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Abstract—In this work, a novel methodology is introduced that employs
genetic algorithms to determine the optimal weighting matrices for a
linear quadratic regulator controller. A method is presented to construct
a multi-objective fitness function that allows one to give prioritisation
to energy consumption or other performance metrics, such as rise time,
settling time, and steady-state error. To validate the effectiveness of the
proposed approach, we conducted simulation studies based on a model of
an inverted pendulum on a cart system. The results show a reduction of
up to 30.36% in the energy of the controller and a reduction of 20.27%
in its maximum value when choosing to prioritise the energy expenditure
of the controller over other performance metrics, without significantly
compromising the convergence of the system states. The results encompass
an effective way of optimising energy expenditure in non-linear controller
designs.

Index Terms—Nonlinear Dynamical Systems, Green Algorithm, Sus-
tainable Circuits and Systems, LQR, Inverted Pendulum.

I. INTRODUCTION
The celebrated Linear Quadratic Regulator (LQR) formulates a

state-feedback gain by optimising a performance metric, which
incorporates both a weighted state and control input. It holds a pivotal
role in various control techniques. When compared to traditional
methods such as feedback control based on pole placement, it offers
the advantage of computing the state feedback control gain matrix,
thereby steering the system towards optimal performance [1]. The
relative superiority of LQR over other techniques such as PID was
also pointed out in literature [2]. This technique has been broadly
explored and has also been integrated with contemporary control
approaches like MPC [3], PID [4], and Robust Control [5].

The design of LQR requires the selection of two Hermitian
positive-definite matrices, Q and R, which dictate the balance be-
tween error significance and energy expenditure [6]. The issue is that
different choices for Q and R lead the system to different responses,
suggesting that the response may not be truly optimal [7]. Since the
1980s, the selection of LQR weighting matrices has been investigated
[8], [9] and several approaches have been suggested to address the
problem.

Non-parametric optimisation [10], multi-objective evolution algo-
rithm [11], analytical method [12], [13], stochastic method [14] and
other iterative methods such as particle swarm optimisation [15] are
just a few examples of approaches that have been used to optimally
select the tuning parameters of the LQR. Recently, interest in using
genetic algorithms (GA) for the selection of weighting matrices has
grown [16]–[19]. Chen et al. [20] used GA to tune LQR control
for a flying inverted pendulum system. Poodeh et al. [21] combined

LQR with the optimal location of poles using GA to control and
enhance a Buck converter response. In [22] the authors improved the
controller for path tracking of an autonomous 4WS electric vehicle
by using GA to weight LQR matrices, among other examples. This
illustrates the versatility of both LQR and GA techniques, as well as
their applicability to various nonlinear dynamical systems.

It is well understood that a trade-off exists between the choices of
Q and R matrices. Specifically, one can either prioritise the system’s
performance in terms of response convergence speed at the expense
of control input or the other way around. While this trade-off is
widely recognised, the precise relationship between the selection of Q
and R, the control input, and other performance metrics remains ill-
defined. In fact, there is a lack of studies in the literature addressing
these subtle aspects. This emerges as an important factor because
controlling the system is not the only concern; it is also vital to
ensure that the control input remains within acceptable limits. A
key consideration is that by minimising the control input, one could
prolong the lifespan of actuators. Even more crucially, this can
ensure the functionality of systems subjected to energy saturation.
It has also been observed that beyond energy saturation, scientific
investigation has recently started to consider the relevance of ’energy-
optimality’, in a way to reduce energy consumption and improve
system endurance [23]. This stresses the importance of choosing
which performance metrics prioritise during controller design.

In this work, a novel methodology is introduced that employs GA
to determine the optimal matrices Q and R. The distinctive aspect of
this approach is the emphasis on analysing the relationship between
the weighting matrices and control input in terms of maximum effort
and energy expenditure, and other system performance metrics. A
method is presented to construct a multi-objective fitness function
that minimises energy consumption while prioritising performance
metrics, such as rise time, settling time, and steady-state error. To
validate the effectiveness of the proposed approach, we conducted
simulation studies based on a model of an inverted pendulum on a
cart system.

