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Abstract: This paper introduces an innovative antenna design utilizing a cylindrical dielectric
Luneburg lens tailored for 60 GHz Internet of Things (IoT) applications. To optimize V-band commu-
nications, the permittivity of the dielectric medium is strategically adjusted by precisely manipulating
the physical porosity. In IoT scenarios, employing a microstrip dipole antenna with an emission
pattern resembling cos10 enhances beam illumination within the waveguide, thereby improving
communication and sensing capabilities. The refractive index gradient of the Luneburg lens is
modified by manipulating the material’s porosity using air holes, prioritizing signal accuracy and
reliability. Fabricated with polyimide using 3D printing, the proposed antenna features a slim pro-
file ideal for IoT applications with space constraints, such as smart homes and unmanned aerial
vehicles. Its innovative design is underscored by selective laser sintering (SLS), offering scalable
and cost-effective production. Measured results demonstrate the antenna’s exceptional performance,
surpassing IoT deployment standards. This pioneering approach to designing multibeam Luneburg
lens antennas, leveraging 3D printing’s porosity control for millimeter-wave applications, represents
a significant advancement in antenna technology with scanning ability between −67 and 67 degrees.
It paves the way for enhanced IoT infrastructure characterized by advanced sensing capabilities and
improved connectivity.

Keywords: antenna; millimeter wave; IoT; Luneburg lens antenna; planar antenna; 3D printing

1. Introduction

The rapid growth of Internet of Things (IoT) [1] applications has significantly
increased the need for communication systems operating at millimeter-wave frequen-
cies [2,3]. This surge highlights the importance of developing advanced antenna tech-
nologies, among which gradient refractive index (GRIN) lenses emerge as a promis-
ing option [1–29]. Among these, the multibeam modified planar Luneburg lens an-
tenna (MMP-LLA) stands out for its ability to produce higher gains and more efficient
multibeam radiation patterns [2,3]. This paper explores the transformative potential
of porous plastic material in the fabrication of MMP-LLAs for millimeter-wave IoT
communication systems [1]. The choice of materials in antenna systems is paramount,
particularly in the millimeter-wave band, where performance and viability are criti-
cal [2,3]. Porous polymers emerge as ideal candidates due to their lightweight nature,
cost-effectiveness, and customizable porosity [3,4,9–11], enabling manipulation of di-
electric properties to achieve desired outcomes such as reduced signal attenuation and
precise impedance matching [3]. The fabrication process of MMP-LLAs begins with
the design phase [3], leveraging electromagnetic simulation tools and advancements
in lens design techniques [3–11]. Here, 3D printing technology plays a pivotal role [3],
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enabling the accurate realization of intricate shapes and seamless integration of porous
plastic material [3,5–17]. Traditional fabrication methods faced scalability and practi-
cality limitations, which 3D printing has overcome by enabling rapid prototyping and
iterative optimization [11]. Various optimization methods [2,3], including genetic algo-
rithms [11], topology optimization [5,7,18,22], and parametric modeling [3,18–23], have
been explored to enhance lens designs compatible with 3D printing materials [3,4,17–30].
The integration of porous polymer compounds into antenna systems presents new
opportunities [3,4], offering low dielectric constant implementation possibilities and
tunable porosity ideal for millimeter-wave applications [3] (Chps.1, 2), [4]. The incorpo-
ration of porous plastic material into MMP-LLA manufacturing signifies a significant
advancement in millimeter-wave antenna technology [17–30]. Leveraging 3D printing
technologies, the objective is to establish efficient communication platforms tailored
to IoT demands [1,3], emphasizing spatial efficiency [3,4], operational efficacy [17–30],
and performance enhancement [4] (Chps.3, 5). This innovation sets a new standard for
high-resolution wireless streaming solutions in home entertainment, meeting market
demands for high-performance wireless networks [1].

This study pioneers the use of porous plastic material for MMP-LLAs [3] (Ch.3),
enhancing millimeter-wave communication capabilities. Introducing a groundbreaking
approach to antenna design for 60 GHz IoT applications, featuring a cylindrical dielec-
tric Luneburg lens [3,10,11,15,18], the antenna achieves significant performance improve-
ments within the 56–68 GHz spectrum. By modulating the refractive index through an
innovative virtual permittivity technique [3,17–30], adjusting the porosity to modify the
permittivity [3,10,11], the design optimizes radiation distribution with multiple dipole
antennas [3,4,6,31–33]. Strategies explored include manipulating plastic’s inherent permit-
tivity [17–30], designing an efficient beam launcher [3,4,31–34], and assessing the feasibility
of employing 3D-printed materials [3,4,17–30]. Notably, the design enables efficient passive
beam steering with enhanced gain by redirecting beams across six distinct angles using a
linear switching technique with six dipole arrays [3].

This document outlines the layout, focusing on explaining how a perforated lens func-
tions as a passive device for alternating beams [3], design and prototyping processes [3,4,15,18],
3D printing’s role [17–30], and a thorough examination of operational efficacy, including
fabrication outcomes and measurement methods. This document outlines its structure,
beginning with the explanation of a perforated lens’s functionality and the importance
of perforated cylindrical parts for refining the lens’s refractive index. It then details the
design and prototyping processes of the Luneburg lens [17–30]. The subsequent section
highlights 3D printing’s role in material selection and porosity manipulation to achieve
desired permittivity levels. Section 4 discusses establishing effective permittivity using
air holes for designing dielectric lenses [17–30]. Section 5 provides an analysis of feed
mechanisms [4] and addresses troubleshooting strategies. Section 6 presents a detailed
deconstruction of the process for designing a perforated lens, complete with a block dia-
gram to illustrate the workflow. Section 7 then provides an in-depth analysis of the lens’s
performance in practice. This encompasses an evaluation of the manufacturing results, the
techniques used for measurement, the obstacles encountered in focusing, and the influence
of dipole beam launchers on the radiation patterns and gain at various points along the
frequency spectrum.

