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I: cohomologies, extensions and neutral cocycles.”’

Edward Kissin and Victor S. Shulman

May 17, 2015

Dear Professor Delorme,

We are submitting to the Journal of Functional Analysis the revised version of our paper Ms.
Ref. No.: JFA-15-137

”Non-unitary representations of nilpotent groups, I: cohomologies, extensions and neutral cocy-

cles”.

We are very grateful to the referee for many helpful suggestions and we made some changes
following his suggestions.

1) The theorem

Theorem 0.1 Let π be a representation of a group G in the Banach space X and let Y be an

invariant subspace. For an Engel element h ∈ G, let T = π(h), TY the be restriction of T to Y
and T̂ be the operator naturally generated by T on X/Y. Let Sp TY ∩ Sp T̂ = ∅. Then π splits; this

means that there is a π-invariant subspace Z in X with X = Y ⊕ Z.

that was formulated and nicely proved by the referee coincides with our Corollary 2.17 (in the
initial submission). Now we call it Theorem 2.17.

2) ”Lemma 2.3 is a commonplace for anyone familiar with homologies and can be omitted”
We omitted the proof of Lemma 2.3, but left the statement (it is Lemma 3.5) to use it for the

proofs of Proposition 3.6, Corollary 3.7 and Theorem 3.12.

3) ”The text on pages 8, 9, 11, 12 can be shortened..”
We shortened the text on these pages.

4) ”My opinion is that Section 3.2 is not necessary.”
We omitted Section 3.2 (”L-decomposition”), but kept Proposition 3.5 (it is now Proposition

3.6), since we use its results in the proofs of Corollary 3.8 and Theorem 3.18.

5) Following the referee’s advice, we proved Theorem 3.18 in greater generality – for nilpotent
groups in whose dual objects characters are not separated. We deduced from Theorem 3.18 the
case of the Heisenberg group as a consequence.

Yours sincerely,
Edward Kissin and Victor Shulman
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Non-unitary representations of nilpotent groups, I: cohomologies,

extensions and neutral cocycles.

Edward Kissin and Victor S. Shulman

May 17, 2015

Abstract

Let λ be a finite-dimensional representation of a connected nilpotent group G and U be
a unitary representation of G. We investigate the structure of the extensions of λ by U and,
correspondingly, the group H1(λ, U) of 1-cohomologies. A spectral criterion of triviality of
H1(λ, U) is proved and systematically used in the study of various types of decomposition of
the extensions. We consider a special type of (λ, U)-cocycles – neutral cocycles, which play a
crucial role in the theory of J-unitary representations of groups on Pontryagin Πk-spaces.

1 Introduction and Preliminaries

Irreducible unitary representations of connected nilpotent groups G were studied in works of
Dixmier, Lenglends, Guichardet, Pukanski, Kirillov and other mathematicians. For Lie groups
Kirillov [Kir] developed the famous method of orbits relating irreducible representations with sym-
plectic geometry. The study of general unitary representations is simplified by the fact that they
uniquely decompose in direct integrals of the unitary ones.

The situation becomes more complicated if one considers non-unitary representations. In this
case all irreducible finite-dimensional representations are still one-dimensional and correspond to
characters of the group, but the general finite-dimensional representations do not decompose in
the sums of irreducible ones. Therefore it is natural to take non-decomposable representations as
building blocks — by the Krull-Schmidt Theorem, the decomposition of an arbitrary representation
in the sum of non-decomposable ones is unique up to isomorphism. Unfortunately the classification
of non-decomposable representations is a ”wild” problem even for such a simple commutative group
as G = R2.

An intermediate, or mixed situation – the combination of finite-dimensional and unitary rep-
resentations – naturally arises when one deals with a J-unitary representation on Pontryagin Πk-
spaces. In brief, such a space is a direct sum H = H+ + H− of Hilbert spaces supplied with
an ”indefinite scalar product” [x, y] = (x+, y+) − (x−, y−), where dimH− = k < ∞ (for details
see [KS]). A representation π of G on H is J-unitary if all operators π(g) preserve this form:
[π(g)x, π(g)y] = [x, y]. The properties of J-unitary representations of nilpotent groups and, in par-
ticular, of the Heisenberg group are used in the study of various problems in the quantum theory
(see, for example, [DT], [MPS], [Sc], [Sc1], [St], [SW]).

J-unitary representations of semisimple and solvable groups were studied by Araki [A], Ismagilov
[Is1, Is2, Is3], Kissin and Shulman [KS], Naimark [N1, N2], Naimark and Ismagilov [NI], Sakai [Sa]
and other mathematicians. By a theorem of Naimark [N], each J-unitary representation of G has
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a k-dimensional non-positive invariant subspace. This allows us to restrict the study of J-unitary
representations to the study of representations that admit a triangular form

π(g) =



λ(g) ξ(g) γ(g)
0 U(g) ξ(g−1)∗

0 0 λ(g−1)∗


 (1.1) doubleext

corresponding to some decomposition H = L⊕H⊕M , where L and M are k-dimensional neutral
subspaces, H is a positive subspace, λ is the restriction of π to L and U is the unitary representation
defined by π in H.

The left upper corner of π – the representation e(λ,U, ξ) =

(
λ ξ
0 U

)
of G is an extension of a

finite-dimensional representation λ by a unitary representation U ; and π is a ”double extension” of
U by λ. It is natural, therefore, that the first step in the investigation of J-unitary representations
should be the study of the extensions e(λ,U, ξ). This is the subject of the present work. In [KS1], we
apply the results of this paper to the investigation of the structure of J-symmetric representations
of nilpotent groups on Πk-spaces.

Clearly, the most significant obstacle in the study of the extensions e(λ,U, ξ) remains the com-
plexity of the structure of the finite-dimensional representations λ. For nilpotent groups, this is
partly alleviated (see Corollary 2.18) by the fact that λ decomposes into the direct sum of mono-
thetic representations λχ (each λχ is a representation such that χ(g) is the unique eigenvalue of the
matrix λχ(g)). In the J-unitary representations on Πk-spaces, the dimensions of λχ are regulated
by the indefiniteness index k: dimλ =

∑
χ dimλχ ≤ k. In the most important for physical applica-

tions case of Π1-space dimλ = 1. Moreover, sometimes we have additional information about the
structure of λ – e.g. its semisimplicity.

In this paper we mostly concentrate on the way the extensions are obtained, that is, on the
connecting cocycles. Recall that if λ and U are representations of a group G on Banach spaces L,
H, then a continuous function ξ: G → B(H, L) is a 1-cocycle if ξ(gh) = λ(g)ξ(h) + ξ(g)U(h) for
all g, h ∈ G. It defines a representation π, which we denoted above by e(λ,U, ξ), that acts on the
direct sum L∔ H by the formula

π(g)(x ⊕ y) = (λ(g)x + ξ(g)y) ⊕ U(g)y.

The space L splits π (i.e., L has an invariant complement) if and only if ξ is a coboundary:
ξ(g) = λ(g)T − TU(g) for some T ∈ B(H, L). The quotient of the space of all cocycles by the
subspace of all coboundaries is denoted H1(λ,U) and called the space of 1-cohomologies.

In Section 2 of the paper we study H1(λ,U) without the assumption that L is finite-dimensional
and U is unitary. The results of this section (and, to some extent, of subsequent sections) are based
on a spectral criterion of triviality of cocycles (Corollary 2.9) that states that if G is nilpotent and
there is g ∈ G such that spectra of λ(g) and U(g) do not intersect, then 1-cohomologies are trivial.

Section 3 is devoted to the investigation of various types of decomposition of an extension
e(λ,U, ξ) of a finite-dimensional representation λ by a unitary one. It provides some sufficient
conditions of decomposability of e(λ,U, ξ) into the sum of two subrepresentations which are not
extensions of λ. We find some sufficient conditions of decomposability of e(λ,U, ξ) into the direct
sum of a unitary and a finite-dimensional representations. It is also proved that e(λ,U, ξ) always has
an ”approximate decomposition”, that is, there exists a finite-dimensional subspace L, containing
L, and a sequence of pairs of invariant subspaces (Xn, Yn)

∞
n=1 such that L⊕H = Xn ∔ Yn for all n,

2
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(Yn)
∞
n=1 is an increasing and (Xn)

∞
n=1 is a decreasing sequences such that L = ∩nXn. We say that

L approximately splits π.
We also consider the problem of decomposition of e(λ,U, ξ) into primary components: e(λ,U, ξ) =∑

χ e(λχ, Uχ, ξχ), where λχ are monothetic components of λ (we call the extensions e(λχ, Uχ, ξχ)
primary). It is proved that for commutative groups such a decomposition always exists (Theorem
3.17). However, this result does not extend to all nilpotent groups. We show that this decomposi-
tion fails for nilpotent groups in whose dual objects characters are not separated, and construct an
example of an extension for the Heisenberg group which does not admit primary decomposition.

In Section 4 we study (λ,U)-cocycles ξ with a special property: the product ξ(g)ξ(h−1)∗ is a
(λ, λ♯)-coboundary. We call these cocycles neutral. Our interest in neutral cocycles is due to the fact
(discovered by Ismagilov [Is3]) that these particular cocycles appear in J-unitary representations
on Πk-spaces (see (1.1)). It is proved that the set Z1

ν (λ,U) of all neutral 1-cocycles is dense in
Z1(λ,U) if λ = ι and U has no fixed vectors. We give a precise description of Z1

ν (ι, U) in the
opposite case – when U is the identity representation on a Hilbert space.

Applications of these results to J-unitary representations of nilpotent groups on Πk-spaces are
considered in [KS1] and in the next part of our work [KS2].

Acknowledgement. We are very grateful to the referee for many helpful suggestions and to
Ekaterina Shulman for the example after Lemma 2.12.

2 Cohomologies of Engel groups

2.1 Cohomologies of groups with coefficients in bimodules.

We recall the definition of continuous cohomologies of a topological group G with coefficients in
a topological G-bimodule X. Let C0 = X, and, for n ≥ 1, Cn = Cn(G,X) be the space of
all continuous functions (n-cochains) from Gn = G × ... × G to X. The coboundary operators
dn : Cn → Cn+1 are defined by the rule

dnc(g1, ..., gn+1) = g1c(g2, ..., gn+1)+

n∑

i=1

(−1)ic(g1, ..., gigi+1, gi+2, ..., gn+1)+(−1)n+1c(g1, ..., gn)gn+1.

Let Zn = Zn(G,X) = ker dn be the set of all n-cocycles and Bn = Bn(G,X) = im dn−1 – the set
of all n-coboundaries. Then Bn ⊆ Zn. The quotient space Hn = Zn/Bn is called the n-th group of
cohomologies of G with coefficients in X.

With few later exceptions we consider cohomologies with coefficients in operator bimodules
defined by a pair of representations. Namely, let L and H be Banach spaces, B(H, L) be the space
of all bounded operators from H to L and B(H) = B(H,H). Let λ and U be weakly continu-
ous representations of a group G on L and H respectively. The space B(H, L) supplied with the
weak topology is a G-bimodule with respect to the operations gT = λ(g)T , Tg = TU(g). The
corresponding cohomologies are denoted by Hn(λ,U), and similarly for other constructions.

For the reader’s convenience we write separately the formulas for low-dimensional operators dn:

d0(T )(g) = λ(g)T − TU(g), for T ∈ C0 = B(H, L),

d1(c)(g1, g2) = λ(g1)c(g2)− c(g1g2) + c(g1)U(g2), for c ∈ C1,

d2(c)(g1, g2, g3) = λ(g1)c(g2, g3)− c(g1g2, g3) + c(g1, g2g3)− c(g1, g2)U(g3), for c ∈ C2. (2.1) 0

3
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Thus a function ξ: G → B(H, L) is a 1-cocycle (we also write (λ,U)-cocycle, if it is necessary
to indicate which representations we consider) if

ξ(gh) = λ(g)ξ(h) + ξ(g)U(h) for all g, h ∈ G. (2.2) g2.2

It is a 1-coboundary if there is Xξ ∈ B(H, L) such that

ξ(g) = λ(g)Xξ −XξU(g), for all g ∈ G. (2.3) g2.2’

By the above definition, H1(λ,U) = 0 if each (λ,U)-cocycle is a (λ,U)-coboundary.
Consider the following example. Let L = C and λ and U be trivial representations of G on

L and H, respectively. Then a (λ,U)-cocycle can be identified with a weakly continuous map α:
G→ H satisfying the condition

α(gh) = α(g) + α(h) for g, h ∈ G. (2.4) additive

If G = Rn, it is easy to see that the map α is Q-linear and, by continuity, R-linear. In other words,
there are fixed vectors u1, ..., un in H such that

α(x1, ..., xn) = x1u1 + ...+ xnun, for (x1, ..., xn) ∈ Rn, and dimα(Rn) ≤ n. (2.5) t

It is important that this can be extended to a wide class of groups.
For a locally compact group G, let G[1] be the commutator of G, that is, the closed subgroup

generated by all commutators ghg−1h−1 in G. As the quotient homomorphism

θ: G −→ G̃ = G/G[1] (2.6) q

is continuous, G̃ is a locally compact commutative group. If G is connected, G̃ is connected. Hence,
by [M, Theorem 26], G̃ is the direct product of a compact subgroup C and a subgroup isomorphic
to some Rn. Setting G0 = θ−1(C), we obtain the following lemma-definition:

L5.1i Lemma 2.1 Let G be a connected locally compact group. Then there is a normal subgroup G0 of

G containing G[1] such that G0/G
[1] is compact and the group G/G0 is isomorphic to Rn for some

n = nG ∈ N.

Fix an isomorphism of G/G0 onto RnG and denote by ωG (or just ω if no confusion is possible)
its composition with the canonical homomorphism from G onto G/G0. Thus

ω : G→ RnG with kerω = G0. (2.7) 1.1e

L5.1 Corollary 2.2 Let α be a weakly continuous map from G into a Banach space H satisfying (2.4).
Then G0 ⊆ ker(α) and there is a linear weakly continuous map β from RnG to H such that α(g) =
β(ω(g)). The set α(G) = β(RnG) is a real linear subspace of H and dimR(α(G)) ≤ nG.

Proof. As α is continuous, Ker(α) is a closed normal subgroup of G. Since α(ghg−1h−1) = 0,
for g, h ∈ G, we have G[1] ⊆ Ker(α). Hence (see (2.6)) α̃: θ(g) → α(g) is a continuous map from
G̃ = C × RnG into H. Since α̃(g̃k) = kα̃(g̃), for all k ∈ N and g̃ ∈ G̃, and since C is compact, we
have α̃(C) = {0}. Hence G0 ⊆ Ker(α). Then β: ω(g) → α(g) is a weakly continuous map from RnG

into H, satisfying (2.4). As in (2.5), we have dimR(α(G)) ≤ nG.

Let λ and U be representations of G on L and H respectively.We need the following lemma.

4
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L2.2 Lemma 2.3 Let, with respect to a decomposition L = L1 ∔ ...∔ Ln, λ have form

λ(g) =




λ1(g) λ12(g) ... λ1n(g)
0 λ2(g) ... λ2n(g)

0 0
. . .

...

0 0 ... λn(g)


 (2.8) h2.5

If H1(λi, U) = 0 for all i, then H1(λ,U) = 0. Similarly, if all H1(U, λi) = 0 then H1(U, λ) = 0.

Proof. Let n = 2. Then λ =

(
λ1 λ12
0 λ2

)
. Set σ = λ12. Let ξ =

(
ξ1
ξ2

)
be a (λ,U)-cocycle,

where ξi are maps from G into B(H, Li). By (2.2), ξi(e) = 0 and

ξ1(gh) = λ1(g)ξ1(h) + σ(g)ξ2(h) + ξ1(g)U(h),

ξ2(gh) = λ2(g)ξ2(h) + ξ2(g)U(h).

Thus ξ2 is a (λ2, U)-cocycle. As H1(λ2, U) = 0, there is X ∈ B(H, L2) such that ξ2(g) = λ2(g)X −
XU(g) for all g ∈ G.

Set ω(g) = ξ1(g) − σ(g)X. Then ω(g) ∈ B(H, L1) and ω(e) = 0, as σ(e) = 0. Since σ(gh) =
λ1(g)σ(h) + σ(g)λ2(h), we have

ω(gh) = ξ1(gh) − σ(gh)X = (λ1(g)ξ1(h) + σ(g)ξ2(h) + ξ1(g)U(h)) − (λ1(g)σ(h) + σ(g)λ2(h))X

= λ1(g)(ξ1(h)− σ(h)X) + σ(g)(λ2(h)X −XU(h)) + ξ1(g)U(h) − σ(g)λ2(h)X

= λ1(g)ω(h) + ω(g)U(h).

