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Abstract

This article proposes a novel approach for designing a mode-dependent ∞ full-order
dynamic filter for a cyber-physical system (CPS) that is subject to polytopic uncertainties.
The CPS operates on an unreliable network that is susceptible to transmission failures and
Denial of Service (DoS) attacks. The attackers have limited energy resources, and the dura-
tion of the DoS attack is limited to a maximum number of consecutive time instants. The
network is modeled after a proposed non-homogeneous Markov chain whose transition
probability matrix may feature uncertain and unknown probabilities, which are depen-
dent on time-varying parameters. The design conditions for the filter are obtained using
parameter-dependent linear matrix inequalities. The proposed filter is shown to be effec-
tive in reducing the impact of DoS attacks and transmission failures on the CPS. Numerical
experiments are presented to illustrate the efficacy of the proposed filter design method,
demonstrating its ability to mitigate the effects of uncertainties and attacks on the CPS.

1 INTRODUCTION

In the last decades, the way devices communicate has evolved
significantly, allowing the connection of physical and computa-
tional components through networks. This integration has given
rise to a new class of systems called cyber-physical systems
(CPS) [1]. However, this new class also posed new challenges
for control systems, including the existence of malicious agents
that seek to deteriorate the performance of CPS. As a result, the
study of CPS under the presence of attacks has received a lot
of attention from the control community [2, 3]. The main types
of attacks are: the false data injection [4, 5], deception [6], and
Denial of Service (DoS) attacks [6], with the latter being of par-
ticular interest because it does not need any information from
the system to be effective, since it can be performed by simply
launching a lot of information into the communication channels
trying to block it [7].
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Strategies considering deterministic and stochastic
approaches for modeling the presence of DoS attacks have
emerged. For instance, in the deterministic framework, state-
feedback control [8, 9], and output feedback control [10] were
considered by employing a switching model for the CPS in
the presence of attacks, that departs from the assumption that
the malicious agent is energetically bounded [11], which may
constraint the maximum attack duration [8] or, as seen in [12],
limits the number of communication channels affected at the
same time. Event-based strategies are also utilized to tackle DoS
attacks [13]. While in the stochastic scenario, state-feedback
control [14], state estimation [4], and output-feedback control
[15] have been explored by considering a Bernoulli process.
Moreover, using networked controlled systems may result in
stochastic packet losses due to network errors or limitations,
unrelated to the attacker. These packet dropouts can be mod-
eled after Bernoulli [16] and Markov processes [17, 18]. The
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use of non-homogeneous Markov chains with uncertain and
unknown probabilities [19, 20] comes as a way to obtain less
conservative and more faithful representations of the network’s
packet dropout behavior [21], whereas it is still under-explored
in the context of DoS attacks. Some works also propose control
design strategies for systems simultaneously under DoS attacks
and other faults not related to the attacker [22], as well as
game theory strategies; see [23, 24] for its application in the
estimation problem. In [24], both the sensor and the attacker
present energy constraints.

The filtering problem also has received attention from the
CPS community. The problem of quantization was addressed
in [25], while [26] tackles the fading channels problem. Results
concerned with event-triggered filter design for CPS under
deception attacks were reported in [27]. Continuous-time Fuzzy
models were employed to describe the CPS. In [28], a Riccati-
based solution was employed to design resilient filters for
power systems under DoS attacks in a distributed scenario. Pre-
cisely known discrete-time dynamics were considered for the
distributed power system. Filter design for stochastic nonlin-
ear systems with time-varying parameters under periodic DoS
attacks appeared in [29]. A type of pulse-width-modulated sig-
nal was used to model the DoS attacks. A periodic DoS attack
was also considered in [30] for continuous-time nonlinear fuzzy
systems. The ∞ performance was employed, and an event-
triggered approach with a multi-sensor structure was proposed
to deal with the presence of DoS attacks. Last, but not least,
[31] considers ∞ performance while assuming limitations in
the duration and frequency of the DoS attacks.

As can be seen, several methods have been developed to deal
with this important topic. However, there are still issues to be
tackled for filter design when dealing with CPS. An important
issue is which model is employed for the occurrence of the
DoS attacks and transmission failures. In networked controlled
systems, the Gilber-Elliot model [21, 32] is one of the most
widespread. Albeit there is a consensus that no single model
could be employed for all malicious agents, it is also recognized
that a more general model could imply more effective strate-
gies to reduce the undesirable effects of the attacks. Moreover,
unreliable networks in communication channels are usually con-
sidered to have the same characteristics as the DoS attack which
is not always the case, as seen, for instance, in the energetically
constrained behavior displayed by the attackers. The use of non-
homogeneous Markov chains in the DoS attack context, while
also considering stochastic losses due to network transmission
failure, has also not been widely discussed, and may prove to be
a way to design filters while also accounting for changes in the
attack and packet loss behavior.

This paper contributes therefore in two ways: (i) By
proposing a network model that better encompasses the attack-
transmission failure context; (ii) By proposing a filter design
strategy that operates considering both the DoS attacks and
transmission failures. In summary, this paper advances in the
following aspects:

1. A new model to describe the occurrence of the attacks is
proposed. The model is based on a Markov chain that makes

it possible to differentiate the probabilities of (i) success-
ful transmission, (ii) transmission failure due to network
problems, and (iii) the existence of DoS attacks.

2. The transition among the modes of the system is gov-
erned by a time-varying probability matrix stemmed from a
non-homogeneous Markov chain. This means that the prob-
abilities do not need to be precisely known. Instead, they can
have known bounds, or even be unknown.

3. A new filter design condition to deal with the presence
of DoS attacks. A full-order filter is synthesized, which
accounts for the last-transmitted output.

4. The filter to be designed can be mode-dependent, that is,
as the DoS attack evolves, different filters can be employed,
or can be mode-independent, not requiring any switching of
filters, with both guaranteeing the ∞ performance from
the exogenous input to the error.

5. A comparison with a classic Gilbert-Elliot model that is used
to consider the presence of attacks and unreliable networks is
presented, aiming to compare the proposed network model
to this widespread network representation from the litera-
ture. Furthermore, a comparison concerning the proposed
technique and a filter obtained by another method from the
literature is provided.

The paper is organized as follows. Section 2 describes the
new network model, as well as how to include the uncertain
and unknown probabilities in the resulting Markov chain’s tran-
sition probability matrix. Section 3 presents the augmented
system considering the plant and the filter that accounts for
the last transmitted output when under attack or transmission
failure. The design conditions for the mode-dependent filter
are derived, in addition to extensions to consider the mode-
independent filter design. Section 4 demonstrates the efficacy
of the proposed approach through numerical experiments. The
performance of the proposed approach using the proposed
network model is discussed, and compared to a classic Gilbert-
Elliot model, and the filter design technique is compared to
another method from the literature showing that our approach
can provide less conservative results. Section 5 concludes the
paper and highlights future directions for this work.

Notation

The set ℝn denotes the n-dimensional Euclidean space, and the
set ℝm×n denotes the set of all m × n matrices with real entries.
The operator × denotes the Cartesian product, and the operator
diag(A,B) indicates a block diagonal matrix composed of matri-
ces A and B. In and 0n×n denote, respectively, the identity and
a zero matrix of appropriate dimensions. M > (<) 0 indicates
a positive (negative) definite matrix. The symbol (T ) indicates
transpose and ⋆ represents a block induced by symmetry in
a symmetric matrix. The operator He(A) indicates A + AT .
The symbol {⋅} indicates the mathematical expectation. The
fundamental probability space is described by (Ω, , {k}, Ψ).
For each k ≥ 0, k = 𝜎{𝜃t ; 0 ≤ t ≤ k} is the 𝜎-algebra gener-
ated by {𝜃t ; 0 ≤ t ≤ k}. Furthermore, 𝓁2(k ) is defined as the
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Hilbert space formed by k-measurable sequences {zk}
∞
k=0 for‖z‖2 ≜ [

∑∞

k=0 ‖z (k)‖2]1∕2
< ∞ ∀ z (k) ∈ ℝn

z .