2. Three-Dimensional Printing Processes, and Materials

Three-dimensional printing [35,36], a transformative aspect of additive manufacturing,
intricately crafts objects layer by layer [3,35], establishing a new paradigm in material
construction. This process integrates a spectrum of methodologies [3], such as layered
manufacturing, direct digital manufacturing (DDM) [35], and rapid prototyping [35],
celebrated for its economic efficiency, adaptability, and user-centric design. It stands out
for its compatibility with a vast array of materials [35,36], including both metals and
non-metals, presenting an eco-friendlier option compared to traditional manufacturing
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techniques. At the core of this process lies the precise preparation and slicing of digital
models, subsequently realized through cutting-edge material jetting technologies [36].
Although layer precision can reach up to 100 µm, this figure may fluctuate based on the
chosen equipment and technology, significantly impacting the resolution, patterning, and
ultimately, the quality of the final output [35]. Figure 1 delineates the categorization of
DDM techniques as per the ASTM F2792 standard from the American Society for Testing
and Materials [35]. It visually represents the hypothetical average printing resolutions
across various DDM methods [35], demonstrating the spectrum of resolution capabilities
characteristic of each method [35]. Notably, lower numerical values denote a higher level
of achievable precision, accentuating the diverse technological landscape within DDM
practices [35]. This underscores the imperative of selecting a fitting technique to meet
specific accuracy demands [35,36]. Within this framework, technologies are classified based
on operational principles including material extrusion, vat polymerization, powder bed
fusion, and several others. Among these, selective laser sintering (SLS) is highlighted for
its pivotal role across diverse sectors such as aerospace and healthcare [35]. SLS is distinct
for its ability to fuse powdered materials into solid, robust structures without the need
for support constructs, thereby economizing on material and simplifying post-processing
activities [36].
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Figure 1. A bar chart comparison across a range of direct digital manufacturing (DDM) methods,
classified according to ASTM F2792 standards, focusing on their hypothetical average printing
resolutions. This visualization highlights the variance in resolution capabilities inherent to each
method, where lower numerical values signify a greater level of precision achievable. The chart
serves as a clear representation of the technological diversity within DDM processes, emphasizing
the importance of choosing the right method to meet specific precision requirements [35].

SLS technology is lauded for producing parts with unparalleled strength and
longevity, rivaling those manufactured through traditional means [35–37]. It proves
invaluable in generating functional prototypes, end-use products, and customized
or low-volume items. The adaptability of SLS to materials like nylon augments part
functionality, enhancing thermal and chemical resistance, as well as flexibility. More-
over, SLS encourages efficient batch production, nesting multiple parts within the
build volume to drastically cut down lead times and production costs for bespoke and
medium-volume manufacturing [35–37]. The environmentally sustainable aspect of SLS,
facilitated by the recyclability of unused powder, positions it as a forward-looking solu-
tion in additive manufacturing, marrying design ingenuity with substantial material
properties [35–37].
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In pursuit of sophisticated manufacturing solutions for mm wave small cells ne-
cessitating elevated precision, SLS 3D printing emerged as the superior method [35–37].
Sculpteo [37], distinguished through thorough research, leads in providing SLS technol-
ogy, offering an extensive array of powder-based materials such as plastic, nylon, and
alumide [36,37]. Primarily utilizing PA 2200 or PA12 alongside various polyamide alter-
natives [37], Sculpteo caters to a comprehensive range of manufacturing requisites [37].
Figure 2 shows a comparative analysis of SLS materials [3], revealing variations in layer
thickness and precision among different materials [37]. It demonstrates the high degree of
precision achievable with SLS additive layering techniques and underscores the technol-
ogy’s versatility to meet diverse engineering and design challenges. This is particularly
relevant for applications like Luneburg lenses [3,17–30], which require a specific permittiv-
ity range [19], thus bypassing the need for inherently high-permittivity materials.
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Figure 2. A side-by-side comparison of selective laser sintering (SLS) material characteristics, em-
phasizing the diversity in layer thickness and accuracy. (a) The average layer thickness for each
material in micrometers (µm), underlining the precision achievable through SLS additive layering
techniques [3,35–37]; (b) the minimum accuracy attainable for these materials, expressed as a percent-
age, to illustrate the dimensional fidelity possible in the final products. This comparative analysis
reveals the broad spectrum of properties and performance of SLS materials, from the environmentally
friendly Ultrasint® PA11 to the robust and durable Ultrasint® PA6 MF, showcasing the technology’s
versatility for a wide array of engineering and design projects [37].

Figure 3 exemplifies four prevalent porous cell designs employed to create virtual
permittivity environments [3,4,7,17–30,38–43], enabling the manipulation of material ratios
to attain specific permittivity levels. These designs facilitate the precise control of permit-
tivity [3,4], allowing for the crafting of materials with tailored electromagnetic properties
for various applications [17–30]. Techniques highlighted include the integration of air-hole
cavities and the embedding of spherical metal cells, showcasing the potential of SLS tech-
nology to deliver customized, sustainable manufacturing solutions that herald a new era
in additive manufacturing. In the development of this prototype [3], certain particulars
like the device number, code, or brand identifiers typically noted during manufacturing
were not recorded. To ensure the highest accuracy and resolution, third-party verification
was employed using ‘sculepto’ applications [37]. The fabrication facilities of Sculpteo, a
company based in France, were chosen, solicited, and compensated to precisely realize the
envisioned design of the device.
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This method is made possible by the incorporation of varied spherical volumes into the
host medium for the purpose of a graded refractive index [3,17–30]. Furthermore, as shown
in Figure 3c, the desired graded medium range can be increased by using components
from the host medium that have a larger dielectric constant in liquid or powder form. As
shown in Figure 3d, this technique allows for dynamic control over virtual permittivity
and can be applied to various material parts of the element for materials used in additive
manufacturing [3], leading to creative designs of GRIN lenses [17–30].