Thus ω is a (λ1, U)-cocycle. As H1(λ1, U) = 0, there is Y ∈ B(H, L1) such that ω(g) = λ1(g)Y −

Y U(g) for g ∈ G. Hence ξ1(g) = λ1(g)Y − Y U(g) + σ(g)X for all g ∈ G. Set Xξ =

(
Y
X

)
. Then

ξ(g) = λ(g)Xξ −XξU(g), so that the lemma holds for n = 2.
Assume, by induction, that the lemma holds for n = k. For n = k + 1, set

λ̂1(g) =




λ1(g) λ12(g) ... λ1k(g)
0 λ2(g) ... λ2k(g)

0 0
. . .

...
0 0 ... λk(g)


 and σ(g) =




λ1k+1(g)
λ2k+1(g)

...
λkk+1(g)


 .

Then λ(g) =

(
λ̂1(g) σ(g)
0 λk+1(g)

)
andH1(λk+1, U) = 0. By the assumption of induction,H1(λ̂1, U) =

0. Using now the same argument as above, we obtain that H1(λ,U) = 0.

C3.2 Corollary 2.4 Let λ have form (2.8). Suppose that, for each λi on the diagonal, U can be written in

the form (2.8) with some {U i
j} on the diagonal such that H1(λi, U

i
j) = 0 for all j. Then H1(λ,U) = 0.

Proof. Fix i. As H1(λi, U
i
j) = 0, for all j, it follows from Lemma 2.3 that H1(λi, U) = 0. Since

this holds for all i, we have from Lemma 2.3 that H1(λ,U) = 0.

5
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Let λ, µ be similar representations on L and L′ respectively: µ(g) = S−1λ(g)S, for some
bounded operator S from L′ to L with a bounded inverse. Then

H1(λ,U) = 0 implies H1(µ,U) = 0. (2.9) 2.j

Indeed, the bijective map ξ 7→ Sξ from C1(G,B(H, L)) to C1(G,B(H, L′)) sends Z1(µ,U) onto
Z1(λ,U) and B1(µ,U) onto B1(λ,U). Therefore it induces an isomorphism of 1-cohomologies.

P3.7 Proposition 2.5 Let, with respect to a decomposition L = L1∔ ...∔Ln, λ have form (2.8). Suppose
that {Ω1,Ω2} is a partition of [1, ..., n] such that H1(λi, λj) = 0, if i < j and i and j belong to

different sets Ω1,Ω2. Then there are subspaces {Mk}
n
k=1 of L such that

(i) L1 ∔ ...∔ Lk =M1 ∔ ...∔Mk for all k = 1, ..., n;
(ii) λ has upper triangular form with respect to the decomposition L =M1 ∔ ...∔Mn

λ(g) =




µ1(g) µ12(g) ... µ1n(g)
0 µ2(g) ... µ2n(g)
0 0 ... ...
0 0 ... µn(g)


 ,

where each µi is similar to λi and µij = 0 if i and j belong to different sets Ω1,Ω2;
(iii) the subspaces Mm =

∑
i∈Ωm

∔Mi, m = 1, 2, are invariant for λ and L = M1 ∔M2.

Proof. We argue by induction. Set Lk = L1 ∔ ...∔Lk, for k = 1, ..., n. All Lk are invariant for
λ. Assume that, for some k, Lk =M1 ∔ ...∔Mk and with respect to this decomposition

λ(g)|Lk
=



µ1(g) ... µ1k(g)

0
. . .

...
0 0 · · · 0 µk(g)


 , where each µi is similar to λi

and µij = 0 if i and j belong to different sets Ω1,Ω2. Hence the subspaces Mk
1 =

∑
i∈Ω1,i≤k ∔Mi,

Mk
2 =

∑
i∈Ω2,i≤k ∔Mi are invariant for λ and Lk = Mk

1 ∔Mk
2 .

Then Lk+1 = Lk ∔ Lk+1= Mk
1 ∔Mk

2 ∔ Lk+1 and with respect to this decomposition

λ(g)|Lk+1
=




λ(g)|Mk
1

0 ξ1(g)

0 λ(g)|Mk
2

ξ2(g)

0 0 λk+1(g)


 .

Clearly, ξ1 is a (λ|Mk
1
, λk+1)-cocycle and ξ2 is a (λ|Mk

2
, λk+1)-cocycle.

Assume that k + 1 ∈ Ω2. Then H1(λi, λk+1) = 0 for all i ∈ Ω1, i < k + 1. As µi are similar
to λi, H

1(µi, λk+1) = 0. Hence, by Lemma 2.3, H1(λ|Mk
1
, λk+1) = 0, so that there is a bounded

operator X from Lk+1 into Mk
1 such that ξ1(g) = λ(g)|Mk

1
X − Xλk+1(g) for all g ∈ G. Set

Mk+1 = {−Xy ∔ y : y ∈ Lk+1}. The operator S: y → −Xy ∔ y from Lk+1 onto Mk+1 is bounded
and has a bounded inverse. Hence the representation µk+1 = Sλk+1S

−1 on Mk+1 is similar to λk+1.

The subspace Mk
2 ∔Mk+1 is invariant for λ since, for each y ∈ Lk+1,

. . .
. . .

λ(g)Sy = λ(g)(−Xy ∔ y) = (−λ(g)|Mk
1
Xy + ξ1(g)y) ∔ ξ2(g)y ∔ λk+1(g)y

= ξ2(g)y ∔ (−Xλk+1(g)y ∔ λk+1(g)y) = ξ2(g)y ∔ Sλk+1(g)y = ξ2(g)y ∔ µk+1(g)Sy
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belongs to Mk
2 ∔Mk+1. We have Lk+1 = Mk

1 ∔Mk
2 ∔Mk+1 and with respect to this decomposition

λ(g)|Lk+1
=




λ(g)|Mk
1

0 0

0 λ(g)|Mk
2

η(g)

0 0 µk+1(g)


 , where η = ξ2S

−1.

Similarly, we can consider the case when k + 1 ∈ Ω1. This completes the proof.

R2.2 Remark 2.6 The result similar to Proposition 2.5 holds if {Ω1, ...,Ωk} is a partition of [1, ..., n]
and all H1(λi, λj) = 0 when i < j and i and j belong to different sets Ω1, ...,Ωk.

2.2 Trivial 1-cohomologies of Engel groups.

Let λ and U be representations of a topological group G on L and H respectively. We shall consider
some sufficient condition for H1(λ,U) = 0. For h ∈ G, define a map adh: G→ G by the formula

adh(g) = ghg−1h−1 for all g ∈ G. (2.10) f2.2

Definition 2.7 (i) h ∈ G is an Engel element if adnh(g) = e for each g ∈ G and some n = n(g).
(ii) We say that G is an Engel group, if each element of G is an Engel element.

Clearly, all elements in the center of G are Engel elements. For a subgroup H of a topological
group G, letK(G,H) be the minimal closed subgroup ofG that contains all commutators ghg−1h−1,
g ∈ G, h ∈ H. Set

G[1] = K(G,G), G[2] = K(G,G[1]), ..., G[n] = K(G,G[n−1]). (2.11) 2.2n

A group G is nilpotent if G[n] = {e} for some n. Clearly, all nilpotent groups are Engel groups.
For g ∈ G, consider the operator Sg on B(H, L) defined by

Sg(T ) = λ(g)T − TU(g) for T ∈ B(H, L). (2.12) 2.1g

The map g → Sg(T ) = λ(g)T − TU(g) is a (λ,U)-coboundary for each T ∈ B(H, L) (see (2.3)).

P2new Proposition 2.8 Let ξ be a (λ,U)-cocycle. If there exists an Engel element h ∈ G satisfying

ξ(h) ∈ ShB(H, L) and kerSh = {0}, (2.13) 2new

then ξ is a coboundary.

Proof. As ξ is a (λ,U)-cocycle, it satisfies (2.2). By (2.13), there is X ∈ B(H, L) such that
ξ(h) = Sh(X). Define η(g) = ξ(g) − Sg(X) for all g ∈ G. Then η is a (λ,U)-cocycle satisfying

η(e) = ξ(e) = 0 and η(h) = ξ(h)− Sh(X) = 0. (2.14) 2.1new

If we prove that η = 0, then ξ(g) = Sg(X) for all g ∈ G, so that ξ is a (λ,U)-coboundary.
For each g ∈ G, we have from (2.2) and (2.14) that

η(hg) = λ(h)η(g) + η(h)U(g) = λ(h)η(g),

η(gh) = λ(g)η(h) + η(g)U(h) = η(g)U(h).

7
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Set z(g) = adh(g) = ghg−1h−1. Then gh = z(g)hg. Hence, by the above formulae,

η(g)U(h) = η(gh) = η(z(g)hg)

= λ(z(g))η(hg) + η(z(g))U(hg) = λ(z(g))λ(h)η(g) + η(z(g))U(hg).

Therefore
η(z(g))U(hg) = η(g)U(h) − λ(z(g)h)η(g) =Wg(η(g)), (2.15) temp

where the operator Wg on B(H, L), for each g ∈ G, is defined by

Wg(T ) = TU(h)− λ(z(g)h)T = TU(h)− λ(ghg−1)T = −λ(g)Sh(λ(g
−1)T ).

It follows from (2.13) that kerWg = {0} for each g ∈ G.
Fix g 6= e. Set g0 = z0(g) = g and inductively, gn = zn(g) = adh(z

n−1(g)) for n ∈ N. Replacing
in (2.15) g by gn−1, we have

η(gn)U(hgn−1) =Wgn−1(η(gn−1)) for all n ≥ 1. (2.16) 3new

As h is an Engel element, there is n such that gn = zn(g) = adnh(g) = e and gn−1 = zn−1(g) 6= e.
As η(e) = 0 and kerWgn−1 = {0}, we have from (2.16) that η(gn−1) = 0. Using (2.16) again, we
have η(gn−2) = 0. Repeating this n times, we establish that η(g) = η(z0(g)) = 0. Thus η = 0.

P2.4n Corollary 2.9 H1(λ,U) = H1(U, λ) = 0 if there is an Engel element h ∈ G satisfying

Sp(λ(h)) ∩ Sp(U(h)) = ∅. (2.17) f2.9

Proof. It follows from Rosenblum’s Theorem (see [RR, Theorem 0.12]) that the operator Sh
defined in (2.12) satisfies

Sp(Sh) ⊆ {α− β: α ∈ Sp(λ(h)), β ∈ Sp(U(h))}.

From this and (2.17) we have that Sh is invertible, so that condition (2.13) holds for all (λ,U)-
cocycles. By Proposition 2.8, they are coboundaries.

D2.n Definition 2.10 We say that representations λ and U of a group G are spectrally disjoint if

Sp(λ(h)) ∩ Sp(U(h)) = ∅ for some h ∈ G. (2.18) g2.9

Corollaries 2.4 and 2.9 yield

P2.4 Corollary 2.11 Let λ and U be representations of an Engel group G. Let λ have an upper block-

triangular form (λij). Suppose that, for each i, U has an upper block-triangular form such that λii
and every diagonal block of U are spectrally disjoint. Then H1(λ,U) = H1(U, λ) = 0.

A complex-valued function χ on G is a character if χ(gh) = χ(g)χ(h) for all g, h ∈ G. Then

χ∗(g) = χ(g−1) = χ(g)−1 for g ∈ G, (2.19) 4.11

is also a character. Denote by χe the identity character: χe(g) ≡ 1. A character χ is unitary if

χ = χ∗, that is, |χ(g)| = 1 for all g ∈ G. (2.20) 4.12

Each character χ generates a one-dimensional representation of G.
We will need the following general result.
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L4.2 Lemma 2.12 Let χ and {χi}
r
i=1 be continuous characters on a connected topological group G. If

χ(g) ∈ {χi(g)}
r
i=1, for each g ∈ G, then χ coincides with one of the characters χ1, ..., χr.

Proof. The sets Gi = {g ∈ G: χ(g) = χi(g)} are closed subgroups of G and ∪r
i=1Gi = G. Let

n be the smallest number such that ∪n
i=1Gi = G. If Gn 6= G then F = ∪n−1

i=1 Gi is a closed proper
subset of G and Gn contains the open subset G\F. For each g ∈ G\F, the open set V = g−1(G\F )
belongs to Gn and e ∈ V. As G is connected, G = ∪kV

k ⊆ Gn. Thus G = Gn, so that χ = χn.

K Example 2.13 The condition in the above lemma that a group G is connected is essential. Indeed,
consider the group G = Z × Z and the characters

χ1(m,n) = (−1)m, χ2(m,n) = (−1)m+n, χ3(m,n) = (−1)n and χ4(m,n) = 1.

Then χ4(m,n) = 1 ∈ {χ1(m,n), χ2(m,n), χ3(m,n)} for all (m,n) ∈ G.

A representation π of G on a Banach space is operator irreducible if the only bounded operators
commuting with all π(g) are scalar operators. Then there is a character χπ on the centre Z of G
such that π(z) = χπ(z)1 for z ∈ Z. As elements in Z are Engel elements, we have

C2.14 Corollary 2.14 Let λ and U be operator irreducible representations of a group G and let χ
λ
and

χ
U
be the corresponding characters on its centre. If χ

λ
6= χ

U
then H1(λ,U) = H1(U, λ) = 0.

Let χ be a character of a group G. Denote by Hχ the eigen-space of U :

Hχ = {x ∈ H : U(g)x = χ(g)x, for all g ∈ G}. (2.21) 2.eg

We say that χ and U are eigen-disjoint if Hχ = 0; they are spectrally disjoint if

χ(h) /∈ Sp(U(h)) for some h ∈ G; (2.22) 2.f

(that is, U is spectrally disjoint with the representation χι on C defined by χ). Furthermore, χ and
U are sectionally spectrally disjoint if U has an upper block-triangular form with respect to some
decompositions of H such that χ is spectrally disjoint with each diagonal block Ui.

A set Ω of characters of G is eigen-disjoint (spectrally disjoint, sectionally spectrally disjoint)
with U if this is true for each χ ∈ Ω.

D2 Definition 2.15 (i) We call a representation λ on a Banach space L monothetic, or a χ-
representation, if there is a character χ such that Sp(λ(g)) = {χ(g)} for all g ∈ G.

(ii) We call λ elementary if with respect to a decomposition L = L1 ∔ ...∔ Ln, λ has form

λ(g) =



λ1(g) ... λ1n(g)

0
. . .

...

0 0 λn(g)


 for g ∈ G, (2.23) h2.5’

where all λi are χi-representations for some characters χi (they may repeat). Set

sign(λ) = {χi}
r
i=1, r ≤ n, where now χi do not repeat.
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The definition of sign does not depend on the choice of triangularization if G is connected.
Indeed, if ω is a character which arises in another triangular form, then ω(g) ∈ Sp(λ(g)) = {χi(g):
1 ≤ i ≤ n} for all g ∈ G. By Lemma 2.12, ω coincides with some χi.

In particular, if all λi(g) = χi(g)1Li
then λ is elementary. For example, if λ is finite-dimensional

and G is solvable then, by Lie Theorem, λ has form (2.23) in some basis. Corollary 2.11 yields

C3.4 Corollary 2.16 Let λ be an elementary representation of an Engel group G. If sign(λ) is section-
ally spectrally disjoint with a representation U of G then H1(λ,U) = H1(U, λ) = 0.

2.3 Applications to decomposability

Let Y be a subspace of a Banach space X and q: X → X̂ = X/Y the quotient map. If an operator
T ∈ B(X) preserves Y, let TY be its restriction to Y and T̂ the operator on X̂ induced by T .