2 PROBLEM FORMULATION

This paper considers a discrete-time non-homogeneous Markov
chain {𝜃k; k ≥ 0} with a finite state-space 𝕂 = {1, … , 𝜎}. The
mode transition probabilities are as follows

pi j (k) = Pr (𝜃k+1 = j | 𝜃k = i ), (1)

which satisfies pi j (k) ≥ 0 and
∑𝜎

j=1 pi j (k) = 1, ∀k ≥ 0. These
mode transition probabilities are all contained in the transition
probabilities matrix Ψ(k) = |pi j (k)|, i, j ∈ 𝕂.

2.1 Communication channel Markov model

The communication channels here considered are unreliable
and may feature communication failures. At the same time,
the presence of DoS attacks originating from malicious agents
is taken into account. In such cyber-attacks, the communica-
tion channels are jammed via the frequent injection of data,
which overloads the network. Both phenomena result in packet
losses between the elements connected via the network. In the
approached problem, these problems will manifest themselves
in the link between the system’s measured output and the fil-
ter. Concerning the DoS attacks, the following deterministic
assumption can be made.

Assumption 1. The attacker is energy-bounded [8, 9],
which denotes that the DoS attacks may last only up to N

consecutive time-instants.

The following assumption may be considered in the imple-
mentation of a mode-dependent scheme to better accommo-
date the particularities of the network model.

Assumption 2. The system can detect and differentiate
between packet losses due to transmission failures caused by
network unreliability, and due to DoS attacks.

Attack and transmission failure detection is a separate open
problem that is not the focus of this paper. However, some
techniques indicate that it is feasible [33, 34]. It is important to
highlight that when a robust filter is designed, Assumption 2 can
be disregarded.

By combining the deterministic assumption concerning DoS
attacks’ maximum duration with the stochastic nature with
which both transmission failures and the attacks may be mod-
eled, one may obtain a Markov chain that combines both
characteristics, allowing one to delineate a mode-dependent
filter that better adapts to a finite state-space.

Figure 1 illustrates the schematic for the proposed Markov
chain that models the network. The modes indicate three

FIGURE 1 Markov chain of the network considering transmission
failures and DoS attacks.

possible types of situation: (i) Successful transmission, (ii)
Transmission failure, and (iii) DoS attacks.

The modes transition and definition are further discussed in
the sequel

(i) The transmission is successful and the network is opera-
tional (𝜃k = 1). From this mode, the network may remain
operating regularly with probability p11; it may suffer a
transmission failure due to communication channel limita-
tions with a probability of p12 (mode 2); or it may suffer a
DoS attack (mode 3) with a probability of p13. This can be
seen in mode 1 of Figure 1.

(ii) Due to communication channel limitations, a transmission
failure happens (𝜃k = 2). In this mode, there is a probability
p22 of the limitations persisting and another failure taking
place; a probability p21 of the network returning to regu-
lar operation (mode 1); or the network may suffer a DoS
attack (mode 3) with a probability of p23. This can be seen
in mode 2 of Figure 1.

(iii) The communication channels suffer a DoS attack (𝜃k =
3, … ,N + 2), which start in mode 3. From this point on,
the attack may persist with a probability p34; the attack
may cease and the network return to regular operation
(mode 1) with probability p31; or the attack may cease,
but the transmission fails due to communication chan-
nels limitations (mode 2) with probability p32. The same
idea applies to 𝜃k = 4 up to 𝜃k = N + 1 which indicates
that the attack persists. If 𝜃k = N + 2 is reached, the
attack will cease because of the energy limitation of the
attacker. From there on, the only possible transitions are to
mode 1 or mode 2, with probabilities p(N+2)1, and p(N+2)2,
respectively.

It is worthy of note that the combination of (i) and (ii) rep-
resents a simplified Gilbert-Elliot model [21, 32], while the rest
of the modes stochastically model the attack whilst consider-
ing its deterministic energy constraint. The combination of (i),
(ii), and (iii) results in the proposed network model. Given the
N + 2 modes of the CPS network and its possible transitions,
the generic transition probability matrix Ψ ∈ ℝ(N+2)×(N+2) is
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given by:

Ψ =

⎡⎢⎢⎢⎢⎢⎢⎣

p11 p12 p13 0 … 0
p21 p22 p23 0 … 0
p31 p32 0 p34 … 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮

p(N+1)1 p(N+1)2 0 0 … p(N+1)(N+2)
p(N+2)1 p(N+2)2 0 0 … 0

⎤⎥⎥⎥⎥⎥⎥⎦
. (2)

Note that, for clarity’s sake, the same colors indicating the oper-
ation modes and their probabilities, as featured in the Markov
chain from Figure 1, are employed in matrix (2).

Concerning the state-space 𝕂 = {1, … , 𝜎} of the network,
𝜎 = N + 2 will be considered hereafter.

2.2 Time-varying transition probability
matrix

Obtaining the transition probabilities pi j is a very challeng-
ing task in the proposed network model, mainly when taking
into account the attack dynamics. As ways to circumvent
this obstacle and introduce flexibility and robustness to the
approach, uncertain probabilities with known bounds (0 ≤
pi j ≤ pi j (k) ≤ pi j ≤ 1) and unknown probabilities (represented

by ′?′) where (0 = pi j ≤ pi j (k) ≤ pi j ≤ 1) are modeled after

time-varying parameters. The technique used to model this fol-
lows the same lines as in [19, 20]. To do so, the principle

that
∑N+2

j=1 pi j (k) = 1 is put to use. Each of the m rows con-
taining uncertain or unknown probabilities is composed by a
distinct unit simplex dependent on a time-varying parameter
𝜉k,r = (𝜉k,r1, … , 𝜉k,rZr

). A generic unit simplex set is defined as
follows:

ΛZr
=
{
𝜉k,r ∈ ℝZr ∶

Zr∑
z=1

𝜉k,rz = 1; 𝜉k,rz ≥ 0, z = 1, … ,Zr

}
,

(3)
where Zr is the number of vertices. The transition probabil-
ity matrix Ψ(𝜉k ) is then written after a single domain, which
encompasses each of the m rows that display uncertain and
unknown probabilities. This is done by considering the multi-
simplex ΛZ = ΛZ1

×⋯ × ΛZm
, where Z = (Z1, … ,Zm ) and

by obtaining a Λ-homogeneous polynomial of the resulting
combination. More on that can be found in [20].

In the sequel, the formal definitions of a multi-simplex and a
Λ-homogeneous polynomial are presented.

Definition 1 [35]. A multi-simplex Λ is the Cartesian prod-
uct ΛZ1

×⋯ × ΛZm
of a finite number of simplexes, where ΛZ

has a dimension defined by the index Z = (Z1, … ,Zm ). The
given parameter 𝜉 of a simplex ΛZ consists on (𝜉1, 𝜉2, … , 𝜉m ),
depending on the number of vertices of ΛZ . Each 𝜉i is then
decomposed in (𝜉i1, 𝜉i2, … , 𝜉iZi

).

Definition 2 [20]. Given a multi-simplex Λ of dimension Z , a
polynomial S (𝜉 ) defined on ℝZ and taking values in a finite-
dimensional vector space is said Λ − homogeneous if, for any r0 ∈
{1, … ,m}, and for any given 𝜉Z ∈ ℝZr , r ∈ {1, … ,m}∖{r0}, the
partial application 𝜉Zr0

↦ P (𝜉 ) is a homogeneous polynomial.

