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Abstract
In high-dimensional portfolio selection, traditional asset allocation techniques often yield suboptimal results out-of-sample,
while equally weighted portfolios have shown better performances in such scenarios. To leverage the advantages of diversifi-
cation while addressing the curse of dimensionality, we turn to clustering techniques. Specifically, we explore the application
of k-means clustering for time series, which offers a clear financial interpretation as the prototype of each cluster represents an
equally weighted portfolio of the assets within the cluster. In this paper, we conduct a comprehensive comparison of various
time series clustering techniques in the context of portfolio performance. By evaluating the out-of-sample performance of
portfolios constructed using different clustering approaches, we aim to identify the most effective method for investment
purposes.

Keywords Cluster analysis · Finance · Financial time series · Unsupervised learning · Asset allocation

1 Introduction

Clustering, a cornerstone algorithm in data mining, finds
wide application in exploratory analysis, anomaly detection,
and classification tasks. However, its utility extends even fur-
ther when dealing with time series data, albeit with added
complexity owing to the challenge of defining similaritymea-
sures.

In the domain of finance, where the clustering of time
series such as stock prices and returns is commonplace, con-
sideration of empirical regularities-commonly referred to
as stylized facts-is needed (Bastos and Caiado 2021). For
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instance, stock prices typically exhibit integrated behavior,
necessitating the use of returns for clustering analyses.More-
over, the presence of volatility clustering, wherein volatility
tends to cluster in groups of low/high values over time, poses
a further challenge. Additionally, the non-Gaussian, asym-
metric, andheavy-tailed nature of returns’ empirical densities
complicates clustering efforts.

In financial markets, a natural application of time series
clustering techniques is found in portfolio construction, also
known as asset allocation task (Mantegna 1999; Caiado and
Crato 2010; Iorio et al. 2018; Raffinot 2017). Given the
prevalence of high-dimensional data, wherein the number of
available assets N often surpasses the number of time obser-
vations T , traditional optimization strategies face challenges
in estimating the inverse of asset returns’ covariance matrix,
leading to increased estimation errors (e.g. see Ledoit and
Wolf 2017). In such context, naive equally weighted portfo-
lios outperform optimal portfolio allocation strategies, such
as the mean-variance or the global minimum-variance port-
folios (DeMiguel et al. 2009).

In econophysics literature, clustering emerged as a pow-
erful tool in high-dimensional setting, facilitating the iden-
tification of smaller sets of stocks to construct diversified
funds, and researchers have proposed various methods to
address this issue. For instance, Tola et al. (2008) highlighted
the significance of clustering time series data in finance for

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-025-10656-2&domain=pdf
https://orcid.org/0000-0001-8770-7049


R. Mattera et al.

identifying similarities among financial assets, crucial for
portfolio optimization and risk management. Tumminello
et al. (2007) discussed correlation-based networks of equity
returns sampled at different time horizons, demonstrating
how clustering analysis can derive clusters of stocks from
price return time series. Clustering approaches based on
correlation matrix have also been exploited with similar pur-
poses in other domains (e.g. see Ausloos and Lambiotte
2007; Gligor andAusloos 2007). In the financial setting, Raf-
finot (2017) proposed the use of correlation-based distance
in hierarchical clustering algorithm for portfolio selection.
More recently, Iorio et al. (2018) proposed to build portfo-
lios of stock with a P-spline-based distance, while Lorenzo
and Arroyo (2023) proposed a clustering approach based
on risk/return trade-off for building portfolios of cryptocur-
rencies. Furthermore, innovative optimization approaches
exploiting clustering have emerged for portfolio selection.
For instance, Soleymani and Vasighi (2022) employed the
k-means++ clustering technique to cluster financial returns,
subsequently using risk measures like CVaR to identify the
riskiest groups of stocks. Additionally, Gubu and Rosadi
(2020) compared Kamila and Weighted K-Mean clustering
for robust mean-variance portfolio selection, emphasizing
the role of cluster analysis in creating efficient portfolios.
More recently, Mattera et al. (2024) implemented a forecast-
based investment strategy based on time series clustering.

Overall, the application of econophysics in investigating
time series clustering for high-dimensional portfolio selec-
tion involves a diverse range of methodologies, all aimed
at enhancing portfolio optimization strategies. The k-means
clustering algorithm is one of the most popular method in
this regard, wherein the prototype can be interpreted as
the equally weighted portfolio of the assets included in
each cluster. Equally weighted portfolios are particularly
effective in high-dimensional settings where N is large, as
they require no estimation (DeMiguel et al. 2009). How-
ever, as highlighted in the previously mentioned papers
(e.g.]raffinot2017hierarchical,iorio2018,lorenzo2023online, for
a smaller set of K equally weighted funds, optimal diversi-
fication strategies such as mean-variance and GMV (Global
Minimum Variance) can be employed with success. These
strategies offer indeed a more refined approach to portfolio
construction, taking into account the covariance structure of
assets and optimizing the risk-return trade-off.

Therefore, to leverage the advantages of diversification
while addressing the dimensionality challenge, it is conve-
nient to use clustering techniques. However, it is still not
clear what approach provides the best performances in terms
of out-of-sample return/risk trade-off, as most of previous
studies compared the clustering-based portfolio strategies
with others not involving clustering. Differently, in this paper
we conduct a comparison of various time series cluster-
ing techniques in the context of portfolio performance. By

evaluating the out-of-sample performance of portfolios con-
structed using different clustering approaches, we aim to
identify the most effective method for investment purposes.
Our analysis sheds light on the relationship between cluster-
ing techniques and portfolio outcomes, providing valuable
insights for investors and portfolio managers.

