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Abstract

Overexpression of Hedgehog family proteins contributes to the aetiology of many cancers. To be highly active, Hedgehog
proteins must be palmitoylated at their N-terminus by the MBOAT family multispanning membrane enzyme Hedgehog
acyltransferase (Hhat). In a pancreatic ductal adenocarcinoma (PDAC) cell line PANC-1 and transfected HEK293a cells Hhat
localized to the endoplasmic reticulum. siRNA knockdown showed that Hhat is required for Sonic hedgehog (Shh)
palmitoylation, for its assembly into high molecular weight extracellular complexes and for functional activity. Hhat
knockdown inhibited Hh autocrine and juxtacrine signaling, and inhibited PDAC cell growth and invasiveness in vitro. In
addition, Hhat knockdown in a HEK293a cell line constitutively expressing Shh and A549 human non-small cell lung cancer
cells inhibited their ability to signal in a juxtacrine/paracrine fashion to the reporter cell lines C3H10T1/2 and Shh-Light2. Our
data identify Hhat as a key player in Hh-dependent signaling and tumour cell transformed behaviour.
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Introduction

Hedgehog (Hh) proteins are an important class of secreted

intercellular signaling molecules. In mammals, the three Hh

homologues, Sonic (Shh), Indian (Ihh), and Desert (Dhh)

Hedgehog, play crucial roles in regulation of embryonic develop-

ment of several organs, including pancreas, digestive system, heart,

vascular system and lung. During development, differentiation and

tumourigenesis, targets of Hh signaling are involved in cell

adhesion, signal transduction, cell cycle, apoptosis and angiogen-

esis [1]. In adults, Hh signaling is minimal in many differentiated

tissues, with the exception of stem cells and thymocytes [2].

However, Hh signaling is aberrantly reactivated in ,70% of

pancreatic ductal adenocarcinomas (PDAC; [7]) as well as many

other tumours. Abnormal Hh signaling plays important roles in

the growth of many cancer cell types including pancreatic,

digestive tract, prostate, breast and lung cancers (small cell lung

cancer, SCLC, and non-small cell lung cancer, NSCLC),

squamous cell and basal cell carcinomas, gliomas, medulloblasto-

mas and myeloid leukaemias [3–6]. Some of these are amongst the

most intractable tumors for which no effective therapies exist.

Importantly, overexpression of Hh ligands, rather than mutations

in Hh pathway components, contributes through autocrine,

paracrine or juxtacrine signaling to pathway hyperactivation in

PDAC [7,8], breast [4,5] and lung [9,10] cancers. Thus, blocking

production of active Shh should downregulate its function and

mitigate stimulatory effects on cell growth. Supporting this,

treatment with cyclopamine, a specific inhibitor of the positive

transducer of Hh signaling, Smoothened (Smo), reduces the

viability or proliferation of several cancer cell types (see refs above).

Smo antagonists are under development as cancer therapeutics
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and are in clinical trials for multiple cancers (Hedgehog pathway

inhibitors, ClinicalTrials.gov., National Institutes of Health, June

2012).

Hh proteins are secreted through the secretory pathway via the

endoplasmic reticulum (ER) and Golgi complex, but an unusual

feature is their post-translational modification by addition of a

fatty acid (palmitate, Pal) and cholesterol to the protein [11].

These modifications are essential for the controlled extracellular

spread of Hhs to target cells and their biological activity. During

intracellular transport, the ,45 kDa Shh precursor is palmitoy-

lated on its conserved N-terminal cysteine residue. Concomitantly,

a ,18 kDa N-terminal fragment (Shh-N) and a ,25 kDa C-

terminal fragment (Shh-C) are generated by intein-like autocata-

lytic cleavage catalyzed by Shh-C and, concurrently, cholesterol is

covalently attached to the C-terminus of Shh-N to form the

mature active Shh-Np [12]. In mammals, Shh palmitoylation is

crucial for its biological activity; e.g. removal of the palmitoylation

site abrogates the ability to induce differentiation of E11

telencephalic neurons during rodent ventral forebrain formation

[13]. Palmitoylation also plays a major role in guiding modified

Hh proteins to specific membrane domains [14]. The cholesterol

attached to Shh-Np, on the other hand, enhances its affinity for

cell membranes and regulates its cell surface distribution (e.g. to

membrane microdomains), and also affects its extracellular range

and concentration gradient from the producing cell. Dual

lipidation of Shh improves membrane affinity, and is necessary

for formation of high molecular weight complexes with heparan

sulphate proteoglycans (HSPGs; [12]) which enhances signaling

and in vivo activity [14,15]. These complexes assemble during

transport to the cell surface and are of ill-defined composition, but

have been reported to contain Hh, HSPGs and lipoproteins [16].

However, whether the released multimeric form of Shh still

contains its lipid modifications and is a hetero or homomultimer is

a matter of controversy [17]. Indeed, lipidation of Shh has been

reported to be necessary for the cleavage and release of active Shh

multimers during which the lipidated termini are removed [18].

Hh signaling in receiving cells is regulated by Patched (Ptch) and

Smo [5]. In the absence of Hhs, the heptahelical protein Smo is

inhibited by the Ptch Hh receptors. Hhs bind to Ptch and relieve

inhibition of Smo, allowing activation of downstream signaling,

ultimately via Gli transcription factors in vertebrates. The exact

mechanisms of these inhibitory interactions are unclear; current

models suggest Smo is retained intracellularly in the absence of Hh

and translocates to the plasma membrane when Ptch binds Hh,

localizing in the primary cilium where activation of Gli proteins

occurs [19]. Targets of Hh signaling include several pathway

components, e.g. Ptch, Gli, and upregulation of their expression

can be used to assay Hh pathway activity.

Hedgehog acyltransferase (Hhat) is responsible for palmitoyla-

tion of Hhs [20–22] (note Hhat was previously designated skn, ski,

sit and rasp). It is a member of the MBOAT family of membrane-

bound acyltransferases, predicted to contain between 8–12

transmembrane domains (Figure S1) [23]. These multispanning

transmembrane enzymes usually catalyze the addition of a fatty

acid to membrane-embedded substrates such as lipids [24]. Three

MBOAT family members acylate protein substrates: Hhat,

Porcupine (Porc; substrates Wg/Wnt proteins) and ghrelin O-

acyltransferase (GOAT; octanoylates the substrate ghrelin, an

appetite-controlling peptide) [25,26]. MBOAT proteins contain a

characteristic histidine in one transmembrane domain, being

conserved in most family members and thought to be involved in

their acyltransferase activity based on mutational studies.

We show here, using fluorescent protein fusions and epitope-

tagged Hhat proteins, that Hhat predominantly localizes in the

ER. Hhat knockdown (KD) in the PANC1 PDAC cell line reduces

palmitoylation of Shh, prevents its assembly into multimeric

complexes, causes suppression of signaling through the Hh

pathway, and reduces growth and invasiveness. Growth inhibition

by Hhat KD was also shown for A818 PDAC cells. In addition,

Hhat KD in HEK293a cells constitutively expressing Shh and

A549 human NSCLC cells inhibited their juxtacrine/paracrine

signaling. We demonstrate an important role for Hhat in PDAC

and other tumour cells and provide evidence that Hhat inhibition

is a target for tumour growth suppression.

