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Abstract 
 

This research work covers the development of a novel compact model for a Floating 

Gate nMOSFET that will be added to the QUCS library. QUCS (Quite Universal 

Circuit Simulator) is a GPL simulation software package that was created in 2006 

and is continuing to develop and evolve, and there is already a substantial library of 

components, devices and circuits. Fundamentally, a floating gate device is an 

analogue device, even though modern technology uses it mainly as a non-volatile 

memory element there are numerous uses for it as an analogue device.  

A study has been carried out with regards to the principles of the physical 

phenomenon of charge transfer through silicon dioxide to a floating gate. The study 

has concentrated on the physical properties of the fabricated device and the 

principles of charge transfer through an oxide layer by Fowler–Nordheim principles. 

The EKV2.6 MOSFET was used as the fundamental device for the model that has 

been adapted by the addition of the floating gate. An equivalent circuit of an 

FGMOSFET was developed and analysed theoretically. This was then formulated 

into the QUCs environment and created as a compact model. Simulations were 

carried out and the results analysed to compare with the theoretical expectations and 

previous research works.  

It is well documented that the creation of equivalent circuits for floating gate 

devices is complicated by the fact that the floating gate is isolated as a node and as 

such cannot be directly analysed by simulators.  

For the equivalent circuit created, circuit analysis was achieved by the 

introduction of high value resistances connected in parallel with the capacitive 
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elements that are representative of the incursion of the floating gate that is intrinsic to 

a floating gate device. The resistance elements were of such value that the time 

constants were of the order of 10000s and did not interfere with the simulation. The 

equations from the analysis were formulated and the anticipated responses were 

shown. The analytical equations developed were then used within the QUCS 

environment with explicit use of EDDs(Equation Defined Devices) to create a novel 

model of a FGMOSFET.  

Simulations of the model created were carried out with a range of voltage 

pulses being applied to the tunnelling terminal to affect a charge transfer to the 

floating gate by means of Fowler-Nordheim principles. The changes of the charge 

stored on the floating gate were clearly shown by the measured anticipated 

associated shift in the Threshold voltage.  

Simulated results have been compared with previous research and 

development work and the new model is considered effective. Also because of the 

ability of the QUCS software to allow the variation of the multiplicity of the parameters 

associated with the fabrication process, it is considered to be adaptable to a range of 

modern floating gate device structures and materials.  
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Chapter 1. 

Introduction 

1.1.   Objective of the work 

The objective was to create a compact model of a floating gate memory device that 

could be incorporated in the QUCS (Quite Universal Circuit Simulator) library of 

devices. QUCS is a rapidly developing open source electronic simulator released 

under GPL (General Public License). The model is to be considered adaptable not 

only in terms of the degree of programmability but also in terms of developing 

structures and materials. 

This has required: - 

(i) Investigation into the principles of operation of floating 

gate devices. 

(ii) Research into the principles of tunnelling and injection 

through silicon dioxide. 

(iii) Creation of a valid model for a floating gate device. 

(iv) Circuit analysis of equivalent circuit model. 

(v) The use of the QUCS package to create a compact EDD 

(Equation Defined Device) model of the equivalent circuit 

adopted. 

(vi) The use of QUCS to substantiate the validity of the model 

using DC and Transient analysis. 
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1.2.    Rationale 

Floating gate devices are much used in modern electronic systems, typically as 

memory devices such as EPROMs, EEPROMs and flash memories, even though 

they are not inherently digital devices, and as such can be used in many facets 

where accurate analogue devices are required. This particular project was inspired 

by the use of weight storage elements for artificial neural networks. For the 

particular example of neural networks accurate values are required with low 

tolerances, although this is tempered by the fact that it is relative values that are 

most important when used on mass. Having stated this it must be mentioned that 

the uses of floating gate devices are numerous in modern technology. 

As with nearly every aspect of modern scientific and commercial development, 

modelling and simulation is an essential part. In modern day electronics for the high 

level of complexity that is required, compact device modelling is extremely 

important. The problems associated with the modelling of a floating gate device are 

that it has an isolated node due to the floating gate and that the charging and 

discharging characteristics are extremely non-linear. This causes problems with 

creation of a valid model.  

In 2004 a team of scientists and engineers made the decision to develop 

QUCS as a free piece of GPL software, which could compete with other 

commercially available software: http://qucs.sourceforge.net/contact.htm . As a 

relatively young piece it has gone through many release stages for open source 

simulation and is still being developed by an expanding group of scientists and 

engineers throughout the world and is continuing to develop. Since the release of 

Version 0.0.12 Equation Defined Devices based modelling has been available. This 

has allowed non-linear physical processes to be modelled.  QUCS also allows the 
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subroutine parameters to be passed as component values to the circuit within a 

subcircuit. Within the QUCS environment a library of devices has been made 

available for schematic representation of circuit designs.  

Often there are difficulties with the creation of, and problems with, the validity 

of potential models. A typical example of this is the floating gate device. For the 

floating gate device the problem is that the floating gate is an isolated node. Once 

the gate is charged/discharged the characteristics of the associated MOSFET can 

be measured but calculating and measuring the simulated voltage on the floating 

gate is extremely difficult. In order to create a floating gate model it is crucial to 

produce an equivalent circuit that can be analysed theoretically, and to ensure that 

it can be simulated in the chosen software. Once these requirements had been 

realised, then the use of QUCS made it possible to create a model of a floating gate 

device that could then become part of the device library. As part of the library it is 

anticipated that further design and development could take place in areas where 

Floating Gate devices are an intrinsic part of the design, and that future 

technological developments can be relatively easily incorporated in to the model 

created. 

 

1.3. Original Features 

 

(i) An adaptive floating gate equivalent circuit model was created. 

(ii) Circuit analysis was carried out for the equivalent circuit for D.C. and 

transient conditions. 
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(iii) The equivalent circuit was built into a compact model in the QUCS 

software environment using design equations, subcircuit parameters, 

macromodels and equation defined device techniques. 

(iv) The model was tested for validity of performance by creating the model in 

the QUCS environment, running simulations and comparing results with 

predicted theoretical performance. 

(v) A compact device is now available for the QUCS library. 

 

1.4. Relationship to previously published work 

In respect of representing a floating gate device in the QUCS environment there are 

no previously published works outside the QUCS development team, however in 

order to create the compact model, reference can be made to a large number of  

previously published works[1 – 13]. Detailed studies have been carried out on the 

development of MOSFET compact models (chapter 2), structures of FGMOSFETs 

(chapter 3), charge transfer through insulating oxide and oxide /nitride/oxide layers 

(chapter 3), equivalent circuits and analysis of Floating Gate devices (chapter 4), 

and the extremely important development carried out in the QUCS simulation 

package (chapter 5). 

