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Real-world processes often display a prolonged memory, which extends beyond the single-step 
dependency characteristic of Markov processes. In addition, the current state of an empirical process 
is often not only influenced by its own past but also by the past states of other dependent processes. 
This study introduces the generalized version of the Chapman-Kolmogorov equation (CKE) to estimate 
the memory size in such scenarios. To assess the applicability of our approach, we generate coupled 
time series with predetermined memory lengths using the autoregressive model. The results show a 
high degree of accuracy in measuring memory lengths. Subsequently, we employ the generalized CKE 
to analyze cryptocurrency data as a real-world case study. Our results indicate that the past dynamics 
of cryptocurrencies significantly impact their current states, thereby highlighting interdependencies 
among them. The method proposed in this study can be also utilized in forecasting coupled time series.

The conventional method for estimating the current state of a process involves studying its past states since the 
present behavior of a process is not entirely independent of its past. To quantify the relationship between the 
current and preceding states, we employ a measure referred to as the Markov length1–4. One of the common 
approaches to computing the Markov length is the Chapman-Kolmogorov equation (CKE)5,6. In a study on 
rough surfaces researchers introduced three methods to calculate Markov length: the CK test, the Wilcoxon 
test, and a method based on the Langevin equation7. Among these, the CK method stands out as one of the 
most widely used due to its generalization capabilities, unlike the more specific applications of the other two. 
Given the growing significance of interdependent processes across various fields in recent decades, applying 
the generalized CK method to both synthetic and empirical data provides valuable insights into underlying 
dynamics. This approach has been applied to diverse fields such as turbulence8,9, rough surface1,7,10, financial 
markets11–14, biology15, signal processing16, and earthquakes17.

In the real world, finding a process in isolation from other processes is challenging. As a result, a process 
can be not only influenced by its own past but also by the past of other processes18–20. For example, historical 
oil prices directly impact specific commodities’ costs and even some countries’ GDPs21. Another instance is 
the interdependency between currency exchanges and the values of various cryptocurrencies22,23. In order 
to analyze the memory length of such examples, researchers have applied the CK test method across various 
domains. This approach is utilized in a study to analyze the roughness of surface height profiles, providing 
insights into the stochastic behavior of rough surfaces7. In another study researchers employed the CK test to 
evaluate heart rate beat-to-beat fluctuations in non-stationary data, effectively distinguishing healthy subjects 
from those with congestive heart failure24. This raises the question of how to measure the mutual memory effects 
between such dependent processes. Gao et al. worked on assessing the efficiency of stock markets in the US 
and China, concluding that while the US market largely conforms to the Efficient Market Hypothesis (EMH), 
the Chinese market shows deviations, especially in high-frequency data25. The method they used was Lempel-
Ziv complexity and permutation entropy to quantify unpredictability and they also aimed to understand how 
temporal patterns evolve in financial systems, capturing deviations from randomness by analyzing complexity. 
Their study highlighted the characterization of long-range correlations in the Chinese stock market using 
the Hurst parameter, which quantifies memory effects in time series data. The Hurst exponent is commonly 
employed to measure persistence or anti-persistence in complex systems, offering insight into how past states 
influence future dynamics. This finding indicates that price movements in the Chinese market are not entirely 
random but are influenced by past events over extended time scales. While our approach does not explicitly 
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utilize the Hurst parameter, it inherently accounts for memory effects through the structure of the dynamical 
equations governing the system. In this paper we intend to measure memory effects and inter-dependencies 
between cryptocurrency processes, focusing on how past states influence future dynamics. Our focus is on 
quantifying short-term memory effects using the generalized Chapman-Kolmogorov equation. Similarly, our 
approach highlight the importance of high-frequency data in revealing market inefficiencies.

