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𝐻∞ Control Co-design for
Uncertain Polytopic Systems
Control Co-design (CCD) refers to approaches that fully integrate plant and control sys-
tem interactions, using an optimisation-based methodology where physical and control
system designs are addressed simultaneously. In this process, the design of physical
systems and their controllers are typically interdependent tasks. This study explores a
bi-level(nested) control co-design approach integrated with robust 𝐻∞ control for the
combined design of both the physical system and its controller. While the nested approach
is well-established in the literature, with the linear quadratic regulator commonly used for
controller optimisation, this work introduces a novel approach by focusing on minimising
the 𝐻∞ norm/guaranteed cost as the controller optimisation problem instead. The pro-
posed method seeks to bridge the fields of control co-design and robust control, extending
the application of control co-design to systems subject to disturbances and parametric un-
certainties. It assumes that any uncertain system parameter can be described as a subset
of a polytopic domain, and that a feedback-stabilising control can be synthesised to ensure
the 𝐻∞ norm/guaranteed cost of the system is bounded, thus minimising the impact of ex-
ogenous inputs on the system’s output. The synthesis conditions are demonstrated through
linear matrix inequalities and an adaptation of traditional Lyapunov stability conditions.
To illustrate the method presented, this study revisits two previously addressed control
co-design problems in the literature: a scalar plant and an active car suspension system.
The results indicate that the integration of CCD with robust control strategies not only
guarantees system performance and disturbance rejection but also provides a systematic
approach for managing uncertainties within a polytopic framework.

Keywords: Control Co-design, H∞ norm/guaranteed cost, Parametric Uncertainties, Lin-
ear Matrix Inequalities, Robust Control

1 Introduction
Control Co-design (CCD) refers to approaches that fully inte-

grate plant and control system interactions, using an optimisation-
based methodology where physical and control system designs are
addressed simultaneously [1]. This method aims to harness the in-
teraction between the physical system (plant) and the control system
design to maximise system performance [2]. Traditional method-
ologies typically involve the sequential design of various domains
within a plant, with the controller design concluding the process.
However, this conventional approach can lead to sub-optimal per-
formance in systems where there is significant coupling between
the controller and plant dynamics. Therefore, the design of physi-
cal systems should incorporate control design considerations [3].

It has been stated that CCD, along with model reduction tech-
niques, is key to the future of control systems when considering
collaborative efforts in design processes [4]. Additionally, CCD
has been applied to a variety of systems recently, demonstrating
that it is possible to achieve higher performance by designing the
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plant and control systems concurrently. In previous work, the
applications of CCD in engineering and technology fields have
been reviewed [5]. It has been demonstrated that key areas of
extensive application and growing interest include renewable en-
ergy [6], particularly technologies related to offshore energy gener-
ation [7–10], for which significant computational tools have been
developed [11]. Additionally, this includes, but is not limited to,
autonomous and electric vehicles [12,13], aircraft systems [14],
drones [15], robotics [1,15], and other cyber-physical systems [16].

The concept of CCD is closely linked to established engineering
practices related to optimisation-based methodologies that focus on
integrated design approaches: Engineers frequently need to modify
and adapt systems to meet specific requirements, especially when
integrating control design alone is insufficient. These modifications
typically aim to meet requirements at a minimised cost.

In this sense, formal methodologies have been developed
to identify potential plant modifications while minimising costs
through co-design approaches [17]. For example, Allison and Her-
ber introduce Multidisciplinary Design Optimisation (MDO) [3],
a field that investigates design methods for systems involving mul-
tiple disciplines, as a reorganisation of the optimisation problem
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based on the plant and control disciplines. Allison, Guo, and
Han [18] introduce Direct Transcription (DT) as a method for
co-design, illustrating its application in an automotive active sus-
pension system. Iterative sequential methods have also been pro-
posed [19]. Plant-Limited Co-Design (PLCD) was introduced as
a methodology for identifying potential plant modification candi-
dates through the use of CCD, with the goal of minimising the cost
of these modification [20]; among others. However, considering
the various methodologies through which CCD has been studied,
to the best of the authors’ knowledge, there is a lack of works that
relate CCD to polytopic systems subject to disturbances. Since
uncertainties and disturbances are common challenges that control
systems must address, and polytopic systems provide an effective
way to model these uncertainties, integrating polytopic systems
within the CCD framework could be a robust approach to tackling
the uncertainty problem in CCD applications.

Uncertainties and disturbances in control systems often arise
from unknown dynamics, unidentified high-frequency components,
parameter estimation inaccuracies, sensor and actuator errors, and
system nonlinearities. These factors can lead to deviations from the
desired system behaviour. In addition, model uncertainty signifi-
cantly imposes new challenges for control design, as the controller
must satisfy control specifications across a range of uncertain pa-
rameters, rather than for a plant with precisely known character-
istics. Examining a control solution independently for each pos-
sible plant configuration within the uncertainty range is referred
to as a brute-force approach, which is highly time-consuming and
may even be impractical [21]. Therefore, methods that, unlike
adaptive control, can design a single fixed controller capable of
simultaneously handling multiple performance specifications, such
as noise/disturbance rejection, reference tracking, and stability, are
of utmost importance.

By modelling uncertain parameters within a polytopic domain
and applying stability arguments from Lyapunov theory, we can
derive stability and control design conditions in the form of Linear
Matrix Inequalities (LMIs). The LMIs can be easily written and
solved using Semi-definite Programming Algorithms (SDP) such
as YALMIP [22] and SeDuMi [23]. Additionally, thanks to the
convex properties of the polytopic description, the LMIs can be
checked by using the vertices of the polytope. This method has
been broadly applied in robust control theory [24–28]. However,
the use of this technique for CCD still needs to be explored further.

As CCD involves adapting an existing system’s design and con-
troller in tandem to meet new task requirements, it is typically
associated with the concept of optimality. In this context, optimal
control plays a crucial role. For example, Fathy et al. utilise a
CCD approach known as nested CCD. In this method, established
optimal control formulations are applied in an inner loop to address
control optimality for each plant design candidate generated by an
outer loop, while the plant’s outer loop optimises the system-level
objective using a controller that is optimal for the plant [29]. Al-
lison and Nazari, on the other hand, use augmented Lagrangian
coordination to address system optimality [30]. Another signif-
icant aspect of control design, as highlighted by Allison, Guo,
and Han [18], is that the optimal open-loop control problem can
sometimes be employed in the early stages of design, with the as-
sumptions regarding a specific control architecture addressed later.
In this approach, feedback is regarded as a secondary step, where
control design variables are used to parameterise a feedback con-
trol law. In this later stage, classical optimal control methods, such
as the Linear Quadratic Regulator (LQR), are well recognised.

While the significance of applying LQR in CCD applications
is widely acknowledged [31], and combining optimal control with
the Karush-Kuhn-Tucker (KKT) conditions [32] and/or Pontrya-
gin’s Minimum Principle (PMP) [33] is a common strategy for en-
suring optimality within a CCD framework [17,31], robust control
strategies are often employed for systems affected by uncertainties
and disturbances, with 𝐻∞ control being one of the most tradi-
tional methods. The aim of 𝐻∞ control is to reduce the impact of
uncertainties and disturbances, helping the system maintain its per-

formance and stability despite unpredictable variations. Therefore,
for these kind of systems replacing LQR with 𝐻∞ control could
enhance system performance and may even be considered novel,
given the existing gap in the literature on CCD frameworks that
address these systems.

The selection of 𝐻∞ as the control strategy in this work was
driven by its robustness to uncertainties and modelling inaccura-
cies. Since CCD inherently involves iterative procedures across a
range of values for both physical and control parameters—often
subject to approximations and uncertainties—it was deemed ap-
propriate to integrate a CCD approach with a control strategy
renowned for its ability to handle uncertainties and modelling er-
rors. Additionally, unlike LQR, which relies on the selection of
only two Hermitian positive-definite matrices (𝑄 and 𝑅) and often
requires a trial-and-error tuning process, 𝐻∞ provides greater flex-
ibility in defining control decision variables through LMI-based
formulations.

As CCD applications generally involve iterating through multi-
ple plant/controller candidates until an optimal solution is found.
While 𝐻∞ control typically minimises the effects of disturbances
in sequential approaches for precisely known systems, an impor-
tant question remains: how does the 𝐻∞ norm/guaranteed cost of a
system respond to parameter changes within a CCD framework? In
other words, the impact of optimisation routines that continuously
update physical parameters on the 𝐻∞ norm/guaranteed cost of a
system is yet to be fully explored.

To approach these questions, this study explores a CCD ap-
proach integrated with robust 𝐻∞ control for the combined design
of physical systems and their controllers, specifically focusing on
uncertain, continuous, linear, time-invariant (LTI) systems subject
to disturbances. The methodology in the present work assumes
that uncertain system parameters can be represented within a poly-
topic domain, allowing for the synthesis of a feedback-stabilising
control that ensures the boundedness of the 𝐻∞ norm/guaranteed
cost, thus also ensuring optimality. Two necessary conditions for
certifying closed-loop stability are presented in terms of linear ma-
trix inequalities (LMIs), using Lyapunov theory. These conditions
have been applied in prior work to certify the stability of uncertain
LTI systems affected by disturbances [34,35]. Although these con-
ditions have already been explored in the literature, there remains
potential to apply them within the CCD framework. Thus, rather
than developing new synthesis conditions, the main contribution
of this paper is to bridge the fields of CCD and robust control,
extending CCD applications to systems subjected to disturbances
and parametric uncertainties while formulating the CCD problem
in a polytopic context.

