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Abstract: Cyber-Physical Systems (CPS) seamlessly integrate computers, networks, and physical
devices, enabling machines to communicate, process data, and respond to real-world conditions in
real-time. By bridging the digital and physical worlds, CPS ensures operations that are efficient, safe,
innovative, and controllable. As smart cities and autonomous machines become more prevalent,
understanding CPS is crucial for driving future progress. Recent advancements in edge computing, AI-
driven vision, and collaborative systems have significantly enhanced CPS capabilities. Synchronization,
optimization, and adaptation are intricate processes that impact CPS performance across different
domains. Therefore, identifying emerging trends and uncovering research gaps is essential to highlight
areas that require further investigation and improvement. A systematic review facilitates this process by
allowing researchers to benchmark and compare various techniques, evaluate their effectiveness, and
establish best practices. It provides evidence-based insights into optimal strategies for implementation
while addressing potential trade-offs in performance, resource usage, and reliability. Additionally, such
reviews help identify widely accepted standards and frameworks, contributing to the development of
standardized approaches.

Keywords: machine learning algorithm; computer vision; cyber-physical systems

1. Introduction
1.1. Context and Importance

This paper focuses on the integration of machine learning (ML) techniques with computer
vision (CV) to address the evolving demands of cyber-physical systems (CPS). CPS, which combines
computational and physical processes, increasingly relies on CV for real-time perception and decision-
making. These systems span various applications, including autonomous vehicles, smart grids,
industrial automation, healthcare devices, and intelligent transportation networks. The real-time
capabilities provided by CV enable CPS to interpret complex visual data from their environment,
facilitating tasks such as object detection, scene understanding, and adaptive control.

However, synchronizing and optimizing ML models for such applications remains a critical chal-
lenge, given CPS’s dynamic and resource-constrained nature. Key issues include ensuring low-latency
processing, maintaining accuracy under varying operational conditions, and efficiently managing
computational resources, particularly in embedded or edge-computing scenarios. Furthermore, CPS
often operates in unpredictable and sometimes harsh environments, requiring robust ML models that
can handle noisy or incomplete data without compromising performance.

Another dimension of the challenge involves the continuous adaptation of ML algorithms to
evolving data patterns and system behaviours. CPS needs adaptive learning strategies to update
models in real-time or near-real-time. This demands advanced techniques such as incremental learning,
transfer learning, and federated learning, which allow models to evolve based on new information
without the need for complete retraining from scratch.
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This paper explores these multifaceted challenges, reviewing recent advancements and identifying
key areas for future research. By addressing these issues, we aim to pave the way for more efficient,
reliable, and adaptable ML-integrated CV solutions in next-generation CPSs.

1.2. Problem Statement

Despite advancements in ML and CV, their deployment in CPS faces several challenges:

1. Synchronization issues due to heterogeneous hardware and real-time constraints. CPS envi-
ronments often consist of diverse hardware components. Ensuring seamless integration and
real-time data processing across these heterogeneous platforms is complex. Synchronization
becomes particularly challenging when multiple sensors and processing units work together to
provide a coherent and timely response. Variations in processing power, data transfer rates, and
latency can lead to discrepancies or delays that undermine the system’s overall performance.
Addressing these issues requires sophisticated algorithms and synchronization protocols that can
harmonize the operation of different hardware components while meeting stringent real-time
constraints.

2. Optimization difficulties related to balancing accuracy and computational efficiency. ML models,
particularly deep learning architectures, often demand substantial computational resources to
achieve high accuracy. In CPS, where real-time decision-making is crucial, striking a balance
between model performance and computational efficiency is essential. Resource-constrained
environments, such as embedded systems or edge devices, may not have the capacity to run
large models or handle intensive computations. Therefore, optimizing models to deliver accurate
predictions without overloading system resources is a significant challenge. Techniques such
as model pruning, quantization, and knowledge distillation are commonly explored, but im-
plementing them effectively without compromising performance remains an ongoing area of
research.

3. Adaptation requirements to ensure robust performance across varying environments and tasks.
CPS often operates in dynamic and unpredictable environments where conditions can change
rapidly. For instance, an autonomous vehicle must adapt to different weather conditions, lighting
variations, and traffic scenarios. Similarly, industrial CPS must handle fluctuations in sensor data
and operational conditions. ML models trained in controlled settings may struggle to maintain
accuracy when faced with such variability. This necessitates adaptive learning strategies and
robust models capable of generalizing across different tasks and environments. Techniques such
as transfer learning, online learning, and domain adaptation are crucial, but integrating them into
CPS without causing disruptions or requiring constant retraining poses significant challenges.

Addressing these challenges is essential for the effective deployment of ML for CV in CPS,
ensuring these systems can operate reliably, efficiently, and safely in real-world applications. This
paper explores potential solutions and innovations aimed at overcoming these hurdles, paving the
way for more resilient and adaptable CPS architectures.

1.3. Objectives

We aim to synthesize existing research on ML techniques for CV in CPS. This involves examining a
wide range of methodologies, including traditional approaches, advanced deep learning architectures,
and other methods, to understand their applications, strengths, and limitations. The review will cover
various CV tasks relevant to CPS, such as object detection, image classification, semantic segmentation,
and anomaly detection. By analyzing existing literature, we intend to highlight the most effective
strategies, key milestones, and technological advancements that have shaped this interdisciplinary
field. This synthesis will serve as a foundation for understanding how ML-driven CV solutions
contribute to enhancing the functionality and reliability of CPS across different domains, including
autonomous vehicles, smart manufacturing, and healthcare systems.
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Despite significant progress, this review seeks to identify and analyze existing gaps related to
synchronization, optimization, and adaptation. In terms of synchronization, we will examine the com-
plexities of integrating heterogeneous hardware components and maintaining real-time performance
across diverse CPS platforms. For optimization, we will explore the trade-offs between computational
efficiency and model accuracy, particularly in resource-constrained environments. Regarding adapta-
tion, we aim to uncover the limitations of current ML models in handling dynamic and unpredictable
environments, where robust performance is essential. By systematically identifying these gaps, we
hope to provide a clearer picture of the unresolved issues that need to be addressed to enable more
effective and reliable ML-CV integration in CPS.

This review will propose future directions for research and development in this interdisciplinary
domain. The recommendations will focus on key areas such as developing more efficient and adaptable
algorithms, enhancing real-time synchronization frameworks, and designing robust models capable of
operating under varying conditions. Additionally, we will highlight the importance of interdisciplinary
collaboration and domain-specific experts to address these complex challenges holistically. Emerging
trends, such as edge computing, federated learning, and hybrid models combining symbolic reasoning
with neural networks, will also be discussed as potential avenues for innovation. By outlining these
future directions, we aim to inspire further research and development efforts, ultimately contributing
to the evolution of smarter, more efficient, and resilient CPSs.

1.4. Structure

The remainder of this article is organized as follows: Chapter 2 outlines the systematic review
process. Chapter 3 provides foundational knowledge on ML, CV, and CPS. Chapter 4 synthesizes key
findings and identifies emerging themes. Chapter 5 evaluates current research and explores future
opportunities. Finally, Chapter 6 offers practical insights and summarizes the significance of the study.

2. Methodology
2.1. Systematic Review Framework:

The review follows a systematic framework, adhering to the Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analyses (PRISMA) [1] guidelines, ensuring a thorough and transparent
evaluation of the relevant literature. The PRISMA framework involves several critical steps, includ-
ing developing a detailed research protocol, conducting comprehensive and reproducible literature
searches across multiple databases, and applying predefined inclusion and exclusion criteria for study
selection.

By adhering to these guidelines, the review minimizes bias and enhances reliability. The method-
ology involves a two-phase screening process (title/abstract and full-text reviews) conducted by
independent reviewers, and discrepancies resolved by consensus. Data extraction is performed using
standardized forms to capture key study characteristics, findings, and quality assessments. In addition,
a PRISMA flow diagram is presented to visually illustrate the search process, the number of studies
identified, screened, and included, as well as the reasons for exclusions.

This systematic approach ensures comprehensive coverage of the literature and facilitates trans-
parency and replicability, enabling other researchers to validate and build upon the findings.

2.2. Search Strategy

When conducting academic research, we have used multiple scholarly databases can ensure
comprehensive coverage of relevant literature. Databases like IEEE Xplore, SpringerLink, Scopus, and
Google Scholar provide unique advantages for finding peer-reviewed articles and conference papers.

For the search process, the following keywords have been used: Machine Learning, Computer
Vision in Cyber-Physical Systems, Synchronization in Machine Learning, and Optimization and
Adaptation of Computer Vision Algorithms. Start by entering keywords into title/abstract and then
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into full-text reviewers, we combine the keywords with AND or OR to explore related works and
access citations.

To consider the most recent works in the field, the search period is limited between 2010 and 2024.
However, in some cases, it was necessary to use older preliminary references to get an overview of all
the basic notions and fully cover the study’s topic. Only papers on ML for CV, emphasizing studies
addressing synchronization, optimization, or adaptation in CPS have been considered. Inclusion
criteria focused on peer-reviewed publications from 2010 to 2023, emphasizing studies addressing
synchronization, optimization, or adaptation in CPS.

2.3. Selection Process

Initially, keywords were entered into the title and abstract search fields to identify articles directly
addressing the core research topics. Following this preliminary screening, full-text reviews were
conducted to assess the relevance and depth of the selected works concerning our research objectives.
Boolean operators such as AND and OR were used to combine these keywords, allowing us to refine
searches, link interconnected concepts, and identify relevant citations more effectively. By strategically
utilizing comprehensive databases and systematically enhancing search methodologies, we aimed
to construct a robust overview of the current research landscape, highlighting existing gaps and
opportunities for future exploration.

To assess the quality and relevance of the studies, we utilized established metrics such as citation
impact and methodological rigor. Additionally, we assigned a qualitative score ranging from 0 to 5
to evaluate how effectively each study addressed our research questions. A score of 5 indicated a
strong alignment between the study’s research question and ours, without suggesting duplication.
This scoring system provided a structured framework for systematically evaluating the relevance and
comprehensiveness of each study within the context of our research objectives.