Within the QUCS environment the Verilog-A implementation of the EKV v 2.6 

MOSFET is to be used as the foundation of the floating gate device. The n-type 

enhancement mode transistor will be considered, as this will allow the modelling of 

a floating gate device by means of Fowler-Nordheim tunnelling for both charging 

and discharging of the floating gate. It is anticipated that once the model has been 

substantiated the principle can be extended to the p-type enhancement device 
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where Impact-Ionised Hot Electron Injection (IHEI) can be used for floating gate 

discharge.    

The principles of charging and discharging a floating gate are based on Fowler-

Nordheim Tunnelling [14,] and (IHEI) [16,16,17], such as EEPROMs.  Although, 

these techniques for charging and discharging are reasonably well documented 

they have mainly been applied to specific structures [14, 17]. However the 

characterisation of FGMOSFETs are heavily dependent on fabrication processes 

and device geometry [18]. W.N.Gao et al [19] has suggested along with others that 

the corners introduced through lithography can enhance the electric field in oxide 

layer and hence increase charge transfer. Other effects have been reported such as 

the erase operation being complicated by the formation of a deletion layer in the 

channel and under the tunnel oxide [20].  

Many of the suggestions made for models are highly empirical such as 

K.Rahhimi et al [21] who proposed an empirical expression for the IHEI process that 

uses only drain, gate and source potentials as parameters. In general, these sorts 

of parameter tolerances, and material and structural variations can be incorporated 

in the general Fowler-Nordheim and IHEI equations. 

1.5. Methodology. 

The floating gate device to be modelled was based upon the EKV v2.6 long channel 

MOSFET model that already sits in the QUCS library, as this is the preferred 

geometric structure for ease of access to the tunnel terminal. This was adapted by 

the addition of a floating gate, and may be assumed a polysilicon material or silicon 

nitride, for modelling purposes. The model of the EKv2.6 MOSFET [10,22] was then 

modified to take into account the intrusion of the gate electrode. This consisted of 

the coupling capacitive effects of the floating gate with the control gate, drain, 



 

M.CULLINAN, Ph.D. Thesis, January 2015 6 

source, substrate, and tunnelling electrode. In order to analyse such a structure it 

was decided to place high value resistances in parallel with the associated 

capacitors so that the time constants were irrelevant to the simulation duration. 

From the detailed consideration of the physical structure of floating gate 

devices the equivalent circuit was created. This was then theoretically analysed for 

the D.C. and Transient responses. From this analysis equations were formulated 

showing the charging of the floating gate.  

The characterization of FGMOSFETs was based on the QUCS software. 

QUCS is a rapidly developing open source electronic circuit simulator released 

under GPL. It allows graphical user interface and circuit simulation. It has a 

developing library of circuits and devices and it is intended to add to this library with 

a FGMOSFET model.  

The flow chart shown in Fig.1.1. shows the useful nature of the QUCS 

software and how it is fully integrated from design through to the simulation for an 

analogue/digital component or circuit. Simulators invariably have common overall 

structures where circuits are represented by textual netlists, or schematic diagrams. 

This allows the simulator to have access to the defined structure of the circuit and 

carry out the desired analysis. The other element required is a simulation engine 

that enables the analysis calculations to be carried out. In this case it was a D.C. 

and Transient analysis. The final element for the simulator is a post processor that 

allows data to be presented in both tabular and graphical forms. Simulators rely on 

mathematical models of components, devices (linear and non-linear), ICs, 

subcircuits and nested circuits. Without models the design of complicated electronic 

systems would not be possible.   
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Fig.1.1. shows the various modelling routes that are available within QUCS. 

The route taken for this research was to construct a model from standard circuit 

components that were available. By the time this work was undertaken QUCS 

version 0.0.16 had been released and was used for simulation. This allowed the 

use of EDDs and allowed device current to be formulated as a function of voltage, 

and also device charge to be formulated as functions of voltage and current 

(chapter 5). The EDD modelling technique is an interactive process, which acts as a 

precursor to the component modelling procedures based on the Verilog-A 

description language [2, 3]. 

The essential purpose of the proposed work was to develop a model of a 

FGMOSFET so that it can reside in the QUCS library, and can be developed and 

re-modelled relatively easily as research and manufacturing techniques evolve. 

Without component modelling the science of circuit simulation would not have 

developed to today’s present stage, and would not be able to develop in the future. 
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                                     Fig.1.1. Overall architectural structure for the 

                                                implementation of QUCS [4] 
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1.6. Structure of Thesis 

Chapter 1 sets out the objectives of the work, the reasons it is considered a 

research area and the approach that has been taken to creating an original solution. 

The chosen simulation software was QUCS and has been used to create an 

adaptable compact model. For the work it was necessary to study, investigate and 

develop the topics simultaneously, however, individual chapters have been 

dedicated to major sections of the work. 

Chapter 2 investigates the fundamental building block required for a floating gate 

device, that is, the n-type enhancement MOSFET. The model for this device is 

decided upon and the equivalent circuit is presented. 

Chapter 3 deals with the operation of floating gate devices with specific emphasis 

on structures, movement of charge and the development of the total model. 

Chapter 4 carries out the theoretical analysis of the created model of the floating 

gate device. This gives the indicative responses of the model that are anticipated 

when simulations are carried out in the QUCS environment.  

In Chapter 5, these anticipated responses draw comparison from, well documented, 

previous practical quantitative works. 

Chapter 6 is dedicated to the details of the chosen QUCS software. Important 

sections of this chapter are on Equation Defined Devices and the use of EDDs for 

implementing the EKVv2.6 Long Channel MOSFET. 

Chapter 7 considers the simulation process that took place in order to draw 

comparison between the theoretical analysis and the simulated model. 

Chapter 8 examines a substantial amount of simulation data, presenting the data 

both numerically and graphically. These data are then critically assessed by 
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drawing comparison between the theoretical analysis and simulation responses, in 

respect of the characteristics of floating gate devices. 

Finally, Chapter 9 summarises the achievements of the work and recommendations 

for future work, development and research. 
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Chapter 2. 
 
Basic principle of n-type enhancement M.O.S.F.E.Ts 

     2.1.   Operation of n-type enhancement MOSFETs 

Basic Structure        
The principle of operation of an mos device has not changed since the initial 

inception. This is the modulation of a conductive path between two terminals by a 

third terminal. Fig.2.1.  shows the basic structure used in such a device.         

 
 
 
 
 
 
 
 
 
 
 
 
                                                                                                
 
                                          
 
                                Fig.2.1.1.a.  M.O.S. Sub threshold 
                  
 
The n-type enhancement MOSFET shown in Fig.2.1.1a. is a simple representation 

which can indicate the basic principles of operation but whose physics has become 

increasingly more complicated with advancing technology and circuit 

implementation demands.  

The source and drain consist of two heavily doped n-type regions, a gate which is 

usually made of heavily doped polysilicon, while the bulk substrate is p-type, which 

is usually lightly doped.  

Inversion Layer 
For the purposes of this description it is assumed that the substrate is the same 

potential as the source.  

