learning models to achieve
unbiased behavioural representations. To manage this, the samples are meticulously labelled with their SHA-256 hashes
for precise identification and stored in separate, password-protected compressed folders to ensure security and data
integrity, with the universal password "infected" providing controlled access.
Final Version Accepted by ACM Digital Threats: Research and Practice Jounal
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Table 3. APT Malware Dataset Distribution [7]

Country APT Group Sample Size

China APT 1 405
China APT 10 244
China APT 19 32
China APT 21 106
Russia APT 28 214
Russia APT 29 281
China APT 30 164
North-Korea DarkHotel 273
Russia Energetic Bear 132
USA Equation Group 395
Pakistan Gorgon Group 961
China Winnti 387

Total 3594

4.3 Data Collection

Data collection is strategically executed from two specialised sources to capture a broad spectrum of malware behaviours
and characteristics, ensuring the depth and breadth of data necessary for effective DRL modelling.

4.3.1 Cuckoo Report. The Cuckoo Sandbox is an advanced open-source malware analysis system designed to analyse
and report on the behaviour of potentially malicious files in a secure, isolated environment [6, 50]. It is widely used
for malware detection by providing a controlled setting where files can be executed to observe their actions without
risking the integrity of the host system [50]. In this work, the Cuckoo Sandbox plays an integral role in the hybrid
process of collecting malware behavioural data, combining both manual and automated tasks to efficiently analyse
large datasets of malware samples.

Since this analysis uses the web version of Cuckoo Sandbox, malicious files are manually uploaded through its
interface, which offers system details and analytics while securely monitoring the files to protect the host system.
During analysis, process IDs are generated to enable tracking and retrieval of detailed reports on each sample’s activity,
including system changes and network traffic. An automated script then extracts these IDs, structures the dataset, and
removes duplicates to maintain data integrity and accuracy.

4.3.2 VirusTotal Report. VirusTotal is a comprehensive online service that analyses files and URLs to detect viruses,
worms, trojans, and other kinds of malicious content [42, 51]. Leveraged by security professionals and researchers,
VirusTotal aggregates information from over 70 antivirus scanners and URL/domain blacklisting services, along with
a plethora of tools for the analysis of files, which makes it an indispensable resource for the real-time detection of
emerging threats [42].

In this work, VirusTotal complements Cuckoo Sandbox by providing antivirus scan results and behaviour reports
to enhance malware analysis. Automated scripts use each sample’s SHA-256 hash to query the VirusTotal API and
retrieve detailed file and behaviour reports. The file report includes detections, file type, size, and detection names,
while the behaviour report highlights actions like registry changes and network activity. These insights support threat
assessment and help train deep reinforcement learning models to detect similar behaviours in future attacks.
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4.4 Data Understanding

Understanding the data collected from sources like Cuckoo Sandbox and VirusTotal is essential before diving into deeper
analyses or model development, as it establishes the groundwork for recognising patterns, anomalies, and intrinsic
properties of malware behaviours. This preliminary step ensures that subsequent processes, such as data cleaning,
preprocessing, and detailed exploratory analysis, are effectively tailored to the characteristics of the data. For instance,
the "reports.json" file from Cuckoo Sandbox provides a wealth of information on malware activities through detailed
logs of file creation, registry changes, and network connections. By parsing these entries, it is possible to discern the
common tactics used by malware, such as communication strategies and system infiltration methods, which are crucial
for identifying threat behaviours.

Similarly, VirusTotal’s file and behaviour reports complement the data by providing insights into the malware’s
detectable characteristics and operational tactics within infected systems. These reports include critical metadata on
the malware’s type, the extent of its recognition across different security platforms (unique_sources), and its evasion
techniques (packers). Additionally, behavioural data like registry modifications and network traffic from these reports
help in understanding how malware interacts with and affects systems, highlighting potential persistence mechanisms
or damage attempts. Through a comprehensive understanding of these datasets, it is possible to understand that the
data used in modelling is accurate, reliable, and robust enough to develop effective machine-learning models that can
attribute malware to specific APT groups, enhancing cybersecurity measures and threat intelligence.

