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Dear Professor Delorme,

We are submitting to the Journal of Functional Analysis the revised version of our paper Ms.
Ref. No.: JFA-15-137

” Non-unitary representations of nilpotent groups, I: cohomologies, extensions and neutral cocy-
cles”.

We are very grateful to the referee for many helpful suggestions and we made some changes
following his suggestions.

1) The theorem

Theorem 0.1 Let m be a representation of a group G in the Banach space X and let Y be an
invariant subspace. For an Engel element h € G, let T = w(h), Ty the be restriction of T to'Y
and T be the operator naturally generated by T on X/Y. Let Sp Ty N Sp T =0. Then = splits; this
means that there is a w-invariant subspace Z in X with X =Y ® Z.

that was formulated and nicely proved by the referee coincides with our Corollary 2.17 (in the
initial submission). Now we call it Theorem 2.17.

2) ? Lemma 2.3 is a commonplace for anyone familiar with homologies and can be omitted”
We omitted the proof of Lemma 2.3, but left the statement (it is Lemma 3.5) to use it for the
proofs of Proposition 3.6, Corollary 3.7 and Theorem 3.12.

3) 7 The text on pages 8, 9, 11, 12 can be shortened..”
We shortened the text on these pages.

4) ” My opinion is that Section 3.2 is not necessary.”
We omitted Section 3.2 (”L-decomposition”), but kept Proposition 3.5 (it is now Proposition
3.6), since we use its results in the proofs of Corollary 3.8 and Theorem 3.18.

5) Following the referee’s advice, we proved Theorem 3.18 in greater generality — for nilpotent
groups in whose dual objects characters are not separated. We deduced from Theorem 3.18 the
case of the Heisenberg group as a consequence.

Yours sincerely,
Edward Kissin and Victor Shulman
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Abstract

Let A be a finite-dimensional representation of a connected nilpotent group G and U be
a unitary representation of G. We investigate the structure of the extensions of A by U and,
correspondingly, the group H!'(\,U) of 1-cohomologies. A spectral criterion of triviality of
H1(\,U) is proved and systematically used in the study of various types of decomposition of
the extensions. We consider a special type of (A, U)-cocycles — neutral cocycles, which play a
crucial role in the theory of J-unitary representations of groups on Pontryagin II;-spaces.

1 Introduction and Preliminaries

Irreducible unitary representations of connected nilpotent groups G were studied in works of
Dixmier, Lenglends, Guichardet, Pukanski, Kirillov and other mathematicians. For Lie groups
Kirillov [Kir| developed the famous method of orbits relating irreducible representations with sym-
plectic geometry. The study of general unitary representations is simplified by the fact that they
uniquely decompose in direct integrals of the unitary ones.

The situation becomes more complicated if one considers non-unitary representations. In this
case all irreducible finite-dimensional representations are still one-dimensional and correspond to
characters of the group, but the general finite-dimensional representations do not decompose in
the sums of irreducible ones. Therefore it is natural to take non-decomposable representations as
building blocks — by the Krull-Schmidt Theorem, the decomposition of an arbitrary representation
in the sum of non-decomposable ones is unique up to isomorphism. Unfortunately the classification
of non-decomposable representations is a ”wild” problem even for such a simple commutative group
as G = R?.

An intermediate, or mixed situation — the combination of finite-dimensional and unitary rep-
resentations — naturally arises when one deals with a J-unitary representation on Pontryagin IIj-
spaces. In brief, such a space is a direct sum H = H, 4+ H_ of Hilbert spaces supplied with
an ”indefinite scalar product” [z,y] = (x4,y+) — (x_,y_), where dimH_ = k < oo (for details
see [KS]). A representation m of G on H is J-unitary if all operators 7(g) preserve this form:
[7(g9)z,7(g)y] = [z,y]. The properties of J-unitary representations of nilpotent groups and, in par-
ticular, of the Heisenberg group are used in the study of various problems in the quantum theory
(see, for example, [DT], [MPS], [Sc|, [Scl], [St], [SW]).

J-unitary representations of semisimple and solvable groups were studied by Araki [A], Ismagilov
[Is1, Is2, Is3], Kissin and Shulman [KS], Naimark [N1, N2], Naimark and Ismagilov [NI], Sakai [Sa]
and other mathematicians. By a theorem of Naimark [N], each J-unitary representation of G has
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a k-dimensional non-positive invariant subspace. This allows us to restrict the study of J-unitary
representations to the study of representations that admit a triangular form

AMg) &lg)  (9)
mg)=| 0 Ulg &)
0 Ay

* (1.1)
"

corresponding to some decomposition H = L @& $ & M, where L and M are k-dimensional neutral
subspaces, §) is a positive subspace, A is the restriction of 7 to L and U is the unitary representation
defined by 7 in .

Ag
0 U
finite-dimensional representation A by a unitary representation U; and 7 is a ”double extension” of
U by A. It is natural, therefore, that the first step in the investigation of J-unitary representations
should be the study of the extensions e(\, U, §). This is the subject of the present work. In [KS1], we
apply the results of this paper to the investigation of the structure of J-symmetric representations
of nilpotent groups on Ilg-spaces.

Clearly, the most significant obstacle in the study of the extensions ¢(\, U, £) remains the com-
plexity of the structure of the finite-dimensional representations A. For nilpotent groups, this is
partly alleviated (see Corollary 2.18) by the fact that A decomposes into the direct sum of mono-
thetic representations A, (each A, is a representation such that x(g) is the unique eigenvalue of the
matrix Ay (g)). In the J-unitary representations on IIj-spaces, the dimensions of A, are regulated
by the indefiniteness index k: dim A = ZX dim A, < k. In the most important for physical applica-
tions case of IIj-space dim A = 1. Moreover, sometimes we have additional information about the
structure of A — e.g. its semisimplicity.

In this paper we mostly concentrate on the way the extensions are obtained, that is, on the
connecting cocycles. Recall that if A and U are representations of a group G on Banach spaces L,
$, then a continuous function {: G — B($, L) is a 1-cocycle if £(gh) = A(g)¢(h) + &(g)U(h) for
all g,h € G. It defines a representation 7, which we denoted above by ¢(\, U, ), that acts on the
direct sum L + $ by the formula

The left upper corner of m — the representation ¢(\, U, §) = ( of G is an extension of a

m(9)(z D y) = (Mg)z +£&(9)y) ® U(g)y-

The space L splits 7 (i.e., L has an invariant complement) if and only if £ is a coboundary:
&(g) = Mg)T —TU(g) for some T € B($,L). The quotient of the space of all cocycles by the
subspace of all coboundaries is denoted H'(\,U) and called the space of 1-cohomologies.

In Section 2 of the paper we study H!(\, U) without the assumption that L is finite-dimensional
and U is unitary. The results of this section (and, to some extent, of subsequent sections) are based
on a spectral criterion of triviality of cocycles (Corollary 2.9) that states that if G is nilpotent and
there is g € G such that spectra of A(g) and U(g) do not intersect, then 1-cohomologies are trivial.

Section 3 is devoted to the investigation of various types of decomposition of an extension
e(\, U, &) of a finite-dimensional representation A\ by a unitary one. It provides some sufficient
conditions of decomposability of ¢(X\, U, &) into the sum of two subrepresentations which are not
extensions of A\. We find some sufficient conditions of decomposability of ¢(X, U, ) into the direct
sum of a unitary and a finite-dimensional representations. It is also proved that e(X, U, &) always has
an ”approximate decomposition”, that is, there exists a finite-dimensional subspace £, containing
L, and a sequence of pairs of invariant subspaces (X, Y,,)22 such that L & $ = X,, +Y,, for all n,
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[eS)
n=1

(V)92 is an increasing and (X,,) is a decreasing sequences such that £ = N,X,,. We say that
L approximately splits 7.

We also consider the problem of decomposition of ¢(\, U, £) into primary components: e(\, U, §) =
Zx e(Ay, Uy, &), where A, are monothetic components of A (we call the extensions e(\y, Uy, &)
primary). It is proved that for commutative groups such a decomposition always exists (Theorem
3.17). However, this result does not extend to all nilpotent groups. We show that this decomposi-
tion fails for nilpotent groups in whose dual objects characters are not separated, and construct an
example of an extension for the Heisenberg group which does not admit primary decomposition.

In Section 4 we study (A, U)-cocycles & with a special property: the product £(g)¢(h~1)* is a
(X, A)-coboundary. We call these cocycles neutral. Our interest in neutral cocycles is due to the fact
(discovered by Ismagilov [Is3]) that these particular cocycles appear in J-unitary representations
on IIj-spaces (see (1.1)). It is proved that the set Z1(\,U) of all neutral 1-cocycles is dense in
ZY(\,U) if A = ¢ and U has no fixed vectors. We give a precise description of Z!(:,U) in the
opposite case — when U is the identity representation on a Hilbert space.

Applications of these results to J-unitary representations of nilpotent groups on II;-spaces are
considered in [KS1] and in the next part of our work [KS2].

Acknowledgement. We are very grateful to the referee for many helpful suggestions and to

Ekaterina Shulman for the example after Lemma 2.12.

2 Cohomologies of Engel groups

2.1 Cohomologies of groups with coefficients in bimodules.

We recall the definition of continuous cohomologies of a topological group G with coefficients in
a topological G-bimodule X. Let C° = X, and, for n > 1, C" = C"(G,X) be the space of
all continuous functions (n-cochains) from G" = G X ... x G to X. The coboundary operators
d" : C™ — O™ are defined by the rule

n+1c(

n
d"c(g1, ey Gnt1) = G16(92, s Gnt1)F D (= 1) €(G1s s Gilis 1, Gid2s -ovs Gy +(—1) 91y Gn)Gn+1-

i=1
Let 2" = Z"(G,X) = kerd™ be the set of all n-cocycles and B" = B*(G,X) = im d"~! - the set
of all n-coboundaries. Then B™ C Z™. The quotient space H™ = Z™/B" is called the n-th group of
cohomologies of G with coefficients in X.

With few later exceptions we consider cohomologies with coefficients in operator bimodules
defined by a pair of representations. Namely, let L and $) be Banach spaces, B($), L) be the space
of all bounded operators from $) to L and B($)) = B(9,$). Let A and U be weakly continu-
ous representations of a group G on L and $) respectively. The space B($), L) supplied with the
weak topology is a G-bimodule with respect to the operations g7" = A(g)T, Tg = TU(g). The
corresponding cohomologies are denoted by H"™(\,U), and similarly for other constructions.

For the reader’s convenience we write separately the formulas for low-dimensional operators d™:

d°(T)(g) = Mg)T — TU(g), for T € C° = B(%,L),
d'(c)(g1,92) = Mg1)e(g2) — e(g192) + c(91)U(g2), for c € C,

d*(c)(g1, 92, 93) = Mg1)c(g2, g3) — c(9192, 93) + c(g1, 9293) — c(g1, 92)U (g3), for c € C*. (2.1) [0]
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Thus a function &: G — B($), L) is a 1-cocycle (we also write (A, U)-cocycle, if it is necessary
to indicate which representations we consider) if

€(gh) = A(g)&(h) +&(g)U(h) for all g, h € G. (2:2)
It is a 1-coboundary if there is X¢ € B($), L) such that
§(g) = Mg)Xe — XcU(g), forall g € G. (2.3)

By the above definition, H*(\,U) = 0 if each (A, U)-cocycle is a (A, U)-coboundary.

Consider the following example. Let L = C and A and U be trivial representations of G on
L and $, respectively. Then a (A, U)-cocycle can be identified with a weakly continuous map a:
G — $ satisfying the condition

a(gh) = a(g) + a(h) for g,h € G. (2.4)

If G = R", it is easy to see that the map « is Q-linear and, by continuity, R-linear. In other words,
there are fixed vectors uq, ..., u, in $ such that

ATy, ey ) = T1UL + ... + TplUyp, for (z1,...,2,) € R", and dima(R") < n. (2.5)

It is important that this can be extended to a wide class of groups.
For a locally compact group G, let GIY be the commutator of G, that is, the closed subgroup
generated by all commutators ghg~'h~! in G. As the quotient homomorphism

9: G — G = G/GW (2.6)

is continuous, Gisa locally compact commutative group. If G is connected, G is connected. Hence,
by [M, Theorem 26], G is the direct product of a compact subgroup C' and a subgroup isomorphic
to some R™. Setting Gy = 6§71 (C), we obtain the following lemma-definition:

Lemma 2.1 Let G be a connected locally compact group. Then there is a normal subgroup Gy of
G containing GV such that GO/G“] is compact and the group G /Gy is isomorphic to R™ for some
n=ng € N.

Fix an isomorphism of G/Gy onto R"¢ and denote by wg (or just w if no confusion is possible)
its composition with the canonical homomorphism from G onto G/Ggy. Thus

w: G — R"¢ with kerw = Gj. (2.7)

Corollary 2.2 Let « be a weakly continuous map from G into a Banach space $) satisfying (2.4).
Then Gy C ker(a) and there is a linear weakly continuous map B from R™S to § such that a(g) =
B(w(g)). The set a(G) = B(R™) is a real linear subspace of ) and dimg(a(G)) < ng.

Proof. As a is continuous, Ker(a) is a closed normal subgroup of G. Since a(ghg=th™!) =0,
for g,h € G, we have GII C Ker(a). Hence (see (2.6)) a: 6(g) — a(g) is a continuous map from
G = C x R™¢ into §. Since (%) = ka(g), for all k € N and § € G, and since C is compact, we
have a(C) = {0}. Hence Gy C Ker(a). Then : w(g) — a(g) is a weakly continuous map from R"¢
into $, satisfying (2.4). As in (2.5), we have dimg(a(G)) < ng. m

Let A and U be representations of G on L and $) respectively.We need the following lemma.