To illustrate the proposed method, this study revisits two control
co-design problems previously addressed in the literature: a scalar
plant and an active car suspension system. The scalar plant case
is a simple example of a precisely known system, but it is highly
relevant in the context of CCD. In contrast, the active suspension
case explores the methodology presented in this work more exten-
sively, as it involves a system modelled with uncertain parameters
and is subject to disturbances.

Section 2 presents the formulation adopted for describing param-
eter uncertainty as a set of a polytopic domain, and different CCD
approaches present in literature. Section 3 presents the formulation
of LMI conditions for synthesising robust output feedback gains for
continuous-time uncertain linear systems, along with the formal-
ism of the bi-level (nested) CCD approach adopted in this paper.
Section 4 consists of numerical examples that apply the method
presented in Section 3 to a scalar plant and an active car suspen-
sion. In this section, the physical model, mathematical model,
and control co-design framework are described. Finally, Section 5
offers the conclusions.

2 Preliminaries
In this section, the foundational concepts for systems with uncer-

tainty, modelled within a polytopic domain, are introduced, along-
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side the definition of 𝐻∞ guaranteed cost and key optimisation ap-
proaches, to support understanding and practical application within
co-design.

2.1 Systems Modelled with Parametric Uncertainties. Con-
sider the linear continuous time-invariant system with uncertain-
ties, described by the following set of equations:{︃

�̇� (𝑡) = 𝐴(𝛼)𝜉 (𝑡) + 𝐵(𝛼)𝑢(𝑡) + 𝐵𝑤 (𝛼)𝑤(𝑡),
𝑧(𝑡) = 𝐶𝑧 (𝛼)𝜉 (𝑡) + 𝐷𝑧𝑢 (𝛼)𝑢(𝑡) + 𝐷𝑧𝑤 (𝛼)𝑤(𝑡),

(1)

where 𝜉 ∈ R𝑛 is the state vector, 𝑢 ∈ R𝑛𝑢 is the con-
trol input vector, 𝑤 ∈ R𝑛𝑤 represents the disturbance in-
put and 𝑧 ∈ R𝑛𝑧 is the controlled output. The matrices
𝐴(𝛼) ∈ R𝑛×𝑛, 𝐵𝑤 (𝛼) ∈ R𝑛×𝑛𝑤 , 𝐵(𝛼) ∈ R𝑛×𝑛𝑢 , 𝐶𝑧 (𝛼) ∈
R𝑛𝑧×𝑛, 𝐷𝑧𝑤 (𝛼) ∈ R𝑛𝑧×𝑛𝑤 , and 𝐷𝑧𝑢 (𝛼) ∈ R𝑛𝑧×𝑛𝑢 belong to a
polytopic domain and can be represented in terms of their vertices
such as

Ξ(𝛼) =
𝑁∑︂
𝑖=1

𝛼𝑖Ξ𝑖 , (2)

where Ξ𝑖 represents each vertex of the polytope and Ξ(𝛼) can rep-
resent any of the uncertain matrices of the system (1). Moreover,
the parameter 𝛼 belongs to the unit simplex [36,37] of dimension
𝑁 denoted by

Λ𝑁 =

{︄
𝛼 ∈ R𝑁 :

𝑁∑︂
𝑖=1

𝛼𝑖 = 1, 𝛼𝑖 ≥ 0, for 𝑖 = 1, . . . , 𝑁

}︄
, (3)

a precisely known system can be determined from Eq. (1), since
the set defined in Eq. (3) is assumed to have dimension 𝑁 = 1. In
this case, for simplicity of notation Ξ(𝛼) is denoted simply by Ξ.

Consider a state-feedback control law 𝑢 = 𝐾𝜉, where 𝐾 ∈
R𝑛𝑢×𝑛 is the control gain. The closed-loop system reads{︃

�̇� (𝑡) = 𝐴𝑐𝑙𝜉 (𝑡) + 𝐵𝑤 (𝛼)𝑤(𝑡),
𝑧(𝑡) = 𝐶𝑧,𝑐𝑙𝜉 (𝑡) + 𝐷𝑧𝑤 (𝛼)𝑤(𝑡),

(4)

where 𝐴𝑐𝑙 = 𝐴(𝛼) + 𝐵(𝛼)𝐾 , and 𝐶𝑧,𝑐𝑙 = 𝐶𝑧 (𝛼) + 𝐷𝑧𝑢 (𝛼)𝐾 .

2.2 𝑯∞ Norm/Guaranteed cost. For the system in Eq. (1),
the 𝐻∞ norm/guaranteed cost can be defined as the maximum value
derived from the ratio between the energy of the output signals,
𝑧(𝑡), and the disturbance input signal, 𝑤(𝑡), for all 𝑤(𝑡) ∈ L2, i.e.,
the set of signals with finite energy [38].

∥𝐻𝑤𝑧 ∥∞ = max
𝑤(𝑡 ) ∈L2

∥𝑧(𝑡)∥2
∥𝑤(𝑡)∥2

, 𝑤 ≠ 0,

Assuming that the referred system is internally stable, and
∥𝐻𝑤𝑧 ∥∞ < 𝛾, for a certain 𝛾 ∈ R, 𝛾 > 0, then∫ 𝑡
𝑡0

(︂
∥𝑧(𝜏)∥2 − 𝛾2∥𝑤(𝜏)∥2

)︂
𝑑𝜏 ≤ 0, ∀ 𝑤(𝑡) ∈ L2, ∀ 𝑡 ≥

𝑡0 [39].
Let 𝑤(𝑡) be an exogenous input and 𝑧(𝑡) the controlled out-

put; minimising the 𝐻∞ norm/guaranteed cost corresponds to
minimising the energy influence of the exogenous input on the
controlled output. The 𝐻∞ norm/guaranteed cost is closely re-
lated to frequency-domain analysis tools such as the Bode dia-
gram and the singular value plot. In a single-input single-output
(SISO) system, the Bode magnitude plot provides insight into
the worst-case gain over all frequencies, which directly connects
to the 𝐻∞ norm/guaranteed cost as the peak value of the sys-
tem’s transfer function. In multi-input multi-output (MIMO) sys-
tems, the singular value plot generalises this concept by repre-
senting the frequency-dependent gain through the largest singular

value of the transfer function matrix. Thus, minimising the 𝐻∞
norm/guaranteed cost ensures that the system’s worst-case response
is controlled across all input disturbances, making it a crucial per-
formance metric in robust control design.

Lastly, from an interpretability perspective, the 𝐻∞
norm/guaranteed cost provides an upper bound on the sys-
tem’s energy amplification, allowing its role to be intuitively
understood in terms of power attenuation and stability margins. A
lower 𝐻∞ norm/guaranteed cost corresponds to reduced sensitivity
to disturbances, which translates into improved robustness and
potential energy savings in practical implementations. This
connection highlights its relevance as a practical measure of
performance, particularly when direct visualisation through Bode
or singular value plots is not available.

2.3 Control Co-design Formulations. Fathy et al. [31] define
combined plant/controller optimisation strategies, as illustrated in
Fig. 1, and classify them into four different strategies: sequen-
tial, iterative, simultaneous, and bi-level (nested). In a sequential
approach, the plant is designed first, followed by the controller.
The iterative method typically relies on LMIs, where, given an ini-
tial plant/controller design, an iterative optimisation process is de-
fined. This process improves the plant without compromising the
controller, then optimises the controller and repeats this process
over multiple iterations. On the other hand, the bi-level strategy
involves two nested loops, with the outer loop focusing on plant
optimisation and the inner loop on controller optimisation. Lastly,
the simultaneous strategy optimises both the plant and controller
concurrently.

Optimise the
plant without
altering the
controller

Optimise the
controller

Iterative

Optimise the
plant

Sequential

Optimise the
controller

Plant
design

objective

Controller
design

objective

Plant optimisation
and the setting
of controller

objectives occur
concurrently.

Simultaneous

Plant design
optimisation

Controller
design

optimisation

 

Exchange of information
between plant and

controller

 

New iteration:
update

parameters

Bi-level (nested)

Fig. 1 A typical sequential plant/controller design com-
pared with three common CCD approaches: iterative, bi-
level (nested), and simultaneous. Source: elaborated by
the authors.

For a more detailed comparison of various optimisation strate-
gies in CCD, refer to [17], where the authors examine the differ-
ences between nested and simultaneous approaches. This study
emphasises several aspects of the nested strategy, particularly the
notion that, although the simultaneous approach is regarded as the
most fundamental way to represent an integrated design problem,
the nested method restructures the optimisation process by distin-
guishing between the plant and control disciplines. Additionally, it
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naturally deals with bidirectional coupling, although it is typically
known for being computationally expensive.