This study aims to address this question by proposing a generalization of the Chapman-Kolmogorov equation 
to two coupled processes. In order to evaluate the effectiveness of the generalized CKE, we initially employ a 
toy model based on the autoregressive model, specifically designed for generating two coupled processes with 
predefined Markov lengths. By applying our method on toy model with the stochastic Langevin signals, we 
indeed investigated that the method can distinguish the Markov length for this stochastic data to ensure having 
the satisfying results for our toy model to be utilized for the real data as well. Then, we apply our approach to the 
cryptocurrency market data. We gather data from three different time frame samples and proceed to measure the 
Markov lengths for each time frame. Finally, we compare the obtained results for each respective time frame. It 
is worth mentioning that the Markov length can be affected by many different sources but regardless of whether 
what is the reason of constructing such a memory, this method can detect the length of the memory.

This paper is organized as follows. Section Method presents the methodology, which is divided into two 
subsections: (A) a review of the CKE and its application for calculating the Markov length of a single process, 
and (B) the introduction of the generalized version of CKE for analyzing two coupled processes and calculating 
their respective Markov lengths. In Sect. Results, we evaluate our proposed method through two experiments. 
Firstly, we test our approach using the synthetic data of two coupled autoregressive processes with known 
Markov lengths. Subsequently, we apply our method to empirical data from the financial cryptocurrency market. 
In Sect. Conclusion, we present our final arguments and the key findings of our study. Additionally, Appendix A 
provides details of the error estimation method utilized in finding Markov length.

Method
Chapman-Kolmogorov equation
Markov processes, renowned for their mathematical simplicity, are frequently employed to model dynamic 
systems26. This simplicity results from the assumption of memoryless transitions between the two successive 
states of the system. However, many real-world systems exhibit memory effects27. In such cases, a characteristic 
length scale known as Markov length may exist that describes the time scale up to which the influence of memory 
is significant while beyond which the memory effect becomes negligible28,29. Hence, for time scales larger than 
Markov length, a non-Markov process can be approximated by a Markov process and consequently should 
satisfy the prerequisites of Markov processes30,31. One prerequisite is the Chapman-Kolmogorov equation that 
relates the probability of transitioning from one state to another with intermediate transitions between those 
states32. CKE has proved itself as a suitable method for estimating Markov length8,33.

Before proceeding further, it is important to clarify some fundamental concepts regarding stochastic 
processes. Consider a collection of identical systems, each producing a sample process denoted as X(t), with 
“t” representing a parameter typically associated with time. A stochastic process is defined as the ensemble 
comprising all possible sample processes and is represented by {X(t)}. Each sample process is a specific 
instance or realization of the stochastic process. Hence, it is important to distinguish between a sample process 
and a stochastic process. At any given time t, each sample process has a unique value, while the stochastic process 
{X(t)} is a set of random variables.

The probability that the stochastic process has values within the interval (x, x + dx) at time t is expressed 
as p(x, t)dx, where p(x, t) is referred to as the probability density function (PDF). It is defined as ⟨δ(x − X(t))⟩
, where ⟨· · · ⟩ shows the ensemble average across all realizations of {X(t)} and δ is the Dirac delta function5. 
In a similar manner, the conditional probability density p(x2, t2|x1, t1), representing the likelihood that the 
stochastic process {X(t)} traverses the interval (x2, x2 + dx2) at time t2 after starting from x1 at time t1, is 
defined as ⟨δ(x2 − X(t2))⟩

∣∣
X(t1)=x1

. It is crucial to note that although t and x are independent variables in the 
definition of probability densities, when dealing with a sample process, which is the practical scenario, the value 
of the process depends on time, and they are not independent variables. All subsequent equations introduced or 
derived pertain to stochastic processes, which are then applied to analyze sample processes.

Here, we explain CKE and its application to calculate Markov length. In probability theory, the two-point joint 
probability density, denoted as p(x3, t3; x1, t1), can be obtained by integrating the three-point joint probability 
density p(x3, t3; x2, t2; x1, t1) over the variable x234. Respecting the definition of conditional probability, which 
states that p(xi, ti|xj , tj) = p(xi, ti; xj , tj)/p(xj , tj), where ti > tj , it is straightforward to prove that5

 
p(x3, t3|x1, t1) =

∫ ∞

−∞
p(x3, t3|x2, t2)p(x2, t2|x1, t1) dx2. (1)

The above equation is known as the Chapman-Kolmogorov equation35–37. It is worth noting that satisfying 
Eq. (1) is a necessary condition for a stochastic process to be classified as a Markov process. In other words, if a 
process fails to satisfy CKE, it cannot be considered a Markov process32,38. Exploiting this property, we can define 
Markov length, which represents a characteristic of systems with memory.