The temporal distribution of the selected articles, shown in Figure 1, reveals a notable upward
trend, with a significant surge in publications over the last two years. This trend underscores the
growing interest and rapid acceleration in research focusing on ML algorithms for computer vision
(CV) applications within cyber-physical systems (CPS).
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Figure 1. Distribution of the publications between 2016 and 2024.

2.4. Data Extraction:

Data extraction involved identifying and recording key data points critical to our studies for
CV applications in CPS. The first category of data focused on ML models and architectures utilized,
including specific algorithms, frameworks, and design patterns employed in the selected articles. This
information was vital for understanding the underlying computational approaches and their suitability
for CPS applications. Another important area of focus was the synchronization strategies between
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ML algorithms and CPS hardware. This encompassed methods used to ensure smooth integration
and coordination between the computational components of ML systems and the physical processes
controlled by CPS. Details included timing mechanisms, communication protocols, and any co-design
considerations.

We also extracted information on optimization techniques for resource-constrained environments,
emphasizing strategies used to adapt ML operations for hardware with limited computational power,
energy, or memory. These data points provided insights into practical implementations where resource
efficiency was a critical constraint.

Lastly, we gathered data on adaptation methods for dynamic operational contexts, which included
techniques used to modify or retrain ML models in response to changing environmental conditions
or system demands. This category highlighted how studies addressed the challenges of real-time
adaptability and resilience in CPS applications.

Collectively, these data points formed a comprehensive basis for analyzing trends, innovations,
and gaps in the application of CV to CPS, enabling a robust evaluation of current methodologies and
their implications.

3. Background
3.1. Overview of Cyber-Physical Systems (CPS) and Computer Vision (CV)

CPSs integrate computing elements with physical processes to enable real-time monitoring and
control. These systems bridge the physical and digital worlds, driving advancements in smart grids,
autonomous vehicles, industrial automation, and healthcare.

The Core components of CPS include:

Sensors collect data from the physical environment, converting real-world information into digital
signals. Examples include temperature sensors, cameras, LIDAR, GPS, and accelerometers. In
CPS, sensors play a vital role in:

• Monitoring environmental conditions (e.g., in smart buildings).
• Detecting anomalies in industrial processes.
• Providing input for control decisions in autonomous vehicles.

Actuators perform actions based on decisions made by the computational units, transforming digital
commands into physical actions. They can control various devices, such as motors, valves, or
robotic arms. Key functions include:

• Adjusting machinery operations in manufacturing.
• Steering autonomous vehicles based on sensor data.
• Regulating power distribution in smart grids.

Computational Units process sensor data, run control algorithms, and send commands to actuators.
They can range from embedded microcontrollers to powerful cloud-based systems. Functions
include:

• Real-time data analysis.
• Running predictive models to anticipate system behaviours.
• Ensuring system security and reliability through robust software protocols.

Recent advancements in edge computing, AI-driven vision, and collaborative systems continue
to extend CPS capabilities. The functioning of CPS is grounded in real-time data from the physical
environment to guide decision-making and actions. CV enhances CPS in the ways below:

3.1.1. Perception and Sensing

CV acts as the "eyes" of CPS, gathering visual data through cameras and sensors. It is critical for
autonomous vehicles, drones, and industrial robots, where vision algorithms extract features for object
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recognition, motion detection, depth estimation, and tracking to have real-time scene understanding.
An example application in autonomous vehicles is that CV detects pedestrians, vehicles, traffic signals,
and road conditions to provide inputs for the control system.

3.1.2. Real-time Monitoring and Feedback

CPS relies on real-time feedback from the physical environment to function efficiently. Computer
vision (CV) facilitates this by capturing and interpreting visual data in real-time, enabling systems
to dynamically adjust their actions or decisions based on changes in their surroundings. One of the
defining features of CPS is its real-time operation. In industrial environments, robots continuously
monitor production, identify flaws, optimize performance, and anticipate potential issues to prevent
malfunctions. This minimizes human intervention while enhancing production speed. Similarly,
CPS-enabled drones navigate and avoid obstacles during deliveries, while smart home systems
automatically adjust lighting and temperature in response to current conditions. Figure 2 illustrates
CPS application domains.

Figure 2. CPS Applications.

3.1.3. Autonomy and Decision Making

CPSs harness CV, AI, and ML to enable autonomous decision-making. Vision systems analyze
large volumes of visual data, identify patterns, and make independent decisions without human
intervention. For example, drones use vision-based navigation to autonomously avoid obstacles and
inspect critical infrastructure such as bridges and power lines. In healthcare, CPS supports continuous
patient monitoring through wearable devices, robotic surgical tools, and advanced prosthetics, deliver-
ing accurate and timely medical care. Similarly, smart grids optimize energy efficiency by monitoring
consumption and distributing power more effectively, reducing waste and improving overall resource
management.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 January 2025 doi:10.20944/preprints202501.0521.v1

https://doi.org/10.20944/preprints202501.0521.v1


7 of 31

3.1.4. Safety and Surveillance

CV plays a vital role in safety and security, particularly in smart cities and industries. Vision-based
systems can detect objects, identify faces or license plates, and trigger alarms in response to suspicious
activity. Vision-enabled surveillance systems in smart grids monitor critical infrastructure for breaches
or abnormalities caused by intrusions or equipment malfunctions. Self-driving cars also depend on
CPS to process vast amounts of data in real-time, enabling split-second decisions that enhance road
safety.

3.1.5. Human-Machine Interfaces

CV enables human-machine interfaces by interpreting human gestures, motions, or expressions,
allowing systems to interact with humans in real-time. It is widely used in smart gadgets, healthcare,
and robotics. In healthcare, vision systems track patient movements or facial expressions to monitor
health conditions or assist in physical therapy.

3.2. Machine Learning Techniques in CV

The following section explores commonly used ML models in CV, highlighting their architectures,
functionalities, and applications:

3.2.1. Convolutional Neural Networks (CNNs) for Image Recognition

CNNs are a cornerstone in computer vision, designed specifically to handle grid-like data such as
images. Inspired by the human visual cortex, CNNs use a series of convolutional layers to automatically
and adaptively learn spatial hierarchies of features from input images. These networks apply filters
(kernels) that slide over the image, detecting patterns such as edges, textures, and complex objects at
different layers. CNNs are widely used for tasks such as image classification, object detection, and
semantic segmentation. Key components of CNNs include:

• Convolutional Layers: These layers apply convolution operations to the input image, using filters
(or kernels) to detect various features such as edges, textures, and patterns.

• Activation Functions: After convolution, activation functions are applied to introduce non-
linearity, helping the network learn more complex patterns.

• Pooling Layers: These layers reduce the dimensionality of feature maps, preserving essential
information while minimizing computational load and making the network more robust to
variations in input.

• Fully Connected Layers: After several convolutional and pooling layers, these layers combine the
features to make predictions or classifications.

• Output Layer: The final layer usually uses a softmax activation function to produce a probability
distribution over the possible classes, allowing the network to make a prediction.

3.2.2. Recurrent Neural Networks (RNNs) for Sequential Data Processing

While primarily designed for sequential or time-series data, RNNs have found applications in
computer vision, particularly in tasks involving sequences of images or video data. RNNs are unique
in their ability to process sequences by maintaining a hidden state that captures information about
previous elements in the sequence. This makes them effective for modeling temporal dependencies,
making them useful for tasks like stock price prediction and weathering forecasting. By analyzing
frames sequentially, RNNs can be used for tasks like action recognition in videos. For instance, they
can process sequences of video frames to recognize activities (e.g., walking, running) or generate
textual descriptions for images.

Variants of RNNs

Long Short-Term Memory (LSTM) are a type of RNN designed to address the vanishing gradient
problem, allowing them to capture long-term dependencies more effectively.
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Gated Recurrent Unit (GRU) are a simplified version of LSTMs that also help mitigate the vanishing
gradient problem while being computationally more efficient.

3.2.3. Transformer-Based Architectures for Advanced Feature Extraction

Transformers, initially developed for natural language processing (NLP), have transformed deep
learning with their attention mechanisms, enabling models to capture global relationships within input
sequences. In computer vision, architectures such as the Vision Transformer (ViT) apply these principles
to image data, offering robust feature extraction and representation capabilities. Transformer-based
models perform exceptionally well in tasks like image classification, object detection, and segmentation.
Their core concepts include the self-attention mechanism and patch embedding. The self-attention
mechanism allows models to assess the importance of different image regions, capturing long-range
dependencies and contextual relationships. Patch embedding converts an image into a sequence of
fixed-size patches, analogous to word tokens in NLP.

3.3. Challenges in Synchronization, Optimization, and Adaptation

Numerous applications [2], such as driverless cars, smart cities, healthcare monitoring, industrial
automation, and robotics, become possible when CV and CPS are integrated. However, this integration
has several significant challenges, especially when it comes to synchronizing and optimizing machine
learning algorithms. These challenges are the following:

3.3.1. Synchronization Challenges

CPS requires synchronization since it involves several subsystems operating in real-time, fre-
quently in dispersed contexts. The following difficulties arise while integrating a CV with CPS:

• Real-time Data Fusion: CV systems process visual data alongside other sensors like LiDAR,
RADAR, and accelerometers. Poor decision-making may result from system lags or timestamp
misalignments.

• Latency in Decision Making: The processing of deep learning-based CV algorithms is time-
consuming, making real-time synchronization with CPS controls essential. Delays can compro-
mise safety in systems like autonomous vehicles and drones.

• Distributed Processing: Coordinating CV tasks among nodes in a distributed CPS network is
challenging, particularly while handling time-sensitive communications and preserving system
dependability.

3.3.2. Optimization Challenges

Efficient CV algorithms are crucial for real-world CPS applications, but optimizing them poses
significant hurdles, including:

• Resource Constraints: Memory and processing power on CPS devices, particularly edge devices,
are frequently constrained. Because deep learning models require many resources, optimizing
them within these limitations might be challenging.

• Model Efficiency: Techniques like model compression and pruning are necessary to reduce the
size and complexity of neural networks for tasks such as object detection and recognition on
resource-constrained edge devices.

• Real-time Optimization: There is a trade-off between time performance and accuracy, particularly
challenging for low-latency applications like autonomous navigation.