The empirical analysis focuses on two datasets, represent-
ing both high-dimensional and low-dimensional portfolios.
Precisely, we build portfolios on Dow Jones Industrial Aver-
age constituents and to those included in the Russell 200
Index. The strategies are evaluated under alternative perfor-
mance metrics. In sum, we find that the use of clustering is
particularly beneficial in high-dimensional asset allocation,
since clustered portfolios perform much better than stan-
dard approaches used by practitioners in high-dimensional
settings. However, the use of clustering does not allow for
relevant benefits when a small number of assets universe is
considered.

The remainder of this paper is organized as follows: Sec-
tion 2 provides a review of clustering methodologies in
finance; Section 3 outlines the methodology employed in our
study; Section 4 presents the empirical analysis and results;
and Section 5 concludes the paper and suggests avenues for
future research.

2 Measuring the proximity of financial time
series

Once a dissimilarity measure between the objects has been
specified, a clustering algorithmmust be chosen to obtain the
partitions. As stated by Liao (2005), most clustering tech-
niques for time series "try to modify the existing algorithms
for clustering static data in such away that time series can be
handled". This is usually done using proper time series dis-
tance matrices. In what follows, we provide a brief overview
of themost commonly employed distancemeasures for finan-
cial time series.

Given a pair of stocks returns’ time series rn,t and rn′,t , a
first approach for clustering the time series could be simply
the Euclidean distance between the two raw time series:

dEUCLn,n′ =
√
√
√
√

T
∑

t=1

(rn,t − rn′,t )2 (1)

There are at different reasons why this measure is inad-
equate for clustering financial time series. First, (1) does
not account for the serial correlation structure of the data
and ignores the correlation structure of the assets, a crucial
aspect of portfolio selection.Moreover, the simple Euclidean
distance on temporal ordinates (1) may be less effective
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in clustering illiquid stocks characterized by sparse returns
matrix.

Starting from these limitations,Mantegna (1999) andRaf-
finot (2017) proposed to quantify the dissimilarity among
different stocks according to their estimated correlation coef-
ficient. The simple difference between estimated correlation
coefficients cannot be used as a distance since it does not
fulfil the axioms that define a metric. To overcome this issue,
Mantegna (1999) proposed to use the distance

dCORn,n′ = √

2(1 − ρn,n′), (2)

that depends by the correlationρn, j between the n-th stock
returns rn,t and the n′-th returns rn′,t . However, the correla-
tion coefficient is still a static measure that does not properly
account for the dynamic structure of the time series.

Interesting approaches are based on the frequency domain
representation of the time series (Díaz andVilar 2010), which
measures the similarity of two n and n′ time series in terms of
their spectral densities. An unbiased estimator of the actual
spectral density is the periodogram

In(λl) = 1

2πT

∣
∣
∣
∣
∣

T
∑

t=1

rn,t e
−iλt

∣
∣
∣
∣
∣

2

λ ∈ [−π, π ],

at frequencies λl = 2πl/T , given {l = −L, . . . , L} with
L = (T − 1)/2. Given σ 2

n be the sample variance of rn,t ,
Caiado et al. (2006) proposed to consider the following dis-
tance between the log-normalized periodograms

dNPERn,n′ =
√
√
√
√

L
∑

l=1

(

log
In(λl)

σ 2
n

− log
In′(λl)
σ 2
n′

)2

. (3)

This approach has been considered in Caiado and Crato
(2010) for clustering financial time series. Cepstral coeffi-
cients could also be used (D’Urso et al. 2020), although their
use requires additional computational challenges.

Within the class of feature-based approaches for finan-
cial time series, long memory-based procedures have been
recently proposed (Cerqueti and Mattera 2023; Di Sciorio
2023; Lahmiri 2016; Mahmoudi 2021). Long memory, also
known as long-range dependence, signifies the presence of
enduring, self-correlated patterns in a time series (Ausloos
et al. 2017). It implies that past occurrences significantly
influence future trends rendering, in the case of financial
market, the dynamics of the system under study more than
a mere sequence of random data points (Ausloos 2000).
Notably previous research highlight the correlation between
long memory and the predictability of assets (Cerqueti and
Fanelli 2021;Vogl 2023), while other studies shown that long

memory can be used for either building profitable invest-
ment strategies (Ausloos and Bronlet 2003; Ramos-Requena
et al. 2017), to investigate market efficiency (Dimitrova et al.
2019; Mattera et al. 2022) and to better pricing options
(Mattera and Di Sciorio 2021). The Hurst exponent of an
asset n, denoted as hn , serves as a crucial metric for quan-
tifying long memory or long-range dependence within time
series data. A higher Hurst exponent, typically exceeding
0.5, indicates persistent behavior, suggesting that the finan-
cial time series adheres to long-term trends and displays
enduring correlations. Conversely, a Hurst exponent lower
than 0.5 suggests anti-persistent behavior, wherein the time
series tends to revert to the mean and exhibits short-term
correlations (Sánchez et al. 2015). From the clustering per-
spective, we notice that different approaches for estimating
the Hurst exponent are available. We can define hn,p as the
Hurst exponent estimated using the p-th available approach.
Lahmiri (2016) suggests that the set of different Hurst esti-
mators provides a general characterization of the underlying
financial time series generating process. Therefore, a simple
Hurst-based clustering approach is to consider the Euclidean
distance between n and n′ based on the different Hurst esti-
mates obtained with alternative estimators, that is

dHURSTn,n′ =
√
√
√
√

P
∑

p=1

(hn,p − hn′,p)2 (4)