Consider an arbitrary stationary stochastic process {X(t)} along with points (ti, xi), (tk, xk), and (tj , xj), 
where ti > tk > tj . To assess the validity of CKE for these points, we introduce a parameter “S” that quantifies 
the difference between the two sides of Eq. (1). This parameter is defined as follows:
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S(xi, xj ; τ) = p(xi|xj ; τ) −

∫ ∞

−∞
p(xi|xk; τ ′)p(xk|xj ; τ ′′) dxk, (2)

where τ = ti − tj , τ ′ = ti − tk  and τ ′′ = tk − tj . If the stochastic process satisfies CKE, S would be zero; 
otherwise, S would be non-zero. To obtain a measure that captures the contribution of all possible values of xi 
and xj , we define a memory function as

 
M(τ) =

∫ ∞

−∞
|S(xi, xj ; τ)| dxidxj  (3)

By definition, the memory function M is a non-negative function that depends only on the temporal distance τ . 
This means that the memory function does not take into account any specific values of the stochastic process but 
rather focuses on the temporal relationship between the two points. This function exhibits different characteristics 
depending on the magnitude of τ . For sufficiently small temporal distances, it significantly deviates from zero, 
whereas for sufficiently large temporal distances, it converges toward zero. The specific temporal distance before 
and after which this transition occurs is called the Markov length. To calculate the Markov length, we compute 
M for various values of τ , and observe the specific values τ∗ at which an abrupt change from non-zero to nearly 
zero values happens in M. The Markov length is then determined as lm := τ∗.

It is noteworthy to emphasize that finding the Markov length for empirical processes is prone to error 
due to the uncertainties in calculating the probabilities presented in Eq.  (2). These uncertainties arise as a 
consequence of the limited length of real data. The error computation is significant in that it reflects the precision 
of measurements. Consequently, determining the cutoff point becomes essential as it enables us to specify the 
Markov length within the bounds of measurement accuracy. For detailed information regarding the computation 
of errors, please refer to Appendix A.

Generalized Chapman-Kolmogorov equation
In the previous section, we showed how to estimate Markov length for a stochastic process using CKE. Here, we 
generalize CKE to determine the mutual Markov length of two dependent processes.

Consider two dependent stochastic processes, denoted as {X(t)} and {Y (t)}, which possess the ability to 
memorize each other’s past states. In other words, the current state of each process is influenced not only by 
its own past behavior but also by the historical dynamics of the other process. For instance, Fig. 1 shows the 
schematic configuration of these processes with distinct memory characteristics. The arrows, together with the 
conditional probability density function, illustrate the dependence of each process at time t on its preceding 
steps, as well as the preceding steps of the other process. In such cases, it is possible to represent both processes as 
a unified vector stochastic process denoted as {R(t)}, where R(t) := X(t)i + Y (t)j, with  and  representing 
the unit vectors along the x-axis and y-axis, respectively. The Chapman-Kolmogorov equation for {R(t)} can 
then be expressed as follows7:

 
p(ri, ti|rj , tj) =

∫ ∞

−∞
p(ri, ti|rk, tk)p(rk, tk|rj , tj) drk, (4)

where drk = dxkdyk . Similar to the case of a single stochastic process, we can establish the definition of S for a 
stationary {R(t)} as follows:

 

S(ri, rj ; τ) :=

p(ri|rj ; τ) −
∫ ∞

−∞
p(ri|rk; τ ′)p(rk|rj ; τ ′′) drk.