• Communication Bandwidth: In distributed CPS, efficiently transmitting high-dimensional CV
data requires methods such as video compression and local processing using edge computing.

3.3.3. Adaptation Challenges

CPS adopts flexible and adaptable CV algorithms under dynamic environments. Key challenges
are the following:
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• Dynamic Environments: CV algorithms must adapt continuously to changing conditions, such as
variations in lighting, weather, and the presence of new obstacles, unlike static conditions.

• Transfer Learning and Domain Adaptation: It is challenging to adapt pre-trained models to new
environments with minimal retraining, such as when autonomous vehicles move from urban to
rural areas.

• Online Learning and Incremental Updates: CPS requires real-time model updates without requir-
ing full retraining, which is computationally costly, due to continuous data streaming.

• Handling Uncertainty and Noise: To ensure accurate decision-making for managing noisy, incom-
plete, or uncertain sensor data, the method should be robust.

4. Results and Analysis
4.1. Key Findings
4.1.1. CNN

CNN plays a dominant role in CV applications within CPS due to its specialized design for image
analysis. Its layered architecture is highly effective at automatically learning patterns, features, and
spatial hierarchies from images. This capability makes CNN exceptionally well-suited for image
classification and object detection tasks.

CNN consists of several essential components: convolutional layers, which extract local features
and spatial hierarchies; pooling layers, which perform downsampling to reduce dimensionality; and
fully connected layers, which aggregate global features and enable decision-making. To integrate
these elements, CNN uses flattening to convert the outputs of convolutional and pooling layers into a
one-dimensional vector, serving as input for the fully connected layers. The architecture prioritizes
parameter sharing, enabling efficient processing of visual data.

Owing to its innovative design, CNN has become instrumental in advancing image processing.
They are especially powerful in visual understanding due to their ability to extract and process
spatial features. Its impact extends beyond image processing to object detection, image classification,
and semantic segmentation tasks. In CPS which integrates computational algorithms with physical
processes, CNN provides the robust perception capabilities necessary for effective environmental
interaction, solidifying its role as a cornerstone of modern CV. Table 1 illustrates recent CNN techniques
of CV applications.

Table 1. A Table for CNN Techniques of Computer Vision Applications.

Reference CNN Techniques /
Models Key Contributions Main Tasks /

Application Domains Major Limitations

Liang et al., 2023 [3]

U-Net architecture,
Diffusion models,

Optical flow estimation,
Image-to-image models,
and Frame interpolation

It manages
imperfections in flow
estimation effectively
and decoupled edit
propagate design

local edits and
short-video creation

dependence on the first
frame and struggle with
highly complex or rapid

motions

Bengar et al., 2019 [4]

ResNet, Dense Networks
(DenseNet), Generative
Adversarial Networks

(GANs) and Multi-scale
Networks

Advancing techniques

Video object detection
for medical imaging,

surveillance, and
autonomous driving

Artificial degradation
may not apply to

real-world situations.
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Table 1. Cont.

Reference CNN Techniques /
Models Key Contributions Main Tasks /

Application Domains Major Limitations

Jahromi et al., 2019 [5]

Fully convolution neural
network (FCNx) for

classification tasks and
ResNet for feature

extraction

Hybrid multi-sensor
fusion uses

encoder-decoder FCNx
with extended Kalman
Filter for environmental

perception.

Environmental
perception for

autonomous driving

Significant
computational resources

Dantas et al., 2024 [6] CNNs various model
compression techniques Comprehensive review

Mobile devices, edge
computing, IoT and
embedded systems

A trade-off between
computation and

performance

Hanhirova et al., 2024 [7]
CNNs on TensorFlow

and TensorRT platforms
via parallelism

Comprehensive Latency
Analysis, Novel

Measurement
Techniques,

Optimization Strategies,
and

Latency-Throughput
Trade-Offs

Reducing latency in
cloud gaming,

optimizing AR and VR
delay applications and

strategies to object
detection and

recognition models

Sensor Dependency and
significant

computational resources

Cai et al., 2024 [8]

Sparse Polynomial
Regression and

Energy-Precision Ratio
(EPR)

Predictive Framework:
NeuralPower

Mobile Devices, Data
Centres, and embedded

systems

Specific GPU platforms
and may not generalize

well to all hardware
configurations

He et al., 2018 [9]

Mask R-CNN: Extends
Faster R-CNN, Region of

Interest (RoI) Align,
FCNs for the mask

prediction

Instance Segmentation,
accuracy improvements

in pose estimations

Object Detection and
Segmentation, human
pose estimations, AR

applications

Significant
computational resources,
performance depending
on specific applications

and datasets

Liu et al., 2016 [10]

Single Shot MultiBox
Detector (SSD), uses of

default boxes and
multiscale feature maps

in detecting objects

Unified framework: SSD
for real-time detection

real-time object detection
for autonomous driving,
embedded systems, and

AR applications

Significant
computational resources,
not well performance on

very small objects

Carion et al., 2020 [11]

DEtection TRansformer
(DETR): Combines a

common CNN backbone
with a transformer

architecture.

End-to-End Object
Detection and Bipartite

Matching Loss

Object Detection in
various applications:
autonomous driving,

surveillance, and
robotics.; and Panoptic

Segmentation

Significant
computational resources,
not well performance on

very small objects

Hu et al., 2021 [12]

Pre-trained CNN model
for image extraction and

Truncated Gradient
Confidence-Weighted

(TGCW) Model for
online classification

Improved accuracy and
efficiency by noise

handling

Image classification in
medical imaging and

personal credit
evaluation

Significant
computational resources

and noise sensitivity

Robyns et al., 2024 [? ]
Preprocessing step using

OpenCV, YOLOv5 for
real-time object detection

Integrated Framework
for precise position

estimation and error
levels below 1 degree
and 3D rendering of

vehicles and their
surroundings in digital

twin visualization

Accurate position
estimations

inaccuracies in varying
lighting or occlusion

scenarios

Shoukat et al., 2024 [13]
3D Coordinate Mapping

and Hybrid Reality
Integration

Development of a
Hybrid Reality-Based

Driving Testing
Environment

Autonomous Driving
Development and

extends to Internet of
Vehicles

Reducing stability in
higher frequency and
incomplete real-world

testing

Shen et al., 2024 [14]

Parallel light field
platform, a data-driven

approach for
self-occlusion and
inconsistency in

viewpoints, colmap for
offline re-construction

Improvements in PSNR
(Peak Signal-to-Noise

Ratio) and SSIM
(Structural Similarity

Index Measure) metrics.

Applications requiring
accurate 3D modeling
and relighting, such as

virtual reality, game
development, and visual

effects

Variations in color
temperature affecting 3D

reconstruction and
low-quality

reconstruction models

Pan et al., 2024 [15]

Adaptive LFV coding
and future integration

with decentralized deep
learning

balancing computation
and communication
latency to optimize

performance

Enabling realistic digital
twins, VR, AR and

IoT-driven applications

Processing in off-line,
not well performing in

dynamic lighting
conditions and

occlusions

Sakina et al., 2024 [16]

Integration of Yolov7 for
human pose estimation

and the DeepFace
pre-trained model for
age, gender, and race

estimation

While Yolov7 performed
well, the DeepFace
model fell short in

accuracy

The task of estimating
human height from a

single full-body image

Inaccurate performance
in the DeepFace model
and only single image

input

Kaushik et al., 2024 [17] EmoFusioNet, a deep
fusion-based model

EmoFusioNet uses
stacked and late fusion

methods to ensure a
color-neutral ER system,
achieving high accuracy

A real-time facial
emotion-based security

Underperformance for
very dark-skinned

individuals due to poor
resolution of CMOS

cameras

Recent advancements in object detection and image classifications have focused heavily on
different approaches, Region-Based Convolutional Neural Network (R-CNN), Residual Network
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(ResNet) and You Only Look Once (YOLO). These methods are often benchmarked against datasets
like Microsoft COCO and ImageNet [18].

R-CNN is a two-stage object detection model. It generates around 2,000 region proposals per
image, resizes each, and processes them through separate networks for feature extraction and classi-
fication [18]. To improve efficiency, regions with significant overlap are discarded, keeping only the
highest-scoring classified regions. However, this approach is computationally intensive. To address
this, Fast R-CNN and Faster R-CNN were developed to streamline the process, reducing processing
time and improving accuracy.

Mask R-CNN, an extension of Faster R-CNN, adds a branch for instance segmentation, enabling
the prediction of both bounding boxes and segmentation masks. This versatility allows it to handle
tasks beyond object detection, such as human pose estimation while maintaining a relatively low
computational overhead. Mask R-CNN operates at about 5 frames per second (fps) and is adaptable
for other applications with minimal effort [9].

ResNet is a CNN architecture designed for feature extraction and image classification, with a
primary focus on training deep neural networks efficiently without performance degradation, such
as vanishing gradients. It employs residual learning with skip connections, enabling gradients to
flow directly through the network. This innovation makes very deep networks, such as ResNet-50
and ResNet-101, both trainable and efficient. ResNet is widely used for tasks like image classification,
image segmentation, and object detection, often serving as a backbone in detection models.

YOLO is a single-stage detector optimized for speed, making it ideal for real-time object detection.
Unlike R-CNN, YOLO processes the entire image in a single pass through one network, generating
fewer than 100 bounding box predictions per image [18]. Although faster, YOLO tends to have a
higher localization error than R-CNN but produces fewer background false positives.

Several enhanced versions of the YOLO architecture, including YOLOv2, YOLOv3, YOLOv4,
and YOLOv5, have been introduced to improve accuracy while retaining the high speed required
for real-time applications. Though generally less accurate than Faster R-CNN, these versions are fast
enough to meet the demands of real-time systems such as self-driving cars [19].

Other models, such as the Single Shot Multibox Detector (SSD), have been proposed as alternatives
to YOLO, offering improvements in the network’s backbone structure [10]. Simultaneously, innovations
like focal loss have been introduced to replace traditional loss functions, enhancing detection accuracy.

4.1.2. Federated Learning

Federated Learning (FL) holds significant promise for synchronizing distributed CPS nodes
because it trains models across multiple devices while keeping data localized. This approach en-
hances privacy and minimizes the need for centralized data storage, a critical advantage for sensitive
applications.

