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Artificial Intelligence (AI) and Deep Learning (DL) technologies have revolutionized disease detection, 
particularly in Medical Imaging (MI). While these technologies demonstrate outstanding performance in 
image classification, their integration into clinical practice remains gradual. A significant challenge lies in 
the opacity of Deep Neural Network (DNN) models, which provide predictions without explaining their 
structure. This lack of transparency poses severe issues in the healthcare industry, as trust in automated 
technologies is critical for doctors, patients, and other stakeholders. Concerns about liability in 
autonomous car accidents are comparable to those associated with deep learning applications in 
medical imaging. Errors such as false positives and false negatives can negatively affect patients' health. 
Explainable Artificial Intelligence (XAI) tools aim to address these issues by offering understandable 
insights into predictive models. These tools can enhance confidence in AI systems, accelerate the 
diagnostic process, and ensure compliance with legal requirements. Driven by the motivation to advance 
technological applications, this work provides a comprehensive review of Explainable AI (XAI) and Deep 
Learning (DL) techniques tailored for biomedical imaging diagnostics. It examines the state-of-the-art 
methods, evaluates their clinical applicability, and highlights key challenges, including interpretability, 
scalability, and integration into healthcare. Additionally, the review identifies emerging trends and 
potential future directions in XAI research, offering a structured categorization of techniques based on 
their suitability for diverse diagnostic tasks. These findings are invaluable for healthcare professionals 
seeking accurate and reliable diagnostic support, policymakers addressing regulatory and ethical 
considerations, and AI developers aiming to design systems that balance innovation, safety, and clinical 
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Abstract

Artificial Intelligence (AI) and Deep Learning (DL) technologies have revolutionized disease detection, particularly in
Medical Imaging (MI). While these technologies demonstrate outstanding performance in image classification, their
integration into clinical practice remains gradual. A significant challenge lies in the opacity of Deep Neural Network
(DNN) models, which provide predictions without explaining their structure. This lack of transparency poses severe
issues in the healthcare industry, as trust in automated technologies is critical for doctors, patients, and other stake-
holders. Concerns about liability in autonomous car accidents are comparable to those associated with deep learning
applications in medical imaging. Errors such as false positives and false negatives can negatively affect patients' health.
Explainable Artificial Intelligence (XAI) tools aim to address these issues by offering understandable insights into
predictive models. These tools can enhance confidence in AI systems, accelerate the diagnostic process, and ensure
compliance with legal requirements. Driven by the motivation to advance technological applications, this work provides
a comprehensive review of Explainable AI (XAI) and Deep Learning (DL) techniques tailored for biomedical imaging
diagnostics. It examines the state-of-the-art methods, evaluates their clinical applicability, and highlights key challenges,
including interpretability, scalability, and integration into healthcare. Additionally, the review identifies emerging
trends and potential future directions in XAI research, offering a structured categorization of techniques based on their
suitability for diverse diagnostic tasks. These findings are invaluable for healthcare professionals seeking accurate and
reliable diagnostic support, policymakers addressing regulatory and ethical considerations, and AI developers aiming to
design systems that balance innovation, safety, and clinical transparency.

Keywords: Explainable AI (XAI), Deep Neural Networks (DNN), Medical imaging, Disease diagnosis, Transparency in AI

1. Introduction

D eep Neural Networks (DNNs) have demon-
strated remarkable performance in image

classification tasks, often surpassing both human
experts and traditional artificial intelligence (AI)
methods. This success has ignited significant inter-
est in applying AI to biomedical imaging, particu-
larly for tasks such as image segmentation and
classification. Among the state-of-the-art models,
Convolutional Neural Networks (CNNs) have
become the standard for these tasks, while other

advanced architectures, such as encoder-decoder
frameworks and transformer-based models, are also
being actively developed to enhance performance
and versatility. Medical image segmentation in-
volves identifying regions of interest (RoI) by la-
beling each pixel in an image and grouping related
areas together, such as distinguishing lesions or
anatomical structures. AI models can determine
whether an image represents a benign or malignant
condition or handle more complex multi-class situ-
ations for classification tasks. Biomedical images
are acquired using various modalities, including
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ultrasounds, X-rays, CT scans, and MRI. AI has
emerged as a critical tool in assisting disease diag-
nosis, enabling more precise analysis of features
such as tumour size, texture, and shapedoften
surpassing the capabilities of human radiologists.
A notable application is the detection of ocular

diseases using fundus imaging, where AI systems
have shown impressive diagnostic accuracy [1e6].
The growing accessibility of AI tools has empow-
ered domain experts to apply machine learning
methods without requiring deep technical expertise
in underlying algorithms. This democratization of
AI enables better diagnostic outcomes, especially in
regions with a shortage of radiologists. For instance,
the UK reportedly has only 2000 radiologists,
creating a pressing need for automated diagnostic
systems to support healthcare delivery. Despite
these advancements, ensuring the transparency and
reliability of AI predictions remains critical, partic-
ularly in regulated industries like healthcare. While
simpler, deterministic models such as shallow de-
cision trees offer inherent explainability, more
complex models like DNNs are often criticized for
their “black box” nature, where the decision-mak-
ing processes are opaque even to the developers [7].
To build trust and promote the widespread adop-
tion of AI in diagnostics, it is essential to develop
explainable AI (XAI) techniques that clarify and
validate model predictions. This will improve user
confidence and ensure compliance with legal and
ethical standards, paving the way for transformative
advancements in image-based diagnosis.
Deep learning models are highly effective in

