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Abstract—This work investigates the application of event-triggered
control (ETC) in combination with the linear quadratic regulator (LQR)
for discrete-time systems. A methodology is presented that uses an
iterative approach to tune the LQR controller and reduces control effort
by replacing periodic control with ETC. Lyapunov’s stability theory is
applied to design triggering mechanisms and analyse their effects on
control design. Using the inverted pendulum on a cart as a reference
system, it is demonstrated that proper tuning of the LQR controller and
the implementation of an event-based control mechanism can reduce
control energy and actuator effort.

Index Terms—Non-linear Dynamical Systems, Event-Triggered Con-
trol, LQR, Inverted Pendulum.

I. INTRODUCTION
Control systems constantly strive to optimise efficiency and per-

formance. The Linear Quadratic Regulator (LQR) is known for its
optimal control, balancing performance and control cost. However,
selecting the Hermitian positive-definite matrices Q and R often
through trial and error raises doubts about LQR’s true optimality [1].
It is known that raising the values of elements in the weighting matrix
Q enhances the system’s dynamic response, but it comes at the cost
of increased energy consumption. On the other hand, the matrix R
is related to the energy consumption of the controller, but increasing
the values of the matrix R too much may result in non-zero steady-
state values. Several works have been developed aiming to improve
the selection method of weighting matrices encompassing various
techniques, such as analytical approaches [2], [3], stochastic methods
[4], non-parametric optimisation [5], including genetic algorithms
[6]–[8], among others.

In contrast, Event-triggered control (ETC) is acclaimed for activat-
ing control based on specific system states or outputs [9], [10], while
also frequently reducing energy consumption in networked control
systems (NCS). Event-driven control approach, with an emphasis on
emulation or co-design, has been extensively studied and applied
in various domains [11], such as power systems [12], advanced
manufacturing [13], and robotics [14]. In [15], techniques for ETC in
discrete-time linear systems with precisely known parameters were
presented, applicable to both emulation and co-design. Furthermore,
[16] introduces an extension of these techniques with a state ob-
server. In [17] the emulation problem was considered for discrete-
time linear parameter-varying systems (LPV), and [18] also presents
event-triggered control techniques for LPV systems. On the other
hand, [19] presents ETC techniques for non-linear systems, and in
[20], [21], event-triggered control techniques for the class of non-
linear control systems via network representation using quasi-LPV
polytopic models were discussed.

Combining ETC with LQR could enhance system performance
by cutting redundant control actions and further lowering energy
consumption [19]. Since LQR already prioritises energy savings
through appropriate weighting matrices, merging these techniques
could lead to more efficient and sustainable control systems.

In this work, an approach is presented that simultaneously employs
LQR and ETC for discrete-time systems. This novel methodology
involves the design of a triggering mechanism based on the Lyapunov
stability theory and the formulation of an optimisation problem in
terms of Linear Matrix Inequalities (LMIs) to refine the mechanism
by reducing the number of events. The impact of different weightings
on the matrices Q and R on the system’s performance is simulta-
neously investigated, and the consequences of using an ETC-based
triggering device on control force concerning energy conservation and
actuator effort are analysed. Finally, the effects based on the number
of events observed in the trigger mechanism are also evaluated to
show the efficiency of the proposed approach. While the combination
of ETC and LQR is not new [22], [23], the main contribution of
this paper lies in combining these two approaches, in the context of
discrete-time systems, with a focus on improving control efficiency.

In this paper, the inverted pendulum on a cart serves as the
reference system; however, the implications of these findings may
apply to various engineering applications. It is demonstrated that with
proper tuning of an LQR controller and the implementation of an
event-based control mechanism, both peak and total control energy
and actuator effort can be significantly reduced. This contributes
to the ongoing discussion on the need for more efficient systems,
promoting resource savings and addressing sustainability aspects.

II. TECHNICAL BACKGROUND
A. Linear Quadratic Regulator

LQR is a widely used control technique designed to minimise
a quadratic cost function. This function typically represents the
weighted quadratic deviations of the system state from a desired
trajectory and the control inputs from their optimal values [24]. For
a discrete-time linear system described by:

x(k+1) = Ax(k)+Bu(k), (1)

the quadratic cost function, J, to be minimised is:

J =
∞

∑
k=0

(
x(k)⊤Qx(k)+u(k)⊤Ru(k)

)
, (2)

where x ∈Rn is the state vector, u ∈Rnu is the control input vector, and
y∈Rn is the system output. Both Q∈Rn×n and R∈Rnu×nu are weighting



matrices that indicate the importance of state and control efforts in the
optimisation process. Additionally, Q = Q⊤ ≥ 0 is positive semi-definite,
and R = R⊤ > 0 is positive definite.