CPS typically operates through a network of distributed devices, such as sensors, actuators, and
edge devices, spread across various physical locations. FL enables these devices to collaboratively
train a shared model without centralizing data. By aggregating model updates instead of raw data, FL
supports decentralized architectures, aligning models across nodes while maintaining data privacy.

Given that CPS involves distributed components requiring seamless coordination, FL provides a
privacy-preserving and decentralized mechanism to synchronize these components effectively. This
ensures synchronized decision-making and consistent behavior across the entire CPS network. FL also
facilitates continuous learning, allowing devices to locally update models and periodically synchronize
them. Such capabilities are crucial for real-time applications like autonomous vehicles and industrial
robotics.

FL offers several advantages for CV applications in CPS [20]. The following are some key
advantages.
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• Privacy Preservation: FL retains data on local devices, sharing only model updates. This safe-
guards sensitive visual data, such as surveillance footage or medical records, addressing signifi-
cant privacy concerns.

• Scalability: FL efficiently handles large-scale distributed systems, making it ideal for extensive
CPS networks with numerous devices.

• Reduced Latency: Local data processing and updates minimize communication overhead and
latency compared to centralized training methods.

• Heterogeneity Handling: FL can leverage adaptive aggregation techniques and personalized
models to address the heterogeneity among nodes, ensuring synchronization is maintained even
in diverse and resource-imbalanced environments.

• Robustness and Adaptability: FL supports continuous learning and adapts to new data, enhancing
the robustness of models in dynamic environments.

FL has two synchronization techniques[21]. They are the following.

• Synchronous FL: All nodes synchronize their updates simultaneously, which can be challenging
due to varying computational capabilities and network conditions.

• Asynchronous FL: Nodes update the model independently, offering more flexibility and efficiency
but potentially leading to stale updates.

FL faces several challenges that researchers are actively working to address. Here are some of the
key challenges.

• Non-IID Data: Data from different nodes may not be identically distributed, which can affect
model performance. Techniques like data augmentation and domain adaptation can help mitigate
this issue.[22]

• Communication Overhead: Efficient communication protocols and compression techniques are
essential to reduce the bandwidth required for model updates.[20]

• Model Heterogeneity: Different devices may have varying computational capabilities. Federated
learning frameworks need to account for this by using adaptive algorithms that can handle
heterogeneous environments.[20]

FL plays a pivotal role in CPS synchronization by facilitating decentralized collaboration, real-time
adaptation, privacy preservation, and scalability. It enables distributed devices to collaboratively train
and synchronize models, effectively addressing CPS-specific challenges. This ensures efficient, reliable,
and privacy-conscious coordination in modern smart systems.

4.1.3. Meta-Learning

Meta-learning in CV focuses on training models that can quickly adapt to new visual tasks
with minimal data, computational effort, and dynamic scenarios. This is particularly useful in CV
applications where tasks vary widely and data is scarce. Meta-learning techniques enable CV models
to excel at tasks with very little labeled data, such as identifying new object classes from just a few
examples. Meta-learned models can extract broadly applicable features, enabling rapid adaptation
across diverse visual domains.

Meta-learning offers several techniques in the field of CV. Here are some key techniques.

• Prototypical Networks: These networks address the problem of few-shot classification by enabling
generalization to new classes with only a few examples per class. They learn a metric space
where classification is based on distances to class prototype representations. They offer a simpler
inductive bias compared to other few-shot learning methods, yielding excellent results with
limited data[23].

• Siamese Networks: These networks consist of twin neural networks that share parameters and
weights. They are trained to maximize the distance between dissimilar pairs and minimize the
distance between similar pairs. which consists of twin networks with shared weights trained
to map similar observations close together in feature space and dissimilar ones farther apart.
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Experiments on cross-domain datasets demonstrate the network’s ability to handle forgery across
various languages and handwriting styles. [24]

• Model-Agnostic Meta-Learning (MAML): MAML algorithm is compatible with any model trained
by gradient descent, applicable to tasks such as classification, regression, and reinforcement
learning. The objective is to train a model on diverse tasks to generalize to new tasks with
minimal training samples. This method optimizes model parameters to enable rapid adaptation
with just a few gradient steps on new tasks, making the model easy to fine-tune. MAML achieves
state-of-the-art performance on few-shot image classification benchmarks, delivers strong results
in few-shot regression, and accelerates fine-tuning in policy gradient reinforcement learning. [25]

• Memory-augmented models: These models, such as Neural Turing Machines (NTMs), can
enhance the efficient incorporation of new information without relearning their parameters by
quickly encoding and retrieving new information. They can quickly assimilate data and predict
accurately with only a few samples. Santoro et al., 2016 [26] introduce a novel method for
accessing external memory that focuses on memory content, eliminating the dependence on
location-based mechanisms used in previous approaches.

Meta-learning offers several advantages in the field of CV. The following are some key benefits.

• Fast Adaptation: Meta-learning enables models to quickly adapt to new tasks with minimal
data. It is critical for dynamic applications, such as autonomous vehicles or drones operating in
changing environments.

• Data Efficiency: By leveraging prior knowledge from related tasks, meta-learning reduces the
need for extensive training data. This efficiency is crucial in applications like medical imaging,
where annotated data is often scarce.

• Cross-Domain Learning: Meta-learning helps models generalize better across different tasks
and domains. That facilitates adaptation across domains, such as transferring knowledge from
medical imaging to aerial imagery. Google Vizier includes features such as transfer learning,
which allow models to use knowledge from previously optimized tasks to accelerate and enhance
the optimization of new ones[27].

• Personalization: Meta-learning adapts models to individual preferences or environments, such as
tailoring AR applications for unique users.

Meta-learning has numerous applications in CV to improve model performance and adaptability
across various tasks. Here are some prominent examples.

• Image Classification: Meta-learning algorithms can quickly adapt to classify new categories of
images with minimal data, and quickly recognize unseen classes in few-shot or zero-shot settings.

• Object Detection and Tracking: By leveraging prior knowledge, meta-learning models can enhance
object detection and tracking capabilities, making them more robust to variations in the visual
environment.

• Image Segmentation: Meta-learning can improve the performance of image segmentation tasks,
where the goal is to partition an image into meaningful segments. This is particularly useful in
medical imaging and autonomous driving.

• Facial Recognition: Meta-learning techniques can be used to develop facial recognition systems
that adapt quickly to new faces with limited training data, enhancing security and personalization
applications.

• Pose Estimation: Meta-learning can be applied to pose estimation tasks, where the model needs
to predict the pose of objects or humans in images. This is useful in the fields of robotics and
augmented reality.

• Scene Understanding: Meta-learning allows CV systems to interpret new or unseen scenes for
applications such as navigation or augmented reality (AR).

Meta-learning in CV faces several challenges that researchers are actively striving to overcome.
Here are some notable challenges.
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• Scalability: Meta-learning algorithms often struggle with scalability when applied to large-scale
datasets and high-dimensional data typical for CV tasks. Efficiently scaling these algorithms
while maintaining performance is a significant challenge.

• Generalization: Ensuring that meta-learning models generalize well across a wide range of tasks
and domains is difficult. Models trained on specific tasks may not perform well on unseen tasks,
highlighting the need for better generalization techniques.

• Computational Complexity: Meta-learning methods can be computationally intensive, requir-
ing significant resources for training and adaptation. This complexity can limit their practical
application, especially in resource-constrained environments.

• Data Efficiency: When meta-learning aims to be data-efficient, achieving this in practice can be
challenging. Models often require a careful balance between leveraging prior knowledge and
adapting to new data with minimal samples.

• Task Diversity: The diversity of tasks used during meta-training is crucial for the model’s ability
to generalize. However, creating a sufficiently diverse set of tasks that accurately represent
real-world scenarios is challenging.

• Optimization Stability: Ensuring stable and efficient optimization during the meta-training phase
is another challenge. Meta-learning models can be sensitive to hyperparameters and the choice of
optimization algorithms.

• Interpretability: Meta-learning models, especially those based on deep learning, can be difficult to
interpret. Understanding how these models make decisions and adapt to new tasks is important
for trust and transparency.

4.2. Themes and Categories
4.2.1. Synchronization Strategies

Synchronization refers to aligning the timing and interaction between various subsystems, sensors,
and actuators within a CPS. In the context of ML-based computer vision, a list of synchronization
strategies is the following:

• Timestamping: Timestamping involves attaching precise time metadata to each data packet
as it is generated, enabling the alignment and correlation of data streams from heterogeneous
sources. Yang and Kupferschmidt [28] implement timestamp synchronization specifically for
video and audio signals, demonstrating its effectiveness. This approach is typically simpler and
less computationally intensive compared to more complex synchronization methods.

• Sensor Fusion: This technique is widely used in embedded systems to integrate data from mul-
tiple sensors, providing a more accurate and reliable representation of the environment. It is
commonly applied in areas such as autonomous vehicles, robotics, and wearable devices. Jahromi
et al.[5] introduce a real-time hybrid multi-sensor fusion framework that combines data from cam-
eras, LiDAR, and radar to enhance environment perception tasks, including road segmentation,
obstacle detection, and tracking. The framework employs a Fully Convolutional Neural Network
(FCN) for road detection and an Extended Kalman Filter (EKF) for state estimation. Designed
to be cost-effective, lightweight, modular, and robust, the approach achieves real-time efficiency
while delivering superior performance in road segmentation, obstacle detection, and tracking.
Evaluated on 3,000 scenes and real vehicles, it outperforms existing benchmark models.
Moreover, Robyns et al. [? ] demonstrate how to communicate from the physical system to the
digital twin for visualizing the industrial operation by using Unreal Engine. The digital twin
features a modular architecture based on the publish-subscribe pattern, enabling the integration
of multiple data processing modules from heterogeneous data streams.