Let Π(T ) be the approximate spectrum of T and ∂(Sp(T )) the boundary of Sp(T ). Then

∂(Sp(T )) ⊆ Π(T ) ⊆ Sp(T ) and Π(TY ) ⊆ Π(T ), so that ∂(Sp(TY )) ⊆ Π(TY ) ⊆ Sp(T ) (2.24) 3.02

(see [RR, Theorem 0.7 and 0.8]). Set x̂ = q(x) for x ∈ X. We will need the fact that

Sp(TY ) ∩Π(T̂ ) = ∅ implies ∂(Sp(T̂ )) ⊆ Π(T ). (2.25) 3.03

First, let us show that Π(T̂ ) ⊆ Π(T ). For t ∈ Π(T̂ ), set S = T − t1 and let xn ∈ X be such that

‖x̂n‖ = inf
y∈Y

‖xn + y‖ = 1 and
∥∥∥Ŝx̂n

∥∥∥ = inf
z∈Y

‖Sxn + z‖ = inf
u∈Y

‖S(xn + u)‖ → 0, as n→ ∞,

since Sp(TY ) ∩ Π(T̂ ) = ∅. Hence there are un ∈ Y such that ‖S(xn + un)‖ → 0, as n → ∞. Set
vn = (xn + un)/ ‖xn + un‖ . Then ‖vn‖ = 1 and ‖xn + un‖ ≥ ‖x̂n‖ = 1. Thus

‖(T − t1)vn‖ = ‖S(xn + un)‖ / ‖xn + un‖ ≤ ‖S(xn + un)‖ → 0, as n→ ∞.

Hence t ∈ Π(T ). As ∂(Sp(T̂ )) ⊆ Π(T̂ ), by (2.24), we obtain that ∂(Sp(T̂ )) ⊆ Π(T ).
Let π be a representation of G on X and Y be a π-invariant subspace. Let X = Y ∔H and πH

be the representation induced on H. By Proposition 2.5, if H1(π
Y
, πH) = 0 then Y has an invariant

complement. We consider now the case when apriori it is not given that Y has a direct complement.

qout Theorem 2.17 Let π be a representation of a group G on a Banach space X and let Y be a π-

invariant subspace. If Sp(π(h)
Y
)∩ Sp(π̂(h)) = ∅, for some Engel element h ∈ G, then there is a

π-invariant subspace H such that X = Y ∔ H.

Proof. Let T = π(h). Set α1 = Sp(TY ) and α2 = Sp(T̂ ). Note that Sp(T ) ⊆ α1 ∪ α2. Indeed,

let t /∈ α1 ∪ α2 and S = T − t1. If x ∈ kerS then Tx = tx and T̂ x̂ = T̂ x = tx̂. Hence x̂ = 0, as
t /∈ α2. Thus x ∈ Y and TY x = Tx = tx. Hence x = 0, as t /∈ α1. Thus kerS = {0}.

Let z ∈ X. As Ŝ is invertible, ẑ = Ŝx̂ = Ŝx for some x ∈ X. Thus z − Sx ∈ Y. As SY is
invertible, z− Sx = SY y = Sy for some y ∈ Y . Hence z = S(x+ y). Thus S is surjective. Hence S
is invertible, so that t /∈ Sp(T ).

As α1 ∩ α2 = ∅, there is a contour Γ containing α1 such that Γ ∩ (α1 ∪ α2) = ∅ and α2 lies
outside Γ. Let P = −(2πi)−1

∫
Γ(T − t1)−1dt be the corresponding Riesz spectral projection. Then

10



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

the subspace R := PX is T -invariant, PT = TP, Sp(TR) lies inside Γ and Sp(TR) ⊆ Sp(T ). Thus
Sp(TR) ⊆ α1. Let y ∈ Y and t ∈ Γ. As t /∈ α1, there is z ∈ Y such that y = (TY −t1Y )z = (T −t1)z.
Hence (TY −t1Y )

−1y = (T−t1)−1y ∈ Y. As α1 = Sp(TY ), we have −(2πi)−1
∫
Γ(TY −t1Y )

−1dt = 1Y .
Therefore

P |Y = −(2πi)−1

∫

Γ
(T − t1)−1|Y dt = −(2πi)−1

∫

Γ
(TY − t1Y )

−1dt = 1Y .

Hence PY = Y ⊆ PX.
If Y 6= R, the subspace R̂ = R/Y 6= {0} of X̂ is T̂ -invariant, as R is T -invariant. Hence, by

(2.24), the restriction T̂
R̂
of T̂ to R̂ satisfies

∂(Sp(T̂R̂)) ⊆ Π(T̂R̂) ⊆ Sp(T̂ ) = α2.

On the other hand, T̂
R̂
can be considered as the operator T̂R on R̂ induced by TR. Then Π(T̂R) =

Π(T̂R̂)
(2.24)

⊆ Π(T̂ ) ⊆ Sp(T̂ ) = α2. As (TR)Y = TY , we have Sp((TR)Y ) ∩ Π(T̂R) ⊆ α1 ∩ α2 = ∅.

Hence ∂(Sp(T̂R))
(2.25)

⊆ Π(TR)
(2.24)

⊆ Sp(TR) = α1, so that ∂(Sp(T̂R)) ⊆ α1∩α2 = ∅, a contradiction.
Thus Y = R, P is the projection on Y, (1−P ) is the projection on a T -invariant complement H of
Y and Sp(TH) lies outside Γ. As Sp(TY )∪ Sp(TH) = Sp(T ) ⊆ α1 ∪ α2, we have Sp(TH) ⊆ α2.

With respect to the decompositionX = Y∔H, π has the block-matrix form π(g) =

(
λ(g) ξ(g)
0 U(g)

)

and Sp(λ(h))∩ Sp(U(h)) = Sp(TY )∩ Sp(TH) ⊆ α1 ∩ α2 = ∅. Applying Corollary 2.9, we have
H1(λ,U) = 0. By Proposition 2.5, Y has a π-invariant complement.

The result below must be known, at least for the most important case of nilpotent groups and
finite-dimensional representations, but we could not find a reference.

C3.4ii Corollary 2.18 (i) Each elementary representation λ of an Engel group G on a Banach space L
uniquely decomposes in a direct sum of χ-representations λLχ :

L =
∑

χ∈sign(λ)

∔Lχ and λ =
∑

χ∈sign(λ)

∔λLχ .

(ii) Let n := dimL <∞. Then

Lχ = {x ∈ L : (λ(g) − χ(g)1)nx = 0 for all g ∈ G}. (2.26) monospace

(iii) Let G be connected. If K is a λ-invariant subspace of L then K =
∑

χ∈sign(λ)∔(Lχ ∩K).

Proof. (i) By definition, λ has form (2.23) and Sp(λi(g)) = {χi(g)}, where χi ∈ sign(λ). For
χ ∈ sign(λ), set Ωχ = {i ∈ [1, ..., n] : χi = χ}. Then if i and j belong to different sets Ωχ and
Ωω, the representations λi and λj are spectrally disjoint. Hence H1(λi, λj) = 0, by Corollary 2.11.
Applying Proposition 2.5 and Remark 2.6, we get the needed decomposition.

(ii) Denote by Mχ the right hand side of (2.26). As λLχ is a χ-representation and dimLχ ≤ n,
the matrix λ(g)|Lχ has only one eigenvalue χ(g) for each g ∈ G. Hence Lχ ⊆Mχ.

If ω 6= χ then χ(h) 6= ω(h) for some h ∈ G. Hence there does not exist x 6= 0 such that
(λ(h) − ω(h)1)nx = (λ(h) − χ(h)1)nx = 0. Thus Mχ ∩Mω = {0}.
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Let x =
∑

ω∈sign(λ) xω ∈Mχ with xω ∈ Lω. Then

0 = (λ(g) − χ(g)1)nx =
∑

ω∈sign(λ)

(λ(g) − χ(g)1)nxω.

As (λ(g) − χ(g)1)nxω ∈ Lω and the spaces Lω are linear independent, all (λ(g) − χ(g)1)nxω = 0,
so that all xω ∈Mχ. As Lω ∩Mχ ⊆Mω ∩Mχ = {0}, if ω 6= χ, we have x ∈ Lχ. Thus Mχ ⊆ Lχ.

(iii) Fix χ. For each ω 6= χ, χ(gω) 6= ω(gω) for some gω ∈ G. Hence the operator

Sχ =
∏

ω∈sign(λ),ω 6=χ

(λ(gω)− ω(gω)1)
n

is invertible on Lχ and SχLω = {0}. Hence the projection Pχ on Lχ along all other Lω is a
polynomial of Sχ: Pχ = p(Sχ). Set Kχ = PχK. As K is λ-invariant, SχK ⊆ K. Hence Kχ =
p(Sχ)K ⊆ K. As PχL = Lχ, we have Kχ ⊆ Lχ ∩K. Conversely, if x ∈ Lχ ∩K then x = Pχx ∈ Kχ.
Thus Lχ ∩ K ⊆ Kχ, so that Kχ = Lχ ∩ K. Let now y ∈ K. As 1 =

∑
χ∈sign(λ)∔Pχ, we have

y =
∑

χ∈sign(λ)∔Pχy and Pχy ∈ Kχ. Thus K =
∑

χ∈sign(λ)∔Kχ.

Corollary 2.18 does not extend to solvable groups. Indeed, if λ is the identity representation of

G =

{
g =

(
a c
0 b

)
: a, b, c ∈ C, ab 6= 0

}
on L = C2: λ(g)x = gx forx ∈ L.

on C2, then sign(λ) = {χ1, χ2}, where χ1(g) = a and χ2(g) = b are characters on G. However, λ
has only one invariant subspace. Thus Corollary 2.18 does not hold.

A representation on L is non-decomposable if L is not the direct sum of invariant subspaces.
By Corollary 2.18, non-decomposable elementary representations of Engel groups are monothetic.

Let χe be the identity character on an Engel group G and ΛG the set of all non-decomposable
finite-dimensional χe-representations ofG. By Corollary 2.18, each finite-dimensional representation
π of G is a finite direct sum of representations from ΛG multiplied by characters from sign(π).

3 Decomposition of extensions of finite-dimensional representa-
tions of nilpotent groups by unitary representationes

From now on G is a connected, locally compact nilpotent group, λ is an elementary (in many
cases finite-dimensional) representation of G on a Banach space L and U is a unitary representation
ofG on a separable Hilbert space H. With each (λ,U)-cocycle ξ, one can associate the representation
π of G:

π(g) = e(λ,U, ξ)(g) =

(
λ(g) ξ(g)
0 U(g)

)
for g ∈ G, on Z = L∔ H, (3.1) 3.22

called the extension of λ by U performed by ξ. It is decomposable if Z = Z1 ∔ Z2, where Z1,Z2

are π-invariant subspaces. In our approach we study decompositions of the extensions e(λ,U, ξ)
depending on the kind of disjointness of sign(λ) and U .

After some work on a special type of decomposition of unitary representations of nilpotent
groups, we consider in subsection 3.2 the weakest type of disjointness of sign(λ) and U – their eigen-
disjointness (the general case can be reduced to this case). We obtain a cohomological criterion of

12



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

decomposability of π and show that in any decomposition Z = Z1 ∔ Z2 in the sum of π-invariant
components, either one of them contains L, or L = (L ∩ Z1) ∔ (L ∩ Z2) and both representations
π|Zi are extensions of the representations λ|L∩Zi by some representations similar to unitary ones.

We proceed to investigate the ”spectral” decomposition of e(λ,U, ξ) which arises when sign(λ)
is sectionally spectrally disjoint with U, or with some subrepresentation of U . As a consequence,
we show that each extension π = e(λ,U, ξ) ”approximately” decomposes in the following sense:
Z = Xn∔Yn for some pairs of invariant subspaces such that Yn ⊆ Yn+1, π|Yn are similar to unitary
representations, Xn+1 ⊆ Xn and the space ∩nXn is finite-dimensional and contains L.

A glance at the finite-dimensional situation leads to a conjecture that if λ is not monothetic,
e(λ,U, ξ) always decomposes in a sum of extensions with monothetic λi. In subsection 3.4 we show
that this is true for commutative G but fails in general (for example, for the Heisenberg group).

3.1 Decompositions of unitary representations with respect to sets of characters

L2.n Lemma 3.1 Let U be a unitary representation of a group G and χ be a character of G.
(i) If χ is non-unitary then χ and U are spectrally disjoint.

(ii) If χ and U are sectionally spectrally disjoint, then χ∗ and U are sectionally spectrally disjoint.

Proof. (i) By (2.20), |χ(g)| 6= 1 for some g ∈ G. Hence χ(g) /∈ Sp(U(g)).
(ii) Clear, if χ is unitary, as χ∗ = χ. If χ is non-unitary, χ∗ is non-unitary and (i) gives (ii).

For a unitary representation U of G on H, let Hχ be the χ-eigenspace of U.

P2.1e Lemma 3.2 Let χ be a unitary character and M be a U -invariant subspace of H. Then M ⊆ Hχ

if and only if, for each invariant subspace K 6= {0} of M, χ and UK are not spectrally disjoint, i.e.,

χ(g) ∈ Sp(U(g)|K) for all g ∈ G. (3.2) 7.2n

Proof. Replace U by χ−1U. Then it suffices to get a proof for χe. If M ⊆ Hχe , (3.2) holds.
Conversely, let (3.2) hold. Then, for each invariant subspace K 6= {0} of M,

1 ∈ Sp(U(g)|K) for all g ∈ G. (3.3) 2.1p

Let Z be the centre of G. We claim that Z ⊆ kerU. Indeed, let z ∈ Z and P (∆) be the spectral
measure of U(z) on D = {λ ∈ C: |λ| = 1}. If P (∆) 6= 0, for some ∆ ⊆ D, then P (∆) belongs to
the W∗-algebra generated by U(z) and U(z)∗ = U(z−1) and commutes with all U(g), g ∈ G. Thus
the subspace M∆ = P (∆)M is invariant for U. By (3.3), 1 ∈ Sp(U(z)|M∆

) ⊆ ∆. Hence P (∆) 6= 0
implies 1 ∈ ∆ which means that Sp(U(z)) = {1}, so that U(z) = 1M . Therefore Z ⊆ kerU.

If kerU 6= G then G̃ = G/ kerU 6= {e} is a connected, locally compact nilpotent group. Hence
its centre Z̃ 6= {e}. Let φ: G → G̃ be the quotient map. Define the unitary representation Ũ of G̃
on M by Ũ(φ(g)) = U(g). Then ker Ũ = {e}. On the other hand, by (3.3), 1 ∈ Sp(Ũ(g̃)|K) for each
invariant subspace {0} 6= K ⊆ M and all g̃ ∈ G̃. Hence, as above, Z̃ ⊆ ker Ũ . This contradiction
shows that kerU = G and U(g) = 1M for all g ∈ G. Thus M ⊆ Hχ.

Note that the assumption that G is nilpotent is essential for the validity of Lemma 3.2

13
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P4.1e Proposition 3.3 Let Ω = {χi}
n
i=1 be a finite set of characters of G.

(i) Ω and U are eigen-disjoint if and only if

H = ⊕N
n=1Hn for N ≤ ∞, (3.4) 7.7

where Hn are U -invariant subspaces such that each UHn and Ω are spectrally disjoint.

(ii) Let Ω and U be eigen-disjoint. If dimH <∞ then U and Ω are spectrally disjoint.

Proof. (i) Let Ω and U be eigen-disjoint. Then each invariant subspace K 6= {0} of H contains
an invariant subspace M such that UM and Ω are spectrally disjoint. Indeed, K is not contained
in Hχ1 . Hence it follows from Lemma 3.2 that there is an invariant subspace K1 of K such that
UK1 and χ1 are spectrally disjoint. Similarly, there exists an invariant subspace K2 of K1 such that
UK2 and χ2 are spectrally disjoint. Then UK2 and {χ1, χ2} are spectrally disjoint. Continuing this
process, we obtain a subspace M = Kn such that UM and Ω are spectrally disjoint.

Let R be the set of all families R = {Mα} of mutually orthogonal invariant subspaces of H such
that each UMα and Ω are spectrally disjoint. As H is separable, each R is at most countable. Order
R by inclusion. If {Rj} is a linearly ordered subset in R, the family R = ∪Rj belongs to R and
majorizes all Rj. Hence R has a maximal family {Hn}

N
n=1. Set K = H ⊖

(
⊕N

n=1Hn

)
. If K 6= {0}

then, by the above argument, K has an invariant subspace M 6= {0} such that Ω and UM are
spectrally disjoint, so that {Hn}

N
n=1 is not maximal. Hence K = {0} and H = ⊕N

n=1Hn.
Conversely, let (3.4) hold. Assume that Hχ 6= {0} for some χ ∈ Ω. Let x =

∑N
n=1 xn ∈ Hχ,

xn ∈ Hn. Then U(g)xn = χ(g)xn for all g ∈ G and n. Choose n such that xn 6= 0. Then χ and UHn

are not spectrally disjoint – a contradiction.
(ii) If dimH < ∞ then, as U is unitary and G is nilpotent, H = ⊕ω∈Ω1H

ω for some finite set
Ω1 of unitary characters on G. As Ω and U are eigen-disjoint, Ω1 ∩Ω = ∅. Hence, by Lemma 2.12,
each χ ∈ Ω is spectrally disjoint with U.