To illustrate this point, Alison, Guo, and Han [18] implemented
both the simultaneous and nested approaches, comparing them to
the traditional sequential design in an active car suspension case
study. While the simultaneous approach using DT demonstrated
superior performance, the results for the nested method were omit-
ted in the cited paper, as it was deemed highly computationally
inefficient. This omission, however, leaves room for further ex-
ploration of the nested approach, particularly in combination with
frameworks that optimise computational efficiency.

The literature presents examples where the nested approach has
demonstrated superior results [40,41], while in other cases, the si-
multaneous method has shown better performance [18]. Therefore,
the selection of these approaches may depend on the specific ap-
plication. Consequently, it is valuable to provide literature-based
recommendations across various case studies to assess different
CCD approaches [1,42].

Cui, Alison, and Wang conducted a study integrating CCD
with Reliability-Based Design Optimisation (RBDO) [43]. Their
work assessed non-deterministic co-design strategies and included
a comparative study of RBDO algorithms, as well as the integra-
tion of simultaneous and nested CCD approaches within RBDO
formulations. It is highlighted the importance of nested formu-
lation when dealing with multidisciplinary problems, which re-
duces the complexity of decoupled sub-problems. Separating the
optimal control design and reliability evaluation from the initial
problem increases flexibility in selecting solution algorithms. By
using specialised algorithms for each sub-problem, it is possible to
achieve overall benefits, particularly by lowering the computational
expense of solving the inner loop. In this sense, we consider the
nested CCD approach to be the most suitable for the present study,
as it provides greater flexibility in the separation of physical and
control system design, aligning with our objective of developing a
more adaptable framework.

2.4 Bounded Real Lemma. This subsection introduces the
Bounded Real Lemma (BRL) [44], an essential result in robust
control theory that connects the characterisation of a system’s 𝐻∞
performance to a set of state-space-based matrix inequalities. By
providing conditions under which the 𝐻∞ norm of a LTI system
remains bounded, the BRL facilitates both theoretical analysis and
practical controller synthesis, ensuring specific performance levels
in the presence of disturbances and uncertainties. It also clarifies
how system properties such as stability and detectability influence
robust performance, and supports various optimisation-based ap-
proaches in modern control system design.

Lemma 1. Consider the system given by Eq. (1), if there exist
matrices 𝑃 = 𝑃′ > 0, and 𝑍 , such that

min
𝑍,𝑃=𝑃′>0

𝜇

⎡⎢⎢⎢⎢⎣
𝐴𝑃 + 𝑃𝐴′ + 𝐵𝑍 + 𝑍 ′𝐵′ 𝑃𝐶′𝑧 + 𝑍 ′𝐷′𝑧𝑢 𝐵𝑤

𝐶𝑧𝑃 + 𝐷𝑧𝑢𝑍 −𝜇I 𝐷𝑧𝑤
𝐵′𝑤 𝐷′𝑧𝑤 −I

⎤⎥⎥⎥⎥⎦ < 0.
(5)

then the referred system is exponentially stable, and the feedback
gain, 𝐾 = 𝑍𝑃−1, ensures that ∥𝐻 (𝑠)∥∞ ≤

√
𝜇, 𝜇 ∈ R [44].

Proof. ∥𝐻𝑤𝑧 (𝑠)∥∞ < 𝛾 implies that ∥𝑧(𝑡)∥2 ≤ 𝛾∥𝑤(𝑡)∥2, 𝑤(𝑡) ∈
L2. Equivalently, 𝑧(𝑡)′𝑧(𝑡) ≤ 𝛾2𝑤(𝑡)′𝑤(𝑡) or 𝑧(𝑡)′𝑧(𝑡) −
𝛾2𝑤(𝑡)′𝑤(𝑡) ≤ 0. For a system characterised by a matrix 𝐴 that is
bounded and continuous, let 𝑉 (𝑡, 𝜉) = 𝜉′𝑃𝜉, a Lyapunov function,
where 𝑃 = 𝑃′ > 0. It holds that

�̇� (𝜉) + 𝑧(𝑡)′𝑧(𝑡) − 𝛾2𝑤(𝑡)′𝑤(𝑡) < 0⇒

�̇�′𝑃𝜉 + 𝜉′𝑃�̇� + 𝑧′𝑧 − 𝛾2𝑤′𝑤 < 0,
(6)

by substituting (1) into (6), one gets:

(𝐴𝜉 + 𝐵𝑢 + 𝐵𝑤𝑤)′𝑃𝜉 + 𝜉′𝑃(𝐴𝜉 + 𝐵𝑢 + 𝐵𝑤𝑤)

+(𝐶𝑧𝜉 + 𝐷𝑧𝑢𝑢 + 𝐷𝑧𝑤𝑤)′ (𝐶𝑧𝜉 + 𝐷𝑧𝑢𝑢 + 𝐷𝑧𝑤𝑤)

−𝛾2𝑤′𝑤 < 0,

(7)

simplifying and rearranging the terms in (7) gives:[︃
𝜉

𝑤

]︃ ′ [︃
𝐴′𝑃 + 𝑃𝐴 + 𝐶′𝑧𝐶𝑧 𝑃𝐵𝑤 + 𝐶′𝑧𝐷𝑧𝑤
𝐵′𝑤𝑃 + 𝐷′𝑧𝑤𝐶𝑧 𝐷′𝑧𝑤𝐷𝑧𝑤 − 𝛾2𝐼

]︃ [︃
𝜉

𝑤

]︃
< 0. (8)

The inequality (8) can be rewritten as:[︃
𝐴′𝑃 + 𝑃𝐴 𝑃𝐵𝑤
𝐵′𝑤𝑃 −𝛾2𝐼

]︃
−
[︃
𝐶′𝑧
𝐷′𝑧𝑤

]︃ [︁
−𝐼

]︁ [︁
𝐶𝑧 𝐷𝑧𝑤

]︁
< 0, (9)

applying the Schur complement to (9) leads to⎡⎢⎢⎢⎢⎣
𝐴′𝑃 + 𝑃𝐴 𝑃𝐵𝑤 𝐶′𝑧
𝐵′𝑤𝑃 −𝛾2I 𝐷′𝑧𝑤
𝐶𝑧 𝐷𝑧𝑤 −I

⎤⎥⎥⎥⎥⎦ < 0. (10)

For the controller synthesis, a feedback gain 𝐾 ∈ R𝑚×𝑛 is de-
termined such that the control law 𝑢(𝑡) = 𝐾𝜉 (𝑡) minimises the
𝐻∞ norm and asymptotically stabilises the system in Eq. (1). The
closed-loop dynamic and output matrices are 𝐴𝑐𝑙 = 𝐴 + 𝐵𝐾 , and
𝐶𝑧,𝑐𝑙 = 𝐶𝑧+𝐷𝑧𝑢𝐾 , respectively, and the closed-loop transfer func-
tion (TF) between the input 𝑤(𝑡) and the output 𝑧(𝑡) is given by

𝐻𝑤𝑧 (𝑠) = (𝐶𝑧 + 𝐷𝑧𝑢𝐾) (𝑠𝐼 − (𝐴 + 𝐵𝐾))−1𝐵𝑤 + 𝐷𝑧𝑤, (11)

For precisely known systems, the primal and dual strategies
provide the same results for computing stabilising gain and 𝐻∞
norm [44]. From inequality (10), one can determine the equivalent
BRL for a dual system related to the system described in Eq. (1),
and subjected to the control law 𝑢(𝑡) = 𝐾𝜉 (𝑡):⎡⎢⎢⎢⎢⎣

𝐴𝑐𝑙𝑃 + 𝑃𝐴′𝑐𝑙 𝑃𝐶′
𝑧,𝑐𝑙

𝐵𝑤

𝐶𝑧,𝑐𝑙𝑃 −𝛾2I 𝐷𝑧𝑤
𝐵′𝑤 𝐷′𝑧𝑤 −I

⎤⎥⎥⎥⎥⎦ < 0 (12)

replacing 𝐴𝑐𝑙 = 𝐴 + 𝐵𝐾 and 𝐶𝑧,𝑐𝑙 = 𝐶𝑧 + 𝐷𝑧𝑢𝐾 in (12) gives:⎡⎢⎢⎢⎢⎣
(𝐴 + 𝐵𝐾)𝑃 + 𝑃(𝐴 + 𝐵𝐾)′ 𝑃(𝐶𝑧 + 𝐷𝑧𝑢𝐾)′ 𝐵𝑤

(𝐶𝑧 + 𝐷𝑧𝑢𝐾)𝑃 −𝛾2𝐼 𝐷𝑧𝑤
𝐵′𝑤 𝐷′𝑧𝑤 −𝐼

⎤⎥⎥⎥⎥⎦ < 0⇒

[︄
𝐴𝑃 + 𝑃𝐴′ + 𝐵𝑍 + 𝑍 ′𝐵′ 𝑃𝐶′𝑧 + 𝑍 ′𝐷′𝑧𝑢 𝐵𝑤

𝐶𝑧𝑃 + 𝐷𝑧𝑢𝑍 −𝜇𝐼 𝐷𝑧𝑤
𝐵′𝑤 𝐷′𝑧𝑤 −𝐼

]︄
< 0

(13)
where 𝑍 = 𝐾𝑃, and 𝜇 = 𝛾2, which makes the combined search for
the stabilising gain 𝐾 and the Lyapunov matrix 𝑃 a convex problem
and concludes the proof. □

3 Main Results
This section describes the CCD formulation used in this paper

and introduces Lemma 2, which characterises the 𝐻∞ performance
of general continuous-time polytopic LTI systems. A finite set
of LMIs, defined at the polytope vertices, is provided to obtain a
feedback gain that ensures system stabilisation when the exogenous
input is zero, and establishes an 𝐻∞ upper bound on system perfor-
mance when the exogenous input is non-zero. This new condition
alleviates the conservatism of the approach presented in Lemma 1
and circumvents non-convex formulations of the optimisation prob-
lem by introducing additional slack variables into the LMI control
design procedure.
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Fig. 2 A bi-level CCD approach. A physical parameter
is selected based on the plant constraints, and the H∞

value is initially computed. This process continues un-
til the physical parameter that minimises the H∞ value
is identified. The optimisation is then repeated, keeping
the previously determined value of the plant fixed, while
adjusting the controller parameters to find an optimal so-
lution. Finally, after the control parameters that optimise
the controller cost are found, the plant values are iter-
ated again, with the controller values kept fixed, until the
optimal solution is identified. Source: elaborated by the
authors.