generating predictions from complex data, such as
those used in medical imaging. These models can
classify images, diagnose diseases, and detect pat-
terns that are often difficult for humans to recog-
nize. However, a significant challenge with these
models is their tendency to function as a “black box”
[8]. This means that while the model provides an
output (e.g., predicting whether a tumor is malig-
nant), it does not explain the process by which it
arrived at the conclusion. This is akin to using a
calculator that shows the result without revealing
the steps taken to compute it. This lack of trans-
parency poses a critical issue for medical practi-
tioners, especially when life-and-death decisions are
at stake. In medical contexts, understanding not
only the prediction but also the reasoning behind it
is essential [9]. Errors such as false pos-
itivesdincorrectly identifying a condition as pre-
sentdor false negativesdfailing to detect an actual
conditiondcan lead to serious harm, eroding trust
in the technology [10]. Deep Neural Networks
(DNNs) mimic the interconnected structure of

neurons in the human brain, but our limited un-
derstanding of neural connections makes it chal-
lenging to explain how these models generate their
results fully. This opacity becomes particularly
concerning in high-stakes applications like health-
care, where false positives and negatives can have
dire consequences for patient outcomes. Moreover,
neural networks require vast amounts of training
data and computational resources to achieve reli-
able results. Their complexity often makes them
inaccessible to non-technical users, who may
struggle to understand how decisions are made [11].
The need for interpretable models is especially

pressing in fields involving complex problems, such
as simulating cognitive processes in children or
diagnosing rare medical conditions. In such sce-
narios, the demand for transparency and interpret-
ability serves as a guiding principle. Interpretable AI
(XAI) aims to address these challenges by elucidating
how predictions are made, which is particularly
important in regulated industries like healthcare.
XAI techniques not only help simplify decision-
making but also foster stakeholder trust and ensure
patient safety by providing actionable insights into
the model's decision-making process. As deep
learning continues to gain traction in healthcare and
other regulated domains, the integration of XAI has
become increasingly vital. By offering interpretable
explanations, XAI bridges the gap between model
performance and user understanding, ensuring that
advanced AI systems can be deployed responsibly
and effectively [12]. Such advancements are key to
aligning cutting-edge technologies with the ethical
and practical demands of critical applications like
medical diagnostics. XAI model for Explainable
Segmentation is shown in Fig. 1.
Various techniques and tools have been devel-

oped to enhance the explainability of Deep Neural
Networks (DNNs) explainability. One common
approach is visualizing layer-wise activations and
features of trained networks, offering insight into
how models process input data. Additionally, the
interplay between computer vision and natural
language processing (NLP) has been explored to
make AI models more interpretable. Methods such
as visual question-answering systems and image
annotation tools aim to provide human-friendly
explanations by combining visual and textual in-
formation. Industry-academia collaborations have
launched Explainable AI (XAI) challenges to
advance explainability methods for applications in
domains like finance and healthcare [13]. In
healthcare, the need for transparency extends
beyond imaging systems to include contextual lan-
guage models such as Bidirectional Encoder
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Representations from Transformers (BERT). While
DNNs often struggle to provide comprehensible
justifications for their decisions, symbolic AI meth-
odsdsuch as knowledge graphsdoffer a more
interpretable alternative by leveraging structured,
human-readable representations.
In regulated industries like healthcare, where un-

derstanding not just how a model made a decision
but also why it failed is essential, integrating XAI into
deep learning models has become indispensable
[14]. Addressing the explainability gap is crucial for
improving model performance, fostering user trust,
and ensuring compliance with ethical and legal
standards. Recent research has focused on bridging
this gap, proposing taxonomies and evaluation
frameworks for XAI, as well as exploring visual an-
alytics techniques to demystify the inner workings of
deep learning models. Post-hoc explainability ap-
proaches have gained significant attention, gener-
ating explanations after model predictions. These
include strategies for assessing trustworthiness in
DNNs, improving interpretability in machine
learning systems, and enhancing the transparency of
decision-making processes. Specific studies have
examined the application of XAI in medical imaging,
radiology, and clinical decision support systems
(CDSS), highlighting its importance in healthcare
contexts [15]. Moreover, emerging research empha-
sizes integrating explainability techniques directly
into model architectures, enabling real-time, inter-
pretable predictions. As healthcare increasingly
adopts AI-driven tools, the development of domain-
specific XAI solutions tailored for diverse
tasksdsuch as tumor detection, disease progression
analysis, and patient outcome predictiondhas
become a priority. Such advancements ensure that

AI systems can support critical decision-making
processes while maintaining safety, reliability, and
user trust.
In this study, we use the term “Explainable Arti-

ficial Intelligence” (XAI) as an umbrella concept
encompassing related notions such as “interpret-
able AI,” “understandable AI,” and “trustworthy
AI.” For Convolutional Neural Network (CNN)
models, explainability refers to any techniques or
supplementary information that help elucidate the
underlying decision-making processes of these
models, enabling users to comprehend how and why
specific predictions are made. The literature
reviewed in this study is collected from diverse and
reputable sources, including Web of Science, Sci-
enceDirect, IEEE Xplore, Google Scholar, and other
scholarly databases. The focus was on studies
addressing reliable, interpretable, and explainable
AI solutions specifically for biomedical applications
[16]. These applications span various domains, such
as medical imaging, clinical diagnostics, and patient
outcome predictions, reflecting the increasing inte-
gration of AI into healthcare workflows. This
comprehensive review also emphasizes the impor-
tance of aligning XAI approaches with the unique
demands of biomedical contexts. For instance,
explainability methods in AI for healthcare must
address both technical and ethical challenges, such
as minimizing bias, ensuring fairness, and main-
taining patient privacy. Furthermore, the study ex-
plores how integrating domain knowledgedsuch as
medical ontologies or expert annotationsdcan
enhance the interpretability of AI systems and build
trust among practitioners. By systematically
analyzing existing research, this study highlights
critical gaps in current XAI methodologies, such as

Fig. 1. XAI model for Explainable Segmentation [8].
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limited real-time applicability, insufficient focus on
multi-modal data integration, and challenges in
communicating complex AI decisions to non-tech-
nical users. Addressing these gaps is crucial for
developing next-generation AI systems that are not
only high-performing but also transparent and
trustworthy. Ultimately, this work is a foundation
for advancing XAI practices in biomedical applica-
tions, supporting a future where AI-powered tools
can safely and effectively assist in critical healthcare
decision-making processes.
The main contributions of this research are as

follows:

� This manuscript comprehensively reviews
Explainable Artificial Intelligence and Deep
Learning for Biomedical Imaging Diagnostics.