The approach adopted in this paper encompasses an effective
method for optimising energy expenditure in non-linear controller
designs and, consequently, a way to reduce the effort exerted on
actuators by the control input, prolonging its lifespan. Furthermore,
it enhances the method of weighting the LQR controller. By adopting
the approach presented in this paper, one can not only balance the
trade-off between energy expenditure and performance but also make



better choices regarding which performance metric to prioritise.

II. BACKGROUND
A. Genetic Algorithm

A Genetic Algorithm, first introduced by John Holland [24] is an
optimisation technique that draws inspiration from natural selection
processes. Mimicking evolutionary principles, GA refines a set of
potential solutions, over multiple generations to approach an optimal
solution. It begins by formulating a fitness function f(k), where k is
a test solution to the problem that one aims to minimise or maximise.
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Fig. 1: General GA architecture according to [22].

Figure 1 summarises the GA optimisation process, which is run based
on three typical genetic operations: i) Selection: refers to the process
of favouring individuals to become parents based on the results of
the fitness function. For the maximisation case, k2 is more likely
to be selected compared to k1 if f(k2) > f(k1); ii) Crossover: let
k1 and k2 be potential solution of the optimisation problem, then
k12 = G(k1,k2), where G is a function that produces an offspring
element, k12, by operating on both parents, k1 and k2, selected in
the previous step; iii) Mutation: introduces minor random variations
in the offspring. The process continues by forming an entirely new
generation and proceeds until the predefined criterion is met.
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Fig. 2: Schematic: inverted pendulum on a cart system.

B. Inverted Pendulum on a Cart
The inherent complexity of stabilising an inverted pendulum on

a cart presents significant challenges. Its natural instability and
vulnerability to external disturbances have historically captivated the
interest of control systems researchers.

Successfully achieving stability in this system can greatly influ-
ence numerous applications. Our proposed method comprehensively
addresses the nonlinear dynamics of the inverted pendulum system,
positioning it as a viable solution for practical implementations. A

schematic of the system is depicted in Figure 2 and its dynamics are
described by second-order nonlinear differential equations, as follows
[25]:

ẋ = v, (1)

v̇ =
−m2L2g cos(θ) sin(θ) +mL2(mLω2 sin(θ)− δv)

mL2(M +m(1− cos2(θ)))
(2)

+
mL2u

mL2(M +m(1− cos2(θ)))
,

θ̇ = ω, (3)

ω̇ =
(m+M)mgL sin(θ)−mL cos(θ)(mLω2 sin(θ)− δv)

mL2(M +m(1− cos2(θ)))
(4)

+
mL cos(θ)u

mL2(M +m(1− cos2(θ)))
,

where m is the pendulum mass, M is the mass of the cart, L is the
length of a massless rod, x is the position of the cart, v is its velocity,
θ is the angle of the pendulum, ω denotes the angular velocity, g is
the gravitational acceleration, δ accounts for the frictional damping
on the cart, and u is the control force applied to the cart.

C. Linear Quadratic Regulator

The primary goal of LQR is to determine a control law that
minimises a quadratic cost function. This function is usually defined
as the sum of the weighted quadratic differences between the system’s
state and a desired trajectory, and the weighted quadratic variations
of the control inputs from their ideal values. We define J as the cost
function to be minimised:

J =

∫ ∞

0

(
xTQx+ uTRu

)
dt, (5)

where x ∈ Rn is the state vector, and u ∈ Rnu is the control input
vector. Both Q ∈ Rn×n and R ∈ Rnu×nu are the weighting matrices
that relates the significance of state and control efforts within the
optimisation process respectively [6]. Moreover we have Q = QT ≥
0 (positive semi-definite), and R = RT > 0 (positive definite).

A state-space representation of the linearised version of the system
yields

ẋ = Ax+Bu, (6)

where A ∈ Rn×n and B ∈ Rn×nu are obtained from the original
nonlinear system. The state-feedback control law is defined by u =
−Kx. The gain matrix K ∈ Rnu×n can be determined by solving
the Riccati equation, which is defined as:

ATP +AP − PBR−1BTP +Q = 0, (7)

and the optimal gain is calculated as:

K = R−1BTP, (8)

in which P is the solution matrix for the Riccati equation.

III. METHODOLOGY

The inverted pendulum setup was established as follows: m =
0.1kg, M = 1kg, L = 0.5m, and g = 9.81m/s2. The GA considers
Q as chromosomes and each one of its elements as alleles, the initial
population initiates with 50 individuals, and a maximum of 500
generations is set. The optimal Q matrix is obtained by selecting,
crossing over, and mutating each generation according to the criteria
described below.