Solving the LQR problem entails implementing optimal control, under
the following static state-feedback control law, u(k) = −Kx(k), and
K is the gain matrix that can be calculated by solving the Riccati
equation defined for its discrete form as: A⊤SA − S + Q − A⊤SB(R +
B⊤SB)−1B⊤SA = 0. With the solution S = S⊤ > 0, the optimal gain reads
K =

(
R+B⊤SB

)−1 B⊤SA.

B. Event-Triggered Control

ETC is widely used in NCS [21], where the benefit of controlling
spatially distributed systems encounters the challenge of required com-
munication subsystems, often leading to unnecessary resource usage [19].
A more efficient strategy for conserving communication resources is to
implement event-based control instead of periodic control. The main
objective is to analyse system behaviour and identify key moments for
generating control events. It updates the control input, u(k) ∈ Rnu , only
when a condition is met, thus reducing overall updates and communi-
cation. This is done by formulating a function f : Rn ×Rn → R, such
that f (e(k),x(k)) > 0, where x(k), e(k), and k represent the system
states, measurement error, and discrete time instant, respectively. Each
controller activation is dictated by the triggering device defined by f ,
implying the controller maintains the previous state until the mechanism
activates again. Figure 1 illustrates the event-based mechanism, with ZOH
representing the zero-order hold that retains the last control input until a
new event occurs. When designing the trigger mechanism f , a key metric
is comparing the system’s performance with the number of activation
events. The aim is to achieve optimal performance while minimising
both errors and event count.

System Sensor
Event-

triggering
mechanism

Controller ZOH

x(k)

x(ki)u(k)

Fig. 1: Event-based control mechanism for precisely known systems.

III. MAIN RESULTS
A. Triggering Mechanism

Consider a discrete-time linear system described by (1), where the
control law is the same as that defined in Section II-A and is expressed
by

u(k) = Kx(ki). (3)

By using (3) in (1) one has

x(k+1) = Ax(k)+BKx(ki). (4)

Defining the measurement error in the interval [ki,ki+1) as e(k) = x(ki)−
x(k), and replacing x(ki) in (4), the closed-loop system yields

x(k+1) = A x(k)+ν(k), (5)

where, ν(k) = BKe(k), A = A+BK.
Based on the event-based control theory for linear discrete-time sys-

tems, the following Lemma provides conditions to certify the stability of
the closed-loop system (5).

Lemma 1: If there exist positive definite matrices P ∈ Rn×n, Qσ ∈
Rn×n, Qδ ∈ Rn×n, and matrices X1 ∈ Rn×n, X2 ∈ Rn×n, X3 ∈ Rn×n such
that  Ψ −X1 +A ⊤X⊤

2 X1 +A ⊤X⊤
3

X2A −X⊤
1 P−X2 −X⊤

2 X2 −X⊤
3

X3A +X⊤
1 −X3 +X⊤

2 −Qδ +X3 +X⊤
3

< 0, (6)

hold with Ψ =−P+Qσ +X1A +A ⊤X⊤
1 , then the closed-loop system

(5) is asymptotically stable under the event-based strategy, with the
triggering function

f (e(k),x(k)) = ν(k)⊤Qδ ν(k)− x(k)⊤Qσ x(k). (7)

a similar trigger criterion was already introduced in the literature [15],
[16].

Proof 1: Consider the following matrix

β =

[
I A ⊤ 0
0 I I

]
. (8)

Multiplying (6) on the left by (8) and on the right by its transpose,
results in [

−P+Qσ +A ⊤PA A ⊤P
PA P−Qδ

]
< 0. (9)

Multiplying (9) on the left by
[
x(k)⊤ v(k)⊤

]
and on the right by its

transpose, one has:

x(k)⊤(−P+Qσ +A ⊤PA )x(k)+ x(k)⊤A ⊤Pν(k)

+ν(k)⊤PA x(k)+ν(k)⊤Pν(k)−ν(k)⊤Qδ ν(k)< 0.