The broad range of refractive indices that can be achieved is made possible by the
varied selection of material alternatives [3], which includes PLA [37], polyimide [37],
and ABS-M30 [37]. This variety makes gradient index (GRIN) structures with porous
frameworks easier to construct [17–30], as shown in Figure 4a. Determining the dielectric
coefficient of the surround environment within the intended frequency range is essential
for the proper management and development of porous structures [3]. To accomplish this,
the spacer of a V-band waveguide measurement setup was filled with a 3.7 × 1.8 × 5 mm3

polyimide sample [37], which made it possible to extract expected material characteristics
before building the GRIN structure, as shown in Figure 4b. The proposed design lever-
ages the selective laser sintering (SLS) manufacturing process to create porous cylindrical
Luneburg lens cells, as shown in Figure 5a,b [37]. Utilizing an SLS printer, a prototype of
the gradient refractive index (GRIN) structure is crafted, employing Sculepto’s 3D printing
materials and device services [37].
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cal holes, we can achieve the targeted virtual permittivity for our lens’s profile. (b) Material charac-
terization process for polyimide samples with varied porosity levels 𝜂. This figure illustrates the 
procedure of conducting measurements in a V-band waveguide setup to derive essential material 
properties of polyimide samples. Here, 𝜂 represents the porosity level in percentage, indicating the 
percentage reduction in material density compared to its original state. The aim is to determine the 
effective permittivity adjusted by this percentage reduction in density. Key material properties as-
sessed include (a) the relative permittivity 𝜀 and (b) the loss tangent tang𝛿), both of which are crit-
ical for understanding the material’s performance across the targeted frequency range [3]. 
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Figure 4. (a) The essential porous geometric configurations defining the subzones of our lens cells. The
directional arrows indicate the method by which permittivity is varied from its natural state to that of
air permittivity. This approach involves reducing the material in the cells and employing cylindrical
cavities filled with air. By adjusting the radius, height, or both of these air-filled cylindrical holes,
we can achieve the targeted virtual permittivity for our lens’s profile. (b) Material characterization
process for polyimide samples with varied porosity levels η. This figure illustrates the procedure of
conducting measurements in a V-band waveguide setup to derive essential material properties of
polyimide samples. Here, η represents the porosity level in percentage, indicating the percentage
reduction in material density compared to its original state. The aim is to determine the effective
permittivity adjusted by this percentage reduction in density. Key material properties assessed
include (a) the relative permittivity ε and (b) the loss tangent (tanδ), both of which are critical for
understanding the material’s performance across the targeted frequency range [3].
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Figure 5. Analysis of the variations in the effective permittivity of polyimide in relation to the radius
of air-hole porous cells (ra) is depicted as follows: (a) in Cell 1, showcasing changes with different
cylindrical cell radii; (b) in Cell 2, highlighting differences due to variations in cylindrical cell height
or d as thickness, [3] (Ch4. pp. 78–91).

3. Luneburg Lens Design Concept and Mechanism

Recent advancements in additive manufacturing have led to a growing interest in tai-
loring gradient index (GRIN) distributions for designing focusing lenses [17–30]. Through
adjustments in material porosity and the host medium [3], it becomes feasible to create lens
devices with both uniform and variable electrical characteristics [17–30]. In GRIN lens appli-
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cations [3,17–30], the incorporation of porous structures into homogeneous media presents
a viable alternative to traditional dielectric lenses [19]. This approach enables control over
permittivity across the entire lens [19], eliminating the dependence on a dielectric border
medium [17–30]. Research on GRIN lens designs, including the Fresnel lens [3,4,10,23,34],
the half-Maxwell fisheye lens (HMFE) [32,33], and the Luneburg lens [17–30], focuses on
the careful modification of permittivity effects in two- or three-dimensional arrangements
to satisfy lens focusing requirements [17–30]. One of the best examples of gradient index
(GRIN) optical devices is the Luneburg lens [17–30]. This device demonstrates how material
porosity may be used in the microwave and millimeter-wave spectrum to improve antenna
gain and shape beams [7,38–45]. The refractive indices of both devices decrease radially
and conform to a range of 1 ≤ nr ≤

√
2 [19]. Equation (1) provides a full description of

this radial distribution and is cited in [17–30] in the literature. Illustrated in Figure 6 is the
radial variation in the refractive index of the Luneburg lens, demonstrating a gradient that
transitions from a value of 1.4 at its core to 1 at its outer edge.

n(r) =
√

εrµr =

√
2 −

(
r/Rluneburgh

)2
,
(

0 ≤ nr ≤ Rluneburgh

)
(1)
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Drawing from the principle of a spherically symmetric gradient index (GRIN) medium,
the Luneburg lens operates within the realm of optics [19]. Various wave launchers [3], in-
cluding coaxial-to-waveguide launchers and horn antennas, serve as primary light sources
for this lens [7,17–30,38–45]. Nonetheless, their application might result in bulkier antenna
designs. Recent studies have investigated innovative pairings of wave launchers [3], like
microstrip lines, with metamaterial cell configurations in a hybrid approach [11], aiming to
manage the permittivity of individual subzones effectively [11].

The design of GRIN devices is steered by the effective medium theory [3], which
employs a porosity-based method for controlling permittivity [17–30]. To ensure accurate
analysis, this method relies on periodic porous unit cells, typically with diameters ap-
proximately one-tenth of the wavelength [3,17–30]. Designers adeptly adjust the dielectric
permittivity by integrating theoretical understanding with experimental data [3,17]. The
distinct subsections [19], as depicted in Figure 4, that make up GRIN (gradient index)
devices, can be adjusted independently [3].

We introduce an enhanced version of the porous GRIN lens antenna [3], which inte-
grates polyimide nylon-based plastic into a parallel-plate waveguide (k) [6,31–33], along
with a planar feeding platform meticulously tailored for optimal performance in 60 GHz
applications [3,6]. These plastic lenses adopt a cylindrical design with a diameter of 13λ0
and are illuminated by a dipole antenna generating a cos10-like pattern [3,4], serving as the
lens illuminator [3]. Consisting of three essential elements—3D-printed Luneburg porous
lenses [1–30], dipole antennas [3], and parallel-plate waveguides—the dielectric lens an-
tenna attains precise control over permittivity within a uniform medium via an innovative
air-hole-based method [3,38,39]. After conducting a comprehensive analytical evaluation
of lens parameters [3], we utilize additive manufacturing technology (ADM) [35–37], in
combination with selective laser sintering (SLS) [37], for the fabrication process [35]. The
homogeneous lenses derived from polyimide plastic exhibits a relative permittivity (ε) of
3.57 and a loss tangent (tanδ) of 0.06 at 60 GHz [35]. Based on the technical specifications
provided by EOS Gmbh [36] and Sculpteo [37], the suggested permittivity value at a fre-
quency of 10 GHz is documented to be 3.8 [37]. By conducting a thorough examination [3],
the ideal diameter for the air holes has been pinpointed to ensure the attainment of the
intended artificial permittivity throughout the uniform medium [3,34]. This precision is
applied to every discretized surface of the Luneburg lens [3], which is discretized into
square cells [17–30], as illustrated in Figure 6c.