If the voltage, on the gate, VGS, is gradually increased, holes will be increasingly be 

repelled from the substrate interface surface. If the gate voltage is further increased 
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then the surface becomes depleted of holes until the holes become the minority 

charge carries and electrons become the majority, forming a conduction channel 

between the source and the drain. This conduction channel is known as an 

“inversion layer” and the voltage at which it occurs is the “threshold voltage, VTH”.  

 

If there is no potential difference between the drain and the source then the charge 

density is uniform along the channel as shown in Fig.2.1.1.b. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                                                
 
                                          
 

!!!!!!!!!!!!!!!!!!Fig.2.1.1.b.  M.O.S. with uniformly charged inversion layer 
 
 
 If the device drain is made positive with respect to the source, VDS, then the voltage 

will increase from 0V at the source to VD at the drain. The result of this is that the 

effective voltage available along the channel is gradually reduced from source to 

drain. The effective voltage at the source end of the channel being VG – VS = VGS 

and at the drain being VG – VD = VGD. That is, the net value of voltage available to 

induce an inversion layer gradually reduces from source to drain, and therefore so 

does the channel charge carrier density [13,14]. 

The charge density can be defined as: 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! = !−!!"! !!!" !− !! ! ! − !!!" ! !………… !!(2.1. )  
the minus sign indicating that the charge is made up of electrons for an nMOS 
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where  Qn(y)&= the charge density at position y&
&&&&&&&&&&&&&&&&&&&Cox&&= εox/tox%%%%%%%%%%%%%%%where Cox is the oxide capacitance per unit area 

                                                         εox is the oxide permeability 

                                                  and tox is the oxide thickness 

And%%%%%%%%%%%%V(y)&= the channel potential at position y 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                                                
 
                                          
 

!!!!!!!!!!!!!!!!!!!!!Fig.2.1.1.c.  M.O.S. Saturation region at Pinch-off 
 
Linear Region 
 
The Linear region of operation is defined as where VGS is sufficient to maintain an 

inversion channel between source and drain, this value will be dependent on VDS. 

The point at which the inversion layer is reduced to zero at the drain is known as 

the “pinch off”. From eq.2.1 it can seen that this happens when: 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!" − !! ! − !!" = 0!!………… !!(2.2. )  
For the linear region the drain current: 

                                   !! = !−!!! ! . ! ! !……… !(2.3.) 
where, W  is the width of the device.  

Assuming a long channel device, the velocity of the charge carriers, ! ! ,!is the 

product of the mobility, µn, and electric field, Ε. This gives: 

                                   !! = !−!!! ! . !!.!!……… !!(2.4. ) 
 

This can be modified for short channel devices,&
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Substituting eq.2.1. in to eq.2.4. we have: 

!! = !−!.!!"! !!!" !− !! ! ! − !!!" ! . !!.!!……… !!(2.5. ) 
assuming a long channel device with low electric field, we have: 

! = !− !"
!"……… !!(2.6.) 

and therefore: 

!! = !!.!!"! !!!" !− !! ! ! − !!!" ! . !!.
!"
!" !……… !!(2.7. ) 

re-arranging eq.2.7. we get: 

!! .!!!" = !!.!!"! !!!" !− !! ! ! − !!!" ! . !!.!"!……… !!(2.8. ) 
In order to obtain the drain current, eq.2.8. can be integrated along the length, !, of 

the channel: 

!!
!

!
.!" = ! !

!!"

!
.!!" . !! !!!" !− !! ! ! − !!!" ! .!"!……… !!(2.9. ) 

Integrating eq.2.9. we have: 

!! = !
!
! .!!" . !! !!" − !!!" !!" − !

!!"!
2 !……… !!(2.10. ) 

As can be seen from eq.2.10. the drain current will be nearly linear for small values 

of VDS&.  
Saturation Region 
When VDS reaches a high enough value the channel becomes pinched off and starts 

to shorten. This is the point when the characteristic enters the Saturation Region. 

The value of ID when this happens can be calculated from eq.2.10.  This occurs 

when the value of VDS = VDSat which mean: 

!!" − !!!" ≡ !!"# !!……… !(2.11. ) 
substituting  eq.2.11. into  eq.2.10.  we have: 

!! = !
!
! .!!" . !! !!" − !!!" !!"#$ − !

!!"#$!

2 !……… !(2.12. ) 

giving: 

!! = !
!
2! .!!" . !!! !!" − !!!"

!……… !(2.13. ) 

This approximates to a square law dependency on VGS and almost independent of 

VDS however in practice this is not the case. 
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The primary reason for a nonzero conductance is channel length modulation 

(CLM). This is because the drain forms a depletion region with the surrounding 

substrate that is dependent on the drain voltage, as indicated in Fig.2.1.1.d. and as 

such causes the effective channel length to shorten. 

 
 
                    
 
 
 
 
 
 
 
 
 
 
 
                                                                                                
 
                                          
 
                               Fig.2.1.1.d.  M.O.S. Saturation Mode 
 

This results in the drain current increasing and to take account of this effect 

the drain current equations are modified both in the linear and saturation region by 

the following: 

!! = ! 1+ !!.!!" . !!! !!……… !!(2.14. ) 

where, iD0 is the value of iD when CLM is ignored 

and λ is an empirical value (units 1/V). 

The characteristic relationship between the current flowing between the drain 

and the source, Ids, and the voltage between the drain and the source, VDS, for 

varying values of the voltage on the control terminal, VGS, can be obtained 

analytically, by measurement or by simulation. Shown in Fig.2.1.2. is a circuit used 

for such measurements and the relationship is plotted. 
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              Fig.2.1.2.a  Circuit for Vds v Ids (measurement or simulation) 

 

 

 

 

 

                                 

 

 

                

 

 

 

           Fig.2.1.2.b. Resultant characteristic curves for different Vgs 

So far this section has given a brief outline of the D.C. operation of an nMOS 

device. With the addition of a floating gate (ref. chapter 3.) within the oxide layer, 
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charge can placed upon the floating gate and as such can modify the 

characteristics of the device.  

As the model to be designed needs to take into account the accumulation of 

charges on the floating gate, the process of charge accumulation needs to taken 

into account, and the model created needs to able to be analysed with respect to 

the floating gate which is an isolated node. For the model created the D.C. and 

transient analyses will be taken into account and is of pre-eminent importance in 

this work.  

Due to the construction of the device there will be elements that perform the 

fundamental operation of the device and others that are parasitic and detract from 

the operation of the device. Essential to an nMOS device is the capacitance 

between the gate and the channel, others that can be detrimental to performance 

include:- 

• The capacitance associated with the reverse biased junctions between the 

drain and the source with the substrate. 

• The overlap capacitors associated with the gate overlapping with the source 

and drain. 

•  The capacitance between the channel and the substrate and the way in 

which the charge is partitioned. 