Materials and Methods

Cell culture and siRNA transfection
Human pancreatic ductal adenocarcinoma PANC1 cells

(ATCC, CRL-1469) were maintained in Dulbecco’s modified

Eagle’s medium (DMEM) supplemented with 8% fetal bovine

serum (FBS). A818-1 cells [50] were a gift of Mr. Hemant Kocher

(Barts Cancer Institute, London) cells were grown in DMEM plus

10% FBS, plus 100 u/ml penicillin and 100 mg/ml streptomycin.

The human embryonic kidney 293a (HEK293a) line was

generously provided by Dr. Birgit Leitinger (Imperial College

London). HEK293a cells were maintained in DMEM supple-

mented with 8% FBS. Human A549 non-small cell lung cancer

cells were a kind gift of Prof. Simak Ali (Department of Surgery

and Cancer, Imperial College London) and were maintained in

DMEM supplemented with 10% FBS. Shh-Light2 cells [38] were

a kind gift from Drs. Marta Swierczinska and Suzanne Eaton

(Max Planck Institute for Cell Biology and Genetics, Dresden) and

were grown in DMEM supplemented with 10% FBS, 400 mg/ml

G418 (geneticin, Sigma) and 150 mg/ml Zeocin (Invitrogen).

Mouse C3H10T1/2 osteoblast precursor cells (ATCC CCL-226;

[31]) were a kind gift of Dr. Kay Grobe, University of Muenster,

Germany. Cells were validated by microsatellite genotyping (STR-

PCR based method in May 2013; Public Health England,

Salisbury, UK).

Human Hhat siRNA duplex oligomers Hhat-#1 (sense strand

59-UUAAUCAGGUAUGUGUACAUUCCAGUG-39) were de-

signed and ordered from MWG Biotech. Mutated Hhat siRNA

duplex oligomers (59-UUAAUCAGGCAUAUGUACGUUCCA-

GUG-39) were from Invitrogen. ON-TARGET plus siRNA

against human Hhat (59-AGGACAGUCUGGCCCGAUA-39;

Hhat-#2) and ON-TARGET plus Non-targeting siRNA pool

were from Dharmacon (Thermo Scientific Dharmacon; Epsom,

UK). Another negative control applied in this study was SilencerR

Negative Control #1 siRNA (Hhat-Scr, Ambion).

siRNA transfections were carried out by plating 0.3 million cells

per well in a 6-well plate and 6 h later treated with 20 nM siRNA

oligomers and 3 ml FuGENE 6 Transfection Reagent (Roche) per

reaction. Alternatively, siRNA transfections were carried out using

the Metafectene SI reagent (Biontex, Martinsried/Planegg,

Germany) according to the manufacturer’s instructions. 30 pmol

RNA and 1 ml Metafectene SI reagent were diluted in 30 ml 16
Metafectene SI buffer and allowed to complex for 20 min at room

temperature (RT) in a well of a 48-well plate. In the meantime,

cells were trypsinized and diluted to 0.86105 cells/ml in complete

medium. Suspended cells (250 ml) were added to each well and

plates were shaken to ensure even distribution of the cells and

reagents. Cells were assayed 72 h post-transfection.

Immunoblotting
Immunoblotting was carried out 24 h after transfection of

HEK293 cells with expression vector for Hhat-EGFP. For SDS-

PAGE, 0.4 million cells were harvested and lysed by the addition
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of loading buffer (45 mM Tris (pH 6.8), 10% glycerol, 1% SDS,

20 mM DTT, 0.01% bromophenol blue) followed by syringing.

After electrophoresis, proteins were transferred to nitrocellulose

membranes (Millipore, Bedford, MA, USA), blocked at room

temperature for 1 h in phosphate-buffered saline (PBS) with 5%

skimmed milk, and then incubated with primary antibody for 16 h

at 4uC. Goat polyclonal anti-Patched (ab51983) and mouse

monoclonal a-Tubulin (DM1A, ab49928) were purchased from

Abcam. Rabbit polyclonal anti-GLI-1 (H-300, sc-20687) and

rabbit polyclonal anti-Shh (H-160, sc-9024) were purchased from

Santa Cruz Biotechnology. Mouse monoclonal anti-GFP was from

Roche. Secondary antibodies were horseradish peroxidase (HRP)-

conjugated goat anti-mouse immunoglobulin IgG1, HRP-conju-

gated goat anti-rabbit IgG, and HRP-conjugated donkey anti-goat

IgG (used at 1:20,000; Southern Biotech). Bound immunocom-

plexes were detected using enhanced chemiluminescence detection

reagents (Pierce) and were visualized by exposing the membrane to

x-ray film (Fuji Super RX), or with ECL Plus reagent and the

Ettan DIGE Imager (GE Healthcare).

Immunostaining and fluorescence microscopy
PANC1 cells were seeded onto 6-well plates at a density of

16105 cells/well and transfected with Hhat-EGFP. 48 h after

transfection, the cells were fixed with 4% paraformaldehyde (PFA).

Alternatively, 66104 HEK293a cells stably expressing Hhat-V5

were seeded onto glass coverslips in 24-well plates. 24 h after

plating out, cells were fixed with 3% PFA in 16PBS. Imaging was

performed using a Zeiss LSM510 laser-scanning confocal micro-

scope in the Imperial College Facility for Imaging by Light

Microscopy (FILM). Hhat was visualized with mouse monoclonal

anti-V5 IgG2A (1:200, Invitrogen) followed by Alexa488-conju-

gated anti-mouse IgG2A secondary antibody. Golgi complex was

visualized after staining with mouse monoclonal anti-GM130

IgG1 (1:600, BD Transduction LaboratoriesTM), and ER with

mouse monoclonal anti-protein disulfide isomerase (PDI) IgG1

(1:100, BD Transduction LaboratoriesTM) or anti-calnexin (AF18,

1:50, Sigma) respectively, followed by Alexa568 or Alexa633-

conjugated anti-mouse IgG1 secondary antibodies.

Semiquantitative Reverse Transcription-PCR (RT-PCR) and
qPCR

Total RNA extraction from cultured cells was done with Trizol

(Invitrogen). cDNA was synthesized by random priming from 1 mg

of total RNA with SuperScript II Reverse Transcriptase kit

(Invitrogen), according to the manufacturer’s instructions. Alter-

natively, the cDNA was synthesized by random priming from 1 mg

of total RNA with the GoScript reverse transcriptase kit

(Promega). The following primers were used for the subsequent

PCR: human GAPDH (sense, 59-TTCATTGACCTCAACTA-

CAT-39; antisense, 59-GTGGCAGTGATGGCATGGAC-39);

human b-actin (sense, 59-ATGGATGAGGATATCGCTGCG-

39; antisense, 59-CTAGAAGCATTTGCGGTGCAC-39); human

Shh (sense, 59-CGCACGGGGACAGCTCGGAAGT-39; anti-

sense, 59-CTGCGCGGCCCTCGTAGTGC-39) [26]; human

Ptch (sense, 59-GGTGGCACAGTCAAGAACA-39; antisense,

59-ACCAAGAGCGAGAAATGG-39) [26t]; human Smo (sense,

59-TTACCTTCAGCTGCCACTTCTACG-39; antisense, 59-

GCCTTGGCAATCATCTTGCTCTTC-39) [27]; human Gli1

(sense, 59-TTCCTACCAGAGTCCCAAGT-39; antisense, 59-

CCCTATGTGAAGCCCTATTT-39) [27].