A. The Fitness Function

We define the controllability gramian as:
AWc +WcA

T +BBT = 0, (9)

where A and B are the system matrices. A good approximation for
control energy can be achieved by defining a function E(Wc) as:

E(Wc) = trace(Wc) =

n∑
i=1

λi, (10)

Where λi are the eigenvalues of the controllability Gramian (Wc)
and n is the order of the system. Let the fitness function derived
from a weighted sum be defined as:

F(E,Tr,Ts,e) = G1E(Wc) +G2Tr +G3Ts +G4e, (11)

where the additional terms Tr , Ts, and e represent the rise time,
settling time, and steady-state error, respectively. We define Tr as
the time when the system response is equal to or greater than 90%
of the final value; Ts as the time at which the difference between
the final value and zero is less than 2%; and e as the difference
between the steady-state and zero. The idea of this fitness function is
to allow the prioritisation of different parametric metrics by adjusting
the weighting factors given by G1, . . . ,G4.

B. Selection Mechanism

The well-known roulette wheel is established as a method for
selecting parents for the next generation of matrices. The idea behind
this selection is to assign each member of the population a probability
of being selected based on its fitness: the higher the fitness, the greater
the chance of being selected. To determine which individual takes
priority, the total fitness of the entire population is computed. This
is followed by the calculation of the cumulative probability for each
member. Members with greater fitness occupy larger sections of the
“roulette wheel”. When selecting an individual for updating, a random
number between 0 and 1, referred to as the selector, is generated for
each member in the population. The selector value then determines
which member of the population is chosen.

C. Crossover Mechanism

The crossover rate is initially set to Cr = 0.7 . Let Qi denote
the ith parent matrices from the population. For each pair of parents
(Qi, Qi+1) and (Ri, Ri+1), a random number, denoted by α ∈ [0, 1],
is generated. If α < Cr , a crossover operation is performed as:

Qchild1 = αQi + (1− α)Qi+1,

Qchild2 = (1− α)Qi + αQi+1,

Rchild1 = αRi + (1− α)Ri+1,

Rchild2 = (1− α)Ri + αRi+1.

If α ≥ Cr , the children inherit the matrices directly from the parents:

Qchild1 = Qi,

Qchild2 = Qi+1,

Rchild1 = Ri,

Rchild2 = Ri+1.

The offspring population maintains diversity while preserving the
attributes of high-performing candidates.

D. Matrix Mutation Procedure

The mutation rate is initially set to Mr = 0.5. Let Qi denote
the ith child matrix from the set of children matrices. For each Qi,
a decision to mutate is based on a probability governed by Mr .
Specifically, if rand() < Mr , where rand() denotes a generated
random number, then the mutation is performed. The mutation is
defined as:

QM = Qi × 0.1,

where QM is a scaled symmetric positive definite matrix with
elements generated within the range (0, 1000) with a scale factor
of 0.1. The mutated child matrix is then given by:

QM
i = Qi +QM

where QM
i is the mutated child matrix. This way, new regions in the

solution space can be explored.

E. Constraints
The greater the value of R , the less the control effort. However, it

is known that increasing the size of matrix R excessively may result
in non-zero steady-state values. The proposed approach ensures that
R is positive and R ≤ 1. One could predefine the value of R to be
the maximum, but allowing R to be defined by the GA provides a
means to validate the algorithm.

IV. RESULTS

We utilised the software MATLAB, version R2023a, running on
a computer equipped with a 12-core CPU CORE i9-10920XE, 64
GB of RAM, and a NVIDIA T400 4GB GPU with Windows 11
Enterprise, version 22H2 to conduct the simulations. All experiments
were conducted for a linearised model of Equations (1) to (4). The
routines used in this work are available at [26].

By allowing the GA to select the LQR parameters, the control
operates effectively. Fig. ?? displays the convergence of the states
when G1, . . . ,G4 = 1 were chosen to be equal. Fig. 4 highlights
the effect of varying G1 while keeping G2, . . . ,G4 = 1, equal to
each other. One can observe that the control effort is minimised as
G1 increases. However, it is also evident that the system’s sensitivity
to the variance of this parameter is relatively low. This is tied to
the criteria established for the selection, crossover, and mutation
processes.

