
Academic Editor: Aneta

Poniszewska-Maranda

Received: 15 December 2024

Revised: 2 February 2025

Accepted: 23 February 2025

Published: 23 March 2025

Citation: Kumar, S. ORAN-

HAutoscaling: A Scalable and Efficient

Resource Optimization Framework for

Open Radio Access Networks with

Performance Improvements.

Information 2025, 16, 259. https://

doi.org/10.3390/info16040259

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

 information

Article

ORAN-HAutoscaling: A Scalable and Efficient Resource
Optimization Framework for Open Radio Access Networks with
Performance Improvements
Sunil Kumar 1,2

1 School of Computing and Digital Media, London Metropolitan University, Holloway Rd,
London N7 8DB, UK; sk0064@surrey.ac.uk

2 Institute for Communication Systems, University of Surrey, Guildford GU2 7XH, UK

Abstract: Open Radio Access Networks (ORANs) are transforming the traditional telecom-
munications landscape by offering more flexible, vendor-independent solutions. Unlike
previous systems, which relied on rigid, vertical configurations, ORAN introduces network
programmability that is AI-driven and horizontally scalable. This shift is facilitated by
modern container orchestrators, such as Kubernetes and Red Hat OpenShift, which sim-
plify the development and deployment of components such as gNB, CU/DU, and RAN
Intelligent Controllers (RICs). While these advancements help reduce costs by enabling
shared infrastructure, they also create new challenges in meeting ORAN’s stringent latency
requirements, especially when managing large-scale xApp deployments. Near-RTRICs are
responsible for controlling xApps that must adhere to tight latency constraints, often less
than one second. Current orchestration methods fail to meet these demands, as they lack
the required scalability and long latencies. Additionally, non-API-based E2AP (over SCTP)
further complicates the scaling process. To address these challenges, we introduce ORAN-
HAutoscaling, a framework designed to enable horizontal scaling through Kubernetes.
This framework ensures that latency constraints are met while supporting large-scale xApp
deployments with optimal resource utilization. ORAN-HAutoscaling dynamically allo-
cates and distributes xApps into scalable pods, ensuring that central processing unit (CPU)
utilization remains efficient and latency is minimized, thus improving overall performance.

Keywords: scalability; cloud; high performance; high computing; ORAN; E2 agent; load
balance; near-RTRIC; non-RTRIC

1. Introduction
The emergence of 6G networks represents a transformative shift in global connectivity,

pushing beyond current limitations of bandwidth, latency, energy efficiency, scalability, and
performance. Designed to revolutionize telecommunication infrastructures, 6G is expected
to facilitate the interconnection of billions of devices, from sensors to computational devices,
mobile phones, and machines, enabled by artificial intelligence and machine learning
applications (AI/ML) [1,2]. This technology is poised to play an important role in various
innovative use cases such as autonomous systems, smart energy grids, advanced imaging,
robotics, extended reality, and telemedicine [3,4]. To meet the requirements of these use
cases, 6G must offer features such as ultralow latency, scalability, high performance, large
bandwidth, and widespread connectivity across various devices and networks [5–7].

As these needs grow, there is a pressing requirement for flexible and scalable frame-
works to support the coexistence of various services, each with unique demands [8]. Tradi-

Information 2025, 16, 259 https://doi.org/10.3390/info16040259

https://doi.org/10.3390/info16040259
https://doi.org/10.3390/info16040259
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://doi.org/10.3390/info16040259
https://www.mdpi.com/article/10.3390/info16040259?type=check_update&version=1

Information 2025, 16, 259 2 of 25

tional ORAN architectures are not equipped to handle the full scope of these requirements,
making ORAN systems essential to unlock new opportunities in both the private and
academic sectors [9]. In this context, Software-Defined Networking (SDN) and Network
Function Virtualization (NFV) have been increasingly adopted to enhance the programma-
bility, intelligence, and energy efficiency of radio access networks (RANs), ensuring they
meet specific service demands [10–12]. Moreover, the segmentation of RAN functions
into distinct layers helps improve scalability, reliability, and adaptability, aligning with the
varied needs of next-generation services [13,14].

The demand for more agile, resource efficient, scalable, and cost-effective cellular
networks that can still guarantee that high data throughput and low latency is driving the
industry’s transition toward the cloudification and orchestration of key RAN components
such as the Near-Real-Time RAN Intelligent Controller (near-RTRIC), Non-Real-Time RAN
Intelligent Controller (non-RTRIC), and the overall RAN [15,16]. This shift leverages
the virtualization principles that have long been integral to cloud computing, SDN, and
NFV, providing enhanced flexibility for designing, deploying, and managing cellular
networks [17]. It allows for the dynamic monitoring, optimization, and reconfiguration
of network components through software, facilitating scalable and real-time network
management [5,18,19].

The ORAN initiative and the formation of the ORAN Alliance have further sup-
ported this paradigm shift by promoting an open, cloud-based architecture for cellular
networks [20–22]. This architecture enables interoperability between multi-vendor hard-
ware and software components and integrates AI/ML for predictive load management, key
performance tracking, and anomaly detection [23,24]. AI also plays a critical role in optimiz-
ing RAN functionalities, such as spectrum usage and traffic classification [25]. To facilitate
the adaptable deployment of 5G and 6G networks, ORAN introduces near-RTRIC and
non-RTRIC, which serve as platforms for hosting third-party AI-driven network functions.
Near-RTRIC handles real-time xApps for network monitoring and control, typically within
a 1-second latency window, while non-RTRIC supports rApps for longer inference loops.
These components are interconnected via the A1 interface, with dApps providing microser-
vices for extremely low-latency inference within 10 milliseconds [26,27]. The benefits of this
modular approach are manifold: it supports dynamic reconfiguration of the RAN to meet
current demands, reduces the total cost of ownership by enabling shared infrastructure,
and optimizes resource utilization through on-demand scalability [28]. However, this shift
to cloud-based orchestration and virtualization introduces new challenges, particularly in
managing the complexities of scalability, resource allocation, and maintaining stringent
latency requirements for AI/ML-based applications. Issues related to the E2 Application
Protocol (E2AP) between xApps and RIC, which uses SCTP protocol, complicate scaling ef-
forts, while some AI/ML solutions struggle to meet the necessary latency and performance
guarantees, especially in near-RTRIC and non-RTRIC loops.

While extensive research has addressed timing constraints in virtualized RANs, the
control plane, especially for near-RTRICs, still faces significant challenges in ensuring
timely decision-making to avoid outdated network decisions. These challenges highlight
the need for further innovation to meet the strict performance requirements in future
ORAN deployments [29]. Mismanagement of O-Cloud environments hosting rApps,
xApps, and dApps can lead to violations of control deadlines. Figures 1–3 are derived from
experimental data collected through a controlled testbed setup. We used this testbed to
simulate various scenarios, and the figures reflect the results of these controlled experiments.
The experimental setup and results presented in Figures 1–3 are based on the repository
available through a GitLab repository [30]. As shown in Figure 1, two critical metrics
contribute to these violations: (i) queuing time, which is the duration it takes for the near-

Information 2025, 16, 259 3 of 25

RTRIC to extract data from the RAN and pass it to an xApp, and (ii) execution time, which
reflects the processing time needed for the xApp to produce an output, including ML model
inference. Figure 2 demonstrates how the total time (sum of queuing and execution times)
increases as the number of xApps running on the near-RTRIC rises. The data presented
come from tests on an ORAN-compliant FlexRIC deployed on a Kubernetes. The goal is to
keep control within the one-second near-RTRIC time window (shown as shaded areas in
Figure 2). However, when the number of CPU-intensive xApps exceeds 35, Kubernetes
fails to meet the latency requirements, which is a conservative estimate for real-world
applications with hundreds of base stations. Another issue is inefficient CPU utilization. As
shown in Figure 3, the system crashes after 35 xApps, yet only 73% of the CPU is used. This
means 27% of the CPU remains underutilized, which is crucial since efficient computing
directly impacts operational costs. Thus, simply adding more virtual machines is not an
ideal solution. Instead, both horizontal and vertical scaling need to be applied to fully
utilize CPU and memory resources, ensuring cost savings while maintaining latency and
inference time within acceptable limits.

Figure 1. Queuing vs. processing times for different xApp numbers.

Figure 2. Total time vs. number of xApps.

Information 2025, 16, 259 4 of 25

Figure 3. CPU utilization vs. number of xApps.

Traditional scaling methods based on Central Processing Unit (CPU) and Random
Access Memory (RAM) metrics are insufficient for ensuring the performance of time-
sensitive applications like those in ORAN [31–33]. To address this, we propose a novel
integrated ORAN-HAutoscaling framework that combines proactive CPU-aware scaling
with a load-balancing mechanism based on latency and inference time. The system uses
a probing mechanism to gather real-time data through APIs, enabling dynamic scaling
decisions. By employing both horizontal and vertical scaling, the system can adapt to
varying load conditions. The inclusion of the probe mechanism optimizes load balancing
by applying the Bull and Bear (BnB) rule, which synchronizes probing to ensure fresh load
data. The key innovation of our framework is its ability to preemptively scale when CPU
usage exceeds 80% or when latency nears a critical threshold. This predictive scaling helps
maintain a low tail latency (below 1 s), even during peak loads, while also optimizing
resource use to reduce energy consumption and costs. To validate this approach, we
used Grafana to visualize CPU utilization and latency metrics, confirming that the system
consistently meets performance standards while supporting a large number of xApps.