.le



L.2.2| Lemma 2.3 Let, with respect to a decomposition L = L1 + ... + L,,, A have form

A(g) AM2(g) - Awml(g)

A2(g9) o A2n(g) (2.8)
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0 e Anl(9)
13 If HY(\i, U) = 0 for all i, then H'(\,U) = 0. Similarly, if all H* (U, \;) = 0 then H'(U,\) = 0.

15 B (A A2
16 Proof. Let n = 2. Then \ = 0 A

17 where §; are maps from G into B($), L;). By (2.2), &(e) = 0 and

20 €1(gh) = Ai(9)&1(h) + o(9)&2(h) + &1(9)U (h),
21 &2(gh) = A2(9)&2(h) + &2(9)U ().

23 Thus & is a (Mg, U)-cocycle. As H(Xo,U) = 0, there is X € B($, La) such that &(g) = Aa(9)X —
24 XU(g) for all g € G.

Set w(g) = &1(g9) — 0(9)X. Then w(g) € B($H,L1) and w(e) = 0, as o(e) = 0. Since o(gh) =
27 M(g)o(h) + o(g)A2(h), we have

29 w(gh) = &1(gh) — a(gh) X = (M(9)€1(h) + a(g9)éa(h) + E1(g)U(R)) — (M(g)a(h) + a(g)A2(h)) X
= —o(g)ha(h)X

. Set 0 = Ajg. Let £ = < ? > be a (A, U)-cocycle,
2

34 Thus w is a (A1, U)-cocycle. As HY(A\;,U) = 0, there is Y € B($, L1) such that w(g)
36 YU(g) for g € G. Hence &1(g9) = M(9)Y —YU(g) +0(g)X for all g € G. Set X¢ = <

£(9) = Mg)Xe — XcU(g), so that the lemma holds for n = 2.
39 Assume, by induction, that the lemma holds for n = k. For n = k 4+ 1, set

M(9)Y —
) Then

=<l

41 A(g) A2(g) - Ai(9) Akt1(9)

A2(g) - Ak(g) A2k+1(9)

43 Ai(g) = and o(g) =

(
0
44 0 0 . . .
0 0 )\k(g) )\kk+1(g)

48 Then A(g) = < >\1(§g) )\:Jr(f]()g) > and H!(Ap41,U) = 0. By the assumption of induction, H(A;, U) =

50 0. Using now the same argument as above, we obtain that H!(A\,U) = 0. m

52 Corollary 2.4 Let A have form (2.8). Suppose that, for each \; on the diagonal, U can be written in
53 the form (2.8) with some {U]’} on the diagonal such that H*(\;, U;) =0 for all j. Then H'*(\,U) = 0.

Proof. Fixi. As H'(\;, U]Z) = 0, for all j, it follows from Lemma 2.3 that H'(\;,U) = 0. Since

57 this holds for all 4, we have from Lemma 2.3 that H'(\,U) = 0. m
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Let A, p be similar representations on L and L' respectively: u(g) = S~'A(g)S, for some
bounded operator S from L’ to L with a bounded inverse. Then

HY(\,U) = 0 implies #' (1, U) = 0. (2.9)

Indeed, the bijective map & + S¢ from CY(G, B($,L)) to C1(G,B($,L")) sends Z'(u,U) onto
ZY(\,U) and B'(u,U) onto BY(\,U). Therefore it induces an isomorphism of 1-cohomologies.

Proposition 2.5 Let, with respect to a decomposition L = Li+...+ Ly, X have form (2.8). Suppose
that {Q1,0} is a partition of [1,...,n] such that H'(\;,\;) = 0, if i < j and i and j belong to
different sets Q1,€Qy. Then there are subspaces {My}}_, of L such that

(i) Ll —|— —|— Lk = Ml —|— —|— Mk fO’I” all k = 1, ey NG

(ii) A has upper triangular form with respect to the decomposition L = My + ... + M,

pa(g)  pa2(g) - pan(g)
Ag) = 8 uzég) N2‘n“(g) ,
0 0 . palg)

where each p; is similar to A; and p;; =0 if i and j belong to different sets €1y, a;
(iil) the subspaces My = icq +M;, m = 1,2, are invariant for X and L = My + Mas.

Proof. We argue by induction. Set Ly = L1 + ... + Ly, for k = 1,...,n. All L, are invariant for
. Assume that, for some k, £, = My + ... + M}, and with respect to this decomposition

pi(g) o pak(g)
A9e, = 0 : , where each p; is similar to \;

0 0---0 (o)

and p;; = 0 if 4 and j belong to different sets €21, 2. Hence the subspaces M = Zieﬂl,igk +M;,
Mb = > icqy i<k TMi are invariant for A and Ly, = ME+ M5
Then Ly, 1 = Ly, + Lpy1= M5 + ME + Liyy and with respect to this decomposition

A(9)| e 0 &1(9)
N9y = 0 Mglvy  &(9)
0 0 Me+1(9)

Clearly, & is a ()\\M;lc, Ak+1)-cocycle and & is a ()\]Mg, Ak+1)-cocycle.

Assume that k + 1 € Q. Then H'(\;, \gy1) = 0 for all i € Qq, i < k + 1. As u; are similar
to Ai, H'(pi, A1) = 0. Hence, by Lemma 2.3, Hl(/\|/vl’f’>‘k+l) = 0, so that there is a bounded
operator X from Lj,; into M¥ such that & (g) = /\(g)|szX — XXgy1(g) for all g € G. Set

My ={—-Xy+y:y€ Lii1}. The operator S: y - —Xy + y from Ly, onto My, is bounded
and has a bounded inverse. Hence the representation 11 = S)\kHS_l on Mj 1 is similar to Ag41.

The subspace M'; + My is invariant for A since, for each y € Lyyq, "+

A9)Sy = Mg)(=Xy +y) = (=M9) | ms Xy + &(9)y) +&2(9)y + Ak1(9)y
= &(9)y + (=X As1(9)y + Aes1(9)y) = &2(9)y + Sher1(9)y = 2(9)y + pr11(9)Sy
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13 R2 2

belongs to ./\/léC + My 1. We have L1 = M'f —i—./\/léC + My 1 and with respect to this decomposition

A@lpy 0 0
A9y = 0 Mglws nlg) |, wheren=&5""
0 0 pr+1(9)

Similarly, we can consider the case when k + 1 € €. This completes the proof. m

Remark 2.6 The result similar to Proposition 2.5 holds if {Q1,...,Qk} is a partition of [1,...,n]
and all H'(\;,\;) =0 when i < j and i and j belong to different sets Q, ..., Q.

2.2 Trivial 1-cohomologies of Engel groups.

Let A and U be representations of a topological group G on L and §) respectively. We shall consider
some sufficient condition for H'(\,U) = 0. For h € G, define a map ady: G — G by the formula

ady(g) = ghg th™! for all g € G. (2.10)

Definition 2.7 (i) h € G is an Engel element if ad}(g) = e for each g € G and some n = n(g).
(ii) We say that G is an Engel group, if each element of G is an Engel element.

Clearly, all elements in the center of G are Engel elements. For a subgroup H of a topological
group G, let K (G, H) be the minimal closed subgroup of G that contains all commutators ghg~'h~1,
g€ G, he H. Set

GV =K@G,a), % =Kk@,cM), .., ¢" =K@, G, (2.11)

A group G is nilpotent if GI"l = {e} for some n. Clearly, all nilpotent groups are Engel groups.
For g € G, consider the operator S, on B($), L) defined by

S¢(T) = XNg)T —TU(g) for T € B(%, L). (2.12)
The map g = Sy(T') = Mg)T —TU(g) is a (A, U)-coboundary for each T' € B($), L) (see (2.3)).
Proposition 2.8 Let £ be a (A, U)-cocycle. If there exists an Engel element h € G satisfying
¢(h) € SpB($,L) and ker S, = {0}, (2.13)
then & is a coboundary.

Proof. As ¢ is a (A, U)-cocycle, it satisfies (2.2). By (2.13), there is X € B($, L) such that
&(h) = Sp(X). Define n(g) = &(g) — S¢(X) for all g € G. Then n is a (A, U)-cocycle satisfying

ne) = £(e) = 0 and n(h) = &(h) — Sp(X) = 0. (2.14)

If we prove that n = 0, then {(g) = Sg(X) for all g € G, so that £ is a (A, U)-coboundary.
For each g € G, we have from (2. 2) and (2.14) that

2.2n

2.1g
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Set 2(g9) = adp(g) = ghg~*h~1. Then gh = z(g)hg. Hence, by the above formulae,
n(g)U(h) = n(gh) = n(z(g)hg)
= Az(9))n(hg) +n(z(9))U(hg) = A(z(9))A(h)n(g) + n(z(9))U (hg).

Therefore
n(z(9))U(hg) =n(g)U(h) — A(z(g)h)n(g) = Wy(n(g)), (2.15)
where the operator W, on B($), L), for each g € G, is defined by

Wy(T) = TU(h) — Mz(g)h)T = TU (k) — A(ghg™")T = —A(9)Sh(Mg~")T).

It follows from (2.13) that ker W, = {0} for each g € G.
Fix g # e. Set go = 2°(g) = g and inductively, g, = 2"(g) = adx (2" 1(g)) for n € N. Replacing
in (2.15) g by gn—1, we have

1(gn)U (hgn-1) = Wy, 1 (n(gn-1)) for all n > 1. (2.16)

As h is an Engel element, there is n such that g, = 2"(g) = ad}(g9) = e and g,—1 = 2" !(g) # e.
As n(e) = 0 and ker Wy, , = {0}, we have from (2.16) that n(g,—1) = 0. Using (2.16) again, we
have 7(g,—2) = 0. Repeating this n times, we establish that n(g) = n(z°(g)) =0. Thus n = 0. =

Corollary 2.9 H'(\,U) = HY (U, \) = 0 if there is an Engel element h € G satisfying
Sp(A(h)) NSp(U(h)) = @. (2.17)

Proof. It follows from Rosenblum’s Theorem (see [RR, Theorem 0.12]) that the operator Sj,
defined in (2.12) satisfies

Sp(Sk) € {a—B: a€ Sp(A(h)), 8 € Sp(U(h))}.

From this and (2.17) we have that S, is invertible, so that condition (2.13) holds for all (\,U)-
cocycles. By Proposition 2.8, they are coboundaries. m

Definition 2.10 We say that representations A and U of a group G are spectrally disjoint if
Sp(A(h)) N Sp(U(h)) = @ for some h € G. (2.18)
Corollaries 2.4 and 2.9 yield

Corollary 2.11 Let A and U be representations of an Engel group G. Let A have an upper block-
triangular form (Nij). Suppose that, for each i, U has an upper block-triangular form such that \i;
and every diagonal block of U are spectrally disjoint. Then H*(\,U) = H (U, \) = 0.

A complex-valued function x on G is a character if x(gh) = x(g)x(h) for all g,h € G. Then

X" (9) = x(g7") = x(g)~! for g € G, (2.19)

is also a character. Denote by x. the identity character: x.(g) = 1. A character x is unitary if

x = X", that is, |x(g)] =1 for all g € G. (2.20)

Each character y generates a one-dimensional representation of G.
We will need the following general result.

g2.9
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Lemma 2.12 Let x and {x;}|_; be continuous characters on a connected topological group G. If
x(9) € {xi(9)}_y, for each g € G, then x coincides with one of the characters xi, ..., Xr-

Proof. The sets G; = {g € G: x(g9) = xi(g9)} are closed subgroups of G and U]_,G; = G. Let
n be the smallest number such that U, G; = G. If G,, # G then F' = U?z_llGi is a closed proper
subset of G and G,, contains the open subset G\ F. For each g € G\ F, the open set V = g~ 1(G\F)
belongs to G, and e € V. As G is connected, G = U,V* C G,,. Thus G = G,,, so that x = x,,. ®

Example 2.13 The condition in the above lemma that a group G is connected is essential. Indeed,
consider the group G = Z x Z and the characters

xi(m,n) = (=1, x2(m,n) = (=1)""", x3(m,n) = (—=1)" and x4(m,n) = 1.

Then X4(m7n) =1le {Xl(man)aX2(m7n)7x3(m7n)} for all (m7n) €aG.

A representation w of G on a Banach space is operator irreducible if the only bounded operators
commuting with all w(g) are scalar operators. Then there is a character y, on the centre Z of G
such that 7(z) = xr(2)1 for z € Z. As elements in Z are Engel elements, we have

Corollary 2.14 Let A\ and U be operator irreducible representations of a group G and let x, and
X, be the corresponding characters on its centre. If x, # x,, then H1(\,U) = HY (U, \) = 0.

Let x be a character of a group G. Denote by $HX the eigen-space of U:
HX={x e H:U(g)x = x(9)x, for all g € G}. (2.21)
We say that x and U are eigen-disjoint if §X = 0; they are spectrally disjoint if
x(h) ¢ Sp(U(h)) for some h € G; (2.22)

(that is, U is spectrally disjoint with the representation y¢ on C defined by x). Furthermore, x and
U are sectionally spectrally disjoint if U has an upper block-triangular form with respect to some
decompositions of §) such that y is spectrally disjoint with each diagonal block U;.

A set Q of characters of G is eigen-disjoint (spectrally disjoint, sectionally spectrally disjoint)
with U if this is true for each x € Q.

Definition 2.15 (i) We call a representation A\ on a Banach space L monothetic, or a x-
representation, if there is a character x such that Sp(A(g)) = {x(g9)} for all g € G.
(ii) We call A elementary if with respect to a decomposition L = Ly + ... + Ly, X has form

A(g) o A(9)

2.eg

Ag)=| o . ¢ | forgeg, (2.23) [n2.5’]

0 0 g
where all \; are x;-representations for some characters x; (they may repeat). Set

sign(A) = {xi}i—1, 7 <n, where now x; do not repeat.
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The definition of sign does not depend on the choice of triangularization if G is connected.
Indeed, if w is a character which arises in another triangular form, then w(g) € Sp(A(g9)) = {xi(9):
1 <i<n}forall g €G. By Lemma 2.12, w coincides with some ;.