C4.1 Corollary 3.4 Let Ω be a finite set of characters of G. Then
(i) H = H0⊕HΩ, where H

0 and HΩ are U -invariant spaces, HΩ = ⊕χ∈ΩH
χ and the representation

UH0 is eigen-disjoint with Ω.
(ii) If U and each χ ∈ Ω are sectionally spectrally disjoint then U and Ω are eigen-disjoint.

(iii) Let Hχ = {0}. Then χ and U are sectionally spectrally disjoint if and only if χ and UH0 are

sectionally spectrally disjoint.

Proof. (i) Clearly, Hχ and Hχ′

are orthogonal if χ 6= χ′. Set HΩ = ⊕χ∈ΩH
χ and H0 = H⊖ HΩ.

(ii) is evident.
(iii) By (i), H = H0 ⊕ (⊕ω∈Ω,ω 6=χH

ω) , and χ and UHω are spectrally disjoint. Thus if χ and UH0

are sectionally spectrally disjoint, χ and U are sectionally disjoint.
Conversely, if χ and U are sectionally spectrally disjoint, H = ⊕n

i=1Hi, where each Hi is U -
invariant and spectrally disjoint with χ. Let Pi be the projections on Hi and Hω

i = PiH
ω for ω ∈ Ω.

For x ∈ Hω, we have U(g)Pix = PiU(g)x = ω(g)Pix. Hence Hω
i ⊆ Hi ∩Hω and Hω = ⊕n

i=1H
ω
i .

Set H′
i = Hi ⊖ (⊕χ∈ΩH

ω
i ) . Then H′

i are invariant subspaces and

H = ⊕n
i=1Hi = ⊕n

i=1

(
(⊕χ∈ΩH

ω
i )⊕H′

i

)
= (⊕χ∈ΩH

ω)⊕ (⊕n
i=1H

′
i) = HΩ ⊕ (⊕n

i=1H
′
i).

By (i), H0 = ⊕n
i=1H

′
i. As χ is spectrally disjoint with each UHi

, it is also spectrally disjoint with
each UH′

i
. Thus χ is sectionally spectrally disjoint with UH0 = ⊕n

i=1UH′

i
.
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3.2 Spectral and approximate decompositions of the extensions e(λ, U, ξ)

It is well known that ξ is a coboundary if and only if the extension e(λ,U, ξ) (see (3.1)) has an
invariant subspace complementing L (more general results were established in Proposition 2.5 and
frequently used in the previous section), but it is convenient to formulate it precisely here.

L2.3 Lemma 3.5 (i) A (λ,U)-cocycle ξ is a coboundary if and only if Z = L∔H, where H is e(λ,U, ξ)-
invariant. The restriction of e(λ,U, ξ) to H is similar to U .

(ii) If (λ,U)-cocycles ξ, η are cohomological then the representations e(λ,U, ξ) and e(λ,U, η) are
similar.

Recall that a representation π = e(λ,U, ξ) on Z is decomposable if Z = Z1∔Z2 where Z1,Z2 are π-
invariant subspaces. We proceed now with the following cohomological criterion of decomposability
of π that illustrates a dichotomy of decompositions of e(λ,U, ξ).

P2.dec Proposition 3.6 Let π = e(λ,U, ξ).
(i) If there are projections p ∈ B(L) and q ∈ B(H) commuting with λ and U such that

ξ − pξq − (1L − p)ξ(1H − q) is a coboundary, (3.5) 2.e

then π is decomposable and L = L1 ∔ L2, where L1 = pL = Z1 ∩ L, L2 = (1L − p)L = Z2 ∩ L.
(ii) Let U and sign(λ) be eigen-disjoint and dimL < ∞. If π is decomposable then there are

projections p ∈ B(L) and q ∈ B(H) commuting with λ and U and satisfing (3.5). Moreover,
Z1 ∩ L = pL and Z2 ∩ L = (1L − p)L, so that L = (Z1 ∩ L)∔ (Z2 ∩ L).

Proof. (i) It follows from the assumptions that η = pξq+(1L− p)ξ(1H− q) is a (λ,U)-cocycle.
Set L1 = pL, L2 = (1L − p)L, H1 = qH and H2 = (1H − q)H. Then Xi = Li ∔ Hi, i = 1, 2, are
πη-invariant subspaces, Z = X1 ∔X2 and L = L1 ∔ L2.

If ξ − η is a coboundary, π is similar to πη = e(λ,U, η) by Lemma 3.5, i.e., π = T̃−1πηT̃ , where

T̃ =

(
1L T
0 1H

)
and T ∈ B(H, L). Then, for some T1 ∈ B(H1, L2), T2 ∈ B(H2, L1),

Zi = T̃−1Xi = Li ∔ (−T + 1H)Hi = Li ∔ (−Ti + 1H)Hi (3.6) 4.211

are π-invariant subspaces, Z = Z1 ∔ Z2, Li := Zi ∩ L and L = L1 ∔ L2.
(ii) Let n := dimL <∞. If U and sign(λ) are eigen-disjoint, U and λ have no non-zero intertwin-

ing operators. Indeed, let Wλ(g) = U(g)W for all g ∈ G. By Corollary 2.18, L =
∑

χ∈sign(λ)∔Lχ

and (λ(g) − χ(g)1L)
nx = 0 for each x ∈ Lχ and all g ∈ G. Hence (U(g) − χ(g)1L)

nWx =
W (λ(g)− χ(g)1L)

nx = 0. Thus Wx = 0, because U(g) has no χ-eigenvectors. Therefore W = 0.
Let Z = Z1 ∔ Z2, where Z1,Z2 are π-invariant subspaces. The projection P on Z1 along Z2

commutes with π. Write P as a block-matrix with respect to the decomposition Z = L∔ H. Then
P21 intertwines λ and U. Hence P21 = 0 by the above. Then p := P11, q := P22 are projections
commuting with λ and U, respectively, and pξ(g)−ξ(g)q = λ(g)P12−P12U(g). Hence pξ(g)(1H−q)
is a (λ,U)-coboundary, since

pξ(g)(1H − q) = (pξ(g) − ξ(g)q)(1H − q) = λ(g)P12(1H − q)− P12(1H − q)U(g).

Similarly, (1L − p)ξ(g)q is a coboundary. Thus ξ − (pξq + (1L − p)ξ(1H − q)) is a coboundary.
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As P is a projection, P = P 2, so that P12 = pP12 + P12q. We also have

Z1 = P (L∔ H) = pL+ {P12x+ qx : x ∈ H},

Z2 = (1Z − P )(L∔ H) = (1L − p)L+ {−P12y + (1H − q)y: y ∈ H}.

If qx = 0 then P12x = pP12x+P12qx = pP12x. Hence pL = Z1 ∩L. Similarly, if (1H − q)y = 0 then
P12y = pP12y + P12qy = pP12y + P12y, so that pP12y = 0. Thus (1L − p)L = Z2 ∩ L.

Proposition 3.6(ii) shows that, if λ is finite-dimensional and eigen-disjoint with U , then the
decomposition of π = e(λ,U, ξ) is determined by a pair of projections (p, q), commuting with λ
and U and satisfying condition (3.5), and L = L ∩ Z1 ∔ L ∩ Z2 with L ∩ Z1 = pL. Depending on
triviality or non-triviality of p the decomposition belongs to one of two classes. In the first class
one of the summands Z1, Z2 contains L. In the second class neither of them contains L and π|Zi

are extensions of λ|L∩Zi
by representations similar to U |qH and U |(1−q)H.

The simplest type of the decomposition of the extension π = e(λ,U, ξ) arises when the repre-
sentations λ and U are sectionally spectrally disjoint. Lemma 3.5 and Corollary 2.16 yield

C3.0 Corollary 3.7 If U and sign(λ) are sectionally spectrally disjoint then Z = L ∔ H, where H is

π-invariant and π|H is similar to U.

As λ is an elementary representation of a nilpotent group on L, we have from Corollary 2.18

L =
∑

χ∈sign(λ)

∔Lχ, each Lχ is invariant for λ and sign(λLχ) = χ. (3.7) 3.11

Assume that sign(λ) = Ω1∪Ω2, where Ω1∩Ω2 = ∅, and that H = H1∔H2, where Hi are U -invariant.
One of the sets Ωj can be empty and one of the subspaces Hj can be {0}. Let

Z = L∔H and Lj =
∑

χ∈Ωj

∔Lχ for j = 1, 2.

C2.k Corollary 3.8 Let π = e(λ,U, ξ), let Ω1 and UH2 be sectionally spectrally disjoint, and let Ω2 and

UH1 be sectionally spectrally disjoint. Then Z = Z1 ∔ Z2 is the direct sum of π-invariant subspaces
and there are operators T1 ∈ B(H1, L2), T2 ∈ B(H2, L1) such that

Zj = Lj ∔ (−Tj + 1Hj
)Hj , πZj

=

(
λLj

ηj
0 σj

)
, j = 1, 2,

and the representation σj on (−Tj + 1Hj
)Hj is similar to UHj

.

Proof. Let p be the projection on L1 along L2, and q be the projection on H1 along H2. Then
p commutes with λ and q commutes with U. Therefore ξ12 = pξ(1H− q) is a (pλ, (1H− q)U)-cocycle
and ξ21 = (1L−p)ξq is a ((1L−p)λ, qU)-cocycle. As the pairs (Ω1, U2) and (Ω2, U1) are sectionally
spectrally disjoint, H1((1L − p)λ, qU) = H1(pλ, (1H − q)U) = 0 by Corollary 2.16. Hence ξ21, ξ12
are coboundaries and (3.5) holds. Applying Proposition 3.6(i) and (3.6) we conclude the proof.
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R4.1 Remark 3.9 Corollary 3.8 can be generalized as follows. Let π = e(λ,U, ξ) and sign(λ) = ∪n
j=1Ωj

where all Ωj are mutually disjoint. Let H =
∑n

j=1∔Hj where all Hj be U -invariant. Let

Z = L∔ H and Lj =
∑

χ∈Ωj

∔Lχ, j = 1, ..., n.

If all pairs (Ωi, UHj
), i 6= j, are sectionally spectrally disjoint, then Z =

∑n
j=1∔Zj is the direct sum

of π-invariant subspaces and there are operators Tj ∈ B(Hj ,
∑

i 6=j ∔Li) such that

Zj = Lj ∔ (−Tj + 1Hj
)Hj , πZj

=

(
λ|Lj

ηj
0 σj

)
and σj is similar to U |Hj

. �

For x ∈ H, u ∈ L, a rank one operator x⊗ u acts from H to L by

(x⊗ u)z = (z, x)u for z ∈ H. (3.8) 0.1

Then ‖x⊗ u‖ = ‖x‖‖u‖ and (x⊗ u)∗ = u⊗ x. For R ∈ B(L), T ∈ B(H) and u ∈ L, v ∈ H,

R(x⊗ u)T = (T ∗x)⊗Ru and (x⊗ u)(y ⊗ v) = (v, x)(y ⊗ u) ∈ B(L). (3.9) 0.2

We need now the following result on the kernels of (λ,U)-cocycles for the simplest pairs of repre-
sentations λ,U.

P3.1nn Proposition 3.10 Let χ be a character of a connected locally compact group G. Let λ be a χ-
representation of G on L, dimL <∞, and U be the representation χ1H on H. If ξ ∈ Z1(λ,U) then
the codimension of the subspace Eξ = ∩g∈G ker ξ(g) in H does not exceed nG dimL.

Proof. Considering the representations χ−1(g)λ(g) and 1H instead of λ and χ1H, we may
assume that χ = χe is the identity character. Let {ei}

m
i=1 be a basis in L in which all operators

λ(g), g ∈ G, have lower triangular form with λii(g) = 1. As ξ is continuous, there are continuous

maps {xi(g)}
m
i=1 from G into H such that ξ(g)

(3.8)
=

∑m
i=1 xi(g) ⊗ ei. We have from (2.2) that

ξ(e) = 0. Hence all xi(e) = 0.
As ξ(gh) = λ(g)ξ(h) + ξ(g) and λ(g)ei =

∑m
j=i λji(g)ej , we have

ξ(gh) = λ(g)
m∑

i=1

xi(h)⊗ ei +
m∑

i=1

xi(g) ⊗ ei
(3.9)
=

m∑

i=1

xi(h) ⊗ λ(g)ei +
m∑

i=1

xi(g) ⊗ ei

=

m∑

i=1

xi(h) ⊗




m∑

j=i

λji(g)ej


+

m∑

i=1

xi(g)⊗ ei
(3.9)
=

m∑

i=1

(
i∑

k=1

λik(g)xk(h) + xi(g)

)
⊗ ei,

for g, h ∈ G. Hence

xi(gh) =

i∑

k=1

λik(g)xk(h) + xi(g) = xi(h) +

i−1∑

k=1

λik(g)xk(h) + xi(g).

For i = 1, x1(gh) = x1(g) + x1(h). Let R1 be the complex subspace of H generated by the set
{x1(g): g ∈ G}. Then, by Corollary 2.2, dimR1 ≤ nG. For i = 2, we have

x2(gh) = x2(g) + x2(h) + λ21(g)x1(h), for g, h ∈ G. (3.10) 5.2’
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Let x̂2(g) be the projection of x2(g) on H ⊖ R1. Then x̂2(gh) = x̂2(g) + x̂2(h) for g, h ∈ G, and
x̂2(e) = 0. Hence, by Corollary 2.2, the complex subspace R2 of H ⊖ R1 generated by the set
{x̂2(g): g ∈ G} is finite-dimensional and dimR2 ≤ nG. Then all x2(g) ∈ R1 ⊕ R2. Continuing this
process, we obtain subspaces {Rj}

m
j=1 of H such that xi(g) ∈

∑i
j=1⊕Rj and dimRj ≤ nG. Set

R =
∑m

j=1⊕Rj. Then xi(g) ∈ R, for all g and i, and dimR ≤ nG dimL.
Let M = H⊖R. Then the codimension of M equals dimR, and ξ(g)x = 0 for all g ∈ G, x ∈M .

Thus M ⊂ Eξ whence the codimension of Eξ does not exceed nG dimL.

We return to the decomposition of the extensions π = e(λ,U, ξ). From now on dimL < ∞, so
that L has decomposition (3.7). Let Ω ⊆ sign(λ) be such that Hχ 6= {0} if χ ∈ Ω, and Hχ = {0} if
χ ∈ sign(λ)\Ω. By Corollary 3.4,

H = H0 ⊕
∑

χ∈Ω

⊕Hχ, where sign(λ) and UH0 are eigen-disjoint. (3.11) 3.111

The subspace L∔ H0 and all subspaces L∔ Hχ, χ ∈ Ω, are π-invariant.
We start with a special case when sign(λ) = {χ} and U = χ1H. Then π is a χ-representation.

Let Zχ = {x ∈ Z: π(g)x = χ(g)x for g ∈ G} be the χ-eigenspace of π. Then the space Eχ =
∩g∈G ker ξ(g) coincides with Zχ ∩ H. Let Kχ = H⊖ Eχ and L = L∔Kχ. Proposition 3.10 yields

P3.1n Lemma 3.11 Let π = e(λ, χ1H, ξ) and λ be a χ-representation. Then Z = L ∔ Eχ is the direct

sum of π-invariant subspaces, dimKχ ≤ nG dimL and π|L is a χ-representation.

We consider now the case when sign(λ) and UH0 (the part of U eigen-disjoint with λ) are
sectionally spectrally disjoint. As above, let Zχ be the χ-eigenspace of π.

C3.6 Theorem 3.12 Suppose that sign(λ) and UH0 (see (3.11)) are sectionally spectrally disjoint. Then

Z is the direct sum of π-invariant subspaces

Z = L∔ EΩ ∔H0 and EΩ =
∑

χ∈Ω

∔Eχ, where dimL ≤ (nG + 1) dimL,

Eχ are some subspaces of Zχ and π|H0 is similar to the unitary representation U
H0 .