A widely used alternative to future-based approaches
are the so-called model-based approaches. This class of
clustering models assume that the returns in time series
are generated by a specific statistical model, such that we
can measure the proximity between two time series by the
similarity of the fitted models. In this respect, an impor-
tant contribution has been proposed by Piccolo (1990), that
defined a metric in the class of invertible ARIMA processes
as the Euclidean distance between theAR(∞) representation
of a given stock returns series rn,t . In practice, we compute
an AR(P) representation where P is selected according to
information criteria. Then, the resulting AR-distance of Pic-
colo (1990) is

dARMAn,n′ =
√
√
√
√

P
∑

p=1

(πn,p − πn′,p)2, (5)

with πn,p and πn′,p the vector of the autoregressive coeffi-
cients for the n-th and n′-th stocks, respectively. If P1 �= P2,
we take P = max(P1, P2) and πn,p = 0 for P > P1 and,
similarly, πn′,p = 0 for P > P2.

All these measures ignore a crucial stylized fact: the time-
varying nature of volatility. As proposed by many authors
(Otranto 2008;Caiado andCrato 2010;D’Urso et al. 2013), if

123



R. Mattera et al.

we aim to cluster time serieswith similar volatility behaviour,
we should consider a distance of model-based type between
estimated parameters of GARCH processes. The standard
GARCH(p,q) model of Bollerslev (1986) can be specified as

rt − μt = εt

εt = σt zt with zt ∼ N (0, 1),

where zt is called innovation and it is a process with zero
mean and unit variance, while σt is a univariate stochastic
process independent from zt of the form

σ 2
t = ω +

p
∑

i=1

αiε
2
t−p +

q
∑

j=1

β jσ
2
t−q ,

with ω > 0, 0 ≤ αi < 1, 0 ≤ β j < 1 and
∑p

i=1 αi +∑q
j=1 β j < 1. Parameters’ estimation can be eas-

ily done by maximum likelihood. According to Caiado and
Crato (2010); D’Urso et al. (2013), assuming a GARCH(1,1)
process, the estimated parameters α̂ and β̂ for each i-th time
series can be stored into a matrix T = (α̂, β̂) with 
 the
covariancematrix associated to the estimates contained in the
T’s. Therefore, we can consider the following Mahalanobis-
like distance between two returns time series rn,t and rn′,t

dGARCHn,n′ =
√

(Tn − Tn′)′ 
−1 (Tn − Tn′), (6)

where through the weighting matrix inverse 
−1 we also
account for the uncertainty in the parameter estimation step.

In the end, it is worthy to mention a strand of literature
clustering time series based on their distributional character-
istics. This is particularly important given the well-known
relevance of returns distribution in finance (Dhesi et al.
2021; Jondeau and Rockinger 2012). The idea of cluster-
ing time series based on their distributional characteristics
is originally due to Nanopoulos et al. (2001). Successively,
Wang et al. (2006), and Fulcher and Jones (2014) proposed
approaches of clustering based on multiple features, includ-
ing static mean, variance, skewness and kurtosis. Bastos and
Caiado (2021) adopted such features for clustering financial
time series. Recently, authors proposed the use of time-
varying distribution features for clustering financial time
series (e.g. see Cerqueti et al. 2022)

The studies mentioned above do not assume any under-
lying probability distribution for the time series, but use
sample estimators for those features. However, model-based
approaches for clustering require the definition of a proba-
bility distribution able to describe all the time series in the
sample, which differentiates in terms of estimated parame-
ters (e.g. see Mattera et al. 2021). A critical desired property
of these approaches is that maximum likelihood estimation
of the parameters is possible.

In presence of a general p(·) density, the distribution-
based clustering approaches consider the following (N × J )

matrix F

F =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

f1,1 f1,2 . . . f1,J
...

...
...

...

fn,1 fn,2 . . . fn,J
...

...
...

...

fN ,1 fN ,2 . . . fN ,J

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (7)

where on the J columns of F there are the j = 1, . . . , J
parameters for the N assets that are indexed by the rows.
Clearly, in specifying the density p(·), it would be advanta-
geous to choose a very general distribution to account for a
wide range of possible exceptional cases. The observed char-
acteristics of financial time series motivated the exploration
of distributions that can accommodate properties such as fat-
tailedness and skewness. In finance, a commonly employed
distribution is the Skewed Exponential Power Distribution
(SEPD) Fernandez et al. (1995); Fernández and Steel (1998);
Theodossiou (2015); Komunjer (2007), that generalizes the
Exponential Power Distribution for skewness. The SEPD
is characterized by 4 parameters, i.e. location μ, scale φ,
skewness λ and shape v. A random variable is said to have
a Skewed Exponential Power Distribution if its probability
density function is the following (Ayebo and Kozubowski
2003):

p(y;μ, σ, v, λ) = v

σ�
(

1 + 1
v

)
λ

1 + λ2

exp

(

−λp

σv
[(z − μ)+]v − 1

σvλv
[(z − μ)−]v

)

, (8)

where:

(z − μ)+ = max (z − μ; 0) and

(z − μ)− = max (μ − z; 0) .

In literature seemingly different classes of SEPD dis-
tribution have been constructed (Ayebo and Kozubowski
2003; Theodossiou 2015). However, as suggested by Zhu
and Zinde-Walsh (2009), all of them are reparametrizations
of the SEPD proposed by Fernandez et al. (1995); Fernán-
dez and Steel (1998). An essential feature of the EPD is
that it includes many common distributions as special cases,
depending on the value of shape v and skewnessλ parameters
(see Fig. 1).