In particular, if all A\;(¢9) = xi(¢)1L, then X is elementary. For example, if A is finite-dimensional
and G is solvable then, by Lie Theorem, A has form (2.23) in some basis. Corollary 2.11 yields

Corollary 2.16 Let A be an elementary representation of an Engel group G. If sign(\) is section-
ally spectrally disjoint with a representation U of G then H'(\,U) = HY (U, \) =

2.3 Applications to decomposability

Let Y be a subspace of a Banach space X and ¢: X — X = X/Y the quotient map. If an operator
T € B(X) preserves Y, let Ty be its restriction to Y and 7' the operator on X induced by T'
Let II(T) be the approximate spectrum of 7" and 9(Sp(T")) the boundary of Sp(7"). Then

d(Sp(T')) CII(T) C Sp(T) and II(Ty) C II(T), so that d(Sp(Ty)) CII(Ty) C Sp(T) (2.24)
(see [RR, Theorem 0.7 and 0.8]). Set = ¢(z) for € X. We will need the fact that
Sp(Ty) NTI(T) = @ implies A(Sp(T)) C TI(T). (2.25)
First, let us show that H(f) CIT). For t € H(f), set S =T —t1 and let x,, € X be such that

[all = inf fla + ]l = 1 and ||32,

= inf ||S = inf ||.§ -0 —
inf [|Szn + 2] = f [|S(zn + )| = 0, as n — oo,

since Sp(Ty) NII(T) = @. Hence there are u, € Y such that ||S(z, +uy)| — 0, as n — co. Set
U = (T + upn)/ |Tn + uyn|| - Then [jv,|| = 1 and ||, + uy|| > ||Zs]] = 1. Thus

T — t1)v,|| = [|S(xn + un)ll / |2n + unl| < ||S(zn + uy)|| — 0, as n — oco.

Hence ¢ € TI(T). As d(Sp(T)) C II(T), by (2.24), we obtain that d(Sp(T')) C II(T).

Let 7 be a representation of G on X and Y be a m-invariant subspace. Let X =Y + § and 7%
be the representation induced on $). By Proposition 2.5, if #!(,,7?) = 0 then Y has an invariant
complement. We consider now the case when apriori it is not given that Y has a direct complement.

Theorem 2.17 Let m be a representation of a group G on a Banach space X and let'Y be a 7-
invariant subspace. If Sp(w(h), )N Sp(w(h)) = @, for some Engel element h € G, then there is a
m-invariant subspace § such that X =Y + .

Proof. Let T = m(h). Set oy = Sp(Ty) and ay = Sp(T). Note that Sp( ) € a3 Uas. Indeed,
let t ¢ oy Uag and S =T —t1. If x € ker S then Tz = tx and T% = Tz = 2. Hence 7 =0, as
t ¢ as. Thus z € Y and Tyx = Tz = ta. Hence z =0, as t ¢ ay. Thus ker S = {0}.

Let 2 € X. As S is invertible, z = — Sz = Sz for some x € X. Thus z — Sz € Y. As Sy is
invertible, z — Sz = Syy = Sy for some y € Y. Hence z = S(z +y). Thus S is surjective. Hence S
is invertible, so that t ¢ Sp(T).

As a1 Nag = O, there is a contour I' containing oy such that I' N (ay U ) = & and «p lies
outside I". Let P = —(2mi)~ fF —t1)~!dt be the corresponding Riesz spectral projection. Then

10
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the subspace R := PX is T-invariant, PT = TP, Sp(Tg) lies inside I" and Sp(Tr) C Sp(T). Thus
Sp(Tr) Caj.Lety € Y and t € F Ast ¢ oy, thereis z € Y such that y = (Ty—tly)z = (T—1t1)z.
Hence (Ty —tly) 'y = (I'—t1) "'y € Y. As oy = Sp(Ty), we have —(2mi) ! [(Ty —t1y)tdt = 1y.
Therefore

Ply = —(2mi) ™! /F(T — 1) Hydt = —(2mi) ! /F(Ty —tly) tdt = 1y.

Hence PY =Y C PX. R R R
If Y # R, the subspace R = R/Y # {0} of X is T-invariant, as R is T-invariant. Hence, by
(2.24), the restriction Tp of T' to R satisfies

0(8p(T) CT(Tg) € Sp(T) = 0o

On the other hand, f = can be considered as the operator J/}\% on R induced by Tr. Then H(f}\{) =

~ (224) e
H(Tﬁ) - H( ) - Sp( ) = ag. As (TR)Y = Ty, we have Sp((TR)y) N H(TR) CaoNay = 9.

(2.25) (2.29) ~
Hence 8(Sp(TR)) C II(Tr) < Sp(Tr) = a1, so that I(Sp(Tr)) C ay Nae = &, a contradiction.
Thus Y = R, P is the projection on Y, (1 — P) is the projection on a T-invariant complement $) of
Y and Sp(T§) lies outside I". As Sp(Ty)U Sp(Ty) = Sp(T') C a1 U ag, we have Sp(Ty) C as.
With respect to the decomposition X = Y +$), m has the block-matrix form 7(g) = </\(09 ) 5((5; ))>
and Sp(A(h))N Sp(U(h)) = Sp(Ty)N Sp(Ty) € a1 Naz = . Applying Corollary 2.9, we have
H'(A\,U) = 0. By Proposition 2.5, Y has a m-invariant complement. m

The result below must be known, at least for the most important case of nilpotent groups and
finite-dimensional representations, but we could not find a reference.

Corollary 2.18 (i) Fach elementary representation A of an Engel group G on a Banach space L
uniquely decomposes in a direct sum of x-representations Ar,:

L= Y 4Ly and A= > 4.
Xx€Esign(N) Xx€Esign(N)

(ii) Let n:=dimL < oo. Then
L, ={zeL:(\g)—x(g)1)"z =0 for all g € G}. (2.26)

(i) Let G be connected. If K is a A-invariant subspace of L then K = o) F(Lx N K).

xEsign(A

Proof. (i) By definition, A has form (2.23) and Sp(\i(9)) = {xi(9)}, where x; € sign(\). For
x € sign(A), set Q, = {i € [1,...,n] : x; = x}. Then if ¢ and j belong to different sets €2, and
(1, the representations \; and \; are spectrally disjoint. Hence H (N, Aj) =0, by Corollary 2.11.
Applying Proposition 2.5 and Remark 2.6, we get the needed decomposition.

(ii) Denote by M, the right hand side of (2.26). As AL, is a x-representation and dim L, < n,
the matrix A(g)|z, has only one eigenvalue x(g) for each g € G. Hence L, C M,.

If w # x then x(h) # w(h) for some h € G. Hence there does not exist x # 0 such that
(A(h) —w(h)1)"x = (A(h) — x(h)1)"z = 0. Thus M, N M, = {0}.

11
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Let x =5 x, € M, with z,, € L,,. Then

wesign(A)

wesign(A)

As (M(g) — x(9)1)"x,, € L, and the spaces L, are linear independent, all (A(g) — x(¢)1)"z, = 0,
so that all z,, € M,. As L, N M, C M, N M, = {0}, if w # x, we have z € L,. Thus M, C L,.
(iii) Fix x. For each w # x, X(gw) # w(gw) for some g, € G. Hence the operator

So= I (M) —wl@))"

wesign(A),w#x

is invertible on L, and S,L, = {0}. Hence the projection P, on L, along all other L, is a
polynomial of Sy: P, = p(Sy). Set K, = P, K. As K is Minvariant, S, K C K. Hence K, =
p(Sy)K C K. As P L = L,, we have K, C L, N K. Conversely, if v € L, N K then z = P,z € K.
Thus Ly, N K C K,, so that K, = L, N K. Let now y € K. As 1 :ersign()\) +P,, we have
Y= ersign()\) +ny and PXy € KX' Thus K = ersign()\) +KX =

Corollary 2.18 does not extend to solvable groups. Indeed, if X is the identity representation of

Gz{gz(% Z):a,b,ce(c, ab;éO} on L = C% M\g)z = gz forz € L.

on C?, then sign(\) = {x1, x2}, where x1(g9) = a and x2(g) = b are characters on G. However, \
has only one invariant subspace. Thus Corollary 2.18 does not hold.
A representation on L is non-decomposable if L is not the direct sum of invariant subspaces.
By Corollary 2.18, non-decomposable elementary representations of Engel groups are monothetic.
Let x. be the identity character on an Engel group G and Ag the set of all non-decomposable
finite-dimensional y.-representations of G. By Corollary 2.18, each finite-dimensional representation
7 of G is a finite direct sum of representations from Ag multiplied by characters from sign(m).

3 Decomposition of extensions of finite-dimensional representa-
tions of nilpotent groups by unitary representationes

From now on G is a connected, locally compact nilpotent group, A is an elementary (in many
cases finite-dimensional) representation of G on a Banach space L and U is a unitary representation
of G on a separable Hilbert space . With each (), U)-cocycle £, one can associate the representation

7w of G:
7(g) = e\ U, €)(g) = ( Mo) f]((f;)) > for g€ G, on3=L+8, (3.1)

called the ewxtension of A by U performed by &. It is decomposable if 3 = 31 + 32, where 31,39
are m-invariant subspaces. In our approach we study decompositions of the extensions e(\, U, )
depending on the kind of disjointness of sign(A) and U.

After some work on a special type of decomposition of unitary representations of nilpotent
groups, we consider in subsection 3.2 the weakest type of disjointness of sign(\) and U — their eigen-
disjointness (the general case can be reduced to this case). We obtain a cohomological criterion of

12
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decomposability of 7 and show that in any decomposition 3 = 3; + 32 in the sum of m-invariant
components, either one of them contains L, or L = (L N 31) + (L N 32) and both representations
77] 3i are extensions of the representations )\\ Ln3i by some representations similar to unitary ones.

We proceed to investigate the "spectral” decomposition of ¢(A, U, §) which arises when sign(\)
is sectionally spectrally disjoint with U, or with some subrepresentation of U. As a consequence,
we show that each extension m = ¢(\, U, &) ”approximately” decomposes in the following sense:
3 =X, +Y, for some pairs of invariant subspaces such that Y,, C Y, 11, 7|y, are similar to unitary
representations, X,+1 C X,, and the space N, X, is finite-dimensional and contains L.

A glance at the finite-dimensional situation leads to a conjecture that if A is not monothetic,
¢(\, U, &) always decomposes in a sum of extensions with monothetic A;. In subsection 3.4 we show
that this is true for commutative G but fails in general (for example, for the Heisenberg group).

3.1 Decompositions of unitary representations with respect to sets of characters

Lemma 3.1 Let U be a unitary representation of a group G and x be a character of G.
(i) If x is non-unitary then x and U are spectrally disjoint.
(ii) If x and U are sectionally spectrally disjoint, then x* and U are sectionally spectrally disjoint.

Proof. (i) By (2.20), |x(g)| # 1 for some g € G. Hence x(g) ¢ Sp(U(g)).
(ii) Clear, if x is unitary, as x* = x. If x is non-unitary, x* is non-unitary and (i) gives (ii). m

For a unitary representation U of G on £, let HX be the y-eigenspace of U.

Lemma 3.2 Let x be a unitary character and M be a U-invariant subspace of . Then M C $HX
if and only if, for each invariant subspace K # {0} of M, x and Uy are not spectrally disjoint, i.e.,

x(9) € Sp(U(9)|x) for all g € G. (3.2)

Proof. Replace U by x~'U. Then it suffices to get a proof for y.. If M C $H¥X¢, (3.2) holds.
Conversely, let (3.2) hold. Then, for each invariant subspace K # {0} of M,

1€ Sp(U(9)|k) for all g € G. (3.3)

Let Z be the centre of G. We claim that Z C ker U. Indeed, let z € Z and P(A) be the spectral
measure of U(z) on D = {\ € C: |\| = 1}. If P(A) # 0, for some A C D, then P(A) belongs to
the W*-algebra generated by U(z) and U(z)* = U(2~!) and commutes with all U(g), g € G. Thus
the subspace Ma = P(A)M is invariant for U. By (3.3), 1 € Sp(U(z)|m,) € A. Hence P(A) # 0
implies 1 € A which means that Sp(U(z)) = {1}, so that U(z) = 15;. Therefore Z C ker U.

If ker U # G then G=0G /ker U # {e} is a connected, locally compact nilpotent group. Hence
its centre Z # {e}. Let ¢: G — G be the quotient map. Define the unitary representation U of G
on M by U(é(g)) = U(g). Then ker U = {e}. On the other hand, by (3.3), 1 € Sp(U(g)|x) for each
invariant subspace {0} # K C M and all § € G. Hence, as above, Z C ker U. This contradiction
shows that ker U = G and U(g) = 1) for all g € G. Thus M C HX. m

Note that the assumption that G is nilpotent is essential for the validity of Lemma 3.2

13
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Proposition 3.3 Let Q = {x;}_, be a finite set of characters of G.
(i) Q and U are eigen-disjoint if and only if

H = B9y for N < oo, (3.4)

where $,, are U-invariant subspaces such that each Uy, and 2 are spectrally disjoint.
(ii) Let Q and U be eigen-disjoint. If dim $) < oo then U and Q are spectrally disjoint.

Proof. (i) Let Q and U be eigen-disjoint. Then each invariant subspace K # {0} of $) contains
an invariant subspace M such that Ujy; and 2 are spectrally disjoint. Indeed, K is not contained
in $X1. Hence it follows from Lemma 3.2 that there is an invariant subspace K7 of K such that
Uk, and x; are spectrally disjoint. Similarly, there exists an invariant subspace K3 of K such that
Uk, and x2 are spectrally disjoint. Then Uk, and {x1, x2} are spectrally disjoint. Continuing this
process, we obtain a subspace M = K, such that Uy; and 2 are spectrally disjoint.