4.5 Data Preparation

Data preparation is crucial for transforming raw data from Cuckoo Sandbox and VirusTotal into a structured format
suitable for in-depth analysis and modelling. The process begins with data cleaning, which involves refining the datasets
to highlight essential malware characteristics. For file reports, this includes isolating key attributes like "file_name",
"apt_group", and "unique_sources", and quantifying the threat level by analysing entries classified as "malicious".
Additionally, the "import_list" is parsed to assess the complexity of malware interactions. For behaviour reports, the
focus is on dynamic interactions, such as the number of files written and registry keys manipulated, which provide
insights into the malware’s impact on system operations. Cuckoo reports are also processed to extract API call statistics
from "api_stats", giving a detailed view of system interactions at the API level.

Table 4. Feature dataset obtained after extraction, ranked using PCA analysis

Feature

Syswow64 Module
Files Modified

Files Deleted as Administrator
...
...

Total Signatures
API DeleteURLCacheEntryA

Following data cleaning, the process moves to data integration, where the cleaned datasets are merged into a cohesive
framework for unified analysis. The file and behaviour datasets are merged with the Cuckoo reports, with missing
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entries filled with zeros to maintain numerical data integrity. This step is essential for creating a comprehensive dataset
that aligns all aspects of the malware’s behaviour, enabling more effective modelling and analysis.

4.6 Data Modelling

In the data modelling phase, several critical steps are undertaken to prepare the dataset for effective machine learning
applications. The process begins with Variable Transformation, where the dataset variables are identified and categorised
based on their data types. Numerical columns are separated from categorical columns to facilitate different preprocessing
techniques suitable for each type. The "apt_group" column, serving as the target variable for the models, is meticulously
handled to ensure it is excluded from the feature sets when present in numerical columns, preventing data leakage.
Categorical variables are then transformed into integer codes using techniques like Label Encoding, converting nominal
data into a format that is digestible for machine learning algorithms. This transformation is essential for preparing the
data for accurate and efficient modelling, ensuring that all features are in a machine-readable form.

Following the transformation, the dataset undergoes data partitioning, class imbalance treatment, and normalisation
to optimise it for model training and evaluation. SMOTE (Synthetic Minority Over-sampling Technique) is employed to
address class imbalances within the dataset, synthesising new examples in the minority class to prevent model bias
towards the majority class. To further refine the class boundaries and remove overlapping samples, Tomek Links are
applied after SMOTE to eliminate borderline examples that contribute to class ambiguity. This combination improves
the separation between classes and reduces noise, enhancing the model’s ability to learn meaningful patterns. This
ensures a balanced representation across classes, which is crucial for generalising the model effectively.

Table 5. APT Malware Dataset Split After SMOTE and Tomek Links Application

Sample Size Percentage

Train 8,061 70%
Test 3,455 30%

Total 11,516 100%

The data is then split into training and testing sets, using a 70-30 split, reserving 30% of the data for testing to
ensure a comprehensive evaluation of model performance. A higher proportion for testing is particularly important
in attribution tasks, where generalisation to unseen, diverse attack patterns is critical. Subsequently, normalisation is
performed using MinMaxScaler, scaling all features to a uniform range to prevent any single variable from dominating
due to its scale. This step is vital as it allows the machine-learning model to converge more rapidly during training. The
normalised data is then carefully reformatted back into DataFrames, retaining the original column names for better
traceability and clarity during model training and evaluation phases.

4.7 Model Building

In the model-building phase, a bespoke environment is crafted using the Gymnasium framework, tailored to the
complexities of Advanced Persistent Threat (APT) data. This setup precisely defines the observation space based on
the feature set derived from malware samples and the action space aligned with unique labels constructed using the
number of APT groups. The environment facilitates the simulation of interaction sequences, rewarding the model for
accurate predictions and resetting for new episodes as data points are iteratively processed.
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During the training of the model, a Deep Q-Network (DQN) is utilised, and configured with adjustable learning rates
and buffer sizes to optimise the learning curve. The model’s performance is periodically assessed using key metrics
such as accuracy and the F1 score, which aid in fine-tuning the training regimen. This dynamic approach ensures a
balance between the exploration of new strategies and the exploitation of known effective tactics, enhancing the model’s
ability to make progressively more accurate malware classifications. Subsequent development includes hyperparameter
tuning—adjusting the discount factor, exploration rate (epsilon), and mini-batch sizes—to enhance the learning process’s
efficiency and effectiveness. Training episodes are varied in length to reflect the complex nature of real-world APT
scenarios better, preventing overfitting and improving generalisation. Moreover, regularization techniques like dropout
and batch normalisation are integrated within the neural network architecture to mitigate the risk of overfitting by
moderating less predictive features’ influence and stabilising learning across different batches. Detailed performance
analysis and error metrics are continuously collected and reviewed to identify the model’s strengths and weaknesses,
providing a clear direction for its ability to capture the APT groups.