Lemma 2. Consider the system given by Eq. (1), if there exist
matrices 𝑃 = 𝑃′ > 0, 𝐺, 𝑍 , 𝐻, and scalar 𝛽 such that

min
𝑍,𝐺,𝐻,𝛽,𝑃=𝑃′>0

𝜇

𝑀 =

⎡⎢⎢⎢⎢⎢⎣
𝐴(𝛼)𝐺 + 𝐺′𝐴(𝛼)′ + 𝐵(𝛼)𝑍 + 𝑍 ′𝐵(𝛼)′

𝑃 − 𝐺 + 𝛽(𝐴(𝛼)𝐺 + 𝐵(𝛼)𝑍)′
𝐶𝑧 (𝛼)𝐺 + 𝐷𝑧𝑢 (𝛼)𝑍
−𝐻′𝐵𝑤 (𝛼)′

★ ★ ★

𝑀22 ★ ★

𝑀32 −𝜇I ★

0 −𝐻′𝐷𝑧𝑤 (𝛼)′ I + 𝐻 + 𝐻′

⎤⎥⎥⎥⎥⎥⎦ < 0,

(14)

with, 𝑀22 = 𝛽(𝐺 + 𝐺′), and 𝑀32 = 𝛽(𝐶𝑧 (𝛼)𝐺 + 𝐷𝑧𝑢 (𝛼)𝑍).
Then the referred system is exponentially stable and, the state feed-
back gain 𝐾 = 𝑍𝐺−1 stabilises the system with a guaranteed cost
∥𝐻𝑤𝑧 ∥∞ ≤

√
𝜇, 𝜇 ∈ R, ∀𝛼 ∈ Λ.

Proof. Let’s us consider the following congruence transformation

𝑇 =

[︃
I 𝐴𝑐𝑙 (𝛼) 0 𝐵𝑤 (𝛼)
0 𝐶𝑧,𝑐𝑙 (𝛼) I 𝐷𝑧𝑢 (𝛼)

]︃
(15)

where, 𝐴𝑐𝑙 (𝛼) = 𝐴(𝛼)+𝐵(𝛼)𝐾 , and𝐶𝑧,𝑐𝑙 (𝛼) = 𝐶𝑧 (𝛼)+𝐷𝑧𝑢 (𝛼)𝐾 .
By replacing the expression for the feedback gain, 𝐾 = 𝑍𝐺−1 one
gets:

𝐴𝑐𝑙 (𝛼)𝐺 = 𝐴(𝛼)𝐺 + 𝐵(𝛼)𝑍 (16)

𝐶𝑧,𝑐𝑙 (𝛼)𝐺 = 𝐶𝑧 (𝛼)𝐺 + 𝐷𝑧𝑢 (𝛼)𝑍 (17)

By applying the congruence transformation in Eq. (15) to the
LMI (14), such that �̃� = 𝑇 ′𝑀𝑇 , along with a Schur complement,
and substituting Eqs. (16) and (17), holds⎡⎢⎢⎢⎢⎣

𝐴𝑐𝑙 (𝛼)𝑃 + 𝑃𝐴𝑐𝑙 (𝛼)′ 𝑃𝐶𝑧,𝑐𝑙 (𝛼)′ 𝐵𝑤 (𝛼)
★ −𝛾2I 𝐷𝑧𝑤 (𝛼)
★ ★ −I

⎤⎥⎥⎥⎥⎦ < 0 (18)

which corresponds to the dual version of the BLR, as presented in
Eq. (13), thus concluding the proof. □

It is worth noting that the conditions presented in this paper
do not guarantee convergence of the optimisation problem for the
control-synthesis LMIs. While the plant and control constraints
will be chosen from a practical feasibility standpoint (refer to the
following sections), no analytical proofs have been provided to en-
sure that the LMI variables always lie within a feasible region.
Additionally, no extensive computational validation will be per-
formed. Hence, the proposed conditions serve only as sufficient,
rather than necessary, conditions for the synthesis problem. Ad-
ditionally, to the best of the authors’ knowledge, this remains an
open problem in 𝐻∞ control of uncertain systems in the literature.
Existing methods typically provide only sufficient conditions for
control design in such cases. Hence, as stated in Lemma 2, per-
formance is guaranteed if there exist matrices that satisfy the LMI
conditions; however, the existence of such matrices is not formally
proven. Consequently, depending on the choice of certain vari-
able values—such as 𝛽 and the chosen limits for 𝐺 and 𝑍—the
optimisation problem may fail to converge.

3.1 Control Co-design Framework. A bi-level co-design op-
timisation adopted in this paper involves two nested loops in which
each overarching physical parameter is optimised, and during each
iteration, the controller is also optimised, though constrained by
the current value of the physical parameter. In other words, the
outer loop optimises the plant values, while the inner loop focuses
on optimising the controller for each plant configuration selected in
the outer loop [31]. It can be described according to the equation
below.

min
xp

{︃
𝑤𝑝𝜓 (xp ) + 𝑤𝑐

∫ 𝑡𝑓
𝑡𝑜

Ψ( 𝜉 (𝑡 ) , xp∗, xc, 𝑡 ) 𝑑t
}︃
,

subject to: 𝑔
(︁
𝑥𝑝

)︁
≤ 0,

Γ
(︁
𝑡 , 𝜉 (𝑡 ) , 𝑥𝑝∗, 𝑥𝑐

)︁
≤ 0,

𝜍 ( 𝜉 (𝑡0 ) , 𝜉 (𝑡𝑓 ) , 𝑥𝑝∗, 𝑥𝑐 ) ≤ 0,

(19)

where 𝑥𝑝 and 𝑥𝑝∗ represent a candidate plant design and the optimal
plant design, respectively; 𝑥𝑐 denotes the control parameters, 𝑔 are con-
straints dependent on the plant design, 𝜓 is the plant design objective
function, 𝜉 represents the states, and {𝑤𝑝 , 𝑤𝑐 } are the objective weights.
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(a) (b) (c)

Fig. 3 Scalar plant problem results with q = 10, r = 1, wc = 1, ξ0 = 1, and wp = 0.3: (a) Comparison of the controller
cost, Ψ(xp , xc ), between two cost functions,ψ (b) (dashed black) as expressed in Eq. (21), which follows the traditional
LQR formulation, and ψ1(b) (solid red) as defined in Eq. (22) and adopted in this paper. (b) Cost function, ψ (b), using
LQR. (c) Cost function, ψ1(b), using H∞ norm. Source: elaborated by the authors.

The objective is to minimise the cost function, which typically repre-
sents the total expected cost over a time horizon from 𝑡0 to 𝑡𝑓 , in which
the controller cost Ψ( 𝜉 (𝑡 ) , xp∗, xc, 𝑡 ) is the Lagrange term [45]. The
path constraint Γ (𝑡 , 𝜉 , 𝑥𝑐 , 𝑥𝑝 ) ≤ 0 ensures that the state and control
variables meet certain conditions at all times. The boundary condition
𝜍 ( 𝜉 (𝑡0 ) , 𝜉 (𝑡𝑓 ) , 𝑥𝑝∗, 𝑥𝑐 ) ≤ 0 ensures that the initial and final states of
the system satisfy specified conditions, which could relate to state values
or conservation laws. Here, we posit that this form of objective function
serves as a unified criterion for both physical and control system design
considerations.

Typically, the bi-level approach assumes the availability of a feasible
controller design for each feasible system design, where traditional con-
trollability constraints are presumed to ensure the viability of this model
in linear systems, with LQR serving as the optimal control solution. This
method has been widely adopted in CCD studies [17,29], where the optimal
control gain is computed using the Riccati Equation, which for continuous
systems can be expressed as:

𝐴′𝑆 + 𝐴𝑆 − 𝑆𝐵𝑅−1𝐵′𝑆 +𝑄 = 0,

𝐾 = 𝑅−1𝐵′𝑆,

Γ := rank
(︁ [︁
𝐵 𝐴𝐵 · · · 𝐴𝑛−1𝐵

]︁ )︁
= 𝑛,

(20)

here, 𝐴 ∈ R𝑛×𝑛 and 𝐵 ∈ R𝑛×𝑛𝑢 are system matrices, 𝑄 ∈ R𝑛×𝑛 , 𝑄 =

𝑄′ ≥ 0 and 𝑅 ∈ R𝑛𝑢×𝑛𝑢 , 𝑅 = 𝑅′ > 0 are the weighting matrices
that relates the significance of state and control efforts within the optimi-
sation process respectively; and 𝑆 = 𝑆′ ≥ 0 is the solution for Riccati
Equation [46].