3 MAIN RESULTS

3.1 System declaration

Consider the discrete-time uncertain model of a CPS:

⎧⎪⎪⎨⎪⎪⎩
x(k + 1) = A(𝛼)x(k) + B(𝛼)w(k),

z (k) = Cz (𝛼)x(k) + Dz (𝛼)w(k),

y(k) = Cy (𝛼)x(k) + Dy (𝛼)w(k),

(4)

where x(k) ∈ ℝnx is the state vector and w(k) ∈ ℝnw is an
exogenous disturbance, y(k) ∈ ℝny is the measured output of
the plant and z (k) ∈ ℝnz is the output that is going to be esti-
mated. The matrix A(𝛼) is assumed to be Schur stable. All the
matrices have compatible dimensions and may feature uncer-
tainties, belonging to a polytopic domain depending on the
time-invariant parameter 𝛼. They are written equivalently to the
generic matrix H (𝛼) where

H (𝛼) =
V∑
v=1

𝛼vHv , 𝛼 ∈ ΛV , (5)

where V is the number of vertices of the polytope. The vector
of time-invariant parameters 𝛼 belongs to the unit simplex ΛV ,
which is defined as

ΛV =

{
𝛼 ∈ ℝV ∶

V∑
v=1

𝛼v = 1; 𝛼v ≥ 0, v = 1, … ,V

}
.

(6)

The package dropouts due to network unreliability and DoS
attacks may render the measured output y(k) unreachable. To
circumvent this, in an approach similar to [18], it is assumed
that the last transmitted measurement ym (k) may be stored in a
memory in the filter by employing a Zero-Order Hold (ZOH),
being described by the following

ym (k) = 𝛿𝜃k
y(k) + (1 − 𝛿𝜃k

)ym (k − 1), (7)

where the binary variable 𝛿𝜃k
follows the defined network state-

space 𝕂 = {1, … ,N + 2}, and indicates if the transmission was
successful, or a failure/attack has prevented it,

𝛿𝜃k
=
{

1, if 𝜃k = 1,
0, otherwise.

(8)
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FIGURE 2 Schematic of the filtering system with Zero-Order Hold and
with an unreliable network susceptible to DoS Attacks. Where 𝛿i = 0 indicates
successful transmission and 𝛿i = 1 denotes the presence of DoS attacks or
transmission failures.

A full-order mode-dependent filter is then considered, which
is described by

 =

{
x f (k + 1) = A f𝜃k

x f (k) + B f𝜃k
ym (k),

z f (k) = C f𝜃k
x f (k) + D f𝜃k

ym (k),
(9)

where x f (k) ∈ ℝnx is the filter state vector, z f (k) ∈ ℝnz is the
filter output, and ym (k) ∈ ℝny is the measured output employed
by the filter, defined as in (7). To ease the notation, any mode-
dependent matrices will be written as A f𝜃k=i = A fi . The filter
is connected to the system (4) with an unreliable network
susceptible to attacks as illustrated by Figure 2.

The estimation error is e(k) = z (k) − z f (k). By combin-
ing (4) with (9) and (7), the augmented system that evaluates
the filtering error is described by the following Markov Jump
Linear System (MJLS).{

𝜂(k + 1) = Āi (𝛼)𝜂(k) + B̄i (𝛼)w(k),

e(k) = C̄ i (𝛼)𝜂(k) + D̄i (𝛼)w(k),
(10)

where 𝜂(k) =
[
x(k)T ym (k − 1)T x f (k)T

]T
∈ ℝn and

e(k) ∈ ℝnz , where n = 2nx + ny. The matrices have compatible
dimensions and are described in the sequel

Āi (𝛼) =
⎡⎢⎢⎣

A(𝛼) 0 0
𝛿iCy (𝛼) (1 − 𝛿i )Iny

0
𝛿iB fiCy (𝛼) (1 − 𝛿i )B fi A fi

⎤⎥⎥⎦ ,
B̄i (𝛼) =

⎡⎢⎢⎣
B(𝛼)

𝛿iDy (𝛼)
𝛿iB fiDy (𝛼)

⎤⎥⎥⎦ ,
C̄ i (𝛼) =

[
Cz (𝛼) − 𝛿iD fiCy (𝛼) −(1 − 𝛿i )D fi −C fi

]
,

D̄i (𝛼) = Dz (𝛼) − 𝛿iD fiDy (𝛼).

(11)

3.2 Analysis & design conditions

In this section, we present design conditions for a full-order
mode-dependent filter that aims to minimize the ∞ norm of
the estimation error system (10).

First, the definition of the ‖∞‖2 norm is presented,
following the same lines as in [18]:

Definition 3. If the exists the scalar 𝛾, then given an initial 𝜂(0)
and 𝜃0, (10) ‖∞‖2 norm is bounded by 𝛾 such that

∞∑
k=0

 (e(k)T e(k)) < 𝛾

∞∑
k=0

w(k)T w(k),

for all w(k) ∈ 𝓁
nw

2 [0,∞).

Since the network is modeled after a non-homogeneous
Markov chain with arbitrary variation of the transition prob-
abilities, the concept of exponential stability in the mean
square sense with conditioning of type I (ESMS-CI) [36, 37] is
employed. Furthermore, the bounded real lemma conditions for
the MJLS in question, as featured in [36, 37], are presented in the
sequel.

Lemma 1. The system (10) is ESMS-CI and displays a norm‖∞‖2
< 𝛾 if and only if there exist positive definite symmetric matrices

Wi (𝜉k, 𝛼) ∈ ℝn×n, such that

Φi (𝛼)T

[
W +

i 0
0 Inz

]
Φi (𝛼) −

[
Wi (𝜉k, 𝛼) 0

0 𝛾Inw

]
< 0, (12)

where

Φi (𝛼) =
[

Āi (𝛼) B̄i (𝛼)
C̄ i (𝛼) D̄i (𝛼)

]
, (13)

W +
i =

N+2∑
j=1

pi j (𝜉k )Wj (𝜉k+1, 𝛼), (14)

hold for i ∈ 𝕂 and for all (𝛼, 𝜉k, 𝜉k+1) ∈ ΛV × ΛZ × ΛZ , ∀k ≥ 0.

The following Lemma presents an equivalent condition to
Lemma 1.

Lemma 2. The system (10) is ESMS-CI and displays a norm‖∞‖2
< 𝛾 if and only if there exist positive definite symmetric matrices

Wi (𝜉k, 𝛼) ∈ ℝn×n, and W +
i as in (14), such that

⎡⎢⎢⎢⎣
Wi (𝜉k, 𝛼) Āi (𝛼)T W +

i 0 C̄ i (𝛼)
W +

i Āi (𝛼) W +
i W +

i B̄i (𝛼) 0
0 B̄i (𝛼)T W +

i Inw
D̄i (𝛼)T

C̄ i (𝛼) 0 D̄i (𝛼) 𝛾Inz

⎤⎥⎥⎥⎦ > 0, (15)

hold for i ∈ 𝕂 and for all (𝛼, 𝜉k, 𝜉k+1) ∈ ΛV × ΛZ × ΛZ , ∀k ≥ 0.
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Proof. Pre and post-multiplying (15) by diag(𝛾
1

2 In, 𝛾
1

2 In,

𝛾
1

2 Inw
, 𝛾

− 1

2 Inz
) yields

⎡⎢⎢⎢⎣
(𝛾Wi )(𝜉k, 𝛼) Āi (𝛼)T (𝛾W +

i ) 0 C̄ i (𝛼)
(𝛾W +

i )Āi (𝛼) (𝛾W +
i ) (𝛾W +

i )B̄i (𝛼) 0
0 B̄i (𝛼)T (𝛾W +

i ) 𝛾Inw
D̄i (𝛼)T

C̄ i (𝛼) 0 D̄i (𝛼) Inz

⎤⎥⎥⎥⎦ > 0.

