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The use of animal models is crucial for advancing translational research by identifying
effective treatment targets and strategies for clinical application in human disease. This
Special Topic “Animal Models of Human Disease 2.0”, called for state-of-the-art primary
research and review articles, inviting global experts conducting fundamental and trans-
lational research in comparative animal models of human diseases. Submissions were
invited on topics related to chronic pathologies, including autoimmune and neurodegener-
ative diseases, cancer, acute injury, inflammatory and infectious diseases, and regenerative
medicine. The five participating MDPI journals were Biomedicines, Cells, Current Issues
in Molecular Biology, Genes, and the International Journal of Molecular Sciences. A total of
twenty-two papers were published, including two comprehensive reviews on the use of
diverse animal models to advance translational research and twenty original research
papers using more common and conventional laboratory animal models (mice, rats, rabbits)
or other less frequent comparative models (dogs and plateau pikas). Findings reported
in this Special Topic provide significant new information on fundamental pathobiological
mechanisms and clinical markers of chronic and acute human pathologies and investi-
gate exposome effects on human health. Research topics included nervous system, liver,
lung, and cardiac diseases, the gut microbiome, host–pathogen interactions, antibiotic
resistance, pathological effects and/or therapeutic potential of selected drugs and com-
pounds, mitochondrial-mediated mechanisms, and hypoxia-mediated pathways. Topics
of regenerative medicine discussed the use of stem cells and gene-edited animal models.
Research on exposome-related factors included blue light irradiation and microgravity,
highlighting risks to human health regarding the overuse of smart digital devices and
future long-term spaceflight missions.

The use of animal models is crucial for advancing translational research by identifying
and validating effective treatment targets and strategies for clinical application in human
disease [1,2]. Murine models are frequently used in laboratory settings for a wide range of
disease modelling, including gene editing, and can be used to study cancer, infection, and
cardiovascular, metabolic, rare, neurodegenerative, and autoimmune diseases [3–8]. For
some pathologies and in further translational and preclinical studies, larger animal models
closer to human physiology and anatomy may be desirable, including pigs, sheep, dogs,
and nonhuman primates [9–17]. In addition, animals with specific characteristics which
aid the study of certain organ systems may be feasible, such as Octopus vulgaris for visual,
sensory, and nervous system research [18–21] or piglets for pediatric heart transplantation
studies [22], depending on the 3Rs and utilitarian ethics. Various species lower in the
phylogeny tree, including fruit flies (Drosophila melanogaster), nematodes (Caenorhabditis
elegans), amphibians (Xenopus laevis), and fish (zebrafish, Dano rerio), are also common labo-
ratory animal models for molecular and cellular mechanistic studies and drug-screening
for human disease and precision medicine [23–29]. Furthermore, non-traditional animal

Int. J. Mol. Sci. 2024, 25, 13743. https://doi.org/10.3390/ijms252413743 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms252413743
https://doi.org/10.3390/ijms252413743
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-7193-3102
https://orcid.org/0000-0002-7200-0363
https://doi.org/10.3390/ijms252413743
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms252413743?type=check_update&version=2


Int. J. Mol. Sci. 2024, 25, 13743 2 of 9

models displaying unusual immune and metabolic characteristics, such as resistance to
hypoxia, infection, cancer, and longevity, are of interest, as these can provide novel in-
sights into molecular pathways and identify new treatment targets to improve human
health, as well as revealing mechanisms for survival in extreme environments. Examples
of such comparative and/or wild animal species include naked mole-rats [30,31], plateau
pikas [32,33], tenrecs [34], reptiles [35–38], camelids [39–41], sharks [42–44], Pinnipeds
(seals) and Cetaceans (whales, and dolphins) [45–50]. In addition, animals displaying
unusual regenerative capacities, such as planaria, annelids, and axolotls [51–59], as well
as embryonic chickens (Gallus gallus) for nervous system regeneration [60–64] and fish
and amphibians for cardiac regeneration [65], can provide important information for re-
generative medicine research. The ethical implications of the use of the most appropriate
animal model(s) for each case must be critically evaluated and adhere to the 3Rs (Replace-
ment, Reduction, and Refinement) [1,66,67]. The availability of the given animal model,
including using archived samples or carrying out functional in vivo, ex vivo, in vitro, or
computational modelling, must also be considered from a practical viewpoint.

This Special Topic “Animal Models of Human Disease 2.0” (https://www.mdpi.
com/topics/4Q38Y4392K) (accessed on 30 November 2024), called for state-of-the-art
primary research and review articles, inviting global experts conducting fundamental
and translational research in comparative animal models relevant to human diseases to
contribute. Submissions were invited to cover topics on chronic pathologies, including
autoimmune and neurodegenerative diseases, cancer, acute injury, inflammatory and
infectious diseases, and regenerative medicine. The five participating MDPI journals
were Biomedicines, Cells, Current Issues in Molecular Biology, Genes, and the International
Journal of Molecular Sciences. In total, twenty-two papers were published, including two
comprehensive reviews on the use of diverse animal models to advance translational
research and twenty original research papers using more common and conventional animal
models such as mice, rats, and rabbits or other less frequent comparative models such as
dogs and plateau pikas. The key findings of the published contributions to this Special
Topic are briefly summarized below.