Moreover, there are subspaces Kχ ⊆ L∔Hχ, dimKχ ≤ nG dimLχ such that

L =


∑

χ/∈Ω

∔Lχ


∔


∑

χ∈Ω

∔(Lχ ∔Kχ)


 and Lχ ∔Kχ are π-invariant subspaces.

Proof. Set Ω′ = Ω ∪ {0}. The cocycle ξ = (ξχω), χ ∈ sign(λ), ω ∈ Ω′, where each ξχω(g) ∈
B(Hω, Lχ) is a (λχ, UHω)-cocycle, since λ and U are block-diagonal. By Corollary 2.16, H1(λχ, UHω) =
0 if χ 6= ω. Hence, by (2.3), there are operators Tχω ∈ B(Hω, Lχ) such that ξχω(g) = λχ(g)Tχω −
TχωUHω(g). Set

Tω =
∑

χ∈sign(λ),χ 6=ω

Tχω and Hω = {−Tωy ∔ y: y ∈ Hω} ⊆ L∔ Hω for each ω ∈ Ω′.
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Then, as in Lemma 3.5, the spaces H0 and all Lω ∔Hω are π-invariant, π
H0

is similar to U
H0 and

Z = L∔
∑

χ∈Ω′

⊕Hχ = L∔


∑

χ∈Ω′

Hχ


 =


∑

χ/∈Ω

∔Lχ


∔


∑

χ∈Ω

∔(Lχ ∔Hχ)


∔H0.

Since each Hχ is a χ-eigenspace of U , the restriction of π to Lχ ∔ Hχ has form π|
Lχ∔Hχ

=(
λLχ ηχ
0 χ1Hχ

)
, for some (λχ, χ1Hχ)-cocycle ηχ, and is a χ-representation. As in Lemma 3.11,

set Eχ = ∩g∈G ker ηχ(g) and Kχ = Hχ ⊖ Eχ. The proof is complete.

To investigate the structure of the extensions π = e(λ,U, ξ) removing the restriction that sign(λ)
and UH0 in (3.11) are sectionally spectrally disjoint, we need the following notion.

D3.36 Definition 3.13 A π-invariant subspace L of Z approximately splits π, if there are pairs (Xn, Yn)
∞
n=1

of π-invariant subspaces such that, for each n, π|Yn is similar to a unitary representation,

Z = Xn ∔ Yn, Xn+1 ⊆ Xn, Yn ⊆ Yn+1 and L = ∩nXn.

T3.7 Theorem 3.14 For each extension π = e(λ,U, ξ), there is an invariant finite-dimensional subspace

L containing L, dimL ≤ (nG + 1) dimL, which approximately splits π.

Proof. Let Z = L∔
∑

χ∈Ω⊕Hχ. As π|Z satisfies conditions of Theorem 3.12, it follows that

Z = L∔ EΩ and EΩ =
∑

χ∈Ω

∔Eχ, where L =


∑

χ/∈Ω

∔Lχ


∔


∑

χ∈Ω

∔(Lχ ∔Kχ)




is a π-invariant subspace, dimL ≤ (1 + nG) dimL, Eχ are some subspaces of Zχ,

sign(π|L) = sign(λ) and Z = L∔ H = L∔H0 ∔
∑

χ∈Ω

⊕Hχ = (L∔ H0)∔ EΩ. (3.12) 3.a

Let sign(π|L) and UH0 be sectionally spectrally disjoint. By Corollary 3.7, L ∔ H0 = L ∔H, H is
π-invariant and π|H is similar to a unitary representation. Set Xn = L and Yn = H ∔EΩ for all n.

Let sign(π|L) and UH0 be not sectionally spectrally disjoint. By Proposition 3.3, H0 =
∑∞

k=1⊕Hk,
each Hk is U -invariant and UHk

is spectrally disjoint with sign(π|L). For each k, the subspace L∔Hk

is π-invariant and, by Corollary 3.7, there is a π-invariant subspace Hk such that L∔Hk = L∔Hk

and π|Hk
is similar to UHk

. Set

Xn = L∔

∞∑

k=n+1

⊕Hk and Yn = EΩ ∔

n∑

k=1

∔Hk.

The subspaces Xn, Yn are π-invariant and π
Yn

is similar to a unitary representation. For each n,

Z = L∔H
(3.12)
= L∔ H0 ∔ EΩ =

(
L∔

n∑

k=1

⊕Hk

)
∔

∞∑

k=n+1

⊕Hk ∔ EΩ

=

(
L∔

n∑

k=1

∔Hk

)
∔

∞∑

k=n+1

⊕Hk ∔ EΩ = Xn ∔ Yn.

Moreover, Xn+1 ⊆ Xn, Yn ⊆ Yn+1 and ∩nXn = L. Thus L approximately splits π.
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Remark 3.15 In Definition 3.13, the condition dim (L) < ∞ does not always imply that ∪nYn
has finite codimension. In Theorem 3.14, however, ∪nYn has finite codimension.

Theorem 3.14 and Lemma 3.11 yield

Corollary 3.16 If e(λ,U, ξ) is non-decomposable then dimH <∞, sign(λ) = {χ} and U = χ1H.

3.3 Decomposition of e(λ, U, ξ) into primary components

As we know (see Corollary 2.18) each finite-dimensional representation λ of a nilpotent group
decomposes in the direct sum of monothetic representations λk, i.e. all sign(λk) are singletons. We
call extensions e(λ,U, ξ) with monothetic λ primary. In this subsection we discuss the possibility
to decompose an arbitrary extension e(λ,U, ξ) in the direct sum of primary extensions.

We regard a monothetic representations λ as a primary extension e(λ, 0, 0).

T3.7n Theorem 3.17 Let G be a commutative, connected locally compact group. Then any extension

π = e(λ,U, ξ) decomposes in a finite direct sum of primary extensions.

Proof. If sign(λ) contains a non-unitary character χ, one can split it off by Corollary 3.8:
e(λ,U, ξ) = e(λχ, 0, 0) + e(λ′, U ′, ξ′) and χ /∈ sign(λ′). Thus we may assume that sign(λ) consists of
unitary characters. We will prove that Z is the direct sum of π-invariant subspaces Zχ:

Z =
∑

χ∈sign(λ)

∔Zχ such that Lχ ⊆ Zχ and πZχ = e(λLχ , Uk, ξk) for each χ. (3.13) 3.13

Let χ ∈ sign(λ) and G∗ be the dual group of G. Then

H =

∫ ⊕

G∗

HωdP (ω) and U(g) =

∫ ⊕

G∗

ω(g)dP (ω), for g ∈ G,

where P is a spectral measure on G∗. Set Ω1 = {χ} and Ω2 = sign(λ) \{χ}. By Lemma 2.12, there
is h ∈ G such that χ(h) /∈ {φ(h)}φ∈Ω2 . Set ε =

1
3 min{|χ(h)− φ(h)|: φ ∈ Ω2} and consider the sets

V = {ω ∈ G∗: |χ(h)− ω(h)| < ε} and G∗ \ V = {ω ∈ G∗: |χ(h)− ω(h)| ≥ ε} (3.14) 3.6e

in G∗. Then Ω2 ⊂ G∗ \ V. The subspaces

H1 =

∫ ⊕

V
HωdP (ω) and H2 =

∫ ⊕

G∗\V
HωdP (ω)

are invariant for U, H = H1 ⊕ H2 and

χ(h)
(3.14)

/∈ Sp(U(h)|H2) = {ω(h)}ω∈G∗\V and φ(h)
(3.14)

/∈ Sp(U(h)|H1) = {ω(h)}ω∈V ,

for each φ ∈ Ω2. Thus Ω1, UH2 are spectrally disjoint, and Ω2, UH1 are spectrally disjoint. By
Corollary 3.8, π is decomposable: Z = Z1 ∔ Z2 is the direct sum of π-invariant subspaces:

Zm = Lm ∔ Xm, where Lm =
∑

χ∈Ωm

∔Lχ and Xm = {−Tmx∔ x : x ∈ Hm},
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for some operators T1 ∈ B(H1, L2), T2 ∈ B(H2, L1). The representations π|Zm have form

π|Zm =

(
λLm ηm
0 σm

)

and the representations σm of G on Xm are similar to UHm . Hence we can assume that they are
unitary. Setting Zχ = Z1 and continuing this process, we conclude the proof.

For each unitary representation π of G on H, a matrix element of π is a function g 7→ (π(g)x, x),
where x ∈ H. The set of all matrix elements of π will be denoted by E(π). Unitarily equivalent
representations have the same sets of matrix elements. The dual object of G is the set Ĝ of
all unitary equivalence classes π̃ of irreducible unitary representations π of G, supplied with the
topology of unitary convergence of matrix elements. More precisely, π̃ belongs to the closure of
M ⊂ Ĝ if each element of E(π̃) can be uniformly on compacts approximated by matrix elements
of representations in M . This topology can be non-Hausdorff.

The space Ĝ contains all unitary characters χ of G, as we can identify χ and the equivalence class
of one-dimensional representations χ̃ι. So we may speak about separating of characters in Ĝ. The
local topology for characters can be described in a simpler way than for arbitrary representations.
Namely, choosing a compact K ⊂ G and an ε > 0, define a neighborhood WK,ε(χ) of χ by

WK,ε(χ) = {π̃ ∈ Ĝ: |ϕ(g) − χ(g)| < ε for some ϕ ∈ E(π) and all g ∈ K}. (3.15) neighb

This family of open sets forms a base of neighborhoods for χ. We say that characters χ and ω are
separated in Ĝ if they have non-intersecting neighborhoods in Ĝ.

non-Haus Theorem 3.18 Suppose that G is a connected locally compact separable nilpotent group. If there

are characters χ1, χ2 which are not separated in Ĝ, then there is a finite-dimensional representation

λ, a unitary representation U and a (λ,U)-cocycle ξ such that the extension e(λ,U, ξ) cannot be

decomposed in a sum of primary extensions. Moreover, for each decomposition of the representation

space L⊕ H in a sum of invariant subspaces, one of summands contains L.

Proof. Note that χ1, χ2 are not separated in Ĝ if and only if the trivial character χe and the
unitary character χ = χ1χ2 are not separated in Ĝ. Let L = Ce1 ⊕ Ce2 be a two-dimensional
Hilbert space and λ be the orthogonal sum of the representations ι and χι:

λ(g) = e1 ⊗ e1 + χ(g)(e2 ⊗ e2) for g ∈ G.

Since connected locally compact groups are σ-compact, we choose compacts {e} ∈ K1 ⊂ K2 ⊂ ...
such that G = ∪∞

n=1Kn. By our assumption, WKn,2−n(χe) ∩WKn,2−n(χ) 6= ∅ (see (3.15)). This
means that there are irreducible unitary representations πn of G on Hn and un, vn ∈ Hn such that

|(πn(g)un, un)− 1| < 2−n and |(πn(g)vn, vn)− χ(g)| < 2−n for all g ∈ Kn. (3.16) powtwo

Since e ∈ Kn, we have |‖un‖
2 − 1| < 1/2n. So changing un,vn if necessary, we may assume that

‖un‖ = ‖vn‖ = 1. It is known (see [Kir]) that connected nilpotent locally compact groups are of
type 1. So, being separable, they are GCR-groups (see [Dixm, 13.9.4]). It follows [Dixm, 4.4.1]
that Ĝ is a T0-space, that is, the intersection of all neighborhoods of each point contains only this
point. Therefore the representations πn can be chosen pairwise non-equivalent.
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Set H = ⊕Hn, U = ⊕∞
n=1πn,

un(g) = un − πn(g)
∗un and vn(g) = χ(g)vn − πn(g)

∗vn. (3.17) 3.g

Then

‖un(g)‖
2 = 2Re(1− (un, πn(g)un))

(3.16)

≤ 2−(n−1) for g ∈ Kn. (3.18) 3.n

Set u(g) = ⊕∞
n=1un(g) and v(g) = ⊕∞

n=1vn(g) for g ∈ G. Then u(g) ∈ H, since

‖u(g)‖2
(3.18)

≤

n−1∑

k=1

‖uk(g)‖
2 +

∞∑

k=n

2−(k−1) <∞ for g ∈ Kn.

As un(gh) = un(h) + πn(h)
∗un(g), we have

u(gh) = u(h) + U(h)∗u(g) for g, h ∈ G. (3.19) 3.j

Similarly, v(g) ∈ H and v(gh) = χ(g)v(h) + U(h)∗v(g).
Let us define a map ξ : G→ B(H, L) by

ξ(g) = u(g) ⊗ e1 + v(g)⊗ e2. (3.20) 3.k

Using (3.19), we get that ξ is a (λ,U)-cocycle. Let π = e(λ,U, ξ) and Z = L∔H. Let us show that
if Z = Z1 ∔ Z2 is the sum of π-invariant subspaces then one of them contains L.

Assume to the contrary that neither of them contains L. Each πn is eigen-disjoint with χe

and χ, as it is irreducible. Hence U is eigen-disjoint with χe, χ and we have from Proposition
3.6(ii) that there are projections p 6= 0,1 and q commuting with λ and U, respectively, such that
η = ξ− (pξq+(1−p)ξ(1− q)) is a (λ,U)-coboundary. Since p commutes with λ, either p = e1⊗ e1,
or p = e2 ⊗ e2. Assume that p = e1 ⊗ e1. Hence, by (3.9),

pη(g)(1 − q) = pξ(g)(1− q) = (1− q)u(g) ⊗ e1 and (1− p)η(g)q = (1− p)ξ(g)q = qv(g)⊗ e2

are also (λ,U)-coboundaries. Then, for some x, y ∈ H, the operator T = x⊗ e1 + y ⊗ e2 satisfies

(1− q)u(g) ⊗ e1 = λ(g)T − TU(g)
(3.9)
= (1− U(g)∗)x⊗ e1 + (χ2(g) − U(g)∗)y ⊗ e2.

Hence (1− q)u(g) = (1− U(g)∗)x. As q commutes with U and all πn are pairwise non-equivalent,
q is the projection on a subspace ⊕n∈EHn for some E ⊆ N. Let x = ⊕∞

n=1xn, xn ∈ Hn. Then

(1− πn(g)
∗)un

(3.17)
= un(g) = (1− πn(g)

∗)xn, for n /∈ E and all g ∈ G.

As χe is eigen-disjoint with all πn, we have un = xn for n /∈ E. Taking into account that ‖un‖ = 1
and ‖x‖2 =

∑
‖xn‖

2 <∞, we conclude that the set N \ E is finite.
Similarly, as qv(g)⊗e2 is a (λ,U)-coboundary, qv(g) = (χ2(g)−U(g)∗)z for some z = ⊕∞

n=1zn ∈
H, zn ∈ Hn. Repeating the above argument, we get that vn = zn for n ∈ E. As ‖vn‖ = 1 and
‖z‖2 =

∑
‖zn‖

2 < ∞, we conclude that the set E is finite, a contradiction. This contradiction
shows that in any decomposition Z = Z1 ∔ Z2 into invariant subspaces, either Z1 or Z2 contains L.
Thus e(λ,U, ξ) does not decompose in a sum of primary extensions.
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To see an example of a connected nilpotent group whose characters cannot be separated in the
dual object, let us consider the real Heisenberg group

G = H3(R) =



g(x, y, z) =




1 x z
0 1 y
0 0 1


 : x, y, z ∈ R



 . (3.21) 6.7

It is known (see, for example, [ShZ]) that the unitary characters χ of G and the corresponding
one-dimensional unitary representations ιχ on Cu have form

χα,β(g(x, y, z)) = ei(αx+βy), for α, β ∈ R, and ιχα,β
(g)u = χα,β(g)u.

In particular χ0,0 = 1 – the trivial character and ιχ0,0 = ι – the trivial representation.
Infinite-dimensional unitary irreducible representations of G act on L2(R) by the formula

Uσ(g(x, y, z))f(t) = eiσ(z+ty)f(t+ x), for f ∈ L2(R), where 0 6= σ ∈ R. (3.22) 3.20

Let us show that the class ι̃ belongs to the closure of the set {Ũσn : σn = n−6, n ∈ N}. Define fn in
L2(R) by fn(t) = n−2 for t ∈ [0, n4], and fn(t) = 0 for t /∈ [0, n4]. Then ‖fn‖ = 1. For g = g(x, y, z),

|(Uσn(g)fn, fn)− 1| ≤ ‖Uσn(g)fn − fn‖ ≤
∥∥∥
(
ei(z+ty)/n6

− 1
)
fn(t+ x)

∥∥∥+ ‖fn(t+ x)− fn(t)‖

= n−2

(∫ n4−x

−x

∣∣∣ei(z+ty)/n6
− 1
∣∣∣
2
dt

)1/2

+ n−2

∣∣∣∣∣

∫ 0

−x
dt+

∫ n4

n4−x
dt

∣∣∣∣∣

1/2

≤ max
−x≤t≤n4−x

∣∣∣ei(z+ty)/n6
− 1
∣∣∣+ n−2(2 |x|)1/2 ≤ (|y|+ (2 |x|)1/2)n−2.