4.8 MDP Model

The Markov Decision Process (MDP) provides a structured framework for understanding how an agent makes decisions
while interacting with its environment [27]. In this work, the MDP framework is utilised to design and develop the
DRL model for attributing malware to APT groups. The primary data sources for the model come from detailed reports
generated by Cuckoo Sandbox and VirusTotal, which offer comprehensive behavioural analyses of malware samples.
These reports provide a multi-dimensional view of each malware’s characteristics and behaviour, which are crucial for
defining the states, actions, and rewards in the MDP framework as listed below:

4.8.1 States Space. The state represents the current understanding of amalware sample based on its observed behaviours
and characteristics. Each state is derived from a feature dataset that encapsulates various aspects of malware behaviour,
such as file operations, registry changes, network activities, and other dynamic interactions recorded during the
malware’s execution. This dataset is constructed using key data points extracted from the Cuckoo and VirusTotal report.
These features collectively form a comprehensive behavioural profile of the malware, encapsulating its operational
tactics and techniques, which are used to define the current state in the MDP. This state representation serves as
the foundation for the reinforcement learning model’s decision-making process, enabling accurate attribution and
classification of malware to specific APT groups.

4.8.2 Actions Space. In the MDP model, an action refers to the transition from analysing one malware sample to
another within the dataset. Each action involves selecting a new malware sample from the dataset and performing the
analysis to obtain its behavioural profile, thus transitioning the state of the MDP from the current malware profile
to the next. This action reflects the decision-making process in identifying and comparing malware attributes across
different samples, which is central to attributing them to specific APT groups.

4.8.3 Rewards. The reward in our proposed MDP model is implemented using a hybrid reward strategy that combines
both extrinsic and intrinsic rewards to guide the agent. The extrinsic reward reflects attribution accuracy: when the
agent correctly attributes a malware sample to its corresponding APT group based on observed behaviours, it receives
a reward of (+1); incorrect attributions yield (0). The magnitude of the reward is scaled based on the confidence level
of the attribution and the criticality of correctly identifying specific APT-related malware, reflecting the importance
of precision in cybersecurity measures. Complementing this, the intrinsic reward promotes exploration by granting
Final Version Accepted by ACM Digital Threats: Research and Practice Jounal



625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

Advanced Persistent Threats (APT) Attribution Using Deep Reinforcement Learning 13

an additional reward of (+0.5) when the agent encounters a novel state—defined by unique behavioural features not
previously seen. The total reward at each step is the sum of both components, encouraging accurate classification while
fostering diverse state exploration to improve generalization across unseen data.

In summary, the dataset’s behavioural features define the states of malware samples within the MDP framework.
The DRL agent interacts with these states to attribute samples to APT groups, receiving a reward of +1 for correct
classifications and 0 otherwise. To promote exploration, it also receives +0.5 when encountering a novel state with
previously unseen behavioural features.

5 Implementation and Testing

5.1 Simulation Environment

The proposed DRL model for Advanced Persistent Threat (APT) attribution utilises a structured approach incorporating
an environment for sequential decision-making, a Q-network for estimating the quality of actions, and a replay memory
for learning from past experiences. Here, the agent’s states are derived from comprehensive behavioural data extracted
from malware reports, while actions represent decisions to attribute malware to specific APT groups. An action
represented by 𝑎𝑡 = 𝑛 indicates the model’s prediction, where 𝑛 corresponds to the malware associated with an APT
group. The agent operates within this environment, aiming to optimise the cumulative rewards over time, where the
rewards are aligned with the accuracy of the attribution to the correct APT group. This structure is designed to refine
the agent’s decision-making process and improve its policy through continuous learning and adaptation based on
detailed malware behaviour analysis.