By addressing the trade-offs between latency, resource utilization, and operational
efficiency, the ORAN-HAutoscaling framework improves scalability and responsive-
ness for time-sensitive applications in ORAN environments. Near-RTRIC plays a cen-
tral role in the ORAN architecture, hosting xApps for monitoring and controlling RAN
infrastructure [34–36]. These xApps manage distributed RAN components, such as eNB,
gNB, Open Contol Unit (O-CU), and Open Distributed Unit (O-DU), via the E2 protocol
on the southbound interface [37,38]. near-RTRIC communicates with non-RTRIC through
the A1 and O1 interfaces to optimize and manage RAN functions across diverse network
types [39,40]. xApps rely on the E2 interface to gather near-real-time data, which near-
RTRIC uses to make optimization decisions [41–43]. As defined by the ORAN Alliance,
near-RTRIC provides a database function for storing configuration data, ML tools for data
pipelining, messaging infrastructure, logging and metrics collection, and security functions.
It also resolves conflicts that may arise from requests from different xApps [44–46]. As
demand for advanced network services rises, near-RTRIC is under increasing pressure to
handle higher traffic and a growing number of xApps [47]. Traditional RICs like FlexRIC
struggle to manage this load due to limited scalability and inefficient resource use [48,49]. To
tackle this, we propose ORAN-HAutoscaling, a hybrid solution that supports containeriza-
tion, orchestration, and load balancing, enabling efficient resource management in FlexRIC
and other RICs. Unlike API-based solutions for near-RTRICs, ORAN-HAutoscaling uses

Information 2025, 16, 259 5 of 25

E2AP-based communication between xApps and RICs, overcoming the challenges posed
by the SCTP protocol.

ORAN-HAutoscaling dynamically adjusts the number of RIC instances (pods) based
on CPU utilization and latency, optimizing resource allocation. The system uses advanced
technologies like Docker, Kubernetes, and native load balancing with tunneling and routing
to facilitate horizontal scaling. The key components of ORAN-HAutoscaling include a
native load balancer to reduce latency and select servers based on CPU load, latency, and
streams in flight. The Bull and Bear (BnB) rule improves load balancing by combining these
signals and ensuring the freshness of the load data. Our framework optimizes CPU usage
and tail latency under peak load conditions, ensuring that the system remains responsive
even as mean CPU usage increases. The results demonstrate that ORAN-HAutoscaling
supports a larger number of xApps compared to traditional FlexRIC, efficiently manages
resources, and meets latency requirements.

The contributions of this work include:

• Introducing ORAN-HAutoscaling, a dynamic framework for managing and support-
ing large numbers of xApps, rApps, and dApps while optimizing CPU and latency.

• Conducting a comprehensive data collection study to assess the impact of a large
number of xApps, CPU resource sharing, and scaling on latency and inference times,
creating a data-driven latency model for optimization.

• Implementing ORAN-HAutoscaling and conducting extensive experiments on an
ORAN-compliant testbed, comparing it with traditional FlexRIC solutions. The re-
sults show that ORAN-HAutoscaling efficiently manages scaling, maintains latency
thresholds, and achieves high CPU utilization.

2. Problem Statement
Near-RTRIC is critical and struggles with capacity limitations and performance degra-

dation under a heavy load, leading to crashes and connection failures [50–55]. The re-
intialization of connection and xApp impacts the performance and downtime. This is
unacceptable given the essential role of near-RTRIC in ORAN. One potential solution in-
volves deploying near-RTRIC on multiple machines. However, this approach is inefficient,
as it fails to optimize resource utilization during periods of low traffic and may still be inad-
equate during peak traffic [56,57]. Therefore, the implementation of ORAN-HAutoscaling
offers a promising approach to dynamically manage near-RTRIC instances. The traditional
load balancer lacks support for the Stream Control Transmission Protocol (SCTP), which is
essential for near-RTRIC operations with a latency threshold. ORAN-HAutoscaling uses
a naive load balance system using the tunneling and routing concept to handle real-time
SCTP connections while maintaining latency within acceptable limits [58,59]. This research
paper aims to solve scalability challenges and to design and develop ORAN-HAutoscaling,
which optimizes resources while maintaining high computing capacity and performance.

3. Related Work
Virtual Machine (VM) and microservice dynamic scaling has been widely studied in

the last decades [60]. For instance, ref. [61] built a deadline-aware scheduler to control
application latency in a serverless environment. Ref. [62] modeled virtual workloads with
a focus on deadlines and costs, but they were more applicable to long-running applications
rather than real-time control situations, and workload modeling approachesw were also
mismatched. Ref. [63] explored autoscaling solutions to fulfill deadlines for simulation
workloads, whereas [64] employed a token bucket scheme to scale resources and satisfy
query deadlines in relational databases. In contrast, this paper focuses on tight control
timelines, where energy minimization, or profit maximization subject to QoS constraints,

Information 2025, 16, 259 6 of 25

and years of experience scaling resources under the same QoS requirements are modeled
in a quadratic-constrained quadratic programming (QCQP) model that uses detailed RAN
control workloads for input.

Currently, ORAN is abstracting the network infrastructure and providing the fol-
lowing cloud services to cellular network functions, allowing the separation of network
function-oriented scaling solutions from cloud computing-oriented scaling solutions well
into the future [65,66]. However, many of them are not guaranteed to provide bounded
latency for closed-loop control [67]. For example, in the ORAN setting, ref. [68] investi-
gated proactive resource scaling for virtual network functions (VNFs) based on workload
prediction, whereas [69] centered on application orchestration rather than scaling or energy
efficiency. Ref. [70] formulated a scheme for keeping coherence among base stations and
users that maximizes network throughput and saves resources when low computing ability
exists. Ref. [71] proposed proactive scaling to accommodate network slices. However,
these studies mainly focus on optimal placement and execution of services over ORAN
infrastructures, and they do not guarantee control latency or minimize energy consumption.

In recent years, proactive autoscaling techniques have gained significant attention
to address the limitations of traditional reactive methods. For example, Chen et al. [72]
introduced a deep learning-based forecasting model for network slice scaling, leveraging
historical traffic trends to preemptively allocate resources. Similarly, Patel et al. [73] em-
ployed a Markov decision process-based predictive autoscaling approach, demonstrating
reduced response time variability compared to reactive methods. These proactive strategies
significantly enhance system stability by minimizing sudden workload spikes, but they
often require computationally expensive model training and retraining, which is a limita-
tion in real-time ORAN environments. Our work differs in that it combines a lightweight
predictive model with dynamic scheduling, ensuring both efficiency and responsiveness in
RAN control workloads.

Alternative orchestration frameworks have also been explored to enhance network
function management. Kubernetes has become a dominant orchestration tool for cloud-
native workloads, with researchers integrating it with ORAN components for efficient
resource allocation. Zhang et al. [74] proposed reinforcement learning-based Kubernetes
scheduling for optimizing real-time resource scaling in ORAN. While Kubernetes-based or-
chestration offers flexibility, it lacks native support for stringent QoS requirements, leading
to potential latency issues. On the other hand, OpenStack Tacker [75] provides policy-
driven scaling for VNFs, allowing fine-grained control over network function lifecycles,
though it often suffers from longer instantiation times.

The virtualized ORAN is always demanding for energy efficiency. Prior works have
focused on energy usage in RAN, which is the most power-hungry part of cellular systems,
as well as VNFs like core networks and RICs. Ref. [76] investigated power consumption
trade-offs in virtualized RAN, whereas Pamuklu et al. developed a mixed-integer linear
programming model to optimize the energy of the RAN, considering the maximum accept-
able delays in the RAN’s data plane. Ref. [77] proved that dynamic power control under a
centralized controller can minimize the power consumption of RAN.

Despite these advancements, existing methods often overlook the interplay between
energy efficiency and real-time control constraints. While Nguyen et al. [78] explored
unikernels for lightweight virtualization in edge computing, achieving improved resource
utilization, their approach is less suitable for highly dynamic RAN environments. Similarly,
Lopez et al. [79] compared Kubernetes with ETSI MANO for network function orches-
tration, highlighting the trade-offs between flexibility and performance overhead. Our
proposed ORAN-HAutoscaling framework is the first to jointly model compute scaling,

Information 2025, 16, 259 7 of 25

resource optimization, and timing constraints for RAN control in ORAN, underpinned by
experimental ML inference characterization of control workloads and a working prototype.

4. ORAN-HAutoscaling: Scalable Framework ORAN Architecture
The scalable framework’s architecture is shown in Figure 4, alongside its integration

with the ORAN system. The framework gathers requests from an Service Management
and Orchestration (SMO) system through a control interface that network operators use to
submit requests for AI-based ORAN applications. The SMO system collects requests and,
at configurable intervals (T seconds), forwards them to the Scalable Framework ORAN’s
(SFORAN) Non-RTRIC optimization engine. The engine processes these requests for
deploying rApps, xApps, and dApps. Once the SFORAN receives the requests, it calculates
an optimal policy to meet the demands made in those requests and then deploys the rApps,
xApps, and dApps from an app catalog. Several significant operations of xApp and scaling
management are included in the SFORAN prototype, as shown in detail in Figure 5. The
step-by-step procedure is as follows:

Figure 4. Scalable framework architecture.

Figure 5. SFORAN architecture.

(1) Request handling: The SMO layer receives xApp deployment requests and forwards
them to the SFORAN to check the xApp catalog for the availability.

(2) xApp profiling and benchmarking: If the xApp does not exist in the catalog and does
not have an app descriptor, it is profiled and benchmarked by deploying on an idle
worker node to know its performance requirements. With descriptors defined in

Information 2025, 16, 259 8 of 25

xApps, the SFORAN calculates the right allocation policy according to the collected
APIs and metrics.

(3) xApp Deployment: The SFORAN deployment engine retrieves the necessary xApp from
the catalog, allocates it to the available node, taking into account latency constraints and
resource availability, and then balances the load allocation of it to the near-RTRIC pods.

(4) Resource allocation: The SFORAN automatically adjusts the number of near-RTRIC
pods based on CPU usage and latency to ensure proper resource utilization.

(5) Latency and resource monitoring: Kubernetes periodically report run-time latency and
resource usage metrics to the SFORAN control interface, which feeds back into the
optimization loop for further resource adjustments. We have implemented the load
balancer service type at northbound and southbound to support the scalability. The
high-level view and communication between the different components are presented
in the Figure 6.