Consider the increasing sequence of compacts Km = {g = g(x, y, z): |x| + |y| + |z| ≤ m}. Then
G = ∪mKm and on each Km the matrix elements (Uσn(g)fn, fn) uniformly tend to 1. This means
that any neighborhood WKm,ε(χ0,0) of χ0,0 contains a representation Uσn for some n.

On the other hand, it should be noted that if Uσ ∈ WK,ε(χ0,0) then Uσ ∈ WK,ε(χ) for each
character χ = χα,β. To see this, note that the unitary operator V on L2(R) that acts by

(V f)(t) = eiα(t−
β
σ
)f

(
t−

β

σ

)
, for f ∈ L2(R),

satisfies V χ(g)Uσ(g) = Uσ(g)V for all g ∈ G. Hence |(UσV x, V x)− χ(g)| = |(Uσx, x)− 1|. Thus if
Uσn ∈WKm,ε(χ0,0) then Uσn ∈WKm,ε(χ), so that χ0,0 and χ cannot be separated.

4 Neutral cocycles

4.1 Definitions and general results

In this section we consider a connected, locally compact group G and its representations λ and U on
separable Hilbert spaces L and H. Let C1(G,B(H,L)) be the space of all weakly continuous func-
tions from G to B(H, L). We introduce an involution map from C1(G,B(H,L)) into C1(G,B(L,H))
by

c♯(g) = c(g−1)∗ for c ∈ C1(H, L). (4.1) 3.3e
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If c = λ ∈ C1(G,B(L)) then λ♯ is a representation of G on L; if c = U ∈ C1(G,B(H)) then U ♯ = U.
If ξ is a (λ,U)-cocycle, then ξ♯ is a (U, λ♯)-cocycle:

ξ♯(gh)
(4.1)
= ξ(h−1g−1)∗ = U(g)ξ♯(h) + ξ♯(g)λ♯(h). (4.2) 3.4e

We may consider B(L) as a G-bimodule with respect to the representations λ and λ♯. Then
the (low-dimensional) cohomologies of G with coefficients in B(L) are defined in a standard way
(see (2.1)): C1(G,B(L)), C2(G2, B(L)) and C3(G3, B(L)) are the spaces of all weakly continuous
functions (n-cochains, n = 1, 2, 3) from G, G×G and G×G×G to B(L), respectively, while the
coboundary operators d1 = d1

λ,λ♯ : C
1 → C2 and d2 = d2

λ,λ♯ : C
2 → C3 act by the rules

d1(c)(g, h) = λ(g)c(h) − c(gh) + c(g)λ♯(h) for c ∈ C1,

d2(c)(g, h, k) = λ(g)c(h, k) − c(gh, k) + c(g, hk) − c(g, h)λ♯(k) for c ∈ C2, (4.3) 3.0

g, h, k ∈ G. Denote by Zn(λ, λ♯) = ker dn the set of all n-cocycles. For a (λ,U)-cocycle ξ, direct
calculations show that the map ξξ♯: (g, h) → ξ(g)ξ♯(h) from G×G to B(L) belongs to Z2(λ, λ♯).

Dn Definition 4.1 A (λ,U)-cocycle ξ is neutral if −ξξ♯ ∈ im d1
λ,λ♯ , i.e., there is a cochain γ ∈

C1(G,B(L)) called a prechain of ξ such that

−ξ(g)ξ♯(h) = (d1λ,λ♯γ)(g, h) = λ(g)γ(h) − γ(gh) + γ(g)λ♯(h) (4.4) 3.1e

(we put minus in the left hand side for convenience). Clearly, γ is defined up to a summand which

is a (λ, λ♯)-cocycle. Denote by Z1
ν (λ,U) the subset in Z1(λ,U) consisting of all neutral cocycles.

The study of neutral cocycles is motivated by applications to the theory of representations in
Pontryagin spaces (see [Is3]).

It can be shown that γ ∈ C1(G,B(L)) is a prechain of a (λ,U)-cocycle, for some unitary
representations U , if and only if the 2-coboundary β = −d1

λ,λ♯γ is completely positive:

∑

i,j

β(gi, g
−1
j )titj ≥ 0, for all g1, .., gn ∈ G and t1, .., tn ∈ C.

The ”only if” part is straightforward while the ”if” part can be proved similarly to its analogue for
*-algebras established in [KS, Theorem 21.22]. It follows that the set of all prechains of neutral
(λ,U)-cocycles, for various unitary representations U , form a subcone in C1(G,B(L)).

L3.2.1 Lemma 4.2 (i) If γ is a prechain of ξ then γ♯ is also a prechain of ξ.
(ii) Each coboundary η ∈ B1(λ,U) is neutral and ξ + η ∈ Z1

ν (λ,U) if ξ ∈ Z1
ν (λ,U).

Proof. (i) Set x = h−1, y = g−1. Then ξ(g)ξ♯(h) = (ξ(h−1)ξ(g)∗)∗ = (ξ(x)ξ♯(y))∗. Hence

−ξ(g)ξ♯(h) = −(ξ(x)ξ♯(y))∗
(4.4)
= (λ(x)γ(y) − γ(xy) + γ(x)λ♯(y))∗

= λ(y−1)γ(x)∗ − γ(xy)∗ + γ(y)∗λ(x)∗ = λ(g)γ♯(h)− γ♯(gh) + γ♯(g)λ♯(h).

(ii) As η(g) = λ(g)T − TU(g) for some T ∈ B(H,L), we have η♯(g) = T ∗λ♯(g) − U(g)T ∗. Set
γη(g) = TU(g)T ∗ − 1

2λ(g)TT
∗ − 1

2TT
∗λ♯(g). It is easy to check that

−η(g)η♯(h) = λ(g)γη(h)− γη(gh) + γη(g)λ
♯(h), so that η ∈ Z1

ν (λ,U).
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Set γ1(g) = ξ(g)T ∗ + Tξ♯(g). As ξ is a (λ,U)-cocycle, we have from (2.2) and (4.2) that

(d1λ,λ♯γ1)(g, h) = λ(g)γ1(h) − γ1(gh) + γ1(g)λ
♯(h) = ξ(g)η♯(h) + η(g)ξ♯(h).

By definition, −ξ(g)ξ♯(h) = (d1
λ,λ♯γ0)(g, h), for some 1-cochain γ0 ∈ C1(λ, λ♯). Then

−(ξ(g) + η(g))(ξ(h) + η(h))♯ = −ξ(g)ξ♯(h)− (ξ(g)η♯(h) + η(g)ξ♯(h)) − η(g)η♯(h)

= (d1λ,λ♯γ0)(g, h) − (d1λ,λ♯γ1)(g, h) + (d1λ,λ♯γη)(g, h).

Setting γ = γ0 − γ1 + γη, we obtain that ξ + η ∈ Z1
ν (λ,U).

It follows from Lemma 4.2(i) that one can always choose a prechain γ satisfying

γ = γ♯, that is, γ(g−1) = γ(g)∗ for all g ∈ G. (4.5) 3.5e

Denote by H1
ν(λ,U) the image of Z1

ν (λ,U) in H1(λ,U). It completely determines Z1
ν (λ,U); we call

it the set of neutral cohomologies of G. Our aim is to find conditions for H1
ν(λ,U) 6= 0 and, more

generally, to describe properties of H1
ν(λ,U).

In the next two subsections we consider neutral cohomologies in the case when λ = ι – the
trivial representation on a one-dimensional space L = Cu. This case is ”classical” (see [G]), but in
our situation the general case cannot be reduced to this one because λ can be non-unitary.

It follows from (2.2) and (3.8) that ξ is a (ι, U)-cocycle if and only if

ξ(g) = r(g)⊗ u, where r(g) ∈ H, r(e) = 0 and r(gh) = r(h) + U(h)∗r(g), (4.6) 3.24’

for g, h ∈ G. If ξ is a coboundary then there is T
(3.8)
= w ⊗ u, for some w ∈ H, such that

ξ(g) = T − TU(g) = r(g)⊗ u, where r(g) = w − U∗(g)w, for g ∈ G. (4.7) 3.35

By (4.2), ξ♯(h) = ξ(h−1)∗ = (r(h−1)⊗ u)∗
(3.9)
= u⊗ r(h−1), so that

ξ(g)ξ♯(h) = (r(g)⊗ u)(u⊗ r(h−1))
(3.9)
= (r(h−1), r(g))(u ⊗ u) = (r(h−1), r(g))1L.

Let γ ∈ C1(G,B(L)). Then γ(g) ∈ B(L,L), for g ∈ G, so that γ(g) = φ(g)1L, where φ is a
complex-valued continuous function on G. As λ = λ♯ = ι, we have from (4.4)

(d1λ,λ♯γ)(g, h) = γ(h)− γ(gh) + γ(g) = (φ(h) − φ(gh) + φ(g))1L.

Thus a cocycle ξ = r ⊗ u is neutral if and only if there is a complex-valued function φ on G such
that

(r(h−1), r(g)) = −φ(h) + φ(gh) − φ(g), φ(e) = 0, φ(g−1)
(4.5)
= φ(g) (4.8) 3.36

for all g, h ∈ G. Then γ = φ1L is a prechain.
Our study is divided in two complementary parts: 1) when U = I is the trivial representation of

G on H, so that the χe-eigenspace Hχe = H, and 2) when U has no trivial subrepresentations, i.e.,
Hχe = 0. It might seem that the first part is trivial. However, this is not true; the description of
neutral 1-cocycles and the corresponding 1-prechains in this case is quite complicated. In particular,
from these examples we will see that H1

ν(λ,U) does not need to constitute a subgroup of H1(λ,U).
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4.2 Neutral (ι,I)-cocycles

Let G be a connected, locally compact group and U = I be the trivial representation of G on a
Hilbert space H. Set dimH = m ≤ ∞. We fix an orthonormal basis in H and realize operators from
Rk, k <∞, to H as complex m× k (infinite, if m = ∞) matrices from Mm×k(C).

In this setting all (ι, I)-coboundaries are zero and each (ι, I)-cocycle has form

ξ(g)
(4.6)
= r(g)⊗ u, where r(g) ∈ H, and r(gh) = r(g) + r(h).

In particular r(e) = 0 and r(g−1) = −r(g). It follows from Corollary 2.2 that there is a linear map
β: RnG → H such that r(g) = β(ω(g)), where ω = ωG : G→ G/G0

∼= RnG . Thus

r(g) = Aω(g) for g ∈ G, (4.9) 6.2N

where A ∈Mm×nG
(C). The set r(G) = {r(g)}g∈G = ARnG is a real linear subspace of H.

Let ξ be neutral and γ = φ(g)1L be its prechain. Setting h = g−1 in (4.8), we have 0 = φ(e) =
φ(g) + (r(g), r(g)) + φ(g). Hence there exists a real-valued continuous function ε on G such that

φ(g) = −‖r(g)‖2 /2 + iε(g). (4.10) 6.5eN

Substituting (4.10) in (4.8) and taking into account (4.9) and the fact that

Im(A∗Aω(h), ω(g)) = − Im(A∗Aω(g), ω(h)) for g, h ∈ G, (4.11) 3.40

we have
ε(gh) = ε(g) + ε(h) + Im(A∗Aω(g), ω(h)) for g, h ∈ G. (4.12) 6.5N

If a function ε0 is some solution of (4.12), then all solutions have the form ε = ε0 + ε̃, where ε̃
satisfies ε̃(gh) = ε̃(g)+ ε̃(h). By Corollary 2.2, ε̃(g) = (ζ, ω(g)) for some ζ ∈ RnG . Thus φ has form

φ(g) = −‖Aω(g)‖2 /2 + i(ζ, ω(g)) + iε0(g). (4.13) form

It follows from (4.11) and (4.12) that

ε(gh) − ε(hg) = 2 Im(Aω(g), Aω(h)). (4.14) 3.41

As ω(g−1) = −ω(g), we have

0
(4.12)
= ε(e) = ε(gg−1)

(4.12)
= ε(g) + ε(g−1)− Im ‖Aω(g)‖2 = ε(g) + ε(g−1).

Hence
ε(g−1) = −ε(g) for g ∈ G. (4.15) 3.30

Recall that G[1] = K(G,G) is the closed subgroup of G generated by all commutators [g, h] =
ghg−1h−1. By Lemma 2.1, G[1] ⊆ G0, so ω(z) = 0 for z ∈ G[1]. Hence (4.12) implies

ε(gz) = ε(zg) = ε(g) + ε(z), for g ∈ G. (4.16) 1N

Also ω(gz) = ω(g) + ω(z) = ω(g) = ω(zg). Hence ω((zg)−1) = −ω(g), so that

ε(gz(zg)−1)
(4.12)
= ε(gz) + ε((zg)−1) + Im(A∗Aω(gz), ω((zg)−1))

(4.15)
= ε(gz) − ε(zg) − Im ‖Aω(g)‖2

(4.16)
= 0.
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As G[2] = K(G,G[1]) is generated by commutators gzg−1z−1 and (see (4.16)) ε is additive on G[2],

ε|G[2] = 0. (4.17) 3.33

Let S = A∗A = (sij)
nG

i,j=1. As ω(g),ω(h) ∈ RnG , we have

Im(A∗Aω(g), ω(h)) = (I(A∗A)ω(g), ω(h)) where I(S) = (Im sij)
nG
i,j=1. (4.18) 4.16

Hence (4.12) has form

ε(gh) = ε(g) + ε(h) + (I(A∗A)ω(g), ω(h)) for g, h ∈ G, and ε(e) = 0. (4.19) 4.17

Summing up previous observations we have:

P3.11 Proposition 4.3 (i) Each (ι, I)-cocycle has form ξ(g) = Aω(g) ⊗ e, where A ∈ Mm×nG
(C) and

ω = ωG (see (2.7)).
(ii) A (ι, I)-cocycle ξ = Aω⊗e is neutral if and only if there is a continuous function ε0 : G→ R

satisfying (4.12). The prechains γ of ξ have form γ(g) = φ(g)1L, where

φ(g) = −‖Aω(g)‖2 /2 + i(ζ, ω(g)) + iε0(g) and ζ is some vector in RnG . (4.20) 6.5fN

(iii) If the matrix A∗A has real entries, then the cocycle ξ = Aω⊗ e is neutral and all prechains

have the form (4.20) with ε0 = 0.
(iv) If G[2] = G[1] (for example, if G is commutative), then a cocycle ξ = Aω ⊗ e is neutral if

and only if the matrix A∗A has real entries.

Proof. Part (i) and ”only if” part of (ii) were proved above. Part ”if” of (ii) can be proved by
substituting (4.20) into (4.13).

(iii) If A∗A has real entries, i.e., I(A∗A) = 0, then ε0 = 0 satisfies (4.19) and (iii) follows from
(ii).

(iv) By (iii), it suffices to prove the part ”only if”. Let G[2] = G[1]. Then g−1h−1gh ∈ G[1] = G[2]

for all g, h ∈ G. Therefore if ξ = Aω ⊗ e is a neutral cocycle and ε(g) = Imφ(g) (see (4.10), then

ε(gh) = ε(hg(g−1h−1gh))
(4.16)
= ε(hg) + ε(g−1h−1gh)

(4.17)
= ε(hg).

By (4.14) and (4.18), (I(A∗A)ω(g), ω(h)) = 0 for all g, h ∈ G. As ω(g) span RnG , I(A∗A) = 0.

To continue our study of neutral cocycles we need some general facts on locally compact,
connected nilpotent groups of index 2. Let E be such a group, Z = E[1] and H = E/Z. Then H,
Z are commutative and Z lies in the center of E. Let q: E → H be the quotient map.

By [M, Theorem 26], H is isomorphic to the direct product R
n
H ×F and Z to the direct product

R
n
Z ×K, where F and K are compact subgroups. Set

n = n
H
, k = n

Z
, and let ω

H
: H → Rn, ω

Z
: Z → Rk (4.21) 4.1

be the corresponding continuous epimorphisms with F = kerω
H
, K = kerω

Z
. Clearly

ω
E
(a) = ω

H
(q(a)) for each a ∈ E. (4.22) omegaH
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The epimorphism q : E → H has a locally bounded Borel right inverse ρ : H → E (see [Keh]).
We are going to show that ρ can be chosen with some additional properties.