In particular, forλ = 1, the distribution is symmetric about
μ sowe obtain the symmetric exponential power distribution.
Ifλ = 1 and v = 2we obtain theGaussian distribution. In the
case λ �= 1, by letting v = 1 we obtain the skewed Laplace
distribution. Moreover, for v = 2 and λ �= 1, we obtain
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Fig. 1 Skewed Exponential
Power Distribution for different
values of shape and skewness

the skewed normal distribution as defined in Mudholkar and
Hutson (2000). Many financial applications of the EPD as
well as its skewed extensions have been considered (Nelson
1991; Cerqueti et al. 2020).

The flexibility of the SEPD can be successfully exploited
in the clustering process if the aim is to form distribution-
based clusters. In the case which the time series that are
generated by a Skewed Exponential Power Distribution of
parameters μn, σn, pn and λn , the matrix

Fsepd =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

μ1 σ1 p1 λ1
μ2 σ2 p2 λ2
...

...
...

...

μn σn pn λn
...

...
...

...

μN σN pN λN

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(9)

becomes the input for measuring the proximity of the time
series. In the case of a generic distribution-based clustering
with static parameters, a reasonable dissimilarity is given by
the Euclidean distance between parameters

dn,n′ =
√
√
√
√

J
∑

j=1

(Fn − Fn′)2, (10)

where Fn represents the n-the row of the matrix (7).

3 The clustered portfolio investment
strategy

Most of the applications to financial time series clustering
have been based on either the hierarchical (e.g. seeMantegna

1999; Caiado and Crato 2010; Raffinot 2017) or partitional
algorithms (e.g. see Nanda et al. 2010; D’Urso et al. 2016;
Lorenzo and Arroyo 2023).

Hierarchical clustering methods work by grouping time
series into a tree of clusters. However, the performance
of hierarchical clustering methods often suffers from their
inability to adjust once a merge decision has been executed
(Liu et al. 2021). Moreover, the hierarchical algorithms typ-
ically are time-consuming (Xie et al. 2020) with quadratic
complexity, while for the partitional algorithms like the k-
means it is linear. Therefore, despite hierarchical approaches
representing awidely used alternative for clustering financial
time series, they are not recommended for building portfolios
in a high-dimensional setting, where the number of assets is
relatively large.

The k-means algorithm is computationally less challeng-
ing. For this reason, the k-Means algorithm is one of themost
popular clustering approaches aiming to partition the time
series into a predetermined number of clusters K . The main
drawback of partitional algorithms is that the number of clus-
ters has to be identified in advance. Several approaches can be
used to this aim.However, followingmanyother authoritative
studies (Arbelaitz et al. 2013; Batool and Hennig 2021), this
issue can be overcome by choosing the number of clusters
through meaningful criteria, such as the Average Silhouette
Width (ASW). The k-means clustering algorithm relies on
an iterative scheme based on the minimization of an objec-
tive function, which is usually chosen to be the total distance
between all patterns from their respective cluster prototype

min
{Ck }

K
∑

k=1

∑

i∈Ck
d2i,k (11)
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where N is the number of the time series to be grouped, Ck
is the k-th cluster of size Nk , K is the number of clusters
(a priori fixed), k represents the centre such that di,k is the
distance between each time series i from the prototype of the
k-th cluster, that is equal to

rk,t = 1

Nk

∑

i∈Ck
ri,t (12)

in the case of the standard Euclidean distance. Similar to
k-means, k-medoids algorithms are also usually considered
for building portfolios. The k-medoids algorithm belongs,
like the k-means, to the class of partitional approaches but,
differently from the latter, provides a timid robustification
(Garcia-Escudero and Gordaliza 2005). With the k-medoids
approach, the prototypes of each group are real time series
belonging to the sample, instead of averages, as happens with
the k-means algorithm. The possibility of obtaining non-
fictitious representative time series in the clusters is very
appealing and helpful in many application domains, and it
can improve the interpretability of the clusters.

In the context of finance, however, the results obtained
with the k-medoids turn out to be less easy to interpret, at
least in terms of financial portfolio theory. The prototype
of the k-means algorithm has a clear financial interpreta-
tion: each k-th prototype is the equally weighted portfolio of
all the assets included in the k-th clusters (12). This impor-
tant distinguishing financial interpretation is not possible to
obtain with k-medoids approaches. Therefore, while in the
k-medoids investing in the prototype means investing in a
single asset, with the k-means we invest in a diversified fund.

Beyond these classicalmethods, other unsupervised learn-
ing techniques could be considered, such as DBSCAN or
GMMclustering approaches. On one hand,DBSCAN, is par-
ticularly effective for detecting clusters of varying shapes and
densities, making it useful in non-Euclidean feature spaces
or when the data exhibits noise. However, its applicability in
the context of financial portfolio construction is limited, as
DBSCAN does not naturally provide prototypes that can be
interpreted as portfolios. GMMclustering, on the other hand,
makes distributional assumption on the time series and/or
their statistical features, making it in general less adopted for
clustering financial time series.