4. Designing Virtual Permittivity Using an Air-Hole Porous Approach

Moreover, the 3D graded index lenses have been fine-tuned for in-depth full-wave
numerical electromagnetic simulations specifically tailored for 60 GHz operation [3]. By
leveraging effective medium theory, it is possible to ascertain the permittivity of these
subzones by adjusting the porosity of the host medium [17–30]. As such, we advocate for
the utilization of a Luneburg lens model that incorporates this methodology. Each lens
subzone profile [3], as shown in Figure 6c, is divided into cells measuring 3 × 3 × 3 mm3,
constructed from plastic with cylindrical air pores [3,38,39]. These layers are meticulously
arranged to form virtual permittivity configurations within cubic cells [3,39], resulting in
lenses composed of dielectric cells on a uniform platform that ensure operation over a
broad frequency band.

The air-hole porous technique [3,34,38,39] was implemented on a polyimide con-
centric circular area utilizing selective laser sintering [3–37]. This modeling technique
was aimed to fulfill the Luneburg permittivity requirements of the layers at 60 GHz
through the utilization of porous cells, as depicted in Figure 5 [3]. An in-depth anal-
ysis of aperture dimensions within the HFSS setup [44] was crucial to the completion
of the envisaged zonal system, which uses perforated dielectric cells [3], as shown in
Figure 5. The radius of the air hole [34], crafted using polyimide [37], was chosen from
the electro-optical systems’ [36] catalog of materials to achieve the targeted refractive
index (nr) [36], as illustrated in Figure 2. One thick and one thin cell were employed to
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regulate permittivity [3]. The diameter of the holes in both dielectric materials remained
consistent at 4.2 mm, as shown in Figure 5a,b, with “r” representing the hole radius and
“d” denoting cell thickness [3].

By adjusting the radius “r” of each air hole, we can determine the necessary dimensions
for the virtual permittivity cell [3]. Increasing the radius of the perforations in this design
can lower the permittivity closer to that of air relative to the host medium (εAir). The
determined air hole radius is used to model each zone according to Equation (1). Polyimide
plastic has an inherent permittivity εPI = 3.6. Variations outside the specified cell range
are indicated by changes in the radial diameters (ra) and thickness (d) of the air holes to
encompass various potential permittivities, as illustrated in Figures 5 and 6.

Figure 4 demonstrates a control strategy for 3D cells capable of generating two types
of cells through manipulation of material parameters to achieve different heights or radii.
With known information groups regarding permittivity fluctuations and the radius of
perforated holes (e.g., G1: (x0 = εAir, y0 = ζ = 0); G2: (x1 = εm, y1 = ζ = 1)), hole
dimension can be calculated via linear interpolation [3]. The effective permittivities of the
air-hole cells are approximated using linear interpolation based on volume reduction, as
described by Equation (2), where εPI represents the host medium permittivity. Figure 5
illustrate the suggested sizes and heights of air-permeable cells compared to the effective
permittivity outcomes [3].

εr = εPI ·ζPI + εAir·(1 − ζPI), (2)

The intrinsic permittivity of novel materials plays a crucial role in determining the
final cell radius [3]. Hence, it is necessary to carry out a distinct examination for each di-
electric material. The findings indicate non-linear fluctuations in the discrepancies between
radius and thickness compared to the desired permittivity [3,17–25]. Further investiga-
tion using full-wave simulations is required to enhance the accuracy of the anticipated
virtual permittivity [3,4]. Ansys HFSS complete simulations are employed in a related
experiment to accurately estimate cell values [44]. The HFSS simulated waveguide con-
figuration includes all dielectric porous cells of discrete radii [3,44], with perfect magnetic
conductor (PMC) [44] and perfect electric conductor (PEC) boundaries maintaining pe-
riodic conditions [44]. Wave-ports are assigned to the right and left sides based on the
specified configurations for these cells [44]. The effective permittivity of scattering param-
eters is determined using the conventional retrieval approach involving Kramer–Kronig
relations [45].

It is important to note that the results comparing air-hole radius to permittivity for
filling ratio and simulated setup effects in Figure 4 are not directly comparable. To address
this issue, we employ a mathematical fitting approach to improve the accuracy of deter-
mining radii, as shown in Figure 5b [3,4,40]. This method involves applying mathematical
models to either experimental or simulated data to gain a deeper understanding of the
fundamental linkages [3,4]. By employing linear fitting [40], we can fine-tune parameters to
ensure that the estimated outcomes closely align with the results obtained from simulated
full-wave analysis [17–30]. This stage is essential for ensuring the precision and reliability
of our modeling endeavors [3].

The results produced by mathematical fitting (EF) are compared and analyzed with
those from full-wave simulations. This comparison is crucial for validating our models and
ensuring alignment between them before realizing the whole lens and antenna structure,
as shown in Figure 7 [3].
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Wy = 9.8 mm, and Wp = 2.2 mm [3] (Ch4. pp. 78–80).

5. Dielectric Lens Design and Feed

The implementation of the planar dipole feed is meticulously orchestrated to align
precisely with the symmetrical geometric arrangement of the focal points on the perfo-
rated Luneburg lens’s surface. This strategic placement is crucial for ensuring a high
degree of matching with similar techniques, as evidenced in References [3,6]. Previous
methods employed to feed lens antennas have included a variety of approaches [4], such
as patch antennas, open waveguide antennas [7,40], horn antennas [17–30], and Vivaldi
antennas [6,31–33]. However, a consistent challenge identified across all types of lens an-
tennas [19]—from those designed using conventional equations to those utilizing gradient
refractive index (GRIN) lenses [17–30]—has been the lens feed itself, according to our
research. Traditionally, lens antenna designs have predominantly utilized standard illumi-
nators, as previously mentioned across various studies [17–30,46]. In our previous work [4],
we conducted an analysis to determine the peak efficiency achievable with Fresnel-type
GRIN lenses. Our findings revealed that efficiency and gain could be enhanced by adopting
a two-pronged approach [4]. The initial strategy employs illuminators with high gain
that emit symmetrical patterns, facilitating a uniformly distributed feed throughout the
lens diagram, which stands in contrast to the traditional use of rectangular horns or open
waveguides as illuminators [4,46]. The subsequent approach focuses on minimizing er-
rors that may occur during the design phase and in the discretization process of the lens
diaphragm [4,46,47].