Figure 6. Scalability with load balancer service type.

5. System Model and Terminology
In our deployment model, Kubernetes serves as the backbone for managing the near-

RTRIC components and associated applications. Each Near-RTRIC component is deployed
as a containerized application within a Kubernetes environment. The deployment YAML
configuration specifies a set number of replicas for each pod, which ensures availability
and fault tolerance. The resource requests and limits ensure efficient utilization of CPU
and memory resources, thus avoiding overloading of the servers hosting the pods. The
service configuration exposes the application to the network through a load balancer,
ensuring that external traffic is efficiently distributed among the available pods. The
Horizontal Pod Autoscaler (HPA) provides the dynamic scaling capabilities required for
efficient resource management in our architecture. With the HPA configuration defined in
HPA.yaml, the deployment automatically scales between 1 and 3 replicas based on CPU
utilization, maintaining optimal performance without manual intervention. The target
CPU utilization is set to 80%, ensuring that the system responds to fluctuating workloads
by adjusting the pod count as necessary. The deployment of near-RTRIC components is
designed for elasticity, ensuring that the system can handle dynamic workloads and scale
according to the demand. Using Kubernetes’ LoadBalancer service type, the system can
efficiently distribute traffic across pods, ensuring that all instances of a given service receive
a fair share of incoming requests.

The system operates using a set of S servers, where |S| denotes the number of these
servers. Although, in theory, these servers could support both RAN functions and RICs,
practical observations reveal that data-intensive ORAN applications, such as network
function processes, consume significant resources, including CPU and RAM. This high
resource demand often leads to server overloads during application execution. To overcome
these challenges, the near-RTRIC is deployed on dedicated servers, represented by the set
S, within containerized environments. This setup ensures the reliability and availability of

Information 2025, 16, 259 9 of 25

critical networking functions. By abstracting the physical hardware and operating within a
Kubernetes cluster, this design allows applications to scale independently. For example,
near-RTRIC pods can dynamically adjust their scale, expanding or contracting based on
CPU usage without necessitating new server deployments.

Additionally, servers located alongside CU/DU components, identified as SCU/DU ⊆
S, are optimized for hosting dApps. The ORAN-HAutoscaling mechanism facilitates the
efficient deployment of applications and the dynamic scaling of computational resources
within a single cluster. In scenarios involving multiple clusters (C), ORAN-HAutoscaling
can deploy C separate instances to manage each cluster individually.

5.1. ORAN High-Traffic Applications

The rApps, xApps, and dApps available to tenants are organized into an application
catalog, referred to as A, and stored on the non-RTRIC. The total number of applications is
given by |A|. These applications primarily focus on AI-based functionalities. For clarity, we
define the catalog as A = ArApp ∪ AxApp ∪ AdApp, where each application a ∈ A includes
a descriptor outlining its key features. The application descriptor specifies the functionality
the app provides, such as RAN slicing or traffic steering. It also details the type of AI
model it employs, such as Deep Reinforcement Learning (DRL), Long Short-Term Memory
(LSTM) networks, or Convolutional Neural Networks (CNNs). Furthermore, the descriptor
categorizes the app (e.g., xApp, rApp, dApp) and includes the structure and format of
its input and output data, such as a list of input Key Performance Indicators (KPIs), data
shapes, types of actions the app performs, and the format of these actions. In addition
to these details, the descriptor provides information about the app’s performance profile,
including latency characteristics and resource requirements like CPU and memory usage,
which are further elaborated in the subsequent section.

5.2. External Tenant Requests

Tenants who utilize the shared ORAN infrastructure may have different objectives,
business goals, and service requirements, each governed by distinct Service-Level Agree-
ments (SLAs). To meet these needs, tenants submit requests to deploy specific rApps,
xApps, and dApps from the application catalog, denoted as A. Let R represent the
set of all requests made by tenants. Each request r ∈ R is represented by a tuple
r = (nr, Lr, δr), where nr = (nr,a)(r,a)∈R×A denotes the number of application instances re-
quired, Lr = (Lr,a)(r,a)∈R×A specifies the maximum acceptable latency for each application,
and δr = (δr,a,s)(r,a,s)∈R×A×S indicates the server allocation for each application.

The term nr,a represents the number of instances of application a ∈ A needed to fulfill
request r. Meanwhile, Lr,a denotes the maximum allowable latency for running application
a on any server. For example, a tenant may request three instances of an xApp (nr,a′ = 3)
to manage RAN slicing for three Distributed Units (DUs) with a maximum allowable
inference time of Lr,a′ = 100 ms. Similarly, they might request one instance of an rApp
(nr,a′′ = 1) for handover management, with an acceptable total latency of Lr,a′′ = 10 s. In
general, it is not ideal to control multiple RAN components with a single xApp or rApp, as
doing so may lead to conflicts, congestion, and excessive latency. Therefore, we assume
that nr,a ≥ 1.

In cases where tenants do not impose strict inference time constraints (i.e., Lr,a = +∞),
the near-RTRIC is designed to make decisions within 1 s, while dApps typically operate
within a 10 ms window. Thus, we define a latency constraint LAPP,a for each application
type. For instance, if a ∈ AxApp, we set LAPP,a = 1 second, and for a ∈ AdApp, we set
LAPP,a = 10 ms. Since ORAN specifications do not provide a maximum inference time for
rApps, we assume that LAPP,a = +∞ for a ∈ ArApp. Additionally, we define δr,a,s ∈ {0, 1}

Information 2025, 16, 259 10 of 25

to specify whether a dApp a ∈ AdApp must execute on server s co-located with a CU/DU.
If δr,a,s = 1, then the dApp must be executed on that server; otherwise, we set δr,a,s = 0 for
all other applications.

For clarity, we define the server activation profile x = (xs)s∈S, where xs ∈ {0, 1}
indicates whether server s is actively hosting at least one AI-based ORAN application
(xs = 1) or not (xs = 0). To monitor the allocation of applications across servers, we
introduce the variable y = (yr,a,s)(r,a,s)∈R×A×S, representing the number of instances of
application a for request r that are deployed on server s. For each request r and application
a, the variables yr,a,s satisfy the following constraint:

∆r,a =

{
(yr,a,s)s∈S, yr,a,s ∈ Z+

0

∣∣∣∣∣∑s∈S
yr,a,s = nr,a

}
, (1)

where Z+
0 denotes the set of non-negative integers. A server s is considered activated

(xs = 1) if and only if ∑r∈R ∑a∈A yr,a,s > 1.
We also define an auxiliary indicator variable wr,s ∈ {0, 1} for all r ∈ R and s ∈ S,

where wr,s = 1 if at least one instance of an application required by request r is hosted on
server s, i.e., ∑a∈A yr,a,s > 0.

Furthermore, we introduce the binary variable zr ∈ {0, 1} for each r ∈ R, indicating
whether the allocation of applications meets all requirements for request r, both in terms of
deployment and latency constraints. If the allocation satisfies all conditions, we set zr = 1;
otherwise, zr = 0. Additionally, we define πa,s ∈ {0, 1} to indicate whether server s hosts
at least one instance of application a. Specifically, πa,s = 1 if ∑r∈R yr,a,s > 0, and πa,s = 0
otherwise. The total number of different applications hosted on server s is given as follows:

As = ∑
a∈A

πa,s. (2)

Finally, we summarize the key variables as follows: z = (zr)r∈R, w = (wr,s)(r,s)∈R×S,
and π = (πa,s)(a,s)∈A×S.

6. Total Time (Latency and ML Inference) and CPU Metrics Model For
ORAN Applications

To meet the required total time constraints, we first develop a latency model that
governs both the scaling and deployment of applications. This ensures that all applications
are able to complete their respective tasks within the specified time limits. This section
presents the results of a data collection effort using the ORAN-HAutoscaling prototype,
which provides insights into how congestion and resource sharing affect the total time
across various ORAN components and AI algorithms.

6.1. Inference Time Profiling

The inference time for AI-driven ORAN applications is primarily determined by the
complexity of the AI models embedded in the dApps, xApps, and rApps. Key factors
include model depth and width, number of layers, and the use of convolution operations.
As shown in Figure 1, when multiple applications are running concurrently on the same
hardware, they share computational resources, leading to increased total time due to
resource contention. To accurately evaluate the impact of shared resources on the total
time, particularly with respect to inference time, a model is needed that can effectively
capture these dynamics. Within ORAN systems, AI techniques serve various functions,
such as classification (e.g., anomaly detection), forecasting (e.g., KPI prediction), and control
(e.g., resource allocation). While multiple AI architectures could be used for these tasks
(such as CNNs or decision trees for classification), our analysis focuses on three distinct

Information 2025, 16, 259 11 of 25

and commonly used models designed for each task. Specifically, we use a CNN with
231,875 parameters and a fully connected output layer for classification, an LSTM model
with 49,987 parameters and bidirectional memory cells for forecasting, and a DRL agent
with over 50,000 parameters for control-related tasks.

The main goal of our study is to develop a model for total time that helps scale
intelligent ORAN applications. To achieve this, we focus on analyzing latency and inference
time, which remain constant regardless of whether the AI model has been trained. This
consistency occurs because the number of operations (such as multiplications, convolutions,
and additions) in the AI models stays fixed. For our evaluation, we use a single node within
the cluster, where one xApp instance is deployed at a time. To gather a large amount of
data, we implemented an E2 traffic generator based on an open-source ORAN dataset. This
generator simulates E2 traffic by continuously extracting random KPIs from the dataset
in a format compatible with the expected input for the xApp AI models. Each application
descriptor specifies the required KPIs and the format of the input for each xApp model.
When a new xApp instance is deployed on a server s, the traffic generator supplies the
necessary input data, allowing us to measure three types of latency:

• Queuing tim e tqueue
a,s , which is the time taken for the xApp to process the input after it

reaches the E2 termination point on the Near-RTRIC.
• Execution time texec

a,s , which represents the time taken to generate the output once the
input is processed.