� Provides a thorough assessment of XAI ap-
proaches, with an emphasis on their applica-
bility to various imaging modalities and medical
specialties, in contrast to earlier surveys.

� A thorough analysis of XAI methods for com-
prehending DNN models, as well as a classifi-
cation of these methods according to their range,
suitability, and applications.

� Discuss existing challenges in Biomedical Im-
aging Diagnostics based on the related studies.

� Identifying future directions according to the
categorizing XAI techniques.

� The findings are crucial for healthcare pro-
fessionals, policymakers, and AI engineers
striving to integrate advanced technology into
clinical workflows while ensuring accuracy,
reliability, and ethical compliance.

The manuscript's organization is as follows: Sec-
tion 2 discusses related studies based on the sem-
inal title of the manuscript, with limitations and
merits. Section 3 introduces explainability tech-
niques for DNN. Section 4 offers Explainability for
Biomedical Imaging with categories of BI. Section 5
discusses the application and Challenges of XAI in
Biomedical Imaging. Finally, Section 6 concludes
the manuscript.

2. Related works

This section delivers a detailed discussion of
existing research studies, emphasizing their de-
scriptions, methodologies, and the challenges they
address in the context of biomedical imaging ap-
plications. Key focus areas include image classifi-
cation, image segmentation, automated diagnosis,
predictive modeling, clinical decision support sys-
tems (CDSS), and the role of Explainable AI (XAI) in
enhancing model interpretability and trustworthi-
ness. Applications of Deep Neural Networks (DNN)
in medical contexts is shown in Table 1.

Table 1. Applications of Deep Neural Networks (DNN) in medical contexts.

Application Description Challenges Example

Image classification DNNs automatically learn fea-
tures from medical images and
classify them (e.g., benign vs
malignant tumours) [17].

Interpretability issues; Black-box
nature of DNNs makes it difficult
to understand how decisions are
made.

IBM Watson for health used
DNNs to aid oncologists in
diagnosing cancers.

Image segmentation DNNs segment medical images,
marking regions of interest like
lesions or tumors, useful in
treatment planning.

Errors such as false positives and
false negatives can lead to
misdiagnosis or unnecessary
treatment.

Deep learning-based chest X-ray
image segmentation for pneu-
monia or COVID-19 detection.

Automated diagnosis AI systems diagnose diseases by
processing large datasets, iden-
tifying patterns, and predicting
outcomes, reducing clinician
workload.

Bias in the training data can lead
to incorrect diagnosis for certain
patient groups [18].

Watson's oncology system helps
suggest treatments for cancer
patients but faced limitations in
different regions.

Predictive modeling DNNs predict disease progres-
sion and patient outcomes based
on image and patient data.

Poor generalizability if the model
is not trained on diverse datasets;
overfitting on internal hospital
data.

AI models predicting the likeli-
hood of pneumonia or COVID-
19 progression based on medical
imaging.

Assisting in clinical
decision support

DNN models assist clinicians by
providing additional insights into
potential diagnoses or treatment
plans.

Lack of transparency in how de-
cisions are derived poses trust
issues for clinicians and patients
[19].

Clinical decision support sys-
tems (CDSS) use DNNs to help
in diagnosing eye diseases based
on fundus images [22].

XAI for explainability XAI techniques are needed to
make predictions understand-
able and trustworthy, helping
clinicians interpret the decisions
of DNN models [20].

Trade-off between accuracy and
interpretability; post-hoc
methods can provide explana-
tions, but they may not always
reflect the true decision-making
process [21].

DARPA's XAI program focuses
on creating explainable DNN
models for medical applications
[23].
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� Image Classification: In image classification,
studies have illustrated the effectiveness of deep
learning models in differentiating between
various medical conditions, such as dis-
tinguishing benign from malignant tumors or
pinpointing disease states from X-rays, MRIs,
and CT scans, despite advancements, challenges
persist, such as addressing imbalanced datasets,
improving generalizability across diverse patient
inhabitants, and minimizing false positives and
negatives.

� Image Segmentation: In image segmentation,
research has focused on delineating provinces of
interest (PoIs), such as tumors, lesions, or or-
gans, with pixel-level accuracy. Techniques like
U-Net, Mask ReCNN, and transformer-based
models (T-Model) have shown favourable re-
sults, yet challenges remain in segmenting
complex structures, mitigating artifacts in im-
aging data, and executing robust performance
across different imaging modalities.

� Automated Diagnosis: For automated diagnosis,
AI models aim to provide genuine and rapid
diagnostic predictions, decreasing the workload
of medical practitioners. However, integrating
these tools into clinical workflows is problem-
atized by concerns over transparency, liability,
and the need for validation in real-world
scenarios.

� Predictive Modeling: In predictive modeling,
studies seek to forecast disease progression,
treatment outcomes, or patient survival based on
multimodal data, including imaging, genomics,
and electronic health records (EHRs). There are
challenges and limitations, which include
handling missing or noisy data, ensuring model
interpretability, and managing computational
complexity in large datasets.

� Clinical Decision Support System: For clinical
decision support systems (CDSS), AI-powered
tools assist healthcare providers by offering in-
sights based on vast amounts of medical data.
While these systems can enhance decision-
making, they face hurdles in ensuring real-time
performance, user-friendliness, and clinician
acceptance.