Fig. 2. DRL Model design for APT Attribution
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DRL - Agent Policy Training Algorithm

Preconditions: 0 ≤ 𝛾 ≤ 1; 0.1 ≤ 𝜖 ≤ 1 1: Set 𝑋𝜌 ← 𝑠𝑡

2: Set 𝑋𝑡 ← 𝑠𝑡+1

3: For each episode, repeat:
4: While 𝑡 ≤ 𝑇 do:
5: If 𝜖 ≥ 0.1 then:
6: Select random 𝑎𝑡 /* 𝜖-greedy strategy */

7: Else if 𝜖 ≡ 0.1 then:
8: 𝑄 (𝑠𝑡 , 𝑎𝑡 ) ← 𝑋𝜌𝜔𝜌 + 𝑏
9: Select 𝑎𝑡 : 𝑎𝑡 ← index(max𝑄 (𝑠𝑡 , 𝑎𝑡 ) )
10: End If

11: Observe 𝑟𝑡 , 𝑠𝑡+1
12: Store experiences: 𝐵𝑛 ← {(𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1 )𝑛 }
13: Select randomly 𝐵 ⊂ 𝐵𝑛

14: 𝑄 (𝑠𝑡 , 𝑎𝑡 ) ← 𝑋𝜌𝜔𝜌 + 𝑏
15: 𝑄 (𝑠𝑡+1, 𝑎𝑡+1 ) ← 𝑋𝑡𝜔𝑡 + 𝑏
16: 𝑄∗ (𝑠, 𝑎) ← 𝑟𝑡 + 𝛾 max(𝑄 (𝑠𝑡+1, 𝑎𝑡+1 ) )
17: 𝐿 (𝑓 𝑥 ) ← 𝑄∗ (𝑠, 𝑎) − 𝑄 (𝑠, 𝑎)
18: 𝜔𝜌 ← {𝜔𝜌 − 𝛼 𝑑𝐿

𝑑𝜔𝜌
} /* update weights */

19: If 𝑇 ≡ 𝑓 then:
20: 𝑋𝑡𝜔𝑡 + 𝑏 ← 𝑋𝑝𝜔𝑝 + 𝑏
21: End If

22: 𝑡 ← 𝑡 + 1
23: End While

24: End For

5.1.1 Environment. This is the simulated setting where the DRL agent is deployed, designed for making informed
attributions of malware to specific Advanced Persistent Threat (APT) groups based on behavioural analysis. This
environment is an adaptation of the OpenAI Gym interface, featuring a discrete action space that corresponds to
different APT groups identified in the dataset [26]. The observation space is constructed from detailed features such as
API calls, file-system operations, and network activities, which are crucial for defining the states of the malware being
analysed [26].

5.1.2 Q-Network. At the core of the decision-making process, the Q-Network includes a policy network and a target
network, each configured as a multilayer perceptron with two hidden layers leading to an output layer that represents
each potential APT group. The networks use Leaky ReLU activation functions to maintain gradient flow during training,
helping to prevent the vanishing gradient problem that can occur with standard ReLU functions if negative values
are present in the inputs [35]. The output layers of the networks apply a MinMaxScaler to normalise the outputs,
ensuring that the classification probabilities for the APT groups are scaled between 0 and 1 [44]. This normalisation
helps stabilize the learning process by keeping the network’s predictions within a consistent range.

5.1.3 Replay Memory. Essential for robust learning, Replay Memory archives tuples of the agent’s experiences,
including states, actions, rewards, and subsequent states. These experiences are accumulated as the agent processes
Final Version Accepted by ACM Digital Threats: Research and Practice Jounal
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the behavioural data, employing an epsilon-greedy strategy 𝜖 to balance the exploration of new strategies with the
exploitation of known patterns. Each action—representing an attribution decision—transitions the agent from one state
to another (𝑠𝑡 to 𝑠𝑡+1), with rewards assigned based on the accuracy of these attributions.

5.1.4 Policy Training. The training of the DRL agent’s policy operates over a series of episodes, with each episode
consisting of numerous time steps, labelled as𝑇 . Each time step 𝑡 involves the sampling of a feature vector representing
the current state 𝑠𝑡 from the replay buffer B, which is then fed into the policy network. The policy network processes
this input to output Q-values, 𝑄 (𝑠𝑡 , 𝑎𝑡 ), for potential actions aimed at matching these values with the target or optimal
Q-value, 𝑄 (𝑠, 𝑎).

Once the training process, detailed above, is complete, the efficacy of the agent’s policy is evaluated by deploying
the policy network model in a test environment. This test environment is carefully constructed using the validation
dataset, allowing for a thorough assessment of the model’s ability to perform under conditions that simulate real-world
scenarios.