A typical table for calculating approximate associated value for capacitance of 

capacitors is shown for the different operating conditions in Table 2.1.1 
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Table 2.1.1. Approximate MOS terminal capacitance that could be used in 

First order model: OV=overlap: j=junction. 

 

 OFF Linear Region Saturation 

CGS COV CGC/2 + COV 2CGC/3 + COV 

CGD COV CGC/2 + COV COV 

CGB CGC CCB/(CGC + CCB) 

< CGB< CGC 

0 0 

CSB CjSB CjSB + CCB/2 CjSB + 2CCB/3 

CDB CjDB CjDB + CCB/2 CjDB 

 

Where:- CGS = gate-source capacitance 

              CGD = gate-drain capacitance 

              CGB = gate-substrate capacitance 

              CDB = drain-substrate capacitance 

 

Short Channel Devices 

As I.C. technology has developed there has been a continuous drive for a higher 

level of integration and as such deice geometries have shrunk. This has meant that 

even with the use of moderately low voltages, high field effects have to be 

considered. The primary high field effect is that of velocity saturation. Scattering due 

to high energy photons eventually causes the carrier velocity to stop increasing with 

an increasing field. In silicon, as the electric field approaches about 106 V.m-1, the 

electron drift velocity displays less dependence on electric field strength and tends 

to level off at 105 m.s-1. 
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Previously for long channel devices, the saturation current was assumed to 

correspond to the drain current at pinch off. In short channel devices the current 

saturates when the drift velocity stops increasing. 

The original long channel saturation current was eq.(2.13.) 

!! = !
!
2! .!!" . !!! !!" − !!!"

!……… !!(2.13. ) 

this can be re-written as: 

!! = !
!
2! .!!" . !!! !!" − !!!" .!!"#$% !!!……… !(2.15. ) 

where, !!"#$% indicates the long channel value and is !!" − !!!"  

For a short channel device the drain current may be approximated to: 

!! = !
!
2! .!!" . !!! !!" − !!!" . [! !!" − !!!" !|| !!!!"# ] !……… !(2.16. ) 

where !!"# the field strength where the carrier velocity has dropped to half the value 

at low field. The important ratio in eq.2.16. is   !!"!!!!"! !to!!!"#. If this ratio is small 

then the device will behave like a long channel device. A typical value for E is ≈ 4 x 

106 V.m-1, but it is process dependent. When the ratio !!"!!!!"! !to!!!"# becomes 

large, the relationship between drain current and gate-source voltage becomes 

more linear rather than the previous square-law.  

Models have evolved and have been modified and improved as technology 

has improved both with understanding of the physics of devices and with the ability 

of the fabrication process to make the devices, often in a symbiotic manner. The 

EPFL-EKV models were developed and introduced between 1997 and 1999 and 

since that time they have been widely used in industry and academic development.&
 

2.2.    EPFL-EKV2.6 MOS Transistor Model. 

Invariably modern circuit design is carried out using circuit simulators and as such 

the software has to be capable of modelling the various circuit elements that are an 

integral part of that design. Whilst it is impossible to model any physical system with 

one hundred per cent accuracy, in order to take in to account all eventualities, 
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models can be developed and evolved to be more accurate and take into account 

new technological developments. 

With this in mind, and taking into account the general structure of a floating 

gate transistor, the EPFL - EKV2.6 MOSFET model, within the QUCS environment, 

was selected to be incorporated in the floating gate model [10]. Whist still being 

updated, it has shown itself to be reliable even though it is still to be fully optimized. 

The EKV model takes into account the fundamental physical properties of the MOS 

structures and processing steps. It is compact and scalable and therefore is 

adaptable, but fundamentally used for low voltage, low current analogue and mixed 

mode systems using sub micron technologies  [Appendix 1]. 

The effects modelled include:-   

• Basic geometrical and process aspects such as oxide thickness,  

                  junction depth, effective channel length and width. 

• Effective doping profiles and substrate doping. 

• Modelling of weak, moderate and strong inversion. 

• Mobility effects due to vertical, lateral and velocity saturation. 

• Short channel effects such as channel-length modulation, source  

                  and drain charge-sharing and reverse short channel effects. 

•        Modelling of substrate current due to impact ionisation 

• Effect of impact ionization on substrate current. 

• Quasi-static charge based dynamic model 

• A first order non-quasistatic model for transconductance 

• Short distance geometry and bias dependent device matching. 
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In threshold based models, expressions can be obtained for the drain current 

operating in the weak, moderate and strong inversion regions assuming the 

dominant transport mechanism being drift or diffusion [13]. This assumes an abrupt 

transition when VGS = VTH. Physically there is a region where neither mechanism 

dominates, and this is the weak inversion region. For low voltage, low power and 

analogue design this region becomes important and the modelling of this region is 

complex. In the EKV model the problem is overcome by interpolation so that there 

is a gradual transition for the drain current and the derivative between the two 

regions [1,10,12]. The EKV model is a charge based compact interpolation model. 

The fundamental Long Channel and Short Channel parameters and equations 

are given in Appendices 2 and 4. However the Long Channel device has been 

chosen as dimensionally appropriate for the modelling of a floating gate device. 

 

2.3. Model Equivalent Circuit for EKV MOSFET 

The equivalent circuit adopted for the original EKV model is shown in Fig.2.3.1 and 

specific component parameter values are calculated from the design equations 

used by the simulation equations shown in Appendix 2. Initially the design 

specification will have been set out and adopted by the design engineers who will 

have a comprehensive knowledge of the fabrication processes and limitations. The 

model is a scalable and compact simulation model that has been built on the 

fundamental physics of the MOS structure. It was created to be used to assist the 

design of low voltage, low current analogue and mixed analogue-digital circuits 

using submicron CMOS. Parameters could be extracted from simulation equations 

and inserted in to the model and from this circuit designs could be simulated in 

order to accelerate the design process. 
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From Fig.2.3.1. it can be seen that the extrinsic part of the device is separated 

from the intrinsic part as it is often common to a range of MOS devices. This 

extrinsic part includes resistances associated with the source and drain diffusions, 

also include are the junction currents and capacitances. Descriptions of the symbols 

in the EKV model are shown in Table.2.3.1. 

 

 
 
 

                                                                                                                                                 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 

                 Fig.2.3.1. Initial equivalent circuit for EKV model [10] 
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                         Table 2.3.1.EKV original equivalent circuit model 

Name Description 

Cgsov Gate –source overlap capacitance 

Cgbov Gate-base overlap capacitance 

Cgbi Intrinsic gate-substrate capacitance 

Cgsi Intrinsic gate-source capacitance 

Cgdi Intrinsic gate-drain capacitance 

Cgdov Gate-drain overlap capacitance 

Csbj Source-substrate junction capacitance 

Csbi Intrinsic source-substrate capacitance 

Cdbi Intrinsic drain-substrate capacitance 

Cdbj Drain-substrate junction capacitance 

IDS Drain-source current 

IDB Drain-substrate current 

RSeff Source series resistance 

RDeff Drain series resistance 

Dsbj Source-substrate junction diode 

Ddbj Drain-substrate junction diode 

 
 
2.4. Chapter Summary 

Chapter 2 has dealt with the basic building element for the floating gate device, this 

is the n-type enhancement MOSFET. The details of the structure for the device 

defining it’s electronic behaviour have been presented. Classic characteristic 

equations have been shown, and the sub-threshold, linear and saturation regions 

have been described. A QUCS simulation shows the characteristic plot for VDS ~ IDS 
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for various values of VGS. These graphs are to be referenced in order to confirm that 

the designed floating gate model is operating correctly according to the charge 

stored on the floating gate. 