Setting Wi (𝜉k, 𝛼) = (𝛾Wi (𝜉k, 𝛼)) and W +
i = (𝛾W +

i ) allows to
write

⎡⎢⎢⎢⎣
Wi (𝜉k, 𝛼) Āi (𝛼)T W +

i 0 C̄ i (𝛼)
W +

i Āi (𝛼) W +
i W +

i B̄i (𝛼) 0
0 B̄i (𝛼)T W +

i 𝛾Inw
D̄i (𝛼)T

C̄ i (𝛼) 0 D̄i (𝛼) Inz

⎤⎥⎥⎥⎦ > 0. (16)

By pre and post-multiplying (16) by T and its transpose, where

T =
⎡⎢⎢⎢⎣
In 0 0 0
0 0 Inw

0
0 0 0 Inz

0 In 0 0

⎤⎥⎥⎥⎦ .
The following is obtained

⎡⎢⎢⎢⎣
Wi (𝜉k, 𝛼) 0 C̄ i (𝛼)T Āi (𝛼)T W +

i
0 𝛾Inw

D̄i (𝛼)T B̄i (𝛼)T W +
i

C̄ i (𝛼) D̄i (𝛼) Inz
0

W +
i Āi (𝛼) W +

i B̄i 0 W +
i

⎤⎥⎥⎥⎦ > 0.

Through Schur’s complement, the following equivalent is found[
Wi (𝜉k, 𝛼) 0

0 𝛾Inw

]
− Φi (𝛼)T

[
W +

i 0
0 Inz

]
Φi (𝛼) > 0,

with Φi (𝛼) as in (13). Note that this is equivalent to condi-
tion (12), concluding the proof. □

With these defined, conditions to design a mode-dependent
filter based on the use of parameter-dependent slack variables
aiming to reduce the conservatism of the method, and inspired
by [38, 39], are presented in the sequel.

Theorem 1. If there exist symmetric matrices W11,i (𝜉k, 𝛼),
W33,i (𝜉k, 𝛼) ∈ ℝnx×nx , W22,i (𝜉k, 𝛼) ∈ ℝny×ny , and matrices

W12,i (𝜉k, 𝛼), K12(𝛼), K32(𝛼), E12(𝛼), E32(𝛼), K2,i ∈ ℝnx×ny ,

W13,i (𝜉k, 𝛼), K11(𝛼), K31(𝛼), E11(𝛼), E31(𝛼), K , K1,i ∈ ℝnx×nx ,

W23,i (𝜉k, 𝛼) ∈ ℝny×nx , K21(𝛼), E21(𝛼) ∈ ℝny×nx , K22(𝛼),
E22(𝛼) ∈ ℝny×ny , Q1(𝛼) ∈ ℝnw×nx , F1(𝛼) ∈ ℝnz×nx ,

Q2(𝛼) ∈ ℝnw×ny , C fi ∈ ℝnz×nx , F2(𝛼), D fi ∈ ℝnz×ny and

positive scalar 𝛾 such that,

min 𝛾, (17)

Wi (𝜉k, 𝛼) =
⎡⎢⎢⎣

W11,i (𝜉k, 𝛼) W12,i (𝜉k, 𝛼) W13,i (𝜉k, 𝛼)
W12,i (𝜉k, 𝛼)T W22,i (𝜉k, 𝛼) W23,i (𝜉k, 𝛼)
W13,i (𝜉k, 𝛼)T W23,i (𝜉k, 𝛼)T W33,i (𝜉k, 𝛼)

⎤⎥⎥⎦>0,

(18)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜙11 𝜙12 𝜙13 𝜙14 𝜙15 𝜙16 𝜙17 𝜙18
⋆ 𝜙22 𝜙23 𝜙24 𝜙25 𝜙26 𝜙27 𝜙28
⋆ ⋆ 𝜙33 𝜙34 𝜙35 𝜙36 𝜙37 𝜙38
⋆ ⋆ ⋆ 𝜙44 𝜙45 𝜙46 𝜙47 𝜙48
⋆ ⋆ ⋆ ⋆ 𝜙55 𝜙56 𝜙57 𝜙58
⋆ ⋆ ⋆ ⋆ ⋆ 𝜙66 𝜙67 𝜙68
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 𝜙77 𝜙78
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 𝜙88

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
> 0, (19)

where,

𝜙11 = W11,i (𝜉k, 𝛼) + He(K11(𝛼)A(𝛼) + 𝛿iK12(𝛼)Cy (𝛼)),

𝜙12 = W12,i (𝜉k, 𝛼) + (1 − 𝛿i )K12 + A(𝛼)T K21(𝛼)T

+ 𝛿iCy (𝛼)T K22(𝛼)T ,

𝜙13 = W13,i (𝜉k, 𝛼) + A(𝛼)T K31(𝛼)T + 𝛿iCy (𝛼)T K32(𝛼)T ,

𝜙14 = A(𝛼)T E11(𝛼)T − K11(𝛼) + 𝛿i (Cy (𝛼)T E12(𝛼)T

+Cy (𝛼)T K T
2,i ),

𝜙15 = A(𝛼)T E21(𝛼)T − K12(𝛼) + 𝛿iCy (𝛼)T E22(𝛼)T ,

𝜙16 = A(𝛼)T E31(𝛼)T + 𝛿i (Cy (𝛼)T E32(𝛼)T +Cy (𝛼)T K T
2,i ),

𝜙17 = A(𝛼)T Q1(𝛼)T + K11(𝛼)B(𝛼)

+ 𝛿i (K12(𝛼)Dy (𝛼) +Cy (𝛼)T Q2(𝛼)T ),

𝜙18 = A(𝛼)T F1(𝛼)T +Cz (𝛼)T + 𝛿i (Cy (𝛼)T F2(𝛼)T

−Cy (𝛼)T D f T
i ),

𝜙22 = W22,i (𝜉k, 𝛼) + (1 − 𝛿i )He(K22(𝛼)),

𝜙23 = W23,i (𝜉k, 𝛼) + (1 − 𝛿i )K32(𝛼)T ,

𝜙24 = (1 − 𝛿i )(E12(𝛼)T + K T
2,i ) − K21(𝛼),

𝜙25 = (1 − 𝛿i )E22(𝛼)T − K22(𝛼),

𝜙26 = (1 − 𝛿i )(E32(𝛼)T + K T
2,i ),

𝜙27 = (1 − 𝛿i )Q2(𝛼)T + 𝛿iK22(𝛼)Dy (𝛼) + K21(𝛼)B(𝛼),

𝜙28 = (1 − 𝛿i )(F2(𝛼)T − D fi ),

𝜙33 = W33,i (𝜉k, 𝛼),

𝜙34 = K T
1,i − K31(𝛼),

𝜙35 = −K32(𝛼),

𝜙36 = K T
1,i ,
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𝜙37 = K31(𝛼)B(𝛼) + 𝛿iK32(𝛼)Dy (𝛼),