Pursuing the first objective, we experimented with symmetric e- and h-plane horn
antennas in [4], which proved conducive to reaching our goal. For microstrip-type anten-
nas [11], this aim is attainable with traveling wave antennas [3,6], among which the Vivaldi
antenna [6] and the dipole are notable examples [3]. Following the insights gained from
our study [4], we meticulously designed the feed illumination to produce a cos10 pattern,
which is optimal for symmetrically feeding the lens surface [4]. This approach to design not
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only mitigates mismatch issues within individual subzones but also substantially improves
the overall performance of the lens structures. By fine-tuning the feed to accommodate
the lens’s specific contours and refractive variations [46], we have managed to address the
pivotal problem of feeding the lens antenna [3,4,46], enhancing both the efficacy and gain
of the system [46]. The result is a more homogeneous energy distribution across the lens [4],
yielding a robust, high-performance antenna suited for demanding applications and the
electromagnetic spectrum [46].

5.1. Multibeam Mechanism

Within the field of antenna design theory, especially in the context of utilizing Luneb-
urg lenses [17–30], traditional guidelines strongly emphasize the accurate alignment of
feed sources with the lens’s focal points, ensuring they directly contact the lens surface for
multibeam performance or beamforming applications. This strategic placement is essential
for optimal beam configuration and even distribution of light.

This facilitates the emission of highly directed beams crucial for highly focused
millimeter-wave lens antenna applications [3,4,6]. In theoretical antenna design, espe-
cially when incorporating Luneburg lenses [17–30], established design norms traditionally
recommend positioning feed sources precisely at the lens’s focal points to achieve di-
rect interface with its surface. Such alignment is pivotal for optimal beam shaping and
light distribution.

However, adherence to this guideline is frequently contested by design practicalities
and the specialized requirements of distinct applications, necessitating the consideration of
alternative setups. A notable deviation from standard practices involves the deployment of
feed sources [4], for instance, dipole antennas, at a remove from the lens surface, positioned
in orientations divergent from the norm, like horizontally, as shown in Figure 8. This shift
from conventional alignment induces a defocusing effect but concurrently unlocks oppor-
tunities for novel design strategies that may present unique advantages under specific
circumstances [3,47]. In navigating the intricacies and prospects presented by feed sources
not directly engaging the lens, a series of strategies has been meticulously evaluated, each
distinguished by its inherent strengths and challenges. Given the elaborate design possibil-
ities of Luneburg lenses [17–30], which span both two-dimensional and three-dimensional
constructs, a detailed approach to these unconventional designs is requisite [17–30]. Poten-
tial strategies unfold, including the fine-tuning of the lens’s refractive index gradient [3],
the crafting of hybrid lens architectures to facilitate a seamless permittivity transition from
the lens’s exterior to its core [11], and the calibration of beam configuration for defocused
illumination [47].

Nevertheless, the practical deployment of these strategies faces limitations rooted in
the properties of materials and the specifics of manufacturing methodologies as reported
in the literature [17–30,46]. The needed permittivity variability for such design alterations
is frequently unattainable with materials characterized by inherently high permittivity [47],
even with the advent of sophisticated manufacturing processes like selective laser sintering
(SLS) 3D printing [35–37]. This constraint is particularly pronounced in high-frequency
ventures [3], typified by operations at critical 60 GHz frequencies [4], where porosity
techniques—especially those employing a layered approach [35–37]—and the orientation
of incident waves [3] (Chp.1), alongside cost considerations and the required dimensions
for porosity cells [4,17–30], might not yield the anticipated design objectives.

Our research thus pivots towards two innovative techniques [3]. To facilitate a defo-
cused illumination method [46], we introduce a more directive lighting element, such as
a cos10 pattern dipole antenna, as discussed earlier. In situations where the feed source
does not directly touch the lens surface and is not positioned at the standard focal points,
illustrated in Figure 8, utilizing intricate beam patterns such as cos10 markedly enhances
the performance of the system.
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This methodology aims to harmonize the feed pattern with the Luneburg lens’s
altered focusing dynamics [17–30], thus optimizing operational performance. The choice of
a cos10 pattern, more focused and directive compared to simpler configurations, promotes
consistent illumination over the lens surface, effectively bridging the physical gap between
the feed and the lens [46]. This approach reduces sidelobes and amplifies the primary
lobe’s intensity, enhancing both the directionality and focal precision of the emitted beam.
Our analysis indicates that realigning the feed radiation pattern with the lens’s modified
refractive index significantly boosts the efficiency of the antenna system. This continuing
exploration into the impact of varying feed dimensions and strategies, coupled with the
application of Cheng analysis for lens profile recalibration [47], accentuates the potential
of a defocused feeding approach to support multibeam functionalities [46,47]. Through
meticulous research and design, we demonstrate that the dual adjustment of beam patterns
to intricate configurations, such as cos10, alongside lens profile alterations, can successfully
implement a multibeam defocused feeding strategy, marking a significant advancement in
antenna technology.