Polymerase chain reaction (PCR) with Taq DNA Polymerase

(Invitrogen) followed the manufacturer’s instructions. Cycling

conditions were: 30 cycles of 30 seconds at 95uC, 30 seconds at

60uC, and 2 minutes/kb at 72uC. PCR products were resolved by

electrophoresis on 1.7% agarose gels and visualized by ethidium

bromide staining.

Hhat knockdown in the siRNA-treated cells was further

validated by qPCR, for which we used the GoTaq qPCR master

mix (Promega). Specifically, cDNA from 15 ng input RNA was

used in a 20 ml reaction in a 96-well thermal plate, in triplicate.

The plates were sealed and run in an ABI 7500 Fast Real-Time

PCR System cycler (Applied Biosystems, Life Technologies).

Cycling conditions: 40–45 cycles of 95uC for 45 sec, 60uC for

30 sec. Data were analyzed using the DDCt method for

determination of relative gene expression by normalization to an

internal control gene (GAPDH) and fold expression change was

determined compared to a control sample treated with non-

targeting siRNA.

Cloning and Expression of Recombinant Hhat
Human Hhat cDNA (Accession No: BC117130) was cloned into

pEGFP-N3 mammalian expression vector at the XhoI and

BamHI sites. Transfections of mammalian expression vectors

were carried out using Lipofectamine 2000 (Invitrogen) or

FuGENE HD (view section above for details; Promega). HA-

Hhat-V5 and Hhat-V5 were created using GatewayH cloning

(Invitrogen) into mammalian expression vector pcDNA-DEST40.

Entry vectors were made by topoisomerase cloning of PCR inserts

into vector pENTR/D-TOPO using pENTR directional TOPO

cloning kit. PCR inserts were amplified from human Hhat cDNA

(Accession No: BC117130) using forward primer 59-CACCATG-

TACCCCTACGACGTGCCCGACTACGCCCTGCCCCGA-

TGGGAACTG-39 or 59-CACCATGCTGCCCCGATGG-39

and reverse primer 59-GTCCGTGGCGTAGGTCTG-39.

Entry vector pENTR/D-TOPO containing Hhat constructs

and destination vector pcDNA-DEST40 were recombined using

LR Clonase II enzyme mix to produce HA-Hhat-V5 or Hhat-V5

expressing constructs. Resulting clones were confirmed by DNA

sequencing.

Click chemistry/in vitro palmitoylation
Forty eight hours after siRNA transfection, culture medium was

changed to DMEM labeling medium (1 mM sodium pyruvate and

50–100 mM azido-palmitate analogue, 15-hexadecynoic acid

YnC15 [28,29] for 16–36 h. Cells were washed in PBS, and cell

extracts were prepared in lysis buffer (1% Triton X-100 and

protease inhibitors (complete protease inhibitor cocktail EDTA-

free, Roche) in PBS, pH 7.4). Equivalent amounts of cell lysates

and medium were immunoprecipitated for Shh separately using

5E1 anti-Shh MAb (purified in this lab from 5E1 hybridoma cells

obtained from the Developmental Studies Hybridoma Bank, USA;

free of any antimicrobial solution or preservatives that could affect

cell viability).

Copper-catalyzed azide-alkyne cycloaddition (CuAAC; click

chemistry, [28–30]) was carried out directly on protein G-agarose

beads using azido-TAMRA-biotin capture reagent [28,29]. In vitro

palmitoylation was detected by fluorescence imaging with an Ettan

DIGE Imager (GE Healthcare, UK). Protein concentrations were

measured using Bio-Rad Protein Assay Reagent (Bio-Rad,

Richmond, CA, USA) following the manufacturer’s suggested

procedure.

Shh oligomerization assay
Seventy two hours after Hhat siRNA transfection, culture

medium was changed to serum-free medium (SFM) for 24 h. Gel

filtration analysis of clarified conditioned SFM was performed by

fast protein liquid chromatography (ÄKTA Protein Purifier,

Amersham Biosciences) using a Superdex200 10/300 GL column

Carcinoma Dependence on Hhat
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(Amersham Biosciences) equilibrated with PBS at 4uC [31]. Eluted

fractions were trichloroacetic acid-precipitated and probed for Shh

by dot blotting with anti-Shh H-160 (Santa Cruz, sc-9024).

Matrigel invasion assay
Biocoat Matrigel Invasion Chambers with 8 mm pores in 6-well

plates (BD Biosciences) were used for invasion assays [32]. To

determine the effect of Hhat knockdown, PANC1 cells were

pretreated with Hhat siRNA (described above) for 72 h before

they were added to the chamber. PANC1 cells were detached with

5 mM EDTA in PBS, resuspended in serum-free DMEM and

added to the upper compartment of the chamber (16105 cells/

well). Conditioned medium (8% FBS) was placed in the lower

chamber. After 24 h incubation at 37uC, the cells on the upper

surface were completely removed by wiping with a cotton swab,

and then the filter was fixed with 100% methanol and stained with

crystal violet solution. Cells that had migrated from the upper to

the lower side of the filter were photographed and counted with a

light microscope (40 fields/filter).

PANC1 proliferation assay
Proliferation was measured in vitro with the vital dye 5(6)-

Carboxyfluorescein diacetate N-succinimidyl ester (CFSE, Sigma),

which is loaded into cells and becomes diluted during subsequent

cell divisions. Briefly, after 24 h of synchronization in serum-free

medium, cells were transfected with siRNAs (test and controls) or

treated with anti-Shh 5E1 blocking antibody (Day 1, 10 mg/ml)

and then all conditions were labeled with 2.5 mM CFSE at 37uC
for 15 min. For some wells, 5E1 treatment was carried out 72 h

after synchronization (Day 4, 10 mg/ml), to mimic the kinetics of

RNAi knockdown. After 8 days of culture, cell division was

indicated by decreased CFSE fluorescence intensity, as analyzed

by flow cytometry. For flow cytometer assessment, PANC1 cells

were removed from plates and resuspended in ice-cold FACS

buffer (1% FBS and 2 mM EDTA in PBS), then analyzed with a

FACScalibur flow cytometer.

