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A B S T R A C T

To analyze continuous-time dynamic systems, it is often necessary to discretize them. Traditionally, this has
been accomplished using various variants of the Runge–Kutta (RK) method and other available discretization
schemes. However, recent advancements have revealed that effective discretization can be achieved by
considering the precision of the computer. In studying the stability of such continuous systems according
to Lyapunov theory, it is imperative to consider the Lyapunov function of dynamic systems described by
differential equations, as well as their discrete counterparts. This study demonstrates that the discretization
using the RK method and the effective discretization based on the reduced Runge–Kutta (RRK) method, wherein
terms are reduced due to computational precision, preserve the Lyapunov stability across different step-size
values. Despite a notable reduction in the number of terms, particularly evident in the fourth-order Runge–
Kutta method, stability according to Lyapunov remains intact. Furthermore, reducing the number of terms
decreases the operations required at each iteration, yielding reductions of up to 46.67%, 93.58%, and 99.91%
for 𝑅𝑅𝐾2, 𝑅𝑅𝐾3, and 𝑅𝑅𝐾4, respectively, in the numerical example. This directly impacts computational
cost, as illustrated in the numerical experiments.
1. Introduction

Continuous-time systems governed by differential equations are
widely used to represent the behavior of real systems. An accurate
mathematical model is essential to analyze the behavior of the sys-
tems and also to propose mechanisms to modify them to achieve a
set of desired specifications. When the analysis requires the use of
computers, a discretization scheme is often employed [1,2]. Thus, a
discrete-time system is obtained to make the computational simulation
possible [3–8]. One of the most celebrated discretization techniques in
the literature is the fourth-order Runge–Kutta method, which is based
on the expansion of the Taylor series [9–12].

In [13], it was demonstrated that a stable continuous-time system
and its discretized counterpart via the Padé transformation (of any
order) always share a specific polyhedral Lyapunov function, ensuring
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system stability. This result is particularly significant for the discretiza-
tion of switched systems. Similarly, [14] proposed the Positive Defi-
niteness Preserving Lyapunov Discretization (PDPLD) to address Lya-
punov differential equations, preserving the positive definiteness of so-
lutions. In [15], the SVIR (susceptible–vaccinated–infected–recovered)
epidemic model was analyzed using the non-standard Mickens finite
difference scheme. The study showed that this discretization scheme
effectively preserves the global asymptotic stability of the equilibria of
the corresponding continuous model. Furthermore, [16] introduced a
discretization method for asymptotically stable homogeneous systems
that maintains both the stability and convergence rate of the original
continuous-time system.

When analyzing the discrete-time counterpart derived from a
continuous-time representation, it is fundamental to check whether the
numerical approximation can represent the behavior of the original
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system with a high degree of fidelity. One way to analyze this cor-
respondence is through the Lyapunov stability theory, a topic that has
eceived great attention from the community [17–19].

In [20] an explicit nonstandard Runge–Kutta (ENRK) method was
roposed. The method has a higher accuracy order and preserves the

stability of autonomous dynamical systems. The method is based on
he classical explicit Runge–Kutta method, where instead of the usual

in the formulas there stands an appropriately chosen function that
depends on ℎ. In [21], it was proposed dynamics, which are gener-
alizations of the recognized ODE models formulated in [22], of two
ractional-order SIQRA (Susceptible-Infected-Quarantine-Removed-
ntidotal) malware propagation models and their discretizations. In

this study, it was obtained step-size thresholds which guarantee the
boundedness, and asymptotic stability properties of the fractional-order
models are preserved correctly by the discrete-time models. In the same
context, the dynamics of COVID-19 were studied in [23]. The behavior
f the virus in the environment was investigated, considering human–
nvironment–human transmission. The study was carried out using the
ourth-order Runge–Kutta method and Lyapunov stability theory was
sed to analyze the global stability of the proposed model.

In [24] a non-standard finite differences numerical scheme was
proposed. The scheme was validated by the fact that it preserves
the fixed points and their stable nature and also the positivity. Fur-
thermore, in most of the scenarios, the non-standard scheme behaves
better or equivalently to a Runge–Kutta method of order 4, presenting
also a lower computational complexity. In [25] it is shown that the
global asymptotic stability of the equilibrium points of dynamic systems
described by ordinary differential equations is established based on
yapunov’s stability theory. To study these continuous-time systems,
n explicit non-standard finite difference (NSFD) method was proposed,
hich preserves any quadratic Lyapunov function 𝑉 , i.e. they admit 𝑉
s a discrete-time Lyapunov function.

In [26], a feedback control strategy is established to manage chaos
created by bifurcation in a discretized predator–prey system. Addition-
ally, in [27], stability analysis is performed for discretized systems
using modified Pantakar–Runge–Kutta methods, where the stability is
investigated through the eigenvalues of the Jacobian. Furthermore,
in [28], a continuous-time cancer system is studied using Euler dis-
cretization methods, Taylor series expansion methods, and Runge–
Kutta methods (RK), with stability analyzed via the eigenvalues of the
Jacobian matrix. Lastly, in [29], a discretization approach is applied
to uncertain continuous polytopic systems, with two sufficient LMI
conditions proposed to design robust digital controllers. The first con-
dition uses a constant Lyapunov function, while the second employs a
parameter-dependent Lyapunov function, both ensuring the asymptotic
stability of the closed-loop continuous-time system with the digital
controller.