Upon mathematical analysis, we discovered a deviation of about 2 mm in the phase
center of the perforated Luneburg lens from the intended lens boundary. Consequently,
we adjusted the lens design to create a defocused Luneburg lens, albeit at the expense of
aperture phase errors necessitating further refinement. This error is estimated as either
a reduction in gain or inaccuracies in tilting angles [3], as discussed in the report by
Cheng [47]. These errors are expected to amplify with an increase in the distance between
the feed and the lens surface. Conversely, employing materials with a wide range of
variable permittivity, which facilitates a smooth transition of the beam from the surface
to the center of the lens and back, can mitigate these errors. To mitigate errors associated
with the refractive index distribution, our approach utilizes the perforated Luneburg lens’s
refraction function [17–30], integrating a permeable lens to enhance precision in analyzing
and adjusting the refractive index profile. The essence of our strategy to minimize errors
centers on two pivotal elements: adjusting the profile of the lens and utilizing a specialized
beam type for illumination [3], with the rationale for these choices being thoroughly
explained [3]. By adjusting the lens’s refractive properties [47], it becomes feasible to
accurately position an external point source relative to the lens type and structure. This
configuration allows for the generation of a flat wavefront on the side of the lens opposite
to the point source [47], facilitated by the tailored refractive index profile of the perforated
lens [3,4,17–30].
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5.2. Optimizing Lens Design for Enhanced Beam Launching and Aberration Reduction

Cheng’s investigation into the defocusing mechanism is designed to improve beam
launching efficiency and diminish the aberrations introduced by the lens’s structural
design through a series of targeted adjustments and comprehensive analyses [3,47]. This
summarized approach enables the tailoring of lens designs to meet the demands of specific
fields, particularly for Internet of Things (IoT) technologies [1]. A pivotal element of
this optimization process is the detailed study of the lens’s performance, leveraging the
refractive function n = eω (nr, ζ), with ω as a parameter established by Equation (3)
and enriched by the insights from Cheng’s research [3,47]. This method underscores our
commitment to precisely fine-tuning the refractive index gradient of the lens [47].

The objective centers on enhancing beam launching functions while simultaneously
addressing and reducing the lens’s inherent aberrations. This ambition is pursued through
a regimen of design iterations and exhaustive assessments. Each iteration is aimed at
progressively refining the lens’s refractive index gradient, ensuring it more accurately
aligns with our beam launching goals and effectively reduces the lens-induced aberrations.
By adopting this structured and analytical approach, we aim to significantly improve
the lens’s operational efficiency and accuracy, thereby validating the effectiveness of our
strategies in rectifying errors related to the refractive index distribution.

This the potential strategy include the fine-tuning of the lens’s refractive index gradient.

ω(nr, ζ) =
1
π

∫ 1

nr

Sin−1
(

t
ζ

)
√

t2 − (nr)2
dt (3)

In this analysis, the parameter ζ denotes the normalized distance from the point of
interest to the center of the lens [3,47]. Under ideal conditions where the lens is adequately
stimulated, the distance of the point source from the lens surface precisely equals ζ = 1.
This optimal distance facilitates efficient interaction between electromagnetic waves emitted
from the point source and the lens surface, ensuring precise beam focusing.

By substituting ζ = 1 into Equation (3) [3,47], we derive the conventional refraction
function. This function delineates the relationship between the refractive index of a lens
and the distance of a point source from its center [11], offering crucial insights into the lens’s
behavior and aiding further study and development. The normalized distance ζ can deviate
to ζ = 1 + ε by altering the point source’s position beyond the surface of the perforated
Luneburg lens, where ε represents a positive value [47]. Departure from the ideal distance
of ζ = 1 results in a displacement of the point source from the lens center [17–30], impacting
the lens’s behavior and subsequent electromagnetic wave propagation [3]. To accommodate
variations in distance, we incorporate the unique distance function into the earlier equation,
resulting in a customized refraction function tailored for the modified perforated lens [47].
This revised refraction function accurately portrays the altered relationship between the
point source and the lens due to the displacement, providing crucial insights into the lens’s
performance across various operational scenarios. Equation (3) serves as a vital tool for
analyzing and optimizing the modified lens’s performance in real-world situations [47].

By integrating the detailed version of Equation (3) into the exponential refraction
function n = eω(nr, ζ) [3], we derive Equation (4), which represents the refraction function
designed for the defocused perforated lens with modified zone permittivity [47]. This
adjusted refraction function considers the deviation of the point source from the optimal
position on the lens surface [3,47], incorporating the altered distance parameter ζ and the
associated refractive index variations.

Figure 9 provides a visual representation of the defocused refraction function, show-
casing how refractive values vary across different regions of the lens and beyond the beam
launchers for varying ζ values [3,47]. Within the subzones of the lens, there is a consistent
trend of lower refractive values, indicating a corresponding decrease in effective permittiv-
ity within these areas [3,47]. This finding corroborates previous research suggesting that
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adopting a lower virtual permittivity could enhance the overall design of this dielectric
GRIN device [3,17–30,47]. Furthermore, Equation (4) offers a comprehensive analysis of
the refractive properties specific to a defocused perforated lens by revisiting and refining
Cheng’s initial calculations [46,47]. This analytical approach plays a pivotal role in refining
and optimizing the proposed device, as it takes into consideration the altered permittivity
distribution within the perforated structure [3]. By integrating Equation (4) into the design
process, engineers can gain deeper insights into how changes in permittivity impact the
device’s performance and make informed decisions to achieve optimal results.

n = [1 +

√
1 −

(
nr
ζ

)2
]

0.5

exp

− 1
π

∫ ζ

1

sin−1
(

t
ζ

)
√
(t2 − (nr)2
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In this designed prototype, the Luneburg lens depicted in Figures 6 and 7 with a
radius R = 30λ0 is tailored for millimeter-wave operation at 60 GHz with the refractive
index profile explained in Figure 6c. Using a porous cylindrical structure as its foundational
element, it facilitates the adjustment of polyimide’s intrinsic permittivity to meet the
requirements of the perforated Luneburg lens subzones. Positioned between two parallel
aluminum plates measuring 130 mm × 190 mm, the dielectric Luneburg lens operates at
a frequency of 60 GHz, functioning in quasi-TEM mode within our experimental setup.
Rohacell foam [48] spacers in Figure 7a with a permittivity of 1 at 60 GHz are employed to
fill the gap between the aluminum plates, allowing for the dipole antenna to be suspended
in air.