Although the long channel device is the main MOSFET to be considered for 

modelling a floating gate device, the short channel device was also described, this 

will allow for any future developments involving short channel devices. 

Naturally, for simulation purposes, it is necessary for the transistor model created to 

be capable of being analysed. For these purposes the physical operation of the 

transistor has been outlined. The transistor model to be used, the EKVv2.6 was 

selected as this was already in the QUCS library, it is modelled in detail and is 

adaptable to manufacturers parameter variations and future development. 

Representation of the EKV v2.6 model is shown and the Appendix reference is 

given, showing in details the intrinsic parameters. 
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Chapter 3  
 
Principles of operation of floating gate devices 

3.1. Floating Gates 

Floating gate devices use the principle of storing charge on an electrically isolated 

material, either polysilicon or other charge storage material. Once the charge has 

been placed on the floating gate it will remain there and thus can be used to store 

data [23]. Although there is inevitably a gradual leakage the discharge rate is 

designed to be so small that the device can be considered to be non-volatile.  

The structure is basically a modified nMOSFET which has an extra layer, 

typically polysilicon or more usually silicon nitride with modern devices, deposited 

within the oxide layer so that there is no direct electrical contact to any of the device 

terminals i.e. there is only capacitive coupling. This general structure is common to 

all FG devices but geometries, dimensions, materials, and fabrication techniques 

are continuing to develop for increased densities, speed of operation and applied 

applications [24,25,26,27,28, 29]. As an example of this is the replacement of the 

floating gate material. Theoretically because the FG is isolated the charge should 

be stored permanently, however because of demands to speed up programming 

times and lowering of charging voltage, the oxide layer through which Fowler-

Nordheim charging takes place has be reduced to << 100Å. The polysilicon within 

the oxide layer is effectively an isolated conductor and hence charges can freely 

move. Any oxide defects will allow these charges to leak away. Typically polysilicon 

has been replaced by a silicon nitride, Si3N4, layer that is an insulator and any 

charges injected onto the nitride are effectively trapped [8, 30, 31,32]. 
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A typical device is shown in Fig.3.1.1. 

 

(a) 

                                                                                                       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             Fig.3.1.1. Floating Gate nMOSFET (a) plan view (b) sectional view 
 

In order to develop equations that describe the operation of the FGMOS, the 

basic operation of the MOS can be used to model the FGMOS. When charge is 

stored on the floating gate the characteristic of the MOS device is modified, and as 

such when this characteristic is monitored, it can indicate stored information, both 

digital and less accurately analogue. For this work the charging of the device to be 

considered utilises the well documented Fowler-Nordheim principle [14].  
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Present day devices only require a small number of electrons to be moved for 

charging, of the order 103-105, which can change the voltage by as much as 0.32V 

for a 1fF capacitor. The specific control of the charge movement is difficult to control 

and even more difficult to predict due to the physical parameters already stated. 

Digitally this is easier to handle than for analogue devices, however analogue 

devices that utilise relative voltage levels are suitable. 

An adaptable compact model for a FG device will be highly advantageous for 

researchers and development engineers. Previous attempts to model the FG device 

have relied on pseudo floating node often connected to voltage generators that 

predict the floating gate voltage [8,29,32,33,34,35,36]. The QUCS software 

package overcomes this problem with the introduction of Equation Defined Devices 

(ref. chapter 6), and allows adaptability to new technological advances. 

Developing model equations for a FGMOS device and enabling the model to 

be simulated creates a problem because of the nature of the floating node. 

The contact poly control gate couples capacitively with the floating gate and 

therefore modulates the channel current. If there is charge on the floating gate this 

will further modulate the channel current.  

The essential requirement is for the FGMOS is to transfer charge through the oxide 

on to the floating gate. The charging and discharging are based on the classical 

principles of Fowler-Nordheim Tunnelling [14] and Impact–Ionised Hot Electron 

Injection(IHEI) also known as Channel Hot Electron Injection[15,16,17]. Although 

these techniques for charging and discharging are well documented they have only 

been applied to specific structures [18]. However the characterization of 

FGMOSFETs is also heavily dependent on the fabrication process and geometries 

[30]. 
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3.2.   Charging and Discharging of a Floating Gate 

In order to transfer charge to the floating gate it is necessary move the electrons 

through the oxide.  

 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
                                     (a)                                                   (b) 

 

                Fig.3.2.1. (a) Electron tunnelling through band potential 
                (b) Electron injection over band potential 

 

Electron tunnelling is a quantum mechanical process and is the main 

mechanism for consideration for the modelling of a floating gate device. The 

equations to be used have been well defined by Fowler-Nordheim and relate to the 

electric field that is applied across the oxide. 

For the floating gate device the structure for consideration consists of the polysilicon 

gate – gate oxide – heavily doped region of silicon. Electrons are tunnelled from the 

FG to the doped region. The potential difference lowers the oxide barrier and 

electrons enter the oxide conduction band, and are then swept across the oxide and 

into the doped silicon by the high oxide field. Empirically equations have been found 
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for the gate current during tunnelling with varying degrees of accuracy. A general 

formulation is shown in equation (3.2.1.)[8] .       

!! = !!". !!
!!
!!" !!…… !!!!(3.2.1) 

where,  Ig = gate current equating to tunnel current for this work, ITun 

           Vox  = oxide voltage, i.e. (tunnelling voltage – floating gate voltage). 

           Vf = constant dependent on oxide thickness, 

                  for modern technology ≈ 368.04(V) 

           Ito = pre-exponential tunnel current per unit area 

 

This is the initial equation used for analysis and simulation [4]. 

Accurate characterisation of a FG device has historically proved difficult due to the 

isolated FG. It was therefore necessary to create a model to take into account this 

isolation and to calculate the charge stored on the FG when a tunnelling voltage is 

applied. With the model introduced in this work an EKV nMOSFET long channel 

device has been adapted and used. The model is adaptable and parameters can 

adjust to other transistor models. Also it has the ability for parameters to be adapted 

for evolving devices operating on the same principles.  As such it is thought that a 

degree of rigour has been obtained.  

3.3.   Floating Gate model Analysis  
 
Tunnelling Current 

If Fowler-Nordheim tunnelling [154 is assumed to change the charge on the floating 

gate, the tunnelling current that flows will depend on voltage across the oxide and 

the oxide thickness. There may also be other effects such as capacitor coupling and 

device geometries.  
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!!"# = !. !"# !
!!"# − !!"