• Real-time task scheduling: This technique involves orchestrating machine learning and computer
vision tasks to ensure timely and reliable operations. CPS applications, such as autonomous
vehicles, robotics, and smart manufacturing, demand low-latency, high-accuracy processing while
operating under strict deadlines and resource constraints as illustrated in Figure 3.
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Hu et al.[29] propose a framework to enhance the efficiency of AI-based perception systems
in applications like autonomous drones and vehicles. The framework focuses on prioritizing
the processing of critical image regions, such as foreground objects, while de-emphasizing
less significant background areas. This strategy optimizes the use of limited computational
resources. The study leverages real LiDAR measurements for rapid image segmentation, enabling
the identification of critical regions without requiring a perfect sensor. By resizing images,
the framework balances accuracy and execution time, offering a flexible approach to handling
less important input areas. This method avoids the extremes of full-resolution processing or
completely discarding data. Experiments are conducted on an AI-embedded platform with
real-world driving data to validate the framework’s practicality and efficiency.

Figure 3. Optimization, Synchronization and Adaptation in computer vision in CPS.

4.2.2. Optimization Approaches

Balancing computational efficiency and accuracy is a critical challenge when applying ML tech-
niques to CV within CPS. CPS systems are often constrained by limited computational resources
(such as low-power embedded devices), real-time processing requirements, and the need for high
accuracy in tasks like object detection, tracking, segmentation, and decision-making. Below are several
optimization approaches that can help strike a balance between these competing demands:

• Model Compression Techniques: Techniques[6] such as pruning, quantization, knowledge distilla-
tion, low-rank factorization, and transfer learning are applied to reduce the size of deep learning
models without sacrificing significant performance. This is particularly critical for edge devices
and CPS with limited hardware resources [30] and [31].

– Pruning: Reducing the number of neurons or connections in a neural network by removing
weights that have little influence on the output. This decreases the size of the model, making
it computationally more efficient without significantly sacrificing accuracy .

– Quantization: Reducing the precision of the weights and activations in the model, from 32-bit
floating-point to 8-bit integer or even binary. This leads to reduced memory footprint and
faster computation, especially on specialized hardware (like FPGAs and GPUs).

– Deep compression: Han, Mao, and Dally [32] introduce "deep compression", a three-stage
pipeline (pruning, quantization, and Huffman coding) designed to reduce the storage and
computational demands of neural networks, enabling deployment on resource-constrained
embedded systems. Pruning removes unnecessary connections, reducing the number of
connections by 9× to 13×. Quantization enforces weight sharing, reducing the representation
of each connection from 32 bits to as few as 5 bits. Huffman coding further compresses the
quantized weights. Experiments on AlexNet showed a 35× reduction in weight storage, with
VGG-16 and LeNet achieving 49× and 39× reductions, respectively, while maintaining accu-
racy. This compression enables these networks to fit into on-chip SRAM cache, significantly
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reducing energy consumption compared to off-chip DRAM access. The approach enhances
the feasibility of deploying complex neural networks in mobile applications by addressing
storage, energy efficiency, and download bandwidth constraints.

– Knowledge Distillation: A process where a smaller, less complex "student" model learns
to approximate the outputs of a larger, more complex "teacher" model. This can yield a
more computationally efficient model with a similar accuracy. Hinton, Vinyals, and Dean
[33] demonstrate the effectiveness of distillation successfully transferring knowledge from
ensembles or highly regularized large models into a smaller model. On MNIST, this method
works well even when the distilled model’s training set lacks examples of certain classes. For
deep acoustic models, such as those used in Android voice search, nearly all performance
gains from ensembles can be distilled into a single, similarly sized neural net, making
deployment more practical. For very large neural networks, performance can be further
improved by training specialist models that handle highly confusable class clusters. However,
distilling the knowledge from these specialists back into a single large model remains an
open challenge. This approach highlights the potential of distillation to balance performance
and efficiency in machine learning systems.

– Low-rank factorization - This reduces the number of parameters in deep learning models by
approximating weight matrices with lower-rank matrices. This technique helps in compress-
ing models and speeding up training and inference. Cai et al.[34] propose a joint function
optimization framework to integrate low-rank matrix factorization and a linear compression
function into a unified optimization approach, designed to reduce the number of parameters
in DNNs, computational and storage costs while preserving or enhancing model accuracy.

– Transfer learning is a machine learning method that involves reusing a model trained on one
task to solve a related task. This approach allows the model to leverage its prior knowledge,
enabling it to learn new tasks effectively even with limited data. In CPS applications, transfer
learning minimizes the need for extensive manual labeling by transferring insights from
similar domains. By utilizing models pre-trained on large-scale datasets (e.g., ImageNet) as a
foundation, transfer learning avoids the need for training from scratch. Fine-tuning only a
few layers enables CPS systems to adapt quickly to new tasks or environments, significantly
reducing computational costs.
Bird et al.[35] explore unsupervised transfer learning between Electroencephalography (EEG)
and Electromyography (EMG) using both MLP and CNN approaches. The models were
trained with fixed hyperparameters and a limited set of network topologies determined
through a multi-objective evolutionary search. Identical mathematical features were extracted
to ensure compatibility between the networks. Their research demonstrates the application of
cross-domain transfer learning in human-machine interaction systems, significantly reducing
computational costs compared to training models from scratch.

• Lightweight Architectures: Use specialized architectures designed for efficiency while maintaining
good accuracy. These include models like MobileNet and EfficientNet, which are designed to run
efficiently on resource-constrained devices.

– MobileNet is a class of efficient models designed for mobile and embedded vision ap-
plications. Howard et al.[36] utilize a streamlined architecture with depthwise separable
convolutions to create lightweight deep neural networks. Two global hyperparameters are
introduced to balance latency and accuracy, enabling model customization based on appli-
cation constraints. Extensive experiments show that MobileNets perform well compared
to other popular models on ImageNet classification. Their effectiveness is demonstrated
across diverse applications, including object detection, fine-grain classification, face attribute
analysis, and large-scale geo-localization.

– EfficientNets are a family of CNNs designed to achieve high accuracy with significantly
improved computational efficiency. They were introduced as a solution to the challenge of
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scaling CNNs while balancing resource usage and performance. Tan and Li[37] propose a
compound scaling method, a simple and effective approach for systematically scaling up a
baseline CNN while maintaining efficiency under resource constraints. Using this method,
the EfficientNet models achieve state-of-the-art accuracy with significantly fewer parameters
and FLOPS, and high performance on both ImageNet and five transfer learning datasets,
demonstrating their scalability and efficiency.

• Hardware Acceleration and Optimization: The method often involves leveraging parallelism (e.g.,
through graphics processing units (GPUs) or specialized hardware like tensor processing units
(TPUs)) or optimizing the inference pipeline to speed up processing as illustrated in Figure 4.
Since 2015, distributed-memory architectures with GPU acceleration have become the standard
for machine learning workloads due to their growing computational demands[38]. Maier et
al.[39] depict a GPU implementation of the parallel auction algorithm, optimized for both open
computing language (OpenCL) and compute unified device architecture (CUDA) environments,
which reduces memory usage and increases speed compared to previous implementations,
making it ideal for embedded systems with large problem sizes. Experimental results across two
GPUs and six datasets show a best-case speedup of 1.7x, with an average speedup of 1.24x across
platforms. Additionally, this approach meets strict real-time requirements, especially for large-
scale problems, as demonstrated in sensor-based sorting applications. However, optimization
is further constrained by fixed initial parameters, such as GPU architecture or model accuracy,
limiting flexibility for future adjustments. Different GPUs deliver varied performance depending
on factors, like batch size and execution context. Achieving optimal performance requires careful
balancing trade-offs between accuracy, throughput, and latency[7].

• Data Augmentation: Data augmentation involves applying various transformations (such as
rotation, scaling, and cropping) to the training dataset, thereby artificially expanding its size and
diversity. This approach helps enhance the performance of smaller models. In many real-world
scenarios, collecting sufficient training data can be challenging. Data augmentation [40] addresses
this issue by increasing the volume, quality, and variety of the training data. Techniques for
augmentation include deep learning-based strategies, feature-level modifications, and meta-
learning approaches, as well as data synthesis methods using 3D graphics modeling, neural
rendering, and generative adversarial networks (GANs).

– Deeply Learned Augmentation Strategies: These techniques use deep learning models to
generate augmentations automatically, improving the diversity and quality of the data.
Neural networks are employed to create realistic data variations, thus enhancing the model’s
robustness.

– Feature-Level Augmentation: This method modifies specific features of the data, rather
than the raw image itself. Common operations include changing attributes like contrast,
brightness, or texture. Such adjustments can improve the model’s ability to generalize across
different scenarios.

– Meta-Learning-Based Augmentation: Meta-learning approaches focus on learning how to
generate useful augmentations based on the characteristics of the data. These methods aim to
optimize the augmentation strategy itself, improving the model’s learning efficiency across
various tasks.

– Data Synthesis Methods: These involve generating synthetic data through techniques like
3D graphics modeling. This approach creates realistic data variations, which is particularly
useful for simulating rare or hard-to-capture events in real-world scenarios.

– Neural Rendering: This technique uses neural networks to generate images from 3D models
or abstract representations, producing realistic augmentations that can improve the diversity
and realism of the training data.

– Generative Adversarial Networks (GANs): GANs are employed to create synthetic data
by training two competing networks—the generator and the discriminator. The generator

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 January 2025 doi:10.20944/preprints202501.0521.v1

https://doi.org/10.20944/preprints202501.0521.v1


18 of 31

produces new images, while the discriminator evaluates their authenticity. GANs can
generate highly realistic augmentations, significantly boosting the dataset’s diversity.

• Edge Computing: This paradigm involves moving computational tasks closer to the data source,
such as on embedded devices at the network’s edge. By processing data locally, edge computing
reduces the latency associated with transmitting data to and from remote servers, enabling real-
time responses critical for applications like autonomous navigation and real-time surveillance.
This approach also conserves bandwidth and enhances data privacy. Significant improvements in
latency and throughput have been observed when deploying trained networks on mobile devices
and remote servers [7].
Deng et al.[41] expand the scope of edge computing by integrating it with AI into a concept called
Edge Intelligence, categorized into AI for Edge and AI on Edge:

– AI for Edge: Utilizes AI technologies to address key challenges in edge computing, such as
optimizing resource allocation, reducing latency, and managing data efficiently.

– AI on Edge: Focuses on performing the entire AI lifecycle, including model training and
inference, directly on edge devices.