The design of the perforated Luneburg lens partitions the lens into four concentric
cylindrical zones, each equipped with porous elements corresponding to specific virtual
refractive indices. These indices (n) can range from 1.01 to 1.4 to adhere to the lens’s
design principles. In the experimental setup depicted in Figures 10 and 11, a microstrip-fed
dipole antenna is utilized [3,4], featuring radiation patterns resembling cos10 functions.
This antenna is positioned between aluminum plates alongside the dielectric perforated
Luneburg lens, creating a device adept at accurately directing electromagnetic radiation
within the millimeter-wave frequency range.
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Figure 10. Photographs of the fully constructed perforated Luneburg lens antenna consist of
two aluminum metal layers with eight holes for plastic screws for fixation, two layers of Roha-
cell foam for separation, a view of the perforated lens, and five dipoles printed on Rogers 5880 [49],
connected to Southwest Microwave connectors [50] with Rohacell foams [48]. (Ch4. pp. 78–80), [4].

Electronics 2024, 13, x FOR PEER REVIEW 15 of 23 
 

 

principles. In the experimental setup depicted in Figures 10 and 11, a microstrip-fed di-
pole antenna is utilized [3,4], featuring radiation patterns resembling cos10 functions. This 
antenna is positioned between aluminum plates alongside the dielectric perforated Lune-
burg lens, creating a device adept at accurately directing electromagnetic radiation within 
the millimeter-wave frequency range. 

 
Figure 10. Photographs of the fully constructed perforated Luneburg lens antenna consist of two 
aluminum metal layers with eight holes for plastic screws for fixation, two layers of Rohacell foam 
for separation, a view of the perforated lens, and five dipoles printed on Rogers 5880 [49], connected 
to Southwest Microwave connectors [50] with Rohacell foams [48]. (Ch4. pp. 78–80), [4]. 

 
Figure 11. (a) Specifications of the proposed beam launcher: Lx = 24 mm; Ly = 24 mm; Wx = 7 mm; 
Wy = 9.8 mm; Wp = 2.2 mm. (b) Image of the manufactured antenna on 5880 [49] substrate with 
Figure 11. (a) Specifications of the proposed beam launcher: Lx = 24 mm; Ly = 24 mm; Wx = 7 mm;
Wy = 9.8 mm; Wp = 2.2 mm. (b) Image of the manufactured antenna on 5880 [49] substrate with
southwest connectors [50]. (c) Experimental radiation patterns for the beam launcher without the
perforated lens and parallel plates compared to the proposed feed radiation, along with the cos10-like
pattern at 60 GHz [3] (Ch4. pp. 78–80), [4].

The dipole antenna as an illuminator of the proposed lens surface is intricately crafted
on a Rogers 5880 dielectric substrate of 0.5 mm thickness [49]. The dipole and ground com-
ponents were precisely etched onto the Rogers substrate to optimize antenna characteristics
and generate a radiation pattern resembling a cos10-like beam, crucial for accurate signal
transmission. Securely nestled between two pieces of Rohacell foam [48], the dipole antenna
is aligned with the lens surface to ensure stability and enhance beam emission efficacy.
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6. Step-by-Step Breakdown of the Perforated Lens Design Process

The outlined process encompasses a series of meticulous steps aimed at the design
and fabrication of a porous Luneburg multibeam lens. These steps are condensed into a
concise block diagram depicted in Figure 12, comprising eight sequential stages essential
for realizing the porous 3D lens.
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Figure 12. Shows a meticulously crafted sequence of steps for the design and fabrication of a porous
Luneburg multibeam lens. Summarized in a compact block diagram, these eight sequential stages
are pivotal for creating the porous 3D lens. The steps include: Step 01: General virtual permittivity;
Step 02: Design and simulation of cellular structure; Step 03: Evaluation and documentation of
cell dimensions; Step 04: Graphical representation of lens diaphragm; Step 05: Design process
and discretization; Step 06: Beam launcher selection and integration; Step 07: Simulation and
finalization of lens design; Step 08: Thorough analysis of the final prototype. (Template reference:
PresentationGo.com—Free templates).
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Initially, Step 1 initiates the generation of virtual permittivity, a pivotal phase crucial
for establishing a refractive index gradient essential in governing the behavior of incoming
or incidence waves. Step 2 follows, meticulously crafting the cellular structure utilizing
advanced simulation tools to ensure precise alignment with incoming waves. In Step 3,
cell dimensions are thoroughly evaluated to attain the desired refractive index profile.
This involves leveraging porous 3D printing materials, enabling the control of permittivity
between air and the natural permittivity of the host medium, while meticulously cataloging
critical specifications for future reference. Continuing onward, Step 4 involves the graph-
ical representation of the Luneburg lens diaphragm to visually apprehend its geometric
dimensions, a crucial aspect illustrated in Figure 6. Step 5 delves into the discretization
of the lens profile and the analysis of distinct layers, each filled with metamaterial cells,
in the fabrication of the final GRIN lens, as demonstrated in Figure 6. Subsequently, Step
6 encompasses the selection and integration of an efficient beam launcher, while Step 7
entails simulations aimed at optimizing directivity and enhancing radiation patterns. Step 8
encompasses necessary adjustments based on the outcomes of simulations, culminating in
a thorough analysis of the final prototype to ensure it meets electromagnetic requirements.
Finally, the creation and inspection of a prototype employing printed circuit board (PCB)
technology are undertaken to guarantee meticulous quality control. Throughout this metic-
ulous process, close attention is devoted to every detail to ensure optimal functionality
of the multibeam modified planar Luneburg lens antenna with porous plastic material in
transmitting signals.

Within the context of our analysis, it is evident that the block diagram represents
a foundational framework common across all examined instances, albeit with minor
enhancements or the delineation of additional steps to enhance calculation precision
and accuracy. However, as highlighted in Section 4, the most significant innovation or
specialized focus of this study centers on selecting the appropriate beam illumination
and mechanisms for defocusing. In reviewing the methodology of these steps, it becomes
apparent that many studies do not venture into designing new cell structures or calcu-
lating permittivity anew [17–30]; rather, they rely on previously established material
properties and/or frequencies, and then proceed directly to the implementation phase,
as noted in the literature [17–30].

