
are shown in Figure 7. It is remarkable that throughout the

RFID bandwidth the measured return loss is less than 210 dB.

The measured resonant frequency is greater than the numeri-

cal model one indicating that the FR-4 relative permittivity of

the prototype is slightly less than 4.4. Simulations were per-

formed in order to match the resonant frequencies and indirectly

estimate the FR-4 permittivity. This procedure is adopted in

Ref. 17. The resonant frequency of the measurement and the

model one matched considering e
0
r 5 4.38. To match experimen-

tal curves with numerical simulations curves is a classical

method to calculate the electromagnetic properties [18].

The gain is measured at the point h 5 08 and u 5 08. Figure

8 shows the experimental data and results from numerical

model. It was performed simulations for e
0
r 5 4.38 (obtained

from Fig. 7) considering tan d 5 0.017 and tan d 5 0.027 (the

smallest and biggest values to loss tangent found in the Refs.

6,13,19,20 and in the manufactures datasheets). The gain meas-

ured has good accuracy taken into account the FR-4 uncertain-

ties in its loss tangent.

5. CONCLUSION

In this article, a systematic methodology is proposed to design a

low-cost MPA for RFID readers devices. The use of FR-4 mate-

rial as a substrate greatly decreases the cost of antenna manufac-

turing. Nevertheless, it introduces some difficulties in the

project. The low radiation efficiency was one of them, which is

reduced by increasing the thickness of the substrate. Difficulty

also arises due to the inaccuracy of the FR-4 electromagnetic

properties, but experimental results show that the return loss and

gain present required values. At last, the DE multiobjective opti-

mization algorithm is applied in order to obtain a good perform-

ance to antenna and respect the available volume to antenna

construction.
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ABSTRACT: An extremely wideband (EWB) microstrip antenna is pre-
sented that is designed with band rejection characteristics at C and

WLAN bands. This is achieved by embedding inside the inverted triangu-
lar shaped patch a pair of L-shaped slits that have been rotated by 6908

so that they are horizontal and downward facing, and topping the patch
with an arrow-shaped strip. The feedline to the patch also needs to be
backed with a trapezoid shaped ground-plane. The center frequency of the

notched bands can be easily controlled by altering the parameters of the
slits and arrow-shaped strip. The low-profile antenna essentially radiates

omni-directionally and has a measured impedance bandwidth of 18.9 GHz
(2.9–21.8 GHz) with a VSWR� 2, except at the two rejection bands. The
antenna has an average gain> 3 dBi. VC 2016 Wiley Periodicals, Inc.

Microwave Opt Technol Lett 58:908–911, 2016; View this article online

at wileyonlinelibrary.com. DOI 10.1002/mop.29694

Key words: microstrip antenna; ultra-wideband antenna; dual band

notch
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1. INTRODUCTION

Ultra-wideband (UWB) technology is increasingly becoming a

favored choice for short-range and high-speed (>100 Mbps)

indoor data communications ever since the Federal Communica-

tions Commission (FCC) released it for commercial applications

[1–5]. UWB systems require a single antenna that cover its

spectrum (3.1–10.6 GHz) and needs to be low-profile and suffi-

ciently small for system integration. Hence, printed monopole

antennas have attracted great interest for UWB systems as they

possess properties of wide impedance bandwidth, ease of fabri-

cation using conventional MIC technology and therefore eco-

nomic for mass production, and exhibit acceptable radiation

properties [2–5]. Moreover, UWB systems need to coexist with

other wireless narrowband standards such as WLAN (5.15–

5.35 GHz and 5.725–5.825 GHz), WiMAX (3.3–3.6 GHz), and

other C-band (3.7–4.2 GHz) systems, which are likely to inter-

fere with the operation of UWB systems as they transmit at a

significantly higher power level than UWB systems. Various

band-notched UWB antennas have been recently proposed using

different techniques but their main deficiency is relatively large

physical size that prevents system miniaturization [3–5].

In this letter, a novel low-profile printed monopole UWB

antenna is presented with dual notched band characteristics to

mitigate interfering signals. By modifying the key parameters of

the slits and arrow-shaped strip enables easy control of the cen-

ter frequency of the notched bands. Compared to some previ-

ously reported antennas it is more compact in size and has a

wide impedance bandwidth.

2. ANTENNA STRUCTURE

The configuration of the proposed antenna and optimized

dimensions are shown in Figure 1.