Paracrine Hh signaling assay with C3H10T1/2 cells
A549 or HEK293a-Shh cells were seeded in co-culture with

C3H10T1/2 cells in DMEM + 3% FBS at a ratio of 1:2 of cells of

interest to C3H10T1/2 cells. A total of 14,800 cells were seeded

per well in a 96-well plate. For Shh pathway inhibition, medium

was supplemented with 20 mg/ml Shh blocking monoclonal

antibody 5E1 or 5 mM cyclopamine at seeding. For Hhat siRNA

KD, A549 or HEK293a-Shh cells were treated for 48 h with

20 mM siRNA Hhat-#2 59-AGGACAGUCUGGCCCGAUA-39

(Dharmacon) or a pool of four non-targeting siRNAs (ON-

TARGETplus Non-Targeting pool, D-001810-10-05, Dharma-

con), then trypsinized and seeded in co-culture with C3H10T1/2

cells in DMEM + 3% FBS as described. After two days of culture,

medium was removed, cells were washed in PBS and lysed by

gentle shaking on a horizontal shaker on ice for 10 min in 50 ml of

ice-cold lysis buffer (PBS pH 7.4, 0.1% (v/v) Triton-X100,

Complete Mini EDTA-free protease inhibitor (Roche)). Alkaline

phosphatase (ALP) activity was measured using p-nitrophenyl

phosphate as substrate. 5 mg p-nitrophenyl phosphate (Sigma)

were dissolved in 5 ml ALP reagent buffer (1 M diethanolamine

buffer pH 9.8, 0.5 mM MgCl2). 200 ml of ALP substrate solution

were added per well of lysed cells and the reaction was incubated

at room temperature for 1–2 h. Reaction was stopped by addition

of 50 ml 3 M NaOH and absorbance was measured at 405 nm.

Paracrine Hh signaling assay with Shh-Light2 cells
Shh-Light2 cells are an NIH/3T3 cell line commonly used in

Shh reporter assays. These cells stably express a firefly luciferase

gene under a Gli-inducible promoter, as a reporter of Shh activity,

and constitutively express a Renilla luciferase gene in order to

normalize the data to cell numbers. 2.56103 PANC1, 56103

HEK293a or 56103 HEK293a-Shh cells were seeded in a 96-well

plate in co-culture with 106103 Shh-Light2 cells in DMEM

supplemented with 3% FBS; cells were cultured for 72 h. Firefly

luciferase expression was measured using the Dual-Luciferase

reporter system (Promega) according to the manufacturer’s

instructions. Briefly, cells were lysed in 25 ml of passive lysis

buffer, at RT for 15 min with shaking. 5 ml of lysate were then

added to a single well of a black 96-well assay plate (Corning).

20 ml of luciferase assay reagent II were then added, and firefly

luminescence measured for 10 sec. After the measurement, firefly

luciferase was quenched and Renilla luciferase measured by the

addition of 20 ml Stop&Glo reagent. Luminescence was measured

in a FLUOstar Optima plate reader (BMG Labtech, Aylesbury,

UK) and data were normalized to the Renilla luciferase readout.

For Hhat siRNA KD, 26104 PANC1 cells were transfected with

Hhat-9 siRNA as described above. 48 h post-siRNA transfection

the medium was exchanged for DMEM supplemented with 3%

FBS containing 16105 Shh-Light2 cells. Cells were co-cultured for

72 h, and then lysed in 50 ml of passive lysis buffer and luciferase

measured as described above.

Statistical analysis
All experiments were replicated at least three times, and

statistical significance was measured by using the two-tailed t test.

A p value of less than 0.05 was considered to indicate statistical

significance. All signals from immunoblots and dot blots were

quantified using Scion Image software.

Results

Intracellular localization of Hhat to ER
To determine the intracellular localization of Hhat in PANC1

cells, they were transfected with Hhat-EGFP followed by laser

scanning confocal microscopy; anti-GM130 and anti-PDI or anti-

calnexin were used to localize Golgi complex and ER respectively

by immunofluorescence confocal microscopy. Hhat-EGFP was

primarily in the ER (Figure 1A; Pearson correlation coeffi-

cient = 0.6760.20). Z-sections taken every 0.5 mm through the cell

showed insignificant, if any, Hhat within the Golgi complex

(Figure 1A; Pearson correlation coefficient = 0.1260.11). Similar

results were obtained by staining for Hhat-V5 in stably transfected

HEK293a cells (Figure 1B). In this case, the Pearson correlation

coefficient between Hhat-V5 and the ER was 0.7560.06, and

between Hhat-V5 and Golgi was 0.2860.08. Our data differ

somewhat from those of Resh and colleagues who reported

substantial localization to the Golgi complex as well as ER [33].

ER localization of Hhat was the predominant phenotype we

observed in over 50 cells. We tested several commercially available

antibodies reported to be against Hhat but none of these

recognized overexpressed transfected C-terminally V5-tagged

Hhat (data not shown). Attempts to raise our own antibodies to

Hhat have so far been unsuccessful. We are therefore unable at

present to confirm the intracellular localization of endogenous

Hhat.
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siRNA Knockdown of Hhat in PANC1 and HEK-Hhat-V5
cells

To determine whether Hhat is essential for Shh palmitoylation,

we established conditions for effective KD of Hhat in PANC1

cells. The siRNA KD of Hhat was examined by qPCR using

GAPDH as a loading control. In addition, to determine the

specificity of Hhat siRNA, three negative controls were used: a

non-targeting siRNA, a scrambled siRNA (Hhat-Scr) and a

specific control mutated Hhat-#1 siRNA which contains muta-

tions from the original Hhat-#1 siRNA in the 10th, 13th and 19th

nucleotide to preclude siRNA activity. Our results show that

optimized Hhat-#1 RNAi KD results in a .70% decrease in

Hhat expression in PANC1 cells (Figure 2A), whereas with the

non-targeting siRNA the Hhat level was unaffected (Figure 2A);

similar results were observed with Hhat-Scr siRNA and Mutated

Hhat-#1 siRNA treatment (data not shown). By qPCR, Hhat KD

was quantified as 77% KD with Hhat-#1 and 68% KD with

Hhat-#2 at 72 h compared to mutated Hhat-#1. Hhat KD

achieved when data were compared to Hhat-Scr was 66% with

Hhat-#1 and 71% KD with Hhat-#2 (data not shown). Similar

KD of Hhat was measured by qPCR with HEK293a-Shh (Figure

S2) and A549 cells (data not shown). Due to the lack of a specific

Hhat antibody we were unable to directly confirm KD of

endogenous Hhat at the protein level. However, to provide

evidence that Hhat siRNA KD did effectively reduce Hhat protein

levels, we stably expressed Hhat-V5 at moderate levels in

HEK293a cells and then transfected the cells with Hhat siRNA-

#1 or #2 for 72 h followed by anti-V5 immunoblotting. Figure 2B

and C show that Hhat-#1 and #2 transfection substantially

reduced Hhat-V5 expression by 58.1% and 67.8% respectively.

Knocking down Hhat in PANC1 cells reduces
endogenous Shh palmitoylation and oligomerization and
decreases Shh cellular retention

We established a cell-based Shh palmitoylation assay using the

bioorthogonal Cu(II)-catalyzed azido-alkyne cycloaddition reac-

tion, also called click chemistry [29,30]. In short, proteins

metabolically incorporate the palmitate analogue YnC15 and

are detected following reaction with an azido-TAMRA-biotin tag.

