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Abstract

We present rational Lax representations for one-component parametric quadrirational Yang–
axter maps in both the abelian and non-abelian settings. We show that from the Lax matrices
f a general class of non-abelian involutive Yang–Baxter maps (K-list), by considering the sym-
etries of the K-list maps, we obtain compatible refactorization problems with rational Lax
atrices for other classes of non-abelian involutive Yang–Baxter maps (Λ, H and F lists).
n the abelian setting, this procedure generates rational Lax representations for the abelian
ang–Baxter maps of the F and H lists. Additionally, we provide examples of non-involutive
ulti-parametric Yang-Baxter maps, along with their Lax representations, which lie outside
he preceding lists.

ntroduction

Baxter maps, i.e. set theoretical solutions of the Yang–Baxter equation [5, 6, 8, 21, 23, 25
n important role in the theory of discrete integrable systems. The Yang-Baxter equa
presses a compatibility condition associated with classical integrability features, such a
presentations, conserved quantities, Bäcklund–Darboux transformations, invariant Poisso
res, symmetries and exact solutions (see e.g. [1, 3, 4, 12, 14, 16, 18, 23]).
type of quadrirational Yang–Baxter maps on CP1 × CP1 has been partitioned under th
Baxter equivalence into two lists the F -list [3] and the H-list [19]. These two lists d
ovide a complete classification, as various examples of non-involutive Yang–Baxter map
same type exist that are not included there (see e.g. [15]). This fact does not diminis
portance of F and H lists, since they include some of the most celebrated examples o
Baxter maps which are related to well-known integrable lattice equations and have ver
ting geometric interpretation. As was shown in [11], the non-abelian counterparts of the F
lists can be grouped into four distinct, non-equivalent lists: the K,Λ,H and F lists. I

elian setting, all three lists K,Λ,H become equivalent to the H-list, while F reduces to th
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this paper, we aim to present rational Lax representations of the abelian F and H-lis
rational Yang–Baxter maps and their non-abelian analogues (K,Λ,H and F lists). Matri
rization problems and Lax matrices of Yang–Baxter maps first appear in [22, 23, 24], wher
truction of Lax matrices by Möbius transformations on CP1 is also presented. However,
application of this construction does not always successfully produce rational Lax matrices
particularly obvious in the case of the F -list Yang–Baxter maps. To overcome this difficulty
the symmetries of these maps.
begin with the more general case of the non-abelian Yang–Baxter maps in the K-list. W

t a map with additional free parameters that generates all the K-list for specific constan
of these parameters [11]. Hence, a rational Lax matrix associated with this map produce
rational Lax matrices of the K-list maps. The maps from the rest non-abelian case

tained through the symmetries of the K-list. Based on these symmetries, we introduc
rization problems involving rational Lax matrices for Λ, H and F lists. The abelian limit o
list gives rise to rational Lax matrices for the H-list Yang-Baxter maps (except of HV whic
ted separately), while the abelian limit of the F-list produces compatible refactorizatio
ms with rational Lax matrices for the F -list. This approach does not apply to the FIV map
cks a counterpart in the H-list.
ally, we present non-involutive six parameter extensions of the non-abelian FIII ,FV ,KIII ,H
Baxter maps and their associated Lax representations.

Yang–Baxter maps and Lax matrices

R : X×X → X×X , R : (x, y) 7→ (u(x, y), v(x, y)), where X is a set, is called a Yang–Baxte
ap if it satisfies the Yang-Baxter equation

R23 ◦R13 ◦R12 = R12 ◦R13 ◦R23 .