Which can be rewritten as

(A x(k)+ν(k))⊤P(A x(k)+ν(k))

− x(k)⊤Px(k)+ x(k)⊤Qσ x(k)−ν(k)⊤Qδ ν(k)< 0. (10)

Substituting (5) in (10), results in

− x(k)⊤Px(k)+ x(k)⊤Qσ x(k)+ x(k+1)⊤Px(k+1)

−ν(k)⊤Qδ ν(k)< 0.

Considering the Lyapunov function V (x(k)) = x(k)⊤Px(k), which is
positive definite since P > 0, one can write V (x(k + 1))−V (x(k)) <
ν(k)⊤Qδ ν(k)−x(k)⊤Qσ x(k)< 0, ensuring that V (x(k+1))−V (x(k))<
f (e(k),x(k)). According to Lyapunov’s theory, it is guaranteed that
the system converges asymptotically as long as f (e(k),x(k)) < 0, thus
concluding the proof.

B. ETC Optimisation Mechanism

Consider the triggering function (7). To reduce the number of events,
in the worst case, the following conditions must be respected

ν(k)⊤Qδ ν(k)≤ x(k)⊤Qσ x(k), (11)

and multiplying both sides of (11) by (x(k)⊤Qσ x(k))−1 holds
ν(k)⊤Qδ ν(k)(x(k)⊤Qσ x(k))−1 ≤ 1. Therefore, one should minimise Qδ

and maximise Qσ for the system to take longer to violate the constraint.
The optimisation problem can be structured as follows:

min: σ

subject to:

{
(6),

[
X −Qδ I

I Qσ

]
≥ 0, trace(X)< σ ,

(12)

where X ∈Rn×n, and σ ∈R are the decision variables. By applying the
Schur complement yields X −Qδ −Q−1

σ ≥ 0, or simply Qδ +Q−1
σ ≤ X .

Taking the trace on both sides: trace(Qδ +Q−1
σ ) ≤ trace(X). Note that

by minimising σ we are also minimising the sum of Qδ +Q−1
σ , which

will imply a smaller number of events since we are minimising Qδ , and
maximising Qσ .

C. Tuning the LQR

The effects of different weights assigned to Q and R are evaluated
based on the following criteria. Let us define the sampled values Ω :
{q ∈ R,0.0001 ≤ q ≤ 1000} and Φ : {r ∈ R,r = 10n | 0 ≤ n ≤ 2}∪{r ∈
R,r = 100i | 2 ≤ i ≤ 10}, then Q and R were iteratively varied as follows:
Q = qQ0 and R = rR0, where Q0 = I and R0 = 0.0001.



To determine the controller’s sensitivity in terms of the choice of
matrices Q and R, a new cost function is defined:

JNEW = J+N, (13)

where J is computed as in (2) and N is the number of events. In this
way, the choice for the matrices Q and R will consider the performance
in terms of energy expenditure, and number of events. However, for
real applications, when designing values for Q and R, it is important
to consider two aspects: the convergence time of the response and the
maximum control effort. Thus, constraint conditions are established,
observing whether the peak value of the control effort falls within
acceptable limits as described below:

min JNEW , subject to:


Q ≤ 1000× I,
R ≤ 1,
Maximum time = 30 s,

(14)

where, I∈Rn×n is the identity matrix. The first two aspects are related to
the fact that under certain conditions, the optimisation process described
in the previous section does not find feasible solutions. Therefore, it was
necessary to establish limits for Q and R. The third one is associated with
real-time control, where a few seconds can be crucial for stabilising the
system, making it necessary to limit the convergence time of the states.

IV. NUMERICAL EXPERIMENTS
The simulations were conducted using MATLAB version R2023a, the

YALMIP parser [25], and the SeDuMi solver [26], executed on a system
equipped with a 12-core Intel Core i9-10920XE CPU, 64 GB of RAM,
and an NVIDIA T400 4GB GPU running Windows 11 Enterprise, version
22H2. The codes used for the simulations are available in [27].