There is a theoretical concern for the continuous-time and discrete-
time systems to be similar when employing discretization methods.
However, simulations are carried out computationally, and due to
the way computers are designed, there are some limitations in the
simulation. In [30], the computational limitation was explored as a way
o provide more efficient and faster discretization schemes. The method
ses the computational precision of the machine to exclude some terms
n the computation of the discretization. To evaluate the effectiveness
f the method, the trajectory in the 𝑥𝑦 plane, the observability of the
tudied systems, as well as the Lyapunov exponent were investigated.

This article aims to evaluate the discretization of a continuous-
ime system by using tools from the Lyapunov theory and considering
omputational aspects of discrete-time models. The continuous-time
ystem is discretized using the Runge–Kutta method. The discrete-time
odel is then reduced by using the technique developed in [30] which

is able to eliminate some terms based on the computational precision.
The Lyapunov function 𝑉 of the continuous-time system is obtained
by using the Sum of Squares (SOS) formulation [31,32]. Data from the
reduced discrete-time model and from the original discrete-time model
2 
Table 1
Bits arrangement according to the IEEE standard for 64-bit systems.

Signal (±) Exponent (E) Mantissa (S)

1 bit 11 bits 52 bits

are then employed to check if the positivity of the Lyapunov function
𝑉 > 0, and the negativity of 𝛥𝑉 is guaranteed. Numerical experiments
using different step-sizes were employed to evaluate if the properties of
the Lyapunov function are preserved in the discrete-time models. The
experiments illustrate that the reduced discrete-time models and the
original discretization can keep the properties of the Lyapunov function
up to the same step-size. On the other hand, when Lyapunov stability
annot be guaranteed, this occurs for the same discretization step-size
n both methods, 𝑅𝐾 and 𝑅𝑅𝐾 (reduced Runge–Kutta). However, the
educed discrete-time model was able to reduce up to 99.84% of the
erms in the discrete-time model when considering the fourth-order
unge–Kutta method.

By excluding negligible monomials based on computational preci-
ion, the effective discretization approach significantly reduces compu-

tational costs, particularly for the discrete-time Lyapunov function. This
reduction is crucial for real-time applications, such as digital control
systems and field-programmable gate array (FPGA) based implementa-
tions, where high sampling rates and rapid computation are essential.
Specifically, when implementing discretization schemes on FPGAs, the
length of the algorithm becomes a critical consideration. Reducing
the computational complexity of discrete models directly translates
into shorter and more efficient algorithms, which are ideal for FPGA
deployment. These shorter algorithms not only optimize resource us-
age but also improve execution speed, enhancing the appeal of this
approach in hardware-based systems [33,34]. Furthermore, employing
the continuous Lyapunov function directly as a discrete Lyapunov func-
ion ensures that stability properties are retained without the need to
edefine stability criteria, bridging theoretical guarantees with practical
easibility. This study demonstrates that this approach effectively bal-
nces computational efficiency and system stability, enabling scalable
olutions for diverse real-time applications.

The rest of the paper is organized as follows. In Section 2, a back-
ground for the manuscript is presented. A brief description of numerical
omputing, the Runge–Kutta discretization method, and the sum of
quares are reviewed. The method based on the exclusion of terms
ue to finite computer precision and stability analysis is presented in
ection 3. Numerical Experiments are given in Section 4. Section 5

presents the conclusions.

2. Background

In this section, basic concepts of numerical computing, the Runge–
Kutta discretization method and the sum of squares (SOS) decomposi-
tion are briefly described.

2.1. Numerical computing

The IEEE 754-2019 floating-point standard [35] aims to establish
norms for representing and manipulating real numbers on computers.
This standard delineates two fundamental formats: single format and
double format. The analysis conducted herein focuses on the double
ormat, the binary layout of which is illustrated in Table 1.

The precision of a floating-point system is determined by the num-
ber of bits allocated to the format, which includes the bits of the

antissa, including the hidden bit [36]. A floating-point system with
recision 𝜌 can be represented as:

𝑥 = ±(1.𝑏1𝑏2...𝑏𝜌−2𝑏𝜌−1)2 × 2𝐸 . (1)

Using this representation, the following definition of precision is pre-
sented.



P.F.S. Guedes et al.

t
e

𝑥

n

𝐾

𝐾

𝐾

L
i
a
f
s
o

i

Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 193 (2025) 116084 
Definition 1. Precision (𝜌) denotes the number of bits of the mantissa.
The double precision (𝜌 = 53) corresponds to approximately 𝜌10 =
log10(253) ≈ 16 decimal digits [36].

2.2. Runge–Kutta methods

The Runge–Kutta methods constitute a significant group of iterative
echniques utilized for approximating solutions to ordinary differential
quations. Consider the initial value problem determined by:

̇ = 𝑓 (𝑥), 𝑥(𝑡0) = 𝑥0, (2)

where 𝑥 is the state variable and 𝑥0 is the initial value of the state vari-
able at time 𝑡0. The estimated solution of (2) employ the Runge–Kutta
umerical technique:

𝑥𝑘+1 = 𝑔(𝑥𝑘, ℎ), (3)

where ℎ is the step-size.