Rij for i, j = 1, 2, 3, denotes the action of the map R on the i and j factor of X × X ×
R12(x, y, z) = (u(x, y), v(x, y), z), R13(x, y, z) = (u(x, z), y, v(x, z)) and R23(x, y, z) =

, z), v(y, z)).
B map R : (X× I)× (X× I) 7→ (X× I)× (X× I), with

R : ((x, p), (y, q)) 7→ ((u, p), (v, q)) = ((u(x, p, y, q), p), (v(x, p, y, q), q)), (1

d a parametric YB map ([23, 24]). In this definition the set X is the Cartesian product o
of variables X and the set of parameters I with elements p, q ∈ I which remain invarian
R. Typically, we consider that the set of variables X and the set of parameters I have th
re of an algebraic variety. We mainly deal here with the case where, X is the set of comple
rs C or more precisely Riemann sphere CP1 and the set of parameters I is Cn or (CP1)n

n denotes the number of parameters. However, we discuss also non-abelian cases, where w
e that X is a division ring A, while the parameters (including the spectral parameter tha
s in the Lax matrices) will be considered as elements of the center of the ring. We ofte
he parameters separately and denote a parametric YB map as Rp,q(x, y) : X× X → X× X
g it as family of maps.
cording to [22], a Lax Matrix of the parametric YB map (1) is a map L : X × I × I →
× n), such that

L(u, p, ζ)L(v, q, ζ) = L(y, q, ζ)L(x, p, ζ) , (2

2
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or any ζ ∈ I. If the converse is also true, i.e. if the condition that equation (2) holds fo
I implies (u, v) = Rp,q(x, y), then L(x, p, ζ) is called strong Lax matrix. The parameter ζ

does not appear in the map, is called the spectral parameter.
the other hand, solutions of (2) give rise to YB maps under the so-called 3-factorizatio

ty of the matrix L, which states that if u = up,q(x, y), v = vp,q(x, y) satisfy (2), for a matri
the equation

L(x̂, p, ζ)L(ŷ, q, ζ)L(ẑ, γ, ζ) = L(x, p, ζ)L(y, q, ζ)L(z, γ, ζ)

that x̂ = x, ŷ = y and ẑ = z, for every x, y, z ∈ X, then Rp,q(x, y) 7→ (u, v) is a parametri
p with Lax matrix L [13].
it was shown in [22, 24], if a YB map is generated by an effective action of the linear grou
then the YB equation yields a Lax representation. Conversely, using similar argument
2], we can show that the solutions to the refactorization problem (2), which are expresse
ions of GLN , satisfy the 3-factorization property and thus are YB maps.

sition 1.1 ([22]). We consider a parametric map Rp,q : X× X → X× X with

Rp,q : (x, y) 7→ (up,q(x, y), vp,q(x, y)) := (u, v),

ctive1 action GLN × X → X and a matrix valued function L : X× I× I → GLN such that

u = L(y, q, p)[x], v = L(x, p, q)[y], (3

L[x] denotes the action of L ∈ GLN on x ∈ X. Then the map Rp,q is a parametric YB ma
only if

L(x, p, ζ)L(y, q, ζ) = L(v, q, ζ)L(u, p, ζ) . (4

many cases, we can derive rational Lax matrices of YB maps on CP1 ×CP1 by considerin

up GL2 acting on CP1 by Möbius transformations [22, 24], i.e. for L =

(
a b
c d

)
∈ GL2

ax+ b

cx+ d
. For example, Adler’s map (HV map in the list of [19]) is given by

u = y − p− q

x+ y
, v = x+

p− q

x+ y
, (5

is derived by the Möbius transformations corresponding to

L(x, p, ζ) :=

(
x p− ζ + x2

1 x

)
. (6

L(x, p, ζ) is a Lax matrix of Adler’s map [22, 23]. However, this procedure of obtainin
l Lax pairs of rational YB maps is not always successful. For example, the FIV YB ma

u = y

(
1− p− q

x− y

)
, v = x

(
1− p− q

x− y

)
, (7

GLN acts identically on X, iff L = Id

3
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Möbiu o
be YB s
(quadr t
with fi
those e
presen

Ap x
pairs. -
maliza

In -
sition n
be exp n
additio n
Table
Jo
ur

na
l P

re
-p

ro
of

ved by the Möbius transformation that corresponds to the Lax matrix

L(x, p, ζ) :=




√
x

√
x(p− x+ ζ)

1√
x

−√
x


 , (8

clearly not rational.