Let R be the set of all families R = {M,} of mutually orthogonal invariant subspaces of $) such
that each Uy, and €2 are spectrally disjoint. As §) is separable, each R is at most countable. Order
R by inclusion. If {R;} is a linearly ordered subset in R, the family R = UR; belongs to R and
majorizes all R;. Hence R has a maximal family {$,}2_,. Set K = $ © (&)_19,). If K # {0}
then, by the above argument, K has an invariant subspace M # {0} such that  and Uy, are
spectrally disjoint, so that {$), })_; is not maximal. Hence K = {0} and = ®"_,$,,.

Conversely, let (3.4) hold. Assume that $X # {0} for some x € Q. Let z = Sz, € 9X,
Ty, € Hp. Then U(g)x, = x(g)zy, for all g € G and n. Choose n such that z,, # 0. Then x and Uy,
are not spectrally disjoint — a contradiction.

(i) If dim$ < oo then, as U is unitary and G is nilpotent, $ = @ e, H* for some finite set
Q1 of unitary characters on G. As 2 and U are eigen-disjoint, 2; N Q) = &. Hence, by Lemma 2.12,
each x € (Q is spectrally disjoint with U. m

Corollary 3.4 Let Q be a finite set of characters of G. Then

(i) H = 920 9Hq, where H° and Ho are U-invariant spaces, Ho = DrenHX and the representation
Ugo is eigen-disjoint with €2.

(ii) If U and each x € Q are sectionally spectrally disjoint then U and Q are eigen-disjoint.

(iii) Let $X = {0}. Then x and U are sectionally spectrally disjoint if and only if x and Ugo are
sectionally spectrally disjoint.

Proof. (i) Clearly, §X and X are orthogonal if xy # x’. Set $Ho = DyeHX and 90 =90 Ha.

(ii) is evident.

(iii) By (i), 9 = 9@ (BPwenwsH¥) , and x and Ugw are spectrally disjoint. Thus if y and Ugo
are sectionally spectrally disjoint, ¥ and U are sectionally disjoint.

Conversely, if x and U are sectionally spectrally disjoint, ) = @} ,$;, where each §; is U-
invariant and spectrally disjoint with x. Let P; be the projections on $); and ¥ = P;H“ for w € Q.
For x € $¥, we have U(g)P;x = P,U(g)x = w(g)Piz. Hence H¥ C , N H* and HY = ] 1 HY.

Set 9], = 9; 6 (ByecaH?) . Then §) are invariant subspaces and

H =019 = By ((Byeah?) & 9)) = (ByeH”) & (Bi219;) = Ha ® (BT, 9)).

By (i), H° = @ 9. As x is spectrally disjoint with each Uy, it is also spectrally disjoint with
each Ug/. Thus x is sectionally spectrally disjoint with Ugo = &;_,Us;. ®

14
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3.2 Spectral and approximate decompositions of the extensions ¢(\, U, ¢)

It is well known that £ is a coboundary if and only if the extension e(\, U,§) (see (3.1)) has an
invariant subspace complementing L (more general results were established in Proposition 2.5 and
frequently used in the previous section), but it is convenient to formulate it precisely here.

Lemma 3.5 (i) A (\,U)-cocycle £ is a coboundary if and only if 3 = L+ H, where H is ¢(\,U,§)-
invariant. The restriction of ¢(A\,U,&) to H is similar to U.

(ii) If (A, U)-cocycles £,m are cohomological then the representations ¢(\,U, &) and e(\,U,n) are
similar.

Recall that a representation m = ¢(\, U, £) on 3 is decomposable if 3 = 31432 where 31, 32 are 7-
invariant subspaces. We proceed now with the following cohomological criterion of decomposability
of 7 that illustrates a dichotomy of decompositions of e(\, U, §).

Proposition 3.6 Let m = ¢(\, U, &).
() If there are projections p € B(L) and q € B($)) commuting with A and U such that

€ —péqg— (1 —p)é(1lgy — q) is a coboundary, (3.5)

then 7 is decomposable and L = Ly + Lo, where Ly = pL =31 N L, Ly = (1 —p)L = 32N L.
(ii) Let U and sign(X) be eigen-disjoint and dim L < oco. If m is decomposable then there are

projections p € B(L) and q € B($)) commuting with X and U and satisfing (3.5). Moreover,
331NL=pLand 335NL=(1; —p)L, so that L=(31NL)+ (32NL).

Proof. (i) It follows from the assumptions that n = pqg+ (1 —p)&(1s —q) is a (A, U)-cocycle.
Set Ly = pL, Ly = (11, — p)L, $H1 = ¢ and Hy = (15 — ¢)H. Then X; = L; + H;, i = 1,2, are
my-invariant subspaces, 3 = X +Xyand L = Lq + Lo.

If £ — 7 is a coboundary, 7 is similar to 7, = ¢(\,U,n) by Lemma 3.5, i.e., m = T_lﬂ'nf, where

T = < 1OL 1T > and T € B($), L). Then, for some 77 € B($1, L2), To € B($H2, L1),
9

3 =T '% =L+ (-T+15)$9; = Li + (=T; + 15)$; (3.6)

are m-invariant subspaces, 3 = 31 + 32, L; := 3; N L and L = Ly + Ls.

(ii) Let n := dim L < oo. If U and sign(\) are eigen-disjoint, U and X have no non-zero intertwin-
ing operators. Indeed, let WA(g) = U(g)W for all g € G. By Corollary 2.18, L = Exesign(A) +L,
and (A(g) — x(¢9)1z)"x = 0 for each = € L, and all g € G. Hence (U(g) — x(g)11)"Wz =
W (A(g) — x(¢9)1r)"z = 0. Thus Wz = 0, because U(g) has no y-eigenvectors. Therefore W = 0.

Let 3 = 31 + 32, where 31,32 are m-invariant subspaces. The projection P on 37 along 3o
commutes with 7. Write P as a block-matrix with respect to the decomposition 3 = L + §. Then
P51 intertwines A and U. Hence P»; = 0 by the above. Then p := Pj1, q := P, are projections
commuting with A and U, respectively, and p&(g) —£(9)g = A(g) P12 — P12U(g). Hence p&(g)(1s —q)
is a (A, U)-coboundary, since

pé(9)(Ls — @) = (P(9) — £(9)a) (1 — q) = A(g9) Pr2(15 — q) — Pr2(15 — )U(9)-

Similarly, (17 — p)&(g)q is a coboundary. Thus £ — (p€q + (11 — p)&(1y — q)) is a coboundary.

15



O©CO~NOOOTA~AWNPE

24 Tc3.0

As P is a projection, P = P?, so that Py = pPjs + Piaq. We also have

31=P(L+9)=pL+ {Pix+qz:z < H,
32=13-P)(L+9) =1L —p)L+{-Proy+ (15 — q)y: y € H}.

If gz = 0 then Pjox = pPiox + Piaqr = pPioz. Hence pL = 31 N L. Similarly, if (15 — ¢)y = 0 then
Piay = pPiay + Pi2qy = pPr2y + Piay, so that pPioy = 0. Thus (1, —p)L=32N L. m

Proposition 3.6(ii) shows that, if A is finite-dimensional and eigen-disjoint with U, then the
decomposition of m = ¢(\, U, &) is determined by a pair of projections (p,q), commuting with A
and U and satisfying condition (3.5), and L = L N 31 + L N 32 with L N 3; = pL. Depending on
triviality or non-triviality of p the decomposition belongs to one of two classes. In the first class
one of the summands 31, 32 contains L. In the second class neither of them contains L and 7|3,
are extensions of A|zn3, by representations similar to Ulys and Ul1_g)5-

The simplest type of the decomposition of the extension m = ¢(A, U, &) arises when the repre-
sentations A and U are sectionally spectrally disjoint. Lemma 3.5 and Corollary 2.16 yield

Corollary 3.7 If U and sign(\) are sectionally spectrally disjoint then 3 = L + H, where H is
m-invariant and | g is similar to U.

As )\ is an elementary representation of a nilpotent group on L, we have from Corollary 2.18
L= Z 4Ly, each L, is invariant for A and sign(Ar,) = x. (3.7)
XEsign(A)

Assume that sign(\) = QUQs, where Q1NQy = &, and that $ = $H;1+9,, where $); are U-invariant.
One of the sets 2; can be empty and one of the subspaces $); can be {0}. Let

3=L+$Hand L; = Z +L, for j =1,2.
X€8;

Corollary 3.8 Let m = ¢(\,U,¢), let Q1 and Uy, be sectionally spectrally disjoint, and let Qo and
Ug, be sectionally spectrally disjoint. Then 3 = 31 + 39 is the direct sum of w-invariant subspaces
and there are operators Ty € B($1, L), To € B($2, L1) such that

. AL, 1y ‘
Sj :Lj+(_Tj +15§j)'6j7 T3; = ( éj i > , J=12,
gy
and the representation o; on (=T + 1g,)9; is similar to U, .
Proof. Let p be the projection on L; along Lo, and g be the projection on $; along £2. Then
p commutes with A and ¢ commutes with U. Therefore 19 = p&(1g —¢q) is a (pA, (15 — ¢)U)-cocycle
and &1 = (1 —p)éqis a ((11 —p)A, qU)-cocycle. As the pairs (21, Us) and (€9, U;) are sectionally

spectrally disjoint, H'((1z — p)A, qU) = H(p), (15 — q)U) = 0 by Corollary 2.16. Hence o1, 10
are coboundaries and (3.5) holds. Applying Proposition 3.6(i) and (3.6) we conclude the proof. m

16
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R4.1| Remark 3.9 Corollary 3.8 can be generalized as follows. Let m = ¢(\, U, &) and sign(\) = Ui19;
where all €); are mutually disjoint. Let $ = Z?:l —i—ﬁj where all §); be U-invariant. Let

3=L+$Hand L; = Z +Ly, j=1,..,n.
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XEQJ'
10
11 If all pairs (24, Uy, ), i # j, are sectionally spectrally disjoint, then 3 = Z;‘L:I +3; is the direct sum
ig of m-invariant subspaces and there are operators T; € B($);, ), £ +L;) such that
- (T . _ Az o s sim
15 3j=L; + (=T +14,)9;, w3, = i and o is similar to Ulg,. [
16 0 O'j
i; For z € $, u € L, a rank one operator x ® u acts from $ to L by
%g (x®@u)z = (2,2)u for z € 9. (3.8)
g; Then ||z ® ul| = ||z||||u]] and (z @ u)* =u® x. For R € B(L),T € B($)) and u € L, v € §,
gi Rz ®@u)T = (T"x) ® Ru and (z @ u)(y @ v) = (v,2)(y @ u) € B(L). (3.9)
gg We need now the following result on the kernels of (A, U)-cocycles for the simplest pairs of repre-

27 sentations A, U.

2@3.1nn| Proposition 3.10 Let x be a character of a connected locally compact group G. Let \ be a x-
30 representation of G on L, dim L < oo, and U be the representation x1g on $. If € € ZY(\,U) then
31 the codimension of the subspace ES = Ngec ker&(g) in $ does not exceed ng dim L.

33 Proof. Considering the representations x~*(g)A(g) and 1g instead of A and ylg, we may
assume that x = x. is the identity character. Let {e;}"; be a basis in L in which all operators

36 Ag), g € G, have lower triangular form with A;;(g) = 1. As & is continuous, there are continuous

37 maps {z;(g)}*, from G into $ such that £(g) (25 Yot zi(g) ® e;. We have from (2.2) that

38 &(e) = 0. Hence all x;(e) = 0.
40 As £(gh) = Mg)&(h) + &(g) and A(g)e; = D71, Aji(g)ej, we have

44 =1

46 = Za:,(h) ® Z Nji(9)e; | + Z zi(g) ® e (29) <Z Nik(g)zi(h) + xl(g)) ® e,
i=1 =i

j=i i=1 i=1 \k=1

a2 Egh) =AY m(h) e+ Y ailg) @ e BN wi(h) @ Mg)ei + Y wilg) @ e
=1 i=1 =1

49 for g,h € G. Hence

i—1

ul
=

52 zi(gh) = > Air(9)zr(h) + xi(g) = zi(h) +
53 k=1 k=1

(]

Aik(9)wk(h) + 2i(g)-

55 For i =1, z1(gh) = x1(g) + z1(h). Let R; be the complex subspace of §) generated by the set
56 {z1(9): g € G}. Then, by Corollary 2.2, dim Ry < ng. For i = 2, we have

58 x2(gh) = x2(g) + z2(h) + A21(g)z1(h), for g,h € G. (3.10) |5.2’

61 17
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Let Z2(g) be the projection of x2(g) on $ © Ry. Then Za(gh) = Za2(g) + Z2(h) for g,h € G, and
Za(e) = 0. Hence, by Corollary 2.2, the complex subspace Ry of £ © Ry generated by the set
{Z2(9): g € G} is finite-dimensional and dim Ry < ng. Then all x2(g) € R; & Ry. Continuing this
process, we obtain subspaces {R;}.; of §) such that x;(g) € Z;Zl ®R; and dim R; < ng. Set
R=37", ®R;. Then z;(g) € R, for all g and i, and dim R < ng dim L.

Let M = $© R. Then the codimension of M equals dim R, and £(g)x =0 forallg € G, x € M.
Thus M C E¢ whence the codimension of E¢ does not exceed ngdim L. m

We return to the decomposition of the extensions m = ¢(A\, U, £). From now on dim L < oo, so
that L has decomposition (3.7). Let © C sign(A) be such that $X # {0} if x € ©, and $HX = {0} if
X € sign(A)\Q. By Corollary 3.4,

H=n"e Z ®$H%, where sign(\) and Ugo are eigen-disjoint. (3.11)
X€EN

The subspace L 4 $° and all subspaces L + $X, x € Q, are m-invariant.