Palmitoylation can be monitored by fluorescence imaging of the

tag and also by anti-Shh immunoblotting which detects a slightly

larger (,3–5 kDa) Shh polypeptide due to tag addition (see Figure

S3). Figure 3A shows that YnC15-tagged Shh could be immuno-

precipitated by 5E1 MAb from cell lysate and medium of control

Figure 1. Localization of Hhat in PANC1 cells. A. Localization of Hhat in PANC1 cells was assessed using Hhat-EGFP transfection and confocal
microscopy combined with immunofluorescence localization of ER (PDI) and Golgi (GM130). B. HEK293a Hhat-V5 stable cells were co-stained for the
V5 epitope with ER (Calnexin) or Golgi (GM130) and nuclei (DAPI). The data show that both Hhat-EGFP and Hhat-V5 localize primarily in ER with little if
any in Golgi apparatus. Scale bar = 10 mm.
doi:10.1371/journal.pone.0089899.g001
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PANC1 cells treated with Hhat-Mut siRNA. Hhat-#1 siRNA

treatment, however, caused a substantial reduction in YnC15-

labeled Shh in both lysate and medium, directly demonstrating

inhibition of Shh palmitoylation by Hhat KD. Interestingly, in the

medium of Hhat-#1 KD cells YnC15-unlabeled Shh was more

abundant than that of control cells, but was less abundant in cell

lysates, suggesting increased release when Hhat is knocked down.

Similar results were obtained in HEK293a-Shh cells using Hhat-

#1 and Hhat-#2 siRNAs (data not shown).

To evaluate the role of Hhat in formation of Shh multimeric

complexes, gel filtration followed by Shh dot blotting were carried

out on PANC1 conditioned medium. Using H-160 anti-Shh dot

blotting (Figure 3B), we showed that most secreted Shh in control

PANC1 culture medium migrated as large multimeric complexes

and only a small portion of Shh migrated as monomers, similarly

to previous studies [15,31]. We analyzed whether Hhat was

involved in this multimeric complex formation by Hhat siRNA

treatment. In conditioned medium from Hhat-#1 siRNA-treated

cells, a large proportion of Shh monomers was detected

(41.269.6%), nearly 20 times higher than in control medium,

whereas Mutated Hhat-#1 siRNA-treated medium shows a

similar pattern to control medium with only 2.161.5% monomer.

These data suggest that KD of Hhat in PANC1 cells causes

decreased Shh multimer secretion and confirms that palmitoyla-

tion of Shh plays a positive role in Shh multimer formation [12].

Knocking down Hhat causes decreased signaling
through the Shh pathway in PANC1 cells

To determine whether Hhat (and hence palmitoylation of Shh)

is required for Shh signaling activity, as indicated by Hhat

knockout mice studies [12], RT-PCR and immunoblotting were

performed in a Hhat-#1 KD time-course experiment; GAPDH

Figure 2. Hhat RNAi KD in PANC1 and HEK293a-Hhat-V5 cells. A. Quantitative RT-PCR was performed using Hhat-specific primers to confirm
target gene knockdown in PANC1 cells following Hhat-#1 and Hhat-#2 siRNA transfection. Hhat expression is normalized with GAPDH and
compared to Non-targeting siRNA control. Error bar represents the standard error of at least three independent experiments performed in duplicate
(**, P,0.01; ***, P,0.001). B. To confirm Hhat KD at the protein level, HEK293a cells stably expressing a pcDNA-DEST40-Hhat-V5 construct at
moderate levels were transfected with the Hhat-#1, Hhat-#2 and Non-targeting siRNAs. 72 h post transfection cells were lysed and Hhat expression
examined by SDS-PAGE followed by western blotting with an anti-V5 antibody. Blots were probed for tubulin as a loading control. C. Densitometry
was performed on the blots in panel B; values were then normalized to the tubulin loading control and compared to the Non-targeting siRNA control.
doi:10.1371/journal.pone.0089899.g002
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and b-Actin were used as loading controls. After Hhat-#1 siRNA

treatment, Ptch and Gli1 mRNA level were decreased in PANC1

cells by ,70% and ,50% respectively, whereas Shh and Smo

showed no significant difference (Figure 4A, B). In PANC1 cells,

Ptch and Gli1 were also similarly reduced at the protein level

(Figure 4C, D). Interestingly, when we examined Shh by

immunoblotting of cell lysates, cell-associated Shh was reduced

,70% at 72 h after Hhat-#1 siRNA treatment (Figure 4C),

consistent with non-palmitoylated Shh not being retained by cells.

This reduction was not due to alteration in Shh mRNA level

(Figure 4A, B). These data show that Hhat KD causes decreased

signaling through the Hh pathway in PANC1 cells and reduced

Shh association with the cells, suggesting that non-palmitoylated

Shh is poorly retained at the cell surface. To confirm that the

effects of Hhat siRNA knockdown in PANC1 cells are due to

reduced canonical Hedgehog signalling we tested whether

inhibition of Shh or Smo phenocopies the effect of Hhat siRNA

KD. This is critical as PANC1 cells have been reported to be

unresponsive to Smo inhibition, displaying Hh/Smo-independent

Gli activation (e.g. by TGFb, [51]). There are conflicting data in

the literature highlighted by the differences seen in PANC1 cells

responsiveness to the Hh pathway [8,51] (and references in file

S1). We therefore inhibited Smo with GDC0449 and Shh with the

antagonist Robotnikin in PANC1 cells, using qPCR for Gli1 as a

readout of Hh pathway activity. Figure S4 shows significant

inhibition of Gli1 expression by both inhibitors, indicating that

Smo and Shh are contributing to downstream Hh signaling in

these cells. Differences in the literature may reflect the properties

of different strains of PANC1 cells, or different experimental

approaches.

PANC1 proliferation is Shh-dependent and inhibited by
knocking down Hhat

To determine the effects of Hhat on PANC1 proliferation,

Hhat-#1 siRNA knockdown combined with CFSE incorporation

were used, followed by flow cytometry analysis. We investigated

whether PANC1 proliferation is Shh-dependent by treating cells

with 5E1 inhibitory antibody for Shh. CFSE intensity in cells

treated with 5E1 on day 1 (5E1 D1 group) was ,30 times higher

than untreated cells (Figure 5A), suggesting that untreated PANC1

cells divide ,4 times faster than 5E1-treated cells over 8 days.

Moreover, cells treated with 5E1 on day 4 (5E1 D4 group; used to

mimic the kinetics of Hhat-#1 siRNA KD) showed ,8 times

higher CFSE intensity compared to untreated cells (NT). Both

results show that PANC1 proliferation was Shh-dependent.

Seven days after transfection, Hhat-#1 siRNA-treated cells had

a significantly higher (,8 times) CFSE fluorescence (.6000)

compared to control Mutated Hhat-#1 siRNA-transfected cells

(,1000) (Figure 5A). These results indicate that siRNA-mediated

KD of Hhat suppresses PANC1 cell proliferation substantially.