A discretized-linearised model of the traditional inverted pendulum on
a cart problem was considered to illustrate the proposed method. The
objective is to stabilise a pendulum with mass m atop a massless rod
of length L, by manipulating a cart of mass M. The cart’s motion is
dictated by the control force exerted in the X-axis direction, where x is
the position of the cart, v is its velocity, θ is the angle of the pendulum, ω

denotes the angular velocity, g is the gravitational acceleration. The states
and matrices of the state-space representation of a linearised continuous
system are described below:

x1
x2
x3
x4

=


x
v
θ

ω

 , A =


0 1 0 0
0 0 −mg

M 0
0 0 0 1
0 0 (M+m)g

LM 0

 , B =


0
1
M
0

− 1
LM

 .

The inverted pendulum setup was established with the following param-
eters: m = 1, M = 0.1, L = 0.5, and g = 9.81.

A. Q and R Weighting
Figs. 2 and 3 depict the control action in relation to the choice of R

and Q, respectively, for the continuous system over 1-second simulation.
Due to the difficulty of representing the Q matrix in the figure’s legend,
Fig. 3 details the multiplicative factor of Q0 = I, q, which is defined in
the previous Section. The larger R and the smaller Q are, the lesser the
controller’s expenditure; the larger Q and the smaller R are, the faster the
states converge, but at the cost of greater control action expenditure. By
selecting R = 1 a reduction of 95.92% is noticed in the maximum value
of the control input when compared with R = 0.0001. On the other hand,
by varying Q from Q = 1000 to Q = 0.0001 a reduction of 91.03% is
noticed in the maximum control input. This result elucidates that at the
expense of some computational effort, iterative methods can be applied
to achieve real optimal control when using LQR.

B. Event Triggered Control
As depicted in Fig. 4, the trigger device introduced in this study

operates by directing the states to the target values within the specified
time frame. The values that minimise the cost function indicated in
Equation (13) are Q= 10I and R= 1, adopted for the system with a trigger
device for Figs. 4-7. The energy of the controller can be estimated by
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Fig. 2: Effect of varying R in the input control with fixed Q = I.
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Fig. 3: Effect of varying Q in the input control with fixed R = 1.

calculating the sum of the squared terms of the control signal. For the sake
of comparison, using the parameters recommended by Brunton and Kutz
[28], specifically Q = I and R = 1 for the inverted pendulum simulation,
the presented methodology results in a reduction of the maximum control
input by 97.45% on the peak value and a decrease of 97.40% in total
energy consumption.
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Fig. 4: Triggered control applied to inverted pendulum on a cart:
states behaviours (top) and input control (bottom).

This significant energy reduction highlights that the selection of
weighting matrices should not be considered a secondary factor in
controller design. It plays an essential role that must be taken into
account. As evidenced by our findings, an appropriate selection can lead
to significant energy savings and reduced resource consumption. Such
optimisation not only enhances system efficiency but also aligns with
sustainable engineering practices. By minimising unnecessary energy use
and optimising performance, we can achieve both environmental and
economic benefits, emphasizing the interconnection of effective control
design and sustainable resource management.

Further, the application of ETC illustrated that by incorporating an
intermediary step of discretization, effective control performance can still
be achieved. Given that controllers are predominantly designed as digital
systems, selecting a discrete model over its continuous counterpart can be
suitable. Ensuring congruence between the model and the digital control
framework enhances performance and reduces the risk of inconsistencies
stemming from model-controller misalignment. Integrating LQR with
ETC can play a pivotal role in enhancing control design.



The versatility of the methodology presented allows one to consider
various metrics when selecting Q and R, by simply altering the cost
function presented in Equation (13). For instance, by applying the
triggering device, a new cost function could be established to focus
exclusively on minimising the number of events, rather than on both
the events and the overall cost. This might involve imposing penalties
on control expenditure and settling time. Alternatively, one could adjust
Q and R to optimise the cost function for the continuous plant, among
other potential strategies.

Considering the cost function presented in (13) to select the weighting
matrices, we noted a minimum of 68 events with the maximum inter-
event interval of 6, as shown in Fig. 5. In contrast, the periodic approach
uses 120 events. Table I lists the number of events for various Q and R
values, where q represents the multiplication factor of the matrix Q = I
and the elements “-” indicate unfeasible solutions.

0
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0 20 40 60 80 100 120

Fig. 5: Number of events for Q and R selected by (13) and inter-event
samples.