In practice, following k-means approach, clustered port-
folios can be formed by the application of any diversification
rule to the K ≥ 2 subsets of assets. The first step of the
clustering-based investment requires the selection of the clus-
tering approach, that is the employed proximity definition.
Once a partition into K groups is found, K equally weighted
clustered portfolios can be obtained based on the stocks
belonging to each of the k ∈ K clusters. In the end, the opti-
mal amount of wealth associated to each of the K << N
funds can be defined according to any kind of optimiza-

tion strategy. A simple approach consists of forming K
well-diversified portfolios by applying optimal diversifica-
tion across the K funds. This strategy turns out to provide a
scaling to the equally weighted to each k-th fund constructed
with clustering. At the end of the process, by clustered port-
folio strategy one invests in all the N stocks in the initial
sample.

We notice, however, that in principle any diversifica-
tion rule across the K equally weighted portfolios can be
adopted. To optimally choose wk , for example, we can use
the minimum-variance diversification rule

min
w

w′�w,

s.t. w′ι = 1
(13)

where � is the K funds covariance matrix, ι the K -
dimensional vector of ones andw = [w1, . . . , wk, . . . , wK ]′
is the vector of K weights associated to each k-th clustered
portfolios. The well-known optimal solution is given by

w∗ = �−1ι

ι′�−1ι
. (14)

Another well-known solution is to diversify by maximiz-
ing the investor’s mean-variance utility function

max
w

w′μ − γw′�w, (15)

with μ the mean vector of the asset returns and γ the risk
aversion coefficient. The optimal solution is given by

w∗ = γ −1�−1μ. (16)

We stress that in a high-dimensional setting the covariance
matrix � cannot be inverted, while with increasing assets N
and fixed T it becomes increasingly ill-conditioned. There-
fore, clustered portfolios represent an easy-to-implement
solution to deal with such settings. Alternative approaches,
based on particular covariance estimators (e.g. see Fan et al.
2013; Ledoit and Wolf 2017) need to be adopted. In this
paper, we show that clustered portfolios can represent a bet-
ter alternative to such approaches.

4 Empirical analysis

4.1 Data and experimental set-up

We study the performance of clustered portfolio strategy in
both standard and high-dimensional scenarios. For this aim,
two different datasets are considered. In the first one, we con-
sider themonthly time series of stocks included in theRussell
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2000 Index. For the same period, in the second case, we con-
sider the monthly time series of stocks traded in the Dow
Jones Industrial Average index from January 2003 toDecem-
ber 2023. We exclude stocks with missing values. Therefore,
the final sample size in the first dataset is N = 556 stocks,
while in the second case we have N = 28 as shown in Fig. 2.
In both cases, we observe T = 252. The use of monthly
data is justified by the fact that daily returns are much noisy
and that medium-long run allocation strategies are usually
constructed considering low-frequency time series.

To study the performances of clustered portfolios in out-
of-sample, we use the rolling-window strategy described
in DeMiguel et al. (2009). Given N time series of returns
observed for T months,we choose an estimationwidowequal
to M to form K clusters considering alternative distance def-
initions as described in Sect. 2. From this we estimate the
K clusters to form K naive equally weighted initial portfo-
lios. Then, we estimate the covariance structure across the K
funds, which is needed for the use of both global minimum-
variance andmean-variance diversification rules. To estimate
the covariance structure we use the static sample covariance
estimator. This process is iteratively repeated by adding the
return for the next period in the dataset and dropping the ear-
liest one until the end of the dataset is reached. The result
is, therefore, a time series of length (T − M) of portfolio
returns.

Usually, a common choice is M = 120 for monthly data
(DeMiguel et al. 2009). However, the clustering algorithms
perform differently for long and short time series (Díaz and
Vilar 2010). Conversely, it can be the case that clustering
approaches that work well with short time series perform
instead poorly with long time series and vice versa. Since
M represents the time series length within each iteration,
we therefore also consider M = 180. In the first case, we
assume 10 years of data are used for clustering and parameter
estimation, while in the second case, 15 years are considered.

Given the time series of monthly out-of-sample portfolio
returns, we then compute the out-of-sample Sharpe ratio of
the portfolio obtained using the j-th strategy, SR j , defined as
the sample mean of out-of-sample portfolio returns divided
by its standard deviation:

Sharpe j = μ̂ j

σ̂ j
(17)

where μ̂ j is the average of the (T − M) out of sample
returns for the portfolio using the j-th clustering approach
and σ̂ j its standard deviation. The investment strategies based
on clustering are compared with the standard approaches
where clustering is not involved.

The Sortino ratio and modified Sharpe ratio are, however,
commonly favoured by practitioners because they address
specific aspects of risk that the traditional Sharpe ratio may

not fully capture. It couldbe interesting toweighmore the risk
associated with negative returns risk. Investors are typically
more concerned about losses thangains, especially thosewith
a lower risk tolerance. Moreover, the standard deviation used
in theSharpe ratio could be abiasedmeasure of risk, andother
risk measures could be adopted.

The Sortino ratio is a variation of the Sharpe ratio that
emphasizes downside risk, specifically the volatility of nega-
tive returns. Itmeasures the excess returnper unit of downside
volatility. The downside volatility is calculated as the stan-
dard deviation of negative returns. The Sortino ratio is given
by

Sortino j = μ̂ j

σ̂−
j

, (18)

where σ̂−
j is the downside risk, that is the standard devia-

tion of negative returns.
The modified Sharpe ratio, also known as the VaR-Sharpe

ratio, extends the concept of the Sharpe ratio by incorpo-
rating Value at Risk (VaR) in the denominator. The VaR is
a measure of the maximum potential loss of an investment
over a specified time horizon at a given confidence level. The
VaR-Sharpe ratio measures the excess return per unit of VaR,
i.e.