� Explainable AI: Finally, Explainable AI (XAI) has
emerged as a crucial component for building
trust in AI systems by offering transparent and
interpretable predictions. Studies in this area
explore methods such as saliency maps, atten-
tion mechanisms, and rule-based systems to
clarify model decisions. XAI has the following
limitations and issues: balancing explainability
with model accuracy, ensuring scalability across

applications, and tailoring explanations to the
needs of diverse stakeholders.

This section underscores the significance of
managing these challenges to unlock AI's full po-
tential in biomedical imaging. Future research must
focus on developing robust, explainable, and ethi-
cally sound AI systems that can seamlessly fuse into
healthcare settings to enhance patient consequences
and optimize clinical workflows.

3. Explainability techniques for DNN

This section discusses the explainability tech-
niques for utilizing deep neural networks. These
techniques make these models' forecasts and deci-
sion-making processes translucent and interpret-
able. Fig. 2 shows the hierarchical order of
Explainability techniques for DNN. They are cate-
gorized into Intrinsic Interpretability Methods, Post-
hoc Interpretability Methods, and Model-specific
versus Model-agnostic Approaches.

i) Intrinsic Interpretability Methods

These techniques are created into the standard's
architecture to produce it intrinsically interpretable.

� Attention Mechanisms: It highlights essential
parts of the input data that contribute most to a
decision. For instance, in medical imaging,
attention maps can show specific regions of an
X-ray that are critical to the prediction.

� Self-Explaining Networks: These networks are
designed to produce explanations as part of their
outputs. For example, prototype networks classify
inputs by comparing them to learned prototypes,
providing human-understandable reasoning.

ii) Post-hoc Interpretability Methods

These methods analyze and explain the pre-
dictions of pre-trained models without altering their
architectures.

� Visualization Techniques: Saliency Maps and
feature Visualization are essential techniques for
posthoc interpretability Methods. In saliency
maps, highlight the regions in input data (e.g.,
image pixels) that most influence the model's
prediction. Techniques include Grad-CAM
(Gradient-weighted Class Activation Mapping)
and Integrated Gradients. Feature Visualization
explores the patterns and features learned by
individual neurons or layers of the network. This
helps understand what kind of input activates a
specific neuron or layer.
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� Perturbation-based Methods: Occlusion Sensi-
tivity is an essential part of perturbation-based
methods, in which input data are systematically
occluded (e.g., by masking regions of an image)
to observe how the prediction changes. This
identifies which input features are crucial for the
model's decision.

� Surrogate Models: LIME (Local Interpretable
Model-agnostic Explanations and SHAP (Shap-
ley Additive Explanations) are part of Surrogate
Models. LIME generates a simple interpretable
model (like linear regression) locally around a
specific prediction to approximate the complex
model's decision boundary and significance
scores to each input feature based on its contri-
bution to the model's prediction, inspired by
cooperative game theory in SHAP.

� Counterfactual Explanations: It delivers alter-
native techniques that would change the stan-
dard's prediction. For instance, in medical
diagnostics, “If the tumour size were 1 cm
shorter, the forecast would be innocent."

� Rule Extraction: Extracts logical rules from the
model's forecasts. For instance, it might develop
if-then regulations corresponding to the model's
decision boundaries.

iii) Model-Specific vs. Model-Agnostic
Approaches

These techniques depend on the category of the
deep learning methods.

� Model-Specific Approaches: Tailored to specific
architectures, such as CNNs, techniques like
Grad-CAM are explicitly designed for convolu-
tional layers in image processing.

� Model-Agnostic Approaches: General tech-
niques that can be applied to any machine
learning model, such as LIME and SHAP.

Understanding the decision-making procedures
of Deep Neural Networks (DNNs) is intrinsically
challenging due to their complexity and opacity,
leading to their designation as “black-box” models.
The intricate layers of computation within DNNs
make it hard to interpret how specific projections
are generated directly. Visualization approaches
such as heatmaps are commonly employed to
highlight the significance of different features and
indicate which parts of the input data the model
relies on most. Heatmaps provide a visual repre-
sentation of feature significance by assigning colors
to various areas of the input based on their contri-
bution to the model's predictions. For instance,
warmer colors may indicate regions of high impor-
tance, while cooler colors highlight less relevant
areas. Despite their widespread use, the quality of
heatmaps must be validated using techniques like
perturbation analysis, where input data is system-
atically altered (e.g., by occlusion or adding noise) to
evaluate how changes affect model outputs [24]. In
addition to these approaches, improvements in
hybrid explainability techniques are emerging,

Fig. 2. Explainability techniques for DNN.
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combining perturbation-based and gradient-based
methods to enhance explanations' fidelity and us-
ability. Such techniques are particularly relevant in
critical applications like medical imaging, where
comprehending the model's rationale is as essential
as its accuracy. As the field progresses, developing
standardized evaluation metrics for explainability
techniques, such as fidelity, stability, and human
interpretability, is becoming increasingly necessary.
These metrics help ensure that visual explanations
are accurate and understandable to end-users,
including clinicians and domain experts, thereby
fostering trust and adoption of AI systems in high-
stakes environments like healthcare [25].
Explaining by example is another important

technique to increase the explainability of a model.
This approach validates the model's predictions by
providing comparable examples or by creating more
descriptive elements, such as text. This approach
links the model's predictions with additional data or
well-known examples. It can help consumers un-
derstand the reasoning behind their predictions.
Interpretation techniques can be divided into
groups according to their nature, scope, and appli-
cation. Meanwhile, global processes attempt to
explain the overall model performance. Local
methods focus on defining specific results. More-
over, the techniques can be model-agnostic. This
means those techniques work with all model types,
particular models, or certain architectures. There
are also two types of annotation approaches: Post-
hoc. Where the description is developed after the
model is created and within which the model can be
interpreted from the start [26e36].
Visualization techniques are important for under-