Let ε represent the energy of the control input signal. Then, the
difference in energy of the control signal input with G1 set to 1, 10,
and 500, respectively, can be analysed by calculating the sum of the
squared terms of each control signal. In this case, ε1 = 1220.00,
ε10 = 992.6762, and ε500 = 776.3527. Without significantly
compromising the convergence of the states, one can reduce the
control input energy by up to 36.36% when comparing ε500 with
ε1 and by 18.63% when comparing ε10 with ε1. Furthermore, when
assessing the maximum control input values, reductions of 9.78% and
20.27% were observed when comparing G1 = 1 to G1 = 10 and
G1 = 500, respectively.
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Fig. 3: Controlled states of the inverted pendulum on a cart.

On the other hand, Fig. 5 shows the effect of prioritising the
system’s settling time, keeping other weights equal to one and varying
G3 in three different values. The result shows that the outcome is
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effective. However, once again, it is understood that the system’s
sensitivity to change is relatively low.
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Fig. 6 shows the evolution of the minimum value of the objective
function for each generation, when G1, . . . ,G4 = 1. Gaps in the
mentioned graph represent cases where the fitness function exceeded
the imposed constraints. One can see that the method is also de-
pendent on the number of generations. The greater the number of
generations, the more refined the optimisation becomes. Thus, there
is a trade-off between computational effort and the precision of this
method.
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A. Discussion
The methodology introduced in this study exemplifies the adapt-

ability principle in control system design. The proposed fitness
function, which facilitates the prioritisation of distinct performance
metrics, represents a novel approach to designing cost functions.
This method streamlines multi-objective functions, simplifying their

complexities. Conventional control functions typically focus on just
one or a few performance metrics, limiting the designer’s flexibility in
tackling the diverse dynamic issues prevalent in real-world systems.
By integrating parameters such as rise time, settling time, steady-state
error, and energy expenditure our cost function offers a thorough
assessment of system performance. This is especially valuable in
complex systems where the trade-offs between various performance
metrics can lead to vastly different control outcomes.

The inclusion of weighting factors adds a layer of versatility to
the control design. For example, in scenarios where rapid response is
critical, a higher weight can be assigned to settling time to prioritise
its minimisation. Conversely, in applications where the effort in the
actuator is more crucial, weights can be shifted to emphasise the
reduction of control energy expenditure. It is possible to strike a
balance between achieving desired system performance and ensuring
minimal control expenditure. The ability to fine-tune and minimise
control effort through appropriate parameter selection is essential for
sustainable and efficient system operation.

A substantial 36.36% reduction in the energy consumed by the
controller plays a pivotal role in various contexts. This decrease not
only enhances the energy efficiency of the control system but also
contributes to resource savings and environmental sustainability. To
illustrate its importance, one could consider battery-based systems
or other systems under energy saturation. For instance, this energy
savings can significantly boost the autonomy of electric vehicles and
autonomous systems, becoming a critical advantage in an increasingly
efficiency-conscious world focused on natural resource preservation.

This new way of tuning the controller paves the way for a more
flexible, adaptable, and effective design methodology. It acknowl-
edges the diverse aspects of system performance and furnishes the
means to harmonise and enhance these elements in line with the
specific requirements of each scenario.

V. CONCLUSIONS

In this study, we have successfully integrated GA with LQR
control, demonstrating the efficacy of using evolutionary compu-
tation techniques in control system optimisation. Traditional LQR
tuning methodologies, though effective, often employ a more rigid
framework, which may not be sufficiently adaptable to a variety of
complex system requirements. The adoption of GA, renowned for its
global search capabilities, brings a novel dimension to this domain
by efficiently navigating the vast parameter space to identify optimal
LQR settings.

In this study, we showcased a versatile and adaptive methodology
for tuning LQR parameters. There is potential in delving into ad-
vanced evolutionary algorithms or blending with other optimisation
strategies to achieve even more nuanced control outcomes, as future
work. Further refinement can be sought by redefining fitness functions
and experimenting with alternative mutation processes. Instead of
random variations in Q, a promising avenue might involve assessing
the system’s controllability matrix to pinpoint states that significantly
influence the control of target outputs. This could provide a more
structured and informed strategy for LQR tuning.
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