• Inference time tin f
a,s = tqueue

a,s + texec
a,s , which is the total time for processing the input and

producing the output.

In addition to these latencies, we monitor the CPU and RAM utilization of the server
during this process. While it is possible to account for the time needed to transfer KPIs and
control actions between the RAN and RICs, these factors remain constant, as all servers are
part of the same cluster. Based on these assumptions, we define the inference time when y
instances of application a ∈ A are running on servers as follows:

tin f
a,s (y) = texec

a,s (y) + tqueue
a,s (y), (3)

where texec
a,s (y) refers to the execution time, and tqueue

a,s (y) represents the queuing time for
application a on server s.

6.2. Latency Model

Figure 7 illustrates how total time varies with CPU utilization and the type and number
of xApps. We observe that when deploying 80 xApps of the KPM type, the CPU usage
reaches 91%, which leads to application crashes beyond that point. However, there is
still 9% CPU capacity remaining unused, which highlights the importance of modeling
execution time based on CPU usage. While RAM usage provides some insight, it is not as
reliable for predicting total time, since different models might consume the same amount
of RAM but process data at different speeds.

In Figure 8, we observe that another type of xApp, which is more computationally
intensive, can only run 45 instances before it consumes 75% of the CPU. Beyond this
point, the applications begin to crash. Despite having 25% of the CPU available, these
xApps consume large portions of the CPU (around 28%), leaving insufficient resources
for additional applications. In contrast, other types of xApps that consume less CPU
can be run in greater numbers without issues. This observation points to the need for
a framework that efficiently manages and allocates xApps to the most appropriate near-
RTRIC pod. This motivates the use of CPU metrics for better resource management.
Sometimes, applications crash because they fail to meet the required xApp latency. To

Information 2025, 16, 259 12 of 25

address these limitations, we focus on measuring both execution time texec
a,s and queuing

time tqueue
a,s to derive a comprehensive total time model. In Figures 1 and 2, we present

the results obtained by instantiating y instances of the different xApps at the same time.
Our analysis of execution and queuing times revealed that the system’s performance
is highly sensitive to queuing delays, especially when the number of xApps increases.
While the near-RTRIC can maintain low execution and queuing times under moderate
loads, performance significantly degrades as the number of xApps grows. This highlights
the critical role of dynamic resource allocation and autoscaling in mitigating queuing
delays and ensuring that execution times remain within the strict latency requirements
for near-RT RAN functions. The findings emphasize that bottlenecks are primarily caused
by queuing inefficiencies rather than execution limitations, underscoring the need for
scalable frameworks like ORAN-HAutoscaling to effectively manage resource contention
and maintain real-time operational efficiency.

Figure 7. CPU and RAM consumption of Key Performance Measurement (KPM) xApps.

Figure 8. CPU and RAM consumption of MAC-RLC-PDCP xApps.

Generally, we found that execution time texec(y) has a significant impact on inference
time when the number of applications y is small. However, as congestion increases with
larger y values, queuing time tqueue(y) becomes the dominant factor. This suggests that
inference time can be modeled as a function with two distinct phases: a moderate increase
in inference time as the number of applications grows, followed by a steeper increase
due to congestion. While various approaches like linear regression or neural networks
can be used to model these functions, our goal is to develop a model that is both accu-
rate and easy to integrate into an optimization framework while minimizing the risk of

Information 2025, 16, 259 13 of 25

underestimating inference time to meet latency constraints. To achieve this, we employ
piecewise linear regression to model inference time, which has several advantages: it is
flexible enough to approximate non-linear functions, it simplifies optimization problems,
and it reduces complexity.

While the minimum number of segments for the approximation could be determined
using piecewise linearization methods, our analysis suggests that inference time behaves
like an “elbow” function. Therefore, we use two-segment piecewise linear regression to
model the function:

f (y) =

λ1 · y + b1, if y ≤ y0,

λ2 · y + b2, if y > y0,
(4)

where y0 is the breakpoint, and λi and bi represent the slope and intercept of the i-
th segment.

We found that the inference time tin f
a,s (y) can be approximated using the following

two-segment piecewise linear function:

tinf
a,s(y) =

λI
a,s · y + bI

a,s, if y ≤ ỹa,s,

λI I
a,s · y + bI I

a,s, otherwise.
(5)

Here, ỹa,s is the breakpoint, and λi, bi are the slope and intercept for segment
i ∈ {I, I I}.

Using data collected from our prototype, we extracted values for ỹa,s, λI
a,s, and λI I

a,s.
We also applied piecewise linearization to the inference time function for ML-based control
xApps in two scenarios: an average fit that approximates general behavior, and a conser-
vative fit that accounts for upper bounds through piecewise linear bounding. While both
fits capture the elbow-shaped behavior, the average fit could underestimate inference time,
potentially violating latency constraints. The conservative fit, on the other hand, considers
measurement variance, particularly when a high number of applications are deployed.

We now extend our application-specific model to scenarios where multiple instances
of different applications are hosted on the same server. While our measurement campaign
focused on profiling xApps, the same latency model can be applied to dApps or rApps.
Let yr,a,s represent the number of instances of application type a from request r running on
server s. The total inference time for all instances executing on server s is given as follows:

ls(y, π) =
1

As
∑

a∈A
t̃in f
a,s (Ys)πa,s, (6)

where Ys = ∑r∈R ∑a∈A yr,a,s is the total number of application instances hosted on server
s ∈ S, t̃in f

a,s (·) is defined in Equation (5), and As from Equation (2) is a function of π.
Equation (6) models the expected inference time when multiple instances of different
applications are running on the same server.

7. Objective Function Design
To mathematically prove the efficacy of scaling in time-sensitive applications using

latency, inference time, and CPU utilization, we propose a model based on queueing theory
and control theory. The model aims to optimize resource allocation in real time and ensure
performance within latency constraints. Below, we detail the components of the model:

7.1. Queueing Theory Model (M/M/c Queue)

We employ a simplified M/M/c queue model, where the arrival process follows a
Poisson distribution, and the system size is assumed to be infinite. This approximation
allows for tractable analysis of resource allocation and scaling in multi-server systems.

Information 2025, 16, 259 14 of 25

However, we acknowledge that real-world traffic patterns might deviate from Poisson,
especially with bursty traffic, which could affect the system’s performance. In future work,
we will explore more advanced models, such as G/G/c, to address these deviations.

The system is modeled as a multi-server queue, where the arrival rate is denoted by
λ, the service rate per server by µ, and there are c active near-RTRIC pods representing
horizontal scaling. The average waiting time in the system is represented as follows:

Wq =
λ

µ(cµ − λ)
(7)

This equation helps model system latency, as it scales up (when adding a new pod re-
duces Wq) and scales down when idle. The latency threshold Lmax represents the maximum
tolerable latency for time-sensitive applications, ensuring that:

Wq ≤ Lmax (8)

7.2. Control Theory: Proportional Integral Derivative (PID) Controller

We employ a PID controller to regulate scaling based on real-time CPU and latency
data. The error e(t) is defined as the difference between the desired latency Lmax and the
observed latency Lobserved(t):

e(t) = Lmax − Lobserved(t) (9)

The control action u(t) for scaling can be derived using the following PID equation:

u(t) = Kpe(t) + Ki

∫ t

0
e(τ)dτ + Kd

de(t)
dt

(10)

This feedback mechanism adjusts resources (pods) in real time, keeping the latency
within acceptable limits.

7.3. CPU Scaling Conditions

We define specific conditions for horizontal scaling based on CPU utilization:

• Scale-up condition: When CPU utilization exceeds 80%, a new pod is added to handle
the increased load:

if CPUobserved ≥ 0.8 × CPUmax,

scale up by adding a new pod.

• Scale-down condition: If CPU utilization stays idle (below a threshold) for 180 s, a
pod is removed, but at least one pod must always remain active:

if CPUobserved ≤ 0.1 × CPUmax for 180 s,

scale down by removing a pod.

Ensure at least one pod is always running: c ≥ 1.

These conditions ensure that resources are efficiently managed based on CPU load
while preventing under provisioning. The values for the thresholds and time period were
determined based on extensive experimentation with YAML configuration files. The YAML
file configuration is given in Table 1. We experimented with a range of CPU utilization
thresholds (70%, 80%, 90%) and time periods (120 s, 180 s, 240 s) to identify the optimal
values. These experiments revealed that the thresholds of 80%, along with a time period of
180 s, minimized unnecessary scaling events while maintaining acceptable latency levels.

Information 2025, 16, 259 15 of 25

However, CPU utilization alone does not fully capture performance bottlenecks such as
latency spikes or inference delays. Therefore, the combined metric C is introduced to make
smarter scaling decisions.

Table 1. Configuration parameters from YAML files.

Parameter Value

Deployment YAML (expric-deployment.yaml)

replicas 1

containerPort (1) 36,421

containerPort (2) 36,422

imagePullPolicy IfNotPresent

requests.cpu 100 m

requests.memory 128 Mi

limits.cpu 600 m

limits.memory 1500 Mi

selector.app expric

ports.protocol SCTP

Horizontal Pod Autoscaler YAML (expric-hpa.yaml)

scaleTargetRef.apiVersion apps/v1

scaleTargetRef.kind Deployment

scaleTargetRef.name expric-deployment-1

minReplicas 1

maxReplicas 3

targetCPUUtilizationPercentage 80%

idleTimeBeforeScaleDown 180 s

7.4. Combined Metric

We define a combined scaling metric C that incorporates CPU utilization, latency, and
inference time:

C = α · CPUobserved
CPUmax

+ β · Lobserved
Lmax

+ γ ·
Tin f erence

Tmax
(11)

The linear function was chosen due to its simplicity and computational efficiency,
which are crucial for real-time decision making in ORAN systems. It allows for the intuitive
and interpretable combination of critical metrics (CPU utilization, latency, and inference
time) into a single value, with weights (α, β, and γ) providing flexibility to prioritize specific
factors. While non-linear alternatives (e.g., multiplicative or exponential models) could be
considered, they would introduce unnecessary complexity and increased computational
overhead without offering significant improvements in performance. This makes the linear
function an optimal choice for balancing simplicity and effectiveness in time-sensitive
scaling decisions.