standing how image-based models make decisions.
Improved insights can be obtained by extending
techniques such as Individual Conditional Expecta-
tion Plans (ICE) and Partial Dependency Plans
(PDP), which help to visualize feature importance. It
also uses forward feature dependency to identify
discriminative image areas that affect predictions.
The model predictions provided are interpreted
through perturbation-based techniques such as local
model-agnostic description (LIME), which approxi-
mates the local model around the projections and
often agrees with them. Human instinct is very good
[37]. Expository AI (XAI) visualization is supported
by various tools and packages. For example, the
Descriptor visual analysis framework integrated into
TensorBoard allows users to understand model
limitations and improve performance. XAI technol-
ogies have also been created by major cloud plat-
forms. Vertex XAI from Google Cloud explains
AutoML and custom-trained models; Amazon

SageMaker Clarify generates heatmaps for feature
significance based on PDP and SHAP, which aids in
understanding the model. Analogously, Microsoft's
InterpretML toolbox offers information on both
black-box and white-box models. As XAI approaches
advance, it is more crucial than ever to assess
explanation quality statistically and qualitatively to
ensure the explanations satisfy various applications'
unique requirements. It has been suggested that
quantitative measures, including relevance mask
correctness, be used to evaluate the effectiveness of
visual explanations in an impartial manner [38]. Last
but not least, recent developments such as Grad-
CAM, Grad-CAMþþ, and Integrated Grad-CAM
have greatly enhanced confidence and interpret-
ability by emphasizing key areas in input pictures
and improving the visual explanation of CNNs. By
bridging the gap between human comprehension
and black-box models, these techniques increase AI
systems' transparency and the trustworthiness of
their conclusions.

4. Explainability for Biomedical Imaging

Biomedical imaging comprises various modalities,
such as ultrasound and traditional X-rays. Medical
picture capture usually requires expensive equip-
ment and might take a long period. The substantial
obstacles that researchers in the field confront are
partly caused by this high expense and time
commitment. However, research into lung illnesses
and breast cancer has accelerated due to the
increasing availability of datasets for chest radio-
graphs, mammograms, and thoracic computed to-
mography (CT). The amalgamation of explainable
AI (XAI) methodologies with deep neural network
(DNN) models has facilitated extensive illness
research in diverse specialties, such as ophthal-
mology and radiology. Interestingly, radiology has
become a prominent discipline, indicating the ur-
gent necessity to use XAI in this sector [7]. XAI has
enabled the identification of biases and potential
errors in DNN predictions, a crucial step in ensuring
equitable and reliable healthcare delivery. XAI-
driven models, by offering clear and interpretable
outputs, are better positioned to comply with these
regulations while enhancing the confidence of cli-
nicians and patients in AI-powered diagnostics.
Integrating Explainable AI (XAI) techniques with

Deep Neural Network (DNN) models has further
revolutionized biomedical imaging, allowing
improved research across specialties such as
ophthalmology, cardiology, and radiology. In
ophthalmology, for instance, XAI-enhanced DNNs
have been used to detect diabetic retinopathy from
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retinal fundus images, providing high diagnostic
accuracy and transparent insights into the features
contributing to the diagnosis. Similarly, in cardi-
ology, AI systems are used to analyze echocardio-
grams and predict cardiovascular risk with
interpretable outputs that can aid clinicians in de-
cision-making. The combination of biomedical
imaging advancements and XAI methodologies is
reshaping the landscape of disease diagnosis and
treatment planning. As the availability of imaging
datasets continues to grow and explainability
techniques evolve, the integration of XAI into
medical imaging workflows promises to improve
accuracy, trust, and accessibility across a broad
range of specialties. XAI Evaluation Techniques are
shown in Table 2.

4.1. Conventional imaging/X-rays

A readily available and reasonably priced imaging
modality that has been widely used for COVID-19
diagnosis is the conventional chest X-ray (CXR). For
example, research used CXR pictures to categorize
pediatric pneumonia caused by viruses and bacteria
using a customized and fine-tuned VGG16 model.
Critical locations within the photographs were
highlighted by applying techniques such as Grad-
CAM and LIME to visualize the model activations.
Using an ensemble of five distinct DNN models,
another study produced an area under the curve
(AUC) of 0.92 for CXR classification on the XrPP
dataset, showing higher performance than transfer
learning. To improve interpretability, heatmaps
were created by combining the separate heatmaps
from each model.

Additionally, to help medical personnel compre-
hend AI-driven predictions, Bayesian Teaching was
used to produce explanations for pneumothorax
diagnosis using CXR. This study examined the cor-
relation between AI classifications and human
diagnostic predictions using saliency maps and
Bayesian approaches with eight radiologists.
Another example shows how visual characteristics
contribute to nodule malignancy by using capsule
vector weights to predict malignancy in lung cancer
datasets.
Additionally, cardiac hypertrophy and car-

diomegaly have been diagnosed using CXR pic-
tures. Convolutional neural networks (CNN) that
use explainable feature maps enhance interpret-
ability. While explainability in algorithms may not
always be able to replicate the complex knowledge
of human radiologists, XAI is essential for deter-
mining the underlying causes of certain AI conclu-
sions improving clinical decision-making.

4.2. Computed tomography (CT)

LIME has shown to be helpful in the field of CT
imaging for separating COVID-19 from normal pic-
tures using eight CNN models. Another method
employed t-distributed stochastic neighbor embed-
ding (t-SNE) in conjunction with Grad-CAM to
exhibit clearly defined clusters for both COVID-19
and non-COVID-19 instances. Furthermore, U-Net
models achieved better metrics in accuracy, preci-
sion, specificity, and AUC in the classification of
COVID-19 CT images than current state-of-the-art
techniques like COVID-Net and COVNet. Here,
super-pixel contributions were quantitatively

Table 2. XAI evaluation techniques.