The antenna occupies a volume of 30 3 30 3 1.6 mm3. The

50-X feedline is an effective impedance transformer having a

width and length of 2.8 mm and 12.9 mm, respectively, and is

connected to an SMA connector. Figure 2 shows the steps

employed to implement the proposed antenna structure. As

shown in Figure 2, to achieve a wider impedance bandwidth it

is necessary to truncate the ground-plane into the shape of a tra-

pezoid resting on a rectangular base, and cutting a semi-circular

notch in the ground-plane near the neck of the patch. To obtain

notched band function at the WLAN band a pair of L-shaped

slits are created at the two sides of the inverted triangular patch,

which have been rotated by 6908 so that they are horizontal

and downward facing. The patch is topped with an arrow-

shaped strip to create a notched band at C-band.

The simulated and measured VSWR of the proposed antenna

is shown in Figure 3. Inset in the graph is a photograph of the

fabricated prototype antenna. The measured VSWR of the

antenna stretches from 2.90 to 21.80 GHz for a VSWR� 2,

which was measured using Agilent 8722ES VNA. The antenna

performance exceeds the UWB defined by FCC. The two

notched bands between 3.65 and 4.38 GHz and 4.93 and

6.06 GHz effectively reject signals at C and WLAN bands,

respectively. There is excellent agreement between the simulated

and measured results.

Figure 2 VSWR of various evolution steps taken to realize the final-

ized design. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com]

Figure 1 Geometry of the proposed antenna (optimized dimensions in

millimeter). [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com]

Figure 3 Numerical and experimental VSWR curve of the fabricated

antenna prototype. Inset is the photograph of the proposed antenna.

[Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com]

TABLE 1 Parametric Study on WS1 and WS3

Parameter Magnitude (mm)

1st Notch

BW (GHz)

2nd Notch

BW (GHz)

WS1 3 (optimized) 3.65–4.38 4.93–6.06

3.5 3.56–4.31 5.03–6.26

4.5 3.43–4.08 5.15–6.69

WS3 1 (optimized) 3.65–4.38 4.93–6.06

1.2 3.79–4.63 5.02–6.06

1.4 3.85–4.81 5.06–6.06
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3. SIMULATION AND MEASUREMENT RESULTS

Parametric analysis was done using Ansoft High Frequency

Structure Simulator (HFSS ver.11) to gain a deeper insight of

the antenna structure. It reveals that the center frequency of the

dual notched bands can be simply altered by changing the

dimensions of the L-shaped slits and arrow-shaped, in particular

primarily parameters WS1 and WS3.

As is evident in Table 1, by increasing WS1 from 3 mm to

4.5 mm, with other parameters kept fixed, the first notched band

moves toward lower frequencies while the second band shifts

toward higher frequencies. The WS3 parameter mainly determines

the frequency location of the first notched band. Upon increasing

WS3 with other parameters remaining unchanged, the first notched

band moves to higher frequencies, but the position of the second

notched band remains essentially insensitive to the variation of

WS3.

The current distributions at 4.1 and 5.5 GHz of the optimized

antenna design is shown in Figure 4. At 4.1 GHz, current is

mainly distributed at the interior edge of the arrow-shaped strip

with length Lnotch15 18 mm, which is nearly 0.25k at 4.1 GHz.

Similarly at 5.5 GHz, current mainly exists along the L-shaped

slit with length Lnotch25 14 mm, which is 0.25k at 5.5 GHz.

Because of the symmetrical feature of the two rejection band (C

and WLAN bands) structures the radiation fields generated by

the oppositely directed currents cancel each other out at the

notch frequencies.

The measured gain response, shown in Figure 5, exhibits two

sharp attenuations characteristics centered at 4.25 GHz and

5.55 GHz, showing the effectiveness of the notched bands. The

radiation patterns of the proposed antenna are shown in Figure 6

at 3.1 GHz, 4.6 GHz, and 9.2 GHz in H-plane (xz-plane) and

Figure 6 Radiation patterns of the proposed antenna. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com]

TABLE 2 Comparison of the Proposed UWB Antenna with
Previously Reported UWB Antennas

Antenna

Antenna

Area (mm2) Notched-Band

Impedance

Bandwidth (%)

Ref. 3 52 3 40 Dual 114.2

Ref. 4 38 3 35 Dual 128.7

Ref. 5 34 3 30 Dual 124.3

Ref. 6 33 3 29.6 Dual 105.3

Ref. 7 34 3 34 Dual 120

Proposed 30 3 30 Dual 153.0

Figure 4 Current distributions over the antenna at the notch frequen-

cies. [Color figure can be viewed in the online issue, which is available

at wileyonlinelibrary.com]

Figure 5 The measured and simulated antenna gain versus frequency.

[Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com]
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E-plane (yz-plane). The fabricated antenna exhibits an omni-

directional radiation pattern across the UWB frequency band in

H-plane and approximately omni-direction in the E-plane.

Table 2 compares the characteristics of the proposed antenna

with other UWB antennas with dual notched bands. The table

shows the proposed antenna is physically smaller (30 3

30 mm2) and has largest impedance bandwidth of 153%.

4. CONCLUSION

A novel printed monopole antenna is described with

extremely wideband characteristics for UWB applications.

The antenna includes notched-band to reject interfering sig-

nals in C and WLAN bands, which are realized by embed-

ding a pair of horizontally rotated L-shaped slits within an

inverted triangular shaped patch that is topped with an

arrow-shaped strip. The antenna has an extremely wide

impedance bandwidth of 153% and radiates essentially omni-

directionally in both E- and H-planes. The average gain of

the antenna> 3 dBi and the center frequency of the notched

bands can be easily controlled by altering the parameters of

the slits and arrow-shaped strip. Compared to other UWB

antennas with dual notched bands the proposed antenna is

more compact.
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ABSTRACT: A microstrip bandpass filter (BPF) based on centre-

coupled cylindrical microstrip ring resonator (MRR) for wireless appli-
cation in ISM frequency band of applications is presented. The proposed

is a combination of two identical bended half-wavelength (k/2) MRR,
and centre-coupled by an end-coupled transmission feed line. The equiv-
alent circuits of the MRR, the end-coupled feed, and the effects of vari-

ous spacing between them were investigated based on the even- and
odd-mode theory. The mechanism of resonant mode splitting is investi-
gated with the possibility of enhancing the coupling effect, while sup-

pressing spurious resonances in order to achieve sharp rejection skirts.
Findings indicates that the proposed equivalent circuit are influenced by

capacitances due to resonator – transmission feed line gap (d), the gap
between each ring (g), the feed line gap (i), the radius of MRR (r), and
the resonator head (m). The operation mechanism of the structure was

investigated first theoretically to the intent of design a circuit model,
then using numerical 3D EM based on finite integration technique (FIT)

method, and finally, through 2D equivalent circuit modeller. The derived
equivalent circuit model have been validated both by analytical formulae
and numerical simulations. VC 2016 Wiley Periodicals, Inc. Microwave

Opt Technol Lett 58:911–918, 2016; View this article online at

wileyonlinelibrary.com. DOI 10.1002/mop.29693

Key words: bandpass filter; centred-coupled; even- and odd-mode

theory; microstrip ring resonator

1. INTRODUCTION

Over the years, MRR and its derivatives have been one of the

burning issues in the RF, microwave and millimetre-wave sys-

tems community not only as microwave bandpass filters (BPF),

couplers, mixers, oscillators, antennas, but even in applications

involving complex permittivity measurements. One notable

attractiveness of the MRRs that stand them out is first and fore-

most the increasing need for the optimum usage of space in

modern microwave circuits. Low cost, sharp rejection skirts,

high Q, compact size, light weight, microstrip modes, and low

radiation loss for wireless communication are extra additives. In

recent times, its material characterization attributes with ready

applications in dielectric spectroscopy, has made them favorites

for imaging biological samples [1,2], for soil moisture measure-

ments [3], for cancer treatment [4], and this time not only for

material measurement but also for circuit properties [5]. In Ref.

6, Liu & Pu introduced a concept of microwave chemistry using

a novel MRR to measure complex permittivity of liquid. Subse-

quently, they are now common technology for filters design

[7–16], antenna [16–19], and finally in oscillator circuits [20].

Seeing the proposed MRRs consist of sub-wavelength linear

impedance sections of about quarter wavelength length, interac-

tion between these components has been difficult to analyses in

order to achieve accurate characterization as an ideal sub-

wavelength linear impedance section is not realizable at lower

frequencies because of the associated parasitic reactance due to

fringing fields particularly by virtue of their electrical and physi-

cal lengths on assumption that: (1) the voltage across the linear

impedance sections is constant at any point in the line, (2) the

current just before and beyond the section are equal, which

inadvertently leads to an infinitely short impedance sections

[21].

However, these assumptions could not be ascertain as the

geometric dimensions of these impedance sections result in a

phase shift. Nonetheless, the effect of increasing the length of
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