5.2 Experimental Specifications

The experimental setup for the DRL-based APT detection model involved careful tuning of the Deep Q-Network (DQN)
parameters to optimize its ability to learn and adapt to advanced persistent threats (APTs). To train the DQN effectively
for APT attribution, we implemented a dense reward system. This choice was driven by the discrete nature of the action
space, where each action represents a classification decision. Dense rewards offered immediate feedback, enabling faster
convergence and better credit assignment than sparse alternatives.

Fig. 3. Training Accuracy Comparison of Reward Mechanisms in the DQN Model

Next, we focused on reward design, which is a critical factor in reinforcement learning as it directly shapes agent
behaviour.We experimentedwith extrinsic, intrinsic, and hybrid rewardmechanisms. After evaluating their performance,
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we chose the hybrid approach for its balanced support of accurate classification and exploratory behaviour. Although
the differences narrowed later in training between hybrid and extrinsic, the hybrid method showed clear advantages
early on, guiding its selection.

Fig. 4. Evaluating Learning Rates in the DQN Model Through Training Accuracy

For optimization, we tested a range of learning rates: 10−2, 10−3, 10−4, and 10−5. Among these, 10−3 emerged as
the most effective, offering stable training and high accuracy. The learning rate of 10−3 provided a sweet spot. It was
low enough to keep training stable, yet high enough to allow rapid learning progress. The DQN’s accuracy improved
quickly in early training and smoothly converged to a high value without any volatile swings.

Fig. 5. Comparison of Network Architectures in the DQN Model Through Training Accuracy

Finally, we evaluated several policy network architectures, including [256, 128], [256, 512, 256], [1024, 512, 512, 256],
and [1024, 256, 512, 512, 256]. The [1024, 512, 512, 256] architecture outperformed the others, providing a strong balance
between capacity and generalization. While each architecture reached convergence over time, this model consistently
showed better performance during the early training stages, which played a key role in its selection. These experiments
informed the final configuration of the DRL-based APT detection model, summarized in the following comprehensive
hyperparameter table.
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Table 6. Experimental Setup for the DQN model

Parameter Value

Learning Rate Schedule 1 × 10−3 × (0.99 step/1000)
Policy MlpPolicy

Buffer Size 100,000
Batch Size 256

Gradient Steps 3
Tau (𝜏) 0.005

Exploration Fraction 0.1
Exploration Final Eps 0.02

Gamma (𝛾 ) 0.99
Net Architecture [1024, 512, 512, 256]

Activation Function torch.nn.LeakyReLU

5.3 Software Environment

In order to implement and evaluate the DRL-based APT attribution model, several key software tools and techniques
are utilised. These are essential for creating a robust environment that can simulate real-world scenarios and evaluate
the performance of the model under controlled conditions.

5.3.1 Cuckoo Sandbox. Cuckoo Sandbox is an open-source automated malware analysis system that acts as a vital tool
in the environment. It allows for the isolation and analysis of suspicious files in a safe, contained environment. This
sandboxing technique enables the collection of detailed analysis about the behaviour of the file while running in an
operating system, which is vital for training the DRL model to recognise threat behaviours. The outputs provided by
Cuckoo Sandbox include API calls, network traffic, file system changes, and memory dumps, which serve as critical
inputs for the model’s learning process. [13]

5.3.2 Stable Baselines 3. Stable Baselines 3, an enhancement over the original OpenAI Baselines, offers refined im-
plementations of reinforcement learning algorithms. The Deep Q-Network (DQN) model from Stable Baselines 3 is
specifically utilised for the agent’s training process. This model efficiently estimates the optimal action-value function,
which is central to making informed decisions in the simulated network environments. While several DRL models were
considered, including lightweight alternatives such as Dueling DQN and A2C, we conducted a comparative analysis
using identical parameters and found that the standard DQN consistently outperformed the others. This superior
performance is attributed to DQN’s stability and efficiency in learning optimal action-value estimates, enabling the
development of a robust policy capable of accurately distinguishing between benign and malicious network traffic in
simulated environments. [1]

5.3.3 Gymnasium. Gymnasium, formerly known as Gym, is a tool from OpenAI that provides standardised interfaces
for a diverse array of environments. These environments serve as testbeds for reinforcement learning algorithms. In this
work, Gymnasium offers the foundational framework necessary for designing and managing the interaction between
the DRL agent and the simulated network environment, which is vital for both the training and evaluation phases. It
enables the DRL model to adapt and learn efficiently from dynamic scenarios that mimic real APT attacks. [12]
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Fig. 6. Comparison of DRL Models Through Training Accuracy