We start with a special case when sign(A) = {x} and U = x1g. Then 7 is a x-representation.
Let 3¥ = {z € 3: 7w(g9)x = x(g9)x for g € G} be the x-eigenspace of 7. Then the space EX =
Ngea ker &(g) coincides with 3X N §. Let K, = $H & EX and £ = L + K,,. Proposition 3.10 yields

Lemma 3.11 Let m = ¢(\, x1g,&) and X be a x-representation. Then 3 = L + EX is the direct
sum of w-invariant subspaces, dim K, < ngdim L and 7| is a x-representation.

We consider now the case when sign(\) and Ugo (the part of U eigen-disjoint with \) are
sectionally spectrally disjoint. As above, let 3X be the y-eigenspace of .

Theorem 3.12 Suppose that sign(\) and Ugo (see (3.11)) are sectionally spectrally disjoint. Then
3 is the direct sum of m-invariant subspaces

3=L+EY+ Hy and B = Z +EX, where dim L < (ng + 1)dim L,
X€Q

EX are some subspaces of 3% and w|m, is similar to the unitary representation U;,o-
Moreover, there are subspaces K, C L 4+ $HX, dim K, < ngdim L, such that

L= Z +L, | + Z +(Ly + K,) | and L, + K, are m-invariant subspaces.
X ¢ XEN

Proof. Set Q' = QU {0}. The cocycle § = (&), x € sign(A),w € &, where each &,,(g) €
B($%, Ly) is a (A, Usw)-cocycle, since A and U are block-diagonal. By Corollary 2.16, H(\, Ugw) =
0 if x # w. Hence, by (2.3), there are operators Ty,, € B(“, L, ) such that &.,(9) = A\ (9)Tyw —
TywUgw(g). Set

T, = Z Tyw and H, = {-T,y +y: y € 9} C L+ H* for each w € Q.
XEsign(A),x#w

18
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54
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60
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Then, as in Lemma 3.5, the spaces Hy and all L, + H,, are w-invariant, T, is similar to Uﬁo and

3=L4 Y @=L+ (Y Hy|=[d F+L|+| X HIy+HY |+ H

xe xe X ¢ X€EN

Since each $X is a x-eigenspace of U, the restriction of = to L, + H, has form 7| Lyl =

< )\(L)X XZX ) , for some (A, x1px)-cocycle 7,, and is a x-representation. As in Lemma 3.11,
HX

set EX = Ngeq kern,(g) and K, = H, © EX. The proof is complete. m

To investigate the structure of the extensions m = e¢(\, U, §) removing the restriction that sign(\)
and Ugo in (3.11) are sectionally spectrally disjoint, we need the following notion.

Definition 3.13 A w-invariant subspace L of 3 approzimately splits m, if there are pairs (X, Yn)52
of m-invariant subspaces such that, for each n, |y, is similar to a unitary representation,

3 = Xn + Yna Xn+1 - Xn7 Yn - Yn+1 and L = man'

Theorem 3.14 For each extension m = ¢(\, U, &), there is an invariant finite-dimensional subspace
L containing L, dim £ < (ng + 1) dim L, which approzimately splits .

Proof. Let Z =L+ q®HX. As 7|z satisfies conditions of Theorem 3.12, it follows that

Z=L+EYand EY =Y +BX, where £= | Y Ly | + | Y +(Ly + Ky)
XEQ X9 XEQ

is a w-invariant subspace, dim £ < (1 + ng) dim L, EX are some subspaces of ZX,

sign(m|c) =sign(\) and 3=L+H =L+ 5"+ ) @nX =(L+°) + E”. (3.12)
XEN

Let sign(m|z) and Ugo be sectionally spectrally disjoint. By Corollary 3.7, £+ 6° = £+ H, H is
m-invariant and 7| is similar to a unitary representation. Set X,, = £ and Y;, = H + E* for all n.

Let sign(r|z) and Ugo be not sectionally spectrally disjoint. By Proposition 3.3, 0 = > pe Bk,
each §), is U-invariant and Ug, is spectrally disjoint with sign(7|z). For each k, the subspace L+,
is m-invariant and, by Corollary 3.7, there is a m-invariant subspace Hy, such that £+ $, = £+ Hy
and 7|g, is similar to Uy, . Set

o0 n
Xp=L+ ) @ and Y, =E% ) H.
k=n+1 k=1
The subspaces X,,Y,, are m-invariant and 7,, is similar to a unitary representation. For each n,
(3.12) - s
3=L+9H = L+8"+E = <£+Z@m> + > en+EY
k=1 k=n+1
n o
= <£+Z+Hk) + ) e+ EY =X, +Ya
k=1 k=n+1

Moreover, X,+1 C X,, Y, C Y,4+1 and N, X,, = L. Thus £ approximately splits 7. =

19
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Remark 3.15 In Definition 3.13, the condition dim (£) < oo does not always imply that U,Y,
has finite codimension. In Theorem 3.14, however, U, Y, has finite codimension.

Theorem 3.14 and Lemma 3.11 yield

Corollary 3.16 If ¢(\, U, &) is non-decomposable then dim$) < oo, sign(A) = {x} and U = x1g.

3.3 Decomposition of ¢(\, U, ¢) into primary components

As we know (see Corollary 2.18) each finite-dimensional representation A of a nilpotent group
decomposes in the direct sum of monothetic representations Ay, i.e. all sign(\y) are singletons. We
call extensions ¢(\, U, &) with monothetic A primary. In this subsection we discuss the possibility
to decompose an arbitrary extension e¢(\, U, §) in the direct sum of primary extensions.

We regard a monothetic representations A as a primary extension e(\,0,0).

Theorem 3.17 Let G be a commutative, connected locally compact group. Then any extension
m=¢(\U,&) decomposes in a finite direct sum of primary extensions.

Proof. If sign(\) contains a non-unitary character y, one can split it off by Corollary 3.8:
e(N, U, &) = e(Ay,0,0) +e(N,U’,¢') and x ¢ sign()\'). Thus we may assume that sign(\) consists of
unitary characters. We will prove that 3 is the direct sum of 7-invariant subspaces 3,:

3= Z +3, such that L, C 3, and T3, = ¢(ALy, Ug, &) for each x. (3.13)
xEsign(A)
Let x € sign(A\) and G* be the dual group of G. Then
D 52
H= $HwdP(w) and U(g) = / w(g)dP(w), for g € G,
G* *

where P is a spectral measure on G*. Set Q1 = {x} and Qs = sign(A\) \ {x}. By Lemma 2.12, there
is h € G such that x(h) ¢ {¢(h)}seq,- Set e = 2 min{|x(h) — ¢(h)|: ¢ € 2} and consider the sets

V={weG" |x(h) —w(h)| <e}and G*\V ={w € G*: |x(h) —w(h)| > e} (3.14)
in G*. Then Q9 C G*\ V. The subspaces
(S5} @
H = / H,dP(w) and $Ho = / $HudP(w)
1% G*\V
are invariant for U, $ = H1 ® $H2 and

(3.14) (3.14)
x(h) ¢ Sp(U(h)ls;) = {w(h)}weg=\v and ¢(h) & Sp(U(h)|s,) = {w(h)}wev,

for each ¢ € y. Thus 4, Uy, are spectrally disjoint, and (2, Uy, are spectrally disjoint. By
Corollary 3.8, 7 is decomposable: 3 = 31 + 32 is the direct sum of 7-invariant subspaces:

3m = Ly, + X,,, where L, = Z +Ly and X, = {-Tx+z:2 € Hnt,
XEQm

20
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for some operators Ty € B($)1, La), T € B($)2, L1). The representations 7|3, have form

)\Lm m
7T|37n = < O Z,m >

and the representations o, of G on X,, are similar to Uy,,. Hence we can assume that they are
unitary. Setting 3, = 31 and continuing this process, we conclude the proof. m

For each unitary representation 7 of G on ), a matrix element of 7 is a function g — (7(g)z, z),
where z € ). The set of all matrix elements of 7 will be denoted by E(w). Unitarily equivalent
representations have the same sets of matrix elements. The dual object of G is the set G of
all unitary equivalence classes 7 of irreducible unitary representations m of G, supplied with the
topology of unitary convergence of matrix elements. More precisely, m belongs to the closure of
M C G if each element of E (7) can be uniformly on compacts approximated by matrix elements
of representations in M. This topology can be non-Hausdorff.

The space G contains all unitary characters x of G, as we can identify x and the equivalence class
of one-dimensional representations yt. So we may speak about separating of characters in G. The
local topology for characters can be described in a simpler way than for arbitrary representations.
Namely, choosing a compact K C G and an ¢ > 0, define a neighborhood Wi -(x) of x by

Wke(x) ={me€ G: |o(g) — x(g)| < £ for some ¢ € E(r) and all g € K}. (3.15)

This family of open sets forms a base of neighborhoods for x. We say that characters x and w are
separated in G if they have non-intersecting neighborhoods in G.

Theorem 3.18 Suppose that G is a connected locally compact separable nilpotent group. If there
are characters x1, x2 which are not separated in C?, then there is a finite-dimensional representation
A, a unitary representation U and a (X, U)-cocycle & such that the extension e(\,U,§) cannot be
decomposed in a sum of primary extensions. Moreover, for each decomposition of the representation
space L @ $ in a sum of invariant subspaces, one of summands contains L.

Proof. Note that x1, x2 are not separated in G if and only if the trivial character x. and the
unitary character x = X1x2 are not separated in G. Let L = Ce; & Cey be a two-dimensional
Hilbert space and A be the orthogonal sum of the representations ¢ and yu:

Ag) =e1®e1 +x(g)(e2 ®eg) for g € G.

Since connected locally compact groups are o-compact, we choose compacts {e} € K1 C Ko C ...
such that G = Up2 K,,. By our assumption, Wy, o-n(xe) N Wk, 2-n(X) # @ (see (3.15)). This
means that there are irreducible unitary representations 7, of G on £, and u,,v, € $, such that

|(7Tn(g)unaun) - 1| < 27" and |(7Tn(g)vmvn) - X(g)| < 27" for all g € Ky. (3'16)

Since e € K,,, we have |||u,|/*> — 1| < 1/2". So changing uy,v, if necessary, we may assume that
llunl] = ||Jon|| = 1. It is known (see [Kir]) that connected nilpotent locally compact groups are of
type 1. So, being separable, they are GCR-groups (see [Dixm, 13.9.4]). It follows [Dixm, 4.4.1]
that G is a T o-space, that is, the intersection of all neighborhoods of each point contains only this
point. Therefore the representations 7, can be chosen pairwise non-equivalent.
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Set H= DHn, U= EB;L.o:any

Un(9) = tn — Tn(g) un and vn(g) = x(9)vn — mn(g) vn. (3.17)
Then
9 (3.16) L
un(9)]* = 2Re(1 = (tn, Tn(g)un)) < 277 for g € K,,. (3.18)

Set u(g) = &2 un(g) and v(g) = B2 v,(g) for g € G. Then u(g) € 9, since

lu(@)II* <> llu(@)l* + D 27" < oo for g € K.
k=1 k=n

As u,(gh) = un(h) + mp(h)*un(g), we have

u(gh) = u(h) + U(h)*u(g) for g,h € G. (3.19)

Similarly, v(g) € $ and v(gh) = x(g)v

(h) + U(h)*v(g)-
Let us define a map & : G — B($), L) by

£(g9) = u(g) @ e1 +0(g) ® €. (3.20)

Using (3.19), we get that £ is a (A, U)-cocycle. Let m = ¢(\, U, &) and 3 = L + 9. Let us show that
if 3 = 31 + 32 is the sum of m-invariant subspaces then one of them contains L.

Assume to the contrary that neither of them contains L. FEach 7, is eigen-disjoint with .
and x, as it is irreducible. Hence U is eigen-disjoint with y.,x and we have from Proposition
3.6(ii) that there are projections p # 0,1 and g commuting with A and U, respectively, such that
n=&—(p€qg+ (1—p)&(1—q)) is a (A, U)-coboundary. Since p commutes with A, either p = e; ® €1,
or p = ey ® ey. Assume that p = e; ® e;. Hence, by (3.9),

pn(9)(1 —q) =p&(g)(1 —q) = (1 — q)u(g) ® e; and (1 —p)n(g)g = (1 —p)&(g)g = qu(g) @ ez

are also (A, U)-coboundaries. Then, for some z,y € §, the operator T'= x ® e + y ® es satisfies

(3.9

(1 —q)u(g) ®e1 = ANg)T —TU(g) (1-U(g9)")r@e1+ (x2(9) —U(9)")y @ ea.

Hence (1 — q)u(g) = (1 — U(g)*)x. As ¢ commutes with U and all 7, are pairwise non-equivalent,
q is the projection on a subspace ©,cg$, for some £ C N. Let x = ®22 2y, T, € Hy. Then

(1 —7n(9) ) un (.17 un(g9) = (1 —mp(9)")xn, forn ¢ E and all g € G.

As x. is eigen-disjoint with all 7, we have u,, = z,, for n ¢ E. Taking into account that ||u,| =1
and [|z]|2 = Y ||zn|/? < oo, we conclude that the set N\ F is finite.