The H and the F list of quadrirational YB maps and their symmetries

er to distinguish between equivalence classes of YB maps we need an equivalence relatio
introduced in the following Proposition.

sition 1.2 ([19]). If Rp,q : X × X → X × X is a parametric YB map and ϕ(p) : X → X
of bijections parametrised by p ∈ I, then the map

R̃p,q = (ϕ−1(p)× ϕ−1(q))Rp,q(ϕ(p)× ϕ(q)) (9

B map. Equation (9) establishes an equivalence relation in the set of YB maps and if th
ps R and R̃ are related by (9) then we refer to them as equivalent.

e following definition introduces the notion of a symmetry of a YB map.

ition 1.3 ([19]). A symmetry of a YB map Rp,q : X×X → X×X is a parametric family o
ons σ(p) : X → X, such that

(σ(p)× σ(q))Rp,q = Rp,q(σ(p)× σ(q)). (10

te that if σ(p) is a symmetry of a YB map Rp,q, then the maps

Rσ =(σ(p)−1 × Id)Rp,q(Id× σ(q)), R̂σ =(Id× σ(q)−1)Rp,q(σ(p)× Id),

rametric YB maps as well. In general, neither Rσ nor Rσ, are YB equivalent with the ma
te that when the YB map Rp,q is involutive then Rσ = R̂σ.

ition 1.4 ([3]). A map R : X × X → X × X , with R : (x, y) 7→ (u(x, y), v(x, y)), is calle
rational if both maps v(x, ·) : X → X and u(·, y) : X → X , for fixed x, y ∈ X respectively
ational isomorphisms of X .

[3], Adler, Bobenko and Suris classified all parametric quadrirational maps of the subclas
on CP1 × CP1 into five cases of the so-called F -list under (M öb)4 transformations, i.e
s transformations acting independently on each field x, y, u, v. All these cases turned out t
maps. However, in general the YB property is not preserved under (M öb)4 transformation
irational maps are not necessarily YB maps). That allowed [19] to complement the F − lis
ve additional cases that form the so-called H-list. The maps in the H-list are derived from
in the F -list through the symmetries of the latter. Explicitly the F and the H−list ar
ted in appendix A.
plying Proposition 1.1 to any member of the F or the H−list, we obtain associated La
Note though that the obtained Lax pairs of the H−list are rational (an appropriate nor
tion might be of use) while the ones of the F−list (apart FIII and FV ) are not.
Table 1, we present the rational Lax matrices of the H−list, which are obtained by Propo
1.1. Indeed, it can be easily shown that the mappings HI − HV (see Appendix A) ca
ressed, via a GL2 action, as (3) for the corresponding Lax matrices given in Table 1. I
n, (4) for each L given in Table 1, is equivalent to HI −HV . So the matrices L given i
1, serve as Lax matrices for the H−list of Yang-Baxter maps.

4
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HI HII HA
III HB

III HV

; ζ)

( x−p
x−1 ζ(p− 1) x

x−1

p− x x

) (
1 ζp(x− 1)
1
x

x−1
x

) (
1 ζpx
1
x 1

) (
px ζ
1 1

x

) (
x p− ζ + x
1 x

Table 1: Lax matrices of the H−list of quadrirational YB maps

ax matrices of YB maps which are related through symmetry

llowing is the main Theorem of this article.

em 2.1. Let Rp,q : (x, y) 7→ (u, v), be a YB map with Lax matrix L(x, p, ζ) and σp := σ(p
etry of this map. Then the YB map,

R̂σ := (σ−1
p × Id)Rp,q(Id× σq) : (x, y) 7→ (û, v̂), (11

s the refactorization problem

L(σp(û), p, ζ)L(v̂, q, ζ) = L(σq(y), q, ζ)L(x, p, ζ) , (12

he YB map

R̃σ := (Id× σ−1
q )Rp,q(σp × Id) : (x, y) 7→ (ũ, ṽ), (13

s
L(ũ, p, ζ)L(σq(ṽ), q, ζ) = L(y, q, ζ)L(σp(x), p, ζ) . (14

rmore, if L is a strong Lax matrix then equation (12) is equivalent to (û, v̂) = R̂σ(x, y)
14) is equivalent to (ũ, ṽ) = R̃σ(x, y).