VaR-Sharpe j = μ̂ j

VaR j
. (19)

In the case of a high-dimensional experiment where N >

T , the investment strategies without clustering are imple-
mented using Ledoit and Wolf (2003) covariance estimator.
In the low-dimensional setting, instead, the sample covari-
ance estimator can be considered. Table 1 summarizes the
investment strategies compared empirically.

4.2 Clustered portfolio analysis

In this section, we delve into a comprehensive analysis
of portfolio performance across different dimensions and
scenarios. We evaluate various strategies under both high-
dimensional and low-dimensional portfolio settings, consid-
ering different time series lengths and risk measures. The
portfolio strategies are assessed using key performance met-
rics such as the Sharpe ratio, Sortino ratio, and VaR-Sharpe
ratio under both the GMV (Global Minimum Variance) rule
and MV (Mean-Variance) rule approaches.

Through this detailed examination, we aim to provide
insights into the effectiveness of each strategy in maximizing
risk-adjusted returns while effectively managing downside
risk and volatility. The analysis sheds light on the resilience
of portfolio optimization techniques in dynamic market
environments, offering valuable guidance for investors and
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Fig. 2 Returns of the selected stocks included in the DJIA Index

Table 1 Implemented
strategies, both global minimum
variance and mean-variance
diversification rules are
considered

Symbol Description

Benchmark

wSC Investment strategy with sample covariance plug-in

wLW Investment strategy with Ledoit and Wolf (2003) plug-in

Clustered portfolios

wEUCL Investment strategy with Euclidean distance

wCOR Investment strategy with correlation-based distance

wNPER Investment strategy with peridiogram-based distance

wHURST Investment strategy with Hurst exponent-based distance

wARMA Investment strategy with ARMA-based distance

wGARCH Investment strategy with GARCH-based distance

wSEPD Investment strategy with t-student distribution distance
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practitioners seeking robust strategies for portfolio manage-
ment.

4.2.1 High-dimensional portfolio

In this subsection, we focus on the analysis of portfolio
performance in high-dimensional settings. We explore the
effectiveness of various strategies under scenarios character-
ized by a large number of assets (N ) and different time series
lengths (M). The evaluation is conducted using a range of
risk measures, including the Sharpe ratio, Sortino ratio, and
VaR-Sharpe ratio, under both the GMV (Global Minimum
Variance) rule and MV (Mean-Variance) rule approaches.
Table 2 shows the out-of-sample results considering an esti-
mation window equal to M = 120.

GMV Rule. Under the GMV rule approach, SEPD consis-
tently outperformed other models across all risk measures.
This suggests that SEPD not only achieves higher risk-
adjusted returns but also effectively manages downside risk
and volatility. For instance, SEPD achieved a Sharpe ratio of
0.2775, significantly higher than the next best-performing
model, indicating its ability to generate superior returns
per unit of risk. Similarly, SEPD demonstrated a Sortino
ratio of 0.4905, reflecting its efficiency in delivering positive
returns relative to downside volatility. Additionally, SEPD
showcased a VaR-Sharpe ratio of 0.2214, highlighting its
robustness in managing both volatility and downside risk
simultaneously (Table 2).

MV Rule. Similarly, under the MV rule approach, SEPD
emerged as the top-performing model across all risk mea-
sures. The robust performance of SEPD in this approach
reaffirms its effectiveness in maximizing returns while mit-
igating risk. For example, SEPD achieved a Sharpe ratio
of 0.4905, surpassing all other models, indicating its supe-
rior risk-adjusted returns. Additionally, SEPD demonstrated
a Sortino ratio of 0.2214, indicating its ability to generate
higher returns relative to downside risk compared to alter-
native models. Furthermore, SEPD exhibited a VaR-Sharpe
ratio of 0.2194, highlighting its effectiveness in managing
volatility while considering downside risk.

The consistent outperformance of SEPD across all risk
measures underscores its effectiveness in managing esti-
mation error and high-dimensional data. This suggests that
SEPD offers a robust solution for portfolio optimization in
challenging environments, providing investors with strong
risk-adjusted returns while effectively managing volatility
and downside risk. The substantial performance gap between
SEPDand othermodels across all riskmeasures highlights its
superiority in generating superior risk-adjusted returns and
underscores its resilience in high-dimensional settings.

Table 3 shows the out-of-sample results by increasing the
estimation window to M = 180.

GMV Rule. In the extended scenario with a longer time
series length (M=180), "PER" emerged as the top-performing
model based on the Sharpe ratio. However, SEPDmaintained
its competitive edge across all risk measures, including the
Sortino and VaR-Sharpe ratios, highlighting its robustness in
managing volatility and downside risk. Despite the slight
shift in performance, SEPD continues to demonstrate its
effectiveness in delivering superior risk-adjusted returns.

MV rule. Similarly, under the MV rule approach in
Table 3, "PER" demonstrated strong performance based on
the Sharpe ratio. Nevertheless, SEPD remained a robust
contender across all risk measures, indicating its effective-
ness in managing downside risk while delivering strong
risk-adjusted returns. The consistent performance of SEPD
reaffirms its suitability for robust portfolio optimization, pro-
viding investors with stability and reliability in dynamic
market conditions.

The performance trends observed in Table 3 reinforce
the resilience of SEPD in managing estimation error and
high-dimensional data. It consistently outperforms all risk
measures, reaffirming its suitability for robust portfolio
optimization. The differences across the rows highlight
the varying performance levels of different models, with
SEPD consistently outperforming other models in terms of
risk-adjusted returns and demonstrating its adaptability in
dynamic market conditions.