• In distributed learning, the model is trained collaboratively across multiple edge devices, with
only model updates—rather than raw data—being transmitted to a central server. This approach
reduces communication bandwidth requirements and enhances data privacy. Tron and Vidal [42]
demonstrate the application of distributed computer vision algorithms, highlighting that the storage
requirements at each node depend solely on local data and remain constant irrespective of the number
of cameras involved. For accelerating deep learning training, integrating distributed architectures
with techniques such as gradient compression and adaptive learning rates is essential [43].
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Figure 4. Proposed Framework.
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4.2.3. Adaptation Mechanisms

CPSs often operate in dynamic and unpredictable environments. Machine learning models must
be adaptable to new conditions or evolving system requirements. Here are key adaptation mechanisms
to ensure robust performance:

• Data-driven Adaptation: This approach involves leveraging data to enable models or systems to
adjust and optimize their performance in response to dynamic conditions or specific challenges.
In Shen et al.’s studies[14], the parallel light field platform supports the collection of realistic
datasets that capture diverse lighting conditions, material properties, and geometric details.
These datasets empower data-driven adaptation by providing models with inputs that closely
mimic real-world scenarios, ensuring robust generalization across varying environments. To
handle self-occlusion, the conditional visibility module adopts a data-driven strategy, dynamically
computing visibility along rays based on input viewpoints. Instead of relying on predefined rules,
the module learns and predicts visibility directly from data, enabling it to adapt effectively to
diverse viewing conditions. Moreover, data-driven techniques are applied to address specular
reflection challenges and depth inconsistencies, showcasing the system’s capability to adapt to
complexities arising from changing viewpoints. These adaptations, powered by data, enhance
the model’s ability to adjust predictions under varying environmental and geometric conditions.
Another example is presented in Kaur et al.’s article[44], where data augmentation techniques
are used to generate variations in the dataset, allowing models to learn from a wide range of
scenarios. This helps models adapt to unseen conditions during inference. The techniques
discussed include Geometric Transformations, Photometric Transformations, Random Occlusion,
and Deep Learning-based Approaches. The choice of augmentation methods depends on the
nature of the dataset, the problem domain, and the number of training samples available for each
class.

• Online Learning: This approach involves continuously updating a model with new labeled or
pseudo-labeled data collected during deployment. In machine learning, models must learn and
adapt in real time as fresh data becomes available. This is especially crucial in CPS where the
system must adjust to changes such as varying lighting conditions for cameras or evolving cyber-
security threats. Implementing online learning in production environments typically requires
several steps: debugging offline, continuous model evaluation, managing data drift, performing
regular offline retraining, using efficient algorithms, ensuring data quality, having a rollback plan,
and applying incremental updates[45].
For online learning, Hu et al.[12] introduce the pre-trained Truncated Gradient Confidence-
weighted (Pt-TGCW) model, which combines offline and online learning techniques for tasks like
image classification. This model highlights the effectiveness of incremental learning approaches.
Additionally, Lu et al.[46] propose Passive-Aggressive Active (PAA) learning algorithms, which
update models using misclassified instances and leverage correctly classified examples with low
confidence. Their methods enhance performance across various online learning tasks, including
binary and multi-class classification.

• Transfer Learning: This approach involves leveraging pre-trained models on large datasets and
fine-tuning them for specific tasks, utilizing existing knowledge to improve robustness. In CPS,
models trained on one dataset may need to be adapted to different environments or contexts. TL
enables this adaptation by fine-tuning pre-trained models with smaller, task-specific datasets,
making it easier to adjust models to new situations. This is particularly important in CPS, where
models must be trained in one context and then applied to another. For instance, Wang et al.[47]
propose a transfer-learning approach for detecting attacks in CPS using a Residual Network
(ResNet). Their method refines source model parameters through an intentional sampling tech-
nique, constructing distinct sample sets for each class and extracting relevant features from attack
behaviors. This approach results in a robust network capable of accurately detecting attacks
across different CPS environments.
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• Ensemble Methods: The method combines multiple models to enhance prediction accuracy and re-
liability, addressing the weaknesses of individual models. The ensemble model proposed by Tahir
et al.[48] incorporates diverse architectures (MobileNetV2, Vgg16, InceptionV3, and ResNet50),
each capable of adapting to different features or patterns within the dataset. These models may
excel in recognizing distinct aspects of the data, and their combination allows the system to handle
a wider range of scenarios and data variations, such as differences in X-ray image quality or
fracture types. By aggregating predictions from multiple models, the ensemble approach adapts
to changes in data quality and characteristics, improving robustness and generalization. This is
particularly important when working with medical datasets like Mura-v1.1, where data can vary
in terms of noise, resolution, and imaging conditions. Preprocessing techniques such as histogram
equalization and feature extraction using Global Average Pooling further support adaptation,
helping the model adjust to variations in image quality. These methods ensure that the model
can effectively handle different input characteristics. The combination of diverse architectures
and preprocessing techniques in the ensemble model enhances its adaptability, robustness, and
accuracy, which is crucial for reliable performance in the complex and variable field of medical
image analysis.

• Adversarial Training: This technique enhances the model’s robustness by making it more resistant
to small, intentional perturbations in the input data that could otherwise lead to misclassifications.
By generating adversarial examples [49] and incorporating them into the training process, the
model learns to recognize and correctly classify inputs that would typically confuse it, thus
improving its generalization capability. This approach provides insights into how neural networks
can adapt to better resist adversarial perturbations, ultimately strengthening their robustness.
By using adversarial examples during training, the model becomes more adaptable to a wider
range of input variations, making it more resilient and capable of generalizing effectively across
different datasets, architectures, and training conditions.
Another example[50] involves handling adversarial perturbations through randomized smooth-
ing, which strengthens a model’s robustness against adversarial attacks by adding Gaussian
noise to the input data. This technique ensures the model is "certifiably robust" to adversarial
perturbations, enabling it to maintain reliable performance even when confronted with modified
inputs. Training the model with both original and noise-augmented data enhances its capacity
to generalize across varied conditions, including adversarial scenarios. This adaptation process
equips the model to handle a broader range of input variations, increasing its resilience to un-
foreseen changes in data distribution. As a formal adaptation technique, randomized smoothing
ensures stability and high performance, even under adversarial conditions. By incorporating
noise during training, this method significantly bolsters the model’s ability to manage adversarial
inputs, enhancing its robustness and generalization in challenging environments.

• Federated Learning: In distributed CPS, where devices are spread across different locations
(e.g., smart cities, industrial IoT), FL allows individual devices to train models locally and share
updates, improving model performance across the system without centralizing sensitive data.
In Himeur’s article[20], FL is used to distribute computational tasks across multiple clients, allevi-
ating the load on central servers and enabling collaborative machine learning while ensuring data
privacy. FL employs various aggregation methods, such as averaging, Progressive Fourier, and
FedGKT while incorporating privacy-preserving technologies like Secure Multi-Party Computa-
tion (MPC), differential privacy, and homomorphic encryption to safeguard sensitive information.
Despite its advantages, FL in Computer Vision (CV) encounters several challenges, including
high communication overhead, diverse device capabilities, and issues related to non-IID (non-
independent and identically distributed) data, complicating model training and performance
consistency.
To lower resource constraints, Jiang et al.[51] introduce a Federated Local Differential Privacy
scheme, named Fed-MPS (Federated Model Parameter Selection). Fed-MPS employs a parameter
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selection algorithm based on update direction consistency to address the limited resource issue in
CPS environments. This method selectively extracts parameters that improve model accuracy
during training while simultaneously reducing communication overhead.

5. Discussions
5.1. Critical Evaluation
5.1.1. Increased Focus on Real-Time Performance

Time synchronization protocols are essential for aligning clocks across devices in a Cyber-Physical
System (CPS), ensuring consistent timestamps for images and sensor data. This consistency is critical
for achieving temporal coherence in machine learning (ML)-based computer vision (CV) tasks [3,4,28].
Recent advances in research highlight the importance of real-time synchronization [12? ], which
enhances the reliability and efficiency of CPS applications, including autonomous vehicles, industrial
automation, and robotics.

Innovative synchronization algorithms [12] have demonstrated improvements in data consistency
across devices and networks in CPS. These advancements aim to reduce noise in classification sample
data, increase the accuracy of modern classifiers, and achieve faster convergence speeds. Real-time
data fusion, which integrates information from multiple synchronized sensors (e.g., cameras, LiDAR,
and radar), further enhances CV tasks such as object detection and tracking [4,5,39]. Additionally, edge
computing is increasingly used for local synchronization, enabling efficient and timely processing.

A notable example is the two-level synchronization mechanism presented in a real-time dis-
tributed 3D human pose estimation (HPE) platform for human-machine interaction systems in indus-
trial environments [52]. This approach addresses communication challenges like delay and bandwidth
variability, demonstrating superior accuracy and scalability compared to state-of-the-art methods and
marker-based infrared motion capture systems. Real-time optimization techniques are designed to
reduce computational demands while addressing the scalability and complexity of neural networks.
Model compression methods [32–34] have been effective in simplifying neural architectures, while
lightweight architectures [36,37] provide efficient solutions for real-time inference. Hardware accelera-
tion, including parallel and distributed computing, has also been pivotal in managing large-scale data
processing for real-time image analysis in extensive CPS networks. GPU-based implementations [7,39]
optimize performance by minimizing latency and increasing throughput. Edge computing further
minimizes latency by reducing the need to transmit data to centralized servers, enhancing both pro-
cessing efficiency and data privacy [41,53]. Additional techniques, such as real-time data augmentation
[40,44], involve dynamic transformations during preprocessing to prepare data effectively at runtime.
Computational load in video processing is also mitigated through strategies like frame skipping or
adaptive sampling.

5.1.2. Hybrid Methods

Hybrid methods that integrate physical and virtual optimization layers are emerging as powerful
approaches to improve system efficiency and robustness in CPS. These methods leverage the strengths
of both the physical domain (e.g., real-world sensors, actuators, and processes) and the virtual domain
(e.g., simulations, predictive algorithms, and digital twins) to create a cohesive and adaptive system.