Let Rp,q(x, y) := (u(x, p, y, q), v(x, p, y, q)), then from (11) we derive that

(σp(û), v̂) = (u(x, p, σq(y), q), v(x, p, σq(y), q)) . (15

ince L(x, p, ζ) is a Lax matrix of Rp,q, we have that

L(u(x, p, σq(y), q), p, ζ))L(v(x, p, σq(y), q), q, ζ)) = L(σq(y), q, ζ)L(x, p, ζ) , (16

according to (15) is equivalent to (12). Furthermore, if L is a strong Lax matrix of Rp,q

quation (16) is equivalent to (15) which is equivalent to

(û, v̂) = (σ−1
p (u(x, p, σq(y), q)), v(x, p, σq(y), q)) = R̂σ(x, y) .

e proof that the YB map R̃σ satisfies (14) is similar so we omit it.

rk 2.2. Equation (12) does not provide a Lax representation of the YB map (11) in th
al sense of the definition associated with equation (2), as it involves two matrices, L :=
, ζ) and M := L(σα(x), α, ζ), instead of one. However, we still somewhat loosely refer to L
as Lax matrices, since each one is a Lax matrix of a YB map.

5
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Rational Lax matrices for the K,Λ,H and F lists of non-abelian quadrira
tional YB maps

ly, there has been increased interest in non-abelian analogues of YB maps [2, 7, 11, 10, 20
n-abelian extensions of the F and the H lists were obtained in [11]. In detail, there wer
ered quadrirational YB maps defined on A×A where A a division ring, that served as th
mutative analogues of the the F and the H lists. Moreover they were refered to as th
the H list of non-abelian quadrirational YB maps. Furthermore, two additional lists o
elian quadrirational YB maps were obtained the so-called K and the Λ lists (see Figure 1)
e following YB maps were obtained in [11]

Kp,q
a,b,c : (x, y) 7→ (u, v), where

u =y (axy + bq − cq(x+ y))−1 (axy + bp− c(qx+ py)) ,

v =(axy + bq − c(py + qx)) (axy + bp− cp(x+ y))−1 u,

(17

Λp,q
a,b,c := (ψ−1 × id)Ka,b,c (id× ψ) : (x, y) 7→ (u, v), where

u =py (ab(qx+ py)− cq(bp+ axy))−1 (ab(x+ y)− c(bq + axy)) ,

v =q (ab(x+ y)− c(bp+ axy)) (ab(qx+ py)− cp(bq + axy))−1 x,

(18

Hp,q
a,b,c := (ϕ−1 × id)Ka,b,c (id× ϕ) : (x, y) 7→ (u, v), where

u =

(
(axy − bq)(y − c

a
q)−1 − (axy − bp)(y − b

c
)−1

)−1

(
p(axy − bq)(

a

c
y − q)−1 − (axy − bp)(

c

b
y − 1)−1

)

v =
(
a(ab− c2q)xy + abc(q − p)y + bq(c2p− ab)

)
(
a(ab− c2p)xy + abc(p− q)x+ bp(c2q − ab)