2.2.1. Second-order Runge–Kutta (RK2)
Let step-size ℎ > 0, then RK2 can be expressed by [10]:

𝑥𝑘+1 = 𝑥𝑘 +
ℎ
2
(

𝐾1 +𝐾2
)

, (4)

where

𝐾1 = 𝑓 (𝑥𝑘),

𝐾2 = 𝑓 (𝑥𝑘 + ℎ𝐾1), (5)

and 𝑓 (𝑥𝑘) is the differential equation and (5) is used for systems that
do not depend on time explicitly.

2.2.2. Third-order Runge–Kutta (RK3)
Let step-size ℎ > 0, then RK3 can be expressed by [10]:

𝑥𝑘+1 = 𝑥𝑘 +
ℎ
6
(

𝐾1 + 4𝐾2 +𝐾3
)

, (6)

where

𝐾1 = 𝑓 (𝑥𝑘),

𝐾2 = 𝑓 (𝑥𝑘 +
ℎ
2
𝐾1),

3 = 𝑓 (𝑥𝑘 + 2ℎ𝐾2 − ℎ𝐾1), (7)

and 𝑓 (𝑥𝑘) is the differential equation and (7) is used for systems that
do not depend on time explicitly.

2.2.3. Fourth-order Runge–Kutta (RK4)
One of the most widely employed discretization methods is the

fourth-order Runge–Kutta method [11,37,38]. Let step-size ℎ > 0, then
RK4 can be expressed by [10]:

𝑥𝑘+1 = 𝑥𝑘 +
ℎ
6
(

𝐾1 + 2𝐾2 + 2𝐾3 +𝐾4
)

, (8)

where

𝐾1 = 𝑓 (𝑥𝑘),

𝐾2 = 𝑓 (𝑥𝑘 +
ℎ
2
𝐾1),

3 = 𝑓 (𝑥𝑘 +
ℎ
2
𝐾2),

4 = 𝑓 (𝑥𝑘 + ℎ𝐾3), (9)

and 𝑓 (𝑥𝑘) is the differential equation and (9) is used for systems that
do not depend on time explicitly. The following Example is introduced
to clarify the implementation of the Runge–Kutta methods:

Example 1. Consider the following continuous-time system:
{

𝑥̇ = 𝑦2,
𝑦̇ = 𝑥 + 𝑦.

⟹

{

𝑥̇ = 𝑓 (𝑥, 𝑦) = 𝑦2,
𝑦̇ = 𝑔(𝑥, 𝑦) = 𝑥 + 𝑦.
3 
For 𝐾1 we have:

𝐾1𝑥 = 𝑓 (𝑥𝑘, 𝑦𝑘) = 𝑦2𝑘,

𝐾1𝑦 = 𝑔(𝑥𝑘, 𝑦𝑘) = 𝑥𝑘 + 𝑦𝑘.

Likewise, for 𝐾2 we have:

𝐾2𝑥 = 𝑓 (𝑥𝑘 + ℎ𝐾1𝑥 , 𝑦𝑘 + ℎ𝐾1𝑦 ),

= 𝑓 (𝑥𝑘 + ℎ𝑦2𝑘, 𝑦𝑘 + ℎ(𝑥𝑘 + 𝑦𝑘)),

= (𝑦𝑘 + ℎ(𝑥𝑘 + 𝑦𝑘))2,

𝐾2𝑦 = 𝑔(𝑥𝑘 + ℎ𝐾1𝑥 , 𝑦𝑘 + ℎ𝐾1𝑦 ),

= 𝑔(𝑥𝑘 + ℎ𝑦2𝑘, 𝑦𝑘 + ℎ(𝑥𝑘 + 𝑦𝑘)),

= 𝑥𝑘 + ℎ𝑦2𝑘 + 𝑦𝑘 + ℎ(𝑥𝑘 + 𝑦𝑘).

Therefore, the discretization of the continuous-time system using
the RK2 method can be given by using (4)

𝑥𝑘+1 = 𝑥𝑘 +
ℎ
2
(𝐾1𝑥 +𝐾2𝑥 ) = 𝑥𝑘 + ℎ𝑦2𝑘 +

1
2
ℎ3(𝑥2𝑘 + 𝑦2𝑘)

+ ℎ2(𝑥𝑘𝑦𝑘 + 𝑦2𝑘) + ℎ3𝑥𝑘𝑦𝑘,

𝑦𝑘+1 = 𝑦𝑘 +
ℎ
2
(𝐾1𝑦 +𝐾2𝑦 ) = 𝑦𝑘 + ℎ(𝑥𝑘 + 𝑦𝑘) + 1

2
ℎ2(𝑥𝑘 + 𝑦2𝑘 + 𝑦𝑘).

Remark 1. It is important to observe that discretizing the continuous-
time polynomial system provided in (10) using RK2 also yields a state
polynomial system in discrete-time. Additionally, the discretization
step-size ℎ is present in the system equations.

Remark 2. When applying RK3 and RK4 discretization to the system
illustrated in Example 1, the resulting discrete-time system would
contain a higher quantity of terms compared to RK2.

2.3. Sum of Squares (SOS)

Obtaining a stability certificate for a nonlinear system by using the
yapunov theory requires finding a positive Lyapunov function that has
ts derivative negative along the trajectories of the system. This can be
 very difficult task for general nonlinear systems. To obtain convex
ormulations, in this work we will consider the class of polynomial
ystems. The nonnegativity constraints will be ensured by using the sum
f squares (SOS) formulation [31].