Digital Twins are a key method in advancing operations across various domains. A bio-inspired
LIDA (Learning Intelligent Distribution Agent) cognitive-based Digital Twin architecture [54] facilitates
unmanned maintenance of machine tools by enabling self-construction, self-evaluation, and self-
optimization. This architecture provides valuable insights into implementing real-time monitoring in
dynamic production environments. In the manufacturing industry, Digital Twins enhance flexibility
and efficiency while addressing safety and reliability challenges in collaborative tasks between human
operators and heavy machinery. They enable accurate detection and action classification under
diverse conditions, as demonstrated in studies [55,56]. Another prominent application involves an
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Autonomous Driving test system under hybrid reality [13], which improves efficiency, reduces costs,
and enhances safety, offering a robust solution for autonomous driving development.

Digital twins within the Metaverse can replicate physical CPS environments, facilitating real-
time monitoring and decision-making. Rehman et al. [53] explore a system that identifies patients’
emotions using image processing techniques within a virtual environment, where avatars represent
both patients and physicians. As virtual reality (VR) and augmented reality (AR) technologies continue
to evolve, they are expected to create increasingly immersive experiences. The study [53] encourages
researchers and practitioners to explore the integration of technology with psychological therapy,
aiming to validate this innovative approach and establish a foundation for future research.

However, the current maturity of Digital Twin technology often necessitates offline system halts
for model updates, with implementations relying on backends that impose strict data exchange
requirements. To address these challenges, the CoTwin framework [57] introduces a dynamic approach
that allows online model refinement in CPS without disrupting operations. This framework leverages
a blockchain-based collaborative space for secure data management and integrates neural network
algorithms for fast, time-sensitive execution. It ensures stable, efficient performance while meeting the
temporal requirements of CPS, offering a competitive edge in industrial applications.

5.1.3. Human-in-the-Loop

Human-in-the-loop is a prominent approach in CPS, particularly in areas where human decision-
making, oversight, or intervention is essential. By integrating humans into the control loop, this
approach enables real-time interaction, supervision, and system adjustments driven by human input.
While challenging to implement, advancements in digital technologies have greatly facilitated this
integration. Studies [58–60] emphasize the importance of human involvement in the control loop,
showcasing its benefits in real-time system interaction and adaptability. This methodology is crucial
for various manufacturing applications, such as assembly tasks, quality control, decision-making
support, and health risk assessments, ensuring enhanced safety, flexibility, and operational efficiency.
Moreover, the human-in-the-loop paradigm extends to other fields like decentralized traffic merging
and highway lane merging systems [61], where it significantly improves system performance and
safety outcomes.

5.1.4. Standardized Benchmarks

CPS applications require precise synchronization and robust optimization to function effectively.
However, developing standardized benchmarks for evaluating and comparing CPS solutions poses
significant challenges. Below is a discussion of the key challenges and their consequences.

• Diversity in Application Requirements: CPS applications have highly varied requirements in
terms of latency, fault tolerance, and real-time responsiveness. For example, autonomous driving
systems require low latency and strict real-time synchronization [4], whereas construction opera-
tions prioritize robustness and fault tolerance [56]. These differences make it difficult to create
universal benchmarks that address the needs of all domains effectively.

• Heterogeneous Architectures: CPS systems involve a complex mix of hardware, software, and
communication protocols. Variability in processing speeds, sensor accuracies, and network
latencies requires synchronization and optimization solutions customized to diverse architectures.
Standard benchmarks often fail to account for these architectural disparities.

• Dynamic Operating Environments: CPS must perform reliably in environments with unpre-
dictable changes, such as varying workloads, communication delays, and environmental distur-
bances. Creating benchmarks that accurately simulate such dynamic conditions is a complex and
resource-intensive task that makes standardization challenging.

The following implications will be produced.
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• Inconsistent Performance Metrics: Without common benchmarks, researchers and practitioners
rely on ad hoc evaluation methods. This inconsistency makes it challenging to compare the
efficiency, scalability, and effectiveness of different synchronization and optimization techniques.

• Limited Reproducibility: The absence of standardized frameworks impedes reproducibility, as
the experimental setup and evaluation criteria vary widely between studies. This inconsistency
hinders progress in developing reliable CPS solutions.

• Barriers to Collaboration: Standardized benchmarks foster collaboration by providing a shared
foundation for evaluating CPS technologies. Without them, it becomes difficult for researchers,
engineers, and domain experts to collaborate effectively within a cohesive ecosystem.

• Challenges in Real-World Applications: Many CPS applications, such as automotive systems and
smart grids, require rigorous testing and validation to meet safety and performance standards.
The lack of standardized benchmarks hampers this process, potentially affecting system reliability
and trustworthiness.

Addressing the challenges outlined above would enable consistent performance evaluation, promote
reproducibility, and encourage collaboration between disciplines. In addition, establishing robust
benchmarks would improve the reliability and safety of CPS in real-world applications, contributing
to the development of reliable and efficient systems.

5.2. Interdisciplinary Perspectives

Cyberspace technology has seamlessly integrated into our modern world, underscoring the
transformative synergy between ML, CV, and CPS. This interplay emphasizes the critical role of
interdisciplinary collaboration in addressing complex challenges and driving technological innovation.
Collaborative efforts among computer scientists, engineers, and domain experts are essential to harness
the full potential of these technologies. The key points of this collaboration include:

5.2.1. Complexity of Interdisciplinary Challenges

The integration of ML, CV, and CPS presents intricate, domain-specific challenges that demand
expertise across multiple disciplines. ML algorithms must be customized to account for the real-
time behaviors characteristic of CPS, while CV models need to be designed to accurately interpret
and analyze the physical environment. Engineers and computer scientists play a critical role in
implementing these models within the physical constraints of systems, whereas domain experts
provide the necessary context for their application. Rehman et al.’s research [53] highlights this
interdisciplinary collaboration, where virtual reality (VR) and augmented reality (AR) technologists
work alongside psychologists to assess patients’ conditions, exemplifying how each field contributes
unique insights to address these complex challenges.

5.2.2. Designing Effective Solutions

ML and CV technologies must be tailored to meet the objectives and constraints of CPS appli-
cations. While computer scientists design algorithms for tasks like object detection, engineers are
tasked with integrating these algorithms into physical systems capable of real-time responsiveness.
Domain experts ensure the system adheres to specific industry standards. For instance, in Wu et al.’s
study [62], computer scientists develop algorithms for weak defect detection, engineers deploy these
algorithms into production lines that operate in real-time, and domain experts validate the system’s
compliance with industry requirements and standards. Collaborative efforts are essential to create
effective solutions that address both technical and domain-specific challenges.

5.2.3. Data Interpretation and Real-World Implementation

The raw data collected from sensors in CPS, such as cameras or LIDAR, requires effective pro-
cessing and interpretation using CV and ML techniques. Computer scientists and engineers focus
on developing algorithms and system architectures, while domain experts ensure the data is inter-
preted within the context of the specific real-world application. They guarantee the system responds
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appropriately to achieve outcomes like safety, performance, or efficiency. For instance, in assembly
operations [63], a digital architecture integrates multiple sensors to monitor and improve the well-
being of assembly operators. ML algorithms analyze this data to automatically assess the Ergonomic
Assembly Worksheet, emphasizing factors like posture, applied forces, and material handling.

5.2.4. Real-Time Decision-Making

In CPS, particularly in applications like autonomous driving or robotics, real-time decision-
making is essential. ML algorithms created by computer scientists for perception and decision-making
must work seamlessly with virtual leader systems to analyze sensor data. In the article by Yedilkhan
et al [64], ML models improve obstacle avoidance strategies through learned behaviours from prior
data to handle uncertainty and adapt to dynamic environments. Engineers ensure that these systems
are optimized for real-time performance and reliability. Collaboration with domain experts ensures
that the systems are not only accurate but also safe, efficient, and compliant with industry standards.

The development of ML and CV systems for CPS is an ongoing process that requires constant
feedback. Domain experts can provide valuable insights from real-world testing, helping engineers
and computer scientists fine-tune algorithms. Collaboration enables continuous improvement by
ensuring that the system is iteratively refined to address new challenges and incorporate emerging
technologies.

5.3. Emerging Trends
5.3.1. Edge Artificial Intelligence

Edge Artificial Intelligence (AI) is a groundbreaking computing paradigm designed to perform
machine learning model training and inference directly at the network edge [65]. This paradigm
enables two distinct approaches [41]: AI on edge, where models are trained and inferred either
collaboratively through direct interaction between edge devices or using local edge servers near these
devices, and AI for edge, which focuses on integrating artificial intelligence into edge computing
architectures. This integration enhances edge devices’ ability to handle complex data processing and
decision-making tasks. Although relatively new, the field has experienced remarkable growth recently,
driving innovative CPS applications.

• Real-Time Processing and Low Latency: Edge AI revolutionizes real-time decision-making pro-
cesses by enabling on-device data processing, which minimizes latency and ensures instant
responses. This capability is indispensable for applications that demand immediate and reliable
decision-making, such as autonomous vehicles and health care. In these scenarios, rapid re-
sponses are not only beneficial but also critical. For example, automotive vehicle systems require
handling vast amounts of heterogeneous data from various sensors, requiring high-performance
and energy-efficient hardware systems to process this information in real-time, interacting be-
tween functional modules seamlessly with low overhead, and facing strict energy constraints,
emphasizing the need for optimized hardware and computational techniques. By decentralizing
intelligence, edge AI brings ML model training and inference directly to the network, enabling
communication between edge systems and infrastructure, and reducing the computational burden
on the edge systems [66].
Edge AI is a transformative technology that brings numerous benefits to the functionality and
efficiency of medical devices, especially in the realm of the Internet of Medical Things (IoMT)
[67]. By processing data locally, Edge AI ensures faster, real-time decision-making, crucial in
medical contexts. For instance, in remote monitoring systems, critical health alerts can be instantly
generated and communicated to caregivers or medical professionals, improving the reliability
and responsiveness of these systems. In such cases, local storage capacities and synchronization
of sensor data may cause challenges to the application creators.