TABLE I: Number of Events Related to R and Q = qI Matrices.
q

R 0.0001 0.001 0.01 0.1 1 10 100 1000
0.0001 - 68 84 86 85 86 86 86
0.001 - 90 68 84 86 85 86 86
0.01 - - 90 68 84 86 85 86
0.02 - - 92 83 85 87 85 86
0.03 - - - 88 82 87 87 86
0.04 - - - 86 77 89 87 86
0.05 - - - 88 82 90 86 85
0.06 - - - 89 82 90 86 85
0.07 - - - 90 75 85 86 85
0.08 - - - 91 74 84 86 86
0.09 - - - 90 75 85 86 85
0.1 - - - - 68 84 86 85
1 - - - - 90 68 84 86

C. Comparison Between The Models
The continuous-time system was discretized with a sample time Ts =

0.25 seconds, followed by the implementation of the trigger device. Fig. 6
and 7 show the comparison between the continuous plant, the discretized
plant, and the discretized plant with a trigger mechanism, in terms of
state behaviour and control input, respectively.

As expected, the triggered model takes longer to converge due to
the control acting only at specific moments when the states exceed the
thresholds set by the triggering conditions. On the other hand, in terms of
maximum effort, the triggered model performs better than the continuous
one, with a reduction of 57.14% in the control input peak value and
18.14% in the total control input energy. Additionally, the cart’s deviation
from the equilibrium position is smaller in the triggered model compared
to both the continuous and discrete models, although this improvement
is not observed for the angle position.

These results point to the fact that triggered control can be used
to improve energy expenditure in various systems, especially those
under energy saturation, battery-operated devices, or where the control
effort should be minimised to prolong the lifetime of actuators. This
improvement, combined with reduced network traffic in NCS, is one of
the potential benefits of this application. Another advantage is its event-
centric focus, which becomes particularly vital in systems exposed to
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Fig. 6: Comparison between continuous model, discretized model
and discretized model with trigger device for R and Q selected by
Equation (13) criteria: position state behaviour (top) and angle state
behaviour (bottom).
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Fig. 7: Comparison between continuous model, discretized model,
and discretized model with trigger device for R and Q selected by
Equation (13) criteria: input control.

external disturbances. Rather than designing a controller that continuously
adapts to all perturbations, the system can be engineered to respond
exclusively to environmental changes that pose critical challenges to the
system’s stability.

V. CONCLUSIONS
In this paper we presented a new methodology that uses an iterative

approach for tuning the LQR controller, and a robust method to reduce
control effort by replacing periodic control with an event-triggered
mechanism in discrete-time systems. A new condition in the form of
LMI was proposed for designing the ETC via emulation.

The new cost function is able to prioritise the optimisation of state
convergence, control expenditure, and the number of controller activation
events, simultaneously. While this method has proven effective, we also
acknowledged that alternative objective functions can be utilised. For
instance, if one’s primary concern is energy expenditure and control
effort, modifications can be made to emphasise these aspects. Conversely,
in situations where the event count is paramount due to remote commu-
nication systems, the tuning could be adjusted to prioritize reducing the
number of events. Therefore, the methodology introduced in this work
is versatile and can be tailored for enhanced efficacy based on specific
requirements.

Despite the iterative approach adopted in this work to analyse the
effects of different Q and R matrices in LQR tuning, we confined our
methodology to merely adopting Q as the identity and multiplying it by
various scalar values. An alternative strategy might involve evaluating
the controllability matrix of a system and weighting Q differently for
each state, assessing which states exert the most influence on system
behaviour. As a potential avenue for future research, one could develop a
mathematical methodology to propose alternative optimisation techniques
for LQR tuning.
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[25] J. Löfberg, “Yalmip : A toolbox for modeling and optimization in

matlab,” in In Proceedings of the CACSD Conference, (Taipei, Taiwan),
2004.

[26] J. Sturm, “Using SeDuMi 1.02, a MATLAB toolbox for opti-
mization over symmetric cones,” Optimization Methods and Soft-
ware, vol. 11–12, pp. 625–653, 1999. Version 1.05 available from
http://fewcal.kub.nl/sturm.

[27] J. G. Da Silva, J. Vellozo, M. J. Lacerda, A. L. J. Bertolin, and E. Nepo-
muceno, “Event-triggered control and interactive lqr tuning for improved
control efficiency,” October 2024. Retrieved from osf.io/6wms2.

[28] S. L. Brunton and J. N. Kutz, Data-driven science and engineering: Ma-
chine learning, dynamical systems, and control. Cambridge University
Press, 2017.