The alternative method proposed in this paper assumes that the optimi-
sation problem, which minimises the system’s 𝐻∞ norm/guaranteed cost as
described in Lemmas 1 and 2, can be integrated into the CCD formulation,
instead of LQR formulations.

Figure 2 illustrates the bi-level CCD approach used in this work. The
CCD problem is structured with an outer loop for plant design variables
and an inner loop for control design variables. In the outer loop, plant con-
straints, 𝑔 (𝑥𝑝 ) are initially applied to ensure physical feasibility. A plant
candidate is then selected, and the 𝐻∞ norm/guaranteed cost is calculated.
Multiple plant design candidates are evaluated within the constrained phys-
ical domain until the plant that minimises the 𝐻∞ norm/guaranteed cost is
identified.

Once the optimal physical variables, 𝑥𝑝∗, that minimise the 𝐻∞
norm/guaranteed cost are found, these values are kept fixed, and the control
variables are adjusted to determine the optimal control parameters. Here,
both the 𝐻∞ value and the slack variables 𝑍 , 𝐻, 𝐺, and 𝛽, as previously
defined, or their constraints, Γ and 𝜍 , are considered as controller design
variables, 𝑥𝑐 . The objective is again to minimise the 𝐻∞ norm/guaranteed
cost for the system.

After settling the control variables to achieve the minimum control cost,
the process is repeated. In this iteration, 𝑥𝑐,𝑜𝑝𝑡 , the control variables that
ensure the minimum control cost, are fixed, while the physical parameters
are adjusted again to minimise the combined plant/controller cost function
expressed in Eq. (19), and the final solution, {𝑥𝑐,𝑜𝑝𝑡 ; 𝑥𝑝,𝑜𝑝𝑡 }, is found.

4 Case Studies
To illustrate the method presented in the previous sections, this sec-

tion revisits two previously addressed control co-design problems in the
literature: a scalar plant and an active car suspension system.

The optimisation problems in Lemmas 1 and 2 were solved using
SDP, which can be implemented using the YALMIP parser [22], ROLMIP
parser [47], and solved via the SeDuMi solver [23]. The simulations were
conducted using MATLAB version R2023a on a computer equipped with
a 12-core CPU, CORE i9-10920XE, 64 GB of RAM, and a NVIDIA T400
4GB GPU, running Windows 11 Enterprise, version 22H2. The routines
utilised for these simulations are available in [48].

4.1 Case Study 1: Scalar Plant. Consider the typical co-design for-
mulation borrowed from the literature [17], which separates control and
plant objectives, with no path constraints:

min
𝑏,𝐾

𝜓 (𝑏) = 𝑤𝑐

𝜉2
0

∫∞
0

(︂
𝑞𝜉 2 + 𝑟𝑢2

)︂
𝑑𝑡 + 𝑤𝑝𝑏

subject to: �̇� = −𝑏𝜉 + 𝑢
𝑔1 := 𝜉 (0) − 𝜉0 = 0
𝑔2 := −𝑏 ≤ 0, 𝑔3 := −𝐾 ≤ 0

(21)

where 𝑢 = −𝐾 𝜉 , 𝑏 ∈ 𝑥𝑝 (plant domain), 𝐾 ∈ 𝑥𝑐 (controller domain),
and 𝜉 are the states. Although it is a simple scalar plant, this problem
demonstrates important co-design concepts and has been addressed in early
co-design formulations [31].

The modification adopted in this paper, expressed in the optimisation
problem (22) is in terms of the new cost function, which accounts for the
𝐻∞ norm instead of the traditional infinite time horizon optimisation of
control gains. A precisely known system was considered for computing the
𝐻∞ norm for each 𝑏 ∈ 𝑥𝑝 and an optimisation problem was considered
using the conditions presented in Lemma 1 for minimisation of the 𝐻∞
norm. Additionally, the constraints are modified to suit the robust control
problem. The aim is to achieve better-conditioned gains relative to the
problem without these constraints.

min
𝑏,𝛾

𝜓1 (𝑏) = 𝑤𝑐

𝜉2
0
𝛾 + 𝑤𝑝𝑏

subject to: �̇� = −𝑏𝜉 + 𝑢 + 𝑤
Γ1 := 1 ≤ 𝑍 ≤ 3

(22)

where, 𝛾, 𝑍 are the same as defined in inequalities (5) to (13), 𝑤 is the
disturbance term and 𝑧 (𝑡 ) = 𝜉 (𝑡 ) is the output of the system.

Figure 3(a) illustrates the gains associated with a full-state feedback op-
timal LQR control law, together with the gain calculated using the method
presented in Lemma (1), which can facilitate the development of potential
inner-loop optimal control designs within the nested formulation for the
two cost functions adopted: the black dashed line corresponds to the gains
for the cost function in (21), the solid red line relates to the gains for the
cost function in (22), and the solid dots represent the gains that guarantee
the minimisation for each cost function. On the other hand, Figures 3(b)
and 3(c) show the values for the cost functions 𝜓 (𝑏) and 𝜓1 (𝑏) , respec-
tively. These results demonstrate that, by iterating through this particular
set of values for the plant parameters, the gains for the LQR formulation
and the formulation adopted in the present work assume different values.
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Furthermore, it is generally recognised that LMI-based co-design methods
do not always guarantee convergence to an optimal co-design solution [31].
While this issue is typically associated with iterative methods rather than
nested ones, this example demonstrates that, despite the two cost functions
being different, they exhibit similar behaviour.

Additionally, this example serves to illustrate that the proposed frame-
work is not confined to systems with parametric uncertainties. A precisely
known system can be seen as a special case in which the dimension of
the polytope is one; therefore, the conditions presented in Lemma 2 can
be applied equally to such a system. Consequently, using a simple scalar
plant without uncertainties highlights the versatility of our approach and
reaffirms that the methodology remains valid for systems with a fully spec-
ified model. Alternatively, the next example illustrates how the method is
applied within the context of systems with polytopic uncertainties.

4.2 Case Study 2: Active Suspension. Figure 4 illustrates an active
car suspension system characterised by the spring constant 𝑘𝑠 and damping
coefficient 𝑏 per wheel. The tyre system is modelled as a spring-damping
mechanism, defined by 𝑘𝑡 and 𝑏𝑡 , and mass 𝑚1. On the other hand, 𝑚2
represents one-quarter of the vehicle’s total mass. The control objective is
to minimise the vertical acceleration of the vehicle as it traverses uneven
surfaces.

An actuator operates on the suspension system in accordance with a
feedback state control law, 𝑢 = 𝐾 𝜉 , generating a force aimed at minimising
the acceleration. Variations in road height, 𝑤(𝑡 ) , relative to the road
reference level, are incorporated into these formulations as disturbances.
Lastly, ℎ2 (𝑡 ) and ℎ1 (𝑡 ) represent the heights of the vehicle body and
wheel, respectively. This problem exemplifies a typical real-world control
challenge in the automotive industry, and a similar problem has been studied
within the framework of co-design [18,29] and robust control [21].

Actuator

Sensor

Vehicle body      

Wheel

Road reference

Road surface

Fig. 4 A schematic of the active vehicle suspension
system. Source: elaborated by the authors, adapted
from [21].

4.2.1 Control Oriented Model. The Euler-Lagrange formulation con-
siders the kinetic energy, and elastic potential energy, described by Eqs. (23)
and (24), respectively, to derive the equations of motion [21].

𝐸𝑘 =
1
2
𝑚2 ℎ̇

2
2 +

1
2
𝑚1 ℎ̇

2
1 , (23)

𝐸𝑝 =
1
2
𝑘𝑠 (ℎ2 − ℎ1 )2 +

1
2
𝑘𝑡ℎ

2
1 , (24)

A dissipation function, denoted as 𝐹𝑑 , can be defined to account for the
energy loss caused by dissipative forces, such as damping

𝐹𝑑 =
1
2
𝑏 (ℎ̇2 − ℎ̇1 )2, (25)

The modified Euler-Lagrange equations including dissipation are de-
scribed as follows:

𝑑

𝑑𝑡

(︃
𝜕𝐿

𝜕�̇�𝑖

)︃
− 𝜕𝐿
𝜕𝑞𝑖
+ 𝜕𝐹𝑑
𝜕�̇�𝑖

= 𝑄𝑖 ,

𝐿 = 𝐸𝑘 − 𝐸𝑝 ,

𝑖 = 1, 2, ..., 𝑛,

(26)

where 𝑄𝑖 are the generalised forces applied. The generalised coordinates
of the system are the height of the vehicle chassis, ℎ2 (𝑡 ) , and the height
of the tire system, ℎ1 (𝑡 ) . The forces acting on the system include the
control input, 𝑢(𝑡 ) , applied by the active damper between the masses 𝑚1
and 𝑚2, and the wheel height variation, 𝑤(𝑡 ) , which is considered as the
force acting on the wheel.