We used a different cell proliferation assay to confirm these data

in the A818-1 cell line, established from ascites of a 75 year old

Figure 3. Hhat KD inhibits Shh palmitoylation and multimeric complex formation. A. 48 h after Hhat-#1 siRNA transfection PANC1 cells
were labeled with YnC15, then medium and cell lysates were collected for 5E1 immunoprecipitation, treated by click chemistry and analyzed by Shh
Western blot with H-160 Ab. In both medium and cell lysates, YnC15-labeled Shh was reduced in Hhat-#1 KD cells compared to Mutated Hhat-#1
and control cells. In contrast, YnC15-unlabeled Shh was more abundant in the medium of Hhat-#1 KD cells, but less abundant in cell lysates,
demonstrating increased release when Hhat is knocked down. B. To examine the role of Hhat in Shh oligomerization, 72 h after siRNA transfection of
PANC1 cells the media were subjected to gel filtration chromatography (Superdex200 10/300 GL column). After TCA precipitation, the fractions were
probed by dot blot with anti-Shh H-160 antibody. Untreated and control Mutated Hhat-#1-treated cells showed an abundance of large complexes
migrating near the void volume (Vo), whereas Hhat-#1 siRNA-treated KD cells had a much higher proportion of monomer (Vt represents the total
volume of the column). Experiments were repeated three times with similar results.
doi:10.1371/journal.pone.0089899.g003
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female with a differentiated PDAC [34]. These cells expressed

significant amounts of Shh, as determined by Western blotting

(data not shown). Hhat siRNA KD was optimized for this cell line

and KD efficiency of 80% was achieved with Hhat siRNA #1 and

90% with Hhat siRNA #2 .as determined by qPCR (data not

shown). 56103 A818-1 cells were transfected with Hhat-#1, Hhat-

#2 or non-targeting siRNA in 96-well plates. Cell proliferation

was monitored by measuring DNA content using the CyQUANT

NF cell proliferation assay. Proliferation was significantly inhibited

in the Hhat-#1 and Hhat-#2 siRNA-transfected cells compared

to non-targeting siRNA control at 48 h post-transfection, and for

Hhat-#1 siRNA at 96 h post-transfection (Figure S5). This result

confirms that Hhat KD in PDAC cell lines significantly inhibits

cell proliferation.

Knocking down Hhat inhibits PANC1 invasion
To investigate the contribution of Hhat to the invasive potential

of PANC1 cells, we carried out invasion assays after Hhat KD. We

have previously reported that PANC1 invasion is dependent on

Shh signaling using the blocking antibody 5E1 [15]. When

PANC1 cells were transfected with Hhat-#1 siRNA 24 h prior to

the invasion assay, we observed a significant decrease in the

number of invasive PANC1 cells (6667 cells/well), a level similar

to that previously observed for 5E1 treatment (Figure 5B, C). In

contrast, Mutated Hhat-#1 siRNA control treatment gave similar

Figure 4. Hhat KD reduces Shh signaling in PANC1 cells. To study the role of Hhat in Shh signaling, expression levels of Shh targets Ptch and
Gli1 were examined by both RT-PCR and Western blot after Hhat-#1 KD (A, C). Quantification of results is provided in B and D. Interestingly, cell-
associated Shh protein is reduced by Hhat-#1 KD (C, bottom panel) but Shh mRNA level is unchanged (A), suggesting that Hhat-#1 KD reduces Shh
retention by cells. In combination, this suggests that un-palmitoylated Shh has less ability to associate to cell membranes, but instead is released to
the medium.
doi:10.1371/journal.pone.0089899.g004

Carcinoma Dependence on Hhat

PLOS ONE | www.plosone.org 8 March 2014 | Volume 9 | Issue 3 | e89899



levels (276640 cells/well) to untreated control cells [15]. These

results indicate that expression of Hhat was required for efficient

PANC1 invasion. Importantly, direct cell growth assays showed

that the doubling time for PANC1 cells is ,51 h (data not shown).

The four-fold reduction in invasion observed in 24 h cannot

therefore be solely accounted for by inhibition of cell growth.

Hhat siRNA KD reduces juxtacrine/paracrine signaling
We established an assay for juxtacrine/paracrine Hh signaling

using the reporter C3H10T1/2 cells, a mouse osteoblast

progenitor line which responds to Shh stimulation by differenti-

ating into osteoblasts [35,36], which is marked by induction of

alkaline phosphatase (ALP) after 2–5 days stimulation with Hh

proteins. We tested A549 human NSCLC cells which reportedly

express Shh [10,37]; to test if Shh produced by A549 cells was able

to induce a Hh response in surrounding cells in a juxtacrine/

paracrine fashion, A549 cells were co-cultured with C3H10T1/2

cells. siRNA treatment of A549 cells resulted in 20–60% KD of

Hhat mRNA when assayed by qRT-PCR normalized to GAPDH

expression (Figure 6A). The induction of ALP in C3H10T1/2 cells

Figure 5. Hhat KD inhibits PANC1 proliferation and matrix invasion. A. PANC1 cells were labeled with CFSE at the start of the experiment
and treated with Shh neutralizing antibody 5E1 on Day 1 (5E1 D1) to test whether PANC1 proliferation is Shh dependent. 5E1 treatment on Day 4 (5E1
D4) was used to mimic the kinetics of siRNA KD. Cells were allowed to grow for 8 days during which CFSE dilution gave a measure of cell division. 8
days after transfection with Hhat-#1 siRNA the cells were analyzed by flow cytometry. The Y-axis shows the CFSE mean fluorescence intensity (MFI)
observed from 30,000 cells in each condition. The experiments were repeated three times in triplicate, and statistical significance was measured by
using the two-tailed t test (***, P,0.001). B, C. 72 h after transfection with Hhat-1 siRNA or control Mutated Hhat siRNA PANC1 cells were plated onto
Matrigel invasion chambers for 24 h. Cells that had migrated from the upper to the lower side of the filter were photographed (B) and counted with a
light microscope (40 fields/filter, C). Non-treated (NT) and 5E1-treated cells are shown for comparison in B. The experiments were repeated four times,
and statistical significance was measured by using the two-tailed t test (***, P,0.001).
doi:10.1371/journal.pone.0089899.g005
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by A549 cells was inhibited by Shh-blocking antibody 5E1 (20 mg/

ml) and cyclopamine (5 mM) confirming that the ALP response in

C3H10T1/2 cells was largely due to Shh produced by A549 cells

(Figure 6B). After two days of Hhat-#2 siRNA treatment, A549

cells were co-cultured with C3H10T1/2 cells (ratio 1:2

A549:C3H10T1/2) for two days. The C3H10T1/2 cell response

by ALP production was reduced by 37610% (p = 0.036)

compared to treatment with a non-targeting pool of siRNAs

(Figure 6C), showing that Hhat KD indeed leads to a reduction in

juxtacrine/paracrine Shh signaling by A549 NSCLC cells.

To confirm that the response in C3H10T1/2 cells was due to

Shh produced by co-cultured cells, a stable clone of HEK239a

cells expressing plasmid pcDNA-DEST40-Shh, HEK293a-Shh,

was created and was morphologically indistinguishable from

HEK293a wt. Click chemistry experiments further confirmed

that Shh was efficiently palmitoylated in these cells (Figure S3).