𝜙38 = −C f T
i ,

𝜙44 = −W +
11,i − He(E11(𝛼)),

𝜙45 = −W +
12,i − E21(𝛼)T − E12(𝛼),

𝜙46 = −W +
13,i − E31(𝛼)T − K ,

𝜙47 = E11(𝛼)B(𝛼) − Q1(𝛼)T

+ 𝛿i (E12(𝛼)Dy (𝛼) + K2,iDy (𝛼)),

𝜙48 = −F1(𝛼)T ,

𝜙55 = −W +
22,i − He(E22(𝛼)),

𝜙56 = −W +
23,i − E32(𝛼)T ,

𝜙57 = E21(𝛼)B(𝛼) − Q2(𝛼)T + 𝛿iE22(𝛼)Dy (𝛼),

𝜙58 = −F2(𝛼)T ,

𝜙66 = −W +
33,1 − He(K ),

𝜙67 = E31(𝛼)B(𝛼) + 𝛿i (E32(𝛼)Dy (𝛼) + K2,iDy (𝛼)),

𝜙68 = 0nx×nz
,

𝜙77 = He(Q1(𝛼)B(𝛼) + 𝛿iQ2(𝛼)Dy (𝛼)) + Inw
,

𝜙78 = B(𝛼)T F1(𝛼)T + Dz (𝛼)T

+ 𝛿i (Dy (𝛼)T F2(𝛼)T − Dy (𝛼)T D f T
i ),

𝜙88 = 𝛾Inz
,

with,

𝛿i =
{

1, if i = 1,
0, otherwise,

and where W +
11,i , W +

12,i , W +
13,i , W +

22,i , W +
23,i , W +

33,i are written after the

generic matrix M+
i , with

M+
i =

N+2∑
j=1

pi j (𝜉k )M j (𝜉k+1, 𝛼), (20)

then for all i ∈ 𝕂, A fi = K−1K1,i , B fi = K−1K2,i , C fi and D fi are

the mode-dependent matrices of the filter (9) that assures that (10) has a

guaranteed cost ∞ bounded by
√
𝛾 when w ≠ 0 and is ESMS-CI for

all (𝛼, 𝜉k, 𝜉k+1) ∈ ΛV × ΛZ × ΛZ , ∀k ≥ 0.

Proof. First, in what regards W +
i as in (14), since it consists of

a linear combination, the structuring described in (18) can be
applied as it was presented in (20) without further problems.
Substituting K1,i = KA fi and K2,i = KB fi and by pre and post-

multiplying (19) by T and its transpose, where

T =
⎡⎢⎢⎣
In Āi (𝛼)T 0 0
0 B̄i (𝛼)T Inw

0
0 0 0 Inz

⎤⎥⎥⎦ . (21)

Then by considering Wi (𝜉k, 𝛼) as in (18) and W +
i as in (14), the

following is obtained

⎡⎢⎢⎣
i

[
C̄ i (𝛼)T

D̄i (𝛼)T

]
[
C̄ i (𝛼) D̄i (𝛼)

]
𝛾Inz

⎤⎥⎥⎦ > 0, (22)

where

i =
[
Wi (𝜉k, 𝛼) 0

0 Inw

]
−
[

Āi (𝛼)T

B̄i (𝛼)T

]
W +

i

[
Āi (𝛼) B̄i (𝛼)

]
.

Applying Schur’s complement results on

⎡⎢⎢⎢⎣
Wi (𝜉k, 𝛼) 0 C̄ i (𝛼)T Āi (𝛼)T W +

i

0 Inw
D̄i (𝛼)T B̄i (𝛼)T W +

i

C̄ i (𝛼) D̄i (𝛼) 𝛾Inz
0

W +
i Āi (𝛼) W +

i B̄i 0 W +
i

⎤⎥⎥⎥⎦ > 0. (23)

Pre- and post-multiplying (23) by  T and its transpose, where

 T =
⎡⎢⎢⎢⎣
In 0 0 0
0 0 0 In

0 Inw
0 0

0 0 Inz
0

⎤⎥⎥⎥⎦ ,
results in an equivalent condition to (15). This concludes the
proof. □

Assumption 2 can be disregarded in exchange for a more con-
servative approach that utilizes a mode-independent filter and
to reduce the dependency of the filter implementation on an
attack and transmission failure detection scheme. This can be
particularly useful as the filter would need neither to differen-
tiate between DoS attacks and transmission failure nor to track
how many consecutive time instants the network is under attack.
Conditions to design this mode-independent filter are presented
in the following Corollary.

Corollary 1. If there exist symmetric matrices W11,i (𝜉k, 𝛼),
W22,i (𝜉k, 𝛼) ∈ ℝny×ny , W33,i ∈ ℝnx×nx , and matrices W12,i (𝜉k, 𝛼),
K12, K32, E12, E32, K2 ∈ ℝnx×ny , W13,i (𝛼), K11(𝛼),
K13(𝛼), E11(𝛼), E13(𝛼), K , K1 ∈ ℝnx×nx , W23,i ∈ ℝny×nx ,

K21, E21 ∈ ℝny×nx , K22, E22 ∈ ℝny×ny , Q1 ∈ ℝnw×nx ,

F1(𝛼) ∈ ℝnz×nx , Q2(𝛼) ∈ ℝnw×ny , F2(𝛼), C f ∈ ℝnz×nx ,

D f ∈ ℝnz×ny and the positive scalar 𝛾, such that (18) and (19)

are feasible, then A f = K−1K1, B fi = K−1K2, C f and D f are the

mode-independent matrices of the filter (9) for A fi = A f , B fi = B f ,

C fi = C f , and D fi = D f that assures that (10) has a guaranteed

cost ∞ bounded by
√
𝛾 when w ≠ 0 and is ESMS-CI for all i ∈ 𝕂,

(𝛼, 𝜉k, 𝜉k+1) ∈ ΛV × ΛZ × ΛZ , and ∀k ≥ 0.
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Remark 1. The conditions presented in Theorem 1 are infinite
dimensional, given that they depend both on the simplex ΛV

and on the multi-simplex ΛZ . To obtain a finite set of LMIs to
recast the parameter-dependent conditions, as well as to manip-
ulate theΛ-homogeneous polynomial matrices, the Robust LMI
Parser (ROLMIP) [40] is employed.

Remark 2. The recast procedure employed by ROLMIP makes it
not necessary to know or estimate the parameters 𝜉k and 𝛼 since
only a combination of the known vertices is utilized to create the
finite set of LMIs. The reader is referred to [40] for more details.
Furthermore, the filter design can be performed offline, and it
does not depend on the parameters 𝜉k and 𝛼. These parame-
ters do not need to be known to implement the proposed filter,
being necessary only to know the currently active mode of the
network in the case of Theorem 1 and not even that in the
mode-independent case of Corollary 1.

Remark 3. The number of scalar decision variables employed
by Theorem 1 (NVT ) and Corollary 1 (NVC ) is defined by the
following

NVT = n2
x + (N + 2)(nx + ny )(nx + nz )

+V (nx + ny )(nw + 4nx + 2ny + nz )

+VZ (N + 2)(2n2
x + 2nxny + nx + 0.5n2

y + 0.5ny ) + 1,

NVC = n2
x + (nx + ny )(nx + nz )

+V (nx + ny )(nw + 4nx + 2ny + nz )

+VZ (N + 2)(2n2
x + 2nxny + nx + 0.5n2

y + 0.5ny ) + 1.

Note that employing the mode-dependent scheme of Theo-
rem 1 results in (N + 1)(nx + ny )(nx + nz ) more scalar variables
than the mode-independent case of Corollary 1

4 NUMERICAL EXPERIMENTS

In this section, numerical experiments will be conducted to
test the proposed mode-dependent filter design technique
considering an uncertain CPS. Scenarios considering the mode-
independent approach will also be featured. The network is
unreliable and modeled as described in Section 2.1. All tests
were conducted using the parsers YALMIP [41], ROLMIP [40],
and the solver MOSEK [42] combined with MATLAB 2016b.
In the numerical experiments, all the decision variables in The-
orem 1 are considered to have an affine dependence on the
uncertain parameter 𝛼.