A state-space representation is obtained for the system:

�̇� =

⎡⎢⎢⎢⎢⎢⎢⎣
− 𝑏
𝑚2

𝑏
𝑚2

− 𝑘𝑠
𝑚2

𝑘𝑠
𝑚2

𝑏
𝑚1

− 𝑏
𝑚1

𝑘𝑠
𝑚1

− 𝑘𝑠+𝑘𝑡
𝑚1

1 0 0 0
0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
𝜉1
𝜉2
𝜉3
𝜉4

⎤⎥⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎢⎢⎣

1
𝑚2−1
𝑚1
0
0

⎤⎥⎥⎥⎥⎥⎥⎦ 𝑢 +
⎡⎢⎢⎢⎢⎢⎢⎣

0
1
𝑚1
0
0

⎤⎥⎥⎥⎥⎥⎥⎦ 𝑤,

𝑧 =

[︃
0 0 1 0
0 0 0 1

]︃ ⎡⎢⎢⎢⎢⎢⎣
𝜉1
𝜉2
𝜉3
𝜉4

⎤⎥⎥⎥⎥⎥⎦ , where 𝜉 =

⎡⎢⎢⎢⎢⎢⎣
𝜉1
𝜉2
𝜉3
𝜉4

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣
ℎ̇2
ℎ̇1
ℎ2
ℎ1

⎤⎥⎥⎥⎥⎥⎦ ,
𝐷𝑧𝑢 = 0, 𝐷𝑧𝑤 = 0.

(27)

4.2.2 Physical Design. The physical design adopted here is derived
from Ref. [18]. The stiffness formula is given by

𝑘s =
𝑑4𝐺

8𝐷3𝑁a
(︂
1 + 1

2𝐶2

)︂ , (28)

where, 𝑑 is the wire diameter, 𝐷 is the helix diameter, and 𝑝 is the
spring pitch, 𝑁𝑎 is the number of active coils, the shear modulus is 𝐺 =

77.2 𝐺𝑃𝑎, and the spring index, 𝐶 = 𝐷/𝑑, is related to how easily
a spring can tangle. A schematic of the spring system can be seen in
Fig. 5(a).

On the other hand, the formula to calculate the suspension damper
coefficient is given by:

b =
𝐷4

p

8𝐶d𝐶2𝐷
2
0

√︃
𝜋𝑘v𝜌1

2
, (29)

where, 𝐷0 and 𝐷𝑝 , are the valve diameter and the working piston diameter,
respectively; 𝐶𝑑 ≈ 0.7 is the discharge coefficient, 𝑘𝑣 = 7500 𝑁/𝑚 is the
spool valve spring constant, 𝜌1 = 850 𝑘𝑔/𝑚3 is the damper fluid density,
and 𝐶2 = 𝜂𝐴f

√
𝑥m is the damper valve coefficient, in which 𝐴𝑓 = 0.1 is

used to tune the port shape, 𝑥m =
𝐴0𝑃allow
𝑘v

is the maximum valve lift (𝑥𝑣)
at the maximum allowed damper pressure, 𝑃𝑎𝑙𝑙𝑜𝑤 = 4.75 × 106 𝑃𝑎, and

𝐴0 =
𝜋𝐷2

0
4 𝑚2 is the spool valve frontal area. A schematic of the damper

system can be seen in Fig. 5(b).
The physical constraints for plant design were selected based on several

aspects, such as interference with other vehicle components, permanent
spring deformation, spring buckling, linearity of damper behaviour, max-
imum damper pressure, and thermal considerations, among others. All of
these considerations have been omitted in this paper but are detailed in the
aforementioned literature [18]. Based on these physical considerations, the
plant design vector, 𝑥𝑝 =

[︁
𝑑, 𝐷, 𝑝, 𝑁a, 𝐷0, 𝐷p, 𝐷s

]︁
, was established as

described below.
𝑥𝑝,𝑚𝑖𝑛 = [0.005, 0.05, 0.02, 3, 0.003, 0.03, 0.1],

𝑥𝑝,𝑚𝑎𝑥 = [0.02, 0.4, 0.5, 16, 0.012, 0.08, 0.3].
By replacing these values of the plant design vector in Eq. (28) and (29),

the minimum and maximum suspension stiffness constant and damper val-
ues were derived, as shown in Table 1.

4.2.3 Control Design. Let 𝑥𝑐 = {𝑥𝑐1, 𝑥𝑐2, 𝑥𝑐3, 𝑥𝑐4} be the control
design variable. Then, 𝑥𝑐1 is defined such that:

𝑥𝑐1 := 𝑟𝑎𝑛𝑔𝑒𝑖 = 𝜎max
𝑖 − 𝜎min

𝑖 , 𝑟𝑎𝑛𝑔𝑒𝑖 ∈ R

[𝜎min
𝑖 , 𝜎max

𝑖 ] ⊆ [𝑥𝑝,𝑚𝑖𝑛; 𝑥𝑝,𝑚𝑎𝑥 ], 𝑖 = 1, 2, ..., 𝑁 ,
(30)
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Pressure
 tube

(b)

Fig. 5 (a) Schematic of a helical compressing spring.
(b) A telescopic damper with a piston compression valve.
Source: elaborated by the authors, adapted from [18].

with 𝑟𝑎𝑛𝑔𝑒𝑖 modelling the size of the uncertainty in a parameter, and 𝜎𝑖
defined as any uncertain physical parameter, such that 𝜎min

𝑖
≤ 𝜎𝑖 ≤ 𝜎max

𝑖
.

Hence, 𝜎𝑖 (𝛼) = 𝛼𝑘𝜎
min
𝑖
+ 𝛼𝑞𝜎max

𝑖
represents all possible values of

𝜎𝑖 ∈ [𝜎min
𝑖
, 𝜎max
𝑖
], with {𝛼𝑘 , 𝛼𝑞 } ∈ Λ𝑁 , {𝑘, 𝑞} = 1, 2, . . . , 𝑁 , and

Λ𝑁 defined in Eq. (3). Then, the system in Eq. (27) can be represented as
an uncertain system, as shown in Eq. (1).

To evaluate the combination of control co-design structure with systems
modelled with parametric uncertainties, 𝑚1, 𝑚2, 𝑘𝑡 , and 𝑏𝑡 were consid-
ered to be precisely known, with values indicated in Table 1, while 𝑏 and
𝑘𝑠 were considered to be the uncertain parameters. For simplicity, a single
range of uncertainty was considered for each of the uncertain parameters,
also described in the Table 1.

The Algorithm 1 describes the second control design variable, 𝑥𝑐2,
which is related to defining the values of 𝑏 and 𝑘𝑠 that minimise the
𝐻∞ guaranteed cost. An iterative process is established until the optimal
candidates, 𝑏∗ and 𝑘𝑠,∗, are determined.

However, minimising the guaranteed cost alone may not suffice, as the
actual implementation depends on a physical actuator, which has limitations
in terms of the maximum control force it can exert and is part of a system
with finite energy. For instance, the control force between the sprung and
unsprung masses could be exerted by a linear motor. Similarly to the phys-
ical domain of the plant, where restrictions were necessary—though not
detailed in this work—due to the plant’s physical viability, restrictions are
also required in the control variable domain. This relates to the acceptable
values for the maximum control force, which are dependent on the gain
values.

To illustrate this, Figs. 6(a) and 6(c) show the effect of simultaneously
varying the values of 𝑘𝑠 and 𝑏 on the 𝐻∞ guaranteed cost and the norm
of the gain 𝐾 , respectively, when 𝛽 = 𝛽initial, 0 ≤ 𝑍𝑖 𝑗 ≤ 3, and 𝐺 ≥ 04×4.
It can be observed that some regions with acceptable values for the 𝐻∞
guaranteed cost correspond to areas with higher gains. Although in this
example, all values of the 𝐻∞ guaranteed cost fall within acceptable limits,
better conditioning of the gain may be necessary to ensure compliance with

Algorithm 1: Optimisation of 𝑥𝑝 (plant parameters)

1: Let 𝑥𝑐2 := 𝛾, 𝛾 defined in Lemma 2 ⊲ Initialise 𝛾 (𝐻∞
guaranteed cost)

2: for 𝑖 = 1 : 1 : 𝑞 do ⊲ Iterate over all possible 𝑏(𝑖) values
3: for 𝑗 = 1 : 1 : 𝑞 do ⊲ Iterate over all possible 𝑘𝑠 ( 𝑗)

values
4: 𝛾(𝑖, 𝑗) = 𝛾(𝑏(𝑖), 𝑘𝑠 ( 𝑗), 𝛽𝑖𝑛𝑖𝑡𝑖𝑎𝑙), 𝑏(𝑖) and 𝑘𝑠 ( 𝑗) ∈ 𝑥𝑝

⊲ Compute 𝛾 for the given parameters
5: if 𝛾 <𝛾𝑚𝑖𝑛 then ⊲ Check if the new 𝛾 is the lowest

found
6: 𝑏* ← 𝑏(𝑖) and 𝑘𝑠,* ← 𝑘𝑠 ( 𝑗) ⊲ Update optimal

values
7: end if
8: end for
9: end for

actuator constraints.
Rather than detailing the specifics of the actuator, this work assumes

that an arbitrary control force 𝑢 can be achieved within the maximum force
limits, constrained by physical feasibility. Consequently, a strategy for gain
limitation has been adopted, treating the slack variables 𝛽, 𝑍 , and 𝐺, as
defined in Lemma 2, as control design variables.