Technique Focus Description Ref

Insertion, deletion Evaluation of interpretability Involves the insertion and removal of
pixels to assess interpretability.

[39]

CLEVR Quantitative evaluation of ten methods Employs a Visual Question Answering
(VQA) framework to evaluate multiple
methods through proposed metrics.

[40]

GWAP Improve human understanding of AI Uses game-based methodologies to
generate valuable data from gameplay
experiences.

[41]

Methodology saliency
methods

Determine suitability of methods Focuses on assessing the effectiveness
of different methods for specific tasks.

[42]

Taxonomy Evaluation of interpretability Proposes three approaches for evalu-
ating interpretability.

[43]

CMIE Customizable model evaluation Utilizes in-model and post-model in-
formation to generate multidimensional
interpretability evaluations.

[44]

Modality-specific Feature
Importance (MSFI) metric

Multi-modal medical imaging Evaluates 16 post-hoc methods across
various imaging modalities.

[38]

Z-inspection Trustworthy AI Proposes a general inspection process
to evaluate AI outputs.

[39]
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estimated using SHAP, and predictions were
explained by LIME through picture segmentation.
A complete COVID-19 detection system that in-

tegrates segmentation and classification networks
was developed to improve diagnosis accuracy.
Because of the efficient lung and lobe segmentation
provided by this technology, classification results
increased by an impressive 6 %. Additionally,
employing CT scans, a Joint Classification and
Segmentation (JCS) approach showed effectiveness
in diagnosing and explaining COVID-19, with acti-
vation maps helping prediction interpretability. The
analysis was strengthened by the addition of pixel-
level annotations to the COVID-CS dataset.
Deep learning frameworks have also been used to

forecast the likelihood of cancer in lung nodules on
CT scans. Interestingly, research that used a CNN
ensemble identified which nodules will probably be
identified as cancer within two years with an AUC
of 90.29 %. The results are more interpretable since
Grad-CAM visualizations were used to clarify
model activations associated with input pictures.
Radiologists' trust in clinical diagnosis was greatly
boosted by using soft activation mapping methods,
which improved the localization and categorization
of lung nodules within low-dose CT images [27].

4.3. Magnetic Resonance Imaging (MRI)

The widespread neurodegenerative illness known
as Alzheimer's disease, which affects millions of
people worldwide, has also benefited from
improved imaging methods. Researchers combined
gene expression and image data for multimodal
identification, using several classifiers for gene data
and CNN and SpinalNet structures for MRI anal-
ysis. The identification of relevant genes to improve
explainability was made possible in large part by
LIME. The use of Layer-wise Relevance Propagation
(LRP) for CNN decision process visualization was
largely made possible by the Alzheimer's Disease
Neuroimaging Initiative (ADNI) MRI dataset. This
concept may be used for comparable conditions and
has been useful in clarifying diagnostic predictions
linked to Alzheimer's disease.
By examining the interactions between voxels in

various brain areas, a novel method was also used to
improve clinical accuracy in the early identification
of Alzheimer's disease by giving crucial discrimi-
native information. This validation was carried out
using a weighted MRI dataset and showed better
performance in binary and multiclass classifications
when compared to conventional techniques like
Regional Mean Volume (RMV) and Hierarchical
Feature Fusion (HFF) [28]. White matter lesions

have also been found using MRI, and CNNs have
produced heatmaps to show the voxel contributions
to classification choices. Studies that compared
attribution algorithms found that DeepLIFT was a
better fit than LRP and that the most meaningful
voxel relevance was found around venous arteries.
LRP facilitated using 3D CNNs to diagnose multiple
sclerosis, illustrating how the framework may in-
crease the openness of decision-making processes.

4.4. Ultrasound imaging

Compared to other modalities, ultrasound imaging
has been used less in clinical AI analysis despite its
promise. Various factors, including operator depen-
dence and intrinsic acoustic shadows, impede image
quality management. Still, there have been some
significant breakthroughs. For example, a study that
used MRI and ultrasound to classify prostate cancer
combined shallow machine-learning techniques with
data fusion from many pre-trained deep-learning
models. LIME made explainability easier, which
showed that the fusion method improved model
performance. Ultrasound images have also been
used for breast lesion categorization; the BreastMN-
IST dataset with CycleGAN activation maximization
has been used to improve model prediction visuali-
zation. Compared to previous techniques, the clas-
sifier's accuracy, specificity, and AUC were shown to
be enhanced by the qualitative assessment.
Furthermore, the susceptibility of a breast cancer
ultrasound dataset to adversarial assaults was
investigated, and Multi-Task Learning (MTL) was
used to improve classification accuracies [29e36].
In response to the high false positive rates in

breast cancer diagnostics, the DREAM challenge
was launched, and CNN architectures were used to
produce the winning solutions. Moreover, multi-
modal multiview ultrasound pictures have been
used to large-scale datasets to assess breast cancer
risk. Grad-CAM was used to create heatmaps,
which effectively directed expert assessments. The
suggested SONO design used a timeline resembling
a barcode to improve interpretability and make it
easier to identify underlying substructures in foetal
ultrasound video analysis. Furthermore, despite
significant feature discrepancies across different
architectures, datasets such as EyePACS and DIA-
RETDB1 showed consistent classification perfor-
mance across multiple CNN models [37].