Similarly, as qu(g) ®es is a (A, U)-coboundary, qu(g) = (x2(g9) —U(g)*)z for some z = &2 ;z, €
9, zn € Hn. Repeating the above argument, we get that v, = z, for n € E. As ||v,]| = 1 and
217 = X ||lznll?> < oo, we conclude that the set E is finite, a contradiction. This contradiction
shows that in any decomposition 3 = 37 + 39 into invariant subspaces, either 31 or 39 contains L.
Thus e(\, U, &) does not decompose in a sum of primary extensions. m

22



O©CO~NOOOTA~AWNPE

To see an example of a connected nilpotent group whose characters cannot be separated in the
dual object, let us consider the real Heisenberg group

1
G=H;3R)=<g(x,y,2) =1 0 cx,y,z €ER B . (3.21)
0

o = 8
[l SRS

It is known (see, for example, [ShZ]) that the unitary characters y of G and the corresponding
one-dimensional unitary representations ¢, on Cu have form

Xap(9(2,y,2)) = o= t8Y) for o, B € R, and a5 (9)U = Xa,5(9)u.

In particular xp0 = 1 — the trivial character and ¢y, , = ¢ — the trivial representation.
Infinite-dimensional unitary irreducible representations of G' act on L?(R) by the formula

Uy (g(z,y,2))f(t) = €“CETW f(t + 2), for f € L3(R), where 0 # o € R. (3.22)

Let us show that the class 7 belongs to the closure of the set {(/];; on =175 n € N}. Define f, in
L3(R) by fu(t) =n=2 for t € [0,n], and f,(t) = 0 for t ¢ [0,n*]. Then || f,|| = 1. For g = g(x,y, 2),

(Uon(9) s ) = 11 < 1o, (9) f = full < || (X9 1) fult+2) | + 1 fult + @) = ul®)]

nt—zx 0 nt 1/2
=2 ( / / dt + / dt
—x —x nt—x

T 1| 4022 a2 < (ly|+ (2])) 2

) 1/2

< max
—r<t<ni—z

Consider the increasing sequence of compacts K,, = {g = g(z,y,2): |z| + |y| + |2| < m}. Then
G = Up, K, and on each K, the matrix elements (Us, (9)fn, frn) uniformly tend to 1. This means
that any neighborhood Wk, -(xo0,0) of xo0,0 contains a representation U,, for some n.

On the other hand, it should be noted that if U, € Wk <(x0,0) then U, € Wk .(x) for each
character x = xq,3. To see this, note that the unitary operator V' on L?(R) that acts by

V0 =295 (1= 2) tor f < P(R)

satisfies Vx(9)Us(9) = U,(g)V for all g € G. Hence |(U,Vx,Vz) — x(9)| = |(Usz,z) — 1|. Thus if
Us, € Wk, (x0,0) then U,, € Wi, -(x), so that xo0 and x cannot be separated.

4 Neutral cocycles

4.1 Definitions and general results

In this section we consider a connected, locally compact group G and its representations A and U on
separable Hilbert spaces L and ). Let C'(G, B($,L)) be the space of all weakly continuous func-
tions from G to B($), L). We introduce an involution map from C'(G, B($,L)) into C1(G, B(L, $))
by

*g) = clg™h)* for c € CH(H, L). (4.1)

23
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- Definition 4.1 A (\,U)-cocycle ¢ is neutral if —£€F € im dl

If c =\ € CY(G, B(L)) then )\ is a representation of G on L; if c = U € C*(G, B(£))) then U* = U.

If £ is a (X, U)-cocycle, then & is a (U, AF)-cocycle:

(A1) -1 —1yx

§gh) = €197 = U(g)€ (k) + & ()X (h). (42)
We may consider B(L) as a G-bimodule with respect to the representations A and A!. Then

the (low-dimensional) cohomologies of G with coefficients in B(L) are defined in a standard way

(see (2.1)): CYHG, B(L)), C*(G?,B(L)) and C3(G?, B(L)) are the spaces of all weakly continuous

functions (n-cochains, n = 1,2,3) from G, G x G and G x G x G to B(L), respectively, while the

coboundary operators d' = d! C' - C?and d? = &2 C? — C? act by the rules

)\)\ﬁ A)\ﬁ

d"(¢)(g,h) = Ag)e(h) — c(gh) + c(g)A*(h) for c € C,
d2(¢)(g, h, k) = MNg)e(h, k) — c(gh, k) + c(g, hk) — (g, W)X (k) for ¢ € C?, (4.3)

g,h,k € G. Denote by Z™(\, A\¥) = kerd” the set of all n-cocycles. For a (X, U)-cocycle €, direct
calculations show that the map £€%: (g, h) — £(g9)&¥(R) from G x G to B(L) belongs to Z2(\, A%).

AN i.e., there is a cochain v €

CY(G,B(L)) called a prechain of £ such that
—£(9)€ (h) = (dy )9, 1) = Ag)r(h) — 7(gh) +7(9)A*(h) (4.4)

(we put minus in the left hand side for convenience). Clearly, v is defined up to a summand which
is a (A, A\P)-cocycle. Denote by ZL(\,U) the subset in Z1(\,U) consisting of all neutral cocycles.

The study of neutral cocycles is motivated by applications to the theory of representations in
Pontryagin spaces (see [Is3]).

It can be shown that v € CY(G, B(L)) is a prechain of a (A, U)-cocycle, for some unitary
representations U, if and only if the 2-coboundary 5 = —d}\’ ¢ 1s completely positive:

Zﬁgl, tit; >0, for all g1,..,g, € G and ¢y, .., t, € C.

The ”only if” part is straightforward while the ”if” part can be proved similarly to its analogue for
*-algebras established in [KS, Theorem 21.22]. It follows that the set of all prechains of neutral
(A, U)-cocycles, for various unitary representations U, form a subcone in C*(G, B(L)).

: Lemma 4.2 (i) If v is a prechain of ¢ then v* is also a prechain of €.
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(ii) Each coboundary n € B*(\,U) is neutral and £ +n € ZL(\,U) if € € ZL(\, U).
Proof. (i) Set # = A=, y = g~ Then £(g)€4(h) = (€(h~)E(9)")* = (E(x)E4(y))". Hence
~E(@)E M) = ~E@EE)" ) M@(y) —wy) + @)V ()"
= My~ )r(@)" = y(zy)* + (1) M@)* = Mg (h) =+ (gh) ++F(9) N (h).

(ii) As n(g) = /\( )T — TU(g) for some T € B($,L), we have nf(g) = T*\(g) — U(g)T*. Set
Yu(g) = TU(9)T* — AN(9)TT* — $TT*N(g). It is easy to check that

—n(g)n* (h) = A(g)vy(h) — v (gh) + 7 (9) A (h), so that n € Z5(\,U).
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Set v1(g) = £(g)T* + T€%(g). As € is a (), U)-cocycle, we have from (2.2) and (4.2) that
(A xe71)(9: 1) = A(@)y1(R) — 71(gh) +71(9) N (h) = £(g)n' (h) + n(g)&* ().

By definition, —£(g)&4(h) = (d%\ 4:70)(g; h), for some 1-cochain 7y € CY(\, ). Then

—(&(g9) + n(9)(E(h) +n(h)F = =&(9)EH(h) — (E(g)n*(h) +n(9)€* (h)) — n(g)n*(h)
= (d}\,m%)(g, h) — (di’)\u’h)(g, h) + (di7)\n7n)(97 h).

Setting v = v9 — 71 + ¥, We obtain that £ +n € ZL(\,U). m
It follows from Lemma 4.2(i) that one can always choose a prechain ~ satisfying
v =A%, that is, y(g7") = y(g)* for all g € G. (4.5)

Denote by HL(\, U) the image of Z1(\,U) in H'(\,U). It completely determines Z1(\, U); we call
it the set of neutral cohomologies of G. Our aim is to find conditions for HL(\,U) # 0 and, more
generally, to describe properties of HL (A, U).

In the next two subsections we consider neutral cohomologies in the case when A = ¢ — the
trivial representation on a one-dimensional space L = Cu. This case is ”"classical” (see [G]), but in
our situation the general case cannot be reduced to this one because A can be non-unitary.

It follows from (2.2) and (3.8) that £ is a (¢, U)-cocycle if and only if

&(g) = r(9) ® u, where r(g) € 9, r(e) =0 and r(gh) = r(h) + U(h)*r(g), (4.6)

)

for g,h € G. If € is a coboundary then there is T’ 38 w @ u, for some w € ), such that

£(g)=T—-TU(g9) =r(9) ® u, where r(g) = w — U*(g)w, for g € G. (4.7)

By (4.2), &4(h) = ¢(h )" = (r(h™h) @ u)* R ®r(h~1), so that

1\ (39 _ .
E@ER) = (rlg) B r(h™) 2 (), r(g) (W w) = (r(h ™), 1)1
Let v € CY(G,B(L)). Then v(g9) € B(L, L), for g € G, so that v(g) = ¢(g)1r, where ¢ is a
complex-valued continuous function on G. As A = A\ = ¢, we have from (4.4)

(3 xe)(g5 B) = v(h) = v(gh) +7(9) = (¢(h) — d(gh) + ¢(9)1L.

Thus a cocycle £ = r ® u is neutral if and only if there is a complex-valued function ¢ on G such
that ws)
_ 4y (45) ——
(r(h™1),7(9)) = —(h) + (gh) — d(g), ¢le) =0, ¢(g7") = ¢(9) (4.8)
for all g,h € G. Then v = ¢1, is a prechain.
Our study is divided in two complementary parts: 1) when U = [ is the trivial representation of
G on 9, so that the y.-eigenspace HX¢ = §), and 2) when U has no trivial subrepresentations, i.e.,
HXe = 0. It might seem that the first part is trivial. However, this is not true; the description of
neutral 1-cocycles and the corresponding 1-prechains in this case is quite complicated. In particular,
from these examples we will see that HL()\, U) does not need to constitute a subgroup of H(\, U).
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4.2 Neutral (¢,/)-cocycles

Let G be a connected, locally compact group and U = I be the trivial representation of G on a
Hilbert space . Set dim $) = m < co. We fix an orthonormal basis in £ and realize operators from
R* k < 0o, to $ as complex m x k (infinite, if m = oo) matrices from M, (C).

In this setting all (¢, I)-coboundaries are zero and each (¢, I)-cocycle has form

&(9) £6) r(g9) ® u, where r(g) € $,and r(gh) =r(g) + r(h).

In particular 7(e) = 0 and r(g~!) = —r(g). It follows from Corollary 2.2 that there is a linear map
B: R"¢ — § such that r(g) = S(w(g)), where w = wg : G — G/Gy = R"G. Thus

r(g) = Aw(g) for g € G, (4.9)

where A € My, xn (C). The set 7(G) = {r(g) }gec = AR"C is a real linear subspace of ).
Let ¢ be neutral and v = ¢(g)1, be its prechain. Setting h = ¢~! in (4.8), we have 0 = ¢(e) =

o(g) + (r(g),7(g9)) + #(g). Hence there exists a real-valued continuous function € on G such that
$(9) = = Ir(@)1* /2 +ie(g)- (4.10)

Substituting (4.10) in (4.8) and taking into account (4.9) and the fact that
Im(A*Aw(h),w(g)) = —Im(A*Aw(g),w(h)) for g,h € G, (4.11)

we have

e(gh) = e(g) + e(h) + Im(A* Aw(g),w(h)) for g,h € G. (4.12)

If a function ¢ is some solution of (4.12), then all solutions have the form ¢ = ¢y + &, where &
satisfies £(gh) = £(g) + £(h). By Corollary 2.2, £(g) = ({,w(g)) for some ¢ € R"¢. Thus ¢ has form

3(9) = — | Aw(g)lI* /2 + (¢, w(9)) +ico(9)- (4.13)
It follows from (4.11) and (4.12) that

e(gh) — e(hg) = 2Im(Aw(g), Aw(h)). (4.14)
As w(g™!) = —w(g), we have

02 c(e) = elgg™) "2 e(g) + elg7") — Im || Aw(9)|* = £(g) +e(g™)-

Hence
e(g™h) = —¢(g) for g € G, (4.15)
Recall that Gl = K(G,G) is the closed subgroup of G generated by all commutators [g,h] =
ghg~'h~!. By Lemma 2.1, Gl C Gy, so w(z) = 0 for z € G!'. Hence (4.12) implies
e(gz) = e(zg) = e(g) +€(2), for g € G. (4.16)
Also w(gz) = w(g) + w(2) = w(g) = w(zg). Hence w((zg9)~!) = —w(g), so that

e(g2(29) ") "2 c(g2) + £((29) ") + Im(A" Aw(g2), w((29) ™)

4.15 4.16
UL e(g2) — e(2g) — Tm [ Aw(g)|> 2V 0.
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As G = K (G, GY) is generated by commutators gzg~ 2z~ and (see (4.16)) ¢ is additive on G2,
elgr =0. (4.17) |3.33
Let S = A*A = (si5); 5=, As w(g)w(h) € R"¢, we have

Im(A*Aw(g),w(h)) = (I(A"A)w(g),w(h)) where I(S) = (Im s;5);'¢ (4.18) |4.16

ij=1"
Hence (4.12) has form
e(gh) =e(g) +e(h) + (I(A*A)w(g),w(h)) for g,h € G, and e(e) = 0. (4.19) |4.17
Summing up previous observations we have:

Proposition 4.3 (i) Fach (¢, I)-cocycle has form £(g) = Aw(g) ® e, where A € Mpxn(C) and
w=wg (see (2.7)).

(ii) A (¢, I)-cocycle £ = Aw®e is neutral if and only if there is a continuous function g : G — R
satisfying (4.12). The prechains v of & have form v(g) = ¢(g)1r, where

d(g) = — | Aw(g)||? /2 + (¢, w(g)) +ieo(g) and ¢ is some vector in R"C. (4.20)

(iii) If the matriz A* A has real entries, then the cocycle £ = Aw ® e is neutral and all prechains
have the form (4.20) with g = 0.

(iv) If G = G (for example, if G is commutative), then a cocycle £ = Aw ® e is neutral if
and only if the matrix A*A has real entries.

Proof. Part (i) and "only if” part of (ii) were proved above. Part ”if” of (ii) can be proved by
substituting (4.20) into (4.13).