A multivariable polynomial 𝐹 (𝑥1, 𝑥2,… , 𝑥𝑛) of degree 2𝑑 is SOS, if
t can be written according to

𝐹 (𝑥1, 𝑥2,… , 𝑥𝑛) =
𝑚
∑

𝑖=1
𝑓 2
𝑖 (𝑥1, 𝑥2,… , 𝑥𝑛), (10)

where each polynomial 𝑓𝑖(𝑥1, 𝑥2,… , 𝑥𝑛) has degree lower or equal to 𝑑.
Eq. (10) is nonnegative and can be written as

𝐹 (𝑥) = 𝑧𝑇𝑄𝑧, (11)

where 𝑧 is a vector containing monomials of degree up to 𝑑 of (𝑥1, 𝑥2,
… , 𝑥𝑛).

2.4. Effective computational discretization scheme

According to Guedes et al. [30], in the discretization of continuous-
time systems, some terms may be neglected due to computer preci-
sion. That is, considering the values of the initial conditions, param-
eters, and step-size, some terms resulting from the discretization of the
continuous-time system under study can be excluded.
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Theorem 3 ([30]). Let 𝛾 be the set of monomials, that is, 𝛾 = {𝛼110𝛽1 ,
210𝛽2 ,… , 𝛼𝑛10𝛽𝑛}, with 1 ≤ 𝛼𝑛 ≤ 9 and with 𝛽𝑛 > 𝛽𝑛−1 > 𝛽𝑛−2 > ⋯ > 𝛽1.

Let 𝛺 be the set of difference between 𝛽𝑛 and other exponents, that is, 𝛺 =
{𝛺1, 𝛺2,… , 𝛺𝑛−1} = {(𝛽𝑛 − 𝛽1), (𝛽𝑛 − 𝛽2),… , (𝛽𝑛 − 𝛽𝑛−1)}. If 𝛺𝑖 > 𝜌, then
the monomial 𝛾𝑖 may be excluded in the implementation of the discretization
scheme.

Example 2. Consider the following equation

𝑋 = 0.01 + 2.6731 × 10−22 − 7.8424 × 10−8,
= 1.0 × 10−2 + 2.6731 × 10−22 − 7.8424 × 10−8.

According to Theorem 3, the set of monomials are as follows:

𝛾1 = 𝛼110𝛽1 = 2.6731 × 10−22,
𝛾2 = 𝛼210𝛽2 = −7.8424 × 10−8,
3 = 𝛼310𝛽3 = 1.0 × 10−2.

The set 𝛺 is given by

𝛺1 = 𝛽3 − 𝛽1 = −2 − (−22) = 20,
𝛺2 = 𝛽3 − 𝛽2 = −2 − (−8) = 6.

Since 𝛺1 > 16 (for double precision), 𝛾1 may be excluded without
oss of accuracy.

𝑋 = 1 × 10−2+0.0000000000000000 × 10−2,
−0.0000078424 × 10−2

= 0.9999921576 × 10−2. (12)

This example executed in Matlab is presented below, which con-
firms the exclusion of the term 𝛾1 = 2.6731 × 10−22 does not change the
final result.

>> format long
>> 0.01 + 2.6731e-22 - 7.8424e-8
ans =
0.009999921576000

>> 0.01 - 7.8424e-8
ans =
0.009999921576000

3. Main results

3.1. Stability analysis

The stability of a system can be verified by finding a Lyapunov
function 𝑉 (𝑥). According to Lyapunov’s stability criterion, to ensure
the stability of the system, 𝑉 (𝑥) must be a positive-definite function
that decreases along the system’s trajectories; in other words, its deriva-
ive must be negative. This requirement is formally addressed in the
ollowing theorem.

Theorem 4 ([2]). Consider the system 𝑥̇ = 𝑓 (𝑥), and let  ⊆ R𝑛 be a
neighborhood of the origin. If there is a continuously differentiable function
𝑉 ∶  → R+ such that the following conditions hold:

1. 𝑉 (𝑥) > 0 for all 𝑥 ∈  ⧵ {0} and 𝑉 (0) = 0.
2. 𝑉̇ (𝑥) ≤ 0 for all 𝑥 ∈ .

then, the origin is a stable equilibrium. If the second condition is negative
definite in  then the origin is asymptotically stable. If  = R𝑛 and 𝑉 (𝑥)
is radially unbounded, i.e., 𝑉 (𝑥) → ∞ as ‖𝑥‖ → ∞, then the result holds
globally.
4 
Let us assume for now that 𝑓 (𝑥) is a polynomial vector field, and we
re looking for a Lyapunov function 𝑉 (𝑥) that is also a polynomial in
. In this case, the two conditions stated in Theorem 4 transform into

requirements for the nonnegativity of certain polynomials.

Proposition 1 ([32]). Suppose that for the polynomial system 𝑥̇ = 𝑓 (𝑥),
∈ R𝑛, there exists a polynomial 𝑉 (𝑥) of degree 2𝑑 such that 𝑉 (0) = 0,

nd

𝑉 (𝑥) − 𝜑1(𝑥) is a SOS, (13)

− 𝜕 𝑉
𝜕 𝑥 𝑓 (𝑥) − 𝜑2(𝑥) is a SOS, (14)

where 𝜑1(𝑥) and 𝜑2(𝑥) are positive polynomials. Then, 𝑓 (𝑥) is globally
asymptotically stable.