6 Results and Discussions

6.1 Results Evaluation

The development of the DRL model for malware attribution involved extensive research, iterative coding, and numer-
ous adjustments based on the insights gathered from predecessor models and contemporary research papers. This
preparatory work was essential to establish a robust foundation for the model, ensuring it could adapt and respond
effectively to the dynamic nature of malware threats. Initially, the model struggled with low accuracy levels, but through
persistent adjustments to its architecture and learning algorithms, accuracy improved dramatically—from about 29%
to over 79% in early iterations. By the end of the training, the model consistently reached accuracy levels near 98%,
demonstrating its strong capability to accurately recognise and attribute malware activities. This upward trajectory
in training accuracy is graphically represented in the Figure 7, which vividly illustrates the model’s maturation and
increasing proficiency over time.

Fig. 7. Accuracy of the DRL Model for APT Attribution on Training Data

Following the graph for training accuracy, a detailed heatmap (Figure 8) was generated to gain insight into the model’s
performance across each of the APT groups, highlighting precision, recall, and F1 scores. Notably, the model demon-
strated exceptional performance with ’Equation Group’, achieving near perfect scores across all metrics, showcasing its
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Fig. 8. Precision, Recall and F1 Score of the DRL Model for APT Attribution on each of the APT groups in the Training Data

capability to precisely attribute actions to this well-documented APT. Similarly, ’APT 19’, ‘Gorgon Group’, and ’Energetic
Bear’ show remarkable precision and near-perfect F1 scores, reflecting the model’s strength in handling sophisticated
malware profiles. In contrast, ’APT 1’ presents a lower recall of 90.27%, indicating a slight challenge in capturing all
activities associated with this group. This variance in performance underscores areas for potential refinement, providing
valuable feedback for further enhancing the model’s accuracy and adaptability to diverse malware behaviours. This
heatmap serves as a crucial tool for visualising the model’s specific strengths and areas for improvement in malware
attribution.

The overall performance of the DRL model on the test dataset can be quantified through key metrics including
accuracy, precision, recall, and F1-score. The model achieved an accuracy of 94.12%, indicating a high rate of correctly
identifying APT-related activities. Precision was obatined at 94.22%, suggesting that the majority of the model’s
predictions were relevant and accurately attributed to the correct APT groups. The recall rate of 92.07% reflects the
model’s ability to capture a substantial proportion of the actual positive cases, while the F1-score, 94.11%, illustrates a
balanced relationship between precision and recall, confirming the model’s robustness in various testing scenarios.
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Table 7. Performance Metrics for the APT Attribution Model on the Test Dataset

Metric Value

Accuracy 94.12%
Precision 94.22%
Recall 92.07%%
F1-score 94.11%%

Fig. 9. Precision, Recall and F1 Score of the DRL Model for APT Attribution on each of the APT groups in the Testing Data

The analysis of the DRL model’s performance on the test dataset across various APT groups reveals its accuracy
through precision, recall, and F1-scores as shown in Figure 9. The model excelled with ’APT 21’ and ’Energetic
Group’, achieving F1 scores perfect scores, underscoring its proficiency in accurately identifying and attributing their
activities. The model faced challenges with ’APT 1’ and ’APT 28’, where it recorded a lower recall of 85.03% and
89.17% respectively, indicating difficulties in correctly detecting this group’s actions. This reduction in recall may be
attributed to the higher similarity of their behavioural patterns to those of other APT groups, leading to occasional
misclassifications. Additionally, potential class imbalance in the training data or greater variability in the tactics,
techniques, and procedures (TTPs) used by these groups could have further contributed to the reduced detection
performance.
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In contrast, ’Energetic Bear’ and ’Energetic Group’ displayed almost perfect precision, highlighting the model’s
strength in pinpointing these groups with high accuracy. Generally, the model demonstrated relatively high precision,
recall, and F1 scores across most groups, reflecting its overall effectiveness in accurately attributing a diverse array of
APT activities.

6.2 Model Comparison

Following the evaluation of the DRL model’s performance, it is essential to place its achievements in the context of
alternative approaches. To establish a comprehensive understanding of the DRLmodel’s capabilities, it was benchmarked
against several other machine learning models that were developed using the same dataset. This comparative analysis
is pivotal as it provides a clearer picture of the DRL model’s relative efficiency and accuracy in attributing malware to
specific APT groups. Models such as Stochastic Gradient Descent (SGD), Support Vector Classifier (SVC), K-Nearest
Neighbors (KNN), Multi-Layer Perceptron (MLP), and Decision Tree Classifier were implemented to represent a broad
spectrum of machine learning techniques, each with its strengths and weaknesses in handling classification tasks. For
consistency and fairness in comparison, all baseline models were configured using their default parameters as provided
by the sci-kit-learn library, without any hyperparameter tuning.