In Contribution 1, Chen and colleagues used rats and plateau pikas (Ochotona cur-
zoniae), a high-altitude-adapted burrowing mammal, to assess the protective effects of
the host’s intestinal microbiota in mitigating hypoxic damage following chronic hypoxic
injury. Gut microbiota from plateau pikas were transplanted into rats that were exposed to
hypoxia challenge. Beneficial effects were observed on inflammatory pathways, proposing
new approaches to treat hypoxic pulmonary hypertension.

In Contribution 2, Kraus et al. used phenobarbital to develop a fast animal model of
metabolic dysfunction associated with steatohepatitis (MASH-cirrhosis) in rats, reflecting
the human disease. The rats developed advanced disease signs characterized by portal
hypertension, blood biochemistry, hepatic ballooning, steatosis, inflammation, and fibrosis
induced by phenobarbital. Their study provides a new animal model of MASH-cirrhosis
that is of value to the wider research community.

In Contribution 3, Li and co-workers studied cold-induced immunosuppression in
a mouse model and tested the therapeutic potential of traditional herbal medicine. The
authors used the root extract from Salvia miltiorrhiza, assessing its active compound tanshi-
none IIA, showing the effects of plasma IgG and improved bacterial clearance. Their study
lays the foundation for future applications of Salvia miltiorrhiza bioactive compounds in
mitigating cold-induced immunosuppression.

In Contribution 4, Park et al. assessed the therapeutic effects of tadalafil, a phosphodi-
esterase type 5 (PDE-5) inhibitor, on the endothelium in a rabbit model of subarachnoid
hemorrhage. The findings indicated that tadalafil indirectly prevents endothelial cell death
and shows neuroprotective properties. Their study provides a basis for further investigation
into apoptosis-related proteins related to tadalafil application.

Contribution 5 by Tahimic and colleagues used rat models to study the effects of
microgravity on gene regulation in immunity and cardiovascular disease, including oxida-
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tive stress. Findings indicated sex-dependent changes in oxidative damage and increased
inflammation in response to microgravity exposure. This paper contributes to the growing
body of research on human health concerning long-term space missions and is important
for future space medicine.

Contribution 6 by Nawaz and colleagues examined diabetic cardiomyopathy and car-
diac remodelling in a rat model, assessing the therapeutic potential of Phoenix Dactylifera.
The findings indicate cardioprotective effects through the regulation of metabolic signalling
and glucolipid balance. Their study introduces a new compound for the treatment of
diabetes-associated heart failure.

In Contribution 7, Fan et al. used a rat model of ischemic stroke to assess the potential
of the flavonoid compound, Luteolin-7-O-β-d-glucuronide (LGU), as a neuroprotective
agent. LGU was found to attenuate cerebral injury due to ischemia/reperfusion by improv-
ing the permeability of the blood–brain barrier, with molecular targets including S100B,
tight junction proteins, and metalloproteinases.

In Contribution 8, Bose and co-workers created new, humanized mouse models of Gulf
War Illness (GWI) to study host gut microbiome–immune interactions. The group showed
that their model significantly altered gut microbiomes and modified cytokine profiles
when treated with Gulf War chemicals, and these were similar to reported microbiomes in
Veterans. Their study provides a new in vivo model for gut–immune interactions in GWI.

Contribution 9 by Ray et al. used a mitochondrial aldehyde dehydrogenase-2 (ALDH2)
knockout mouse model showing its neuroprotective role in binge alcohol-induced brain
damage, with involvement of the gut–brain axis. Their study provides a new potential
target for attenuating alcohol-induced organ and tissue injury.

In Contribution 10, Hiramoto and colleagues used a mouse model to assess the nega-
tive effects of long-term blue light exposure on memory and learning ability, identifying
changes in inflammatory pathways. The findings provide important insights into the
health implications relating to long-term exposure to blue light, including from digital
smart devices.

Contribution 11 by Munalisa and colleagues used a mouse model to assess stress-
induced inflammatory responses in gastrointestinal injury. Their study used restraint
stress to investigate neutrophil inflammation and showed that pharmacological NETo-
sis inhibition protected the gastrointestinal tissue from stress-induced inflammation. It
also highlights a new target in the management of gastrointestinal injuries caused by
physiological stress.

In Contribution 12, Seol and co-workers developed guidelines on optimized em-
bryo collection from rat models for gene editing approaches using the CRISPR/Cas9
system. Their study proved the efficiency of these guidelines by generating a fukutin
knockout rat model, constructing the first muscular dystrophy disease rat model using the
CRISPR/CAS9 system. Their study contributes a new method for gene-editing rats for
application in human disease modelling.

Contribution 13 by Vacca et al. used a mouse model of intellectual disabilities in
Duchenne muscular dystrophy, using adeno-associated virus administrations through
intra-cardiac or intra-cerebroventricular injections. This proof-of-concept study was tested
in young and adult mice and contributes to developing effective gene therapy approaches
for cognitive disorders.