The classical conditions (Theorem 4) rely on finding a Lyapunov
function and verifying its properties through direct inequalities, Proposit
uses SOS polynomials to provide a computationally tractable method to
verify global asymptotic stability for systems where 𝑓 (𝑥) is a polyno-
mial vector field.

The main novelty of this paper is the application of the Lyapunov
function structure obtained for continuous-time systems to discretized
systems, especially for effective discretization. Let us consider that
the stability of the system (2) has been verified using a polynomial
yapunov function 𝑉 (𝑥). A fundamental condition for the discrete-
ime model (3) to provide a fair representation of its continuous-time

counterpart, is its capability to maintain the properties of the Lyapunov
function 𝑉 , obtained for the original continuous-time system, for a
given step-size ℎ. In other words, (3) accommodates the function 𝑉 as
a discrete Lyapunov function. As a result, drawing from the Lyapunov
stability theory for discrete-time dynamical systems [39], we conclude
that the difference equation model (3) upholds the global asymptotic
stability of (2) irrespective of the chosen step-size.

The following steps summarize the proposed study.

1. The first step is to employ Proposition 1 to obtain a polynomial
Lyapunov function of the original continuous-time systems using
the sum of squares methods. The continuous-time polynomial
Lyapunov function will be used to test the quality of the dis-
cretization method. In this sense, the function 𝑉 (𝑥) will be
replaced by 𝑉 (𝑥𝑘).

2. The next step consists of obtaining the discretization using the
Runge–Kutta method (RK), as described in Section 2.2. In this
case, the RK method uses the original function 𝑓 (𝑥) and the
step-size ℎ to obtain the following discrete-time system

𝑥𝑘+1 = 𝑔(𝑥𝑘, ℎ). (15)

Note that, if the original function 𝑓 (𝑥) is polynomial, then
𝑔(𝑥𝑘, ℎ) is also a polynomial.

3. The third step consists of obtaining the effective discretization
(RRK), that is, the reduction of terms according to Theorem 3.

(a) 𝑥𝑛 receives the discretized system.
(b) Each monomial of 𝑥𝑛 will be placed in a vector in which

each element of the vector corresponds to a term (𝑡𝑖) of
the discretized system.

(c) The reduced discretized system (𝑥𝑅𝑘+1
) is found by elim-

inating the terms that do not respect the computational
precision, 𝜌10 = 16. In this case, a 64-bit operating system
was employed.

At the end of this step, the following discrete-time polynomial
system is obtained

𝑥𝑅𝑘+1
= 𝑔̂(𝑥𝑅𝑘

, ℎ, 𝑥0). (16)

The polynomial function 𝑔̂ in (16) is guaranteed to have fewer
monomials than the polynomial function 𝑔 in (15) which will
impact the computational cost required to certify the stability of
the discretized model.
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4. From the discretized (15), the reduced discretized (16) system
and using the Lyapunov function found in step 1, we carried
out simulations to check the stability of the system. Aiming to
verify whether the discretization and reduced discretization are
capable of maintaining the properties of the Lyapunov function
obtained for the original continuous-time system. Loop to verify
the stability of the system using the Lyapunov conditions. At
each iteration:

(a) Check whether the Lyapunov conditions hold: 𝑉 (𝑥𝑘) > 0
and 𝑉 (𝑥𝑘+1) − 𝑉 (𝑥𝑘) < 0.

(b) If either Lyapunov condition is violated, terminate the
algorithm and return the current values of 𝑥𝑘 and ℎ.

(c) If the conditions are satisfied, update 𝑥𝑘+1 using the RK
method: 𝑥𝑘+1 = RK(𝑓 , 𝑥𝑘, ℎ). The maximum step-size that
guarantees stability was determined by testing various
step-sizes, with increments of 0.1. Optionally adjust the
step size ℎ based on stability analysis.

(d) Check the convergence criteria: Verify if the states (𝑥𝑘
and 𝑦𝑘) are sufficiently close to zero, i.e., if |𝑥𝑘| ≤ 10−16

and |𝑦𝑘| ≤ 10−16. This step confirms that the system is
converging to the origin as 𝑡 → ∞.

(e) If the convergence criteria are met, terminate the algo-
rithm, as the system has stabilized.

5. The loop continues until convergence is achieved, i.e., the system
remains stable, or the step size ℎ and state 𝑥𝑘 are adjusted based
on the stability feedback.

Remark 5. In this work, the Runge–Kutta discretization was expanded
so that high-order polynomials could be excluded. However, there are
implementations of the Runge–Kutta method that keep the functions
implicit making it difficult to exclude monomials from the RK model.

The pseudocode of the proposed method is described in Algorithm
1.