4.2.2 Low-dimensional portfolio

The results from Tables 4 and 5 provide insights into
the portfolio performance of various strategies in low-
dimensional scenarios, considering different risk measures
and approaches.

In Table 4, which presents the analysis for a scenario with
a time series length of M = 120 and N = 28, the strategies
are evaluated under both the GMV (Global Minimum Vari-
ance) rule and MV (Mean-Variance) rule approaches. The
performance metrics include the Sharpe ratio, Sortino ratio,
and VaR-Sharpe ratio. Notably, the SC strategy emerges as
the top-performing model under the GMV rule approach,
exhibiting the highest Sharpe, Sortino, andVaR-Sharpe ratios
among the strategies considered. This indicates its effective-
ness in maximizing risk-adjusted returns while managing
downside risk and volatility.

Under the MV rule approach in Table 4, the SC strat-
egy also demonstrates strong performance across all risk
measures, further reinforcing its suitability for portfolio opti-
mization in low-dimensional scenarios.

Moving to Table 5, which depicts the results for a sce-
nario with an extended time series length of M = 180 and
N = 28, similar trends are observed. The SC strategy main-
tains its competitive edge, emerging as the top-performing
model under both the GMV rule and MV rule approaches.
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Table 2 Portfolio performance
of the strategies considered in
Table 1: different measures,
M = 120 and N = 556

GMV rule MV rule
Approaches Sharpe Sortino VaR-Sharpe Sharpe Sortino VaR-Sharpe

SC – – – − − −
LW 0.1639 0.2444 0.1166 0.1886 0.3048 0.1203

EUCL 0.1874 0.3083 0.1334 0.0399 0.0797 0.0400

COR 0.0744 0.1062 0.0543 0.0025 0.0036 0.0039

PER 0.2183 0.3553 0.1649 −0.0972 −0.0980 −0.1653

HURST 0.1322 0.1918 0.0927 0.0956 0.3792 0.3695

ARMA 0.0454 0.0591 0.0297 0.1685 0.4003 0.4055

GARCH 0.1046 0.1478 0.0649 −0.0866 −0.0877 −0.5272

SEPD 0.2775 0.4905 0.2214 0.1501 0.4479 0.2194

The best model is highlighted with the bold font

Table 3 Portfolio performance
of the strategies considered in
Table 1: different measures,
M = 180 and N = 556

GMV rule MV rule
Approaches Sharpe Sortino VaR-Sharpe Sharpe Sortino VaR-Sharpe

SC − − − – – –

LW 0.0017 0.0023 0.0010 0.1692 0.2688 0.1214

EUCL 0.0939 0.1427 0.0681 0.1256 0.2068 0.0870

COR −0.0633 −0.0788 −0.0363 0.0742 0.1302 0.0674

PER 0.1455 0.2259 0.1100 0.2073 0.3518 0.1513

HURST 0.0439 0.0616 0.0307 0.1302 0.2399 0.1154

ARMA 0.0631 0.0864 0.0391 0.0769 0.1274 0.0592

GARCH 0.0150 0.0204 0.0085 0.0592 0.0823 0.0323

SEPD 0.2071 0.3456 0.1610 0.2515 0.4731 0.1775

The best model is highlighted with the bold font

Table 4 Portfolio performance
of the strategies considered in
Table 1: different measures,
M = 120 and N = 28

GMV rule MV rule
Approaches Sharpe Sortino VaR-Sharpe Sharpe Sortino VaR-Sharpe

SC 0.2350 0.3880 0.1706 0.2048 0.3453 0.1405

LW 0.2243 0.3635 0.1479 0.1982 0.3325 0.1537

EUCL 0.1929 0.3036 0.1152 0.1111 0.8841 0.3936

COR 0.1819 0.2828 0.1253 0.0437 0.0570 0.0305

PER 0.2162 0.3414 0.1395 0.1214 0.4051 0.2119

HURST 0.1585 0.2382 0.1093 0.0521 0.1020 0.1475

ARMA 0.1682 0.2420 0.1174 0.1609 0.3439 0.1953

GARCH 0.2104 0.3379 0.1398 −0.0482 −0.0530 −0.3568

SEPD 0.2214 0.3503 0.1440 0.1948 0.3288 0.1412

The best model is highlighted with the bold font

Once again, it exhibits superior risk-adjusted returns and
effective management of downside risk and volatility com-
pared to other strategies.

These findings underscore the robustness of the SC strat-
egy in low-dimensional portfolio settings, highlighting its
ability to deliver strong risk-adjusted returns while effec-
tively navigating market dynamics. The consistency of its
performance across different risk measures and approaches

reaffirms its suitability for investors seeking stability and reli-
ability in portfolio optimization strategies.

Overall, the results presented in Tables 4 and 5 provide
valuable insights for practitioners and investors, guiding
their decision-making processes in low-dimensional portfo-
lio management.
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Table 5 Portfolio performance
of the strategies considered in
Table 1: different measures,
M = 180 and N = 28

GMV rule MV rule
Approaches Sharpe Sortino VaR-Sharpe Sharpe Sortino VaR-Sharpe

SC 0.1566 0.2538 0.0976 0.1364 0.2357 0.1206

LW 0.1485 0.2372 0.0984 0.1403 0.2364 0.1062

EUCL 0.1000 0.1489 0.0647 0.1120 0.1693 0.0735

COR 0.1017 0.1522 0.0644 0.1075 0.1637 0.0701

PER 0.0989 0.1492 0.0611 0.1108 0.1669 0.0686

HURST 0.1093 0.1647 0.0792 0.0979 0.1467 0.0703

ARMA 0.1319 0.2034 0.0929 0.0508 0.0766 0.0332

GARCH 0.1502 0.2289 0.0917 0.1513 0.2289 0.0858

SEPD 0.1606 0.2491 0.0935 0.1908 0.2987 0.1109

The best model is highlighted with the bold font

5 Conclusions

The application of time series clustering techniques in port-
folio construction presents a promising avenue for enhancing
investment outcomes in financial markets. Clustering, a fun-
damental algorithm in data mining, finds extensive utility in
exploratory analysis, anomaly detection, and classification
tasks. However, its adaptation to time series data introduces
additional complexities, particularly in the domain of finance
where empirical regularities, commonly known as stylized
facts, must be carefully considered.