In Contribution 14, Watanabe and colleagues developed a new knockout mouse
nephropathy model, assessing Adriamycin-induced podocyte injury. Several new genes
with roles in kidney damage were identified, paving the way for new methods for early
diagnosis and treatment of kidney disease. This study provides a new in vivo tool for
research in chronic kidney disease.

Contribution 15 by Wen and collaborators developed a rat model to study methods to
treat human patients with prolapse and hemorrhoids. This model helped identify new ap-
proaches to decrease inflammation and fibrosis in anal stenosis and is of clinical relevance.
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In Contribution 16, Wang et al. used a mouse model to assess the therapeutic potential
of a new aptamer in coronoviral infection-induced acute lung injury. Their study highlights
Apta-1 as a therapeutic agent, protecting pulmonary endothelial integrity and reducing
both infection-induced hemorrhage and systemic inflammation in coronaviral infection.

Contribution 17 by Chaklai and colleagues used mouse models with mutations linked
to Parkinson’s disease and Gaucher disease (A53T and A53T-L444P) to assess the protective
roles of the gut microbiome in response to exposure to paraquat, dextran sulfate sodium,
and radiation. Findings indicate important roles for the gut microbiome in mediating
the impacts of environmental exposures or genetic mutations on cognition and behaviour.
Using a combination of colitis-induced, herbicide-exposed, and neurodegenerative mouse
models, this study contributes to the increasing body of research on exposome effects and
the gut–brain axis in neurological diseases.

In Contribution 18, Murgiano and collaborators identified a frameshift variant in
adenosine monophosphate deaminase related to retinopathy and tremors in dell’Etna dogs.
The findings reported on this oculo-neurological syndrome add to the spectrum of known
neurological manifestations associated with human adenosine monophosphate deaminase
variants. Their study highlights larger animal models‘ important role in understanding
diverse neurological disorders.

Contribution 19 by Trivedi et al. reports the effects of prolonged antibiotic use on
renal fibrosis-like pathology in a preclinical mouse model of Gulf War syndrome. The
findings identify roles for TGF-beta and microRNA-21 mediated pathways in gut dysbiosis
observed in Gulf War veterans. Their study adds to the current understanding of molecular
mechanisms involved in mediating the complex functions of the gut microbiome in renal
pathology in response to long-term antibiotic treatment.

Contribution 20 by Fioretti et al. generated a mouse model of freeze-injured skeletal
muscle to mimic traumatic muscle injury and assessed the pro-regenerative potential of
amniotic stem cell application, including via macrophage-related responses. Their study
contributes an important new model for regenerative medicine research relating to stem
cell transplantation in severe traumatic muscle injuries.

Contribution 21 by Norazaman and colleagues is a comprehensive review of animal
models for studying bone health in type-2 diabetes mellitus (T2DM) and obesity. The
authors further discuss the literature on the inter-relationship between diabetes, obesity, and
bone loss. The key animal species reviewed were mice and rats, and the models discussed
were chemical-induced, genetically modified, monogenic or polygenic, dietary-induced,
and leptin-receptor-related. Their review is important for increasing the understanding of
bone health in co-morbidities and age-related and chronic conditions.

In Contribution 22, Giusti and collaborators review adult and embryonal animal mod-
els for xenografting, with an emphasis on musculoskeletal sarcomas. More traditional
xenograft models of mice, chick (chorioallantoic membrane), and zebrafish embryos are dis-
cussed, and how these can be used to model rare and heterogeneous sarcomas. Their review
highlights the importance of using diverse animal models for boosting translational research.

In conclusion, this Special Topic covers translatable and clinically relevant findings from
various comparative animal models of human disease. The diversity of the studies highlights
the importance of using the most appropriate model to study fundamental disease pathways
and validate druggable targets in different pathologies. In addition, the common use of mouse
and rat models in laboratory settings is noted in 17 out of 20 papers in this Special Topic,
while one study used rabbit, one used dog, and one used plateau pika alongside rat. The
two reviews furthermore discussed the use of rat and mouse models alongside zebrafish and
chick models, including at embryonic stages, for different disease studies.

Animal models will remain key critical tools to advance biological and medical re-
search. The increasing implementation of the 3Rs and ethical considerations [66,68] is, in
addition, accelerating the development of sophisticated gene editing and cellular tools,
including induced pluripotent stem cells (iPSCs), bioprint models, organs-on-chips, 3D
in vitro assays, organoids, and microfluidics systems [69–72]. Furthermore, developing cell
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lines from a wider range of organisms and animals can meet the need for a more diverse
pool of model species [73–76]. A combinatory approach of in vivo, ex vivo, in vitro, and
in silico methods will continue to further the current understanding of disease processes
to develop improved therapeutic strategies. The findings reported in this Special Topic
provide significant new information on fundamental pathobiological mechanisms and
clinical markers of chronic and acute human pathologies and exposome effects on human
health, not only on Earth but also in Space.
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