Supplementary Data Description file

Integrated histopathology, spatial and single cell transcriptomics resolve cellular drivers of early and late alveolar damage in COVID-19

Jimmy Tsz Hang Lee^{1,*}, Sam N. Barnett^{2,3*}, Kenny Roberts¹, Helen Ashwin⁴, Luke Milross⁵, Jae-Won Cho⁶, Alik Huseynov², Benjamin Woodhams^{1,7}, Alexander Aivazidis¹, Tong Li¹, Joaquim Majo⁸, Patricia Chaves², Michael Lee², Antonio M. A. Miranda², Zuzanna Jablonska², Vincenzo Arena⁹, Brian Hanley¹⁰, Michael Osborn¹⁰, Virginie Uhlmann⁷, Xiao-Ning Xu¹¹, Gary R. McLean^{2,12}, Sarah A. Teichmann^{1,13}, Anna M. Randi^{2,3}, Andrew Filby¹⁴, Paul M. Kaye⁴, Andrew J. Fisher^{5,15,**,#}, Martin Hemberg^{6,**,#}, Michela Noseda^{2,3**,#}, Omer Ali Bayraktar^{1,**,#}

* These authors contributed equally

** These authors jointly supervised this work

corresponding authors: <u>a.j.fisher@newcastle.ac.uk</u>, <u>mhemberg@bwh.harvard.edu</u>, <u>m.noseda@imperial.ac.uk</u>, <u>ob5@sanger.ac.uk</u>

- 1. Cellular Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
- 2. National Heart and Lung Institute, Imperial College London, London, UK.
- 3. British Heart Foundation Centre of Research Excellence, Imperial College London, London, UK.
- 4. York Biomedical Research Institute, Hull York Medical School, University of York, York, UK.
- 5. Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK.
- 6. The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- 7. European Bioinformatics Institute, European Molecular Biology Laboratory (EMBL), Cambridge, UK.
- 8. Department of Cellular Pathology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
- 9. Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Istituto di Anatomia Patologica, Università Cattolica Del Sacro Cuore, Rome, Italy.
- 10. Department of Cellular Pathology, Northwest London Pathology, Imperial College London NHS Trust, London, UK
- 11. Department of Infectious Disease, Imperial College London, London, UK.
- 12. London Metropolitan University, London, UK.
- 13. Cambridge Stem Cell Institute & Department of Medicine, University of Cambridge, Cambridge, UK.
- 14. Biosciences Institute and Innovation, Methodology and Application Research Theme, Newcastle University, Newcastle upon Tyne, UK.
- 15. Institute of Transplantation, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.

Supplementary Data 1: COVID-19 patient metadata used for snRNA-seq / RNAscope.

Supplementary Data 2: Datasets used for generation of COVID-19 sc-/snRNA-seq object.

Supplementary Data 3: Cell state abbreviations.

Supplementary Data 4: Cell state differential gene expression analysis. Differentially expressed genes were calculated using the Wilcoxon Rank Sum Test with Benjamini-Hochberg adjustment.

Supplementary Data 5: EdgeR Pseudobulk analysis of sc-/snRNA-seq data (COVID-19 vs. Healthy / cell state). Differentially expressed genes were calculated using QLF (Quasi-Likelihood F-test).

Supplementary Data 6: MSigDB Pathway enrichment analysis in EP.AT1 (COVID-19 vs. Healthy / cell state).

Supplementary Data 7: MSigDB Pathway enrichment analysis in EP.AT2 (COVID-19 vs. Healthy / cell state).

Supplementary Data 8: COVID-19 patient metadata used for WTA profiling.

Supplementary Data 9: EdgeR Pseudobulk analysis of EDAD vs ODAD spatial WTA. Differentially expressed genes were calculated using QLF (Quasi-Likelihood F-test). P values were adjusted for multiple comparisons using the Benjamini-Hochberg method.

Supplementary Data 10: EdgeR Pseudobulk analysis of EDAD vs PRES spatial WTA. Differentially expressed genes were calculated using QLF (Quasi-Likelihood F-test). P values were adjusted for multiple comparisons using the Benjamini-Hochberg method.

Supplementary Data 11: EdgeR Pseudobulk analysis of ODAD vs PRES spatial WTA. Differentially expressed genes were calculated using QLF (Quasi-Likelihood F-test). P values were adjusted for multiple comparisons using the Benjamini-Hochberg method.

Supplementary Data 12: EdgeR Pseudobulk analysis of MDAD vs PRES spatial WTA. Differentially expressed genes were calculated using QLF (Quasi-Likelihood F-test). P values were adjusted for multiple comparisons using the Benjamini-Hochberg method.

Supplementary Data 13: SVG format of Supplementary Figure 1D.