For an arbitrary right inverse ρ of q, set

x ⋄ρ y = ρ(xy)−1ρ(x)ρ(y) for x, y ∈ H. (4.23) 3.47

Then x ⋄ρ y belongs to Z, since

q(x ⋄ρ y) = q(ρ(xy))−1q(ρ(x))q(ρ(y)) = (xy)−1xy = eH .

selection Lemma 4.4 There is a Borel locally bounded right inverse ρ of q such that the map ϕ(x, y) =
ω

Z
(x ⋄ρ y) from H ×H to Rk is ”biadditive”:

ϕ(xz, y) = ϕ(x, y) + ϕ(z, y) and ϕ(x, yz) = ϕ(x, y) + ϕ(x, z) for all x, y, z ∈ H. (4.24) bilinear

Proof. Let us fix an arbitrary Borel locally bounded right inverse ρ1 of q and set, for brevity,
x ⋄ y := x ⋄ρ1 y. Since x ⋄ y belongs to the center of E,

((xy) ⋄ z)−1(x ⋄ (yz)) = ρ1(z)
−1ρ1(xy)

−1ρ1(xyz)ρ1(xyz)
−1ρ1(x)ρ1(yz)

= ρ1(z)
−1ρ1(xy)

−1ρ1(x)ρ1(y)ρ1(y)
−1ρ1(yz) = ρ1(z)

−1(x ⋄ y)ρ1(y)
−1ρ1(yz)

= ρ1(z)
−1ρ1(y)

−1ρ1(yz)(x ⋄ y) = (y ⋄ z)−1(x ⋄ y).

Therefore
(y ⋄ z)((xy) ⋄ z)−1(x ⋄ (yz))(x ⋄ y)−1 = e. (4.25) 3.21

It follows that the map ψ(x, y) = ωZ(x ⋄ y) from H ×H to Rk satisfies the condition

ψ(y, z)− ψ(xy, z) + ψ(x, yz) − ψ(x, y) = 0 for x, y, z ∈ H. (4.26) 3.23

In other words, ψ is a Borel 2-cocycle of H with coefficients in Rk, where the left and right actions
of H on Rk are trivial (cf. (2.1)).

Denote by Hj
bor(H,R

k) the Borel cohomologies and by Hj(H,Rk) the continuous cohomologies.
It is known [Wig, Theorem 2] (see also [MooreIII], page 32) that the natural homomorphism of
Hj(H,Rk) to Hj

bor(H,R
k) is an isomorphism.

As Hj(F,Rk) = 0 for all j ∈ N (see [G, Corollary 3.2.1]), it follows from Proposition 1.8.1
[G] that H2(Rn × F,Rk) = H2(Rn,Rk) and the isomorphism is realized by the restriction of a
chain to Rn-components. This means that ψ(x, y) = ψ̂(ωH(x), ωH(y)) + d1v(x, y) for all x, y ∈ H,
where v ∈ C1(H,Rk) and ψ̂ ∈ Z2(Rn,Rk) is the restriction of ψ to Rn × Rn (Rn is identified with
Rn × e

F
⊂ H).

It is known that H2(Rn,Rk) is naturally isomorphic (see e.g. [G]) to the group La of all bilinear
antisymmetric maps from Rn × Rn to RnG : each class in H2(Rn,Rk) contains a unique cocycle
from La. Thus each cocycle in Z2

bor(R
n,Rk) is equivalent to a unique bilinear antisymmetric map

in La. Hence there is a Borel function u: Rn → Rk and a bilinear map B on Rn × Rn such that

B(r, t) = ψ̂(r, t) + d1u(r, t) for r, t ∈ Rn. (4.27) 3.48

Therefore, setting η(x) = u(ω
H
(x))− v(x), we have that η is a Borel function on H and

ψ(x, y) = ψ̂(ω
H
(x), ω

H
(y)) + d1v(x, y) = B(ω

H
(x), ω

H
(y))− d1η(x, y)

= B(ω
H
(x), ω

H
(y))− η(x) + η(xy)− η(y). (4.28) 4.35
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As Z is isomorphic to the direct product Rk × S, where S is a compact group, the continuous
homomorphism s: r → r × e

S
from Rk to Z is a right inverse of ω

Z
: ω

Z
(s(r)) = r.

Now we set
ρ(x) = ρ1(x)s(η(x)) (4.29) rho

and as above x ⋄ρ y = ρ(xy)−1ρ(x)ρ(y) for x, y ∈ H.
As s(η(x)) ∈ Z, it commutes with all g ∈ E, so that ρ is also a right inverse of q, because

q(ρ(x)) = q(ρ1(x)s(η(x))) = q(ρ1(x))q(s(η(x))) = q(ρ1(x)) = x.

Furthermore
x ⋄ρ y = (x ⋄ y)s(η(xy))−1s(η(x))s(η(y)) for x, y ∈ H.

As ωZ(s(η(x))) = η(x), we have, for x, y ∈ H,

ϕ(x, y) = ω
Z
(x ⋄ρ y) = ψ(x, y) − η(xy) + η(x) + η(y)

(4.28)
= B(ω

H
(x), ω

H
(y)). (4.30) 3.6

As B is a bilinear map and ω
H
(xy) = ω

H
(x) + ω

H
(y), the equality (4.24) is proved.

BilForm Corollary 4.5 There are real-valued n
H
× n

H
-matrices T1, ..., TnZ

such that, for x, y ∈ H,

ω
Z
(x ⋄ρ y) = ((T1ωH

(x), ω
H
(y)), (T2ωH

(x), ω
H
(y)), .., (Tn

Z
ω

H
(x), ω

H
(y))) ∈ R

n
Z . (4.31) matr

Proof. Follows from (4.30) and the fact that each bilinear functional on a real Euclidian space
E can be written in the form (x, y) 7→ (Tx, y) where T is a linear operator on E.

For a ∈ E, set
z(a) = ρ(q(a))−1a. (4.32) z

Since q(z(a)) = q(a)−1q(a) = e
H
, we have z(a) ∈ Z, so z can be considered as a map from E to Z.

Let us illustrate our constructions with the following example.

2-group Example 4.6 Let k ∈ N. For x, y ∈ Rk, set

x⊠ y = (x1y2, x2y3, ..., xk−1yk−2) ∈ Rk−1. (4.33) 4.4

The set E = Ek := Rk ⊕ Rk−1 supplied with the operation

(x⊕ v)(y ⊕ w) = (x+ y)⊕ (v + w + x⊠ y) (4.34) 4.5

is a nilpotent group of index 2. It is easy to check that

(x⊕ v)−1 = (−x)⊕ (x⊠ x− v).

Then Z = 0 ⊕ Rk−1, H is identified with Rk via the map (x, v) + Z 7→ x and q : E → H is given
by q(x, v) = x. The special inverse ρ of q is the map x 7→ x⊕ 0. Then ρ(x)−1 = −x⊕ x⊠ x and

x ⋄ρ y = ρ(x+ y)−1ρ(x)ρ(y)
(4.34)
= ((−(x+ y))⊕ (x+ y)⊠ (x+ y))((x+ y)⊕ x⊠ y)

(4.34)
= 0⊕ x⊠ y.

Clearly, ω
E
(x⊕ v) = ω

H
(q(x⊕ v)) = x and ω

Z
(0⊕ v) = v. Therefore

ω
Z
(x ⋄ρ y) = x⊠ y. (4.35) omegaZ
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Hence the matrices Tj , introduced in Corollary 4.5, are equal to ej+1,j, 1 ≤ j ≤ k − 1, where by
(epq : 1 ≤ p, q ≤ k) we denote the usual matrix units in Mk(R).

Note that ρ(q(x⊕ v)) = x⊕ 0 and (ρ(q(x ⊕ v)))−1 = (−x)⊕ (x⊠ x). Hence

z(x⊕ v)
(4.32)
= ((−x)⊕ (x⊠ x)))(x ⊕ v)

(4.34)
= (0, v) and ωZ(z(x⊕ v)) = v. (4.36) zeta

Now we come to the general case of a connected locally compact group G. If G[2] 6= G[1], then
the group E := G/G[2] is nilpotent of index 2. By p we denote the canonical epimorphism of G
onto E. We set as above Z = E[1], H = E/Z and preserve all notations introduced in Lemma 4.4
and Corollary 4.5. In particular, by ρ we denote the special inverse to the quotient map q : E → H.

Note that

n
H
= n

E
= n

G
, ω(g) = ω

G
(g) = ωE(p(g)) and nZ

= n
G[1]

, since Z = p(G[1]). (4.37) perehod

We call the matrices T1, ..., Tn
Z
constructed for E in Corollary 4.5 the standard suit of matrices of

G. Returning to our study of neutral cocycles we obtain now their description in the general case.

den-nil Theorem 4.7 Let G be a connected, locally compact group and G[2] 6= G[1]. Let

E = G/G[2], Z = E[1] ∼= G[1]/G[2], H = E/Z and n := n
H
, k := n

Z
.

Let ι and I be the identity representations of G on L = Cu and H = Cm, respectively. Then

(i) A (ι, I)-cocycle ξ(g) = Aω(g) ⊗ u is neutral if and only if the n × n matrix I(A∗A) (see
(4.18)) is a linear combination of Tj − T ∗

j , where {Tj}
k
j=1 is the standard suit of matrices of G :

I(A∗A) =
1

2

k∑

j=1

σj(Tj − T ∗
j ) for some σ1, ..., σk ∈ R; (4.38) combin

(ii) If condition (4.38) is satisfied then all prechains of ξ have form γ(g) = φ(g)1L, where

φ(g) = −‖Aω(g)‖2 /2 + i(ζ, ω(g)) + i(σ, ω
Z
(z(p(g)))) −

1

2
(σ, ω

Z
(q(p(g)) ⋄ q(p(g)))), (4.39) sol

σ = (σ1, ..., σk), σj are coefficients in (4.38), ζ ∈ Rn and the map z : E → Z is defined in (4.32).

Proof. If ε is a solution of (4.12), then ε(gv)
(4.16)
= ε(g)+ε(v)

(4.17)
= ε(g), for g ∈ G and v ∈ G[2].

Hence the number ε(g) depends on p(g) only, and we may define a function δ : E → R by setting

δ(p(g)) = ε(g). (4.40) factor

It follows from (4.37) that δ satisfies the condition similar to (4.12)

δ(ab) = δ(a) + δ(b) + Im(A∗Aω
E
(a), ω

E
(b)) for a, b ∈ E. (4.41) 6.51

As Z ⊆ G0, we have ωE(z) = {0} for z ∈ Z. Therefore, by (4.41),

δ(uz) = δ(u) + δ(z) for u, z ∈ Z. (4.42) 6.53
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By Corollary 2.2, there is a linear map β: Rk → R such that δ(z) = β(ω
Z
(z)); equivalently

δ(z) = (σ, ω
Z
(z)) for some σ = (σ1, ..., σk) ∈ Rk and all z ∈ Z. (4.43) 6.52

Let a = ρ(x), b = ρ(y) in (4.41), for x, y ∈ H. As x ⋄ y ∈ Z, we have ω
E
(x ⋄ y) = 0. Then

δ(ρ(x)ρ(y))
(4.41)
= δ(ρ(x)) + δ(ρ(y)) − Im(Aω

E
(ρ(x)), Aω

E
(ρ(y))),

δ(ρ(x)ρ(y))
(4.23)
= δ(ρ(xy)(x ⋄ y)) = δ(ρ(xy)) + δ(x ⋄ y).

Hence
δ(ρ(x)) + δ(ρ(y)) − Im(Aω

E
(ρ(x)), Aω

E
(ρ(y))) = δ(ρ(xy)) + δ(x ⋄ y). (4.44) 3.50

Invert x and y in (4.44) and subtract the two equalities. It follows from (4.11) and (4.42) that

2 Im(Aω
E
(ρ(x)), Aω

E
(ρ(y))) = δ(y ⋄ x)− δ(x ⋄ y)

(4.43)
= (σ, ω

Z
(y ⋄ x)− ω

Z
(x ⋄ y)). (4.45) rel

From Corollary 4.5 we obtain that

ω
Z
(y ⋄ x)− ω

Z
(x ⋄ y) = ((T1ωH

(x), ω
H
(y)), ..., (TkωH

(x), ω
H
(y)))

− ((T1ωH
(y), ω

H
(x)), ..., (TkωH

(y), ω
H
(x)))

= (((T1 − T ∗
1 )ωH

(x), ω
H
(y)), ..., ((Tk − T ∗

k )ωH
(x), ω

H
(y))). (4.46) l

By (4.22), ω
E
(ρ(x)) = ω

H
(q(ρ(x))) = ω

H
(x). Hence (4.45) can be rewritten in the form

2(I(A∗A)ω
H
(x), ω

H
(y)) =

k∑

j=1

σj((Tj − T ∗
j )ωH

(x), ω
H
(y)).

Taking into account that ω
H

maps H onto Rn, we get (4.38).
Conversely, let A satisfy condition (4.38). We have to prove that there is a solution ε of the

equation (4.41). For σ = (σ1, ..., σk) ∈ Rk, we set

δ0(a) = (σ, ω
Z
(z(a)))−

1

2
(σ, ω

Z
(q(a) ⋄ q(a))) for a ∈ E. (4.47) 3.26

As Z belongs to the center of E,

z(ab) = ρ(q(a)q(b))−1ab
(4.23)
= (q(b) ⋄ q(a))z(a)z(b) (4.48) 3.24

for a, b ∈ E. Hence ω
Z
(z(ab))

(4.48)
= ω

Z
(q(b) ⋄ q(a)) + ω

Z
(z(a)) + ω

Z
(z(b)). By Lemma 4.4,

ω
Z
(q(ab) ⋄ q(ab)) = ω

Z
(q(a) ⋄ q(a)) + ω

Z
(q(a) ⋄ q(b)) + ω

Z
(q(b) ⋄ q(a)) + ω

Z
(q(b) ⋄ q(b))

It follows that

ω
Z
(z(ab)))−

1

2
ω

Z
(q(ab) ⋄ q(ab)) = ω

Z
(z(a)) + ω

Z
(z(b)) +

1

2
ω

Z
(q(b) ⋄ q(a))

−
1

2
ω

Z
(q(a) ⋄ q(a))−

1

2
ω

Z
(q(a) ⋄ q(b))−

1

2
ω

Z
(q(b) ⋄ q(b)).
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Therefore, as ω
E
(a)

(4.22)
= ω

H
(q(a)),

δ0(ab) = (σ, ω
Z
(z(ab)))−

1

2
(σ, ω

Z
(q(ab) ⋄ q(ab)))

(4.47)
= δ0(a) + δ0(b) +

1

2
(σ, ω

Z
(q(b) ⋄ q(a)))−

1

2
(σ, ω

Z
(q(a) ⋄ q(b)))

(4.46)
= δ0(a) + δ0(b) +

1

2

∑

j

σj((Tj − T ∗
j )ωH

(q(a)), ω
H
(q(b))

(4.38)
= δ0(a) + δ0(b) + (I(A∗A)ω

E
(a), ω

E
(b))

(4.18)
= δ0(a) + δ0(b) + Im(Aω

E
(a), Aω

E
(b)).

Thus δ0 satisfies (4.41). To complete the proof of part (i), it remains to set ε0(g) = δ0(p(g)) and

to take into account that ω
E
(p(g))

(4.37)
= ω

G
(g).

Part (ii) follows from (4.13) and our construction of ε0.

dobav Remark 4.8 If G[2] = G[1] then Z = {eZ} and E = H, so that nZ = 0 and ωZ(x ⋄ y) = 0 for all
x, y ∈ H. Thus the standard suit of operators is zero and Proposition 4.3(iv) can be considered as
a partial case of Theorem 4.7(i).

Now we apply the above result to an important example: the group G = Tn of all n × n real
upper triangular matrices g = (gij) with identity on the main diagonal. We denote by ĝk the
diagonals of a matrix g ∈ G:

ĝk = (g1,1+k, ..., gn−k,n) ∈ Rn−k for k = 1, ..., n − 1.