4.1 Example 1

Consider the following discrete-time uncertain system, bor-
rowed from [43]

TABLE 1 ‖H∞‖ norm in function of different values of the probabilistic
parameter 𝜌.

Theorem 1 Corollary 1

𝝆

N
5 10 5 10

0.50 10.73 10.73 11.79 11.79

0.60 12.09 12.14 13.07 13.19

0.70 13.87 14.25 15.13 15.98

0.80 16.12 17.92 17.98 20.87

0.85 17.49 20.70 19.82 24.60

0.90 19.08 24.11 22.10 29.50

0.95 20.96 28.59 24.90 35.55

A =
[

0 −0.5
1 1 + 𝜇

]
, B =

[
−6 0
1 0

]
,

Cy =
[
−100 10

]
, Dy =

[
0 1

]
,

Cz =
[
1 0

]
, Dz =

[
0 0

]
,

where |𝜇| ≤ 0.45, resulting in V = 2 vertices, and whose
augmented system is as described in (10).

The Markovian network model, as shown by Figure 1 and
outlined by (2), is utilized to depict the system network behav-
ior between the plant and the filter, as illustrated by Figure 2.
Considering a maximum of N = 5 consecutive attacks, the uti-
lized transition probability matrix with uncertain and unknown
parameters is as follows

Ψ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.45 e d 0 0 0 0
0.5 ? ? 0 0 0 0

f 0.05 0 𝜌 0 0 0
f 0.05 0 0 𝜌 0 0
f 0.05 0 0 0 𝜌 0
f 0.05 0 0 0 0 𝜌

0.45 0.55 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (24)

where f = (1 − 0.05 − 𝜌), e ∈
[
0.05 0.15

]
and d ∈[

0.4 0.5
]
. 𝜌 is a parameter whose value defines if longer

attacks are more likely to take place. The closer the value of 𝜌 is
to 1, the higher the probability that each attack that initiates will
have a duration of N time instants.

First, Theorem 1 is utilized to obtain a ∞ mode-dependent
filter for different values of 𝜌. Corollary 1 was also employed to
obtain a mode-independent filter in the same layout. The sce-
nario with N = 5 maximum consecutive attacks was considered
as well as a scenario with N = 10, which can be easily obtained
by using the same values of rows 3 to 6 in (24), in accordance
to the positioning defined by (2). The norm value in function of
the value of 𝜌 is provided in Table 1.

Table 1 shows that the probability of longer attacks (related
to 𝜌) affects the ∞ more than considering a higher value of
N . The mode-dependent filter designed by Theorem 1 pro-
vided the best results. However, the mode-independent filter
of Corollary 1 also yielded a good performance, indicating it
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FIGURE 3 Markov chain for the Gilbert-Elliot model.

TABLE 2 ‖H∞‖ cost in function of different values of the probabilistic
parameter 𝜌 for the equivalent Gilbert-Elliot model.

𝝆 Theorem 1 Corollary 1

0.50 10.80 10.80

0.60 12.40 13.47

0.70 14.87 16.75

0.80 19.62 24.28

0.85 24.42 31.03

0.90 32.20 39.22

0.95 - -

to be a viable strategy, in addition to being easier to imple-
ment, and not depending on an attack and transmission failure
detection scheme.

In the sequel, a Gilbert-Elliot model (as depicted in Figure 3)
is considered to represent the network under transmission fail-
ures and DoS attacks. The first row of (24) is used to indicate
the successful transmission mode of the new adapted transition
probability matrix. By setting the lower bound according to the
second row of (24) and the upper bound according to rows 3 −
6, the probabilities regarding the mode representing the failed
transmissions of the Gilbert-Elliot equivalent are described. The
resulting transition probability matrix is as follows.

Ψ =
[

0.45 0.55[
0.5 (1 − 𝜌 − 0.05)

] [
0.5 (𝜌 + 0.05)

]] . (25)

Theorem 1 and Corollary 1 are employed to (respectively)
obtain mode-dependent and mode-independent filters consid-
ering (25). Table 2 indicates the norm values in function of the
value of 𝜌 considering the aforementioned two cases.

As seen in Table 2, the achieved costs were higher when
considering a Gilbert-Elliot equivalent to model the network,
mainly in higher values of 𝜌. Moreover, in 𝜌 = 0.95, no feasible
answers were obtained. This may indicate that the Gilbert-Elliot
model is more conservative than the network model proposed
here, as it could not include the deterministic assumption of
energy constraints. Another aspect that can be observed is that
even the mode-independent filter (i.e. the filter that did not
require a detection scheme that differentiates stochastic packet
loss to DoS attack) benefited from using the proposed network
model, given the less conservative costs obtained when com-

pared to the Gilbert-Elliot’s case with higher probabilities of
packet loss.

4.2 Example 2

Consider the following system borrowed from [44], which
consists of a discretized model with sample time 0.1 s of a
mechanical system composed of two masses and two strings.

A1 = A2 =
⎡⎢⎢⎢⎣

0.99 0 0.1 0
0.01 0.99 0 0.1
−0.19 0.10 0.94 0
0.19 −0.19 0.01 0.90

⎤⎥⎥⎥⎦ ,

B1 = B2 =
⎡⎢⎢⎢⎣

0
0

0.01
0

⎤⎥⎥⎥⎦ ,
Cy,1 =

[
0.3 0 0 0

]
,

Cy,2 =
[
1.7 0 0 0

]
,

Cz,1 = Cz,2 =
[
0 1 0 0

]
,

and Dy,1 = Dy,2 = Dz,1 = Dz,2 = 0.
Considering the augmented system as in (10), and employing

the same transition probability matrix (24), 𝜌 = 0.9 and N =
5 was considered to design a mode-dependent filter through
Theorem 1, which returned a guaranteed cost of

√
𝛾 = 0.0967.

1000 time-based simulations were performed, where a ran-
dom set of 𝛼 was selected at the beginning of each simulation,
and a new 𝜉k was employed at each time instant. Null
𝜂(0) were considered, as well as the interval k ∈ (0, 170)
and the exogenous disturbance w(k) = 10e−0.05k cos (0.1k).
The

√
𝛾 cost was calculated in each simulation by using√∑∞

k=0 e(k)2∕
∑∞

k=0 w(k)2. In the 1000 simulations, the aver-
age cost and its standard deviation were, respectively, 0.0354 and
0.0098. The mean response with the range of one standard devi-
ation of z f (k) (- - -) and the mean response of z (k) (—) in all
the simulations are depicted in Figure 4. Since z (k) is depen-
dent neither on the network nor on the system uncertainties,
there was no deviation in its value.

Furthermore, the frequency in which the network found itself
in each mode in all the simulations is depicted in Figure 5.

Even with successful transmissions in less than 30% of the
time, the filter was able to perform its function, mitigating the
effect of the exogenous disturbances. Moreover, the

√
𝛾 cost

evidenced in the simulations was lower than the value guaran-
teed by design, indicating that the filter performance may even
be less conservative.

In the sequel, a random simulation is selected to illustrate
the network operation under (24) more clearly. The filter out-
put z f (k) (- - -) and z (k) (—) are displayed in Figure 6, where
DoS attacks are depicted in red and transmission failures are
indicated in orange. The calculated

√
𝛾 cost was 0.0303. Finally,
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FIGURE 4 Mean z (k) (—) and mean z f (k) (- - -) with confidence
interval of 1 standard-deviation from the 1000 time-based simulations. A new
set of 𝛼 was randomly selected at each simulation and a new 𝜉k was randomly
selected at each time instant. The mode-dependent filter of Theorem 1 is
considered and 𝜂(0) is null.