)−1
x,

(19

Fp,q
a,b,c := (ψ−1 ◦ ϕ−1 × id)Ka,b,c (id× ϕ ◦ ψ) : (x, y) 7→ (u, v), where

u =p
(
cp(x− y)(b− cy)−1 − a(qx− py)(cq − ay)−1

)−1

(
b(x− y)(b− cy)−1 − c(qx− py)(cq − ay)−1

)
,

v =q
(
(ab− c2q)x+ bc(q − p) + (c2p− ab)y

)
(
q(ab− c2p)x+ ac(p− q)xy + p(c2q − ab)y

)−1
x,

(20

a, b and c denote free parameters that take values in the center of the division ring A an
s the Yang-Baxter parameters p, q. Due to equivalence relation (9), the parameters a, b,
scaled to 1 when they are neither 0 nor ∞. So without loss of generality we can assum
, b, c ∈ {0, 1,∞}. The maps Ka,b,c,Λa,b,c,Ha,b,c, and Fa,b,c, for a = b = c = 1, are referred t
generic maps (or members) of the K, Λ H, and F lists respectively.
ese generic maps admit the dihedral discrete symmetry group D2 =< α, β|α2 = β2 =
= Id >, that is, the following families of bijections

ϕ(p) : x 7→ b

a
(ax− cp)(cx− b)−1, ψ(p) : x 7→ b

a
px−1, (21

6
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K

H Λ

F

Φ Ψ

Ψ Φ

(a) Non-abelian setting

H ≃ K ≃ Λ

F

Φ◦Ψ

(b) Abelian setting

1: The F , H, K and Λ lists of quadrirational Yang-Baxter maps in the non-abelian an
abelian setting. The generic members of these lists are related by the morphisms Φ : R →
id)R(id× ϕ) and Ψ : R→ (ψ−1 × id)R(id× ψ), where ϕ, ψ, symmetries.

s a birational realization of D2.
trong Lax matrix was associated to the generic member of the K list in [11]. Theorem 2.
to obtain Lax matrices for the generic members of the Λ, H and F lists, out of the stron
atrix of the generic map of the K list, as the following Proposition suggests.

sition 2.3. Assuming that the spectral parameter ζ and the Yang-Baxter parameters p,
ments of the center of the division ring A, the following statements hold.

he generic map of the K list, that is mapping (17), is equivalent to the refactorizatio
roblem

L(u, p, ζ)L(v, q, ζ) = L(y, q, ζ)L(x, p, ζ),

here

L(x, p, ζ) :=

(
ax− cp ζ(b− cx)
a− cpx−1 p(bx−1 − c)

)
; (22

he generic map of the Λ list, that is mapping (18), is equivalent to the refactorizatio
roblem

M(u, p, ζ)L(v, q, ζ) =M(y, q, ζ)L(x, p, ζ),

here L is given in (22) and

M(x, p, ζ) :=

(
p(bx−1 − c) ζb(1− c

apx
−1)

a(1− c
bx) ax− pc

)
;

he generic map of the H list, that is mapping (19), is equivalent to the refactorizatio
roblem

M(u, p, ζ)L(v, q, ζ) =M(y, q, ζ)L(x, p, ζ),

here L is given in (22) and

M(x, p, ζ) :=

(
b(ax− cp)(cx− b)−1 − cp ζb

(
1− c

a(ax− cp)(cx− b)−1
)

a
(
1− p cb(cx− b)(ax− cp)−1

)
p
(
a(cx− b)(ax− cp)−1 − c

)
)
;

7
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he generic map of the F list, that is mapping (20), is equivalent to the refactorizatio
roblem

M(u, p, ζ)L(v, q, ζ) =M(y, q, ζ)L(x, p, ζ),

here L is given in (22) and

M(x, p, ζ) :=

(
p
(
a(cx− b)(ax− cp)−1 − c

)
ζ
(
b− cp(cx− b)(ax− cp)−1

)

a− c(ax− cp)(cx− b)−1 b(ax− cp)(cx− b)−1 − cp

)
.