(iii) If A*A has real entries, i.e., [(A*A) = 0, then gy = 0 satisfies (4.19) and (iii) follows from
(ii).

(iv) By (iii), it suffices to prove the part ”only if’. Let G = G, Then g~'h~'gh € Gl = g1
for all g, h € G. Therefore if £ = Aw ® e is a neutral cocycle and £(g) = Im ¢(g) (see (4.10), then

(4.16)

c(gh) = =(hg(g™ h*gh)) "= c(hg) + (g™ 7 gh) "L =

hg).
By (4.14) and (4.18), (I(A*A)w(g),w(h)) =0 for all g,h € G. As w(g) span R"¢ [(A*A) =0.m

To continue our study of neutral cocycles we need some general facts on locally compact,
connected nilpotent groups of index 2. Let E be such a group, Z = EMand H=E /Z. Then H,
Z are commutative and Z lies in the center of E. Let ¢: £ — H be the quotient map.
By [M, Theorem 26], H is isomorphic to the direct product R x F and Z to the direct product
R"Z x K , where F' and K are compact subgroups. Set
n=n,, k=n,, andlet w,: H - R", w,: Z — Rk (4.21)

— — Iz,

be the corresponding continuous epimorphisms with F' = kerw,,, K = kerw,,. Clearly

wy(a) = w,(q(a)) for each a € E. (4.22)
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The epimorphism ¢ : E — H has a locally bounded Borel right inverse p : H — E (see [Keh]).
We are going to show that p can be chosen with some additional properties.
For an arbitrary right inverse p of ¢, set

zopy = plzy) ' p(x)p(y) for z,y € H. (4.23)
Then z ¢, y belongs to Z, since
q(x 0, y) = alp(zy)) " a(p(@)a(p(y)) = (xy) " 2y = enr.

Lemma 4.4 There is a Borel locally bounded right inverse p of q such that the map p(x,y) =
w,(zo,y) from H x H to R¥ is "biadditive”:

plezy) = p(a,y) + ¢z, y) and p(z,y2) = ple,y) + @(@,2) for all g,z € H.  (4.24)

Proof. Let us fix an arbitrary Borel locally bounded right inverse p; of ¢ and set, for brevity,
T oY =29, y. Since x oy belongs to the center of E,

((zy) o 2) Mz o (y2)) = p1(2) " pr(xy) o1 (zyz)pr(zyz) " pr()p1(y2)
= p1(2) " pr(zy) oL (@)p1 (W) (v) e (w2) = pr(2) (@ o y)pr(y) T pr(yz)
= p1(2) () (yR) (@ oy) = (yoz) (zoy).

Therefore
(yo2)((zy) o 2) "z o (y2)(zoy) ™ =e. (4.25)
It follows that the map ¥ (z,y) = wz(x oy) from H x H to R* satisfies the condition
T,Z)(y, Z) - T,Z)(Zﬂy, Z) + ¢(3§', yZ) - TIZ)(JL', y) =0 for T,Y,2 € H. (426)

In other words, 1 is a Borel 2-cocycle of H with coefficients in R¥, where the left and right actions
of H on R¥ are trivial (cf. (2.1)).

Denote by %bor (H,RF) the Borel cohomologies and by H7(H,R¥) the continuous cohomologies.
It is known [Wig, Theorem 2] (see also [Moorelll], page 32) that the natural homomorphism of
HI(H,R) to H](H,RF) is an isomorphism.

As HI(F,R¥) = 0 for all j € N (see [G, Corollary 3.2.1]), it follows from Proposition 1.8.1
[G] that H2(R" x F,RF) = H?(R",R*) and the isomorphism is realized by the restriction of a
chain to R"-components. This means that ¢(z,y) = O(wr (), wn (y)) + do(z,y) for all z,y € H,
where v € C1(H,RF) and ¢ € Z%(R",R¥) is the restriction of 1) to R” x R™ (R™ is identified with
R™ x e, C H).

It is known that H2(R™, R¥) is naturally isomorphic (see e.g. [G]) to the group L, of all bilinear
antisymmetric maps from R™ x R™ to R"¢ : each class in H2(R",Rk) contains a unique cocycle
from L,. Thus each cocycle in ZI?OT,(R",R’“) is equivalent to a unique bilinear antisymmetric map
in L,. Hence there is a Borel function u: R® — R* and a bilinear map B on R x R" such that

B(r,t) = ¥(r,t) + d'u(r,t) for r,t € R™. (4.27)

Therefore, setting n(x) = u(w, (x)) — v(z), we have that n is a Borel function on H and
)

D(@,y) = Dlw, (@),w, ¥) + do(@,y) = Blw, (@),w, (y)) — d'n(z, y)
= B(wy (), wy (y)) — n(z) + n(xy) — n(y). (4.28)
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As Z is isomorphic to the direct product R* x S, where S is a compact group, the continuous
homomorphism s: 7 — 7 x e, from R¥ to Z is a right inverse of w,: w,(s(r)) = r.
Now we set
p(x) = p1(x)s(n(z)) (4.29)
and as above xz o, y = p(zy) " p(x)p(y) for z,y € H.
As s(n(z)) € Z, it commutes with all g € E, so that p is also a right inverse of ¢, because

q(p(x)) = q(pr(x)s(n(x))) = q(p1(x))a(s(n(z))) = a(pi(x)) = .

1

Furthermore

1

zopy = (zoy)sn(zy))” s(n(z))s(n(y)) for z,y € H.

As wz(s(n(x))) = n(z), we have, for x,y € H,
p(z,y) = w, (@ opy) = (. y) —nlzy) +n(x) +n(y) =" Blwy (z),w, (y))- (4.30)
As B is a bilinear map and w,, (zy) = w, (z) + w,, (y), the equality (4.24) is proved. m

Corollary 4.5 There are real-valued n,, x n,-matrices 11, ...,T,, such that, for x,y € H,

w, (@ 0py) = (Twy (@), wy (1)), (Towy (2), Wy (1)), - (T, wy (2),w, () ERZ. - (4.31)

Proof. Follows from (4.30) and the fact that each bilinear functional on a real Euclidian space
E can be written in the form (z,y) — (T'z,y) where T is a linear operator on E. m

For a € E, set
3(a) = p(g(a))"a. (4.32)

Since q(3(a)) = q(a)~'q(a) = e, we have 3(a) € Z, so 3 can be considered as a map from E to Z.
Let us illustrate our constructions with the following example.

Example 4.6 Let k € N. For z,y € R¥, set
Ry = (T1Y2, T2Y3, -, Tp—1Y—2) € RF L. (4.33)
The set F = Ej, := R* @ R¥~! supplied with the operation
(z@v)(yow) =@+y) ®v+w+azNy) (4.34)
is a nilpotent group of index 2. It is easy to check that
(z@v) ' =(—2)® @Rz —wv).

Then Z = 0 ® R*!, H is identified with R via the map (x,v) + Z +— z and ¢ : E — H is given
by q(z,v) = x. The special inverse p of ¢ is the map x — 2 ® 0. Then p(z)~! = —z ® 2 X2z and

_ 4.34 4.34
2o,y = ple+y) p@py) 2 (@ +y) e @+ B+ @y esBy 2 oermy.
Clearly, w,(x & v) =w,(q(z ®v)) =z and w, (0 & v) = v. Therefore

wy(ro,y) =xXy. (4.35)
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Hence the matrices T}, introduced in Corollary 4.5, are equal to ej4+1,, 1 < j < k — 1, where by
(epg : 1 < p,q < k) we denote the usual matrix units in My(R).
Note that p(q(z ®v)) =z ® 0 and (p(g(x ®v)))~! = (—x) ® (K z). Hence

(4.32)

i) "2 (—2) @ (2R 2) (@ o v) "2

(0,v) and wz(3(z ®v)) =w. (4.36)

Now we come to the general case of a connected locally compact group G. If GI2 # GIU, then
the group E := G/G® is nilpotent of index 2. By p we denote the canonical epimorphism of G
onto E. We set as above Z = Ell,. H=F /Z and preserve all notations introduced in Lemma 4.4
and Corollary 4.5. In particular, by p we denote the special inverse to the quotient map ¢ : £ — H.

Note that

y =Ny =ng,, w(g) =w,(9) =wr(p(g)) and n, = Ny, since Z = p(GI). (4.37)

We call the matrices 11, ..., T;, , constructed for E' in Corollary 4.5 the standard suit of matrices of
G. Returning to our study of neutral cocycles we obtain now their description in the general case.

Theorem 4.7 Let G be a connected, locally compact group and G2 # GI. Let
E=G/G3, z=EM>=cW/GP H=E/Z andn:=n,, k=n,.

Let v and I be the identity representations of G on L = Cu and $ = C™, respectively. Then
(1) A (¢,I)-cocycle £(g) = Aw(g) @ u is neutral if and only if the n x n matriz I(A*A) (see
(4.18)) is a linear combination of Tj — T}, where {Tj}éfz1 is the standard suit of matrices of G :

k
1
I[(A*A) = 3 Zaj(Tj —T7) for some 01, ...,04 € R; (4.38)
j=1
(ii) If condition (4.38) is satisfied then all prechains of & have form v(g) = ¢(g)1r, where
. . 1
6(9) = = [ Aw(9)I” /2 +i(¢. w(9)) +i(o,w, (3(0(9) = 5(ovw, (a(p(9)) 0 alp(9)))),  (4.39) [sol
o= (01,...,0k), 0j are coefficients in (4.38), ¢ € R™ and the map 3 : E — Z is defined in (4.32).
. . (4.16) (4.17) 2]
Proof. If € is a solution of (4.12), then e(gv) =" e(g) +e(v) ="¢(g), for g € G and v € G\
Hence the number £(g) depends on p(g) only, and we may define a function 6 : E — R by setting
3(p(g)) = e(9)- (4.40)
It follows from (4.37) that o satisfies the condition similar to (4.12)
d(ab) = 0(a) +0(b) + Im(A*Aw,(a),w, (b)) for a,b € E. (4.41) |6.51
As Z C Gy, we have wg(z) = {0} for z € Z. Therefore, by (4.41),
d(uz) = 0(u) + d(2) for u,z € Z. (4.42) |6.53
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By Corollary 2.2, there is a linear map 3: R*¥ — R such that §(z) = 8(w,(2)); equivalently
§(2) = (0,w,(2)) for some o = (01, ...,04) € RF and all z € Z. (4.43)
Let a = p(x), b = p(y) in (4.41), for z,y € H. As x oy € Z, we have w,(z ¢y) = 0. Then

3(p(x)p(y)) "2V

5(p(x)p(y))

(p(x)) + 0(p(y)) — Im(Awy (p(2)), Awy (p(y))),

"2 s(play) @ 0 9) = dplay)) + d(w o).

Hence
6(p(x)) +6(p(y)) — Im(Aw, (p(2)), Aw, (p(y))) = d(p(zy)) + 6(z 0 y). (4.44)

Invert z and y in (4.44) and subtract the two equalities. It follows from (4.11) and (4.42) that

2Tm(Aw, (p(x)), Aw, (p(1))) = 6y o 7) — 6@ oy) "= (0,w,(yoz) —w, (zoy).  (4.45)

From Corollary 4.5 we obtain that

wy(yox) —wy(roy) = (TMwy(x),wy (Y), - (Thwy (1), w0y ()))
((leH(y)7wH(‘T))7 7(Tka(y)7wH(x)))
= (71 =TV )wg (2),wy (¥)), s (T = Tpwp (2), wpy (1)) (4.46)
By (4.22), w,(p(z)) = w, (¢(p(x))) = w, (x). Hence (4.45) can be rewritten in the form

2(L(A" Ay, (2),w, (1) = D 03 (L) = T])wy (), wy, (1))

Jj=1

Taking into account that w, maps H onto R", we get (4.38).
Conversely, let A satisfy condition (4.38). We have to prove that there is a solution & of the
equation (4.41). For o = (04, ...,0%) € R¥ we set

Gol@) = (0,0, (5(0))) ~ 5 (0,0, (a(a) © 4(a))) for a € B. (4.47)
As Z belongs to the center of F,
3(ab) = plala)a(®)"ab "2 (q(b) o g(a))s(@)s () (4.48)

for a,b € E. Hence w, (3(ab)) "2 w, (q() 0 ¢(a)) + w, (3(a)) + w,(3(b)). By Lemma 4.4,

wy(q(ab) o q(ab)) = w,(q(a) ¢ ¢(a)) + w,(¢(a) © ¢(b)) +w,(q(b) o g(a)) + w,(q(b) © q(b))

It follows that

3 (3(a))) — 50, (alab) 0 (ab) = w0, (5(a)) + w, G(8)) + 50, (a(8) o a(a)

6.

52
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Therefore, as w, (a) "2 wy, (q(a)),

Solab) = (7,0, (3(a))) — 1 (0,10, aab) o g(ab)))
2D 30(a) + o) + 5 (0, (a(8) 0 (@) — 502, ale) 0 a(4)
Sola) + 0(8) + 5 3 03((Ty ~ T s (a(a)), iy (a(1)
J

60(a) + 60(b) + (I(A* A)w, (@), w, (b)) "= do(a) + 6o(b) + Im(Aw, (a), Aw, (b)).

(4.46)

(4.38)

Thus g satisfies (4.41). To complete the proof of part (i), it remains to set £o(g) = do(p(g)) and

to take into account that w,(p(g)) i wg (9).

Part (ii) follows from (4.13) and our construction of £y. m

Remark 4.8 If G = GV then Z = {ez} and E = H, so that ny = 0 and wz(z oy) = 0 for all
x,y € H. Thus the standard suit of operators is zero and Proposition 4.3(iv) can be considered as
a partial case of Theorem 4.7(i).