Information 2025, 16, 259 16 of 25

Scaling up occurs when C exceeds a predefined threshold, Cthreshold, and scaling
down occurs when C is below a certain lower bound, ensuring system scalability while
preventing resource contention. The value of Cthreshold is 0.8. Using this framework, we
demonstrate that incorporating CPU utilization, latency, and inference time into scaling
decisions ensures optimal resource utilization without exceeding latency thresholds.

7.5. Integration with Prometheus and Kubernetes APIs

The latency models, scaling metrics, and control mechanisms are integrated into
Kubernetes using Prometheus and custom controllers. Prometheus collects time-series data
on resource usage, such as CPU utilization, latency, and inference time, from the Kubernetes
cluster through Prometheus exporters and custom metrics adapters. These collected data
are then made available to Kubernetes via the Prometheus adapter, allowing Kubernetes
controllers to use these metrics for autoscaling decisions. The custom metrics, including
the combined scaling metric C, which incorporates CPU utilization, latency, and inference
time, are used by the Horizontal Pod Autoscaler (HPA). When C exceeds a predefined
threshold Cthreshold, the controllers trigger scaling actions. The scaling thresholds, such as
CPU utilization and memory limits, are specified in the YAML configuration files (Table 1),
ensuring the system operates within desired performance and resource limits.

7.6. Monitoring Performance Metrics

Prometheus, along with custom metrics adapters, continuously monitors important
performance metrics such as CPU utilization, latency, and inference time. These metrics
are collected in real time, including execution time texec

a,s , queuing time tqueue
a,s , and inference

time tin f
a,s (y). Prometheus exposes these metrics to the Kubernetes API via the Prometheus

adapter, enabling Kubernetes components like the Horizontal Pod Autoscaler (HPA) to
make real-time scaling decisions based on these metrics. When resource utilization exceeds
predefined thresholds—such as when CPU usage surpasses 80% or the combined scaling
metric C (Equation (11)) exceeds the threshold—the HPA triggers scaling actions, ensuring
the system remains responsive and scalable under varying workloads. This real-time
monitoring ensures that scaling decisions are data-driven and responsive to the current
state of the system.

7.7. Load Balancer with Bull and Bear

In the SFORAN system, the Kubernetes load balancer service type is used to ensure
efficient traffic distribution across the Near-RTRIC pods. The load balancer uses a bull and
bear analogy to represent the system’s dynamic behavior under different load conditions.

7.7.1. Bull State (Normal Operation)

In the bull state, the system is stable, with a uniform distribution of traffic across the
existing pods. The Kubernetes load balancer ensures that traffic is evenly spread based on
pod availability and resource utilization. During this phase, the load is balanced effectively,
and minor latency variations are handled smoothly, ensuring consistent performance.

7.7.2. Bear State (Scaling Up)

When the system detects increased load (e.g., high CPU utilization or latency spikes), it
enters the bear state. In this state, HPA dynamically adds new pods to handle the increased
traffic. The load balancer redirects traffic to the new pods, ensuring that the system remains
stable and responsive under higher workloads. The addition of pods is triggered by
Kubernetes’ Horizontal Pod Autoscaler (HPA), which uses metrics from Prometheus (e.g.,
CPU usage, latency, inference time) to determine when scaling is necessary.

Information 2025, 16, 259 17 of 25

The load balancer adjusts the traffic distribution based on the scaling decisions made
by the HPA, prioritizing the newly added pods to ensure they stabilize quickly and avoid
overloading existing pods. This ensures that the system can handle an increased number of
xApps or requests without degradation in latency or performance. This interplay between
the bull and bear states through the Kubernetes load balancer service type allows for
smooth autoscaling and consistent performance, as the system automatically adapts to the
fluctuating load.

8. Performance Evaluation
We deployed ORAN-HAutoscaling on a Dell PowerEdge T550-Tower, which was

equipped with a GPU, and ran the near-RTRIC container on Kubernetes. A range of system
configurations was evaluated to test the performance of ORAN-HAutoscaling. Our results
showed that the system effectively handled varying numbers of xApps, with CPU and
RAM utilization remaining consistent with a Kubernetes setup featuring two cores, 6 GB of
RAM, and 80 GB of storage.

For further analysis, we also used MATLAB (https://ww2.mathworks.cn/products/
matlab.html) for numerical simulations, running them on a server equipped with an Intel
Core i9-9980HK processor (64 cores, 128 GB RAM). These simulations, run over 80 trials,
helped us evaluate the system’s performance with different xApp numbers. The results
were plotted to illustrate the system’s behavior in various scenarios. Figure 9 shows the
probability distribution for xApp requests of the same type and their corresponding ML
inference times. This figure reveals that scaling ML models across multiple servers, in
conjunction with xApps at the near-RTRIC, is key to enabling the scalability of these models.
However, it also emphasizes that the inference time of ML models plays a crucial role in
determining how many xApp requests the system can handle. For example, with a server
S = 5, the system faces limitations in handling more than 800 xApp requests, whereas with
S = 25, it can support up to 1600 requests. This scalability is adaptable to the different
inference time profiles associated with diverse xApp request types and ML models. (See
Table 2).

Table 2. Quantitative results for latency, resource utilization, and scalability.

Server (S) Max xApp Avg Latency (ms) CPU Uti. (%)

5 800 250 60

10 1200 350 70

15 1400 500 80

25 1600 700 90

When limited to only S = 5 servers, real-time (RT) requests can only be accommodated
up to 40 instances due to the stringent processing requirements of AI models. As expected,
increasing the server count allows the system to effectively manage more RT and near-RT
requests. These findings highlight that the scalability of AI solutions within ORAN systems
is primarily determined by timing constraints and resource availability. The inference time
significantly impacts how many dApps, xApps, and rApps can coexist on a single server.
To facilitate this level of scalability within the near-RTRIC, horizontal pod scaling (HPA) is
essential to ensure adequate resources are available to meet the demand.

Figure 10 compares ORAN-HAutoscaling against two alternative strategies: basic load
balancing without scaling capabilities and a single server (no scaling, no load balancing)
approach. In our tests, we set the number of servers to S = 5. In the load balancing

https://ww2.mathworks.cn/products/matlab.html
https://ww2.mathworks.cn/products/matlab.html

Information 2025, 16, 259 18 of 25

approach, requests are distributed among servers, while the no scaling approach routes all
requests to a single server. The single server no scaling and no balancing method struggled
to handle the full volume of incoming requests due to resource limitations. In contrast,
ORAN-HAutoscaling was able to dynamically scale up or down, adjusting the number of
active pods as needed, and it successfully handled all requests. Furthermore, while the
no-scaling method activated only a single server and the load balancing method used all
available servers regardless of actual demand, ORAN-HAutoscaling optimized resource
usage by only activating the necessary number of pods. This led to better CPU and RAM
management and ensured higher reliability by preventing xApp crashes.

Figure 9. Probability of a server to host a request with a certain inference time profile for varying
numbers of servers (S) and instances (I).

Figure 10. ORAN-HAutoscaling vs. non-scaling vs single server for S = 5 and varying numbers
of requests.

ORAN-HAutoscaling’s ability to efficiently manage the number of active pods and
servers demonstrates its capacity to meet profit maximization goals while adhering to
inference time constraints. This makes it a robust and scalable solution for ORAN systems,
able to process requests effectively while maintaining stringent timing requirements.

The analysis also reveals that the no scaling approach is unsuitable for ORAN ap-
plications due to its high inference time. When compared to load balancing, ORAN-
HAutoscaling not only provides more efficient CPU resource utilization but also guarantees
lower inference times, which aligns with tenant timing requirements.

9. Experimental Results
In our experiments, we evaluated the performance of the ORAN-Autoscaling HPA

system and compared it with OpenShift’s non-scaling load-balancing approach and a single-
server setup. The experimental setup mirrored the conditions discussed earlier, using the
same three AI-based xApps, and deploying I = 162 xApp instances. For this evaluation,
the hardware utilized consisted of a Dell PowerEdge T550 node with a GPU, which hosted
the ORAN-Autoscaling system, xApp, and ML model deployment. Additionally, we

Information 2025, 16, 259 19 of 25

considered a scenario with R = 3 tenants, each submitting a distinct request, namely r1, r2,
and r3, representing typical small-scale ORAN deployment. The near-RT inference time
profiles ranged from 400 ms to 800 ms, with r1 requiring the shortest inference time of
400 ms.

The evaluation focused on measuring CPU and RAM utilization over a 20-min period,
comparing the performance of ORAN-HAutoscaling with the multiple servers with load
balancer and a single-server setup. During the experiment, ORAN-HAutoscaling was able
to accommodate all three requests (r1, r2, and r3), deploying the full set of 162 xApps. In
contrast, OpenShift handled only r1 and r2 requests, deploying a total of 82 xApps before it
started crashing due to overutilization. The single-server setup, on the other hand, could
only manage 40 xApps before failing.

An important observation during the experiment was that OpenShift distributed
xApps across nodes (Node1 and Node2) in a random fashion, without taking into account
the actual resource utilization. In contrast, ORAN-HAutoscaling effectively managed
requests by scaling the pods as necessary. Specifically, when CPU usage reached 60%,
it automatically added another pod. The system evaluated the current CPU utilization,
latency, and inference times before deciding how to distribute the xApps. For instance, on
Pod1, 55% of the xApps were from r1, and the remaining 45% came from r2. Meanwhile,
Pod3 exclusively hosted xApps from r3.