FIGURE 5 Histogram with the frequency of occurrence of each mode in
the 1000 time-based simulations.

FIGURE 6 z (k) (—) and z f (k) (- - -) with the mode-dependent filter
considering a different randomly selected 𝜉k for each time instant.
𝛼 =

[
0.5234 0.4766

]
and 𝜂(0) is null. Transmission failures are depicted in

orange and DoS attacks in red.

FIGURE 7 y(k) (—) and ym (k) (- - -) considering a different randomly
selected 𝜉k for each time instant. 𝛼 =

[
0.5234 0.4766

]
and 𝜂(0) is null.

Transmission failures are depicted in orange and DoS attacks in red.

in Figure 7, the value of y(k) (—) and ym (k) (- - -) are plot-
ted, to better demonstrate how the packet losses influence the
measured output perceived by the filter

4.3 Example 3

To compare the proposed method with the existing literature,
consider the system matrices borrowed from [31]:

A =
[
−0.6579 −0.1699
0.6914 −0.0181

]
, B =

[
0.3040 0.1843
0.1653 0.5737

]
,

Cz =
[
−0.0560 0.0933

]
, Dz = 0,

Cy =
[
0.1829 0.0862

]
, Dy =

[
0.0165 −0.0122

]
.

We consider the same scenario presented in [31, Example 1].
The following transition probability matrix in the Gilbert-Elliot
framework describes the network behavior:

Ψ =
[

0.86 0.14
0.86 0.14

]
.

The following filtering matrices are reported in [31], which
yielded a

√
𝛾 = 0.0721.

A f1 =
[
−0.1694 0.0566
0.3700 −0.1754

]
, A f2 =

[
−0.1339 0.0700
0.3485 −0.1920

]
,

B f1 =
[
2.8507 −1.3603

]T
, B f2 =

[
3.1778 −1.3880

]T
,

C f1 =
[
0.0669 −0.0865

]
, C f2 =

[
0.0531 −0.0951

]
,

D f1 = D f2 = 0.

Theorem 1 was then employed to obtain a mode-dependent fil-
ter for the same system and transition probability matrix. Note
that all parameter dependencies were disregarded since both
the system and Ψ are precisely known. The resulting filter is
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described in the sequence, and returned a
√
𝛾 = 0.0546, show-

ing a better performance when compared to the technique of
[31].

A f1 =
[
−0.2003 0.0453
0.4918 −0.1126

]
, A f2 =

[
−0.6588 −0.1710
0.6907 −0.0184

]
,

B f1 =
[
2.5015 −1.0864

]T
, B f2 =

[
0.0023 −0.0007

]T
,

C f1 =
[
0.0561 −0.0934

]
, C f2 =

[
0.0559 −0.0933

]
,

D f1 = D f2 = 0.

Moreover, we must highlight that the proposed method can deal
with many more scenarios, considering uncertainties, network
failures, and different probabilities for different sizes of attacks,
topics which are not covered by the method in [31].

5 CONCLUSION

This work proposed a new MJLS model for the network to
tackle the problem of CPS ∞ filtering through an unreliable
network susceptible to DoS attacks. This network model, based
on a non-homogeneous Markov chain that combined the deter-
ministic energy limitation of the attacker with uncertain and
unknown probabilities, allowed to encompass different levels
of network reliability and longer or shorter consecutive attacks.
A mode-dependent dynamic filter design technique derived
from parameter-dependent linear matrix inequalities that guar-
antees an upper bound to the ∞ norm was presented. Future
research concerning the topic involves 2 or ∞∕2 filter
design and the observer-based control problem in a context of
DoS attacks and unreliable networks.

AUTHOR CONTRIBUTIONS

Pedro M. Oliveira: Conceptualization; investigation; valida-
tion; writing—original draft. Jonathan M. Palma: Conceptu-
alization; investigation; supervision; validation; writing—review
& editing. Márcio J. Lacerda: Conceptualization; funding
acquisition; investigation; supervision; validation; writing—
review & editing.

ACKNOWLEDGEMENTS

National Council for Scientific and Technological Development
- grant no 315538/2021-0. Agencia Nacional de Investi-
gación y Desarrollo - grant no 1241305. Fondo Nacional de
Desarrollo Científico y Tecnológico - grant no 11201049. Fun-
dação de Amparo à Pesquisa do Estado de Minas Gerais -
grant PAPG-13121.

CONFLICT OF INTEREST STATEMENT

The authors declare no conflict of interest.

DATA AVAILABILITY STATEMENT

Data sharing not applicable to this article as no datasets were
generated or analysed during the current study.

ORCID

Pedro M. Oliveira https://orcid.org/0000-0002-5035-7070
Jonathan M. Palma https://orcid.org/0000-0002-3924-1907
Márcio J. Lacerda https://orcid.org/0000-0001-8487-3535

REFERENCES

1. Rawat, D.B., Rodrigues, J.J., Stojmenovic, I.: Cyber-Physical Systems: From
Theory to Practice, vol. 588. CRC Press, Boca Raton, FL (2015)

2. Humayed, A., et al.: Cyber-physical systems security–a survey. IEEE
Internet Things J. 4(6), 1802–1831 (2017)

3. Li, J., et al.: Reliable control of cyber-physical systems under state attack:
An adaptive integral sliding-mode control approach. IET Control Theory
Appl. 18(1), 27–39 (2024)

4. Lin, H., Lam, J., Wang, Z.: Secure state estimation for systems under mixed
cyber-attacks: Security and performance analysis. Inf. Sci. 546, 943–960
(2021).

5. Lin, H., et al.: Secure LQG control for a quadrotor under false data
injection attacks. IET Control Theory Appl. 16(9), 925–934 (2022)

6. Peixoto, M.L.C., et al.: Event-triggered control for LPV systems under
hybrid cyberattacks. Journal of Control. Autom. Electr. Syst. 35, 252–265
(2024)

7. Long, M., Wu, C.-H., Hung, J.: Denial of service attacks on network-based
control systems: impact and mitigation. IEEE Trans. Ind. Inf. 1(2), 85–96
(2005)

8. Lai, S., et al.: Packet-based state feedback control under DoS attacks in
cyber-physical systems. IEEE Trans. Circuits Syst. II Exp. Briefs 66(8),
1421–1425 (2019)

9. Pessim, P.S.P., Lacerda, M.J.: State-feedback control for Cyber-physical
LPV systems under DoS attacks. IEEE Control Syst. Lett. 5(3), 1043–1048
(2021)

10. Pessim, P.S.P., et al.: Static output-feedback control for Cyber-physical LPV
systems under DoS attacks. Inf. Sci. 563, 241–255 (2021)

11. Zhang, H., et al.: Optimal dos attack scheduling in wireless networked
control system. IEEE Trans. Control Syst. Technol. 24(3), 843–852
(2016)

12. Li, Y., Tong, S.: Bumpless transfer distributed adaptive backstepping con-
trol of nonlinear multi-agent systems with circular filtering under DoS
attacks. Automatica 157, 111250 (2023)

13. Zhao, N., et al.: Observer-based event-triggered approach for stochastic
networked control systems under denial of service attacks. IEEE Trans.
Control Network Syst. 8(1), 158–167 (2020)

14. Wang, M., Xu, B.: Guaranteed cost control of cyber-physical systems with
packet dropouts under dos jamming attacks. Asian J. Control 22(4), 1659–
1669 (2020)

15. Su, L., Ye, D.: Observer-based output feedback ∞ control for cyber-
physical systems under randomly occurring packet dropout and periodic
DoS attacks. ISA Trans. 95, 58–67 (2019)