Benchmarking was conducted using identical training and testing splits across all models to ensure that performance
differences could be attributed solely to the model architecture and not to data variability. Standard evaluation metrics
such as accuracy, precision, recall, and F1-score were employed to assess each model’s performance comprehensively,
allowing for an objective comparison against the DRL model.

Table 8. Comparison of test accuracy across different models, including the proposed DRL model

Model Test Accuracy

SGD 72.50%
SVC 81.21%
KNN 88.05%
MLP 89.49%

Decision Tree Classifier 90.56%
DRL Model* 94.12%

The comparative analysis revealed that the DRL model significantly outperformed the other models, achieving a test
accuracy of 94.12%. In contrast, the Decision Tree Classifier, which had the next highest accuracy, reached only 90.56%.
Models such as MLP and KNN also showed strong performance with accuracies of 89.49% and 88.05% respectively,
while the SVC and SGD trailed with 81.21% and 72.50%. The superior performance of the DRL model underscores its
advanced capability in learning from and adapting to the complex patterns of malware behaviours more effectively than
traditional models. This indicates not only the robustness of the DRL approach in handling the nuances of cybersecurity
threat detection but also its potential to provide more reliable and precise attributions in real-world applications.

6.3 Limitations and Future Works

The study identifies several limitations in implementing the DRL model for APT attribution. One significant constraint
is the high computational demand, as the DRL model requires extensive processing power and memory to handle
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large datasets and perform complex computations. This resource-intensive nature can limit its scalability, particularly
in environments with limited hardware capabilities. Additionally, the model’s effectiveness heavily depends on the
availability of high-quality and diverse training data. In cybersecurity, where data is often scarce or sensitive, this
dependency can restrict the model’s learning potential and adaptability. The complexity of implementing and fine-tuning
the DRL model also poses a challenge; its sophisticated nature requires expert knowledge in both reinforcement learning
and cybersecurity, along with careful parameter adjustments to maintain optimal performance, which can be both
resource-intensive and a barrier to widespread adoption.

To address these limitations, future work could focus on enhancing the computational efficiency of the DRL model
by refining its architecture, employing more efficient algorithms, and utilising techniques like transfer learning and
model pruning to reduce computational load without sacrificing performance. Expanding the diversity of training
datasets to include a broader range of malware samples would also strengthen the model’s ability to generalise and
improve accuracy across different attack types. Additionally, addressing legal and ethical considerations, such as data
privacy and bias, should be a priority, with guidelines developed for the ethical use of AI in cybersecurity. Finally,
leveraging Large Language Models (LLMs) could further enhance DRL systems by optimising reward mechanisms and
decision-making strategies. LLMs can help create more dynamic reward structures, improving the balance between
exploration and exploitation and ultimately boosting the model’s capacity to detect and respond to complex security
threats [28].

7 Conclusion

This research demonstrates the significant advancements in the application of Deep Reinforcement Learning (DRL) for
attributing Advanced Persistent Threat (APT) groups, using a detailed dataset of over 3,500 malware samples across 12
distinct APT groups. The DRL model showcased its capabilities by significantly outperforming traditional machine
learning approaches such as Stochastic Gradient Descent (SGD), Support Vector Classifier (SVC), K-Nearest Neighbours
(KNN), Multi-Layer Perceptron (MLP), and Decision Tree Classifiers. With a remarkable test accuracy of 94.12%, the DRL
model stands out, not only for its high precision in malware attribution but also for its adaptability to the complex and
evolving landscape of cyber threats. By applying DRL, organisations can enhance their threat intelligence capabilities,
allowing for more nuanced understanding and preemptive actions against APTs. This study’s findings underscore the
potential of DRL in enhancing cybersecurity operations by providing rapid and accurate threat attribution, paving the
way for further research on its applicability across more diverse datasets and optimising its computational efficiency
for broader use in real-world scenarios.

Research Ethics: This study was deemed exempt from ethics approval as it did not involve human or animal
subjects.

Code and Data: The code and datasets used and generated during this research are made publicly available at
https://github.com/crypticsy/APTAttribution
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