Now we apply the above result to an important example: the group G = T, of all n x n real
upper triangular matrices g = (g;;) with identity on the main diagonal. We denote by gj the
diagonals of a matrix g € G:

9k = (G114k> s Gn—kn) € R fork=1,...,n—1.

Corollary 4.9 Let G = T,. Let v and I be the identity representations of G on L = Cu and
$H = C™. Then each (t,I)-cocycle has form £(g) = Agr ® u where A € My, (,—1)(C). The cocycle
is neutral if and only if the (n — 1) x (n — 1) matriz S = A*A = (s;;) satisfies the condition

Im s;; =0, when |i —j| > 1. (4.49)

If (4.49) holds, the corresponding prechains have the form ~v(g) = ¢(g)1r, where

?(9) = ¢s,0,¢(9) = —%(Sﬁl,@\l) +i(¢,g1) +i(0, 92 — %?71 Xq1), (4.50)
0=(01,..,0p_2) € R™ 2, with o; = 25;541, and ¢ is arbitrary vector in R 1
Proof. It is easy to see that
GU=K@G,G) ={geG: 51=0}, G ={geG G1=5=0}, G/GN=R" L andn, =n—1.

Furthermore, the group F = G/ G is naturally identified as a set w1th R ! @ R"2 via the map
p: g — g1 ® go. Direct calculations show that (gh)1 = G1 + hy and (gh)2 —Go+ho+ 1 RG. It
follows that the map p is an isomorphism of E on the group E,_1 considered in Example 4.6. We
may identify p with the standard epimorphism from G to F, that is, p(g) = g1 D Go.

By (4.37), wa(9) = wr(p(g)) = g1, so &(g) = Agi. By Example 4.6, the standard suit of
operators for E is {ej41,: 1 < j <n—2} C M,_1(R). Hence, by Theorem 4.7, { is neutral if
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and only if Im(S) is a real linear combination of matrices e; ;41 — ej41,;. Since S is selfadjoint,
this is equivalent to the condition (4.49). Note that the coefficients of this linear combinations (the
coefficients o; in (4.38)) are expressed via the entries of S by the formula o; = 2Im s; ;1.

To deduce the last statement of the corollary from (4.47) we have to calculate w, (q(p(g))eq(p(g))
and w, (3(p(g))). By (4.35), w,(q(a) o g(a)) =x Kz for a =z @ v € E. It follows that

w,(q(p(g)) ©a(p(9)) =91 K a1

Similarly by (4.36), w,(3(p(g9))) = g2. It remains to substitute this in (4.47). =

Remark 4.10 The functions ¢g, ¢ in (4.50) form a subcone in C1(G) = C¢(G). Indeed, let
(St 01, ¢Y) and (52,02, ¢?) satisfy (4.49) and bs1 o1 c1, g2 52 ¢2 be the corresponding prechains.
For A1, A2 >0, set S = A1S' + X252, 0 = Ajo! + X202 and ¢ = A ¢!+ A\a¢?. Then (S, 0, () satisfies
(4.49) and, by (4.50), ¢55¢c = M@g1 o1 ¢1 + A2gg2 52 ¢2 is a prechain of a neutral (:, I)-cocycle.

We shall now consider two particular cases: n =3 and n = 4.

Let n = 3. Then G = H3(R) is the real Heisenberg group. For each m x 2 matrix A, m = 1,2,
S is 2 x 2 matrices and condition (4.49) holds. Thus (¢, I)-cocycles {(g) = Ag1 ® u are neutral for
all matrices A and HL(¢,I) = H(¢,I) # 0.

Let n = 4. Then A are m x 3 matrices. For m = 1, A = (a11, a12,a13) and (4.49) reduces to the
condition s13 = @ra13 € R. The matrices 41 = (1,0, 1), Ag = (7,0, 2¢) satisfy (4.49) while A; + Aq
does not. This implies that the sum of two neutral cocycles need not be neutral. Thus

Corollary 4.11 H.(:,I) does not, in general, form a subspace in H' (¢, I).

4.3 Density of neutral cocycles

In this subsection we study the neutral (A, U)-cocycles for representations A and U which are
spectrally related in a more flexible way: U weakly contains A, that is, all matrix functions g —
(Mg)z,x), = € L, of X\ belong to the closure in C(G) with respect to the topology of uniform
convergence on compacts of the subspace generated by the matrix functions of U.

Let dim L = 1 and ¢ be the trivial representation of G on L. Let U be a unitary representation
of G on $H without fixed vectors, i.e., $HX¢ = {0}, where x. is the trivial character. Then (see
[G, Corollary I11.2.3]) U weakly contains the representation ¢ if and only if there are unit vectors
{en}>2; in $ such that

lU(g)en — en]| — 0 uniformly on each compact subset of G. (4.51)

Clearly, x. and U are not spectrally disjoint.
Recall that a topological group G is o-compact, if it has a sequence of compact subsets

Ky C Ky C...C K, C...such that G = U2 | K,,. (4.52)

For example, countable discrete groups and connected locally compact groups are o-compact.

Proposition 4.12 Let {U,}72, be unitary representations of a o-compact group G on {$,}72

and let $H%° = {0}. Suppose that, for each N, the representation ©°2 \U, weakly contains v. Let
U=a&2,U, and $H = &5 19,. Then G has a neutral (v, U)-cocycle which is not a coboundary.
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Proof. Let {K,}52, satisfy (4.52). The projections Py on @®»_ §, commute with U. As U
weakly contains ¢, there is a unit vector 21 € §) such that sup,¢r, [|U(g)z1 — 21| < 271, Let Ny be
such that ||z1 — Py, z1|| <271, Then ||Pn, 21| > 271. Set y1 = Py, 21/ || Py, 21/ - Then [jy1]| = 1,

sup |U(g)yr — w1l = sup | Pn, (U(g)z1 — 20|/ | Py 21ll < 27/ | Py || < 1.
geKy geK,

As the representation U’ = @52y Uy also weakly contains ¢, there is 22 € 52y, 190, [[22]| = 1,
such that supge, [|U'(9)22 — 22H < 272, Let Ny > Nj be such that ||zo — Py, 22|| < 271. As above,

y2 = Pn,22/ || Pny22|| is a unit vector, SUP ek, 1U(g)y2 — 32|l <271 and 3o € @ 2N1+1~6n
Arguing in this way, we get unit vectors {y;}2; such that

sup |[U(9)y; — yil| < 21" and y; = TN, 41 P ... Bxy,, for some x, € Hy. (4.53)
geK;

Then r(g) = OF(u: — UM(0)yi) = B (e — U (9)an) (4.54)
belongs to § for each g € G, since, for g € K,

Ir(g) Z lyi —U*(g ylH Z lyi —U* (g y2”2 + Z 2277 <

Similarly, one can show that r is continuous on G. Since

r(h) + U (h)r(g) = ©nta(wn — Uy (h)wn) + U™ (h) ©pZy (2n — Up(9)2n)
= ®pz1(@n — Uy (gh)zn) = r(gh),
we have (see (4.6)) that £ = r @ u is a (¢,U)-cocycle. To show that £ is not a coboundary we
have to establish (see (4.7)) that there does not exist w € § such that r(g) = w — U*(g)w for all
g € G. Assume, to the contrary, that such w = ®2° w,, where w,, € 9, exists. Then, by (4.54),
zn — Uk(g)xn = wy, — U (g)wn, so that Ul (g)(x, — wy) = x, — w, for all n and g. As H%° = {0},
we have ,, = w,, for all n, which is impossible, since 0o # |lw[|* = 2% | [|zn? = 3252, lwill? = oc.
To see that £ is neutral, consider v(g) = ¢(¢)(u ® u), where

[e.e] (e}

P(g) = Z(Un(g)xn — Tp, Tp) = Z(U(g)yz —yi,yi) for g € G.
n=1 i=1

By (4.53), ¢ is a well defined continuous map from G to 9, ¢(e) =0, ¢(g7!) = ¢(g) and

—¢(h) + ¢(gh) = d(g9) = Y (1 = Un(h) + Un(gh) = Un(9))Tn, z0)-

(r(h™1),7(9)) = (@7l (@n — Un(h™an), 52 (20 — Uy (9)2n)

it follows from (4.8) that d} ,,v = —£(g)€8(h), so that & is neutral. m
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Example 4.13 Let G =R, let $,, = Cy,, and = &7 9,. For t € R, let U, (t)y, = eit/”zyn and
U= @;2,U,. For each N, the representation ©7° U, weakly contains the trivial representation ¢,
as ||U(t)yn — ynl| — 0 uniformly on each compact set in R. As in (4.54), set

n—oo

(1) = ©7 (g — ¢ y) and o(1) = Y_( 1)
n=1
Then r and ¢ satisfy (4.8), so that £(t) = r(t) ® u is a neutral (¢, U)-cocycle and not a coboundary,
and y(t) = ¢(t)(u ® u) is a prechain. Thus H.(¢,U) #0. B

Theorem 4.14 Let G be a connected, locally compact nilpotent group, let U be a unitary repre-
sentation of G on $ and $X¢ = {0}. Then HL(1,U) # 0 if and only if H'(1,U) # 0. Moreover,
ZL1,U) is dense in Z'(1,U) : for each non-trivial (1,U)-cocycle &, there is a net of non-trivial
neutral (v, U)-cocycles which converges to & uniformly on compacts.

Proof. Let B1(1,U) be the closure of the set B'(:,U) of all boundaries in the topology of
the uniform convergence on compacts. Note first that, since $%¢ = {0}, the group H! ,(:,U) :=

Z1(1,U)/BY(1,U) of the reduced 1-cohomologies is trivial, so that Z'(;,U) = Bl(1,U). Indeed,
decomposing U into the irreducible representations

@
U:/ U,du,
Q

we see that U, # ¢ for almost all w. Hence, by Corollary 2.14 (see also [G2, Corollary 5]),
H(1,U,,) = {0} for almost all w. Now it follows from [G, Proposition 3.2.6] that HL (¢, U) = {0}.

If U does not weakly contain ¢ then (see [G2, D]) B(:,U) = BL(:,U). Therefore H'(:,U) =
H! ,(t,U) = 0 and there is nothing to prove.

Suppose now that U weakly contains ¢. Then there are unit vectors {e,}>2; in $) such that
lU(g)en — €n|| — 0 uniformly on compact subsets of G. As $X¢ = {0}, it follows from Proposition
3.3 that H = @évzlﬁk, N < oo, where §);, are invariant subspaces and each Uy = Uy, is spectrally
disjoint with y.. Let P, be the projections on ). If nh_)llolo | Pren|| # 0, for some k, there is e > 0

and a subsequence {n,, }>°_; such that ||Pge,,, || > €. Set ym = Pren,,/ || Prén,, || - Then

”Uk(g)ym - ymH S ”Pk(U(g)enm - enm)H /E S HU(g)enm - ean /E — 07 asm — 00,
for all g € G. Thus U, and . are not spectrally disjoint - a contradiction. Therefore
lim ||Pyey,|| = 0 for all k. (4.55)
n—o0o

If N <oothenl=l|e,| < Z]kvzl || Pren || for all n. Thus there is £ < N such that li_}rn | Pren || #
n—oo
0 which contradicts (4.55). Hence N = oo. Set Qm = >3, .1 Px. Then for each m

1U(9)@men — @menl|l < [Qm(U(g)en — en)| < [[U(g)en — enll = 0, as n — oo
Let lim ||Qmen|| = 0 for some m. Then, as 1 = |le,| < Y1t [|Prenll + [|@menl|, we have that
n—o0
lim || Pgey| # 0, for some k, which contradicts (4.55). Thus li_>m |Qmen|| # 0 for all m. Hence all
n—oo n—oo

representations ©72 . Uy weakly contain ¢. As G'is connected and locally compact, it is o-compact.
Applying Proposition 4.12, we conclude that G has a neutral (¢, U)-cocycle (not a coboundary) &,.
By Lemma 4.2, the set &, + B'(1,U) consists of neutral cocycles. Since (see above) Z'(:,U) =

BY(:,U), the set &, + B(1,U) is dense in Z(,,U). m
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Remark 4.15 In Theorem 3.18 it was shown that, for the groups whose dual objects contain
characters that cannot be separated (in particular, for the Heisenberg group), one can construct
extensions that do not decompose in a direct sum of primary extensions. For applications to
representations on Pontryagin spaces, it is important that the cocycles £ (see (3.20)) that define
such representations, are neutral. To show this we have to present the corresponding prechains.
Using notations of Theorem 3.18, we have L = Ce; @ Cea, A(g) = e1 ® €1 + x(g9)(e2 ® e2),

oo

Un(9) = tn = Tn(9) tn, Va(9) = X(9)vn — Tn(g) vn and £(g) = D (un(g) ® €1 + va(g) @ €3).

n=1

Then &*(g) = &(g71)* = 20l 1((e1 @ un(g™), ea @ va(g™h)). Set v = — 3207 | v, where all
’Yn(g) = (umun(g))(el X 61) + (un(g_l)7vn)(el ® 62) + (Umun(g))(eQ ® 61) + (vn,’un(g))(eg X 62)

belong to B(L). The series in 7(g) converge uniformly on compacts because of condition (3.18).
As A = M, we obtain by direct calculations, using (3.9) and (4.3), that ¢ is neutral (see (4.4)), since

(dxa7)(g,h) = Ag)v(h) —v(gh) + (g =) (M = (gh) + v (g)A(h))

n=

—

= D@l (@ e+ oie ge) + ol a) +alen®e) = —€0EH),

where

(Iizl = (Un,’LLn(gh) - Un(h) - Un(g))7 12 (Un(h g 1) - X(g)un(h_l) - un(g_l),vn),
an' = (v, un(gh) = un(h) = X(Wun(9)), @72 = (vns valgh) = X(9)va(h) = X(R)va(g))-
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