Following the identification of 𝑥𝑐2, the limits for the slack variables 𝑍
and 𝐺, as defined in Lemma 2, are established. The maximum and mini-
mum bounds for these variables are determined to provide a feasible range
for subsequent optimisation. Since the gain is expressed as 𝐾 = 𝑍𝐺−1,
constraining these variables will inherently limit the gain. Therefore, the
optimal set 𝑥𝑐3 is defined as the argument that minimises the norm of 𝐾 ,
and was chosen such that 0 ≤ 𝑍𝑖 𝑗 ≤ 3, ∀ 𝑖, 𝑗, and 𝐺 = 𝐺′ ≥ I.

With the optimal candidates 𝑏∗ and 𝑘𝑠,∗ identified, the next step
is, therefore, to determine the optimal value of 𝛽, as shown in Algo-
rithm 2. The values for 𝛽 follow a logarithmic progression, spanning
𝛽 ∈ [10−9, 103 ]. The choice of this range was made based on the values
of 𝛽 for which the optimisation problem converges. The algorithm tracks
the smallest 2-norm of gain K encountered and updates 𝛽opt whenever a
new minimum is found. This step ensures that 𝛽opt is the value of 𝛽 that
minimises the gain 𝐾 .

Algorithm 2: Optimisation of 𝛽 parameter
1: Let 𝑥𝑐4 := 𝛽, with 𝛽 defined in Lemma 2. ⊲ Initialise 𝛽

(scalar LMI variable)
2: for 𝑖 = 1 : 1 : 𝑚 do ⊲ Iterate over all possible 𝛽(𝑖) values
3: ∥𝐾 ∥ := 𝐾 (𝑏∗, 𝑘𝑠,∗, 𝛽(𝑖)) ⊲ Compute ∥𝐾 ∥ (the norm of the

gain K) using current 𝛽(𝑖)
4: if ∥𝐾 ∥ < ∥𝐾 ∥𝑚𝑖𝑛 then ⊲ Check if the new ∥𝐾 ∥ is the

lowest found
5: 𝛽𝑜𝑝𝑡 ← 𝛽(𝑖) ⊲ Update optimal 𝛽 value
6: end if
7: end for

Figures 6(b) and 6(d) show the effect of assuming the values 𝛽 = 𝛽𝑜𝑝𝑡 ,
0 ≤ 𝑍𝑖 𝑗 ≤ 3, and 𝐺 = 𝐺′ ≥ I on the 𝐻∞ guaranteed cost and the
magnitude of the feedback gain, respectively. A new region of optimality
is observed, with the values for the 𝐻∞ being slightly higher compared to
the previous case. However, the gain values are now lower, on the order
of 109. This not only demonstrates the preservation of the 𝐻∞ guaranteed
cost but also ensures that the gains remain within the limits of physical
feasibility.

SeDuMi primarily employs a self-dual embedding interior-point method
based on self-concordance to solve convex conic problems. Consequently,
we do not have direct control over the smoothness of the controller gain
norms presented in Fig. 6(c) and 6(d). The solver returns any feasible
gain values that satisfy the optimisation constraints, and thus, variations in
smoothness may naturally arise due to the numerical optimisation process.
Additionally, we explored the influence of adding restrictions to the decision
variables (slack LMI variables 𝑍 and 𝐺), which could theoretically affect
the smoothness of the results. Interestingly, we observed that imposing
these restrictions to ensure a feasible gain region actually led to a reduction
in non-smoothness rather than exacerbating it.

Finally, a combined plant/controller optimisation objective, 𝐽 , is defined.
With 𝑥𝑐3,opt and 𝑥𝑐4,opt held constant, the algorithm iterates through the
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Table 1 Values for physical and control parameters

Parameter Value [SI] Parameter Value [SI]

𝑚1 65 𝑟𝑎𝑛𝑔𝑒1 15
𝑚2 325 𝑟𝑎𝑛𝑔𝑒2 15
𝑘𝑡 232.5 × 103 𝛽𝑖𝑛𝑖𝑡𝑖𝑎𝑙 1 × 10−1

𝑏𝑡 0 𝑘𝑠,∗ ∈ [1.6003 × 104, 1.6018 × 104]
𝑘𝑠 ∈ [1.5059 × 103, 1.6018 × 104] 𝑏∗ ∈ [8.4456 × 103, 8.4606 × 103]
𝑏 ∈ [6.6731 × 103, 8.4606 × 103] 𝑥𝑐3,𝑜𝑝𝑡 0 ≤ 𝑍𝑖 𝑗 ≤ 3, 𝐺 = 𝐺′ ≥ I
𝐺 77.2 × 109 𝛽𝑜𝑝𝑡 1 × 10−4

𝐴𝑓 0.1
𝐶𝑑 0.7
𝑘𝑣 7500
𝜌1 850

𝑃𝑎𝑙𝑙𝑜𝑤 4.75 × 106

(a) (b)

(c) (d)

Fig. 6 Effect of simultaneously varying the values of stiffness and damping on the H∞ guaranteed cost, and on the
norm of the gain, ∥K ∥. (a)(c) The value for β was assumed to be βinitial = 1 × 10−1, with 0 ≤ Zi j ≤ 3 and G ≥ 04x4.
(b)(d) The effect of altering the values of xc3 and xc4 was evaluated with βopt = 1 × 10−4, 0 ≤ Zi j ≤ 3, and G = G ′ ≥ I.
Source: elaborated by the authors.

previously defined ranges of 𝑏 and 𝑘𝑠 using a set of nested loops. For each
combination of 𝑏 and 𝑘𝑠 , the 𝐻∞ guaranteed cost is recalculated, and the
cost function is assessed. The function 𝐽 integrates parameters and func-
tions such as 𝜆(𝑡 ) , ℎ̈2 (𝑡 ) , and 𝑢(𝑡 ) , which represent handling, comfort,
and control cost, respectively. The algorithm updates 𝑏opt and 𝑘𝑠,opt to
the values that minimise 𝐽 , ensuring an optimal design configuration, as
shown in Algorithm 3.

The cost function used in this case study is an adaptation of some
presented in the literature [18,29] and is described below:

𝐽 =

∫ 𝑡F
0

(︂
𝑟1𝜆

2 + 𝑟2 ℎ̈2
2 + 𝑟3𝑢

2
)︂
𝑑𝑡 + 𝑟4𝛾, (31)

with 𝜆 = (ℎ1 − 𝑤) , 𝑟1 = 103, 𝑟2 = 5, 𝑟3 = 1, and 𝑟4 = 101. The adaptation
involves the addition of the term 𝑟4𝛾 to account for the 𝐻∞ guaranteed
cost of the system. Additionally, the weights 𝑟1, 𝑟2, 𝑟3, and 𝑟4 ensure

Algorithm 3: Optimisation of 𝐽 cost function
1: for 𝑖 = 1 : 1 : 𝑝 do ⊲ Iterate over all possible 𝑏(𝑖) values
2: for 𝑗 = 1 : 1 : 𝑝 do ⊲ Iterate over all possible 𝑘𝑠 ( 𝑗)

values
3: 𝛾(𝑖, 𝑗) = 𝛾(𝑏(𝑖), 𝑘𝑠 ( 𝑗)) ⊲ Compute 𝛾 based on

parameters
4: 𝐽 (𝑖, 𝑗) = 𝐽 (𝛾(𝑖, 𝑗), 𝑢(𝑡), ℎ̈2 (𝑡), 𝜆(𝑡)), 𝐽 defined in

Eq. (31) ⊲ Evaluate the cost function 𝐽
5: end for
6: end for
7: [𝑏𝑜𝑝𝑡 , 𝑘𝑠,𝑜𝑝𝑡 ] ∈ 𝑥𝑝 := arg min𝑥𝑝 𝐽 ⊲ Find optimal

parameters by minimising 𝐽

Letters in Dynamic
Systems and Control

PREPRINT FOR REVIEW / 9

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

ASME Letters in Dynamic Systems and Control. Received November 01, 2024;
Accepted manuscript posted May 8, 2025. doi:10.1115/1.4068615
Copyright © 2025 by ASME; reuse license CC-BY 4.0

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/lettersdynsys/article-pdf/doi/10.1115/1.4068615/7493948/aldsc-24-1056.pdf by guest on 12 M

ay 2025



approximately the same magnitude for each component of the objective
function.

6500 7000 7500 8000 8500
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0 5000 10000 15000
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22

24

26
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(b)

Fig. 7 (a) Effect of varying the values of damping with
fixed stiffness, ks ,opt , on the cost function J , as defined
in Eq. (31), for the rough road. (b) Effect of varying the
values of stiffness with fixed damping, bopt , on the cost
function J , as defined in Eq. (31), for rough road. Source:
elaborated by the authors.