The first item of the Proposition was proven in [11], where it was shown that K admit
ong Lax matrix (22). Then, using the fact that the generic maps of the K, Λ, H, and F
e related via the symmetries (21), the proof of the remaining items of the Proposition ar
t consequence of Theorem 2.1.

lary 2.4. By specifying the constants a, b, c ∈ {0, 1,∞} appropriately in (17)-(20), we obtai
rs of the associated K, Λ H, and F lists of Yang-Baxter maps. For example, the non-abelia
ions of FI , FII and FIII respectively are FI := Fp,q

1,1,1, FII := Fp,q
0,1,1 and FIII := Fp,q

0,0,1. Also
obtained from FII and FV is obtained from FIV by limiting procedures (see [11]).

suming that all variables that participate to the aforementioned maps commute, K, Λ H
lists collapse to the H and F lists of YB maps (see Figure 1). That allows us to obtai
ional Lax matrices associated with the F -list of quadrirational Yang-Baxter maps which ar
ted in Table 2. Note that we were not able to obtain rational Lax matrices associated wit
nce the latter does not admit any symmetry. Mapping FIV admits the Lax matrix (8) tha
rational so we did not include it in Table. 2.

FI FII FIII FV

α; ζ)

(
x−α
x−1 ζ(α− 1) x

x−1

α− x x

) (
1 ζα(x− 1)
1
x

x−1
x

) (
1 ζαx
1
x 1

) (
x α− ζ + x2

1 x

α; ζ)

(
α x−1

x−α −ζα(α− 1) 1
x−α

αx−1
x

α
x

) (
1 −ζαx
1

1−x
x

x−1

) (
1 −ζαx
− 1

x 1

) (
−x α− ζ + x
1 −x

Table 2: Lax matrices of the F−list of quadrirational YB maps

iscussion

article we have provided rational Lax matrices for the generic members of the F , H, K
lists of non-abelian quadrirational Yang-Baxter maps. In the abelian setting, we obtaine
l Lax matrices for the abelian quadrirational YB maps of the H and the F lists.
already mentioned, due to the lack of classification results up to the equivalence relatio
ced in Proposition 1.2, the H and the F lists do not exhaust all quadrirational abelian YB
nd the same holds true for the F , H, K and Λ lists. A possible direction for future researc
omplete the classification of quadrirational YB maps at least in the abelian setting. Fo
le there exist YB maps which are quadrirational but not equivalent with any member of th
he H list. One of such maps together with its associated Lax matrix was firstly introduce
, as a four-parameter extension of the HA

III YB map. This map turned out not to be a

8
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ion, which explains why it is excluded from the H and F lists (the involutivity property o
is preserved under Yang–Baxter equivalence).
what follows, we present four non-abelian six-parameter extensions of FIII , KIII , FV an
aps. We denote these maps as eFIII ,

eKIII ,
eFV and eHV and since they turn out to b

volutive, they are not equivalent to their two-parameter counterparts. Explicitly they rea
(x, y) 7→ (u, v), where p := (p, p(1), p(2)), q := (q, q(1), q(2)) and

u =p−1y
(
p(2)x− q(1)y

)−1 (
pq(2)x− qp(1)y

)
,

v =q−1x
(
p(2)x− q(1)y

)−1 (
pq(2)x− qp(1)y

)
,

(eFIII)

u =q(1) − p(1) + y + (p− q + q(1)q(2) − p(1)p(2))
(
p(1) − q(2) + x− y

)−1
,

v =p(2) − q(2) + x+ (p− q + q(1)q(2) − p(1)p(2))
(
p(1) − q(2) + x− y

)−1
,

(eFV )

u =p−1y
(
p(2)x+ q(1)y

)−1 (
pq(2)x+ qp(1)y

)
,

v =q−1x
(
p(2)x+ q(1)y

)−1 (
pq(2)x+ qp(1)y

)
,

(eKIII)

u =q(1) + p(1) + y − (p− q + q(1)q(2) − p(1)p(2))
(
p(1) + q(2) + x+ y

)−1
,

v =p(2) + q(2) + x+ (p− q + q(1)q(2) − p(1)p(2))
(
p(1) + q(2) + x+ y

)−1
,

(eHV )

for eHV the YB parameters transform as

(p, p(1), p(2); q, q(1), q(2)) 7→ (p,−p(1),−p(2); q,−q(1),−q(2)).