 (5)

It should be noted that in the case of multiple processes, each process may possess its own Markov length and a 
mutual Markov length with respect to other processes. Consequently, for the two processes X(t) and Y(t), we can 
identify four distinct Markov lengths: lx←x

m , lx←y
m , ly←x

m , and ly←y
m . The arrowhead in the superscript indicates 

the direction of influence. For instance, the mutual Markov length ly←x
m  signifies that the past states of X(t) 

influence the present state of Y(t). To simplify notation, the superscript arrows will be omitted hereinafter, but 
the order should be kept in mind. The four Markov lengths can be determined through the following relations:

 

S(xi, xj ; τ) =
∫ ∞

−∞
S(ri, rj ; τ) dyidyj ,

S(xi, yj ; τ) =
∫ ∞

−∞
S(ri, rj ; τ) dyidxj ,

S(yi, xj ; τ) =
∫ ∞

−∞
S(ri, rj ; τ) dxidyj ,

S(yi, yj ; τ) =
∫ ∞

−∞
S(ri, rj ; τ) dxidxj .

 (6)
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Similar to the memory function defined for a single process in Eq. (3), four memory functions are defined as 
follows:

 

Mxx(τ) :=
∫ ∞

−∞
|S(xi, xj ; τ)| dxidxj ,

Mxy(τ) :=
∫ ∞

−∞
|S(xi, yj ; τ)| dxidyj ,

Myx(τ) :=
∫ ∞

−∞
|S(yi, xj ; τ)| dyidxj ,

Myy(τ) :=
∫ ∞

−∞
|S(yi, yj ; τ)| dyidyj .

 (7)

Finally, the corresponding four Markov lengths are determined by looking for the time differences at which the 
memory functions change from non-zero to near-zero values.

Results
Synthetic data: Autoregressive model
In order to evaluate the generalized CKE for measuring Markov lengths, we apply our method to two synthetic 
time series with predetermined Markov lengths. To generate synthetic time series, we use a widely recognized 
statistical model known as the autoregressive (AR) model39,40. This model defines a dependent variable as a 
linear combination of its past values, and possibly a noise term. The autoregressive model of order p, denoted by 
AR(p), is defined as:

Fig. 1. Schematic representation of two interdependent processes, denoted as X(t) and Y(t), exhibiting distinct 
memory characteristics. The time steps for X and Y are indicated by dots. Unfilled dots represent the time steps 
that remain within the memory range of each process at time t. The Markov length, which refers to the number 
of time steps included in the memory, is three for X and two for Y. The connection between the latest time 
step of each process in the memory of the other is depicted by blue and red arrows. As illustrated, the Markov 
length of X with respect to Y is one, while the Markov length of Y with respect to X is two. The conditional 
probability density of each process reflects the dependence of that particular process at time t on its previous 
steps as well as the previous steps of the other process.
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xt =

p∑
n=1

ϕnxt−n + ξt, (8)

where xt is the dependent variable at time t; xt−n is the lagged value of the dependent variable; ϕn is the constant 
coefficient representing the relationship between the current value, xt, and its lagged value, xt−n; p indicates 
the number of past time steps related to the current state; ξt is a Gaussian noise with zero mean and constant 
variance σ2

ξ . Using Eq. (8), we can generate time series that depends on the specific number of its previous steps.
Figure 2a shows a sample time series, xt, for p = 18 and ϕn = 0.3/p. Since the time series xt is stationary, 

we use Eq. (3) to calculate the Markov length. Figure 2b shows that M(τ) decreases to zero at τ = 19 (taking the 
error into account). This abrupt transition implies that xt depends on the 18 previous steps, which exactly agrees 
with p = 18. The red line in Fig. 2b represent the calculated error of the memory function, denoted as σM.