4. Numerical experiments

To illustrate the proposed method numerical experiments are con-
sidered. The routines were implemented in Maple 18 and in Matlab
R2014a using the SOSTOOLS [40]. Consider the following system
orrowed from [25]:
{

𝑥̇ = −𝐴𝑥3 + 𝐵 𝑦,
𝑦̇ = −𝐶 𝑥 −𝐷 𝑦3, (17)

where 𝐴, 𝐵, 𝐶 and 𝐷 are positive constants. The system (17) admits the
following quadratic Lyapunov function with the parameters (𝐴, 𝐵 , 𝐶 , 𝐷)
= (0.16, 1.0, 1.0, 0.1).
𝑉 (𝑥, 𝑦) = 1.209𝑥2 + 1.209𝑦2, (18)

as a Lyapunov function. To evaluate the obtained 𝑅𝐾 and the reduced
𝑅𝑅𝐾 the discrete-time counterpart will be used

𝑉 (𝑥𝑘, 𝑦𝑘) = 1.209𝑥2𝑘 + 1.209𝑦2𝑘. (19)

To observe the behavior of the system (17), the fourth-order Runge–
Kutta method with 𝛥𝑡 = 10−3, the set of the parameters (𝐴, 𝐵 , 𝐶 , 𝐷) =
(0.16, 1.0, 1.0, 0.1) and initial conditions (𝑥(0), 𝑦(0)) = (0.5, 0.01) was em-
ployed. The reference solution is shown in Fig. 1, which was obtained
using ODE4 in Matlab software. The system is stable, therefore when
𝑡 → ∞, 𝑥(𝑡) and 𝑦(𝑡) converge to zero. In other words, the phase plane
orms a spiral into the origin.

Subsequently, the system (17) was discretized by the second, third,
nd fourth-order Runge–Kutta methods, the number of terms in this
 a
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Algorithm 1
1: 𝑉 (𝑥) ← LYAPUNOV(𝑓 )

2: 𝑉 (𝑥𝑘) ← 𝑉 (𝑥)
3: 𝑥𝑘+1 ← 𝑅𝐾(𝑓 , 𝑥, ℎ)
4: procedure RRK(𝑥𝑘+1, ℎ, 𝑥0)
5: 𝑥𝑛 ← 𝑥𝑘+1
6: 𝑥𝑛 ← [𝑡1 𝑡2 𝑡3 … ]
7: 𝑥𝑅𝑘+1

← 𝑓 𝑖𝑛𝑑(𝑥𝑛 𝑡ℎ𝑎𝑡 𝛺 < 𝜌10)
8: return 𝑥𝑅
9: end procedure

10: while not converged do
11: Check if Lyapunov conditions hold: 𝑉 (𝑥𝑘) > 0 and 𝑉 (𝑥𝑘+1) −

𝑉 (𝑥𝑘) < 0
2: if 𝑉 (𝑥𝑘) ≤ 0 or 𝑉 (𝑥𝑘+1) − 𝑉 (𝑥𝑘) ≥ 0 then
3: Terminate the algorithm
4: return 𝑥𝑘, ℎ
5: else
6: Update 𝑥𝑘+1 ← RK(𝑓 , 𝑥𝑘, ℎ)
7: Optionally update ℎ based on stability analysis

18: 𝑘 ← 𝑘 + 1
19: end if
0: Check convergence criteria:
1: if |𝑥𝑘| ≤ 10−16 and |𝑦𝑘| ≤ 10−16 then
2: Convergence achieved. Terminate the algorithm.

23: return 𝑥𝑘, ℎ
24: end if
5: end while
6: return 𝑥𝑘

Table 2
Number of monomials for each of the discretized equations for the systems (17).
The comparison is made between second-order Runge–Kutta (RK2), Reduced RK2
RRK2), third-order Runge–Kutta (RK3), Reduced RK3 (RRK3), fourth-order Runge–
utta (RK4) and Reduced RK4 (RRK4). Initial conditions (𝑥0 , 𝑦0) = (0.5, 0.01), parameters
𝐴, 𝐵 , 𝐶 , 𝐷) = (0.16, 1, 1, 0.1) and step-size ℎ = 10−3.
Equations RK2 RRK2 Reduction

𝑥𝑘+1 14 10 28.57%
𝑦𝑘+1 14 8 42.86%

RK3 RRK3 Reduction

𝑥𝑘+1 199 13 93.47%
𝑦𝑘+1 199 11 94.47%

RK4 RRK4 Reduction

𝑥𝑘+1 9279 15 99.84%
𝑦𝑘+1 6968 12 99.83%

discretization is presented in Table 2. It was found that as the order of
the Runge–Kutta method increases, the number of discretization terms
also increases. Furthermore, there was a reduction in the terms of this
discretization based on Guedes et al. [30]. It was possible to verify that
he reduction in the number of terms was significant, especially for the
ourth-order Runge–Kutta. This reduction was possible due to the finite
recision of the computer considered in Theorem 3.

For the study of the reduction in the number of terms, consider-
ng the variable 𝑥, it is possible to verify that for the second-order
unge–Kutta, there was a reduction of approximately 28.57% in the
umber of terms, whereas for the third-order Runge–Kutta a reduction
f 93.47%, while for the fourth-order Runge–Kutta discretization there
as a significant reduction of 99.84%. Likewise, for the variable 𝑦

here was a reduction in the number of terms of approximately 42.86%,
4.47%, and 99.83% for the second, third, and fourth-order methods,

respectively. Due to the reduction in the number of terms, there is
 reduction in the number of operations performed at each iteration,
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Fig. 1. The reference solution generated by employing the RK4 method using ODE4 with ℎ = 10−3.
consequently contributing to a reduction in computational time.
Table 3 summarizes the basic operations used in the calculations.

The system presents a total of 210 operations per iteration using RK2
whereas, using RRK2, the number of operations was 112, representing
a reduction of approximately 46.67% of operations performed per iter-
ation. There were 2444 and 157 mathematical operations per iteration
when discretized using RK3 and RRK3, respectively. The reduction in
the number of mathematical operations was 93.58%. Likewise, there
were a total of 214155 operations when discretized using RK4 and 184
operations using RRK4. Therefore, there was a reduction of approxi-
mately 99.91% in the number of mathematical operations. Despite this
substantial reduction, especially with RRK4, the system’s characteristics
and simulation quality were maintained.