HEK293a-Shh cells induced differentiation of C3H10T1/2 cells

while HEK293a wt cells did not. Although HEK293a cells did not

express enough endogenous Shh to be able to induce C3H10T1/2

differentiation, they expressed Hhat which palmitoylated exoge-

nous Shh and which could be modulated by Hhat siRNA. Hhat

siRNA treatment of HEK293a-Shh cells assayed by qPCR on day

2, 3 and 4 showed a decrease in Hhat mRNA (Figure S2 and data

not shown). The level of intracellular Shh in HEK293a-Shh cells

Figure 6. Hhat KD inhibits Hh-mediated juxtacrine/paracrine signaling. A. Hhat-#2 siRNA KD in A549 cells was assessed by qPCR 24–96 h
after siRNA transfection showing 20–60% decrease in Hhat mRNA expression. B. A549 cells co-cultured with C3H10T1/2 cells (1:2 ratio) were treated
with cyclopamine or 5E1 anti-Shh blocking antibody for 2 days and ALP induction in C3H10T1/2 cells was then determined using p-nitrophenyl
phosphate in an ALP assay and measuring absorbance at 405 nm. C. A549 cells treated with Hhat-#2 siRNA for 2 days were co-cultured with
C3H10T1/2 cells (1:2 ratio) and ALP induction was assessed after additional 2 days as in B. The results show a significant reduction (*, P,0.05) in the
ability of A549 cells treated with Hhat-#2 compared to cells treated with non-targeting (NT) siRNA pool to induce ALP production in C3H10T1/2 cells.
The experiments were repeated four times and statistical significance was measured using the paired t test. D. PANC1 and HEK293a-Shh cells induce
luciferase activity in the Shh-Light2 cells when co-cultured for 72 h, while the HEK29a cell line, which does not express Shh, did not show luciferase
activity higher than background levels (Shh-Light2 cells alone). The data shown are representative of five independent experiments and are the
means 6 standard error of triplicates. Data were normalized to the Shh-Light2 cell monoculture response (*, P,0.05; **, P,0.01). E. PANC1 cells were
transfected with Hhat-#1, Hhat-#2 or Non-targeting siRNAs. 48 h post-transfection, Shh-Light2 cells were mixed with the transfected cells (2:1 ratio)
and they were co-cultured for 72 h. The data shown are representative of three independent experiments and are the means 6 standard error of
triplicates. Data were normalized to the Non-targeting siRNA response (*, P,0.05; **, P,0.01).
doi:10.1371/journal.pone.0089899.g006
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analyzed by Western blotting showed that Hhat-#2 KD resulted

in a reduction of intracellular Shh, similar to that seen in PANC1

cells in Figure 3A and 4C, consistent with the role of Shh

palmitoylation in the cell as a membrane anchor for the protein

(data not shown).

HEK293a-Shh cells treated with Hhat-#2 siRNA co-cultured

with C3H10T1/2 cells (ratio 1:2) for 2 days during day 2–4 of KD,

resulted in a C3H10T1/2 response decrease of 32610%

compared to non-targeting siRNA, but this did not quite reach

statistical significance. We therefore used the well characterized

Shh-Light2 cell line [38] as a reporter of juxtacrine/paracrine

signaling from HEK293a-Shh cells. Shh-Light2 cells contain a

luciferase gene under the control of a Gli-responsive promoter and

respond to Shh stimulation by inducing Luciferase activity.

Figure 6D shows that HEK293a-Shh cells but not control

HEK293a cells were able to induce luciferase in co-culture with

Shh-Light2 cells. PANC1 cells also induced luciferase expression

by Shh-Light2 cells (Figure 6D), and Hhat KD by Hhat-#2

siRNA treatment reduced this by 44.1% (p = 0.0051) (Figure 6E).

Discussion

The increased Hh signaling detected in many types of cancer

and the identification of the significant role it plays in regulating

the stromal environment to promote cancer growth and metas-

tasis, has identified the Hh signaling pathway as a valid target in

cancer. Smo inhibitors, currently under development by several

companies, have great potential but mutations in Smo that make

tumour cells resistant will make them ineffective in time, as has

been found for many drug targets [39]. In this work, we present

evidence that inhibiting the post-translational palmitoylation of

Shh, by knocking down the enzyme Hhat responsible for

palmitoylating Shh, inhibits PDAC cell growth and invasion and

Shh signaling.

Hhat localization was confirmed to be primarily in the ER with

little if any presence in the Golgi complex. This was done in two

separate cell lines, using transfection with a Hhat-GFP fusion

construct in human PANC1 cells, and a similar result was

obtained for Hhat-V5 in transfected HEK293a cells. These data

confirm the major site of Hhat localization as the ER, but in

contrast to work published by Resh and colleagues in transfected

COS-1 cells [33,40] we found very little if any localization to the

Golgi complex. These differences may be due to the use of

different cell types. Using novel bioorthogonal ligation chemistry

[28,29] we have shown that Hhat KD caused near total ablation of

Shh palmitoylation. Hhat KD also resulted in decreased cell-

associated Shh, as expected if Shh acylation was inhibited.

Inhibition of Shh palmitoylation also caused ablation of multi-

meric complex formation, the molecular species which is believed

to be efficiently transported between Shh producing and receiving

cells and to be biologically most active.

PANC1 cells have been reported to depend for their growth on

Shh [8]. Using semi-quantitative RT-PCR and qPCR we show

here that Hhat mRNA could be effectively knocked down in

PANC1 cells by siRNA treatment for 48–72 h and that this

resulted in reduction of target gene expression (Ptch, Gli). Off-

target effects of siRNAs are of course possible but we have

controlled for these by using control non-targeting, scrambled

siRNA (Hhat-Scr) or a control siRNA mutated at every third base

to abrogate interaction with Hhat mRNA which were ineffective,

confirming the specificity of the effect. In addition, no off-target

effects were observed on several other genes (Figure 4A, B). We

used a proliferation assay based on the cytoplasmic fluorescent

marker CFSE to monitor the effect of Hhat KD on PANC1

proliferation. Hhat-#1 siRNA (but not Mutated Hhat-#1) caused

a strong reduction in cell division over 4 days, comparable to that

seen with the Shh-neutralizing mouse monoclonal antibody 5E1.

A Matrigel invasion assay was employed to show that the invasive

properties of PANC1 cells were also dramatically curtailed by

siRNA KD of Hhat (but not by control Mutated Hhat-#1 siRNA),

similar to the effect of 5E1 antibody. Similar results were obtained

in another PDAC cell line, A818-1. Moreover, the decrease in

invasiveness over 24 h of PANC1 cells depleted of Hhat could not

be accounted for by the reduction in cell proliferation during this

time. This provides convincing evidence that Hhat is required for

Shh signaling, proliferation and invasive behaviour of the PANC1

human PDAC cell line and that Hhat KD reverts the transformed

properties of these cells. These results are supported by a recent

paper [41] which showed that Hhat knockdown in NSCLC

inhibited Shh palmitoylation as well as growth and survival of the

tumor cells.