Inspired by the autoregressive model, we extend Eq.  (8) to enable the generation of two dependent AR 
processes with specific Markov lengths. This allows us to assess the effectiveness of our generalized Chapman-
Kolmogorov equation in determining the Markov lengths. Consider the following system of coupled equations 
governing the dynamics of the two processes xt and yt:

Fig. 2. (a) The figure presents a sample autoregressive process generated using Eq. (8) with p = 18, indicating 
that xt is constructed to depend on the preceding 18 steps. (b) CKE is applied to the time series xt. The plot 
depicts M(τ) as a function of τ . M(τ) reaches zero at τ = 19 by considering the error σM. This zero-crossing 
indicates that the process depends on the preceding 18 steps, thereby establishing the Markov length lm = 18.
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xt =
lxx
m∑

n=1

ϕxx
n xt−n +

l
xy
m∑

n=1

ϕxy
n yt−n + ξx

t ,

yt =
l
yx
m∑

n=1

ϕyx
n xt−n +

l
yy
m∑

n=1

ϕyy
n yt−n + ξy

t ,

 (9)

where ϕxx, ϕxy, ϕyx, ϕyy  are constant coefficients; ξx
t  and ξy

t  are stochastic Gaussian noises; lxx
m , lxy

m , lyx
m , and 

lyy
m  are Markov lengths of x and y with respect to themselves and other process.

We generate two sample time series, xt and yt, using Eq. (9) for lxx
m = 20, lxy

m = 10, lyx
m = 15, and lyy

m = 25
. The values of ϕn’s used in this case are analogous to that employed in the single time series case. Figure 3 
shows the memory function, M(τ), for four Markov lengths. As observed, the generalized CKE demonstrates 
successful performance, as the estimated Markov lengths ,taking into account the error σM, are equal to the 
initially chosen values utilized to generate the two time series.

Empirical data: Cryptocurrencies
This section provides the outcomes obtained from applying our method to empirical financial market data. We 
specifically focus on analyzing two cryptocurrency markets: Bitcoin (XBT/USD) and Ethereum (ETH/USD), 
using the permanent contracts offered by the Bitmex exchange. The objective is to calculate Markov lengths for 
the price dynamics of these two cryptocurrencies. The data period is three months, from the beginning of May 
to the end of July, 2020. The final price of each contract is determined per second using the price of every single 
transaction; see Fig. 4.

The initial step preceding the estimation of the Markov lengths using the generalized CKE method is to 
calculate the logarithmic returns, denoted as Rt, based on the market price pt. The logarithmic return is defined 
by the following relation:

 
Rt+1 = ln

(
pt+1

pt

)
, (10)

where pt denotes the price at time t. Logarithmic returns are preferred over actual prices when analyzing financial 
markets. They offer several advantages, such as facilitating the interpretation and comparison of price changes 
across different assets and periods, which is done by changing the focus to relative price changes rather than 
absolute price levels. Moreover, they tend to be more stationary than raw price data, enhancing their usefulness 
for statistical analysis and modeling.

Because of the nature of financial markets, estimating Markov length on an annual or monthly basis is not 
advisable. However, we should take care of very short time intervals41 as the number of data points decreases, 
and consequently, the density functions might not be accurate enough. Therefore, we have implemented our 
method on a weekly basis. Here, we separately present the results for three weeks. The price returns of XBT/USD 
and ETH/USD are represented by xt and yt, respectively.

Figure 5 illustrates the memory functions for the initial week spanning from May 27th to June 3rd, 2020. The 
memory functions, denoted as Mxx and Myy , represent the influence of process history on itself, while Mxy  and 
Myx signify the impact of one process history on another. To determine the corresponding Markov length for 
each of the four memory functions, we identify the error threshold, σM, depicted in Fig. 5 by the red horizontal 
curves. We employ the same methodology for analyzing two next weeks: July 13th to July 20th, 2020, and July 
22nd to July 29th, 2020, see Figs. 6 and 7.

The data show that the volatility of Bitcoin and Ethereum was at its greatest for the entire three months during 
the first sample week. As a result, the Markov lengths of the two coins are high (526 and 436 seconds, respectively), 
and the dependency duration between the two coins is also significant (approximately 300 seconds). Note that 
the dependency between the two coins is not symmetric. Ethereum exhibits a slightly higher level of dependence 
on Bitcoin compared to the dependence of Bitcoin on Ethereum, as depicted in Fig. 5. During the second sample 
week, which is characterized by minimal fluctuations in the overall data, the Markov lengths are observed to 
be relatively small, see Fig. 6. Finally, for the third sample week illustrated in Fig. 7, all Markov lengths expand 
further compared to the previous two samples, showing a longer memory effect during this week.