4.5. Cancer detection

Recent advancements in cancer diagnosis, espe-
cially for deep neural network applications,
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including MRI, demonstrate the promise of
explainable AI techniques. Early diagnosis is crucial
for prostate cancer, and multi-modal fusion meth-
odologies that include deep learning models that
have been trained from both ultrasound and MRI
modalities have produced encouraging results in
terms of classification accuracy. LIME made it easier
to identify key characteristics that distinguish
benign from malignant tumors.
Using MRI images with CNN models for lesion

classification Researchers have used the influence
function to evaluate and validate the importance of
specific imaging features in diagnosing liver cancer
and AI interpretation methods are useful for inter-
preting histopathology images. Using the Patch
Camelyon (P-CAM) dataset, the CNN model was
able to accurately detect lymph node metastasis.
The generated LIME descriptions showed good
agreement with clinician opinions. This indicates
that the CNN model successfully learned to asso-
ciate tumors' presence with specific visual elements
[38e43].
As the field of medical imaging grows Integrating

Interpretable AI approaches with various methods
is therefore critical to increasing diagnostic accuracy
and clinical confidence in AI-driven systems. These

approaches have the potential to transform care.
Health through ongoing research and development.
It enables faster identification and more personal-
ized treatment for patients.

5. XAI in biomedical imaging: applications
and challenges

In this section, we discuss theoretically the appli-
cations and challenges of XAI in biomedical imag-
ing. XAI in Biomedical Imaging: Applications and
Challenges is shown in Fig. 3. Overview of the
Feasibility and Requirements for Each Section is
described in Table 3.

5.1. Applications of XAI in medical imaging

Medical imaging consists of various techniques
which are important for diagnosis. Grad-CAM is the
most widely used XAI approach, followed by LRP,
LIME, and SHAP. These methods are common in
the field of ophthalmology. Respiratory science and
neurology. Adding additional information to the
model during training can result in better inter-
pretation and more accurate predictions. Better
diagnostic results may also be achieved by applying

Fig. 3. XAI in biomedical imaging: Applications and challenges.
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multimodal Deep Neural Networks (DNNs), which
enable the identification of hidden patterns in seg-
mentation and classification tasks. The usage of
mobile applications for mass screening, such as
glaucoma diagnosis, that leverage DNN segmenta-
tion and classification is one example of this, which
improves accessibility to healthcare.

5.2. Understanding and improving explainability

Since there isn't a common definition for the word
“explanation” in the context of XAI, attempts are
being made to standardize its meaning. While much
current research mostly uses post-hoc explainability
methodologies, using XAI in clinical settings may be
improved by developing intrinsic explanation
methods. X-Caps is one technique that aims to in-
crease explainability by using high-level visual fea-
tures to produce ratings for malignancies used by
medical professionals. Furthermore, XNN and
scalable Bayesian rule lists are examples of white-
box models that provide interpretable insights with
less accuracy trade-offs, making them more useful
in healthcare applications [11].

5.3. Data-centric XAI

Amodel's performance and ensuing explainability
largely depend on the caliber and amount of
training data. To prevent overfitting, DNNs need
large, high-quality datasets; this is especially
important in medical imaging, where it might be
challenging to gather samples of sick cases. Data
quality may be greatly improved by applying
several denoising techniques and picture pre-pro-
cessing approaches, improving model predictions,
and decreasing the explainability gap. Improved
DNN resilience against noise and irrelevant input
can increase the overall efficacy of medical picture
analysis.

5.4. Model-centric XAI

Diverse data types may be used in DNN models
to reduce bias and enhance generalisability. Sadly,
selective bias results from many models being
trained on data from a particular facility or unit.
Biases in the training data and the models them-
selves may be revealed using counterfactual algo-
rithms. Furthermore, visuals offered by XAI
approaches can aid skilled doctors in spotting any
incorrect or erroneous conclusions made by the
DNN models. Adversarial attack vulnerabilities
must also be addressed because altered pictures
have the potential to confuse models and require
strong detection methods to guarantee correct
interpretations.

5.5. Human-in-the-Loop

DNN models can only partially replace human
knowledge in medical diagnosis. While it is possible
to create predictions on par with human experts,
DNN and XAI methods should help medical experts
get better ideas. The interaction between the doctor
and the model is facilitated by utilizing “human-in-
the-loop,” which allows for adjustments that enable
advanced predictions and appropriate in-
terpretations. Methods such as Bayesian Teaching
can help medical professionals analyze AI-driven
diagnoses. To an eventual diagnosis. Their process
has a better understanding of the matter.

5.6. Incorporating stakeholders in XAI

The current use of DNN models in clinical prac-
tice may need to be improved by a continued
emphasis on the needs of system developers over
end users. Therefore, XAI systems must be designed
with their needs in mind. Of the user, especially
doctors and patients. It is considered to be of utmost

Table 3. Overview of the feasibility and requirements for each section.

Section Standardization
Feasible?

Data-Dependent? User-Involvement
Required?

Applicable in
Clinical Settings?

Improves
Model Trust?

Applications of XAI in medical
imaging

No Yes Yes Yes Yes

Understanding and improving
explainability

No No Yes Yes Yes

Data-Centric XAI Yes Yes No Yes Yes
Model-Centric XAI Yes Yes No Yes Yes
Human-in-the-Loop No No Yes Yes Yes
Incorporating stakeholders in XAI No No Yes Yes Yes
Mathematical and graph-based

XAI approaches
No No No Yes Yes

Explainability to improve models Yes Yes No Yes Yes
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importance. Building acceptance and trust for AI in
healthcare requires a multidisciplinary strategy
considering social, legal, and ethical issues. Work-
ing with physicians throughout the design and
evaluation process helps ensure that the solutions
that build It is consistent with what users consider
reliable and understandable [42].

5.7. Mathematical and graph-based XAI
approaches

Although mathematical methods can improve the
interpretability of models, they don't always provide
real-world examples that end users can relate to.
Graph Neural Networks (GNN) can be used to show
complex connections in data, capturing many types
of interactions. Instead of relying solely on an or-
dered network structure, Studying complex diseases
such as cancer in which various rays interact
throughout the diagnosis and treatment process.
Where this expertise is very useful, The improved
model is evaluated on synthetic and real-world
datasets. To prove how well they understand in-
teractions based on graphs [43].