3.7 Corollary 4.9 Let G = Tn. Let ι and I be the identity representations of G on L = Cu and

H = Cm. Then each (ι, I)-cocycle has form ξ(g) = Aĝ1 ⊗ u where A ∈ Mm×(n−1)(C). The cocycle

is neutral if and only if the (n− 1)× (n− 1) matrix S = A∗A = (sij) satisfies the condition

Im sij = 0, when |i− j| > 1. (4.49) rN

If (4.49) holds, the corresponding prechains have the form γ(g) = φ(g)1L, where

φ(g) = φS,σ,ζ(g) = −
1

2
(Sĝ1, ĝ1) + i(ζ, ĝ1) + i(σ, ĝ2 −

1

2
ĝ1 ⊠ ĝ1), (4.50) 8N

σ = (σ1, ..., σn−2) ∈ Rn−2, with σi = 2si,i+1, and ζ is arbitrary vector in Rn−1.

Proof. It is easy to see that

G[1] = K(G,G) = {g ∈ G: ĝ1 = 0}, G[2] = {g ∈ G: ĝ1 = ĝ2 = 0}, G/G[1] ∼= Rn−1 and n
G
= n− 1.

Furthermore, the group E = G/G[2] is naturally identified as a set with Rn−1 ⊕ Rn−2 via the map

p: g 7→ ĝ1 ⊕ ĝ2. Direct calculations show that (̂gh)1 = ĝ1 + ĥ1 and (̂gh)2 = ĝ2 + ĥ2 + ĝ1 ⊠ ĝ1. It
follows that the map p is an isomorphism of E on the group En−1 considered in Example 4.6. We
may identify p with the standard epimorphism from G to E, that is, p(g) = ĝ1 ⊕ ĝ2.

By (4.37), ωG(g) = ωE(p(g)) = ĝ1, so ξ(g) = Aĝ1. By Example 4.6, the standard suit of
operators for E is {ej+1,j: 1 ≤ j ≤ n − 2} ⊂ Mn−1(R). Hence, by Theorem 4.7, ξ is neutral if
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and only if Im(S) is a real linear combination of matrices ej,j+1 − ej+1,j. Since S is selfadjoint,
this is equivalent to the condition (4.49). Note that the coefficients of this linear combinations (the
coefficients σj in (4.38)) are expressed via the entries of S by the formula σj = 2 Im sj,j+1.

To deduce the last statement of the corollary from (4.47) we have to calculate ω
Z
(q(p(g))⋄q(p(g))

and ω
Z
(z(p(g))). By (4.35), ω

Z
(q(a) ⋄ q(a)) = x⊠ x for a = x⊕ v ∈ E. It follows that

ω
Z
(q(p(g)) ⋄ q(p(g))) = ĝ1 ⊠ ĝ1.

Similarly by (4.36), ω
Z
(z(p(g))) = ĝ2. It remains to substitute this in (4.47).

Remark 4.10 The functions φS,σ,ζ in (4.50) form a subcone in C1(G) ∼= CC(G). Indeed, let
(S1, σ1, ζ1) and (S2, σ2, ζ2) satisfy (4.49) and φS1,σ1,ζ1 , φS2,σ2,ζ2 be the corresponding prechains.
For λ1, λ2 > 0, set S = λ1S

1 + λ2S
2, σ = λ1σ

1 + λ2σ
2 and ζ = λ1ζ

1 + λ2ζ
2. Then (S, σ, ζ) satisfies

(4.49) and, by (4.50), φS,σ,ζ = λ1φS1,σ1,ζ1 + λ2φS2,σ2,ζ2 is a prechain of a neutral (ι, I)-cocycle.

We shall now consider two particular cases: n = 3 and n = 4.
Let n = 3. Then G = H3(R) is the real Heisenberg group. For each m× 2 matrix A, m = 1, 2,

S is 2× 2 matrices and condition (4.49) holds. Thus (ι, I)-cocycles ξ(g) = Aĝ1 ⊗ u are neutral for
all matrices A and H1

ν(ι, I) = H1(ι, I) 6= 0.
Let n = 4. Then A are m× 3 matrices. For m = 1, A = (a11, a12, a13) and (4.49) reduces to the

condition s13 = a11a13 ∈ R. The matrices A1 = (1, 0, 1), A2 = (i, 0, 2i) satisfy (4.49) while A1 +A2

does not. This implies that the sum of two neutral cocycles need not be neutral. Thus

Corollary 4.11 H1
ν(ι, I) does not, in general, form a subspace in H1(ι, I).

4.3 Density of neutral cocycles

In this subsection we study the neutral (λ,U)-cocycles for representations λ and U which are
spectrally related in a more flexible way: U weakly contains λ, that is, all matrix functions g 7→
(λ(g)x, x), x ∈ L, of λ belong to the closure in C(G) with respect to the topology of uniform
convergence on compacts of the subspace generated by the matrix functions of U .

Let dimL = 1 and ι be the trivial representation of G on L. Let U be a unitary representation
of G on H without fixed vectors, i.e., Hχe = {0}, where χe is the trivial character. Then (see
[G, Corollary III.2.3]) U weakly contains the representation ι if and only if there are unit vectors
{en}

∞
n=1 in H such that

‖U(g)en − en‖ → 0 uniformly on each compact subset of G. (4.51) 2.11

Clearly, χe and U are not spectrally disjoint.
Recall that a topological group G is σ-compact, if it has a sequence of compact subsets

K1 ⊂ K2 ⊂ ... ⊂ Kn ⊂ ... such that G = ∪∞
n=1Kn. (4.52) 2.1n

For example, countable discrete groups and connected locally compact groups are σ-compact.

P.2n Proposition 4.12 Let {Un}
∞
n=1 be unitary representations of a σ-compact group G on {Hn}

∞
n=1

and let H
χe
n = {0}. Suppose that, for each N, the representation ⊕∞

n=NUn weakly contains ι. Let

U = ⊕∞
n=1Un and H = ⊕∞

n=1Hn. Then G has a neutral (ι, U)-cocycle which is not a coboundary.
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Proof. Let {Kn}
∞
n=1 satisfy (4.52). The projections PN on ⊕N

n=1Hn commute with U. As U
weakly contains ι, there is a unit vector z1 ∈ H such that supg∈K1

‖U(g)z1 − z1‖ < 2−1. Let N1 be
such that ‖z1 − PN1z1‖ < 2−1. Then ‖PN1z1‖ > 2−1. Set y1 = PN1z1/ ‖PN1z1‖ . Then ‖y1‖ = 1,

sup
g∈K1

‖U(g)y1 − y1‖ = sup
g∈K1

‖PN1(U(g)z1 − z1)‖/ ‖PN1z1‖ < 2−1/ ‖PN1z1‖ < 1.

As the representation U ′ = ⊕∞
n=N1+1Un also weakly contains ι, there is z2 ∈ ⊕∞

n=N1+1Hn, ‖z2‖ = 1,
such that supg∈K2

‖U ′(g)z2 − z2‖ < 2−2. Let N2 > N1 be such that ‖z2 − PN2z2‖ < 2−1. As above,

y2 = PN2z2/ ‖PN2z2‖ is a unit vector, supg∈K2
‖U(g)y2 − y2‖ < 2−1 and y2 ∈ ⊕N2

n=N1+1Hn.
Arguing in this way, we get unit vectors {yi}

∞
i=1 such that

sup
g∈Ki

‖U(g)yi − yi‖ < 21−i and yi = xNi−1+1 ⊕ ...⊕ xNi
, for some xn ∈ Hn. (4.53) 2.2f

Then r(g) = ⊕∞
i=1(yi − U∗(g)yi) = ⊕∞

n=1(xn − U∗
n(g)xn) (4.54) 3.32

belongs to H for each g ∈ G, since, for g ∈ Km,

‖r(g)‖2 =

∞∑

i=1

‖yi − U∗(g)yi‖
2
(4.53)

≤

m−1∑

i=1

‖yi − U∗(g)yi‖
2 +

∞∑

i=m

22−2i <∞.

Similarly, one can show that r is continuous on G. Since

r(h) + U∗(h)r(g) = ⊕∞
n=1(xn − U∗

n(h)xn) + U∗(h)⊕∞
n=1 (xn − U∗

n(g)xn)

= ⊕∞
n=1(xn − U∗

n(gh)xn) = r(gh),

we have (see (4.6)) that ξ = r ⊗ u is a (ι, U)-cocycle. To show that ξ is not a coboundary we
have to establish (see (4.7)) that there does not exist w ∈ H such that r(g) = w − U∗(g)w for all
g ∈ G. Assume, to the contrary, that such w = ⊕∞

n=1wn, where wn ∈ Hn, exists. Then, by (4.54),
xn − U∗

n(g)xn = wn − U∗
n(g)wn, so that U∗

n(g)(xn − wn) = xn − wn for all n and g. As Hχe
n = {0},

we have xn = wn for all n, which is impossible, since ∞ 6= ‖w‖2 =
∑∞

n=1 ‖xn‖
2 =

∑∞
i=1 ‖yi‖

2 = ∞.
To see that ξ is neutral, consider γ(g) = φ(g)(u ⊗ u), where

φ(g) =

∞∑

n=1

(Un(g)xn − xn, xn) =

∞∑

i=1

(U(g)yi − yi, yi) for g ∈ G.

By (4.53), φ is a well defined continuous map from G to H, φ(e) = 0, φ(g−1) = φ(g) and

−φ(h) + φ(gh) − φ(g) =
∞∑

n=1

((1− Un(h) + Un(gh) − Un(g))xn, xn).

As

(r(h−1), r(g)) = (⊕∞
n=1(xn − U∗

n(h
−1)xn),⊕

∞
n=1(xn − U∗

n(g)xn))

=

∞∑

n=1

((1−Un(h) + Un(gh) − Un(g))xn, xn),

it follows from (4.8) that d1
λ,λ♯γ = −ξ(g)ξ♯(h), so that ξ is neutral.
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E2.2 Example 4.13 Let G = R, let Hn = Cyn and H = ⊕∞
n=1Hn. For t ∈ R, let Un(t)yn = eit/n

2
yn and

U = ⊕∞
n=1Un. For each N, the representation ⊕∞

n=NUn weakly contains the trivial representation ι,
as ‖U(t)yn − yn‖ →

n→∞
0 uniformly on each compact set in R. As in (4.54), set

r(t) = ⊕∞
n=1(yn − e−it/n2

yn) and φ(t) =

∞∑

n=1

(eit/n
2
− 1)

Then r and φ satisfy (4.8), so that ξ(t) = r(t)⊗u is a neutral (ι, U)-cocycle and not a coboundary,
and γ(t) = φ(t)(u⊗ u) is a prechain. Thus H1

ν(ι, U) 6= 0. �

T3.11 Theorem 4.14 Let G be a connected, locally compact nilpotent group, let U be a unitary repre-

sentation of G on H and Hχe = {0}. Then H1
ν(ι, U) 6= 0 if and only if H1(ι, U) 6= 0. Moreover,

Z1
ν (ι, U) is dense in Z1(ι, U) : for each non-trivial (ι, U)-cocycle ξ, there is a net of non-trivial

neutral (ι, U)-cocycles which converges to ξ uniformly on compacts.

Proof. Let B1(ι, U) be the closure of the set B1(ι, U) of all boundaries in the topology of
the uniform convergence on compacts. Note first that, since Hχe = {0}, the group H1

red(ι, U) :=

Z1(ι, U)/B1(ι, U) of the reduced 1-cohomologies is trivial, so that Z1(ι, U) = B1(ι, U). Indeed,
decomposing U into the irreducible representations

U =

∫ ⊕

Ω
Uωdµ,

we see that Uω 6= ι for almost all ω. Hence, by Corollary 2.14 (see also [G2, Corollary 5]),
H1(ι, Uω) = {0} for almost all ω. Now it follows from [G, Proposition 3.2.6] that H1

red(ι, U) = {0}.

If U does not weakly contain ι then (see [G2, D]) B1(ι, U) = B1(ι, U). Therefore H1(ι, U) =
H1

red(ι, U) = 0 and there is nothing to prove.
Suppose now that U weakly contains ι. Then there are unit vectors {en}

∞
n=1 in H such that

‖U(g)en − en‖ → 0 uniformly on compact subsets of G. As Hχe = {0}, it follows from Proposition
3.3 that H = ⊕N

k=1Hk, N ≤ ∞, where Hk are invariant subspaces and each Uk = UHk
is spectrally

disjoint with χe. Let Pk be the projections on Hk. If lim
n→∞

‖Pken‖ 6= 0, for some k, there is ε > 0

and a subsequence {nm}∞m=1 such that ‖Pkenm‖ > ε. Set ym = Pkenm/ ‖Pkenm‖ . Then

‖Uk(g)ym − ym‖ ≤ ‖Pk(U(g)enm − enm)‖ /ε ≤ ‖U(g)enm − enm‖ /ε→ 0, as m→ ∞,

for all g ∈ G. Thus Uk and χe are not spectrally disjoint - a contradiction. Therefore

lim
n→∞

‖Pken‖ = 0 for all k. (4.55) 2.13

If N <∞ then 1 = ‖en‖ ≤
∑N

k=1 ‖Pken‖ for all n. Thus there is k ≤ N such that lim
n→∞

‖Pken‖ 6=

0 which contradicts (4.55). Hence N = ∞. Set Qm =
∑∞

k=m+1 Pk. Then for each m

‖U(g)Qmen −Qmen‖ ≤ ‖Qm(U(g)en − en)‖ ≤ ‖U(g)en − en‖ → 0, as n→ ∞.

Let lim
n→∞

‖Qmen‖ = 0 for some m. Then, as 1 = ‖en‖ ≤
∑m

k=1 ‖Pken‖ + ‖Qmen‖ , we have that

lim
n→∞

‖Pken‖ 6= 0, for some k, which contradicts (4.55). Thus lim
n→∞

‖Qmen‖ 6= 0 for all m. Hence all

representations ⊕∞
k=m+1Uk weakly contain ι. AsG is connected and locally compact, it is σ-compact.

Applying Proposition 4.12, we conclude that G has a neutral (ι, U)-cocycle (not a coboundary) ξν .
By Lemma 4.2, the set ξν + B1(ι, U) consists of neutral cocycles. Since (see above) Z1(ι, U) =
B1(ι, U), the set ξν + B1(ι, U) is dense in Z1(ι, U).
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R4.16 Remark 4.15 In Theorem 3.18 it was shown that, for the groups whose dual objects contain
characters that cannot be separated (in particular, for the Heisenberg group), one can construct
extensions that do not decompose in a direct sum of primary extensions. For applications to
representations on Pontryagin spaces, it is important that the cocycles ξ (see (3.20)) that define
such representations, are neutral. To show this we have to present the corresponding prechains.

Using notations of Theorem 3.18, we have L = Ce1 ⊕ Ce2, λ(g) = e1 ⊗ e1 + χ(g)(e2 ⊗ e2),

un(g) = un − πn(g)
∗un, vn(g) = χ(g)vn − πn(g)

∗vn and ξ(g) =

∞∑

n=1

(un(g)⊗ e1 + vn(g)⊗ e2).

Then ξ♯(g) = ξ(g−1)∗ =
∑∞

n=1((e1 ⊗ un(g
−1), e2 ⊗ vn(g

−1)). Set γ = −
∑∞

n=1 γn, where all

γn(g) = (un, un(g))(e1 ⊗ e1) + (un(g
−1), vn)(e1 ⊗ e2) + (vn, un(g))(e2 ⊗ e1) + (vn, vn(g))(e2 ⊗ e2)

belong to B(L). The series in γ(g) converge uniformly on compacts because of condition (3.18).
As λ = λ♯, we obtain by direct calculations, using (3.9) and (4.3), that ξ is neutral (see (4.4)), since

(dλ,λγ)(g, h) = λ(g)γ(h) − γ(gh) + γ(g)λ(h) =

∞∑

n=1

(λ(g)γn(h)− γn(gh) + γn(g)λ(h))

=

∞∑

n=1

(a11n (e1 ⊗ e1) + a12n (e1 ⊗ e2) + a21n (e2 ⊗ e1) + a22n (e2 ⊗ e2)) = −ξ(g)ξ♯(h),

where

a11n = (un, un(gh) − un(h) − un(g)), a
12
n = (un(h

−1g−1)− χ(g)un(h
−1)− un(g

−1), vn),

a21n = (vn, un(gh) − un(h) − χ(h)un(g)), a
22
n = (vn, vn(gh) − χ(g)vn(h)− χ(h)vn(g)).
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