Conclusion
Estimating future events based on past events has always been challenging when dealing with non-deterministic 
and stochastic processes. The well-known mathematical model of the Markov process explains how processes 
transition from previous states. This particular class of processes helps to understand non-Markovian processes 
that rely on more than just the immediately preceding step. The length of this dependency is referred to as 
Markov length, which is calculated by applying the Chapman-Kolmogorov equation.

In reality, it is rare to find a phenomenon that exists in isolation from all other phenomena, as various 
phenomena interact with each other in direct and indirect ways. The level of reliance between a process and 
other processes has reached a stage that sometimes exceeds the reliance on its own past. Certain phenomena can 
emerge and continue to influence other phenomena. For instance, increased oil prices today may alter the cost of 
various products in the future. In this research we have used real data with heavy-tailed probability distribution 
functions which is the characteristic of financial markets. Here, a question may raise that the dependent Markov 
length of coupled process are influenced by the probability distribution. For instance, in dependent financial 
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markets, such as two competing companies, if the price of the product of a company has a small change, the 
others may not get affected but in case the volume of the change is significant, this would seriously influence 
the price of the other companies product. Thus, we anticipate that in high frequency range the markets behave 
independently, however, in large scale events dependencies emerge. In the Appendix of42, it is explained that 

Fig. 3. CKE results for the generated data using Eq. 9 with the following Markov lengths: lxx
m = 20, lxy

m = 10
, lyx

m = 15, and lyy
m = 25. The plot depicts the memory function M(τ) as a function of τ , and by considering 

the error σM, we observe that the four Markov lengths obtained from CKE match the initial values with which 
the time series were generated.
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in order to investigate fat-tail data, we need to surrogate the data, meaning that we apply Fourier transform 
on the return data and then randomize the phases and finally apply inverse Fourier transform. This process 
convert fat-tail data to Gaussian data. Now, we can re-calculate the Markov length and the reported results show 
smaller Markov length.We have applied the surrogate method on our return data of real markets, and the results 
are shown in Fig. 8. This observation imply that after surrogate, the Markov length is significantly decreased. 
This indicates that the Markov length can be influenced when the market is low frequency. In low frequency 
state where we have heavy-tailed data and the significant events occur, the markets can be affected by the other 
markets state rather than their own history.

Such observations led us to generalize the Chapman-Kolmogorov equations and suggest a method to 
estimate the duration of the mutual past dependency, which we call the mutual Markov length. Once we applied 
our method to the synthetic time series produced by the auto-regressive model, we proceeded to employ 
cryptography as real data-sets. We tested these data-sets to determine the specified mutual Markov length. 
The approach proposed in this study demonstrates its capability to identify the mutual dependency between 
processes based on the past impact of one process on the current state of another.

Fig. 4. (a) and (b) depict the coevolution of Bitcoin (XBT) and Ethereum (ETH) prices from May 1 to July 31, 
2020. In contrast, (c) and (d) represent the logarithmic returns of XBT and ETH, respectively.
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Fig. 5. The CKE results are presented for the first week, which extends from May 27th to June 3rd, 2020. 
During this interval, price fluctuations of Bitcoin reached their maximum compared to the other weekly 
intervals. The superscripts x and y represent Bitcoin and Ethereum, respectively. As an example, in the top left 
figure, Mxx signifies the CKE result for Bitcoin, indicating the influence of its past on itself.
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Fig. 6. The CKE results are presented for the second week, which extends from July 13th to July 20th, 2020. 
During this interval, price fluctuations of Bitcoin reached their minimum compared to the other weekly 
intervals.
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Fig. 8. The CKE results are presented for the first week data (a) and for the the surrogate of it (b), for Mxx(τ) 
memory function, which shows a significant decrease on the Markov length.

 

Fig. 7. The CKE results are presented for the third sample week, covering the period from July 22nd to July 
29th, 2020. During this interval, the price fluctuation of Bitcoin was near its three-month mean value.
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Data availability
Data analyzed during the current study is publicly available in a repository: https://public.bitmex.com/
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