5.8. Explainability to improve models

Explainability may act as a catalyst for model
development, starting a feedback loop where
improved comprehension motivates better model
construction, which stimulates the development of
more potent explainability strategies. For example,
Layer-wise Relevance Propagation (LRP) model
pruning can assist in locating important filters and
weights inside a model. The network topology of
CNN layers may be visualized using techniques like
deconvolution, Grad-CAM, and Guided Grad-
CAM. This helps with hyperparameter optimization
and overall performance improvement. Explain-
ability enhances classification accuracy and furthers
continuous model development by tying saliency
maps to the data supporting model predictions [44].

5.9. Comparison of deep learning and explainable
AI (XAI) based on biomedical imaging applications

By concentrating on the same issues of account-
ability and transparency, it will be easier to see how
deep learning in medical imaging and liability
problems in autonomous vehicle accidents are
comparable. To make crucial judgments, like navi-
gating highways in autonomous vehicles or identi-
fying illnesses through medical imaging, both
domains mostly rely on sophisticated deep learning
models, sometimes called “black-box models.”

When mistakes are made, though, the opaqueness
of the decision-making process raises serious
questions. Deep learning is used by these AI algo-
rithms in autonomous cars to make snap judgments
regarding braking, speed, and obstacle avoidance.
Determining who is at fault is the main problem
when an accident occurs due to a system malfunc-
tion, such as the AI failing to recognize a pedestrian.
Who is itdthe owner, the software developer, or the
automaker? Liability is made more difficult because
deep learning models don't always explain their
choices, making it difficult to pinpoint the failure's
primary cause.
In medical imaging, deep learning models are also

used to diagnose conditions, such as detecting tu-
mors or fractures in images. Diagnosis errors, such
as false negatives (missing a hazardous illness) or
false positives (incorrectly classifying a benign
problem as cancer), can have serious health re-
percussions for patients [45,46]. The same dilemma
arises: who is to blame for the mistakedthe hospital
that used the technology, the clinician who depen-
ded on the AI, or the AI system's creators? It is
challenging to comprehend how the AI arrived at its
conclusion in both domains due to the opacity of
deep learning models. This black-box characteristic,
or lack of interpretability, makes accountability
more difficult. A single error, such as an accident or
a misdiagnosis, can have potentially fatal outcomes
in medical imaging and driverless automobiles. The
fundamental problem remains the same: it is chal-
lenging to completely trust AI systems as they are
not yet transparent enough to communicate their
decision-making procedures in a way that is intel-
ligible to humans [47].
Explainable AI (XAI) can help with this. XAI ap-

proaches seek to shed light on how AI models
make judgments to assist stakeholders and doctors
in comprehending the rationale behind forecasts.
XAI can contribute to greater confidence in AI
systems in both domains by enhancing the inter-
pretability of deep learning models. In medical
imaging, for instance, XAI technologies can assist
physicians in comprehending the reasons for an
AI's flagging of a certain area as problematic,
enabling them to make better judgments. Similarly,
XAI may help explain why an AI made a certain
braking or route choice in autonomous driving,
making it more straightforward to assign blame
during a failure [48,49].

6. Conclusion and future scope

The importance of regulatory frameworks in the
development and uptake of Explainable Artificial
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Intelligence (XAI) in biomedical imaging is high-
lighted in this paper. Transparency, interpretability,
and dependability in AI models are becoming
increasingly important as AI is further incorporated
into healthcare, especially for tasks like picture
segmentation and classification. Because they can
establish centralized criteria for creating and
comparing XAI algorithms, regulatory organizations
play a crucial role in directing this process. Before
being used in clinical settings, these guidelines will
guarantee that all models satisfy uniform quality
and safety requirements. Additionally, XAI provides
a mechanism for AI model creators to respond to
the healthcare industry's growing ethical and regu-
latory requirements. Developers may make it
simpler to comply with health standards and obtain
permission for clinical usage by integrating
explainability into AI systems, which gives de-
velopers clear insights into how choices are made.
In addition to fostering trust among healthcare
providers, this openness will guarantee that AI
models comply with patient safety regulations,
lowering the possibility of incorrect diagnoses or
forecasts.
Furthermore, establishing biological reference

datasets that are openly accessible and backed by
regulatory organizations would improve developers'
capacity to assess and improve their XAI models.
These datasets can serve as a benchmark for eval-
uating the explainability and performance of AI
systems, guaranteeing steady advancement.
Another potential direction for the future is feder-
ated learning, which allows hospitals to provide
useful data for model training while protecting pa-
tient privacy. Furthermore, by using automated,
explainable models to streamline decision-making,
XAI integration into clinical workflows might lessen
the workload for medical professionals like radiol-
ogists and ophthalmologists. These technologies
guarantee that physicians maintain oversight while
gaining insights from AI, improving the decision-
making process's efficiency by keeping a human-in-
the-loop approach.
The role of XAI in guaranteeing compliance will

be crucial as healthcare rules continue to change.
AI systems utilized in healthcare contexts are
increasingly required by legal and ethical stan-
dards to be efficient, open, responsible, and trans-
parent. By offering interpretable models that can be
evaluated, validated, and trusted by regulatory
agencies and medical practitioners, XAI is uniquely
positioned to meet these objectives. XAI can pro-
mote AI's safe and efficient integration into
healthcare by upholding these regulatory frame-
works and guaranteeing compliance, eventually

improving patient outcomes and boosting trust in
AI-based medical devices. In the future, we will
utilize an advanced version algorithm of XAI and
Deep Learning for Biomedical Imaging Applica-
tions to mitigate essential issues and challenges
such as segmentation, dataset size, speed, cost,
security, and privacy.
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