!!!!if!!!"# > !!"!!!!else$$0$$$$……$$$(3.3.1) 

Where “A” = Ito and “B” = Vf  are constants referred to in eq.(3.2.1) 

 

The simulation carried out was to set the value of “W”  the pulse width and 

VTun the pulse magnitude and so inject charge on to the floating gate. This is the 

same as extracting electrons from the floating gate by tunnelling. The simulation 

would be carried out at the subthreshold level and post threshold level. Tunnel 

voltage pulses would be applied of 50µs width and changes in floating gate 

monitored and the effects on the device characteristics evaluated 

 

                                    Fig.3.3.1 Applied Tunnel Pulse 
 
For the pulse shown in Fi.3.3.1 the tunnel current will be:- 

!!"# = !. !"# !
!!" − !!"

!!!!for$$$!! ≤ !!time%%% ≤ !!!! !!!…… !!!!(3.3.2) 

Also%we%have:!!!!!!!!!"# =
!!!"
!"  

and$∴$$$$$$$$!!" = !. !"#. !
!!" − !!"

.!"!!!…… !!!!(3.3.3)
!!

!!

 

 
 
For initial approximation it was assumed that Vtp (8 – 12V) >> Vfg (0.1 – 1.0V) and 

that Vfg is only a weak function of time and therefore:- 
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!!" ≈ !. !"#. !
!!" − !!"

. !! − !! !!!…… !!!!(3.3.4) 

Total accumulated charge can then be calculated for small increments of time and 

evaluating Vfg after each pulse. 

“A” and “B” are Fowler-Nordheim coefficients and are highly dependent on the 

thickness of the oxide and the Si/SiO2 barrier, for 40Ǻ oxide these are taken from  

C. Diorio et al.[29], and are :-        A = 9.35 x 108 (A)   and    B = -368.04 (V-1) 

In order to check the value of “B”  we can replace A(t2 - t1) by “D” giving:- 

!!" ≈ !. !"# !
!!" − !!"

!!!…… !!!!(3.3.5) 

or#!!!!!!" !!" ≈ !" ! + !
!!" − !!"

!!!…… !!!!(3.3.6) 

From%plotting%%!" !!" !!against''' 1
!!" − !!"

!,!!"B"##equals#the#slope. 

Further in the sub-threshold saturation region we have:- 

!! = !!. !"#
!.!! − !!

!" !!!…… !!!!(3.3.7) 

Where:- K  = 
!!"

!!" + !!!
  ,        !! = the!pre!exponent!current,! 

!!!and!!!!!! = the!Thermal!Voltage! ≈ 26mV!at!300K! 

and$for$$$$!! = 0!!!!! ∶ !!!!!! !! = !!. !"#
!.!!
!" !!!…… !!!!(3.3.8) 

or########!! = !!. !"#
! !!" + !! .!!

!! .!"
!!!!!…… !!!!!!(3.3.9) 

where%%%%%%%%!! = !!" + !! !!!!!!!…… !!!!!!!!(3.3.10) 

∴"""""""!! = !!. !"#
!!"
!!

. !"# !!.!!
!" !!!!!!!…… !!!!!!!!(3.3.11) 

where%%%%%%%%!! =
!! .!"
! !!!!!!and$$$$$$!! =

!.!!
!!

!…… !!!!!!!!(3.3.12) 
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Hence,&writing&&&&&&&&&&&&!! =!. !!. !"#
!!.!!
!" !!!!!!!…… !!!!!!!!(3.3.13) 

Where “W” is the weight factor for the floating gate and is given by:- 

! = !"# !!"
!!

!!!!!!!…… !!!!!!!!(3.3.14) 

 

From the above we can evaluate “K” and “I0”   from equation (3.3.8.) as we have:- 

ln !! = !!" !! + !.!!"!" !!!!!!!…… !!!!!!!!(3.3.15) 

  Therefore plotting ln(Is)  against Vfg: as in Fig.3.3.2. 

 

                                       Fig.3.3.2. Plot of ln(Is) against Vfg 

We can use the data extraction features from QUCS to find K and I0. 

3.4.   Chapter Summary 

Chapter 3 covers the physical structures and principles of operation of floating gate 

devices. Special emphasis has been paid to the transfer of charge through the 

insulating oxide onto the floating gate. The principle of Fowler-Nordheim tunnelling 

has been shown through the band potential and the classic Fowler-Nordheim 

formula given. 

Ln(Is) 

I0 when Vfg=0 

Vfg 

Slope =K/Vt 

From QUCS data 
extraction 
K=slope.Vt 
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Using the Fowler-Nordheim equation an extensive analysis was carried out for 

charge transfer onto the floating gate for a tunnelled pulse. 
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Chapter 4. 

Model and Analysis of Floating Gate nMOSFET 

4.1. Equivalent Circuit Model 

The long channel nMOSFET was the basis of the model. To this was added the 

capacitive elements associated with the extra control electrode and the coupling 

capacitor effect of the FG with the bulk semiconductor, and the overlap capacitors 

associated with the source and drain, as shown in Fig.4.1.1. The dashed lines 

indicate the modification made in order to take into account the tunnelling terminal 

and it’s associated capacitance.  

 
 
 
 
 
 
 
 
 
 
 
 
                 
 
 
 
 
 
 
 

                    Fig.4.1.1. Equivalent circuit of FGMOSFET 
 

For charge neutrality and utilising the superposition principle we have:- 

!!" = !!"# + !!!"# + !!!"# + !!"#+!!!"#$%!! !!…… !!!(4.1.1) 

and using superposition we have:- 

Drain 
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Floating  
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Cfgc 

Cfgd 

Cfgs Tunnel 
voltage 

CfgTun 
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where%%%%!! =
!!"#
!!

.!!"# 

!! =
!!"#
!!

.!!"# 

!! =
!!"#
!!

.!!"# 

!! =
!!"#
!!

.!!"# 

!!!!!!!!!!!!!! =
!!"#
!!

.!!"#$% 

!! =
!!"
!!

 

Where:- V1, V2, V3, V4, V5 and V6 are the voltages at each node and CT is the total 

capacitance. 

superimposing:- 

!!" = !! + !!! + !!! + !!! + !!! + !!! !!!…… !!!!(4.1.2) 

and therefore:- !!" =
!!"#
!!

.!!"# + !
!!"#
!!

.!!"# + !
!!"#
!!

.!!"# + !
!!"#
!!

.!!"# +! 

!!"#
!!

.!!"#$% + !
!!"
!!