One can see in Fig. 7 the individual effect of each of the uncertain
parameters on the computation of the cost function expressed in Eq. (31)
when the other parameter is set to its optimal value for a rough road.
Considering the lowest cost, 𝐽 , the optimal parameters were established, as
expressed in Table 2. Observe that, since the parameters are uncertain, they
belong to the interval [𝜎min

𝑖
, 𝜎max
𝑖
], as defined in Eq. (30) and Table 1.

Table 2 Solution for the plant/controller optimisation
problem

Parameter Value

𝑘𝑠,𝑜𝑝𝑡 ∈ [1.6003 × 104, 1.6018 × 104]
𝑏𝑜𝑝𝑡 ∈ [6.6731 × 103, 6.6881 × 103]

Figures 8(a) through 8(c) illustrate the disturbance modelled as vari-

ations in a rough road surface and the dynamic response of the system.
The results show that the approach adopted in this work is effective in
minimising the vehicle’s vertical acceleration. Specifically, the solution to
this CCD problem requires setting the stiffness rate to the maximum value
within the interval considered for 𝑥𝑝 , while the damping rate should take
the opposite approach.

This choice arises from how the plant and control variables were se-
lected, such as in the cases of 𝑥𝑐3 and 𝑥𝑐4, which were chosen to minimise
control gain. This approach suggests a preference for prioritising the pas-
sive dynamics of components when designing the suspension, rather than
relying on brute control force. However, more than just optimising passive
dynamics, the CCD framework enables a combined plant/controller optimi-
sation. This is critical, as suspension performance depends on whether it is
an active or passive system. In other words, optimising passive dynamics
alone may be insufficient depending on the desired performance and ex-
ternal inputs. For instance, in real scenarios where the vehicle encounters
rough, uneven surfaces, a passive suspension might not provide the ex-
pected comfort for passengers, highlighting the need for active suspension
systems like the one proposed in this paper. Nonetheless, passive and active
components can sometimes compete rather than complement each other, a
well-recognised issue in suspension systems [29]. This coupling between
plant and controller optimisation underscores the value of co-design, as
demonstrated by this example.

For comparison, Fig. 8(c) illustrates the system’s response when the
plant parameters were set to the optimal values identified in this study, and
two control strategies were applied: the method proposed in this paper and
the traditional LQR formulation, with weighting matrices 𝑄 = 𝐶𝑧𝐶

′
𝑧 and

𝑅 = 10. Although the performance difference between the two controllers
is small, the approach introduced in this paper demonstrates superior per-
formance, exhibiting lower overshoot and improved settling time. Addi-
tionally, it offers greater versatility compared to LQR, particularly in terms
of incorporating decision variables for CCD design and integrating control
optimisation sub-problems.

The methodology presented in this work successfully achieves the objec-
tive of connecting CCD frameworks with systems that incorporate paramet-
ric uncertainties and are subject to disturbances. Regarding the acclaimed
optimality in co-design applications, 𝐻∞ control plays a critical role in min-
imising the impact of exogenous inputs on system performance. The LMI
conditions proposed in this paper not only provide sufficient conditions to
ensure a bound on the guaranteed cost for 𝐻∞ control, but also offer a
straightforward means of expressing stability and synthesis conditions, al-
lowing for flexibility in control system design. In addition, unlike classical
optimal control methods, where the trade-off between performance met-
rics and control expenditure is managed through two Hermitian positive-
definite matrices—adding conservatism to the design by limiting control
flexibility—this approach allows for greater freedom in selecting plant and
controller parameters. These parameters can be treated as independent de-
sign variables in co-design problems, facilitating a less conservative and
more adaptable design framework. In this case study, for example, we
only considered 𝑘𝑠 and 𝑏 as uncertain parameters. However, uncertainty
could be introduced into any plant parameter, though this would increase
the dimension of the polytope.

We limited our approach to introducing new slack variables into the
LMI control design conditions to reduce the conservatism of the method
proposed in Lemma 1. Other strategies could involve the use of parameter-
dependent matrices and the consideration of decision variables as homoge-
neous polynomially parameter-dependent variables of any chosen degree.
These techniques have been widely applied in polytopic systems [34,35] and
can be incorporated by making simple adjustments to the LMI conditions in
Section 3. With this approach, additional control design variables could be
included. For example, we limited gain by constraining the slack variables
𝑍 and 𝐺; however, constraints on the plant, control, and state could also
be directly incorporated into the LMI conditions. This flexibility highlights
the adaptability of the method presented in this paper.

CCD inherently involves the simultaneous optimisation of plant and con-
trol parameters, often requiring iterative procedures over a range of values
and typically implementing modifications in a parametric manner. Addi-
tionally, all physical modelling inherently contains approximations and un-
certainties. These approximations and uncertainties, when combined with
CCD, become even more critical, as the interdependency between plant
and control increases the complexity of the design space and amplifies the
impact of uncertainties. Therefore, these issues could be exacerbated, mak-
ing techniques that address uncertainties and unknown dynamics, such as
robust control, even more essential. Hence, the methodology presented in
this work provides a powerful means to handle these challenges effectively.

Additionally, a key advantage of using parametric uncertainties, as done
in this work, is the computational efficiency it can bring to CCD approaches.
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Fig. 8 (a) Road surface, w (t), modelled as a rough road. (b) The system response for optimal parameter values
obtained through the bi-nested CCD approach, combined with a feedback gain that minimises the H∞ guaranteed
cost, as adopted in this work, is considered for the case where α1 = · · · = αn . State values: vehicle body and wheel
positions, along with vertical velocities, are measured outputs for rough road input. (c) Vehicle vertical acceleration,
using H∞ as adopted in this work (red line), for the case where α1 = · · · = αn , and the traditional LQR (black line) with
weight matrices Q = CzC

′
z and R = 10. Source: elaborated by the authors.

CCD often requires evaluating a large number of candidate solutions across
a given range of plant parameters, which can be computationally expen-
sive. Although no computational metrics were presented in the current
paper, our approach suggests a more structured way of handling this, as it
offers a method to break the original CCD parameter candidate range into
smaller subintervals. These subintervals could be treated as uncertain can-
didates, and the search for an optimal candidate could then be performed.
In a second step, once an optimal parameter region is identified, a refined
search within this narrowed range can be conducted, now considering the
parameters within this reduced interval as known. By reducing the total
number of candidates that need to be explicitly evaluated, this method can
significantly decrease computational effort while still preserving robust-
ness. However, this will be addressed in future work.

The method presented in this paper is especially beneficial for applica-
tions where disturbance rejection and robustness are critical, such as in ac-
tive suspension systems, autonomous systems, and energy systems exposed
to varying environmental conditions. However, while the 𝐻∞ control min-
imises the worst-case impact of disturbances, it does not necessarily yield
the best performance in terms of steady-state tracking or transient response
when disturbances are small.

5 Conclusion
This study has made significant progress in bridging the gap between

control co-design and robust control by extending CCD to systems with
exogenous inputs and parametric uncertainties. The proposed methodology,
which employs 𝐻∞ control to minimise the influence of disturbances and
ensure system stability, has been validated through numerical examples
involving a scalar plant and an active car suspension system. The results
indicate that the integration of CCD with robust control strategies not only
guarantees system performance but also provides a systematic approach for
managing uncertainties within a polytopic framework.

Comparing different control co-design formulations using the framework
adopted in this paper and evaluating the computational cost associated with
each approach is left for future work. Given that the CCD framework has
been recently applied in the context of wave energy converters and floating
offshore wind platforms [6,7,49,50], a future study could focus on these
systems, considering the challenge of predicting ocean wave conditions.
This could involve applying the current framework while accounting for
unforeseen wave frequencies as disturbances. Lastly, a similar framework

to the one presented in this paper could consider the adoption of either the
optimal 𝐻∞ norm/guaranteed cost, 𝐻2 norm/guaranteed cost, or a mixed
𝐻∞ and 𝐻2 approach as the controller, instead of solely using the 𝐻∞
norm/guaranteed cost.
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Nomenclature
𝛼 = Uncertainty parametrisation element

Ξ𝑖 , Ξ(𝛼) = The 𝑖-th vertex of a polytopic domain, and the representation
of any uncertain matrix, respectively

Λ𝑁 = A unit simplex set of dimension N
𝑤𝑝 , 𝑤𝑐 = Weights on plant and controller objectives

𝑢 = Control input
𝜓 = Plant design objective function
Ψ = Controller cost function

Γ, 𝜍 = Controller constraints
𝑃 = Lyapunov matrix

𝑍, 𝐺, 𝐻 = Matrix LMI slack variables
𝛽 = Scalar LMI variable
𝛾 = 𝐻∞ norm/guaranteed cost
𝜇 = The square of the 𝐻∞ norm/guaranteed cost
★ = The transpose of a symmetric matrix block
I = Identity matrix

𝑥𝑝 = plant design variables
𝑥𝑐 = control design variables

Superscripts and Subscripts
𝑧 = related to the controlled output
𝑢 = related to the control input
𝑤 = related to the disturbance input
𝑧𝑢 = related to the effect of control input in the controlled output
𝑧𝑤 = related to the effect of disturbance input in the controlled

output
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∗, 𝑜𝑝𝑡 = Suboptimal and optimal, respectively
′ = The transpose of a matrix
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