In our investigation, we observed that time series clus-
tering techniques play a pivotal role in high-dimensional
portfolio analysis, where traditional optimization strategies
face challenges in estimating covariance matrices accurately.
Notably, the k-means clustering algorithm emerges as a
powerful tool for identifying smaller sets of stocks to con-
struct diversified funds, with prototype portfolios resembling
equally weighted allocations. Despite the effectiveness of
equally weighted portfolios in high-dimensional settings,
optimal diversification strategies such as mean-variance and
GMV portfolios offer refined approaches to portfolio con-
struction by optimizing the risk-return trade-off.

In the paper, we consider the curse of dimensionality from
two perspectives. First, we reduce the set of N stocks to
Nk , ∀k = 1, . . . , K and such that Nk << N , thus making
the portfolio selection choice feasible in large dimension.
Second, by clustering time series considering relevant say
P features rather than T temporal ordinates, we reduce the
features for clustering from T to P , with P << T .

The results presented in the paper illustrate the portfo-
lio performance of various strategies under different risk
measures and approaches. The analysis focuses on both
high-dimensional and low-dimensional portfolios, consider-
ing different scenarios with varying time series lengths.

In the high-dimensional portfolio analysis, the strategies
are evaluated under the GMV (Global Minimum Variance)
rule and MV (Mean-Variance) rule approaches. The perfor-

mance metrics include the Sharpe ratio, Sortino ratio, and
VaR-Sharpe ratio. Notably, the SEPD strategy consistently
outperforms other models across all risk measures under
both the GMV and MV rule approaches. This indicates that
SEPD not only achieves higher risk-adjusted returns but also
effectively manages downside risk and volatility. Under the
GMV rule approach, SEPD demonstrates superior perfor-
mance compared to other models, as evidenced by its higher
Sharpe, Sortino, and VaR-Sharpe ratios. Similarly, under the
MV rule approach, SEPD emerges as the top-performing
model across all risk measures, showcasing its effectiveness
in maximizing returns while mitigating risk. The consis-
tent outperformance of SEPD underscores its effectiveness
in managing estimation error and high-dimensional data,
making it a robust solution for portfolio optimization in
challenging environments. The substantial performance gap
between SEPD and other models across all risk measures
highlights its superiority in generating superior risk-adjusted
returns and underscores its resilience in high-dimensional
settings.

In the low-dimensional portfolio analysis, similar trends
are observed,with SEPDconsistently performingwell across
all risk measures and approaches. Despite variations in the
performance of other models, SEPD maintains its compet-
itive edge, reaffirming its suitability for robust portfolio
optimization.

Our comprehensive comparison of various time series
clustering techniques in the context of portfolio performance
revealed valuable insights. Specifically, the SEPD strategy
consistently outperformed other models across different risk
measures and portfolio dimensions, demonstrating its robust-
ness in managing estimation error and high-dimensional
data. This underscores the superiority of SEPD in generat-
ing superior risk-adjusted returns while effectivelymanaging
downside risk and volatility, making it a compelling solution
for portfolio optimization in challenging environments.

In conclusion, leveraging the advantages of time series
clustering techniques in portfolio construction holds sig-
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nificant potential for investors and portfolio managers. By
carefully selecting appropriate clustering methods and con-
sidering the relationship between clustering techniques and
portfolio outcomes, investors can enhance their invest-
ment strategies and achieve superior risk-adjusted returns
in dynamic market conditions. Our analysis contributes
valuable insights to the field, guiding practitioners towards
more effective portfolio management strategies in the ever-
evolving landscape of financial markets.

While our study highlights the effectiveness of clustering
approaches, future research could explore promising alterna-
tive methods for portfolio construction, such as factor-based
models. These approaches, which focus on identifying and
exploiting common risk factors driving asset returns, offer a
complementary framework to clustering as they do not rely
on a similarity criterion among stocks.

Aparticularly intriguing avenue for further investigation is
the integration of clustering techniques within factor invest-
ing strategies (e.g. see De Nard et al. 2021). For instance,
clustering could be employed to refine factor portfolios by
grouping assets based on shared factors, thereby enhanc-
ing the robustness of factor models. Some studies (e.g. see
Ando and Bai 2017) have begun to explore this synergy,
demonstrating the usefulness of clustering in improving the
performances of factor models in explaining and forecasting
time series. Additionally, future research could investigate
the use of more sophisticated distance measures, such as
Kullback–Leibler (KL) divergence, to enhance clustering
performance. While our study employs a distribution-based
clustering approach that has shown strong performance, KL
divergence could offer complementary insights by account-
ing for differences in probability distributions. Expanding the
scope of research to include hybrid approaches that combine
clustering with factor-based models and more advanced dis-
tance metrics could provide deeper insights, advancing the
toolkit available for portfolio management.
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