n-abelian YB map eKIII was firstly introduced in [9]. In its abelian limit and for p = q = 1
es with the two-parameter extension ofHA

III given in [15]. Note that in [10] the non-Abelia
hies of the K and the Λ lists were obtained.
will now present explicitly the Lax matrices of the aforementioned non-abelian maps o
ction. The YB map eKIII is equivalent to the refactorization problem L(u,p, ζ)L(v,q, ζ) =

ζ)L(x,p, ζ), where L(x,p, ζ) :=

(
p(1) ζx

px−1 p(2)

)
, while eFIII is equivalent to the refactor

problem M(u,p, ζ)L(v,q, ζ) = M(y,q, ζ)L(x,p, ζ), where L(x,p, ζ) :=

(
p(1) ζx

px−1 p(2)

)

, ζ) :=

(
p(1) −ζx

−px−1 p(2)

)
. Finally, eHV is equivalent to the refactorization problem

L(u, p,−p(1),−p(2), ζ)L(v, q,−q(1),−q(2), ζ) = L(y, q, q(1), q(2), ζ)L(x, p, p(1), p(2), ζ),

9
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L(x,p, ζ) :=

(
x+ p(1) x2 + (p(1) + p(2))x+ p− ζ

1 x+ p(2)

)
, while eFV is equivalent to the refac

ion problem M(u,p, ζ)L(v,q, ζ) =M(y,q, ζ)L(x,p, ζ), where

L(x,p, ζ) :=

(
−x− p(1) x2 + (p(1) + p(2))x+ p− ζ

1 −x− p(2)

)
,

M(x,p, ζ) :=

(
x+ p(1) x2 + (p(1) + p(2))x+ p− ζ

1 x+ p(2)

)
.

leave the study of the non-abelian multi-parametric extensions of YB maps to a futur
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pendices

he F and the H−list of quadrirational Yang-Baxter maps

ang-Baxter maps R of the F and the H−list, explicitly read:

R : CP1 × CP1 ∋ (x, y) 7→ (u, v) ∈ CP1 × CP1

u =pyP,

v =qxP,
P =

(1− q)x+ q − p+ (p− 1)y

q(1− p)x+ (p− q)xy + p(q − 1)y
, (FI)

u =
y

p
P,

v =
x

q
P,

P =
px− qy + q − p

x− y
, (FII),

u =
y

p
P,

v =
x

q
P,

P =
px− qy

x− y
, (FIII),

u =yP,

v =xP,
P = 1 +

q − p

x− y
, (FIV ),

u =y + P,

v =x+ P,
P =

p− q

x− y
, (FV ),

10
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u =yQ,

v =xQ−1,
Q =

(p− 1)xy + (q − p)x+ p(1− q)

(q − 1)xy + (p− q)y + q(1− p)
, (HI)

u =
q

p
y +

1

p
Q,

v =
p

q
x− 1

q
Q,

Q =
(p− q)xy

x+ y − 1
, (HII)

u =
y

p
Q,

v =
x

q
Q,

Q =
px+ qy

x+ y
, (HA

III)

u =yQ,

v =xQ−1,
Q =

1 + qxy

1 + pxy
, (HB

III)

u =y −Q,

v =x+Q,
Q =

p− q

x+ y
. (HV )

e symmetries of the F and the H−list are listed below.

ϕ(p) : x 7→x− p

x− 1
, ψ(p) : x 7→p

x
, (FI), (HI)

ϕ(p) : x 7→1− x, (FII), (HII)

ϕ(p) : x 7→ 1

px
, ψ(p) : x 7→ − x, (FIII), (H

A
III), (H

B
III)

ϕ(p) : x 7→ − x, (FV ), (HV )

ang-Baxter map FIV does not admit a symmetry.
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