For the discretized and reduced system for the different Runge–
Kutta methods, according to the data presented in Table 2, it was
possible to verify that by carrying out the numerical simulation, the
system maintains stability as verified by applying ODE4. To illustrate,
Fig. 2 presents the result for the reduced third-order Runge–Kutta
method. It is possible to affirm that when 𝑡 → ∞, 𝑥(𝑡) and 𝑦(𝑡) converge
to zero. In the same way, as observed in Fig. 1, ensuring the stability
of the system (17). Moreover, from Fig. 3 it is possible to see that the
characteristics of the Lyapunov function in (18) are also preserved, that
is, 𝑉 > 0,∀𝑥 ≠ 0 and 𝛥𝑉 < 0,∀𝑥 ≠ 0.

The equivalence presented by the Runge–Kutta and reduced Runge–
Kutta methods is related to the computational precision and order of
convergence of the discretized systems. According to [10], the 𝑅𝐾2,
𝑅𝐾3, and 𝑅𝐾4 methods have orders of convergence 2, 3, and 4, re-
spectively. The order of convergence 𝑝 of a numerical method measures
how quickly the overall error decreases as the step-size ℎ decreases. In
this study, the root mean square error (RMSE) will be considered. The
RMSE is calculated as follows

𝑅𝑀 𝑆 𝐸 =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1
(𝑥𝑎𝑝𝑝𝑟𝑜𝑥 − 𝑥𝑟𝑒𝑓 )2,

where 𝑛 is the number of samples, 𝑥𝑎𝑝𝑝𝑟𝑜𝑥 are the values obtained by the
Runge–Kutta methods and 𝑥𝑟𝑒𝑓 is the reference value obtained using
Matlab’s ode4.
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Table 3
Summary of computational complexity. The basic operations used were analyzed,
that is, Sum/Subtraction, Multiplication/Division and Power. For each method, all the
operators for variables 𝑥, 𝑦 are added and the reduction was calculated.

Operations RK2 RRK2 Reduction

𝑥𝑘+1 𝑦𝑘+1 𝑥𝑘+1 𝑦𝑘+1
Sum/Subtraction 13 13 9 7
Multiplication/Division 60 60 37 28
Power 32 32 18 12
Summation of operators 105 105 65 47
Total 210 112 46.67%

Operations RK3 RRK3 Reduction

𝑥𝑘+1 𝑦𝑘+1 𝑥𝑘+1 𝑦𝑘+1
Sum/Subtraction 205 223 12 10
Multiplication/Division 515 533 52 40
Power 475 493 24 19
Summation of operators 1195 1249 88 69
Total 2444 157 93.58%

Operations RK4 RRK4 Reduction

𝑥𝑘+1 𝑦𝑘+1 𝑥𝑘+1 𝑦𝑘+1
Sum/Subtraction 9278 6967 14 11
Multiplication/Division 59 447 44 165 62 45
Power 54 136 40 162 30 22
Summation of operators 122 861 91 294 106 78
Total 214 155 184 99.91%

Table 4 shows this result, noting that the error is similar for both
RK and RRK. From this analysis, we can see that for the considered
example, the RRK method presents the same order as the RK. In
addition, when the order of the RK and RRK methods increase, the error
decreases. Furthermore, when the step-size ℎ is divided by two, the
RMSE (Root Mean Squared Error) decreases approximately in a ratio
of 4, 8, and 16 for 𝑅𝐾2, 𝑅𝐾3 and 𝑅𝐾4, respectively, due to the order
of convergence. The same behavior is noted for the RRK.

Table 5 shows the maximum value for the step-size at which stabil-
ity is guaranteed according to Lyapunov. The results for the step-size
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Fig. 2. The effective solution generated by employing the RRK3 method with ℎ = 10−3.
Fig. 3. The discrete Lyapunov function by employing the RRK3 method with ℎ = 10−3.
Table 4
Root Mean Squared Error for the Runge–Kutta methods for (𝑥0 , 𝑦0 , ) = (0.5, 0.01),
(𝐴, 𝐵 , 𝐶 , 𝐷) = (0.16, 1.0, 1.0, 0.1), and step-size ℎ of 10−3.

Step-size RK2 RRK2

𝑅𝑀 𝑆 𝐸𝑥 𝑅𝑀 𝑆 𝐸𝑦 𝑅𝑀 𝑆 𝐸𝑥 𝑅𝑀 𝑆 𝐸𝑦

ℎ = 1 × 10−3 1.63 × 10−6 1.6143 × 10−6 1.6824 × 10−6 1.6755 × 10−6
ℎ = 5 × 10−4 4.0843 × 10−7 4.0159 × 10−7 3.9642 × 10−7 3.9411 × 10−7

RK3 RRK3

𝑅𝑀 𝑆 𝐸𝑥 𝑅𝑀 𝑆 𝐸𝑦 𝑅𝑀 𝑆 𝐸𝑥 𝑅𝑀 𝑆 𝐸𝑦

ℎ = 1 × 10−3 2.5359 × 10−8 2.5478 × 10−8 2.5723 × 10−8 2.4746 × 10−8
ℎ = 5 × 10−4 2.9699 × 10−9 2.9848 × 10−9 2.9904 × 10−9 3.0476 × 10−9