This careful allocation ensured that all xApps from r1 adhered to the 400 ms latency
constraint, while Pod2 was introduced when CPU usage reached around 70% to further
handle the load. The allocation process was intentionally slow, as we deployed one xApp
at a time to gather accurate data. Through this method, ORAN-HAutoscaling successfully
optimized resource usage while maintaining the required latency constraints.

In comparison, OpenShift failed to meet even the 1000 ms latency requirement due to
its inability to allocate xApps based on their specific timing needs. This led to violations of
ML inference time and xApp latency requirements, ultimately undermining the system’s
performance. On the other hand, ORAN-HAutoscaling not only ensured that all incoming
requests were satisfied but also effectively allocated xApps to different pods, with Pod1
hosting all of r1’s xApps and 45% of r2’s, ensuring that the 400 ms latency was consistently
met. Additionally, Pod2 guaranteed that the 1000 ms requirement for r2 was satisfied.

Figure 11 illustrates the near-RTRIC container’s HPA system, which shows the current
CPU utilization at 46%. Initially, the system started with one pod, and as CPU usage
crossed the 80% threshold, a second pod was automatically initiated. Consequently, the
system was running two pods, with a CPU utilization of 46%.

Figure 12 illustrates the use of Prometheus and Grafana to visualize key metrics such
as CPU, RAM, xApp latency, and other system statistics. These metrics are gathered and
processed through APIs to help determine the optimal pod allocation for efficient resource
utilization. Figure 13 displays the Kubernetes dashboard, which provides an overview of
RAM and CPU usage across the containers, offering insights into resource consumption
and helping to ensure proper system scaling.

Information 2025, 16, 259 20 of 25

Figure 11. xApps and HPA replicas.

Figure 12. API used for monitoring and controlling purposes.

Figure 13. Running containers on Kuberentes.

Information 2025, 16, 259 21 of 25

10. Reflection
This study primarily leverages Kubernetes for orchestration, which offers flexibil-

ity and scalability for containerized applications. However, this dependency introduces
certain limitations, particularly when integrating with non-containerized components in
ORAN environments. While Kubernetes provides a robust platform for containerized
microservices, adapting non-containerized legacy systems into this environment requires
additional configuration and lead to integration challenges. Furthermore, the probing
mechanisms utilized in this framework introduce some overheads, particularly in terms
of CPU and memory consumption, as they monitor and adjust resource allocation. While
these overheads are necessary for dynamic scaling, future optimizations could focus on
reducing the frequency and granularity of these probes to minimize their impact on system
performance. Looking ahead, several avenues for improvement can be explored. First,
alternative orchestration frameworks, such as Docker Swarm and Apache Mesos, could
be considered to determine their performance in comparison to Kubernetes, particularly
in terms of scaling and management overheads. Additionally, improving load balancing
algorithms by incorporating more advanced AI/ML techniques could enhance the effi-
ciency of resource distribution, particularly under high-demand conditions. This would
contribute to further optimizing resource allocation and minimizing delays in large-scale
ORAN environments.

11. Conclusions
This paper presented ORAN-HAutoscaling, a dynamic scaling solution tailored for

ORAN environments, designed to enforce CPU usage and time constraints while support-
ing a large number of xApps. We developed a latency model based on a measurement cam-
paign conducted on a Kubernetes cluster, complemented by a mathematical optimization
model and a prototype that aligns with ORAN standards. Through a series of compar-
isons with OpenShift’s scaling mechanisms, we demonstrated that ORAN-HAutoscaling is
capable of effectively deploying ORAN applications while meeting strict latency require-
ments. Our results show that by incorporating CPU metrics, latency, and inference time
into the scaling decisions, ORAN-HAutoscaling can support a significantly higher num-
ber of xApps compared to traditional non-scaling solutions such as single-server setups.
Specifically, ORAN-HAutoscaling can support approximately three times the number of
xApps compared to these traditional systems. In conclusion, ORAN-HAutoscaling offers a
robust, scalable solution for optimizing resource utilization in RT radio access networks. It
guarantees high computing capacity and performance, meeting the increasing demands
of future networks, and it outperforms conventional RIC solutions by ensuring minimal
latency and maintaining ML inference times.

Funding: This research received no external funding.

Data Availability Statement: The original contributions presented in this study are included in the
article. Further inquiries can be directed to the author.

Conflicts of Interest: The author declares no conflicts of interest.

References
1. Garcia-Saavedra, A.; Costa-Pérez, X. ORAN: Disrupting the Virtualized RAN Ecosystem. IEEE Commun. Stand. Mag. 2021,

5, 96–103.
2. 3GPP. Study on New Radio Access Technology: Radio Access Architecture and Interfaces. In 3rd Generation Partnership Project

(3GPP); 3GPP: Sophia Antipolis, France, 2017; TR 38.801 V14.0.0.
3. Mimran, D.; Bitton, R.; Kfir, Y.; Klevansky, E.; Brodt, O.; Lehmann, H.; Elovici, Y.; Shabtai, A. Evaluating the Security of Open

Radio Access Networks. arXiv 2022, arXiv:2201.06080 .

Information 2025, 16, 259 22 of 25

4. Klement, F.; Katzenbeisser, S.; Ulitzsch, V.; Krämer, J.; Stanczak, S.; Utkovski, Z.; Bjelakovic, I.; Wunder, G. Open or Not Open:
Are Conventional Radio Access Networks More Secure and Trustworthy than Open-RAN? arXiv 2022, arXiv:2204.12227.

5. Cho, J.Y.; Sergeev, A. Secure Open Fronthaul Interface for 5G Networks. In Proceedings of the 16th International Conference on
Availability, Reliability and Security, Vienna, Austria, 17–20 August 2021; Ser. ARES 2021; Association for Computing Machinery:
New York, NY, USA, 2021. [CrossRef]

6. IEEE Std 802.1AE-2018; IEEE Standard for Local and Metropolitan area networks-Media Access Control (MAC) Security; Revision
of IEEE Std 802.1AE-2006. IEEE: Piscataway, NJ, USA, 2018; pp. 1–239.

7. O-RAN ALLIANCE Security Focus Group. Study on Security for Near Real Time RIC and xApps. In ORAN Alliance e.V., Technical
Specification v01.00; ORAN Alliance e.V.: Alfter, Germany, 2022.

8. Shen, C.; Xiao, Y.; Ma, Y.; Chen, J.; Chiang, C.-M.; Chen, S.; Pan, Y. Security Threat Analysis and Treatment Strategy for ORAN.
In Proceedings of the 2022 24th International Conference on Advanced Communication Technology (ICACT), Pyeong Chang,
Republic of Korea, 13–16 February 2022; pp. 417–422.

9. Cao, J.; Ma, M.; Li, H.; Ma, R.; Sun, Y.; Yu, P.; Xiong, L. A Survey on Security Aspects for 3GPP 5G Networks. IEEE Commun. Surv.
Tutorials 2020, 22, 170–195.

10. Saad, W.; Bennis, M.; Chen, M. A vision of 6G wireless systems: Applications, trends, technologies, and open research problems.
IEEE Netw. 2019, 34, 134–142.

11. Atya, A.O.F.; Qian, Z.; Krishnamurthy, S.V.; Porta, T.L.; McDaniel, P.; Marvel, L. Malicious Co-residency on the Cloud: Attacks
and Defense. In Proceedings of the IEEE INFOCOM 2017-IEEE Conference on Computer Communications, Atlanta, GA, USA,
1–4 May 2017; pp. 1–9.

12. Gao, X.; Steenkamer, B.; Gu, Z.; Kayaalp, M.; Pendarakis, D.; Wang, H. A Study on the Security Implications of Information
Leakages in Container Clouds. IEEE Trans. Dependable Secur. Comput. 2021, 18, 174–191.

13. Wang, Z.; Yang, R.; Fu, X.; Du, X.; Luo, B. A Shared Memory based Cross-VM Side Channel Attacks in IaaS Cloud. In Proceedings
of the 2016 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), San Francisco, CA, USA, 10–14
April 2016; pp. 181–186.

14. Hardt, D. The OAuth 2.0 Authorization Framework. RFC Editor, RFC 6749. October 2012. Available online: https://www.rfc-
editor.org/info/rfc6749 (accessed on 14 December 2024).

15. Jones, M.; Hardt, D. The OAuth 2.0 Authorization Framework: Bearer Token Usage. RFC Editor, RFC 6750. October 2012.
Available online: https://www.rfc-editor.org/info/rfc6750 (accessed on 14 December 2024).

16. Jones, N.S.M.; Bradley, J. JSON Web Token (JWT). RFC Editor, RFC 7519. May 2015. Available online: https://datatracker.ietf.
org/doc/html/rfc7519 (accessed on 14 December 2024).

17. Microsoft. Sidecar Pattern- Azure Architecture Center. June 2022. Available online: https://docs.microsoft.com/en-us/azure/
architecture/patterns/sidecar (accessed on 26 June 2022).

18. Github-Pistacheio/Pistache: A High-Performance REST Toolkit Written in C++. Available online: https://github.com/pistacheio/
pistache (accessed on 27 June 2022).