!!…… !!!!(4.1.3) 

                                                                                      

4.2.   Floating Node Analysis Solution 

The major problem with a FGMOS is the fact there is no electrical connection with 

the FG, only through capacitor coupling, which means that simulators cannot cope 

with charge transfer. In order to overcome this, it was decided to incorporate large 

parallel resistances with the capacitive elements. The resistance values chosen 

were such that the time constant of the RC circuit formed were extremely large 

compared with any duration of simulation: Typically the time constant was set to 

10000s  
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!!!!!!!!!!!!!!!!!!Fig.4.2.1. Equivalent circuit of FGMOSFET for analysis 
 

 

Also to simplify analysis all the time constants are made equal. This can be done as 

all time constants will be such that they do not effect the relative short duration of 

the simulations 

RfgCCfgC = RfgDCfgD = RfgSCfgS = RfgBCfgB  = RfgTCfgT 

   

DC node equation gives:-  

!!" − !!
!!"#

+ !!" − !!
!!"#

+ !!" − !!
!!"#

+ !!" − !!
!!"#

+ !!" − !!"#
!!"#

= 0!!!…… !!!(4.2.1) 

re-arranging eq. (4.2.1.) 
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!!"
1

!!"#
+ 1
!!"

+ 1
!!"#

+ 1
!!"#

+ 1
!!"#

= !!
!!"#

+ !!
!!"#

+ !!
!!"#

+ !!
!!"#

+ !!"#!!"#
!!!!!!!… .!!!!!(4.2.2) 

or 

!!" =
!!
!!"# +

!!
!!"# +

!!
!!"# +

!!
!!"# +

!!"#
!!"#

1
!!"# +

1
!!"# +

1
!!"# +

1
!!"# +

1
!!"#

!!!!!!!…… !!!!!!!!(4.2.3) 

 

For the time associated with simulation, and indeed practical applications the Time 

Constants, τ, are assumed to be very large and can be considered equal.  This was 

achieved by selecting extremely large resistor values. 

 τ = Rfgd . Cfgd =  Rfgs . Cfgs = Rfgb . Cfgb =  Rfgc . Cfgc =  RfgT . CfgT    …… (4.2.4) 

 

then 

!!" =
!!"# .!!

! + !!"#.!!! + !!"# .!!! + !!"# .!!! + !!"# .!!"#!
!!"#
! + !!"#! + !!"#! + !!"#! + !!"#!

!!!!!…… !!!!!!(4.2.5) 

or 

!!" =
!!"# .!! + !!"#.!! + !!"#.!! + !!"# .!! + !!"# .!!"#

!!
!!!!!…… !!!!!!(4.2.6) 

 

where 

!! = !!"# + !!"# + !!"# + !!"# + !!"# !!!!!!!…… !!!!!!!!(4.2.7) 

                          

Note that if Vs = Vb → 0 
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!!" =
!!"# .!! + !!"# .!! + !!"# .!!"#

!!
!!!!!!!…… !!!!!!!!(4.2.8) 

 

Also, provided that Cfgc >> (Cfgd + CfgT), which from the design point of view is true, 

then:- 

!!" →
!!"# .!!
!!"#

→ !! !!!!!!!…… !!!!!!(4.2.9) 

This indicates that before a tunnelling voltage is applied and there is no charge on 

the Floating Gate, and that the transistor is effectively controlled by the control gate 

voltage. However once a charge has been accumulated on the floating gate this 

becomes the dominant controlling voltage.  

 

4.3.   Analysis for transient solution. 

Assuming Qfg → 0 and Cfgd, Cfgs and Cfgb → 0 

Then  

!!" − !!
!!"#

+ !!"# .
! !!" − !!

!" + !!" − !!"#
!!"#

+ !!"#$%.
! !!" − !!"#

!"

= !!" !!!…… !!!(4.3.1) 

Where ITc is the tunnel current 

or 

 

!!"# + !!"# .!!!"!" + !!".
1

!!"#
+ 1
!!"#

= !!" +
!!
!!"#

+ !!"#!!"#
+ !!"# .

!!!
!" + !!"# .

!!!"#
!" !!!!!…… !!!!!!(4.3.2) 

This is a complex equation that may have no analytic solution and may need to be 

iteratively solved. 
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4.4.   Steady State Solution. 

For the steady state solution the following are assumed:- 

(i)!!!!"# → 0!!!and$$∴!!!"#!" !!!→ !!0 

(ii)$$$!! = !a"constant"value"and"∴""!!!!" !!→ !!0 

(iii)$$!!" = 0 

 

Then from equation (4.3.2.):-  

!!"# + !!"# .!!!"!" + !!".
1

!!"#
+ 1
!!"#

= !!
!!"#

!!!!!…… !!!!!(4.4.1) 

putting Cfgc + CfgT = CT 

then 

!! .
!!!"
!" + !!".

1
!!"#

+ 1
!!"#

= !!
!!"#

!!!!!…… !!!!!(4.4.2) 

equation (4.4.2.) can be expressed in the general form:- 

!!!"
!" + !.!!" = !!!!!!!!…… !!!!!!(4.4.3) 

where%%%%α"=" 1!!
. 1
!!"#

+ 1
!!"#

 

and$$$$β"=" !!
!!"# .!!

 

hence%%% !!!"
! − !!.!!"

= !"!!!!!!…… !!!!(4.4.4) 

this%is%a%standard%integral%form%→ !"
! = 1

! . !" ! !!!!!!where%! = ! + !" 

              integrating this standard form gives:- 

1
! − !!.!!"

!!!" = !".!!!!!!!…… !!!!!!(4.4.5) 
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and 

! = ! 1! .
1
−!!

. ln 1− !! .!!"  

! = !− 1! . ln 1− !! .!!"  

hence 

−!" = ! ln 1− !! .!!"  

or 

!!!" = 1− !! .!!" 

and therefore 

!!" =
!
! . 1− !

!!"  

substituting in the values for α and β we get:- 

!
! !→ !

!!
!!"# .!!

1
!! .

1
!!"# +

1
!!"#

= ! !! .!!"#
!!"# + !!"#

 

giving:- 

!!" = !
!! .!!"#

!!"# + !!"#
. 1− !!

!
!!.

!
!!"#!!

!
!!"# !!!…… .!!!(4.4.6) 

if!!!…………… .!!!!! 1!!
= 1
!!"#

= 1
!!"#

 

then the Time Constant, τ, for eq.(4.4.6) = CT.RX 

and if 

!! .!! → ∞ 

and  

!!" → !! !!!…… !!!(4.4.7) 
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This takes us back to the solution obtained for the DC node equations that is to be 

expected as the Tunnelling voltage pulse has been removed.  

4.5.   Chapter Summary 

Chapter 4 shows the development of the created floating gate model. This basically 

consists of a number of capacitances associated with the floating gate and the 

integrated terminals of the n-type enhancement MOSFET. Analysis of this model 

has been carried out using the superposition principle to establish the voltage on 

the floating gate. This shows the relationship of the voltage to the charge stored on 

the floating gate and the total equivalent circuit capacitance. 