• Enhanced Security and Privacy: Edge AI minimizes the need to transmit sensitive data to central
servers, significantly enhancing the security and privacy of decentralized CPS applications. This
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localized processing not only reduces exposure to potential data breaches but also strengthens
the overall resilience of the system. Ensuring the reliability, security, privacy, and ethical integrity
of edge AI applications is paramount, as edge devices handle sensitive information with po-
tentially severe consequences in the event of a breach. Robust encryption methods, stringent
access controls, and secure processing and storage frameworks are indispensable for safeguarding
data and maintaining trust [65]. Hardware-supported Trusted Execution Environments are often
employed to enhance security by isolating sensitive computations. However, these solutions
present challenges related to performance and integration, necessitating a delicate balance be-
tween maintaining robust security and ensuring efficient system operations. Addressing these
challenges is critical for the successful deployment of edge AI in secure and decentralized CPS
environments.

• Energy Efficiency: The growing demand for AI applications highlights the need for energy-
efficient and sustainable edge AI algorithms. Advanced AI, particularly deep learning, consumes
substantial energy, posing sustainability challenges. Developing lightweight and energy-efficient
AI models is essential for supporting edge devices with limited computational resources, thereby
enhancing the sustainability of CPS applications. Computational offloading is another effective
method to reduce energy consumption in edge devices [67].
However, achieving a balance between high performance and energy efficiency is crucial. Often,
small gains in accuracy require significantly more energy, which is inefficient and environmentally
unsustainable when ultrahigh accuracy is not necessary. Researchers must carefully evaluate the
trade-offs between accuracy and energy use.
For the significant impact of energy consumption during the operation, production, and lifecycle
of edge devices, creating durable, upgradeable, and recyclable devices is vital to minimize
ecological impact. Implementing policies to promote energy-efficient AI and regulating the
environmental footprint of device manufacturing and disposal are critical steps toward achieving
sustainability in edge AI [65].

• Interoperability: Efforts are being made to develop comprehensive standards and frameworks
to ensure seamless interoperability between edge devices and CPS components across diverse
applications. These standards aim to establish uniform protocols for data exchange, device
communication, and system integration, enabling heterogeneous edge devices and CPS com-
ponents to work together cohesively. This interoperability is critical for supporting scalability,
reducing system fragmentation, and fostering a more unified ecosystem that can accommodate
advancements in hardware and software technologies.
Moreover, the development of such frameworks addresses challenges related to compatibility,
security, and system resilience, providing a robust foundation for reliable decentralized operations.
These initiatives also incorporate mechanisms to manage dynamic environments, where edge
devices and CPS components must adapt to changing conditions in real-time while maintaining
performance and reliability.

5.3.2. Self-Adaptive Systems Leveraging Reinforcement Learning

Self-adaptive systems are pivotal in addressing the dynamic and uncertain demands of modern
technology landscapes. These systems adjust their behavior autonomously to maintain optimal
performance despite changes in their environment or internal state. While traditional approaches to
adaptation rely on predefined rules or models created during design time, these methods struggle to
cope with the unpredictable and complex nature of real-world environments. Reinforcement learning
(RL) has emerged as a transformative solution, empowering self-adaptive systems with the ability to
learn, adapt, and optimize decisions dynamically.

• Addressing Design-Time Uncertainty: One of the most significant challenges in developing self-
adaptive systems is the uncertainty inherent at design time. Online RL provides a compelling
solution [68]. By enabling systems to learn directly from interaction with their environment, RL
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equips self-adaptive systems with the ability to respond effectively to previously unencountered
conditions. This adaptive capacity is critical for systems deployed in dynamic environments, such
as autonomous vehicles or distributed cloud-edge networks, where operational contexts can shift
unpredictably.

• Real-Time Decision-Making: The ability to make real-time decisions is a cornerstone of self-
adaptive systems. RL excels in this domain by continuously refining its policies based on
operational feedback, ensuring the system remains responsive to changes. RL-driven systems
autonomously optimize their behaviour, balancing competing objectives such as performance,
energy efficiency, and reliability [68]. This capability is particularly valuable in applications
like IoT-driven healthcare, where immediate responses to patient data can be life-saving, and in
autonomous systems, where split-second decisions are vital for safety.

• Enhancing Efficiency: Efficiency is a critical consideration in the operation of self-adaptive
systems. RL supports this by enabling dynamic resource allocation, and optimizing the use of
computational, energy, and network resources based on current demands. Deep RL integrates
energy optimization with load-balancing strategies, aiming to minimize energy consumption
while ensuring server load balance under stringent latency constraints [69]. Additionally, RL’s
ability to handle nonlinear and stochastic environments makes it particularly well-suited for
real-world applications, where unpredictability and instability are the norm. This adaptability
ensures robust performance in dynamic and challenging conditions, reinforcing its utility across
various domains.

• Generalization and Scalability: Deep RL extends the capabilities of RL by integrating neural
networks to represent learned knowledge. This allows self-adaptive systems to generalize their
learning to unseen states and handle high-dimensional input spaces, such as sensor data or video
streams. This generalization capability is crucial for scalability, enabling RL-driven self-adaptive
systems to operate effectively in diverse and complex environments. Applications such as smart
cities, where systems must manage vast amounts of real-time data from interconnected devices,
benefit immensely from Deep RL’s scalability and adaptability.

5.3.3. Hybrid Machine Learning Models

The rapid advancements in machine learning have led to the emergence of hybrid models that
combine deep learning (DL) with traditional algorithms to achieve improved efficiency, flexibility,
and scalability in diverse applications. These hybrid approaches aim to harness the strengths of both
paradigms while mitigating their respective limitations ??.

• Enhanced Performance: Deep learning excels at extracting high-level features from unstructured
data, such as images and text. However, it often requires significant computational resources.
Traditional algorithms are handling structured data and provide clear interpretability [70]. In
[71], authors applied CNN and autoencoders to extract features and then followed by the particle
swarm optimization (PSO) algorithm to select optimal features and reduce dataset dimensionality
while maintaining performance. Finally, the selected features were classified by the third stage
using learnable classifiers decision tree, SVM, KNN, ensemble, Naive Bayes, and discriminant
classifiers to process the acquired features to assess the model’s correctness. Combining these
techniques results in models that deliver high performance without the prohibitive costs of
standalone deep learning methods [72–74].

• Improved Generalization: Hybrid models combine the strengths of deep learning and traditional
algorithms, capitalizing on deep learning’s ability to handle complex, non-linear relationships in
data while utilizing traditional methods to enhance interpretability and generalization, particu-
larly in scenarios involving smaller datasets. For example, the Adaptive Neuro-Fuzzy Inference
System (ANFIS), as discussed in [? ], exemplifies a hybrid network where fuzzy logic intuitively
models nonlinear systems based on expert knowledge or data. Neural networks complement
this by introducing adaptive learning capabilities, enabling the system to optimize parameters
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such as membership functions through input-output data. This integration empowers ANFIS to
effectively model complex, nonlinear relationships, making it highly applicable in tasks such as
prediction, control, and pattern recognition.

• Scalability and Adaptability to Diverse Tasks: Hybrid models offer remarkable flexibility, enabling
customization for specific applications by integrating the most advantageous features of distinct
paradigms. In [75], by combining Statistical Machine Translation (SMT), which uses statistical
models to derive translation patterns from bilingual corpora, with Neural Machine Translation
(NMT), which employs Sequence-to-Sequence (Seq2Seq) models with RNNs and dynamic atten-
tion mechanisms, these approaches capitalize on the statistical precision of SMT and the contextual
richness of neural networks. Additionally, ensemble methods enhance translation quality further
by amalgamating multiple models, proving particularly effective for domain-specific adaptations
and ensuring robust performance.

• Limitations: Hybrid learning systems offer robust solutions for complex data-driven challenges
by combining the strengths of both methodologies. However, they face several challenges [70],
including high model complexity, which complicates configuration, optimization, and interpreta-
tion. Despite advances in transparency, their layered architecture often obscures decision-making
processes, raising issues of interpretability. The extensive and diverse datasets required for train-
ing pose significant privacy and security risks. Additionally, deploying and maintaining these
systems is resource-intensive due to their sophisticated architecture and the need for regular
updates to stay aligned with evolving data and technologies. Real-time processing capabilities
can be hindered by the computational intensity of DL components, and the energy demands of
training and operating hybrid models raise environmental concerns. Long-term maintenance fur-
ther demands substantial effort to ensure these models remain effective and relevant in dynamic
environments.

• Future Research: Future research in hybrid learning should focus on deeper interdisciplinary
integration with fields like cognitive science, medical, and computing to achieve AI systems
that more closely emulate human cognition. Advancing model generalization is equally critical,
emphasizing the development of adaptive systems capable of autonomously adjusting to varying
datasets and environmental conditions. Additionally, enhancing AI accessibility is essential to
democratize its use, improved educational resources, and community-driven initiatives, thereby
broadening the impact of AI as a universal problem-solving tool [70].

6. Conclusions and Future Work
Conducting a systematic review of synchronization, optimization, and adaptation of machine

learning techniques for computer vision in Cyber-Physical Systems (CPS) has provided valuable
insights into current research trends and highlighted key areas for future exploration. Synchronization
techniques have advanced to meet the demands of data fusion, sensor integration, and real-time pro-
cessing, ensuring seamless coordination between computational and physical components. However,
challenges persist in developing scalable, fault-tolerant solutions applicable across various domains.

Automated monitoring systems, especially in manufacturing and autonomous vehicles, represent
approximately 20% of the reviewed studies. In these applications, sensor fusion is crucial for perception
systems, as cameras alone cannot provide a comprehensive view. Fuzzy logic control is relevant
for decision-making feedback, but deep learning neural networks dominate tasks such as image
classification, recognition, and visualization.

Optimization strategies, particularly those utilizing edge computing advancements, have shown
great promise in improving system efficiency and resource management. Nonetheless, the trade-off
between communication and computation latency remains a critical challenge that requires further
research. There is a growing need for adaptive, context-aware approaches capable of dynamically
responding to environmental changes and system conditions.
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Adaptation mechanisms offer the potential for autonomous decision-making and self-healing
capabilities, but issues related to standardization and interoperability remain unresolved. Additionally,
human-in-the-loop control continues to be a significant research focus, particularly in ensuring safety
within the manufacturing sector and autonomous vehicles.
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