It could be argued that reduced cell viability of PANC1 cells,

A549 or HEK-Shh may account for the reduction of Hh pathway

activity in the signal receiving C3H10T1/2 or Shh-light2 cells,

although the end effect is the same, i.e. oncogenic signaling is

inhibited. We have not addressed the mechanism of the effect in

this manuscript and that would be the subject of further studies.

Also, it seems unlikely that cell death could be accounting for the

observed effects in all three cell lines, especially in the HEK-Shh

cells which are an artificial line and have no dependence on Hh

signaling for their proliferation or survival.

Hhat is an attractive target for therapeutic intervention in the

Hh signaling pathway because it appears to be solely responsible

for acylation of Hhs, and its only known substrates in man are Hh

proteins. Indeed, a mouse knockout of Hhat (called Skn in [12])

has a phenotype very similar to a Shh knockout resulting in

developmental defects and neonatal lethality, indicating the

essential role of Hhat in production of active Hh proteins.

Blocking Shh palmitoylation via Hhat inhibition should be highly

selective and would provide a complementary strategy that could

be used singly or, more likely, in combination with drugs targeted

at signal transduction in the receiving cell or stroma, such as Smo.

Inhibiting an essential Shh modification at the same time as Smo

may be advantageous since, blocking the pathway at two points

might make resistance mutations much less likely. Attacking the

Hh pathway is an attractive strategy because it can not only

directly inhibit tumor cell growth but also interferes with paracrine

signaling between the tumor cells and surrounding stroma [42]

which contributes synergistically to pancreatic tumor progression

[43]. These tumor-stroma interactions can cause desmoplasia,

reducing blood flow to the tumor, thereby preventing access of

conventional anti-cancer agents in PDAC [44]. Drugs against

Hhat should be efficacious, as blocking Hh pathway signaling in

adult animals, at least for short periods, could effectively cause

regression of pancreatic and other digestive tract tumors but had

no obvious deleterious effects on the recipients [8]. As this

manuscript was about to be submitted, Resh and colleagues

reported the identification of selective small molecule inhibitors of

Hhat from a screen of over 63,000 commercially available

compounds [40]. These compounds affect Shh signaling in model

in vitro assays although effects on the growth of tumour cells were

not reported. In addition, two selective small molecule inhibitors of

the Porc MBOAT member have been described [45,46] which

inhibit Wnt acylation and do not affect Hhat, and inhibitors of

GOAT have also been reported [47,48]. The Porc inhibitor C59

inhibited the growth of a Wnt-driven breast cancer cell line and

Wnt signaling, both in vitro and in a mouse xenograft model, with

no apparent toxicity in the mice [46]. This provides considerable
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promise that selective Hhat inhibitors could be identified and serve

as possible therapeutics.

In order to find highly specific and selective pharmacological

agents targeted at Hhat it is important to thoroughly characterize

the biochemistry and cell biology of this acyltransferase. To date

there is little cell biological or biochemical analysis of Hhat from

any species. Buglino and Resh [33] reported some important

characterization of Hhat enzymatic properties in detergent

solution including mutational studies which confirmed roles for

the conserved histidine 379 and the adjacent tryptophan 378

residues in catalytic function, albeit not an absolute requirement

[49]. Future progress will require a thorough molecular charac-

terization of Hhat in its native membrane environment, including

determining its transmembrane topology and crucial catalytic

residues by mutational analysis.

Supporting Information

Figure S1 Transmembrane topology of Hhat predicted
using the TOPCONS Programme.
(TIF)

Figure S2 Hhat mRNA is effectively knocked down by
siRNA treatment in HEK293a-Shh cells. Quantitative RT-

PCR was performed using Hhat-specific primers to confirm target

gene knockdown in HEK293a-Shh cells following Hhat-#1 and

Hhat-#2 siRNA transfection. Hhat expression is normalized to

GAPDH and compared to Non-targeting siRNA control. Error

bar represents the standard error of three independent experi-

ments performed in triplicate (*, P,0.05).

(TIF)

Figure S3 HEK-Shh stable cell line produces palmitoy-
lated Shh. HEK-Shh cells were grown overnight in media that

contained YnC15 or palmitic acid. Cell lysates were prepared and

then treated by click chemistry. Labeled proteins were pulled

down on Neutravidin-coated beads and pulled down proteins were

analyzed by SDS-PAGE and in gel fluorescence (A) and

subsequently by Western blotting using Shh and tubulin antibodies

(B). A. In-gel fluorescence of YnC15-labelled proteins from the

HEK-Shh cell line (right hand 3 lanes). Control cells fed with

palmitic acid (left hand 3 lanes) do not show any fluorescently-

labeled proteins either in the input or following pull down with

Neutravidin-coated beads, clearly indicating that fluorescence is

due to the clicked proteins. B. Gel in image A was transferred to

PVDF membrane and probed with anti-Shh Ab H-160. In the

palmitic acid-fed cells, a single Shh band is seen at 20 kDa;

however, in the YnC15-fed cells, two Shh bands are present, one

at about 25 kDa, representing the YnC15-labeled tagged Shh, and

another band at 20 kDa, representing the unlabeled Shh

molecules. The increased molecular weight is due to the size of

the azido-TAMRA-biotin capture reagent. This is further shown

following Neutravidin pull down of the clicked proteins, as only the

upper YnC15-labeled Shh is seen in the bound proteins lane, while

in the lane containing the unbound fraction the lower band only is

present.

(TIF)

Figure S4 Smo and Shh inhibition by small molecule
inhibitors in PANC1 cells reduces Shh signaling. PANC1

cells were treated with either the Smo inhibitor GDC0449 (A) or

the Shh-binding antagonist Robotnikinin (B) or DMSO control.

Shh signaling was examined by qPCR using Gli1-specific primers

48 h after treatment. A. GDC0449 treatment significantly reduced

Gli1 expression (p = 0.0279). B. Robotnikinin also reduced Gli

expression but did not reach significance. These data indicate that

autocrine Shh signaling can be inhibited in the PANC1 cells used

in this study. Our data are supported by several published studies

on PANC1 cells [1–3]. Gli1 expression is normalized with

GAPDH and compared to DMSO control. Error bar represents

the standard error of n = 4 (GDC0449 data) and n = 3 (Robot-

nikinin data) independent experiments performed in duplicate;

data were analysed in Graphpad Prism by a two-tailed unpaired

student t-test (**, P,0.05; *, P,0.1).

(TIF)

Figure S5 Hhat KD inhibits A818-1 cell proliferation.
For each condition, 26104 A818-1 cells were transfected with the

indicated siRNA and then 56103 cells were plated out in four 96-

well plates. Proliferation was subsequently monitored at specific

time points by measuring the DNA content using the CyQUANT

NF reagent. The Y-axis shows the fluorescence measurements

reported as arbitrary units (AU) in each well for the indicated

condition. Measurements were made using an Ettan DIGE imager

with excitation at 485 nm and emission detection at 530 nm. The

experiments were repeated four times, and statistical significance

was measured by using the two-tailed t test (*, P,0.05).

(TIF)
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