Total analysis has been enabled and carried out by adding extremely large 

resistances in parallel with the equivalent capacitances. The analysis has been 

shown for D.C. and transient voltages. 
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Chapter 5. 

Floating Gate Characteristics 

5.1. Theoretical Characteristics 

The theoretical characteristics of a floating gate device are similar to a MOSFET 

and are determined by the following equations [10,20], that have been implemented 

in the QUCS EKVv2.6 model.  

(i) Linear Region 

!! = !!. !"#
!!!" − !!

!" . 1− !"# !!"
!" !!!!!!!…… !!!!(5.1.1) 

where%%%%K%=% !!"
!!" + !!

!!!!!and$$$$!"!!="thermal"voltage"(≈26mV"at"300"Kelvin) 

            

(ii) Saturation Region 

!! = !!. !"#
!!!" − !!

!" !!!!!!!…… !!!!!!(5.1.2) 

                                    

(iii) Cut off. 

!! → 0!!!!!!!…… !!!!!!(5.1.3) 

The Linear and Saturation Regions are shown in Fig.5.1.(a) and (b) . The schematic 

utilises the QUCS software and a Floating Gate device that has been developed. 

For this simulation no voltage is applied to the floating gate terminal so the channel 

formation is controlled entirely by the 1 Volt applied to the control terminal.  
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                    Fig.5.1.1.(a) QUCS Schematic used to obtain Floating Gate MOS   
                    Characteristic for Linear and Saturation Regions for Is v Vds 
 

 
 

          Fig.5.1.1.(b) Linear and Saturation Characteristic for schematic shown   
                               in Fig.5.1.1.(a) Is v Vds. 
 

For Fig. 5.1.1.(b) a constant gate voltage, Vgs = 1V, is applied, which is above 

the threshold voltage. The device operates in the linear region until Vds reaches 0.3 

– 0.4 when it starts to enter the saturation region, where excess negative charges 

are pulled towards the drain and reduces the channel area at the drain. This 

gradually limits the current and makes it more independent of increase in Vds. 
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                 Fig.5.1.2.(a) QUCS Schematic used to obtain Floating Gate MOS  
                 Linear and Saturation Characteristic, Is v Vgs. 
 
 

  
 
 
                            Fig.5.1.2.(b)  Linear and Saturation characteristic for 
                            schematic shown in Fig.5.1.2.(a), Is v Vgs 
 
For the schematic shown in Fig.5.1.2.(a) the drain-source voltage is set at 2V and 

the gate-source voltage is sweep from 0.1 V – 3 V. Initially the source current 

shows weak inversion(subthreshold). Below the threshold voltage (approx..4Vt) the 

mobile charge carriers do not disappear abruptly but reduce slowly due to the 
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capacitive voltage between the gate – source and source – bulk, and current 

transport by diffusion is important. 

Above the threshold voltage the square law region is entered. 

 

 
 
               Fig.5.1.3.(a) QUCS Schematic used to obtain Floating Gate MOS 
                                    characteristic response in subthreshold region. 
 
 

 

                Fig.5.1.3.(b) Subthreshold characteristic for schematic 

                                     shown in Fig.5.1.3.(a), Is v Vgs 
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For the response shown in Fig.5.3.1.(b). it can be seen that below the 

threshold voltage in weak inversion that a current still flows between drain and 

source due mainly to surface charge. This continues even when Vgs is 0V. 

 

 

                       Fig.5.1.4. Shift of V v I characteristic as charge is  

                               accumulated on Floating Gate [ 5 ]. 

 

Fig.5.1.4.  shows the target effect that is required for a floating gate device. 

Through applying high voltage pulses to the floating gate terminal Fowler-Nordheim 

charging takes place through the oxide layer and charges accumulate on the 

floating gate, so effectively shifting the threshold voltage.  

5.2.   Chapter Summary 

Chapter 5 considers the overall characteristics that are expected for a floating gate 

n-type enhancement MOSFET. Simulations have been carried out for the device in 

the linear and saturation regions. The shift in the characteristic has been shown for 

the different levels of charge transferred on to floating gate through charge 
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tunnelling. This indicates the change in the characteristic that the simulation model 

would be expected to achieve. 
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Chapter 6. 

QUCS Software 

6.1.   QUCS software package. 

The acronym QUCS stands for Quite Universal Circuit Simulator. It is an open 

source circuit simulator and has been developing since 2004 when initially a team 

of scientists and engineers decided to take part in the MOS-AK Verilog-A 

standardisation initiative. The software was to be developed using GNU/Linux under 

General Public License. It is available for most operating systems including 

GNU/Linux, Windows®, Solaris®, NetBSD, FreeBSD and MacOS®. The simulator 

has developed rapidly since this time and previously reported details of the 

simulators capabilities can be found from ref[2,3,6,10]. 

 As with most simulators, circuits are represented by textual netlists and/or 

schematic diagrams. A simulation engine then carries out the circuit simulation on 

the basis of these representations and according to the analysis required e.g. DC, 

AC or transient. Further, results are stored and can be displayed by a post 

simulation processing system both in tabular and graphic format. Again, as with all 

simulators, individual components are represented by a mathematical model 

defining the components physical operation. The complete architectural structure is 

shown in Fig.1.1. The use of subcircuits is also a feature of modern simulators and 

enables a hierarchical structures for the building of more complicated circuits. With 

the release of QUCS 0.0.12 a new modelling component was introduced called the 

EDD. This enables QUCS to formulate device current as a function of voltage and 

also device charge to be formulated as a function of current and voltage. 
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The software library contains a large number of models for compact 

semiconductor devices and it has been the intention of this research to develop a 

compact model of a floating gate device so that it sits inside the software library and 

can then be incorporated as an integrated part of circuit design. The software is fully 

integrated, providing circuit simulation and analysis routines, with advanced device 

and circuit modelling tools. It also provides a graphical environment for circuit 

schematic drawing, or netlist preparation, and simulation control, as shown in 

Fig.6.1.1. 

The software consists of a suite of stand alone programmes that are 

interactive through a graphical user interface, GUI. For the purpose of this work the 

GUI enables schematics to be created, simulations to be setup and run, and results 

to be displayed in graphical and tabular form.  

For the schematic implementation, data can be taken from component 

symbols, numerical values, algebraic equation blocks, user defined subcircuits, 

library  components and non-linear equation defined devices along with simulation 

directive icons as shown in Fig.6.1.2. The underlined terms being indicative of the 

work to be carried out by this research for floating gate devices. The simulation 

package overcomes one of the most important deficiencies of SPICE and that is the 

lack of subroutine parameters that can be passed as component values to the 

circuitry within the subcircuit, and an inability to calculate component values, or 

other quantities, using variables and algebraic equations attached to a subcircuit.  

QUCS software is proving extremely important in the design of semiconductor 

devices and incorporates a large number of physical processes defined by 

algebraic equations[6], reference Appendix 2. 
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            Fig.6.1.1. Chart for implementation of circuit simulation within QUCS 
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