A prominent challenge in the development of GRIN lens mechanisms is the creation of
a 3D prototype for simulation purposes, whether using HFSS or other software tools, which
poses a considerable hurdle. Our proposed design incorporates over 700 cells, making it
a simpler endeavor compared to other documented Luneburg lens designs, which may
contain upward of 1500 cells. with spherical platforms instead of 2D platforms in this
design. This complexity significantly increases the difficulty of identifying and rectifying
errors during the printing and design phases, particularly in Steps 3 and 4, underscoring
the challenges inherent in advancing GRIN lens technology.

7. Results and Discussion

The simulations and experiments performed on the suggested dielectric GRIN lens
demonstrate a significant qualitative alignment between theoretical forecasts and real test
outcomes. The analysis of the electric field distribution shows that the fields around the
wave launcher are hidden by the strong radiation from the beam launcher, making it
difficult to view the electric field in this setup. When incident waves pass through the
lens structure, they transition from cylindrical waves to quasi-plane waves upon reaching
the opposite side of the lens border, resulting in concentrated illumination. Figure 13A,B
vividly illustrate the beam focusing mechanisms of the perforated lens at both 60 GHz
and 62 GHz, showcasing their complexity. Conspicuously, there are intense radiation
patterns present at the documented frequency ranges. This thorough study highlights the
effectiveness and reliability of the suggested dielectric GRIN lens design in real-world
scenarios. The results shown in Figures 13 and 14, both computed and observed, regarding
radiation patterns and S11 parameters, are consistent with the expected performance of
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the customized perforated lens. Figure 13 offers a detailed representation of the antenna’s
radiation patterns at ph = 0 polarization, spanning across all specified ports (from port
B5 to B1) tuned to a frequency of 60 GHz. This visualization includes angle scans at
−67, −28, 0, 28, and 67 degrees, effectively demonstrating how the antenna directs radio
waves in multiple directions. Through mathematical calculation and HFSS analysis, we
identified a discrepancy of approximately 2 mm between the phase center of the perforated
Luneburg lens and its designated boundary. This finding prompted us to reconfigure the
lens design towards a defocused model, accepting the trade-off of encountering aperture
phase errors that would require additional adjustments. Theoretical simulations predicted
the beam’s radiation direction to ideally be at 0, 32, and 64 degrees. Nevertheless, practical
measurements indicated that the lens’s focusing performance resulted in an approximate
4-degree deviation, accompanied by slight irregularities in beam shape. This was especially
evident in the radiation patterns at 28 and −28 degrees, as depicted in Figure 14, where the
deviations from the expected cosine radiation patterns were markedly apparent.

Figure 13. The data obtained from simulations and experimental measurements regarding the
perforated lens include various aspects such as co-polarization and cross-polarization, along with nor-
malized e-plane and h-plane radiation patterns specifically observed at (A) 60 GHz, and (B) 62 GHz
for center beam B0. These patterns are illustrated in two scenarios: (a) when the azimuthal angle (φ)
is set at 0 degrees, and (b) when it is at 90 degrees. Analyzing these patterns provides insights into
the directional characteristics of the radiation emitted by the lens, shedding light on its performance
and suitability for specific applications [3] (Ch4. pp. 78–90).
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Figure 14. A detailed comparison between the theoretical simulation and actual experimental
outcomes for the efficiency parameters of the perforated Luneburg lens antenna. In Subfigure (a),
the S11 response curve is depicted, which serves to illustrate the degree of electromagnetic wave
reflection encountered by the antenna, essentially highlighting how much of the incoming signal is
not absorbed and is instead reflected back. Subfigure (b) delves into the antenna’s achieved gain
and directivity, offering insight into the effectiveness of the perforated Luneburg lens antenna in
amplifying and directing the signal. Lastly, Subfigure (c) provides an empirical view of the antenna’s
radiation pattern for a ph = 0 polarization state across all designated ports (from port B5 to B1) at
the operational frequency of 60 GHz, with angle scans at −67, −28, 0, 28, and 67 degrees, thereby
illustrating the directional emission of radio waves at various orientations [3] (Ch4. pp. 78–80).

Repeated measurements consistently highlighted these angular discrepancies. To ad-
dress these issues, we can enhance lens optimization through the application of advanced
optimization algorithms, such as genetic algorithms and Newton’s method techniques
in future. These methodologies offer a systematic approach to refining the lens’s perfor-
mance by iteratively adjusting design parameters towards optimal values in combine with
HFSS simulations. Alternatively, a simpler immediate solution involves modifying the
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positioning of the linear array of dipole antennas to minimize the direction mismatch error.
This adjustment aims to align the radiation pattern more closely with final expectations,
thereby improving the lens’s overall focusing accuracy and beam quality. This feature
evidences the antenna’s capability to emit beams along various paths, confirming its multi-
beam functionality, which is particularly advantageous for IoT applications operating at
60 GHz [1]. Through mathematical analysis and full-wave simulation, it was determined
that the feed phase center of the proposed lens should be aligned with the dipole antenna.
It is essential to carefully construct the airgap using 1 mm thick Rohacell foam [48], as even
slight variations in thickness can have a notable impact on the desired effective medium
properties surrounding the perforated lens.

8. Conclusions

A dielectric perforated homogeneous Luneburg lens antenna was designed by em-
ploying material porosity techniques enabled by selective laser sintering (SLS) technology.
The perforated dielectric Luneburg lens was excited by a microstrip dipole source operating
at 60 GHz. It is demonstrated that by reducing the permittivity of the dielectric medium,
broad operation is achieved from 56 to 68 GHz. The proposed antenna design incorporates
advanced physical porosity adjustment techniques that allow for strategic manipulation
of the substrate’s permittivity to meet the requirements of V-band communications. A
significant feature of this design is the integration of a microstrip dipole antenna featuring a
cos10-like emission pattern, serving as an advanced beam illuminator within a parallel-plate
waveguide. This integration enhances the antenna’s versatility, making it well suited for
both communication and sensing applications within IoT frameworks. The fundamental
concept driving this antenna’s development revolves around the precise control of material
porosity using air holes, enabling the manipulation of refractive index gradients within the
lens structure. This study signifies a notable advancement in antenna design methodolo-
gies, providing a tailored solution optimized for the unique challenges posed by emerging
IoT applications.
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