16. Schenato, L.: To zero or to hold control inputs with lossy links? IEEE
Trans. Autom. Control 54(5), 1093–1099 (2009)

17. Fioravanti, A.R., Gonçalves, A.P.C., Geromel, J.C.: Filter inputs with
Markovian lossy links: Zero or hold? In: Proceedings of the 9th
IEEE International Conference on Control and Automation (ICCA), pp.
656–661. IEEE, Piscataway (2011)

18. Zhang, W.-A., Yu, L., Song, H.: ∞ filtering of networked discrete-
time systems with random packet losses. Inf. Sci. 179(22), 3944–3955
(2009)

19. Gonçalves, A.P.C., Fioravanti, A.R., Geromel, J.C.: ∞ robust and net-
worked control of discrete-time MJLS through LMIs. J. Franklin Inst.
349(6), 2171–2181 (2012)

20. Morais, C.F., et al.: 2 control of discrete-time Markov jump linear sys-
tems with uncertain transition probability matrix: Improved linear matrix
inequality relaxations and multi-simplex modeling. IET Control Theory
Appl. 7, 1665–1674 (2013)

21. Serafini, A.R., et al.: Robust static output-feedback control for MJLS
with non-homogeneous Markov chains: A comparative study considering
a wireless sensor network with time-varying PER. Sensors 21(19), 6420
(2021)

https://orcid.org/0000-0002-5035-7070
https://orcid.org/0000-0002-5035-7070
https://orcid.org/0000-0002-3924-1907
https://orcid.org/0000-0002-3924-1907
https://orcid.org/0000-0001-8487-3535
https://orcid.org/0000-0001-8487-3535


12 OLIVEIRA ET AL.

22. Deng, C., Wen, C.: Distributed resilient observer-based fault-tolerant con-
trol for heterogeneous multiagent systems under actuator faults and DoS
attacks. IEEE Trans. Control Network Syst. 7(3), 1308–1318 (2020)

23. Ding, K., et al.: DoS attacks on remote state estimation with asymmetric
information. IEEE Trans. Control Network Syst. 6(2), 653–666 (2018)

24. Li, Y., et al.: SINR-based DoS attack on remote state estimation: A game-
theoretic approach. IEEE Trans. Control Network Syst. 4(3), 632–642
(2016)

25. Zhao, X.-Y., Chang, X.-H.: ∞ filtering for nonlinear discrete-time sin-
gular systems in encrypted state. Neural Process. Lett. 55(3), 2843–2866
(2023)

26. Cai, L.-J., Chang, X.-H.: Reduced-order filtering for discrete-time singular
systems under fading channels. Int. J. Syst. Sci. 54(1), 99–112 (2023)

27. Gu, Z., et al.: Event-triggered filter design for nonlinear cyber–physical
systems subject to deception attacks. ISA Trans. 104, 130–137 (2020)

28. Chen, W., et al.: Distributed resilient filtering for power systems subject to
denial-of-service attacks. IEEE Trans. Syst. Man. Cybern.: Systems 49(8),
1688–1697 (2019)

29. Tian, E., Wang, X., Peng, C.: Probabilistic-constrained distributed filtering
for a class of nonlinear stochastic systems subject to periodic DoS attacks.
IEEE Trans. Circuits Syst. I Regul. Pap. 67(12), 5369–5379 (2020)

30. Gu, Z., et al.: Event-triggered ∞ filtering for T–S fuzzy-model-based
nonlinear networked systems with multisensors against DoS attacks.
IEEE. Trans. Cybern. 52(6), 5311–5321 (2020)

31. Ma, R., et al.: Resilient filtering for cyber-physical systems under denial-of-
service attacks. Int. J. Robust Nonlinear Control 30(5), 1754–1769 (2020)

32. Gilbert, E.N.: Capacity of a burst-noise channel. Bell Syst. Tech. J. 39(5),
1253–1265 (1960)

33. Cetinkaya, A., Ishii, H., Hayakawa, T.: The effect of time-varying jamming
interference on networked stabilization. SIAM J. Control Optim. 56(3),
2398–2435 (2018)

34. Xu, W., et al.: The feasibility of launching and detecting jamming attacks
in wireless networks. In: Proceedings of the 6th ACM International Sym-
posium on Mobile ad hoc Networking and Computing, pp. 46–57. ACM,
New York (2005)

35. Lacerda, M.J., et al.: A new approach to handle additive and multiplicative
uncertainties in the measurement for ∞ LPV filtering. Int. J. Syst. Sci.
47(5), 1042–1053 (2016)

36. Aberkane, S.: Bounded real lemma for nonhomogeneous Markovian jump
linear systems. IEEE Trans. Autom. Control 58(3), 797–801 (2012)

37. Palma, J.M., Morais, C.F., Oliveira, R.C.L.F.: ∞ state-feedback gain-
scheduled control for MJLS with non-homogeneous Markov chains. In:
2018 Annual American Control Conference (ACC), pp. 5718–5723. IEEE,
Piscataway (2018)

38. Lacerda, M.J., Oliveira, R.C.L.F., Peres, P.L.D.: Robust 2 and ∞ fil-
ter design for uncertain linear systems via LMIs and polynomial matrices.
Signal Process. 91(5), 1115–1122 (2011)

39. Morais, C.F., et al.: 2 and ∞ filter design for polytopic continuous-time
Markov jump linear systems with uncertain transition rates. Int. J. Adapt.
Control Signal Process. 29(10), 1207–1223 (2015)

40. Agulhari, C.M., et al.: Algorithm 998: The Robust LMI Parser - A Toolbox
to Construct LMI Conditions for Uncertain Systems. ACM Trans. Math.
Software 45(3), 36:1–36:25 (2019)

41. Löfberg, J.: YALMIP: A toolbox for modeling and optimization in MAT-
LAB. In: Proceedings of the 2004 IEEE International Symposium on
Computer Aided Control Systems Design, pp. 284–289. IEEE, Piscataway
(2004). https://doi.org/10.1109/CACSD.2004.1393890

42. Andersen, E.D., Andersen, K.D.: The MOSEK interior point optimizer
for linear programming: An implementation of the homogeneous algo-
rithm. In: Frenk H. et al. (eds.) High Performance Optimization, Applied
Optimization, vol. 33, pp. 197–232. Springer, New York (2000)

43. Duan, Z.S., et al.: Robust 2 and ∞ filtering for uncertain linear systems.
Automatica 42(11), 1919–1926 (2006)

44. Lee, D.H., Joo, Y.H., Tak, M.H.: Periodically time-varying ∞ memory fil-
ter design for discrete-time LTI systems with polytopic uncertainty. IEEE
Trans. Autom. Control 59(5), 1380–1385 (2014)

How to cite this article: Oliveira, P.M., Palma, J.M.,
Lacerda, M.J.: Filter design for cyber-physical systems
against DoS attacks and unreliable networks: A
Markovian approach. IET Control Theory Appl. 1–12
(2024). https://doi.org/10.1049/cth2.12703

https://doi.org/10.1109/CACSD.2004.1393890
https://doi.org/10.1049/cth2.12703

	Filter design for cyber-physical systems against DoS attacks and unreliable networks: A Markovian approach
	Abstract
	1 | INTRODUCTION
	Notation

	2 | PROBLEM FORMULATION
	2.1 | Communication channel Markov model
	2.2 | Time-varying transition probability matrix

	3 | MAIN RESULTS
	3.1 | System declaration
	3.2 | Analysis & design conditions

	4 | NUMERICAL EXPERIMENTS
	4.1 | Example 1
	4.2 | Example 2
	4.3 | Example 3

	5 | CONCLUSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT

	ORCID
	REFERENCES