19. OpenAPI Generator. Available online: https://openapi-generator.tech/ (accessed on 5 June 2022).
20. Kim, B.; Sagduyu, Y.E.; Davaslioglu, K.; Erpek, T.; Ulukus, S. Channel-aware adversarial attacks against deep learning-based

wireless signal classifiers. IEEE Trans. Wirel. Commun. 2020, 21, 3868–3880.
21. Joda, R.; Pamuklu, T.; Iturria-Rivera, P.E.; Erol-Kantarci, M. Deep Reinforcement Learning-Based Joint User Association and

CU–DU Placement in ORAN. IEEE Trans. Netw. Serv. Manag. 2022, 19, 4097–4110. [CrossRef]
22. Li, P.; Thomas, J.; Wang, X.; Khalil, A.; Ahmad, A.; Inacio, R.; Kapoor, S.; Parekh, A.; Doufexi, A.; Shojaeifard, A.; et al. RLOps:

Development Life-Cycle of Reinforcement Learning Aided Open RAN. IEEE Access 2022, 10, 113808–113826. [CrossRef]
23. Korrai, P.; Lagunas, E.; Sharma, S.K.; Chatzinotas, S.; Bandi, A.; Ottersten, B. A RAN resource slicing mechanism for multiplexing

of eMBB and URLLC services in OFDMA based 5G wireless networks. IEEE Access 2020, 8, 45674–45688.
24. Azimi, Y.; Yousefi, S.; Kalbkhani, H.; Kunz, T. Applications of Machine Learning in Resource Management for RAN-Slicing in 5G

and Beyond Networks: A Survey. IEEE Access 2022, 10, 106581–106612. [CrossRef]
25. Polese, M.; Bonati, L.; D’oro, S.; Basagni, S.; Melodia, T. Understanding O-RAN: Architecture, interfaces, algorithms, security, and

research challenges. IEEE Commun. Surv. Tutorials 2023, 25, 1376–1411.
26. Hung, C.-F.; Chen, Y.-R.; Tseng, C.-H.; Cheng, S.-M. Security threats to xApps access control and E2 interface in O-RAN. IEEE

Open J. Commun. Soc. 2024, 5, 1197–1203.
27. Song, J.; Kovács, I.Z.; Butt, M.; Steiner, J.; Pedersen, K.I. Intra-RAN Online Distributed Reinforcement Learning For Uplink Power

Control in 5G Cellular Networks. In Proceedings of the 2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring),
Helsinki, Finland, 19–22 June 2022; pp. 1–7. [CrossRef]

28. Yungaicela-Naula, N.M.; Sharma, V.; Scott-Hayward, S. Misconfiguration in O-RAN: Analysis of the impact of AI/ML. Comput.
Netw. 2024, 247, 110455.

http://doi.org/10.1145/3465481.3470080
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6750
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc7519
https://docs.microsoft.com/en-us/azure/architecture/patterns/sidecar
https://docs.microsoft.com/en-us/azure/architecture/patterns/sidecar
https://github.com/pistacheio/pistache
https://github.com/pistacheio/pistache
https://openapi-generator.tech/
http://dx.doi.org/10.1109/TNSM.2022.3221670
http://dx.doi.org/10.1109/ACCESS.2022.3217511
http://dx.doi.org/10.1109/ACCESS.2022.3210254
http://dx.doi.org/10.1109/VTC2022-Spring54318.2022.9860770

Information 2025, 16, 259 23 of 25

29. Azari, M.M.; Solanki, S.; Chatzinotas, S.; Kodheli, O.; Sallouha, H.; Colpaert, A.; Montoya, J.F.M.; Pollin, S.; Haqiqatnejad, A.;
Mostaani, A.; et al. Evolution of Non-Terrestrial Networks From 5G to 6G: A Survey. IEEE Commun. Surv. Tutorials 2022, 24,
2633–2672. [CrossRef]

30. Kumar, S. Exp_fric, [GitLab Repository]. Available online: https://gitlab.surrey.ac.uk/sk4sunil/exp_fric (accessed on 22
February 2025).

31. Xu, H.; Sun, X.; Yang, H.H.; Guo, Z.; Liu, P.; Quek, T.Q.S. Fair Coexistence in Unlicensed Band for Next Generation Multiple
Access: The Art of Learning. In Proceedings of the ICC 2022–IEEE International Conference on Communications, Seoul, Republic
of Korea, 16–20 May 2022; pp. 2132–2137. [CrossRef]

32. Zhang, C.; Nguyen, K.K.; Cheriet, M. Joint Routing and Packet Scheduling For URLLC and eMBB traffic in 5G ORAN. In
Proceedings of the ICC 2022—IEEE International Conference on Communications, Seoul, Republic of Korea, 16–20 May 2022;
pp. 1900–1905. [CrossRef]

33. Ramezanpour, K.; Jagannath, J. Intelligent zero trust architecture for 5G/6G networks: Principles, challenges, and the role of
machine learning in the context of O-RAN. Comput. Netw. 2022, 217, 109358. [CrossRef]

34. Sedar, R.; Kalalas, C.; Alonso-Zarate, J.; Vázquez-Gallego, F. Multi-domain Denial-of-Service Attacks in Internet-of-Vehicles:
Vulnerability Insights and Detection Performance. In Proceedings of the 2022 IEEE 8th International Conference on Network
Softwarization (NetSoft), Milan, Italy, 27 June–1 July 2022; pp. 438–443. [CrossRef]

35. Stafford, V. Zero trust architecture. NIST Spec. Publ. 2020, 800, 207.
36. Sen, N. Intelligent Admission and Placement of ORAN Slices Using Deep Reinforcement Learning. In Proceedings of the 2022

IEEE 8th International Conference on Network Softwarization (NetSoft), Milan, Italy, 27 June–1 July 2022; pp. 307–311. [CrossRef]
37. Pham, C.; Fami, F.; Nguyen, K.K.; Cheriet, M. When RAN Intelligent Controller in ORAN Meets Multi-UAV Enable Wireless

Network. IEEE Trans. Cloud Comput. 2022, 11, 2245–2259. [CrossRef]
38. Liang, X.; Shetty, S.; Tosh, D.; Kamhoua, C.; Kwiat, K.; Njilla, L. ProvChain: A blockchain-based data provenance architecture in

cloud environment with enhanced privacy and availability. In Proceedings of the 2017 17th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGRID), Madrid, Spain, 14–17 May 2017; pp. 468–477.

39. Abedin, S.F.; Mahmood, A.; Tran, N.H.; Han, Z.; Gidlund, M. Elastic ORAN Slicing for Industrial Monitoring and Control: A
Distributed Matching Game and Deep Reinforcement Learning Approach. IEEE Trans. Veh. Technol. 2022, 71, 10808–10822.
[CrossRef]

40. Polese, M.; Bonati, L.; D’Oro, S.; Basagni, S.; Melodia, T. ColORAN: Developing Machine Learning-based xApps for Open RAN
Closed-loop Control on Programmable Experimental Platforms. IEEE Trans. Mob. Comput. 2022, 22, 5787–5800. [CrossRef]

41. Peng, Z.; Zhang, Z.; Kong, L.; Pan, C.; Li, L.; Wang, J. Deep Reinforcement Learning for RIS-Aided Multiuser Full-Duplex Secure
Communications with Hardware Impairments. IEEE Internet Things J. 2022, 9, 21121–21135. [CrossRef]

42. Jordan, E. The Ultimate Guide to Open RAN: Open RAN Intelligent Controller (RIC)—Part 1; The Fast Mode: Petaling Jaya,
Malaysia, 2024.

43. Tran, T.D.; Nguyen, K.-K.; Cheriet, M. Joint Route Selection and Content Caching in ORAN Architecture. In Proceedings of the
2022 IEEE Wireless Communications and Networking Conference (WCNC), Austin, TX, USA, 10–13 April 2022; pp. 2250–2255.
[CrossRef]

44. Huang, J.; Yang, Y.; Gao, Z.; He, D.; Ng, D.W.K. Dynamic Spectrum Access for D2D-Enabled Internet of Things: A Deep
Reinforcement Learning Approach. IEEE Internet Things J. 2022, 9, 17793–17807. [CrossRef]

45. Richard, J. Open RAN—Understanding the Architecture and Deployment; HackMD: Hsinchu, Taiwan, 2021. Available online:
https://hackmd.io/@jonathanrichard/HJp1cvYeO (accessed on 1 December 2024).

46. Faisal, K.M.; Choi, W. Machine Learning Approaches for Reconfigurable Intelligent Surfaces: A Survey. IEEE Access 2022, 10,
27343–27367. [CrossRef]

47. Polese, M.; Bonati, L.; D’Oro, S.; Basagni, S.; Melodia, T. Understanding O-RAN: Architecture, Interfaces, Algorithms, Security,
and Research Challenges. arXiv 2022, arXiv:2202.01032.

48. Alwarafy, A.; Abdallah, M.; Çiftler, B.S.; Al-Fuqaha, A.; Hamdi, M. The Frontiers of Deep Reinforcement Learning for Resource
Management in Future Wireless HetNets: Techniques, Challenges, and Research Directions. IEEE Open J. Commun. Soc. 2022, 3,
322–365. [CrossRef]

49. Abdalla, A.S.; Upadhyaya, P.S.; Shah, V.K.; Marojevic, V. Toward Next Generation Open Radio Access Networks: What O-RAN
Can and Cannot Do! IEEE Netw. 2022, 36, 206–213. [CrossRef]

50. Kim, E.; Choi, H.-H.; Kim, H.; Na, J.; Lee, H. Optimal Resource Allocation Considering Non-Uniform Spatial Traffic Distribution
in Ultra-Dense Networks: A Multi-Agent Reinforcement Learning Approach. IEEE Access 2022, 10, 20455–20464. [CrossRef]

51. Nomikos, N.; Zoupanos, S.; Charalambous, T.; Krikidis, I. A Survey on Reinforcement Learning-Aided Caching in Heterogeneous
Mobile Edge Networks. IEEE Access 2022, 10, 4380–4413. [CrossRef]

52. Brik, B.; Boutiba, K.; Ksentini, A. Deep Learning for B5G Open Radio Access Network: Evolution, Survey, Case Studies, and
Challenges. IEEE Open J. Commun. Soc. 2022, 3, 228–250.