RK4 RRK4

𝑅𝑀 𝑆 𝐸𝑥 𝑅𝑀 𝑆 𝐸𝑦 𝑅𝑀 𝑆 𝐸𝑥 𝑅𝑀 𝑆 𝐸𝑦

ℎ = 1 × 10−3 2.5216 × 10−9 2.5329 × 10−9 2.1367 × 10−9 2.1386 × 10−9
ℎ = 5 × 10−4 1.3733 × 10−10 1.4831 × 10−10 1.4344 × 10−10 1.2317 × 10−10

for the original Runge–Kutta and the reduced Runge–Kutta are the

same, once again affirming Theorem 3 and its applicability. Based on

this limit, for the discretization considering ℎ = 0.8 for 𝑅𝐾2, the
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Table 5
Maximum step-size limit for the system discretized by Runge–Kutta methods in which
stability is guaranteed according to Lyapunov.

Method RK2 RRK2 RK3 RRK3 RK4 RRK4

ℎ = 0.1 ℎ = 0.1 ℎ = 0.3 ℎ = 0.3 ℎ = 1.2 ℎ = 1.2

stability of system (17) is not guaranteed, as observed in Figs. 4 and
5. It is observed that the components 𝑥(𝑡) and 𝑦(𝑡) remain unstable
as they did not converge to 0 (Fig. 4), that is when 𝑡 → ∞ these
components continue to oscillate. Furthermore, the properties of the
Lyapunov function in (18) are not preserved (Fig. 5), 𝛥𝑉 assumes both
positive and negative values along the trajectory of the system.

The reduction of terms as performed in [30] takes into account the
computational precision of the software. Furthermore, this reduction
guarantees the observability of the system, the attractors, and the
Lyapunov exponent as shown in [30]. Making a random reduction
of terms, that is, not following a pattern to neglect some terms, can
contribute to erroneous results.

To illustrate this scenario, Table 6 presents the number of terms for
discretization of system (17) by the second-order Runge–Kutta method,
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Fig. 4. The solution generated by employing the RK2 method with ℎ = 0.8.
Fig. 5. The discrete Lyapunov function by employing the RK2 method with ℎ = 0.8.
Table 6
Number of monomials for each of the discretized equations for the systems (17). The
comparison is made between second-order Runge–Kutta (RK2), Reduced RK2 (RRK2),
and New Reduced RK2 (NRRK2). Initial conditions (𝑥0 , 𝑦0) = (0.5, 0.01), parameters
(𝐴, 𝐵 , 𝐶 , 𝐷) = (0.16, 1.0, 1.0, 0.1) and step-size ℎ = 10−3.

Equations RK2 RRK2 NRRK2

𝑥𝑘+1 14 10 8
𝑦𝑘+1 14 8 7

where 𝑅𝐾2 is the original discretization, 𝑅𝑅𝐾2 is the reduced dis-
cretization according to Theorem 3 and 𝑁 𝑅𝑅𝐾2 represents a random
discretization not following any pattern.

For 𝑁 𝑅𝑅𝐾2 it is not possible to guarantee that it has the same char-
acteristics as the system (17). Fig. 6 shows that the phase plane does
ot form a spiral into the origin, as in Fig. 1(c). It is possible to verify

that due to this reduction in the number of terms, the characteristics of
he system are not preserved, in the same way, that the characteristics
f stability according to Lyapunov were also not guaranteed, that is,
𝑉 is not less than zero.
8 
Fig. 6. The phase plane. Solution generated by employing the 𝑁 𝑅𝑅𝐾2 with ℎ = 10−3.
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To confirm that 𝛥𝑉 is not negative, the value of the first five
terations is presented below, showing that 𝛥𝑉 is zero and remains so.
n other words, this random discretization (NRRK2) does not preserve
he properties of the Lyapunov function.

>> format long
>> deltaV(1:5)’
ans =
-0.302370597260196
-0.000000302739803
-0.000000000000001
0.000000000000000
0.000000000000000

5. Conclusion

In this study, the stability analysis is conducted based on the Lya-
unov function of a system discretized using an effective scheme de-

rived from the Runge–Kutta method. Given the reduction in the number
of terms resulting from computational precision in the discretized
model obtained through this scheme, it was important to evaluate
whether Lyapunov stability would be impacted.

Utilizing the Lyapunov function 𝑉 of the continuous-time system
in both the discretized system derived from the standard Runge–Kutta
method and the reduced discretized system stemming from the effective
scheme, it is demonstrated that the properties of the Lyapunov function
are maintained, specifically, 𝑉 > 0,∀𝑥 ≠ 0 and 𝛥𝑉 < 0,∀𝑥 ≠
0. This finding is of considerable significance as it underscores that,
despite the reduction in the number of terms – especially noticeable
in the fourth-order Runge–Kutta method – the computational cost is
significantly diminished while still preserving the properties of the
Lyapunov function. Moreover, both the RK and RRK methods lose the
ability to guarantee Lyapunov stability at the same step-size ℎ. In other
words, when the step-size becomes too large to maintain stability,
both methods fail to preserve the Lyapunov properties at the same
ritical step-size. As future research, the authors are investigating the
roperties of the Lyapunov function of a discretized and reduced system
nder denial of service (DoS) attacks.
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