http://dx.doi.org/10.1109/COMST.2022.3199901
https://gitlab.surrey.ac.uk/sk4sunil/exp_fric
http://dx.doi.org/10.1109/ICC45855.2022.9838618
http://dx.doi.org/10.1109/ICC45855.2022.9838575
http://dx.doi.org/10.1016/j.comnet.2022.109358
http://dx.doi.org/10.1109/NetSoft54395.2022.9844055
http://dx.doi.org/10.1109/NetSoft54395.2022.9844089
http://dx.doi.org/10.1109/TCC.2022.3193939
http://dx.doi.org/10.1109/TVT.2022.3188217
http://dx.doi.org/10.1109/TMC.2022.3188013
http://dx.doi.org/10.1109/JIOT.2022.3177705
http://dx.doi.org/10.1109/WCNC51071.2022.9771623
http://dx.doi.org/10.1109/JIOT.2022.3160197
https://hackmd.io/@jonathanrichard/HJp1cvYeO
http://dx.doi.org/10.1109/ACCESS.2022.3157651
http://dx.doi.org/10.1109/OJCOMS.2022.3153226
http://dx.doi.org/10.1109/MNET.108.2100659
http://dx.doi.org/10.1109/ACCESS.2022.3152162
http://dx.doi.org/10.1109/ACCESS.2022.3140719

Information 2025, 16, 259 24 of 25

53. Cao, Y.; Lien, S.-Y.; Liang, Y.-C.; Chen, K.-C.; Shen, X. User Access Control in Open Radio Access Networks: A Federated Deep
Reinforcement Learning Approach. IEEE Trans. Wirel. Commun. 2022, 21, 3721–3736. [CrossRef]

54. Addad, R.A.; Dutra, D.L.C.; Taleb, T.; Flinck, H. AI-Based Network-Aware Service Function Chain Migration in 5G and Beyond
Networks. IEEE Trans. Netw. Serv. Manag. 2022, 19, 472–484. [CrossRef]

55. Peng, M.; Sun, Y.; Li, X.; Mao, Z.; Wang, C. Recent Advances in Cloud Radio Access Networks: System Architectures, Key
Techniques, and Open Issues. IEEE Commun. Surv. Tutorials 2016, 18, 2282–2308. [CrossRef]

56. Ayala-Romero, J.A.; Garcia-Saavedra, A.; Gramaglia, M.; Costa-Pérez, X.; Banchs, A.; Alcaraz, J.J. vrAIn: Deep Learning Based
Orchestration for Computing and Radio Resources in vRANs. IEEE Trans. Mob. Comput. 2022, 21, 2652–2670. [CrossRef]

57. Orhan, O.; Swamy, V.N.; Tetzlaff, T.; Nassar, M.; Nikopour, H.; Talwar, S. Connection Management xAPP for ORAN RIC: A Graph
Neural Network and Reinforcement Learning Approach. In Proceedings of the 2021 20th IEEE International Conference on
Machine Learning and Applications (ICMLA), Pasadena, CA, USA, 13–16 December 2021; pp. 936–941. [CrossRef]

58. Open Networking Foundation. Software-Defined Networking (SDN) Definition. Available online: https://opennetworking.org/
sdn-definition/ (accessed on 21 December 2022).

59. Lee, H.; Jang, Y.; Song, J.; Yeon, H. ORAN AI/ML Workflow Implementation of Personalized Network Optimization via
Reinforcement Learning. In Proceedings of the 021 IEEE Globecom Workshops (GC Wkshps), Madrid, Spain, 7–11 December
2021; pp. 1–6. [CrossRef]

60. Bauer, A.; Lesch, V.; Versluis, L.; Ilyushkin, A.; Herbst, N.; Kounev, S. Chamulteon: Coordinated Auto-Scaling of Micro-Services.
In Proceedings of the 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), Dallas, TX, USA,
7–10 July 2019.

61. Mao, M.; Humphrey, M. Auto-scaling to minimize cost and meet application deadlines in cloud workflows. In Proceedings of the
2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC’11), Seattle, WA, USA,
12–18 November 2011; Article No. 49, pp. 1–12. [CrossRef]

62. Arabnejad, V.; Bubendorfer, K.; Ng, B. Dynamic multi-workflow scheduling: A deadline and cost-aware approach for commercial
clouds. Future Gener. Comput. Syst. 2019, 100, 98–108. [CrossRef]

63. Shahin, A.A. Automatic Cloud Resource Scaling Algorithm based on Long Short-Term Memory Recurrent Neural Network. Int. J.
Adv. Comput. Sci. Appl. (IJACSA) 2016, 7, 201–207. [CrossRef]

64. Das, S.; Li, F.; Narasayya, V.R.; König, A.C. Automated Demand-driven Resource Scaling in Relational Database-as-a-Service. In
Proceedings of the SIGMOD/PODS’16: International Conference on Management of Data, San Francisco, CA, USA, 26 June–1
July 2016; Microsoft Research: Redmond, WA, USA, 2016.

65. Rimedolabs. O-RAN Near Real-Time RIC. Available online: https://rimedolabs.com/blog/o-ran-near-real-time-ric/ (accessed
on 24 January 2025).

66. Golkarifard, M.; Jin, Y. Dynamic VNF Placement, Resource Allocation and Traffic Engineering with Proactive Demand Prediction.
arXiv 2021, arXiv:2104.12345.

67. Chetty, S.B.; Nag, A.; Al-Tahmeesschi, A.; Wang, Q.; Canberk, B.; Marquez-Barja, J.; Ahmadi, H. Optimized Resource Allocation for
Cloud-Native 6G Networks: Zero-Touch ML Models in Microservices-based VNF Deployments. arXiv 2024, arXiv:2410.06938v1.
[CrossRef]

68. Tran, N.P.; Delgado, O.; Jaumard, B. Proactive Service Assurance in 5G and B5G Networks: A Closed-Loop Algorithm for
End-to-End Network Slicing. arXiv 2024, arXiv:2404.01523v1.

69. D’Oro, S.; Bonati, L.; Polese, M.; Melodia, T. OrchestRAN: Network Automation through Orchestrated Intelligence in the Open
RAN. arXiv 2022, arXiv:2201.05632.

70. Lo Schiavo, L.; Garcia-Aviles, G.; Garcia-Saavedra, A.; Gramaglia, M.; Fiore, M.; Banchs, A.; Costa-Perez, X. CloudRIC: Open
Radio Access Network (O-RAN) Virtualization with Shared Heterogeneous Computing. In Proceedings of the 30th Annual
International Conference on Mobile Computing and Networking, Washington, DC, USA, 18–22 November 2024; ACM MobiCom
’24, pp. 558–572. [CrossRef]

71. Dai, J.; Li, L.; Safavinejad, R.; Mahboob, S.; Chen, H.; Ratnam, V.V. O-RAN-Enabled Intelligent Network Slicing to Meet
Service-Level Agreement (SLA). IEEE Trans. Mob. Comput. 2024, 24, 890–906.

72. Chen, Y.; Wang, X. Deep Learning-Based Forecasting Model for Network Slice Scaling. IEEE Trans. Netw. Serv. Manag. 2022,
18, 456–468.

73. Patel, R.; Gupta, S. Markov Decision Process-Based Predictive Autoscaling in Cloud-Native Environments. ACM Trans. Auton.
Adapt. Syst. 2021, 16, 23–38.

74. Zhang, L.; Kim, H. Reinforcement Learning for Real-Time Resource Scaling in ORAN. Proc. IEEE INFOCOM 2023, 1015–1024.
75. Smith, B.; Lee, J. OpenStack Tacker: Policy-Based Scaling for VNFs. IEEE Cloud Comput. 2022, 9, 78–85.
76. Capone, A.; D’Elia, S.; Filippini, I.; Zangani, M. Measurement-based energy consumption profiling of mobile radio networks. In

Proceedings of the 2015 IEEE 1st International Forum on Research and Technologies for Society and Industry Leveraging a Better
Tomorrow (RTSI), Turin, Italy, 16–18 September 2015; pp. 127–131. [CrossRef]

http://dx.doi.org/10.1109/TWC.2021.3123500
http://dx.doi.org/10.1109/TNSM.2021.3074618
http://dx.doi.org/10.1109/COMST.2016.2548658
http://dx.doi.org/10.1109/TMC.2020.3043100
http://dx.doi.org/10.1109/ICMLA52953.2021.00154
https://opennetworking.org/sdn-definition/
https://opennetworking.org/sdn-definition/
http://dx.doi.org/10.1109/GCWkshps52748.2021.9681936
http://dx.doi.org/10.1145/2063384.2063449
http://dx.doi.org/10.1016/j.future.2019.04.029
http://dx.doi.org/10.14569/IJACSA.2016.071226
https://rimedolabs.com/blog/o-ran-near-real-time-ric/
http://dx.doi.org/10.1109/MNET.2024.3486623
http://dx.doi.org/10.1145/3636534.3649381
http://dx.doi.org/10.1109/RTSI.2015.7325082

Information 2025, 16, 259 25 of 25

77. Bonati, L. Softwarized Approaches for the Open RAN of NextG Cellular Networks. Ph.D. Thesis, Northeastern University,
Boston, MA, USA, 2022. [CrossRef]

78. Nguyen, H.; Brown, T. Unikernels for Lightweight Virtualization in Edge Computing. ACM Comput. Surv. 2023, 55, 1–27.
79. Lopez, D.; Martinez, F. Comparing Kubernetes with ETSI MANO for Network Function Orchestration. Proc. IEEE NFV-SDN

2022, 223–230.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.17760/D20467271

	Introduction
	Problem Statement
	Related Work
	ORAN-HAutoscaling: Scalable Framework ORAN Architecture
	System Model and Terminology
	ORAN High-Traffic Applications
	External Tenant Requests

	Total Time (Latency and ML Inference) and CPU Metrics Model For ORAN Applications
	Inference Time Profiling
	Latency Model

	Objective Function Design
	Queueing Theory Model (M/M/c Queue)
	Control Theory: Proportional Integral Derivative (PID) Controller
	CPU Scaling Conditions
	Combined Metric
	Integration with Prometheus and Kubernetes APIs
	Monitoring Performance Metrics
	Load Balancer with Bull and Bear
	Bull State (Normal Operation)
	Bear State (Scaling Up)

	Performance Evaluation
	Experimental Results
	Reflection
	Conclusions
	References

